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Decompositions of Regular Representations
of the Canonical Commutation Relations

By

Reinhard SCHAFLITZEL*

Abstract

Every cyclic regular representation of the canonical commutation relations over any inner
product space V can be decomposed into a direct integral of irreducible regular representations,
where the fibers are representations over subspaces of V. An example using the so-called direct-
product representations shows that generally the irreducible representations cannot be defined over
the whole V. So we get a new type of decomposition having no equivalent in the decompositions of
locally compact groups.

Introduction

In this paper we are concerned with the decomposition of regular
representations of the canonical commutation relations over a complex inner
product space into irreducible representations. This article is the abridged
version of a paper ([10]) accepted as a doctoral thesis by the Technische
Universitdt Miinchen (1988).

Let V'be a complex inner product space. A mapping W of Vinto the group
% (H) of the unitary operators on the complex Hilbert space H is called a repre-
sentation of the canonical commutation relations (CCR) over V, iff

WIWg) = exp(Im{f, g>/2)W(f +¢g)  for f,geV.
W is called regular, iff

teR—Wtf)e%(H)

is strongly continuous for every fe V. In some cases, more general spaces V are
permitted (see 2.8(ii)).

If Vis finite dimensional, the decomposition theory for representations of
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the CCR over Vis very simple: By a famous theorem due to Stone and von
Neumann, there is only one irreducible regular representation of the CCR over
V, and every regular representation over ¥ is a multiple of this representation.

In G.C. Hegerfeldt’s papers [4] and [5], certain regular representations of
the CCR over infinite dimensional ¥ are decomposed into a direct integral of
irreducible regular representations; for example, representations over an inner
product space with countable Hamel base are allowed, but representations over
the separable Hilbert space are not considered. In this paper we decompose
cyclic regular representations W: V— % (H) over any complex inner product
space V into irreducible representations:

@

W can be decomposed into a direct integral f W) dv(p), where for pe X
X

W) is an irreducible regular representation of the CCR over a complex
subspace V(o) of V. (What this means precisely, see Chapter 1.) As to the proof
we shall have to decompose a representation of a C*-algebra called
#(V). Since #(V) is nonseparable, we will not use the usual reduction
theory. Instead, for the sake of applying a decomposition theorem due to R.W.
Henrichs, we need the concept of direct integrals of Hilbert spaces introduced by
W. Wils (see [12]). The main difference to the usual concept is that
nonseparable Hilbert spaces are permitted.

In Chapter 1 we derive the theorem above, in Chapter 2 we discuss our
result:

By the theorem the representation W can be decomposed into simpler
components, namely into irreducible representations over complex subspaces of
V. So all the regular representations of the CCR over V are known, if we know
the irreducible representations over all the subspaces of V. In Chapter 2 we
discuss the question whether it is possible to choose the representations W(g) of
the fibers as irreducible regular representations over the whole V.

We construct some examples of irreducible regular representations of the
CCR over a dense subspace of [?(N) which cannot be extended to regular
representations of the CCR over [*(N). They belong to the class of direct
product representations introduced by J.R. Klauder, J. McKenna, and E.J.
Woods (see [7]). By forming the direct integral of suitable representations of
that kind, we get a regular representation W, of the CCR over I*(N) with the

®
following property: There is no decomposition Wy =f W) du() of Wy into
zZ

irreducible regular representations W(() that are defined over [*(N)—at least, if
we assume that the diagonal algebra in the decomposition is maximal abelian in

{(We(f): fePM)}'.
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So we recognize that we cannot strengthen our theorem by choosing
irreducible regular representations over V in the fibers.
Throughout this paper we use the following
Notation. For a Hilbert space H and a subset M of H, let be

Hy:={yeH: |y| =1},
M*:={yeH: Y, 0> =0 for every ge M},

[M] the closed subspace of H, generated by M,
Z(H) the set of continuous linear operators in H,
94 H) the set of unitary operators in H, and

1 or 1y, the unit operator in H.

For a set #/ < ¥(H), let be

M’ the commutant of ..

For a C*-algebra <7, let be
oA the set of the positive operators of .7, and
S () the set of states of «f.

For we & (), let be
(s Hy, Ey) the corresponding GNS representation.

For a group G, a function h: G — C, and seG, let be
sh: G- C, defined by (h)(£):= h(s~tet).

For a set 4 and a subset T of A, let y be the mapping from 4 to C, such
that

(@) = 1 for aeT
TY9=Y0  for a¢T"

For an inner product space V, let be
A((V) the CCR algebra over V. (This is a C*-algebra generated by
unitary operators w(f), feV, which satisfy the commutation
relations.)
We note that—in an obvious manner —there is a bijective correspondence
between the nondegenerate representations of (V) and the representations of
the CCR over V.

Chapter 1. A Decomposition Theorem for Regular Representations of the
Canonical Commutation Relations

§1. The C*-Algebra #(V) and their Representations

Let V be an inner product space. The set R x V endowed with the
multiplication

(5, f)o(t, 9) = (s + t + Im<f, g>/2, f + g)
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is a group called 5#,. By the assignment
n =W, Wo(f) = =(0, f), (1)

we get a bijective correspondence between the unitary representations of
satisfying the relations z(s, 0) = ¢ 1 for se R and the representations of the CCR
over V.

If V has finite dimension m, #,, carrying the usual topology, is a locally
compact group, namely the Heisenberg group of dimension m. A representation
of the CCR over V is regular, iff the corresponding representation of ), is
strongly continuous.

Let W: V— %(H) be a regular cyclic representation of the CCR over the
inner product space V.

Let A be the set of the one-dimensional complex subspaces of V. For
N e & the restriction W|y of Wto N is a regular representation of the CCR over
N. By ny we denote the corresponding representation of #y, and by my the
nondegenerate representation of L!(s#,) associated with my (see [2], 13.3).

Definition 1.1. The C*-algebra in % (H) generated by
U 7y (L) U {14}
NeX

is called Z(V).

Remarks. (i) Let W be another regular representation of the CCR over
V. As before, we introduce the C*-algebra QZ(V). Using the theorem due to
Stone and von Neumann, we easily see that #(V) and 35([/) are isomorphic in a
canonical way.

(ii) For NeV, L'(#y) is separable. If the dimension of Vis greater than 1, 4
is not countable, and it can be shown that %#(V) is nonseparable. Thus, for
decomposing the identity representation of %(V), we cannot use the classical
reduction theory. If V'has a countable Hamel base {b,: ne N} (but not, if Vis a
separable Hilbert space), we are able to apply the classical theory by considering
the separable C*-algebra, generated by

91 s, (LN (Hcp,)) U {15}
instead of #(V), for example (cf. the proof of Theorem 2.1 in [4]).
(iii) We have

BYVY = () (ay(L} (Ay)) = NﬂW{W(f)t feN} = {M[): fev}.

Net
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For a two-dimensional subspace M of V we introduce the representations
n, of #, and m, of L'(#,) as before. We note that for one- or two-
dimensional subspaces L of V the product of the Lebesgue measures of R and L
is the Haar measure of #, in the normalization we will use.

Lemma 1.2. Let Ny, Nye ANV such that No#N,, and M:= N,
+ N;. Then the closure ¥"(N,, N,) of the subspace in & (H), generated by

{nn,(h) 7y, (k): he L' (A#y,), ke L' (#y,)},

is equal to the closure mwy(L*(#y)) of my(L1(5#,)) (closures with respect to

the norm topology).
Particularly, we have (L' (#))) < B(V).

Proof. For one- and two-dimensional subspaces L of V and reL!(L), we
define

m(r):= J r(f )W) df,
L
By an easy consideration we get:

m(LH(L)) = my (LY (H#))-
For re L'(N,) and se L'(N,) we have

(), () = f

J r(f)s(g) W(f) Wg) df dg
No«J Ny
= f f (exp(Im <f, g>/2)r(f)s(9) WS + 9)df dg
No v Ny
ey (L (M) = my (L1 (). 2

If follows ¥ (No, N,) € 7y (L'(5#,)). Now let us prove the other inclusion.
Using a Stone-Weierstrass argument, we easily conclude that the subspace
of LY(N, x N,), generated by

{(fs 9—r(f)s(9): re L'(Ny), se L'(N,)},

is dense in L'(N, x N,). Since the map

ur—(u), 1) (f, 9) = exp (iIm<f, g>/2)u(f, 9),

is an isometric isomorphism in L!'(N, x N,), the subspace generated by
{(f, 9)—exp(Im<{f, g/2)r(f)s(g): re L'(No), se L'(Ny)}

is dense in L'(N, x N,), too. Now it follows from relation (2) that every
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element of =}, (L'(#,)) can be approximated by elements of the linear span of
{7y, (") 7ty (s): re LY(N,), se L'(N,)}.

From now on, let p: (V) —» Z(K) be a nondegenerate representation of
B(V), pL:= peon; for one- or two-dimensional complex subspaces L of V,

N,:={NeN:py a nondegenerate representation of L!(#y)}, and

V-={UN5-’V;7N for &, #0

* =40} for A, =0 (€ V)

Proposition 1.3. (i) For Ne, let py be the representation of Hy
corresponding to py. Then for teR py(t, 0) = ' 1, that means that a regular
representation called W, y of the CCR over N is associated with py.

(i) If ¥, #0,V, is a complex subspace of V; by W,(f):= W, y(f) for feN
and NeN,, a regular representation W,:V, — U (K) of the CCR over V, is
defined.

Additionally, if N, =0, W, is defined over V, = {0} by W,(0):= 1.

Proof. (i) Since for he L'(#y)
p(e" my(h)) = p(ay(t, 0)-ny(h)) = p(ax(e.0)h)),

"1 satisfies the equation e“1-py(h) = py(e.0h) for he L'(#y). From this we
get "1 = py(t, 0).

(i) Let No, N;eN, such that Ny # N, and put M:= Ny, + N,. The
representations py, of L'(s#y,) and py, of L'(#},) are nondegenerate. Now,
considering Lemma 1.2 we see that p;, is a nondegenerate representation of
L'(#,). For every one-dimensional subspace N of M, py is
nondegenerate. This follows for N # N, and N # N, by applying Lemma 1.2
once more (if we use N instead of Ny). Now it is easy to show that ¥ is a
subspace of V.

It is clear that W, is well defined, and that teRw— W,(tf) is strongly
continuous for fe¥,. Obviously,

u{z(fo)W{z(fﬂ=exP(iIm<fo:f1>/2)W{J(fo +f1) (3)

is satisfied, if f, and f, belong to a common one-dimensional subspace of
¥,. We will show (3) in case M:= Cf, + Cf, is a two-dimensional subspace of
V,. Since the representations py, and py, for No:= Cf, and N;:=Cf; are
nondegenerate, p;, is nondegenerate, too. Thus there is a representation p,, of
#, associated with pj,. The same argument as in (i) implies that
feM— p,(0, f) is a regular representation of the CCR over M. So we can
show the relation (3) by proving
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W,(f) = pu(©,f)  for feM. )

Obviously f'= 0 satisfies (4); for f# 0 let N:= Cf, and N* be the orthogonal
complement of N in M. For he L'(s#y) and ke L'(s#y.) we have

p(h) pys(k) = p(my(h) Ty (k) =

p(f j f j hit, g) k(e gl)e"‘“""W(g)W(gl)dgldtidgdt>=
RJNJRJINL

p(J j ( j k(tt, gt)e™ dtL>h(t, g9)e"Wlg + g*)dg*dg dt) = pu(D),
RJNxNL R

where
It, g, g*) = <J k(tt, ghe dtL>h(t, g) for teR, geN, and g*eN*.
R

(Identifying #),, and R x N x N*, we get le L'(#,,)). Similarly, we conclude

Pu(0, 1) pn(h) pra(k) = pae (0, 1) pae(l) = piulo, 1) =

g <J J <J ke, gL)eitLdtl)((o,f)h) (t, 9)e" Wlg + g*t)dg*dg dt) =
RJNxNL \JR

PN ((o, £ h) py. (k).
Since py. is nondegenerate, we get py(0, f) = py(0, f) and equation (4). H

Proposition 1.4. Let p: B(V) > L (K) be a factor representation of B(V) in
a Hilbert space K # 0.
(i) For Ne N, py is either the zero representation or it is a nondegenerate
representation of L!(Hy).
(i) W, is factorial, too. If p is irreducible, W, is irreducible, too.

First we show a lemma.

Lemma 1.5. Let p: B(V)— ZL(K) be a representation of #(V). For
Ne N the essential space Ky:= [py(L'(#y)K] of the representation py is an
invariant subspace of p.

Proof. 1t suffices to show

px(h) pn(k) ¥ € Ky ©)

for every Ne V', yeK, he L'(#5), and ke L'(#y). The case N = N is trivial;
otherwise we set M:= N 4+ N; by Lemma 1.2 p&(h)py(k) is in the closure of
pu(L (). By Lemma 1.2 (using N instead of N, and N instead of N,) we
conclude that pg(h)-py(k) belongs to the closure of the linear span of
pn(LY () - pr(L  (#5)). Tt follows (5). I
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Proof of Proposition 1.4. (i) By Lemma 1.5 K and therefore (Ky)* are
invariant subspaces of p(#(V)). Let p* be the subrepresentation of p defined
on (Ky)*. Let us assume that py is degenerate. Then (Ky)*© # {0}, and p* is
quasi-equivalent to p, since p is factorial. Thus p*|., iy =0 entails

Plaswi ey = 0-
(i) The case A, =0 is trivial. For /4, # 0 from

mN:feny = N {e"W,(f): feN, teR} =

N()f (on(L' (#y))) = (using (i)
Nﬂ” (on (L (W)Y = p(B(V)),
we get the assertion. i

§2. The Decomposition Theorem

For the following we need the concept of direct integrals introduced by
W.Wils. We recall the definition (see [12]).

Definition 2.1. Let (Z, u) be a measure space; for {eZ let H({) be a
complex Hilbert space. A linear subspace I” of [ [,z H({) is called a set of u-
square integrable vector fields, iff
(i) (eZ—|n()|* is p-integrable for every n = (n({))ez€ -

(ii) If for ne[ ]z H() there is an #’ eI such that n({) = n'(() for almost every
{, then nel.
(i) If yel and heL®(Z, p), then h-n = (h(Q)n(0)yeze T

(iv) " with respect to the seminorm 7|, = < f I1n©) llzd,u(é)yr is complete.
VA

The corresponding Hilbert space is called the direct integral of the Hilbert spaces
H({), denoted by

[ r
f H()du() or J H(0) du(©).
z z

In order to make a distinction we call the direct integrals defined by the
usual concept, which for example is described in Dixmier’s books [1] and [2], as
“direct integrals in the sense of J. Dixmier”. Obviously, these direct integrals
also satisfy the Definition 2.1.

r
Definition 2.2. Let H =J H({)du(l) be a direct integral of Hilbert
z
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spaces. Let W: V— % (H) be a regular representation of the CCR over V. For
{eZ let V({) be a complex subspace of V, and W({): V() » % (H({)) be a regular
representation of the CCR over W({). Moreover let us assume that for every
feV there is a p-negligible set N, such that fe W) for every (eZ\N,,

r
f W) (f)du(l) is well defined and equal to W(f). (This precisely means that
z

for n=®()ezel the almost everywhere unique extension (1,({)),, of
MO (fIN(©))ez\n to an element of ngzH () belongs to I, and that the operator
of #(H), given by

r r
jﬂ(C)d#(C)—*’fﬂf(C)du(C),
z z

is equal to W(f).)
Then we say:

W= J WO du(l)

is a decomposition of W into regular representations W({) of the CCR that are
defined over subspaces V() of V.

Now we can formulate the main result of our paper.

Theorem 2.3. Let W: V> %(H) be a cyclic reqular representation of the
CCR over the complex inner product space V# 0. Then there exist a regular
Borel measure v on a compact space X and a decomposition

W= L W) dv(e)

of W into irreducible regular representations W(p): V(@) — U (H(p)) of the CCR,
which are defined over complex subspaces V(@) of V.

Supplement. (i) If Vis a separable inner product space, almost every V(o)
is dense in V.

(ii) If the decomposition is constructed as in the proof, the diagonal algebra

@
in f H(p)dv(p) is maximal abelian in {W(f): feV}'.

X

We can formulate this result using the group #, : Certain representations of
the group #, will be decomposed into certain irreducible representations of
subgroups sy, of #,. So we get a decomposition theorem for represent-
ations of a non locally compact group, having no equivalent in the theory of
locally compact groups.

In the proof we shall have to decompose the identity representation 14, of
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#(V). For this purpose we need a theorem due to R.W. Henrichs. First let us
give a definition.

Definition 2.4. Let 7 be a cyclic representation of a C*-algebra & and £ a
cyclic vector for = such that ||£]| = 1. We say that a decomposition

n= f n(Q)du(0)
z

of 7 is normalized (with respect to &), iff in the corresponding decomposition ¢

= fGB EQ)du(l) of & almost every £(0) is cyclic for n({) and [[&(0)] = 1.
z

Theorem 2.5 ([6]). Let m be a cyclic representation of a unital (not
necessarily separable) C*-algebra of and & a cyclic vector for m such that |||
= 1. Then there is a (with respect to &) normalized decomposition

= f " 2(0) du(e)
X

of m such that every n(¢p) is an irreducible representation of o, and p is a regular
Borel measure on the compact space X.

Remarks. (i) Let us briefly sketch Henrichs’s construction of the
decomposition:
Let w be the state of o/ belonging to 7= and &, and € be a maximal abelian von
Neumann subalgebra of n(&/). p is chosen as the orthogonal measure
associated with w and ¥. For ¢pe & (), n(p) is the GNS representation of a
pure state ¢ e (&) such that

{acsot: p(a*a) =0} = {aeA: §(a*a) = 0}.
The diagonal algebra in the direct integral can be identified with €.

(i) In [6], §3 R.W. Henrichs varies the decomposition of z, in which the
orthogonal measure associated with @ and the center n(4) Nn(<f)" of n(f) is
used, in a similar way in order to get a decomposition of 7z into factorial
representations.

If we apply this decomposition for 14, instead of the decomposition above,
we obtain a decomposition of W into factorial regular representations W(e),
which are defined over subspaces V(¢) of V.

Lemma 2.6. Let ¢ be a cyclic vector for W (and therefore for 14y,) such that
Ell=1. Let

r
ﬂsa(V) = J; p(0)du(Q)
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be a (with respect to &) normalized decomposition of the identical representation
Yaw) of B(V) into factorial representations p({). For a fixed Ne N, p(Q)y is
nondegenerate for almost every [eZ.

r
Proof. Let £=J E(0)du(l) be the corresponding decomposition of ¢&; for
VA

{eZ let p({) be the state of #Z(V) belonging to p({) and £({) and w be the state
of (V) belonging to 144, and {. For Ne .4 let (4,),.n be an approximate unit
in L'(y). Since (zy(u,)).n converges strongly to 1, we have

1 = lim () = lim f 0(0) @ ) du (D).
z

Since 0 < @(0)(ny(u,) < 1, it follows lim, ., ¢({)(ny(u,)) =1 for almost every
({eZ, and Proposition 1.4 (i) implies the assertion. By

®

Remark. Let us consider a decomposition 7z = f () du({) of a nondegen-
z

erate representation 7 of a separable C*-algebra. If the usual concept of direct
integrals is used, then almost every n({) is nondegenerate. For our more general
concept of direct integrals such a statement is not correct.

Lemma 2.7. Let
I
Eea(V) = J‘ p()du(0)
VA

be a decomposition of lgy, such that for {eZ the representation p((): B(V)
— P (H()) is nondegenerate and for every fixed Ne N p(()y is nondegenerate
almost everywhere. For {€Z, let V{):= V,y and W({):= W,,,. Then

r
W= j W) du(d)
z
is a decomposition of W into the regular representations W((), which are defined

over the complex subspaces V() of V.

Proof. Let feN, where Ne /. Since p({)y is almost everywhere
nondegenerate, f belongs to almost every W{). Let (u,),n be an approximate
unit in L'(#y) and v,:= (o ;, 4, for neN. Then (ny(v,)),ex converges strongly to
ny(0, f) = WAf), and (0(0)y(va)nen to W) (f) almost everywhere. Using my(v,)

r

=J p(Q)y () du(l) we easily see that (W(()(f)),., is a measurable, almost
z

everywhere defined field of operators and

Wf) = L WO (f)du()
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holds. O

Proof of Theorem 2.3. The assertion follows from Proposition 1.4,
Theorem 2.5 (applied to 1g4,,), Lemma 2.6, and Lemma 2.7. It is easy to show
Supplement (i); Supplement (ii) follows from Remark (i) after Theorem 2.5. [J

Remarks 2.8. (i) If Vis a Hilbert space, one can get a decomposition of W
with the properties of the decomposition of Theorem 2.3, for which, additionally,
holds:

All the V(¢)'s are dense in V.
@

Let a decomposition W= | W(p)du(p) of W as in Theorem 2.3 be given;
for pe X we define x

Vo) = {feV:{f,g)> =0 for ge Up)}.

Let W(o)': V@)t — % (H(p)') be an irreducible regular representation of the
CCR over W)* (the Fock-representation for example); for We)' = {0} let
H(p)':= C and W()*(0):= 1.

Let  Ho):= Vo) + Uo)*, H(g):=H(p)® Hp)*, and Wo): No)
— Y (H(®)) such that

W) (f + 1) = Me) () @ Wo)(fH)

for fe V(e) and f*e Wo)*.

I~/'(<p) is dense in ¥, and V~V((p) is an irreducible regular representation of the
CCR over 17((/)). Considering VV((p) as extension of W(p), we get the
decomposition

W= f W) du(o)

X

of W which has the desired properties.

(i) In some cases more general spaces V are permitted in the definition of the
CCR. We consider real vector spaces V, endowed with an antisymmetric
bilinear form ¢ such that there is a countable subset {f,: neN} having the
following property:

For every geV\{0} there is an neN such that o(f,,g) #0. (Important
examples are real dense subspaces of the separable Hilbert space endowed with
the imaginary part of the inner product.) In the definition of the CCR we then
have to replace Im {f, g) by a(f, g9).

Using similar methods as above one can get a decomposition theorem for
regular representation over such spaces, too (see [10], Theorem 2.2.6). Then
the representations of the fibers are irreducible regular representations over
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subspaces V() of V, for which oly,xy, 15 nondegenerate. (That means that
for every fe V(¢) there is a ge V(¢) such that o(f, g) #0.)

Chapter 2. The Domains of the Fibers in the Decomposition of Regular
Representations of the Canonical Commutation Relations

§3. Extensions of Direct-Product Representations

In this Section we construct some irreducible regular representations of the
CCR over a dense subspace of the Hilbert space [2(N), which cannot be extended
to regular representations over [2(N). For our purposes we need a very general
concept of extension; thus the results of the literature (see [11] or [13], for
example) are not sufficient.

Definition 3.1. Let ¥, and ¥, be real dense subspaces of [*>(N) such that
VeV, LetW:V,—>%(H)and W,: V, - %(K) be regular representations over
¥, and V;, resp., such that H is a closed subspace of K (for the definition of
representations of the CCR over real dense subspaces of [?(N) see 2.8
(i))). Moreover, let H be invariant under W;, and let the restriction of W, on H
be equal to W;. Then we say that W, is an extension of W,.

Let W: C — %(L*(R)) be the Schrodinger representation of the CCR over
C, defined by

(Ws(r + is) ) (x) = exp (ir(x + s/2)) f (x + 3).

For meN, the m-fold tensor product WJ" of W, is an irreducible regular
representation of the CCR over C™, called the m-dimensional Schrodinger
representation.

For neN let y,eL*(R),; moreover, let &:= @2y, and let H, be the
incomplete infinite tensor product of countable many copies of L2?(R),
distinguished by ¢ (see [8] or [3]). Furthermore, for neN let e,:= (9;,);enel*(N)
and ¥, be the complex algebraic span of the e,, neN. By putting

0

WO Y. Tne) @ 0ai= ® Wlh)a® @ e

n=m+1

we define an irreducible regular representation W,°: ¥, — % (H,) of the CCR over
V5. It is called the direct-product representation distinguished by ¢ (see [7]).

Let us recall a result of L. Streit (see [11],§4) concerning extensions of
Wgo. Consider the elements ) °  A,e, of I*(N) such that for every teR
ne1 Ws(tA), belongs to H,, that means that

%, 1K > = 11 < o0
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for every teR. They form a real subspace V; of I>(N). Obviously we have
;2 V%. By defining

o0

Wé( Z lnen) ® On = ® M./S‘(j'n)gn fOI' ® Qn€H§ and Z j'nenEV.fzf
n=1 n=1 n=1 n=1

we get an irreducible regular representation W;: ¥, —» %(H,) of the CCR over
V. W is an extension of W°.

The following result makes it possible to find direct-product representations
having no extension to regular representations of the CCR over 2(N).

Theorem 3.2. Let g =Y "  u,e,e *(N)\V; such that for every teR\{0}
R We(tu)¥, is not weakly equivalent to Q-1 V,, that means that

3 KW, Y>] = 1] = o0

for every teR\{0}. Then W° cannot be extended to a regular representation of
the CCR over a real subspace V of 1*(N), containing g and V.

So, if such a g exists, W, and Wéo have no extension to a regular
representation over 1*(N).

First let us show a lemma.

Lemma 3.3. Let w be the pure state of the CCR algebra £ (V;) belonging
to W;° and the cyclic vector £ = @1 Y,. Moreover, let V be a real subspace of
I*(N) such that V 2 V,, and let o be a state of o (V), extending w} such that the
corresponding representation W, of the CCR over V is regular. Then for f
=3 e,V

(] < [T KW b

holds.
Proof. We show

low(/NI < HKW V> Wa)l

for every meN.
Let m be fixed. We identify C™ and the subspace {3 "_, 1,e,: 44,...,A4,€C}
of ¥, in a canonical way.

Let (W,, H,, £,) be the GNS representation of the CCR over V
corresponding to w. (Instead of the representation 7, of &/ (V) belonging to w
we apply the representation W, of the CCR over Vthat is associated with 7,,.) By
the theorem of Stone and von Neumann the restriction W,|cm of W, to a
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representation over C™ is a multiple of the Schrodinger representation
Wg". Therefore, we may assume that

H,= @ L*R)® I*(I),
n=1
where I is a suitable index set, and

Wo( Y Anen) = @ WA @1
n=1 n=1
for 4,,...,2,,€C.

Next we need more information about ¢,. Let w, be the restriction of w
to &(C™. From

0nw( 3. 2ne) = [T AN 1> = (@ W) @ Ve @ i)

for 44,...,4,€C we conclude that the GNS-representation for w,, is equal to

W, @ LP®), @ v,). ©

n=1 n=1
So w,, is a pure state.
Let (1).; be an orthonormal base of I>(I). We can write £, as the sum

Y .10 ®n, where g,e ®p—; L*(R) and ), |loll*=1. For geC™ we have

0, (W(g)) = @(w(g)) = <(Ms5"(9) ® 1)(ZIQ, ®1.), (;Q, ®m) =

= ZI<Ws"‘(g)Q,, oy = Z}w'(W(g)),

where o' is the positive linear form of «/(C™) determined by o'(w(g))=<Ws"(9)¢.
0> for geC™. Since w,, is pure, we have o' = t*w,, where t, is a suitable
nonnegative number. From (6) we see that there is a unitary operator U in
® ™, L>(R) such that

UQI =1 ® lpn and UVng(g)U* = I/Vs‘m(g) for geCm'
n=1

Since Wy" is irreducible, U = y1, where |y| =1, and ¢, = o, Q '~ ¥,, where o,
=1ty. We get

&, = @1 Y, ®n  where n:=Y o7, )

el

Moreover, for f=Y"_, Ae, eV we get
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A i Ane)e{W(g) ®1: geCm}' = C1Q L(*());

n=m+1

therefore we have

0

W 3, ae) = 18 Wi S ey,

n=m+ n=m+1

where V(T2 ,
It follows

Jqe,) is a unitary operator in ZL(1*(I)).

0

W 3, dued = W . dne) W Y. dne)

n=m+1

n=1
= (3 he)® Wl 3 e
(7) and |n| =1 finally yield
0O() = 1K@ ) ® W 3, fae)(® Un @@ 1y ® 1)

=m+1

< TTICHRG )11 .

Proof of Theorem 3.2. Let us assume that W: V- %(K) is a regular
extension of W;°. Let w be the state of /(V) corresponding to W and ¢
(considered as an element of K). By assumption,

[T 1K 931 =0

holds for every te R\ {0}. Lemma 3.3 implies w(w(tg)) = 0 for rteR\{0}. This
is a contradiction to the regularity of W, from which lim,_,, w(w(tg)) = 1 follows.

Now we discuss some examples. First let us introduce some notation,
which is used in the next section, too.

2 1
¢oe L*(R), defined by ¢o(x) = ixexp —~x2 ) for xeR
nll4 2
(One-particle state),

1
¢, € L*(R), defined by ¢,(x) =ﬁxl—1,11(") for xeR, and
e;(A):= {W(A) ¢;, ¢;> for 2eC and i =0, 1.
Corollary 3.4. Let N = N,UN, be a decomposition of N, B(n)=0 for
neN,, and p(n) =1 for neN,. For &= Q> Ppwy We have
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i e, €P(N): Y [Im4,| < oo}.

neNy
If V2V, is a subspace of I*(N) not contained in V;, W,° cannot be extended to a
regular representation over V.

Proof. 1t is easy to calculate that

Imi| (Rel)?
sy =1 - ImH (e

o(|41?)
for [4] <2. Tt follows that for ) *  A,e,el*(N)

Y ley(d) =1l <0< Y [Imi,| < oo
n=1

eo(h) = <1 —%)exp(—‘%llz)

3 leg(dy) — 1] < o0

n=1

holds. From

we see that

is satisfied for every ) | A,e,€*(N). This shows the equation for ¥; applying
Theorem 3.2 and observing that e;(4) > 0 and e;(4) > 0 if A has a sufficiently
small modulus, we get the assertion. %)

§4. An Example, Part 1

In this Section we form the direct integral of irreducible regular
representations of the CCR, which are defined over proper subspaces of [2(N)
and which cannot be extended to regular representations over [?(N), and get a
cyclic regular representation W, of the CCR over [*(N).

Notation.

Yi= {0, 1}N = {(#)pen: 2,€{0, 1} for neN} is a metrizable compact abelian
group; let uy be the normalized Haar measure of Y.

In this Section we identify N with the disjoint union (J©2, {0, 1}/ by using
an arbitrary but fixed bijection.

Let us introduce some further notation used in the following. Let k be an
element of N.

of = (ay,...,0)€{0, 1} (= N)  for a = (x,),n€ Y,
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ko= (ly,...,1)e{0, 1} (= N) for j>k and I =(l;,...,1)€{0, 1}/,

k
L= U {01 (=N,

Ir =IL\{n',...,n"} for ne{0, 1},

N, = N\{0, 1},

CP:={aeY: a*=n} for ne{0, 1}*,

G¥:={le{0, 1}V: I*=n} for j > k and ne{0, 1}*,

d(m, o):= {(1)’ icfﬂ:'::;f:; for a suitable keN for «e Y and meN,

1form=n
= fi 1}k
o(m, n {O otherwise or m, ne {0, 1},
(e = @ Dsna for ae Y (Definition of ¢, and ¢, before 3.4),
n=1
W = W, W0 WO, Vo= Vi, Hy=H,.

It is py(C®) = 1/2%.
§3 implies that for aeY W,:V,->%(H, is an irreducible regular
representation of the CCR over

V, = {n; e el2(N): JZ'& [Im 4,,| < oo},

and there is no regular representation of the CCR over [?(N) extending W,.
Lemma 4.1. For every fel?(N) N;:= {0€Y: f¢V,} is a py-negligible set.
Proof. N;=0 for f=0;from now on let f=)Y "~ 1,,#0. For keN

we have
Ny={aeY: ) [Imi,|=w}s U M,
j=1 Jj=k
where M;:={aeY: A, > || f/j*}. It follows

N,€ N (U M). ®
k=1 j=k
It is
M 0 - i A1
;= U CY where J;:=<ne{0, 1}7: |, Zj—z .

nelJ,

Therefore, puy(M;) =|J;|-1/2). From
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Z 1412 <117

neld,

[l HfIi2
j4
we get |J;| <j* and py(M)) <j*/2/. This implies
© © o S 4
ﬂy(ﬂ(UM,))':}‘ggﬂy(U Mj)< Zz_z ;
k=1 j=k i=k

from (8) we receive the assertion. B

We put

@
Hy,:= j H,doa,

Y
where a direct integral in the sense of J. Dixmier is used. For fel,
(W(f))eey is a measurable field of operators. For f=3*  A,e,el*(N) and
ae Y\N;, (W,(3.7"_, Ae,))men converges strongly to W,(f)(see [11], Lemma 5); so
(W.(f))sey is an almost everywhere defined measurable field of operators, and by

@

Wy I2(N) — %(Hy), W (f) =.[ W, (f)do,

Y

a regular representation of the CCR over [*(N) is given.

Let W be the restriction of W, to ¥,.

5]
Proposition 4.2. (i) fy:zj Edo is a cyclic vector for W and W.
Y

D
(if) For the diagonal algebra 9 in Hy = J H,do,
Y

2 = {(W(f): fePMN)} = (WP(f): fe Vo)
holds.

We denote the state of 7 (I*(N))(</ (), resp.), corresponding to W, (W2,
resp.) and &y, by wy (0§, resp.).

(]

Proof. (i) Since f £, da is a separating vector for 2, (i) follows from (ii).
Y

(i) In several steps:
(a) It suffices to show

J- Xc5§>(“)1da€{mo(f)5fe Vo) ©)

for keN and me {0, 1}*.
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For: Since 2 is generated by

@
{f Xcgo (@) Ldo: keN, me {0, 1}"},

Y
9D = (WP (f): feV,}" is satisfied. Since 2 < {WP(f): fe V,}', we get
2 < {W(f): fe Vol n{W(f): fe W}

]
Since in the decomposition WY = | W.%da of W;? the fibers W,° are irreducible
Y
Y

and regular, the diagonal algebra & is a maximal abelian von Neumann
subalgebra of {W° (f): fe %5}’ (see [9], Lemma 1.2). Now it is easy to conclude
that

D = {WP(f): fe W} n{W(f): fe W} = (WP (f): fe o}

The considerations after the proof of Lemma 4.1 establish that for f
=Y " e, elP(N) (W (I, A.e,))men converges strongly to W(f), and thus
9 = (W (f): fe W} = {W(f): feP(N)}'

holds.
(b) Let jeN be fixed. For aeY let H,; be the incomplete tensor product

@

®uen, L*(R) distinguished by & e, Psen, ) s moreover, let Hy, j:——-f H, ;do and
Y

Lj= @ neo. 1y L2(R).

Applying [1], Proposition 11, p. 175, we find that there is a unique Hilbert
space isomorphism

U:L;®Hy; — Hy

which maps

tﬁ@f@n(oc)doc into fel//@)n(oc)da

Y Y

@

for YyeL; and f n(e)dae Hy ;. (Identifying L;® H,; and H,, we consider
Y

Y ® n(a) as an element of H,.)

Let ¥, be the subspace

{ 21;, Ane,€l?(N): 4, =0 for almost every neN;}
of ;. For aeY we define a regular representation W,%: V,— %(H, ) of the
CCR over ¥, by
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W (Y, Anen) = @ Wi(Ay).

neN,; neN;

Then by putting

o0 @
WS he) = ® W) ® f WO S ey da
n=1 ne{0,1}7 Y

neN,

for Y’  A,e,e¥, we obtain a regular representation
VVY(,)J': Vo — %(L;® Hy ;)

of the CCR over ¥, which is transformed by U into W°.

(c) For jeN and 1€{0, 1}/ let

U= & ¢5(n,z)€Lj~

ne{0, 1}

From now on, let keN be fixed.

For me{0, 1}* and j >k let P, ;e #(L; denote the orthogonal projection
onto

[¥,:1€{0, 1}/, I* = m];
moreover, let Q,,;:= U(P,; ® 1y, )U*.

Since the Schrodinger representation W is irreducible,

ZL)={ ® Wl4,): 1,eC for ne{0, 1}/}";

nef0, 1}

it follows

P,®le{ ® Ws(4,): 4,eC for ne{0, 1}'}" @ C1 = {W2(f): fe V}”

ne{0,1}

and Q,,;€{W°(f): feV}" for j > k. Now we can prove (9) by showing that
®

(Omj)j=r converges strongly to f xcgf,(oc)ﬂ do and by applying the density
Y

theorem due to J. von Neumann.

(d) Since sup;s; | Qn;ll =1 < oo, it suffices to show

®
}Lrg Qi = f Xcgf)(oc)]l do-n

jzk Y

only for those #’s that belong to a suitable generating set of the Hilbert space
Hy. Therefore we only consider the case
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n= f h(®) é 0n(@) do,

where he L*(Y) and a j, > k exists such that g,(a) = @4 for j > jo, ne {0, 1},
and «€Y (that means that & ,o1p0i(®) =Yy, for j>j,, 1€{0,1}, and
aeCP?). For j>j, we get

Qnjn = (identifying H, and L; ® H, ;)

= Qm,J Z Kep@h(@) Y ® & (o) do =

neN,

=0mU* Y ¥® JXC<J)(a)h(a)®Qn(a)da—

1e{0,1}7 neN,

=U Z P,; ‘//l®f Xcgn(“)h(“) & on(@)do = (¥)

1le{0,1}7 neN;
=U ; ¥ ® f e (@)h(@) & eq(0)da =
leG! neN;

@
= j ; Xcm(‘x)h ® W) do = f xcgf)(oc) tdoa-n;
Y [eGJ9, Y

in () we used the fact that {¢,, ¢,» =0, and therefore P, ;y, =0 for I* # m.

Remark 4.3. It is not difficult to show that fel?>(N)— W(f)e#(Hy) is
even strongly continuous (see [10] for a proof).

§5. Insertion about Decompositions with the Same Diagonal Algebra

Let o/ be a unital C*-algebra, w a state of o/, and ¥ an abelian von
Neumann subalgebra of n,(</). Moreover, let v be the orthogonal measure in
S () associated with w and ¥.

5.1 Theorem. Let
Ty = f n(0)du(0)
VA

be a (with respect to &,) normalized decomposition of m, into representations
n(0): o - LH()) of o such that € is transformed into the diagonal algebra of
@

the direct integral f H(Q)du() (in the sense of Definition 2.1). Let &,

z

®

= () du(l) be the corresponding decomposition of &, for (€ Z let ¢({) be the
z

state of « belonging to n({) and £({). Moreover, let X be the o-field, on which
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the measure i is defined, let v, be the restriction of v to a Baire measure on & (),
and B, the o-field of Baire sets on & ().

Then T: Z - & (), {— 0(), is X—RBy-measurable, and v, is the image of u
under T.

Proof. In several steps:
(a) Let U be the Hilbert space isomorphism which is composed of both the

®
canonical isomorphisms, transforming f H,dv(p) into H, and H, into

® &(sf)
f H()du(l), resp.. For ae«,

VA
] @
U j (p(a)ldv(ga)U*zj ()@ 1dp®) (10)
L () z
holds.
For: Let P be the orthogonal projection onto [¥¢,] in H,. For Ce¥’

there is a unique operator @(C)e¥ such that PCP = &(C) P (cf. [6], §2.). In
order to get the assertion (10) we will show that for ae &/

D(n,(a)) =j @(a)1dv(e), (11)
FL(A)
if we identify H, and J‘e H,dv(p), and that
L (A)
&(n,,(a)) =j ?(D)(a)1dv(0), (12)
z

]

if we identify H, and J H({)du(). Tt suffices to establish (12); (11) follows in

z
the same way. So we have to prove

@
Pr,(a)n =J p(@)@ldu)-n  for every ne%s,.
z
We can easily check this relation after having shown that

P= j P()du(0),

z

where P({) is the projection onto C¢(() for {eZ.

Obviously, Je P({)du({) is well defined, ( J SBP(C) dy(())(Hm) c[¥¢&,], and
z

z
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f P(Q)du(l)-n =n for ne€&,. It remains to prove thatf®P(C) du(l)-ne(€&,)*
z ® z
holds for n = f nQ)duQ)e(@&,)-. We get this from

Z
<L P(C)du(C)-mL h(C)é(C)dﬂ(C)> =

=f <<n(©), £(0)5 €0, QD)) du(Q) =
z

= <f (0 du(©), L h(C)é(C)dﬂ(C)> =0

z

for he L*(Z, u).

(b) For aes/, and an interval I in Ry we define B, ;:= {¢pe S (H): p(a)el}

and C,;:=T '(B,)={leZ: o(Q)(@)el}. For I=[0,s[(s>0),C,, is p-
measurable, and

]

UL’( Ao (@) Ldv(@) U* = f Xca, () Ldu(0). (13)
) z

®
For: Since f

Pl
satisfying (13) where C,, is replaced by D, ;. From (a) we get

X, (@)1dv(p) is a projection, there is a set D, ;€X

ULM 1a,.((@)(s — (@) Ldv(p) U™ = f 10,0 — 0(0) (@) 1du(?).

z
The operator on the left is positive, therefore the operator on the right is
positive, too. We obtain
() (a) < s for almost every {eD, ;.

Since the operator

J (1 = 28, (@) (@(a) — 5) Ldv(p)

L(A)

is positive, we conclude as before that

©({)(a)>s for almost every
{eZ\D, .

After a modification on a negligible set we get

Coo,st € Day1 = Copo,s1- (14)
For neN let I,:=[0,s(1 — 1/n)[. We have

Uf 18, (@) 1dv(@)U* = U<Supf Xsa,,"(QJ)ﬂdV((P)) U* =
F()

neN P (L)
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= sup f XDa.r, (0 1du(0). (15)

neN )z

From (14)(applied to 1,), C,; = U=y D, 1, follows. Thus C,; is u-measurable,
and

Supf XD, (0 1du(0) =f Xca. () 1du(d).
neN |z VA
From this and (15) the assertion follows.
(c) So
Uf xe(@)1dv(p) U™ =J xr-1p Q) 1du() (16)
L () z

holds for every E = B, o . Similar arguments establish (16) for E = B, (o g
(s >0). Now it is easy to see that (16) is satisfied for every

Eeé&:={(\ B, meN,a,es,, I, a relatively open interval
n=1
in Rg, n=1,...,m.}.

Thus for Ec€c& we obtain

5] @

V(E) = < 2e() 1 dV(w)f

F(A) S ()

Codv(0), f

F(al)

$pdv(0) >

= < 1e(@) Ldv(@) U™ L <(0du(), U*f <@ du(C)>

FL(A)

= < , XT"(E)(C)ﬁdH(C)f <(Ddu(0), J é(C)du(C)> = (T (E)).

z z

Since the o-field %, is generated by &, and & is closed with respect to finite
intersections, v(B) = u(T~1(B)) holds for every Be4%,. [l

We mainly need the following corollary.

Corollary 5.2. Additionally, let us suppose that of is a separable C*-
algebra. Let

T =f n(Q)duC) and =, =f p(B)di(h)

z X

@
be two decompositions of n,, with diagonal algebra €, and H,, = f H()du(l) and
zZ

]
H, =f K(B)dA(B), resp., the corresponding decompositions of H,. Moreover,
X
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let the first decomposition of mn, be normalized with respect to &,; let

]
J K(B)dA(P) be a direct integral in the sense of J. Dixmier, let X be a standard

X
Borel space and A a o-finite measure on X.

Then for almost every (€ Z there is a feX such that n({) and p(B) are
unitarily equivalent.

@
Remarks. (i) From the assumptions above it follows that f H{)du()is a
z

direct integral in the sense of J. Dixmier.
(ii) If Z is a standard Borel space, too, the corollary is an immediate conclusion
from [2], Proposition 8.2.4, but we are interested in the general case.

Proof. Let v be the orthogonal measure in & (&) associated with w and ¥,
]

and let =, = f n,dv(p) the corresponding decomposition of x,. Since
F(AL)
F (&) is compact and metrizable, ¥ (/) is a standard Borel space, and the direct

integral can be interpreted in the sense of J. Dixmier. Let us compare this
@

decomposition of 7, with =, =f p(B)dA(B). The Proposition 8.2.4 in [2]
X

mentioned above implies that there are a v-negligible set N, a A-negligible set N,
and a Borel isomorphism S: % (&#/)\N — X\N,; such that m, is unitarily
equivalent to p(S(p)) for pe F()\N. Since the set of Baire sets in & (&) is
equal to the set of Borel sets, from Theorem 5.1 we get that T~ (¥ () \N) is u-
measurable, u(T~ YL (#)\N)) =1, and that for (e T (L (Z)\N) =) is
unitarily equivalent to 7, and therefore to p(S(@({))).

§6. The Example, Part 2

Proposition 6.1. There is no decomposition

Wy = f WO du(0)

of W, into regular representations W(() of the CCR which are defined over 1*(N)
such that the diagonal algebra of the direct integral is maximal abelian in

{(W(f): fel2 M)}

Proof. In several steps:
(a) Let us suppose that

W = L W) du(0)
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is a maximal abelian decomposition of W, into regular representations
W(): P(N) > % (H(0)).

Let 7my(n({), resp.) be the representation of </(I*(N)) associated with W
(W), resp.). Let o(V,, Q) be the C*-subalgebra of </ (I*(N)) generated by

{(w( ) Ae):meN, 1,eQ+iQ, n=1,...,m};
n=1

obviously /(V;, Q) is separable. Let 7y o(n({)q, resp.) be the restriction of 7y
(), resp.) on Z(¥,, Q). We obtain the decomposition

r
o= Ln(C)Qdu(C) (7
of ny o. Since

y,o( (Vo, Q) = (WP (f): feWo}" = (W (f): feP(N)}",

r
¢y is a cyclic vector for 7y q,, and the diagonal algebra in f H()du() is
ny o( (¥, Q)) (see Proposition 4.2 (ii)). z

(b) Our next intension is to normalize the decomposition (17).

I
Let &y = J &) du(l) be the corresponding decomposition of £,. For (eZ
¥4

let K(0):= [7(Oo( (W, Q) E(0)]. Since &y is cyclic for 7y o, almost every 7(()
r
be}ongs to K({) for every n = (n({))ez€I. Thus f H({)du(Q) is isomorphic to

z

r
f K(0)du(() in a canonical way, where I"= I'n[ ], K(() is the set of square
2 .

r
integrable vector fields in J‘ K du(0).

z

We can assume that all the K({)’s are not equal to zero. (Otherwise we
remove every (e€Z satisfying K({) =0 from Z.) Instead of u we can use a

z

T A
suitable measure ji equivalent to u, and transform f K()du({) into f K()du(0)
such that in the corresponding decomposition

&y = L () da()

449;
e

In this way we obtain the decomposition

of &, every &(0) is equal to (For details see [10].)
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A
Ty = f 7O dn(?) (18)

zZ

of my o, where 7({), denotes the restriction of n({), on K({). It is easy to show
that the diagonal algebra is 7y (= (¥, Q)).

(c) For aeYlet m, be the representation of /() corresponding to W, and n, ¢
the restriction of =, on (¥, Q). It is easy to recognize that

@
Ty = J; Ty @ do (19)
is a decomposition of my ¢ such that 7y o( (¥, Q)) is the diagonal algebra in
the direct integral. Let us compare the decompositions (18) and (19): Corollary
5.2 implies that almost every 7({), is unitarily equivalent to a representation
T,q- This is a contradiction, since 7, cannot be extended to a regular
representation of .« ([2(N)). O

Proposition 6.1 suggests that W, cannot be decomposed into irreducible
regular representations of the CCR over [?(N). For example, our result shows
that it is not possible to extend the representations of the fibers appearing in the
decomposition of Theorem 2.3 to irreducible regular representations over [?(N),
and so to get a decomposition of W into irreducible regular representations of
the CCR over [*(N).

But there remains the question whether there is a decomposition of W into
irreducible regular representations of the CCR over [?(N) such that the diagonal
algebra is not maximal abelian in W (I2(N)).

We cannot exclude this possibility completely for the following reason: In
contrast to the case of separable C*-algebras there is a representation n of a
nonseparable C*-algebra o/ possessing a decomposition into irreducible fibers
such that the diagonal algebra is not maximal abelian in =n(&f). A still
unpublished example of such a kind was constructed by R.W. Henrichs. Is it
possible that this phenomen also appears in the case of the representation 7, of
2 (1*(N))?

Remark 6.2. 1t can be shown (see [10], Proposition 3.4.2) that there is no
decomposition fo W into factorial representations W({) of the CCR over [*(N),
for which

fel’(N) — W()(f)

is strongly continuous. So it is impossible to transfer the strong continuity of
W; (see Remark 4.3) to the representations of the fibers.
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