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Introduction

In this article we study the first order non-linear Cauchy problems of the
form

F(x; du(x), u(x))=0
O {

u!s=¢
where (1) are defined in a complex domain M in C*, n=2. Our aims are to find
analytic solutions of (1) multi-valued in general, which ramify around a jixed
point x° in M, and to calculate their ramification degrees there.
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* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
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We always consider (1) in the following situation (2):

a) F(x;é&, z) is holomorphic in an open neighborhood of a fixed base
point
e"=(x"; &, 2")e ' MNF~0)
where we denote by J'M=\J JiM the first order complex jet bundle
rxeM

(2) {over M, which can be identified to the product space T*MXxC.

b) S is a non-singular complex hypersurface of M passing through
the point x°M. S is defined by a holomorphic germ sy, o locally
at x° that is, S={x=M; s(x)=0} near x°.

¢) @<0s, 50 is a holomorphic Cauchy data on S at x° satisfying

(dg(x"), ¢(x°N=(%f", 2°).

In ¢) of (2), ¢*: T*M|s—T*S denotes the dual bundle map of the injective tan-
gent map ¢yx: TS—TM|s induced by the inclusion map ¢: ST, M.

We assume the following three conditions [A.1], [A.2] and [A.3]:

The first condition is

[A.1] 18,7 (e") | 0

where (&, -+, &,) is the dual coordinate system of a local coordinate system

(%1, =+, x,) of M around the point x°=M. We note that (x,, =+, x.; &, = &, 2)

forms a local coordinate system of J'M around e’=(x°; &% 2z°). We remark that

the condition [A.1] is independent of a choice of local coordinate systems.
The second condition is

The function 7—F(x°; tds(x°)+&°, 2°) of the one variable 7
vanishes with a finite vanishing order p=1 at z=0.

[A.2] {

We note that the special case p=1 is nothing but the case the following condi-
tion holds:

3) 040 F(x"; 7ds(x")+£", 2} | cma= 330¢,F(¢"):,5(x°).

We call S is non-characteristic for F micro-locally at ¢°, if the condition (3) holds.
Thus our condition [A.2] involves the non-characteristic case.
The third condition is, roughly speaking, stated as the following form:

There exists a holomorphic approximate solution @ €0y, ;o of the

A3
[a.3] { Cauchy problem (1) such that @ has several “good” properties.

These “good” properties of @ in [A.3] are stated by means of the Newton
polygon of the function

f%y, 7):=F(y; tds(3)+dD(»), P()EOsxc. z0,0 -
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In this article such an approximate solution @ with “good” properties is called
by the name of a good extension of the Cauchy data ¢.

This naming comes from the following definition: We call a germ @ €0y, o
an approximate solution of (1) at ¢° of the approximation order ke NU{co} if

ord o[ F(x; dD(x), D(x))]=F
4) Ols=¢ (@ is an extension of ¢)
(x°; dO(x°), D(x"))=e’

where the notation ord..[f(x)] denotes the vanishing order of f at x=x".
Note that the condition [A.3] can be said for short the following form:

[A.3Y There exists a good extension @ of the Cauchy data ¢.

For a precise definition of the good extensions, see §2 (Definition 2.16).

Now we assume the conditions [A.1]-[A.37. Let @ be a good extension of
the Cauchy data ¢ of (1). We consider a map germ

{ Tol (SXC: (-xo’ 0)) e (.]IM’ 20)
To(3, 7):=(y; 7ds(3)+d (), D(¥))
and the pull-back f® of F by 74:

®)

(6) Xy, 0 :=5F )y, )=F(y; tds(y)+dD(y), D(y)).
Taking the Taylor expansion
£, 9= 2oy (6.E0s.z0 for v=0,1,2, )
of f? along {r=0}, we define the Newton polygon N(f%) of f? at (x°, 0) by
™ NG9 :=ch[\J {(ordzelc, ], »)+ R3]

where the notation ch[ A] for a subset A of R?® denotes the convex hull of A4,
and where R, denotes the set of non-negative real numbers.

In order to construct solutions of the Cauchy problem (1), we utilize the
classical theory of characteristic curves. Let

8) £y, 1)= H £y, T

be the irreducible decomposition of f? in the local ring Osyccz0.00. We set germs
V, 1=<7<7) of analytic sets of (C, 0),X(SXC, (x° 0))¢y.-» by

9 V,:={{t, 3, ); f9%, ©)=0}

Let t—¥(¢, v, ) be the characteristic curve of F (the integral curve of the
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characteristic vector field Y associated to F) satisfying the initial condition
T, v, )=716(y, T)E(J'M, ¢°), where Y r is given by

(10) Y= 310, F )z~ 36, 0.F)0:,F 1oy +( 36067 o

=1

Then we have the following induced map germs ¥, and =; for 1<7<r:

V; (F~'(0), &)

T,

m;| (€, OX(SXC, (x°, 0)) ———— (J'M, ")
(1D

projection projection

e (4, 2°)

Indeed, the following property of the characteristic curves

(12) 0AF T, 3, 7)}=0

yields ' (V;)c F~*(0). Thus we have the induced map germs &', (1<7<7).
Our main result is the following

Theorem 4.2. Assume the conditions TA.1], [A.2] and [A.3]. Then, for
any 1<7=<r, the following statements 1) and 2) hold:

1) The map germ w; is a germ of an analytic covering of (M, x°) such that
its ramification degree at x° is the positive integer v; which can be obtained from
the Newton polygon N(f®) by means of the formula (4.7) stated in §4.

2) Let X, be the critical locus of the germ m; of an analytic covering of
(M, x°) (see §3). Then there exists a multi-valued germ u; on (M—2,, x°) which
makes the diagram (11) commute, such that

(a) F(x; duy(x), u,(x))=0 and

(b) u; is exactly vj-valued on (M—2,, x°)
(the ramification degree of u; at the point x° is equal to v,).

We remark that the assertion of the main theorem involves the classical
result in the case p=1 (Theorem 1.6), which says that if p=1 then the rami-
fication degree is equal to one (unramified), see Remark 4.4.

Our program proceeds as follows:
In §0, we give an example in C?, which is a prototype of our theory.
In Chapter I, we give preliminaries to state the main result. In §1, we
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summarize the classical theory of characteristic curves from our view point.
In §2, we give a precise definition of the good extensions. In §3, we prepare
several geometric notions such as finite holomorphic maps and germs of analytic
(ramified) coverings.

In chapter II, we state the main theorem and its direct corollaries. The
first corollary is related to the analytic continuation of holomorphic local solu-
tions of the Cauchy problem (1) at generic points y in S—{x°}. The second
corollary asserts the mneccessity of the non-charactericity (3) for the existence
of holomorphic local solution of (1) at x°, under [A.1], [A.2] and [A.3].

In chapter III, we give a proof of the main theorem. In §5, we carry out
a reduction of the main theorem to a simpler Theorem 5.1. In §6, we introduce
map germs n7 (L<7<r) and their decompositions. By virtue of these decom-
positions, our proof of Theorem 5.1 can be reduced to those of Theorems 6.10
and 6.11. In §§7-10, we prove these theorems.

In chapter IV, we give proofs of several basic facts which are assumed in
chapter III.

The logical relations among the sections in Chapters III and IV except for
§11 are as follows (the content of §11 is used almost everywhere):

8§12 —> 87 —— §9
§14 \/ §6 — §5 — § 4 (Main Theorem 4.2)
7 A
§13 §8 §10

Acknowledgement. The author expresses his deep gratitude to Professor
Shigetake Matsuura for his encouragement and helpful comments.

§0. A Typical Example

In this section we give a simple example which is a prototype of our
general theory.

Example 0.1. In C?, we consider a Cauchy problem

j 1T (@7 — 2§4)— 8., u=0
7=1
L (0, x0)=¢(x2)=0

under the following assumptions (a), (b) and (c) for the positive integers p(u)
and g(p):

(@ p)/q)> ==+ >p(m)/q(m) .
(b) p(p) and ¢(p) are coprime for 1< p<m.

0.1
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© { If we put a(0):=0, a(g):=g(1)+ - +q() for ISpusm,
c

then ¢(¢) and a(p#—1)+1 are coprime for 1=pu<m.
We fix a base point ¢°:=(0, 0; 0, 0, 0) J'C*N\F~*(0), where F is given by
0.2 Fx; 6 2)=11 €2 —xg)—¢,.
u=

We note that the assumptions [A.1] and [A.2] of the main theorem are satisfied
in this example, since we have

{ 9, F=—1 and
ordo[F(0, 0; 7dxy, 0)]=p(1)+ -+ +p(m)< oo .

We take an extension @(x)=0 of the Cauchy data ¢(x,)=0, and consider
the function f(y, r) defined by

(0.3) f, ©):=f%, ©)=F(Q, y; tdx,+d®(0, ), @0, y))

=F(0, 7, 0, 0)=I1 (7@ — ).
.

Since Newton polygons have the additivity property

N(gh)=N(g)+N(h) (see §11, Proposition 11.3)
we have

0.4) N(f)= i N(r?® — yaw)y |
f=1

Lemma 0.2. For positive integers p(y), g(u), we put
Nq(,u).p(p) ={(c, d); (C/q(/l))‘l‘(d/.b(#))%l}

Let N:= Equw-p(m be the vector sum of these {Ngcu. pepr} in R®% If the finite
=

sequences {p(}pcrz.m and {g()}pzi.2...m satisfy the condition (a), then the
vertices of N are given by

(0.5) {(a(w), p—b(w); 0<p<m}CRZ
where we define a(y) as in the assumption (c), and we put

{ b(0):=0, and b(p):=pL)+ - +p(p) for p=1.
pi=b(m).

Proof. Let (¢, d)= 3 (¢ d,)EN With (¢4 d,)ENge, s for 1Sp=m. We
p2

can write (¢, d,) as follows:
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0.6 { (cp dp)E(Cc di)+RE
(¢%, dp)e[the segment joining (0, p(¢)) and (g(g), 0)] .
For our aim, it suffices to show the following facts:
0.7) petamdZp(wa(m)+emip—b}  for 1Sp<m
and the equality holds in (0.7) if and only if
=(q(0), 0) if A<p
0.8) (ca, d2) { =0, p(2)) if i>p
&[the segment joining (0, p(x)) and (g(g), 0)]  if A=p.

By the expression (0.6), we have
(0.9) pleta(d= 3 {p(pes+a(ud2bz 3 (plper-+a(p)ds)
= 3} [p(er -+ — (/gD + D]

= () 35, LG/ e ) — b/ g} ex+ ()]

Since the assumption (a) yields

<0 if A<y
() g(eD—(p(A/q()); =0 if A=p
>0 if A>p

the rightest hand of (0.9) (hence also p(u)c+¢(p)d) is minimized only if the
condition (0.8) holds. Conversely, if (0.8) holds then we have
p(e+q(p)d=p(p){a(p—1)+c3t +q(e){p—b(e)+d3}

=p(a(p)+q(p)p—bp) .
Hence we get Lemma 0.2. Q.E.D.

Since it is clear that N(z?¢—y2)=Ny, 5y for 1<p=<m, the equality
(0.4) and Lemma 0.2 yield the following figure of N(f):

ord(») }
p=b(m) 4
N(H
p—blp—1) 4
j273)
p—b(y)
q(p)

LI .
L4 >

0 a(p—1) a(p) a(m) ord(y)
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The aim of this section is to show the following
Propositien 0.3. For 1=u<m, we define a positive integer v(y) by

(0.10) v(p):=p(e{a(e—D+1 +g(@{p—b(p—1)—1} .

Then the Cauchy problem (0.1) has a v(p)-valued analytic solution u,(x) around
the origin of C?® for 1=pu<m.

To show Proposition 0.3, we utilize the classical theory of characteristic
curves. Let t—(X; &, Z)t, v, t) be the characteristic curve of F(x; &, z) given
by (0.2), passing through a point (0, y; 7, 0, 0)F~*(0) at the initial time ¢=0.
Note that the definition (0.3) of f(y, ) yields

0, y;7,0,0eFY0) & (3, 1)E/X0).
We set complex curves D(p) (1=p<m) by
(0.11) D(g):={(y, 7); TP —ye=0}.
Then we have the following irreducible decomposition :
fH0= 0 D).

We construct solution u,(x) of (0.1) by the following diagram:

X; 8, Z
(Ct 0)l ><(D(ﬂ)’ (07 O))y,f ( ) > (F—I(O), eo)tzf,z
(0.12) Xl projection ,1
' (C* (0, 0)), (J'C? €°)zie.:
E u, pro jectionl
e >(C, 0),

We must show that the diagram (0.12) determines a multi-valued germ u,(x)
around the origin., It suffices to show the map

(0.13) X:(C, 0):X(D(g), (0, 0))y,- —> (C?, (0, 0))
is a germ of an analytic covering of (C?, (0, 0)); (for the terminology, see § 3).
To verify this fact, we observe the components (X,, X,, &,) which satisfy
.14 { 0.X,=0;, F=(@.f XX, £)=0s,] 1T (F10—X 5]
atX2:a§2F="‘1 and 3551=—311F—5162F=0
(0.15) (X1, Xoy )0, 3, 7)=00, y,7) (v, )€D().

We solve (0.14)-(0.15) explicitly as follows. First we obviously have
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Xu(t, v, T)=y—t and
(0.16) {

g, y, t)=r.

Then the first equation of (0.14) can be written as the form

0. X=0d T (7o —(y—ty0} ],
0.17) { A=
X,0, 3, 9)=0.
We put
0.18) gy, 75 0= I {2 —(y =P}

=fly—t, 0= 2 co,ly—t)e
where the coefficients ¢; ,=C satisfy

(0.19) ¢i;0  only if (7, HEN().

Using the function g and its expansion, we solve (0.17) as

(0.20) X, y, )= i {7ei. )/ GHDHy = (y—t) it

1,j=0
Note that, by virtue of the assumption b), the curve D(y) defined by (0.11)
has a resolution of singularity of the form
(0.21) p:(C, 020 — (y, T)=(07®, §¥®)= D(y).
We define (X~; 5~, Z~)t, 0) as the pull-back of (X; 5, Z) by the mapping

1xp
(C, 0):X(C, 0)g ——> (C, 0): X(D(), (0, 0))y,- -

Then we have the following expressions (0.16)~ and (0.20)~:

X5, )y=0rw—¢
0.16)~ {

ET(t; 0)_-__— G

0.20° X3t 0)= 3 {jees/Gi+DHOPDED—X5(t, 0)+)grmi-b
2 J=

T 0

In order to count the ramification degrees of (¢, ) as a multi-valued func-
tion of (x,, x,), we consider the following equation in (¢, 8):

XT(t: 0)_—— X1
0.22) {

X;(t, 0):JC2 .

Note that X73(f, @) involves the variable ¢ only of the form X3(t, 6). Thus we
can write X7(¢, 8) as the form
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(0.23) X1, 0)=Hu(0, X3(t, 0))

where H,(0, x.) is given by

Hy(0, x0):= 33 {jeu. /G+DHEPe0D — i} grma-.

L
1,j=0

In this situation we have the following

Lemma 0.4. Assume (a), (b) and (c). We set
(0.24) hu(x1, X2y 0):=Hu(0, x2)— 2,
Then it follows that
ord[4,(0, 0, 0)]=v(p)d‘:‘fip(#){a(#—l)—l-l}+Q(#){P—b(#—1)—l}.

Proof. Note that

oo

(0.25) hu(0, 0, )=Hu(0, )= 3 {jc, ;/(i+1)} §remcisrauw=n

%,j=0

which yields the inequality

(0.26)  ord[Au0, 0, 1= p(e)—g()+ min { p(e)i-+q(2)s ; ¢1,3%0, jZ1}.
For Lemma 0.4, it suffices to show the following (0.27) and (0.28):

0.27)  min{p(wi+q(w)s; ¢:.;#0, j=1}=p(walp—D+q(@){p—blp—1)}.
(0.28) > []'Ci,j/(l"]"l)?&o

. Ne

where IC Z? denotes the set of (7, 7) attaining the minimum value (0.27).
By virtue of (0.19), we consider the linear functional

(0.29) kp: R*>(, j)— p(pi+q(w)jER

and observe that the minimum value of £, on N(/)N\{(, 7); j=1} is given by
the right hand side of (0.27). Note that, for any c=R, the level set k3'(c) forms
a line with the slope —p(u)/q(¢). Thus the minimum value is attained if and
only if the level set k,'(c) coincides with the line joining (a(u—1), p—b(z—1))
and (a(y), p—b(p)). Hence the assumption (b) and the condition j=1 yield that
the minium value can be attained by (i, ) if and only if the following (0.30)
holds::

(a(p—1), p—b(pg—1)) or (a(p), p—b(y)) if p<m.

(0.30) (@ ]')={ )
(a(m—1), p—b(m—1)) if p=m.

Thus we have

mink,=k(a(pg—1), p—b(p—1)=p(p)a(p—D+g(p){p—b(pe—1)}
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which shows (0.27).
Now we prove (0.28). First we claim

(0.31) (i.jz)eljc,-,j/(i—i— 1)
_{ (=D Hp—b(p—1)/(a(p—D+D—(p—b()/(a(@)+1)} if p<m.
(=DmHp—bm—1))/(a(m—1)+1) if p=m.

Proof of (0.31). Since c, ; is the Taylor coefficient of y*z7 in
£, ©)=TI {r?P— yudr}
A=1
we especialy have

0.32) ca.(p),p—b(;z):(—l)# for Oéﬂém .

Indeed, Lemma 0.2 yields that (a(u), p—b(p)) is a vertex of N(f). Thus the
condition (0.8) in the proof of Lemma 0.2 holds, which derives the following
implications :

{ (7, 72)EN(EPA — o)y 1<2<m, such that
(a(p), p—blp)= é(iz, 72)
(@A), 0) if A<y

=iy, F)= =i )= o).
(Za, 72 {(O, 20 if Z>{1 (Zy J;t) (Q(,u) )

Hence we get

ca(/.z),p—b(p):l#”;1>‘u’(_’1)#(1;25‘“):(_1)/‘ .
Thus we have (0.32). Then it is obvious that (0.30) and (0.32) yield the desired
(0.31). Q.E.D.

We continue the proof of (0.28). But this is easily verified from (0.31)
since a(y) and b(y) satisfy the inequalities

a(p—1)<a(w), and  p—blu—1)>p—bly).
The proof of (0.28), hence of Lemma 0.4, is complete. Q.E.D.
Since hu(xy, %2, 0)=Hu(0, x2)—x, vanishes at (0,0, 0) with order one,

hu(xy, x5, @) is irreducible at the origin. Hence Lemma 0.4 yields that the
function 6(x,, x.) determined by the equation

(0.33) hu(x1, %2 0)=0

is exactly v(p)-valued. We therefore have the following at most v(u)-valued
inverse (#(x), 0(x)) of the mapping X~:(C, 0),X(C, 0)—(C?, 0),, which gives
the solutions of the equation (0.22): Indeed, if we put
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Hx):=0(x)P™ —x,
then we have
{ X7(W(x), 0(x)N=Hu(0(x), X5(t(x), O(x))=hu(x1, %2y O(X)+21=1x,
X5(H(x), 0(x)=07—1(x)=x,.

Thus we have the following diagram:

(€, 0).X(D(g), (0, 0))y, -

T1xo J(X; 8, 2)
(X~; &8~ 27)
(C, 0),X(C, 0)¢ (F~%(0), e%)
030 x| Tuw, o0y g
. ' projection e o

(C ’ (O! 0))1 (.] C y @ )I:E.Z
:' 1,(x) l projection
R > (C, 0),

Hence the multi-valued germ u,(x) can be defined by the diagram (0.34), or by
the diagram (0.12), such that u,(x) is at most v(g)-valued and satisfies the equa-
tion

F(x 5 du), wp()= T1(@a,10)P P —284) 05,1, =0 .
=1
It remains to show that the germ u,(x) is exactly v(u)-valued.
To verify this we use the well-known relation

(0.35) 0z, uu(x)=8:(x)

where the function &,(x) is given by the following diagram (0.36):

(X7, X5, 87
0.36) (€, 0).X(C, 0) R T S0, (0, 0)).X(C, 0)e, ——> (C, 0),
A l A
i &i(x) E
L___________.(E(_"_):_‘?Q‘)Z ______ (C?, (0, 0))g == === mmmmm =t

Lemma 0.5. The function &(x) defined by (0.36) is also v(p)-valued.

Proof. By the definition of Z7(¢, ), we have

ET(t; 0)::51(t) Y, T)l(y,r):(ﬂp('u).0“‘”):6‘1(‘”)

which implies

(0.37) §1(x)=0(x) .
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Thus when 6(x) rounds its singular points one-time, &,(x) rounds its singular
points g(u)-times.
Note that, for 1<u<m, the assumptions (b), (c) yield that

(0.38) g(p) and wv(y) are coprime.

Indeed, if we denote the greatest common divisor of ¢, b Z by (a, b), then we
have

(g(e), v()=(q(p), p(){a(p—D)+1}+q(p){p—b(p—1D—1})
=(g(p), a(p—1)+1) [ (gl p(e)=1]
=1. [*." the condition (c)]
Hence we have the following implication:
(0.39) gkev(pw)Z = kcv(p)Z.

Hence we conclude that the function &,(x) is exactly v(u)-valued. Q.E.D.

As a consequence of Lemma 0.5 and the relation (0.35) we get that the
multi-valued solution u, is exactly v(p)-valued as desired.
The proof of Proposition 0.3 is complete. Q.E.D.

We conclude this section to give the simple

Corollary 0.6. We consider a very special case that

(0.40) m=1, p=p(1)=2 and q(1)=1
hold in Example 0.1:

(0z,u)—x2—05,u=0.
(0.41) {

u(0, x,)=0.
Then the Cauchy problem (0.41) has a 3-valued analytic solution.
Proof. We only have to verify v(1)=3. The assumption (0.40) yields
(D)= p(1){a(0)+1} +q(L){p—b(0)—1}
=p(1)+q(1)
=3. Q.E.D.

Remark 0.7. By a direct computation, we have the following explicit ex-
pressions of the functions X~(¢, ) and 6(x) of the Cauchy problem (0.41):

X3, 6)=20t, X3, 0)=0"—t
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hi(xs, %o 0)=X7(t, 0)—x11t202-2,=20(0°—x2)—x,=0.
Thus the 3-valuedness of the function
0z, u(x)=&(x)=60(x)*=0(x)
is a consequence of the 3-sheetedness of the following mapping = :

(0.42) 71 hi(0) = (C?, 0),, g ——> (C*, 0),.
projection

We give an illustration of the surface A7'(0)NR?® as follows:

[}
h1'(0)
(2
0 X
/
%Y
.
: ,— (the critical locus 3 of =)

.

<=
x,“

Note that this kind of singularity of the map germ =z is called by the name of
“Whitney’s tuck” (see e.g. [Ar: Appendix 12, Lagrangian singularities]).

Chapter I. Preliminaries
§1. Classical Theory of Chracteristic Curves

In this section we give a summary of the classical theory of characteristic
curves from our view point, by introducing an affine bundle E=E(¢) over the
initial hypersurface S. This bundle E is, roughly speaking, a space of jets

\51{(3); do|s(y), OyNe'M; y=S}

where @0y, .0 runs through all holomorphic extensions of the data ¢<0s, 10
of the Cauchy problem (1).
Let us recall the Cauchy problem (1) with the condition ¢) in (2):

(dp(x"), §(x°)=(c5ef", 2°)E ] 20S

where e°=(x°; £°, z°) is the base point lying in a neighborhood the equation
F(x, & z) is defined, and where ¢*: T*M|s—T*S denotes the dual bundle map
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of the tangent bundle map ¢x: TS—TM|s induced by ¢: SGM.

Definition 1.1. We define a subset E=FE(¢) by setting

(1.1 E=E(¢):={(y; & ¢QNE]'M; yES, c56=d¢(y)}
and we also set the fiber of E by
(1.2) E,:=EnjJiM  for yeS.

The meaning of E is clarified by the

Lemma 1.2. 1) For any local extension @ €Oy, yo of the data ¢ at y°ES we
have

(1.3) dP(y), pYNEE,  for Yy<(S, »°)

where (S, ¥°) denotes the germ of S at 3°, that is, the set which consists of all
yES sujficiently near .

2) For y&S, the set E, forms an one-dimensional affine subspace of the
(n+1)-dimensional complex vector space JiM=T¥MXC. More precisely, for any
local extension O =0y, , of ¢ at y, the following equality holds:

1.4 E,={(tds(y»)+dD(»), gONEJ M ; rC).

Proof. The first assertion (1.3) is a direct consequence of the commutativity
of the pull-back ¢* and the exterior derivativation d :

dO(y)=d(*OXy)=d¢() if @|lg=c*0=¢.
Note that (1.3) and s=0 on S imply the inclusion

1.4y~ E, D{tds(y)+dD(y), ¢(3));t=C}

for any holomorphic extension @ of ¢. Hence it suffices for (1.4) to show the
converse inclusion of (1.4)~. Let (§ ¢(»))=E,. Then (1.3) yields

FE—dD(¥)=de(y)—dd()=0,  that is, <E—dP(y), tx,(T,SN=0.
Hence we get €—d®@(y)eCds(y) which shows the equality (1.4). Q.E.D.

Corollary 1.3. Let usOy, 40 be a holomorphic local solution of the Cauchy
problem (1). Then it follows

(1.5) (y; dul(y), u(yNEENF0)  for Yy<(S, »%).

We shall give a summary of the theory of characteristic curves, by con-
cerning geometric nature of ENF-'(0) as a hypersurface of E.

Let us recall the characteristic vector field Y r on the germ (J'M, e°) asso-
ciate with F, which can be written as the form
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(1.6) Y 5= 305, F 00— 33, (60.F+02, e, +( 2 6,0, F )0
by means of any local coordinate system of the form (xy, -, %z ; &1, =+ &n, 2).

Notation 1.4. 1) We denote by
(€, 02t — U, e)=(X; &, Z)t, e)=(J*M, €°)

the characteristic curve of F, passing through a point e=(FE, ¢°) at the initial
time ¢=0, that is, a uniquely determined integral curve of Y passing through
e. This family of characteristic curves determines a holomorphic map germ

1.7 U~: (C, OX(E, ") — (J'M, e°).
2) We define an analytic set V by
(1.8) V=, O)X(ENF~Y0), ¢°).
Restricting the map germ ¥~ on V, we have the induced map germ
(1.9) ¥ (V, (0, ") — (FX0), %
since the characteristic curve ¥~ satisfies
(1.10) 0AFT~(t, e))}=0.

Note that the induced map ¥ is holomorphic as a map between analytic sets
(see Definition 3.1).
3) We define a tangent vector Lz(e®)&T oM by

(1.11) Le(e")i= 3106,F (e,

Note that this vector is nothing but the image vector of the characteritic
vector Y p(e®)ET o(J'M) at ¢° under the tangent bundle map mx zo0: TeoJ'M)
—T oM of the natural projection z: J*M—M.

Using these notations, our conditions [A.1] [A.2] can be written as
[A.17] L p(e®)+0.
[A.2Y ordeo[ Flg,ol=": pE[l, o).

Note that [A.2]’ implies F|z%0, hence the intersection ENF~*0) is a com-
plex hypersurface of E. Thus the germ (V, (0, ¢°)) defined by (1.8) is a n-
dimensional hypersurface of (C, 0)X(E, ¢°), which has singular points Vs con-
taining x° if

1<ordeo[Flg]<p (:=0rde[Flg,]).

The classical theory of characteristic curves is based on the fact (1.10) and
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the following well-known

Lemma 1.5. We denote by Vieg:=V —Vging the regular part of V which
forms a n-dimensional complex manifold. Then it follows that the pull-back of

the fundamental 1-form dz— 2$dej on J'M by ¥ vanishes on Vieg:
=
(1.12) w(dz— 3! §dx,)=0  on Vieg.
=1

Let 7y : (V, (0, e*)—(M, x°) be a holomorphic map germ determined by the
following diagram:

(V5 (0, €°) ————— (F7%0), ¢")
| 1
(M, =) (J'M, %)

The above properties (1.10) and (1.12) of characteristic curves derive the
following classical existence theorem:

projection

Theorem 1.6 (see, for example, [Ar: Appendix 4 M]). There are the im-
plications 1)= 2)=3) for the following conditions:
1) The induced map germ

Ty liot (ENFX0), ") = (J'M]s, €") —> (S, x")

is locally biholomorphic at e°, that is, the vanishing order p in [A.2] is equal to
one (S is non-characteristic for F micro-locally at e°).

2) The map germ =my is locally biholomorphic at (0, e°).

3) There exists a unique holomorphic local solution w0y, z0 of the Cauchy
problemm (1) at x° satisfying

(1.13) (x°; du(x?), u(x®)=e".

This unique holomorphic solution u is determined by the following diagram:

(V, (0, &%) (F~X0), e
[ ]
(1.14) (M, x) «DEOSCHOD - ipr oy
, projection
u

(C., 2%

It is our starting point of this article to consider the
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Problem 1.7. If we weaken the condition 1) in Theorem 1.6 to our condition
[A.2] (or [A.2]’) then what kind of solutions of the Cauchy problem (1) do appear
around the point x°eM?

§2. Definition of Good Extensions
In this section we give a precise definition of “good extension” in our con-

dition [A.3]. First we recall the

Definition 2.1. A holomorphic germ @ €0y, .0 is called a holomorphic ap-
proximate solution of the Cauchy problem (1) of the approximation order k at
e'=(x", &° 2°) if @ satisfies the condition (4) in the introduction.

From now on we call such a @ an approximate solution for short.

Notation 2.2. Let @ be an approximate solution of (1). 1) We set a map
germ 7o: (SXC; (-xoy 0))—_)(E: eO) by

2.1) ro(y, T):=(y; tds(y)+dD(y), ¢(»)).

By virtue of Lemma 1.2, the map germ 74 is locally biholomorphic.
2) We define a germ f? of a function as the pull-back of the restriction
F|g by the biholomorphic map germ 7¢:

(2.2) re =7HFl5)E0sxc, (z0,0 (7% Or.e0 =25 Osxc, (20,0))

Definition 2.3. Let f%y, t)= écy( y)c” be the Taylor expansion along z=0.
1) We define a Newton polygon N(f®) of f® at (x°, 0) by
2.3) N(f?):=convex hull cug[(ord (¢,), v)+R2

where ord(c,) denotes the vanishing order of ¢,(y) at y=x° and we put
R.:={teR; t=0}.
2) For a Newton polygon N we define its strict boundary d°N by
(2.4) 0°N:={AeN; [A+(—R.,*INN={A}}.

Note that 0°N consists of either only one point or a union of finitely many
segments, where we call a subset ¢C0d°N by the name of a segment of N if
there exists a line ¢~ in R? such that 6=¢~M\d°N with #5=3.

3) A point A€d°N is called a vertex of N if the following implication (2.5)
holds for any B, CeN with B+#C and for t<[0, 1]:

(2.5) A=tB+(1-t)C ==t=0 or t=l1.

Note that the assumption [A.2] yields the point (0, p)eR? is always a vertex
of N(f?), since we have ord._o[f%x°, v)]=0rdeo[ F|z,0]=>0.
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Notatien 2.4. 1) We denote by Seg N [or Ver N respectively] the set of
all segments [vertices] of a Newton polygon N.
2) Let @0y .0 be an apploximate solution of (1). We set

2.6) { m:=4% Seg N(f*)
{A(p)=(a(p), p—b()); 0=p=m} :=Ver N(f?)
where sequences {a(g)} {b(p)} are arranged as strictly monotone increasing:
2.7 0=a(0)<a()< - < a(m)
0=0(0)<b(1)< -+ <b(mM)<p .

3) For 1=u<m, we define positive integers ¢(y), p(¢) and a positive rational
number £(u) as follows:

{ g(@):=a(p)—a(p—1), p(p):=b(p)—b(p—1)  and
w(g) :=p(e)/ q(e0) -

Note that —x(u) represents the slope of the p-th segment of N(f?), thus we
get

(2.8)

k()>k(2)> - >e(m)>0.

Definition 2.5. We say a Newton polygon N(f?) satisfies the coprimeness
condition if

1) f%y, 0)=0, that is, the Newton polygon N(f?) intersects the horizontal
axis RXx0.

2) For 1=u=<m, the integers p(g) and ¢(u) are coprime.

Definition 2.6. Let ¢=0g .0 be a germ. For a local coordinate system
(1, ==+ Yno1) of S at x°, let ¢(y)=>la,y* be the Taylor expansion of ¢(y) with
respect to the coordinate system. We define the [ocalization Loc[c]: T zoS—C
of the germ ¢ at x’S by
(2.9) Loclcl(EY0,):= 3 a.¥e.

J=1

lai=ord(c)

Note that the localization Loc[c] is determined, as a homogeneous polynomial
function on T .S, independently of a choice of local coordinate systems.

Remark 2.7. 1f p:=orde[F|g,]=2, then the tangent vector L p(¢’) defined
by (1.11) can be regarded as a non-zero vector in 7 zoS.
Indeed, we have

(ds(x®), Lp(e")y=0-{F(x"; tds(x")+E" 2°)}c0=0

if p=2. Hence it follows L p(e®)= (T 70S) - T z0S.
£
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Definition 2.8. Let L be a non-zero vector in 7T .S. We say a Newton
polygon N(f?) is stable in a direction of L, if

(2.10) Loc[e¢,J(L)=+0 for all v satisfying (ord(c,), v)eVer N(f?)

where ¢,(v) is the y-th Taylor coefficient of f%(v, 7).

Remark 2.9. Let (C, 0)260—y(8)=(S, x°) be a complex curve satisfying
y(0)==x", and  »'(0)=(C—{0HL
where L is a non-zero vector in Definition 2.8. For such a curve y(@) we set
80, ):=1%(0), 7).
Then the condition (2.10) is equivalent to

(2.10) N(f%)=N(g).

Proof. Since y(#) can be expanded as

¥(0)=y"(0)0+0(0)=kL6+0(6*)  Ie=C—{0}
we have
cu(y(0)=(kO)’ 4 Locc,](L)+0(°74¢*1),

which yields the equivalence between (2.10) and (2.10). Q.E.D.

Notation 2.10. 1) Now we denote an srreducible decomposition of Fig in
the local ring Og . by

(2.11) Flg= ﬁlpycj)
=

where 7, y(j) are positive integers and where F,E0z .0 are irreducible such that
F;#gF, for any germ g<€0g, 0 if j#k.
2) For an approximate solution @ of the Cauchy problem (1), we set

(2.12) f9:=T$F,€E0sxc. 0,0 for I<j<r.
3) For positive integers p(u), ¢(¢) in Notation 2.4, we put
Nocw, pewr 1={(s, HER?: s, t=0, (s/q(p)+(t/ p())=1}.
Proposition 2.11. Under Notations 2.4 and 2.10, it follows that

(2.13) N )= ZGNGD= 3 Nogwo o

Proposition 2.12. Assume that N(f?) satisfies the coprimeness condition. Then
we have
1) v()=1 for all j.
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2) N(f9) satisfies the coprimeness condition for all j.
3) There exist subsets M; of {1, 2, -+, m}, 1<7<r, suth that the following
(2.14)-(2.16) hold :

(2.14) M,"M,=@ if j#k.
(2.15) {1, 2, -, m}= CJIM,- (disjoint union).
=
(2.16) N(f9D= = Nyw.pw  for 1<j<r.
rEM;

The proofs of Propositions 2.11 and 2.12 are given in §11.

Remark 2.13. In Proposition 2.12, the assertion 2) follows from the asser-
tion 3). Indeed, the equality (2.16) and the coprimeness of N(f?) imply the co-
primeness of N(f9) for 1<;<r.

Definition 2.14. We say a subset M; defined by 3) in Proposition 2.12 is a
nice subset if the following condition (2.17) holds:

(2.17) GCDL U {alp—1)+1, ¢(w}]=1

HEM;

where GCD[B] denotes the greatest common divisor of a finite subset BCZ.

Remark 2.15. Let j~ be the integer satisfying 1&M;~. Then M,~ is a nice

subset, since
U A{a(p—D+1, g(w)}2a(0)+1=1.

pEM;~

In particular, if the germ F|g is irreducible, we have that M,={1, ---, m} is a
nice subset.

Now we can give a precise definition of “good extension” as follows:
g

Definition 2.16. Let @<=@y. .0 be an approximate solution of the Cauchy
problem (1) at ¢° of a finite approximation order k<.

1° In the case p=1, we say @ is a good extention of the Cauchy data ¢ if
the Newton polygon N(f?) satisfies the coprimeness condition (Definition 2.5).

2° In the case p=2, we say @ is a good extention of the Cauchy data ¢ if
the following conditions 1)~4) holds:

1) The Newton polygon N(f?) satisfies the coprimeness condition.

2) N(f? is stable in the direction of the tangent vector L p(e®)ET oS

(Definition 2.8 and Remark 2.7).
3) The subsets M; are all nice for 1<j<r (Definition 2.14).
4) The approximation order k=N of @ is greater than k(m)™*:

(2.18) ki=ord [ F(x; dP(x), D(x))]>r(m)™?*
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where —k(m) is the slope of the rightest segment of N(f9).

Remark 2.17. In the case that p=1, there exists an good extention of the
Cauchy data ¢. Thus our assumption [A.3] is trivial if p=1 in [A.2].

Proof. Since p=1 it suffices to find @ satisfying the first condition of
Definition 2.5, that is, ord,[f?(y, 0)]<co. Recall that, by Theorem 1.6, we
can find a unique holomorphic solution u&0y, .0 of (1) such that

(1.13) (x%; du(x®), u(x®)=e".
We construct a desired approximate solution @ of (1) of the following form:
D(x)=u(x)+s(x)w(x) (WEOuy, z0).

Since dO(y)=du(y)+w(y)ds(y) on S, if we choose w as w(x°)=0 then @ is an
approximate solution of (1) at ¢. By the Taylor expansion and the equation
F(x; du(x), u(x))=0, we have

F(y;d@(y), gO)= 2 (G¢F)y, duly), glyNw(y)'*{ds(y)}*
=(Lp(y;du(), g0, dsyHw()+0w(y))  (yES3).
Recall that <L z(e®), ds(x°)>#0 if p=1, which yields that
ordzo[f%(y, 0)]=ord-o[F(y : d®(p), $(y)]=ordze[w(y)].

Hence we get a desired @ if we choose w as ord[w]g]<co.
The proof of Remark 2.17 is complete. Q.E.D.

Example 2.18. Recall the typical Example 0.1 under the assumptions (a), (b)
and (c). Then @(x,, x,):=0 is a good extension of the data ¢(x):=0.

Proof. By Remark 2.17 we may assume p=2. Since

F(x1, x2; 6,1@ axz@): TT (57— x3°)—&sl 2p.ep9=c0 0

®
-

m
= II (—x)%®,
=1

the approximation order of @=0 is g:=¢q(1)+ --- +¢(m). Note that the inequality
g<k(m)™! implies p:=p(1)+ --- +p(m)=1. Hence we have the inequality (2.18)
in the case p=2. By the definition, we also have

%, ©)=F(Q, y;, 0)= ﬁl(fpcm_yq(,‘)).
a=

Then the assumption (b) [or (c) resp.] means that N(f?) satisfies the coprimeness
condition [or, that M,={g} is all nice for 1<pg<m]. On the other hand, the
stability of N(f?) in the direction of L r(e”)=—0,, is trivial because S={x,=0}
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is one-dimensional. Q.E.D.

Example 2.19. In C3, we consider the following Cauchy problem
F(y, z; uz uy):=us—y(1+3us+(y*+29ui+y*us —u, =0
u(0, ¥, 2)=¢(y, 2):=(1/8)y*+(1/4)y*z*

with a base point ¢°:=(0;0, 0)J'C*N\F~0) Then, a local extension

(2.19) {

O(x, ¥, 2)=xA(x, 9, 2)+¢(3,2)  (AE€0cs,0)
is a good extension of the data ¢ if and only if the germ
2
(2.20) Alx, 3, 2)=x*1(x, , Z)+1§ xH{a,(2)+38.(y, 2)}
satisfies

B.€(y, 2" for i=0,1, 2 and
2.21) {

a,=(2)°.
Proof. We put a(y, z):=A(0, y, z). Then we have

%y, z, O={(E+al—y HE+aP—y(E+a)+y*+z4)
which gives an irreducible decomposition of f?, since
{ f2:=E+a)y—y*
f:=¢E+ar—yE+a)tyi+z

are both irreducible in Og.c. o, 0-

Claim (1). N(f?) satisfies the coprimeness condition if and only if
(2.22) as(y, z)%.

Indeed, the necessity of (2.22) is obtained since, if we assume that (2.22) is
not true, then it follows

N(f®={(s, t); s+t=2, s=0, =0}

which does not satisfy the coprimeness condition. This contradicts the assertion
2) in Proposition 2.12. Conversely if we assume (2.22), then the Newton polygon

N(f9=N(f?)+N(f?) is given by one of the following (2.23). Hence we have the
coprimeness condition of N(f?):
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Lt t
5 4
% N(/?) 5 E N(/%)
3 %« 3
(2.23) ’ %“%
1 M///// > l I%////u >
0 1 4 6 01 4 7 §
The case as(y, 2)'—(y, 2)° The case as(y, 2)*

Note that, under the condition (2.22), the subsets M,={2}, M,={1, 3} of
{1, 2, 3} are both nice subsets.

Claim (2). Under the condition (2.22), N(f?) is stable in the direction of
Lz(e®)=—0, if and only if one of the following (2.24)-(2.26) holds:

(2.24) as(y, 2)*—(y, z)* and Loc[a]@,)+0.
(2.25) as(y, z2*—(y, 2)* and Loc[al(d,)+1.
(2.26) as(y, 2).

Indeed, since we easily observe
(2.27) Loc[dif %y, z, 01(@,)#0  for i=1,3,5
we only have to consider (2.27) for ;/=0. Note that
Loc[ /%y, z, 0)](Yd,+Zd,)
={Loc[a*—y*]Loc[a*—ya+y*+z1}(Yd,+Z0.)

Y*Loc[a](Y0,+Z0.) if ac(y, 2)’—(3, 2)%
={ Y¥{Y Loc[a](Y0,+20,)—Y*—Z*} if ac(y, 2)*—(3, 2)*
=Y¥Y*+Z*) if ae(y, 2).

Thus we get Claim (2) as desired.

Claim (3). An extension O=xA-+¢ has an approximation order greater than
£(3)t if and only if either the following (2.28) or (2.29) holds:

(2.28) as(y, 2)*—(y, z)* and 0,A<(x, ¥, 2)%
(2.29) as(y, 2)° and 0,A<(x, y, 2)%.

Indeed, we easily observe
F(», z;0.9, 0,0)=—x0,A mod(x, y, z)"
On the other hand, by the figure (2.23), we have
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2 if ae(y’ Z)Z—(yr 2)3-
1/k(3)=
3 if as(y, 2)%.
Hence we get Claim (3).
Note that (2.24) and (2.28) are not compatible since, under (2.24), we have
ord[0,A]<ord[d,a]=1. Thus it suffices for the conclusion (2.21) to consider
the compatibility conditions of (2.25) and (2.29), or of (2.26) and (2.29). Note

that, for a germ A(x, v, 2) of the form (2.20), we have
(2.30) { (229) & as(y, z)* and yay,81+,816(y, 2)3_i (=0, 1, 2)
. & as(y, z)* and ‘BLE(y, 2 (=0, 1, 2)

since the operator yd,+1 preserves the vanishing order of §8,. In particular we
have B,=(y, 2)* which yields the equivalence

(2.31) a=ayz)+ By, 2)E(y, 2)*—(3, 2)* @ a,&(2)°— ().
Hence we get
(2.32) Loc[al(d,)=0 (+1) if ae(y, 2)°—(y, 2)4
From these (2.30)-(2.32) we conclude that @ is a good extension if and only

if the condition (2.21) holds, as desired.
Thus the assertion of Example 2.19 is proved. Q.E.D.

§3. Germs of Analytic Coverings

In this section we prepare several geometric notions such as finite
holomorphic maps, germs of analytic coverings, which are needed to state our
main result in §4. We refer [Gr-Re] for this section.

Definition 3.1. Let X [or, Y resp.] be an analytic set of a domain D [D’]
in C¥ [C¥], that is, locally at any x=X [yeY], X [Y] is defined as a
common zero set of finitely many holomorphic germs

g1, v, g,;EOD,z [hn tt h‘]EOD'-y]‘

A continuous map f:X—Y is called a holomorphic map if there exists a
holomorphic map g:D—D’ in the sense of theory of complex manifolds such
that the map f is induced by g, that is, the following diagram commutes:

X——Y

1 s

D—>D
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Example 3.2. The map germ ¥ : (V, (0, ¢°))—(F~%0), ¢°) defined by (1.9) is
a holomorphic map since it is induced by the map germ ¥~ defined by (1.7).

Definition 3.3. Let X, Y be analytic sets, and let f : X—Y be a holomorphic
map. We call f is a finite map if f is a closed map and each fiber f~*(y) of
yeY is a finite subset in X.

Lemma 3.4 [Gr-Re; Proposition 3.1.2, p. 63]. Let f:X—Y be a holomorphic
map. Suppose x=X is an isolated point of the fiber f~(f(x)). Then there exist
open neighborhoods U of x in X and V of y in Y with f(U)CV such that the
induced map

fovr:U—V
is a finite map.

This Lemma 3.4 asserts that the notion of finite maps is localizable, that is,
a notion of finite holomorphic map germs makes sense:

Definition 3.5. A holomorphic map germ f : (X, x)—(Y, y) is called a finite
holomorphic map germ if there exist open neighborhoods U of x in X and V of
y in Y with f(U)CV such that the germ f has a finite holomorphic represen-
tative fyv:U—-V.

Criterion 3.6. A holomorphic map germ f:(X, x)—(Y, y) is a finite map
germ if and only if x is isolateted in the fiber f~Y(y).

Proof. The “only if” part is trivial since any finite holomorphic representative
fuvv of f has a finite fiber (fy.»)"%(y). The “if” part is easily obtained by
applying Lemma 3.4 to a holomorphic representative of f. Q.E.D.

Definition 3.7. A holomorphic map germ f : (X, x)—(Y, y) is called an open
holomorphic map germ if there exist open neighborhoods U of x in X and V of
y in Y with f(U)CV such that the germ f has a holomorphic representative
fu.v:U—V which is open at x, that is, for any open neighborhood U™ of x in
X with U~CU, the image fy »(U™) is an open neighborhood of y in Y.

Example 3.8. Let
w(x, z):=z%+ ﬁ}le(x)zk'fEOCn.o[z]
f=

be a Weierstrass polynomial in z of degree %, that is, w,(0)=0 (1<;<k). We
set X:=w™*0) and Y :=C". Then the holomorphic map germ f defined by
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(X, (0, 0)) “— (vxc, (0, 0))

f l projection
(Y, 0

is a finite open holomorphic map germ.

Definition 3.9. Let f:(X, x)—(Y, v) be a finite open holomorphic map germ.
The germ f is called a germ of an analyiic covering of (Y, y), if there exists a
germ (2, y) of a nowhere dense analytic subset of Y at y such that

1) (f~%(2), x) is a germ of a nowhere dense analytic subset of X at x.

2) The induced map germ

friX=f2), x)— (Y —2, 9)

is a locally biholomorphic map germ.

Remark 3.10. Let f:(X, x)—(Y, y) be a germ of an analytic covering of
(Y, y), and let (X, y) be germs of nowhere dense analytic subsets of ¥ at y
satisfying the conditions 1) and 2) in Definition 3.9 for 7=1, 2. Then the
intersection germ (X, y) also satisfies the conditions 1) and 2).

Definition 3.11. By virtue of Remark 3.10 and of the Noether property of
the ring Oy, , [Gr-Re; Corollary 2.2.1, p. 44], there exists a unique germ (Z,, y)
of a nowhere dense analytic subset of Y at y such that (2, y) is minimal in
such germs (2, y) satisfying the conditions 1) and 2) in Definition 3.9. This
germ (X, y) is called the critical locus of the germ f of an analytic covering.

Definition 3.12. Let f:(X, x)—(Y, v) be a germ of an analytic covering of

(Y, y) with a critical locus (2, y). Then the following germ wv(z) of a function
determined by

v(z):=4£f"Y(2) for ze(Y -2, y)

is locally constant. In particular, if (Y —2, y)is connected, then v(z) is constant
there:

(3.1) v(iz)=FJveN on (Y—2, y).

When this (3.1) occurs, we call that f is a v-sheeted germ of an analytic covering
of (Y, y).

Remark 3.13. It is known that if (Y, y) is a germ of a complex manifold
then, for any germ (X, y) of a nowhere dense analytic subset of Y at y, it

follows that (Y—2, y) is connected. This fact is a direct consequence of the
following
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Riemann’s Extension Theorem [Gr-Re; Theorem 7.1.3, p.132]. Let X be
a complex manifold, let A be a nowhere dence analytic subset of X and let
feo(X—A) be a holomorphic function on X—A. Assume that f is bounded near
A. Then f has a unique holomorphic extension ™ to X.

Example 3.14. Let X:=C, and let Y be a complex curve in C? defined by
Yi={(y, 2); y?—2*=0}.
If the integers p and ¢ are coprime, then the following map germ
f: X—Y f(x):=(x9 xP)

._is a one-sheeted germ of an analytic covering of (¥, (0, 0)) with a critical locus
2={(0, 0)}.

Proof. It suffices to show the existence of an inverse map germ
g:Y—{(0, 0)} — X—{0}
of flyx_iy. We first remark that
3.2) Y—{0, O}cY N {(y, 2); yz#0}.
Since p and ¢ are coprime, we can find integers a, b such that
3.3) ap+bg=1.

We define g(y, z):=y%% Then (3.2) yields g€o(Y —{(0, 0)}). Moreover
(3.3) implies that
(gof)x)=(xD(xP)*=x2P*M=x  for any x&X—{0}.
On the other hand, since y?=z? on Y, we also have
(fo8), 2)=((3%2%)% (¥%2°)?)=(y"%z9)*, (y?)’z°?)
=(9"(yP)?, (29°2°P)=(y*P+%, z2P+%)
=(y,2)  for any (y, 2)€ Y—{(0, 0)}.

Thus the assertion is proved as desired. Q.E.D.

Chapter II. Results
§4. Statement of the Main Result

In this section we state our main result (Main Theorem 4.2) and show its

corollaries,
We return to the situation at where the classical Theorem 1.6 is stated.
We assume the conditions [A. 1, 2, 3] and recall the diagram in Theorem 1.6:
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v
(V5 (0, €)):=(C, O)X(ENF~Y0), &) —— (F~%(0), ")

4.1) l”" ’1
(M, x°) projection (]11’\4, e°)

We also recall the irreducible decomposition
(4.2) Flp=TI Fy»= IIF, (=1, see Proposition 2.12)
J=1 7=

locally at e’ E.
We define germs (V;, (0, ¢°) for 1<j<r, of analytic hypersurfaces of CXE
at (0, ¢°) by setting

(4.3) (V3 (0, e7):=(C, 0)X(F7%0), ).

Then the germ (V, (0, ¢°)) can be decomposed into the following union of irre-
ducible components at (0, ¢°):

(4.0 WV, 0, D=V (O, e).
Now we consider the following »-diagrams instead of (4.1):

w] ::WIV]
(V5 (0, ") > (F7%0), ")

(4.5); | m=avly, gl

(M, x%) «<— (J*M, &% for 1<7<r.

Our result asserts that the map germs =z,: (V,, (0, ¢°))—(M, x°) are germs
of analytic coverings of (M, x°) and that their numbers of sheets are calculable

by means of the Newton polygon N(f?), where @ is a good extension at e® of
the Cauchy data ¢.

Definition 4.1. 1) For 1<p<m:=#Seg N(f?) we set

(4.6) v(g) = p(p){a(p—D+ 1 +g(e){p—b(p—1)—1}

where a(g), b(g), p(p) and g(p) are the integers determined by Notation 2.4.
2) We define integers v; for 1<j<r by

4.7 v,i= 25 v(p)

LEM;

where M; (C{L, 2, --, m}) is the subset which is defined by the assertion 3) in
Proposition 2.12.

Now the time has come to state our main result:
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Main Theorem 4.2. Assume the conditions [A.1], [A.2] and [A.3]. Then,
for 1=j=<r, the following statements hold :

1) The holomorphic map germ =;: (V;, (0, e*))—(M, x°) determined by the
diagram (4.5); is a v,-sheeted germ of an analytic covering of (M, x°).

2) Let (X x°) be the critical locus of =;. We define a germ u,x) on
(M—2;, x°) of a multi-valued analytic function by the following diagram (4.8);:

4
(Vj—‘ﬂ}l(Zj), (0, e°)) C'——> (Vj: (0! en)) _j—a’ (F—l(O), eO)
) | 1

(4.8); M=3,, 2% C— 5 (M, 20  projection (J'M, ¢

projection J

Then the germ u; is exactly v,-valued, that is, for Yx&(M—2X;, x°) the multi-
valued germ wu; has v,-branches u{% €0y, . (1<i<v,) such that any two branches
of u; can be continued each other along a path in (M—2;, x°).

Remark 4.3. If the assertion 1) of Main Theorem 4.2 is established then
the multi-valued germ u; is well-defined by the diagram (4.8),, since the induced
map germ z5: (V,—a71(2),), (0, e*)—»(M—2;, x°) is a locally biholomorphic map
germ.,

Remark 4.4. Main Theorem 4.2 includes Theorem 1.6 as a special case.
Indeed, if p=1 then there exists an approximate solution @ of (1) such that
g:=ord[f?]<c (Remark 2.17). Thus we have N(f?)=N,, (Notation 2.10).
Hence Theorem 4.2 yields that the ramification degree is given by

vi=v(1)=p(1){a(0)+1}+¢(1){p—b(0)—1}
=p-1+¢(p—1)
=1.

In the remaining part of this section, we state and show the following
Corollaries 4.6 and 4.7.

The first one is related to the analytic continuations of holomorphic local
solutions of the Cauchy problem (1). To state this, we prepare the

Lemma 4.5. Assume [A.1, 2,3]. We define a germ 2 by
(4.9) Q:={e=(y; & dyN(ENFX0), ¢°); ord.[Flg,]=1}.

Then the following 1) and 2) hold:
1) 2 is a non-empty germ at e°.
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2) For any e there exists a unique j (1=7<r) such that

(4.10) ecF3%(0)— U F710).
1#j
Lemma 4.5, Theorem 1.6 and Main Theorem 4.2 immediately yield the

Corollary 4.6. Let e=(y; & ¢()82 and let j be the unique number satisfy-
ing (4.10).  Then the following 1) and 2) hold :

1) There exists a unique holomorphic local solution uy €Oy, of the Cauchy
problem (1) satisfying (y; duy(y), uz(y))=e.

2) The holomorphic local solution uy €Oy, , mentioned in 1) can be continued
analitically to the multi-valued germ u; determined by (4.8); on (M—2;, x°). Hence
the analytic continuation of uy around the point x'€M is exactly v;-valued.

Proof of Lemma 4.5. We only have to verify the assertion 1), since the
assertion 2) is a consequence of the fact

2N Y (FHONFFO)=9 .

It suffices for the assertion 1) to show that, for any open neighborhood U
of (x° 0) in SXC, and for 1<7<r, it follows that

(4.11) 7 ONU— [(G,f])‘l(O)Ulkq&J] IR (ONE%)
where we set

£, o) =T8F) 0, ©)=F(y; tds(y)+dP(y), ¢(3)).

Recall that the coprimeness condition yields that the germ F|z has no multiple
factor F; (see Proposition 2.12). Therefore the factorization

(4.12) %, 1)= ]Ile fAy,

is an irreducible decomposition of the germ f?:=7$(F|z).
We show (4.11) by contradiction. If we assume that (4.11) is not true then
we can find an open neighborhood U and a number j such that

(4.13) 7 ONUC@.f,)"(0)u ZK%JJ 7340).
We set h(y, 7):=0.f (i, T)X ];I f«(y, 7). Then (4.13) yields
1#)
(4.13) h]fjl(o)zo.
Hence, by virtue of the Riickert’s Nullstellensatz (see §13), we have

heRad [(f))]:={gE0sxc.a0.00; FLEN, gt (f )}

Since the ideal (f,) is a prime ideal, it follows that A<(f;) thus we have
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a.f,€(f,)  or  Ji=#)) f.&()).
This contradicts the facts that f, is irreducible and that (4.12) is an irreducible

decomposition. Hence (4.11) follows. Q.E.D.

Our second corollary (Corollary 4.7 below) asserts the converse of the
classical Theorem 1.6 under the assumptions [A.1, 2, 3].

Corollary 4.7. Assume the conditions [A.1, 2, 3]. If there exists a holomor-
phic local solution uSOy. zo of the Cauchy problem (1) satisfying (x°; du(x®), u(x°))
=¢°, then it follows that

Ordeo[F! E’zo]:l .

Proof. By virtue of Main Theorem 4.2, the assumption of Corollary 4.7
vields that there exists a number j (1<7=<7r) such that

(4.14) v,= X v(e)=1.

HEM;

By the definition (4.6) of v(y) we have
v=p{a(p—D+1}t+g(@){p—b(u—1)—1}
Z p(e){a(e—D+1}
= ()
=1
because p(), ¢(u)>0 and a(u—1), p—b(p—1)—1=0. Hence (4.14) implies
{ #M;=1, that is, M;={3p¢°} and

p—b(p*—1)—1=a(p’—1)=0 and p(p’)=1
which yield
p'=m=1 and p=p1)=1.

Hence we get Corollary 4.7 as desired. Q.E.D.

Example 4.8. Let us recall Example 2.19. We calculate the ramification
degrees v; (=1, 2) of multi-valued analytic solutions of the Cauchy problem
(2.19) as follows: By the condition (2.21), any good extension @=xA(x, v, 2)
+é(y, z) of the data ¢ satisfies

a(y, 2):=4A00, y, 2)E(y, 2)°.
Hence, by the right figure of (2.23), it follows that
v(1)=6, v(2)=10 and wv(3)=5.
Since we have M,={2}, M,={1, 3}, we get
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v,=v(2)=10, ve=v(1)+v(3)=11
which shows that

(4.15) { the Cauchy problem (2.19) has two sorts of multi-valued analytic

solutions u, and u, of 10-valued and 1l-valued respectively.

Chapter III. Proof
§5. Reduction of the Main Theorem to Theorem 5.1

In this section we reduce the proof of Main Theorem 4.2 to that of the
following Theorem 5.1.

We consider the following Cauchy problem (5.1) which is defined in an open
neighborhood M of the origin of C™ with the zero Cauchy data:

F(x; du(x), u(x)):=G(x; 05,4, 0zr, u, u)—05,u=0
(5.1)
ulzl=oEO
where (x,, x7, x,)€CXC"*XC. We treat (5.1) with a base point
e’=(0; 0, 0)e J*MNF~}0)

and with the following assumptions [B.1]-[B.4]:

[B.1] G(0; &, &7, 0)=(6y, £7)°.
[B.2] 0rd[G(0; &, 0, 0)]=:pE[2, )
[B.3] @(x):=0 is a good extension of the data ¢(x"):=0.

{ The approximation order ord,[F(x; 0, 0)] of @=0 is equal

[B.4]
to the order q:=ord,[f%x’, 0)]=ord,[F(0, x’; 0, 0)].

Note that the condition [B.4] is stronger than the inequality
ord,[F(x; 0, 0)]>r(m)* (the fourth condition of [B.3])

since the condition =2 implies ¢>£(m)™.

Theorem 5.1. Under the assumptions [B.1]-[B.4], the conclusions 1) and 2)
of Main Theorem 4.2 hold for the reduced Cauchy problem (5.1).

Let us return the situation of Main Theorem 4.2.

We must show that Theorem 5.1 implies Main Theorem 4.2. Note that,
since in the case p=1 the assertion of Main Theorem 4.2 is contained in that
of Theorem 1.6, we may assume p=2, where p is the vanishing order in the
condition [A.2], that is, p=ord,_o[F(x°; vds(x*)+£&°, z°)7.

Our reduction starts from a simple
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Lemma 5.2. There exists a local coordinate system (x, -, %) of M around
x° such that
(5.2) S={x,=0} and

(5.3) Lp(e")=—0.,.
Proof. Taking a coordinate system as x,=s(x), we may assume that a
system satisfying (5.2) is already chosen. The assumption p=2 yields 0 F (e°)

=0, hence, by the condition [A.1], we may assume 0, F(e")#0. We take a
linear coordinate transformation of the form

and choose (17, 2,) as
Zyi=—[0s,F(eN]™, 2;:=20,F(¢")  for 2<j<n—1.

Then it is easily verified that the coordinate system (x7, -+, x5) satisfies the
conditions (5.2), (5.3) as desired. Q.E.D.

The next step of our reduction is to show the existence of another good
extension @~ with a “better” approximation order than that of the original @:

Proposition 5.3. Let @ be a good extension of ¢. For the irreducible de-
composition (4.2) of F|g locally at e°, we set

fx’, 8):=F(0, x'; &:dx:+dD(0, x'), ¢(x’))=g e(x)EY.
(5.4) .
fx', &):=F,0, '3 £dx:+d 00, ), $(x"N= 3 ¢v.,(x")&1 .

Then there exists a good extension @~ of ¢ such that
1 N(f9)=N(f?")  for all j=1,2, -, 7.
2) Loc[e,]J=Loc[c}]
for Yy satisfying (ord[c,], v)EVer N(f?) (=Ver N(f?7)).
3) ordzo[F(x; dD~(x), @~(x))]=g (:=0rdzo[f*(x’, 0)])

where we use the analogous expression of f° [or %™ resp.] which is gained by
replacement of (D, ¢,) [(D, cy.;)] in (5.4) with (9~ ¢7) [(D~, ¢ )]

Proof. We seek the desired “better” extension @~ as the form
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O~ (x)=x,w(x)+D(x) (WEOy, z0)

where (x, --, x,) is a local coordinate system of M at x°, which is obtained
by Lemma 5.2. Note that the assumption p=2 implies

(5.5) g>r(m)™t.
We denote the approximation order of @ by k:
(5.6) k:=ord o [F(x; d@(x), ®(x))]1>r(m)™*.
Since Proposition 5.3 clearly holds for @~:=@ if ¢<k, we may assume
5.7 qg>k.
We first give a sufficient condition of w for the assertions of Proposition
5.3 except for the assertion 3):
Lemma 5.4. If weOy, ;o satisfies the condition
(5.8) ordo[w]=k
then the assertions of Proposition 5.3 except for the assertion 3) follow.
Proof. Note that d@~(0, x")=w(0, x")dx,+d®P(0, x’) yields that the germ

@~ is a holomorphic approximate solution of the Cauchy problem (1), since the
inequalities (5.6) and (5.8) imply w(0, 0)=0. Moreover we have

(5.9) f¢~(x', El):f¢(JCn &+w(0, x’)):yi e (x){E+w(0, x/)}*
= ? Cy(x');g Cly, Dw(0, x'»-2&2

5[ 2,00, Ve, xy- el
2=0 Lyv=2
where C(y, 1) denotes C(y, 2):=y!/(A!1(v—2A)!). We similarly have

.9y 1, )= 2| 506, Do a0, x4 gd.

2=0
We fix j and first show the following inclusion:
(5.10) N(fIHCNUID .

We define positive integers p,, a,(¢) and b,(¢) for p&M, by

{ p,:=ord[f%0, &)]  and
o)== ﬂq(l), b= 3 .

A€My, 1s EM;, Asp

Then Lemma 0.2 and the assertion 3) of Proposition 2.12 yield that
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Ver N(f)=1{(a,(e), p,—b,(1)); pEM}AO, p,)}.
Hence (ord[c,.,], v)EN(/?) implies the following inequality :
(5.11) v=z—k(wiordc, ;]—a, ()} +p,—b,()  for pEM,;v=0, 1, -
where &(u)=p(p)/q(¢). Thus (5.9) yields the following inequality :
—r(g){ordcz 1 —a, ()} +p,—b,(pr)
_é_rrvlgc [—x(p){ord[c,.,]+(—2) ord[w(0, x")]—a,(p)}+p,—b, ()]
él?;a;( [y—#(p)(v—2) ord[w(0, x")]]

={1—k(@w)ord[w(0, x")]} miln{y}—i—x(/,z)ord[w(o, x")]A
A

IA

since (5.8), (5.6) imply &(g)ord[w(0, x")]=£(m)k>1. Hence (5.10) follows.
Interchanging the roles of @ and @~, we also have the converse inclusion
of (5.10). Hence we conclude the assertion 1) of Proposition 5.3.
Note that this assertion 1) implies that

N 9= ZNG 9= 3INGE)=N?) and M=M; (I<j<n)

which show that the Newton polygon N(f?™) satisfies the coprimeness condition
and that all the subsets M5 (1<;<r) are nice subsets of {1, 2, ---, m}.
For the proof of the assertion 2), it suffices to show

(6.12) ord[¢cp-pum]= a(p)<y>;1}£1(1#) {ord[c,]+(w—p-+b(g))ord[w(0, x")1}

for 1Spu<m
since we have

cr-ve(X)=Cppm(x)+ 2 Cly, p—blp))e(x)w(0, x)~Pow
v>p-b(p)
by (6.9). By virtue of ord[w(0, x")1=%, it suffices for (5.12) to derive
(5.13) a(y)<y>;r_11i)1(1m{ord[c,]—{—(u—p—}—b(p))k} for ISpusm.
From (ord[c,], v)EN(f?), we have the inequality
vz—e(gfordle,]—a(@}t+p—b(p)  for 1ISp<m; y=0, 1, -
which is equivalent to ord[c,]=a(u)—&(p) (v—p+b(y)). Hence it follows
the right hand side of (5.13) Za(u)+ >m;1,1<1 ){u—p—}-b(p)}{k——x(p)—l}.
v>p-b(y

Thus, by virtue of 2>k(m) '=k(p)™!, we get (5.13).
Note that the assertion 2) of Proposition 5.3 implies the stability of the
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Newton polygon N(f?™) in the direction of the tangent vector Lg(¢°). Thus if
we establish the assertion 3) of Proposition 5.3, then the holomorphic approxi-
mate solution @~ is a good extension of the Cauchy data ¢(x’).

The proof of Lemma 5.4 is complete. Q.E.D.

We continue the proof of Proposition 5.3. If suffices to find a germ w(x)
satisfying (5.8) and the assertion 3) in Proposition 5.3 when we set @~ as

O~ :=x,w(x)+D .

Taking the Taylor expansion of F at (x; &, z)=(x; d®(x), D(x)), we have
(6.14) F(x; d0~(x), @~(X)):a12:o(al DTIOEF (x5 dD(x), O(x))(x:05,w+w)*?
+W|H§ . 20(oz 11171080 F (x5 dD(x), D(x))
X (2,0, w+w)* (%02 w)* (x10)" .

Note that the coefficients of the first term in (5.14) have the following ex-
pressions (5.15): Since there exists a holomorphic germ g(x, &) such that

F(x; &dx+d0(x), D(x)=F(Q, x'; &dx,+d D0, x), p(x" )N+ x.8(x, &)

:fq)(x,; Sl)’l—xlg(x) 51) »
we have

(.15  8gF(x; dO(x), O(x)=35/(x’, O)+x:dge(x, 0)

=(a; D{ca(x)+x,384,(x)} for a,;=0.
In particular, taking a;=0, we note
(5.16) ord[go]=ord[F(x; dD(x), D(x))—co(x')]—1=k—1.

On the other hand, the second term in the right hand side of (5.14) can be
divided by x,, thus it can be written as the form

(5.17) 52| 310,F (x5 dOW), P(xs,w-+3.F (x5 dOG), D(x)w

+3K(x; x,0, w+w, 0w, w)]
where K satisfies
(5.18) K(x; x:6:t%2, &, 2)€(x.6:+2)+(x:)E, 2)°.

Hence, from (5.15) and (5.17), we can write (5.14) as the following form:
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oo

(5.19) F(x; d®~(x), (D~(x))=a2 {Cay(X")F %182, (£)H %10z, w+w)*:

=0

xa] 306, F (x5 dOG), Ox)a,w0+0,F (x; dO(), Dlx)w

+K(x; x:0.,w+w, 0w, w)] .

We claim that the following inequality holds under (5.8):
(5.20) ordcay(x' %0, w+w)1]2g  for all a,=0.
Indeed, from the inclusion

(ord[cq,], @a)EN(FI)CTH(s, 1); t=—r(m)(s—q)}
and (5.8), we easily have
the left hand side of (5.20)=¢g—a;x(m) *+a,ord[w]
=zqg+a{k—r(m) '}

I\

q.

By virtue of (5.19) and (5.20), it suffices for Proposition 5.3 to show the
existence of a holomorphic germ w(x) satisfying (5.8) and the following equation
(5.21) for some h,(x)e(x)*':

62D 3 ga(e)edewtu) it 30, (x5 dO(), B0

+0.F(x; dO(x), O(x)w+K(x; x.0,,w+w, 0w, w)y=Th(x).
We set
Jh(x)1=go(x)—h1(x) and

(5.22) 1 H(x; & 2= 3 go(e)Xmbt)m st 30, F(x; dO(), G0,

+0.F(x; dO(x), O(x))z+K(x; x:&:1+2, &, 2)+h(x).
Note that (5.16) yields

(5.23) ord[A]=min{q, k}—1=k—1.
We seek a solution w of the non-linear equation
(5.21) H(x;0,w, w)=0

with the condition (5.8), that is, ord[w]=%k. Since the condition (5.18) yields
Ke(x,, z), we note

(5.24) H(0; &, 0)= 3106, () hO=—n+h(0) .
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Then the Weierstrass’s preparation theorem leads us to

(5.25) H(x; &, 2)={H(x; &, §", 2)—&ale(x;§, 2)

locally at (x; &, z2)=(0;0, ---, 0, ~(0), 0) for some holomorphic germs
H~EO0cnxcn-1xc, 0:0.03; €EO0CnxCnxC, (030,+.0, 20>, 0)

with H~(0; 0, 0)=h(0), ¢(0;0, ---, 0, ~(0), 0)+=0. From (5.25) we have the

Claim. For any germ w(x) satisfying (dw(0), w(0))=(0, --- 0, £(0), 0), the
equation (5.21)" is equivalent to the following normal formed one:

(5.26) 0z, w=H(x;0;,w, 0w, w)
where H~(x ; &, &7, z) satisfies

(5.27) ord[H~(x;0, 0, 0)—A(0)]=max{k—1, 1}.

Proof. It only remains to verify (5.27). Setting (§, z)=(0, ---, 0, A(0), 0) in
(5.25), we have

(5.28) H(x;0,--,0, (0), O)={H(x; 0, 0, 0)—h(0)}e(x; 0, ---, 0, ~(0), 0).
On the other hand, the definition (5.22) of H yields that
(5.29) H(x; 0, -, 0, h(0), 0)=0¢, F(x; d®(x), P(x))h(0)+h(x)
+K(x; x,040,0, -+, 0, £(0), 0).

Since H(0; 0, ---, 0, h(0), 0)=0 by (5.24), it follows that

ord[H(x; 0, -+, 0, £(0), 0)]=1=max{k—1, 1} if k=I.
If k=2 then h(0)=0 since he(x)*~'. Therefore, (5.18) and (5.29) yield

H(x; 0, -, 0, h(0), 0)=h(x)+ K| or=c0.0=h(x).

Thus we have

ord[H(x; 0, -+, 0, A(0), 0)]=ord[A]=k—1=max{k—1, 1}.
Hence, from (5.28), we get (5.27). The proof of Claim is complete. Q.E.D.

Since the equation (5.26) can be solved with any holomorphic data on
{x,=0}, we can find a unique holomorphic solution w(x; w,) of (5.26) satisfy-
ing the following data:

(5.30) w(x; Wo)l zp—0e=wWo(x1, x”)E(x1, x")*.
It suffices for the proof of Proposition 5.3 to show

(5.31) ord[w(x; wo)=k.
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We write H~(x; &, &”, z) as the form

H(x; 6u €% 2= 3 a,(x; &0 &% D6rHx; £u &, 202
+H~(x; 0, 0, 0)—h(0)+Ar(0).
Then the solution w(x; w,) satisfies the following linear equation
(5.32) aznw=:2;‘,1A,(x)a,,jw+B(x)w+C(x)—l-h(O)
where we put

Afx)i=a,(x; 0z,w(x ;5 Wo), Opw(x; wo), w(x; wo) 1=jSn—1
B(x):=b(x; 0z,w(x; we), 0zw(x; wo), w(x; wo))
C(x):=H~(x; 0, 0, 0)—h(0).

By virtue of (5.27), it suffices for (5.31) to verify the

Lemma 5.5. Let w(x) be the unique holomorphic solution of the linear Cauchy
problem (5.32) with the data (5.30). Let k=1 and assume

(5.33) ord,o[C]=max{k—1, 1}.
Then it follows that
(5.8) ord[w]=k.

Proof. We expand w(x) in x, as w(x)= f]o wu(xi, x”)x%. Then the equa-
=

tion (5.32) yields the following equalities:

Wiz, #)=Clx, 5, 0+h(0) mod 3 (3,00 +(wo).
p2

(5.34)
-1 (n-
s (e, 2=(p—D)108Cx, 27, 0) mod 3 { T @ewa)+wa}
for p=2.
We prove
(5.35) ord[wu(x:, x”")]Z=k—p for 0=p<k

by induction on g. Note that if =1 then there is nothing to prove. Thus we
may assume that 2=2, hence A(0)=0. In the case pg=1, the equality (5.34)
with the assumptions (5.33) and (5.30) yields that ord[w,]=k—1.

Now let k=p=2, and assume

(5.36) ord[w,]=zk—2  for 0=iZp—1.
Then (5.34) with the assumptions (5.33) and (5.36) yields that
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ord[w,]=min{ord[04.'C(x,, x”, 0)], , I};in l{ord[axngj, ord[w;]}}
1575671
Zmin{k—1—(pg—1), min {k—1—2, 2—2}}
0s2sp-1
Zk—p.
Hence the proof of Lemma 5.5 is complete. Q.E.D.

By virtue of Lemmata 5.4 and 5.5, we get Proposition 5.3. Thus the proof
of Proposition 5.3 is complete. Q.E.D.

The third step of our reduction is the changing of unknown function from
u{x) to the following #(x). We denote by @ the good extension @~ which is
gained by Proposition 5.3. We set @(x) and F*(x; &7, 2°) by

f:=u—0.
(5.37)
F(x; &,27):=F(x; §+d0(x), 2"+ D(x)).

Note that if # is a solution of the Cauchy problem

Fo(x; dax), #(x))=0
(5.38) {

#(0, x)=0
then u=a-+@ is a solution of the original Cauchy problem (1).
Lemma 5.6. Let t—U"(¢t, &)=(X"(t, &); 5", &), Z"(t, &)) be the characteristic
curve of F~ which passes through
¢:=(0, y'; nidx,, 0)EE :=T%M x{0}
at the initial time t=0. We set a biholomorphic map 2: E—E by

A8):=(0, y'; pidx,+d@, y"), DO, ")
and we put

Uut, 28):=(X"; E°4+dO(X"), Z"+O(X"))t, é).
Then t— ,(t, 2(8)) is a characteristic curve of F passing through (&) at the

initial time t=0.

Proof. Since we have
{ 00, F =02 F + 3 (0c,F 0. 0, +(@.F)0. 0
agyFAz—‘anF, and 0,~F =d,F

it follows that
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0.X7=0e,F W (t, X))

0B 1402 DX N =—E30,-F"—0,,F "+ 3} 0:,0:,009.X;
={—(87+0:,0)0,F —0,,F (T (¢, 2@2))

012 +O(X )= 5 B0 F "+ 3 0,,009.X ;

3

J

Hence we get Lemma 5.6. Q.E.D.

Let us recall the irreducible decomposition

@.11) Flz=TI F¥»=11F,
=1 j=1
and we set
F;:=2F, (1<j<r)

where 1: E=(0, y’; dx1, 00, ¥'; 9:dx,+dO, y"), @O, y))=E is the map
germ which is introduced in Lemma 5.6. Since the map germ A: E—E is a
biholomorphic map germ, we have the following irreducible decompositions:

(5.39) Frl=11F;

(5.40) V™ 1=(C, 0)X(ENF"-1(0), &)= ul V3
)
where we set V;:=(C, 0)X(F;7%(0), &°) and & :=(x"; 0, 0).

Definition 5.7. Let f;: (X, x,)—(Y, y) be germs of analytic coverings of
(Y, y) for i=1,2. We call f, and f, are equivalent if there exists a biholo-
morphic map germ g: (Xi, x,)0(X,, x,) such that the following diagram com-
mutes :

g
(Xl, xl) — > (Xg, xZ)
9 |7
&, 3 &,

Note that if f, and f, are equivalent then they have the same critical locus
2CY. On each connected component of (Y—2, y), we have

#1(R)=#f3'(2).

Using this terminology, we have:

Corollary 5.8. We define the map germs =;: (V3 (0, &)—(M, x°) from
w;::wwv? like as the constraction of m; from ;. Then the following diagrams
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(5.41), commute for 1<j<r:

(€, OX(E, &) «— (V}, (0, &) ——— |7
(5.41), 1x4)2 | (M, x7)
(€, OX(E, &) ~— (V,, (6 ) ———— 7,

Hence the germs m; and ©; of analytic coverings of (M, x°) are equivalent. In
particular, if the conclusion of Main theorem 4.2 holds for =3, then it also does
for m,.

Remark 5.9. The function F™(x; £, 2")=F(x; & +d®(x), z°+®(x)) satisfies
the following conditions [A.1]"-[A.3]" and [A.4]:

[A1]" Lp(&)=—0,,

[A.2]" ordzo[F ™| g 0]=p :=0rdec[ F| 5]

[A.3]° @"(x)=0 is a good extension of ¢"(x")=0.
[A.4] ord[F"(x; 0, 0)]=¢g:=o0rd[F~(0, x"; 0, 0)]

where 8=21"'(e")=(x"; 0, )€ ENF"%(0).

By virtue of Corollary 5.8 and Remark 5.9, our main theorem for the Cauchy
problem (1) is reduced to that for the Cauchy problem (5.38) under the assump-
tions [A.1]°—[A.3]" and [A.4].

Now we proceed the fourth step of our reduction, that is, we reduce F~ to
the form of (5.1). We denote by F the function F" satisfying [A.1]"—[A.3]"
and [A.4]. By virtue of [A.17" and of the Weierstrass’s preparation theorem,
we can find a holomorphic germ G(x; &, &7, z) and a unit e(x; &, z) such that

(5.42) F(x; & 2)=[G(x; &, &, 2)—&.]e(x; & 2)
holds locally at e°:=(x"; 0, 0). We set

F~(x; & 2):=G(x; &, &, 2)—&n.
Note that —F~ is a Weierstrass polynomial in &, of degree one.
Notation 5.10. We denote by =¥, e™)=(X~; 5~, Z~)t, ¢~) the charac-
teristic curve of F~ passing through a point e¢~=(0, y’; & dx,, 0) in the analytic
set ENF~'(0), where E :=T3%M X {0}.

We consider the relation between the characteristic curves ¥~ of F~ and
¥ of F, and have the

Lemma 5.11. Let g(t, e)=0Ocxx. o, ¢ be the unique solution of
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{ 0.g=c¥(g, e))
(5.43)
2(0, e)=0.

Then the following 1), 2) hold:

1) The map germ gXidg: (C, 0)X(E, e®)—(C, 0)X(E, ¢°) is a biholomorphic
map germ.

2) We set

(5.44) Tty e):=[U~e(gXidp)]t, e)=T~(g(, e), ¢).
If es ENFY0), then t—¥.(t, ) is the characteristic curve of F passing through
e at t=0, that is, we have ¥ ,=¥ on (C, 0)X(ENFX0), .

Proof. Since g is a solution of (5.43) it follows that

a(g(t, e), e) e¥~(g, e)) 0.8

3, e) Zdet[ 0 I

]:e<¥f~<g, £)#0

because e(x; &, z) is a unit. Hence the assertion 1) follows.
Since +—¥~(t, ¢) is a characteristic curve of F~, we have

0:{7~(gt, e), e)}=(0.¥~)g(t, e), ).g
=[@:F~; —E~0,F~—0.F~, 5~0:F)e]¥~(g(t, o), €)).
The assumption e= F~}(0)=F~"%(0) yields ¥~(s, e) F~~*(0) for Vs, hence we have
dze.F(T (g, e), e)=[(dz.¢.F)]T(g(t, e), )
which implies
0T~ (g(t, o), e)}=(0:F; —59,F—0.F, 5~9:F)¥~(g(t, e), e)).

Since g(0, ¢)=0, we also have (0, e)=¥~(g(0, ), e)=¥~(0, e)=e. Thus the
proof of Lemma 5.11 is complete. Q.E.D.

Corollary 5.12. We define the map germs =n75: (V; (0, e®)—(M, x°) from
U5:=U~|y, like as the constraction of =; from ¥,. Then the following diagrams
(5.45); commute for 1<j<r:

(C, OX(E, &) < (V,, (0, ") ——— 77
(5.45),; gxidElZ l (M, =)
(€, OX(E, &) —— (V,, (0, &) —— 7y

Hence the map germs m; and n; are equivalent as germs of analytic coverings of
(M, x°). Thus if the conclusion of Main Theorem 4.2 holds for =7 then it also
does for x;.
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To complete the reduction of Main Theorem 4.2 to Theorem 5.1, it remains
to verify the

Lemma 5.13. Let F=F~¢c be a germ satisfies the conditions [A.1]"—[A.37"
and [A.4] such that —F~ is the Weierstrass polynomial of F in &, of degree one:

F~(x; & 2)=G(x; &, §", 2)—¢a.
Then F~ satisfies the assumptions [B.1]—[B.4] of Theorem 5.1.

Proof. Since [B.2] and [B.4] are trivial by [A.2]" and [A.4], we only
have to show [B.1] and [B.3]. By virtue of [A.17", we have

— 48 =d P () =e(e ) F~(e)=e(e")] 0,63 0, 0, 0)d8,—d8,),
p2
which shows

0.,G(x'; 0,0,00=0 for 1<j<n—1.

Thus we have the condition [B.1].
Now we check the condition [B.3]. We set

fla, 8=, €)=F(0, x"; &:dx,, 0)

(5.46) [~(x!, &):=f~%x", E)=F~(0, x'; &dxy, 0)=G(0, x"; &dx,, 0)
e’(x’, &1):=¢(0, x"; &dx,, 0).

Then we have f=f"~¢" (¢° is a unit) which yields

(5.47) N(f)=NG™)+N(E")=N(f")

since Newton polygons have the additivity N(gh)=N(g)+N(%) (see § 11).

By (5.47), we know that N(f~) satisfies the coprimeness condition, and that
each subset Mj=M, of {1, 2, :--m} is a nice subset for 1<;7<r.

Note that the condition [B.4] implies the inequality

ord[F~(x; 0, 0)]J=ord[f~(x’, 0)]=¢>k(m)™*

since we assume p=2.
It remains to show

(5.48) N(f~) is stable in the direction of L p~(e’)=—0,,.
To show (5.48) we utilize the following
Claim 5.14. Let
fla, &)= a8, f, &)= 2 el

be the Taylor expansions of the germs [ and f~ given by (5.46). Then we have
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(5.49) Loc[¢,]=e(e®) Loc[cy]
for Yy satisfying (ord[c,], v)=Ver N(f).

Proof. Let &%x’, &)= 2}0 &, (x")€% be the Taylor expansion. Then we have

= goc;s,_ 1. Assume (ord[c¢y], v)eVer N(f)=Ver N(f~) then it follows that

ord[c37]>ord[c}] for Vi<y.
Hence we have

ord[cye,]=ord[c;] <ord[:§1 cye,_ ,1]
which shows (5.49) as desired. Q.E.D.

The assertion (5.48) immediately follows from Claim 5.14. Thus we complete
the proof of Lemma 5.13.

Our reduction of the proof of Main Theorem 4.2 to that of Theorem 5.1 is
also complete.

§6. Decomposition of Map Germs =7

We begin to prove Theorem 5.1. In this section we consider map germs
ny: graph(¥';)—(M, 0) which are equivalent to =;: (V;, e9)—(M, 0) for 1<7<r.
Recall that we have reduced x° [or e¢° resp.] to the origin of C*[(x; &, z)=
0; 0, 0)] in §5.

An advantage of this consideration comes from the fact that z75 is decom-
posable to a composition of three map germs as the form zjemjzem;;. The
aim of this section is to show that the first map germ =; is a biholomorphic
map germ for 1<j<r. This fact yields that the analysis of z;can be reduced
to those of z;, and x;s (see Theorems 6.10 and 6.11 at the end of this section).

Let us recall the diagrams

7,
(V3 (0, €°) ———> (F7(0), ")

6.1), 7| i

(M, 0) <—— (J'M,e"
where (V,, (0, ¢°)=(C, 0)X(£7%(0), ¢°) is an irreducible component of
(V, 0, e'N=(C, OOX(ENF~10), ¢°), for 1<j<r.
Definition 6.1. We define map germs =7 for 1<;<r by the following

diagram :

(4
(V1 (0, ) — graph(¥;) = (C, 0)X(E, e®)X(J'M, ")

(6.2) I 091 l l projection
T; projection
(M, 0) (J'M, ")
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Since #; and #; are equivalent as germs of analytic coverings of (M, 0) in
the sense of Definition 5.7, we may consider z75 instead of ;.

Definition 6.2. 1) We decompose the composite projection

P: (C, O)X(E, eYX(J'M, &) —> (J'M, ") —> (M, 0)

as follows:

P,
(C: O)t X(E: e°)y:,,“><(j‘M, eo)z.f.z —'—>(C) O)tX(M: 0).1: X(C; 0)61
6.3) P| P
Py
(M’ 0): < (M; 0)1 X(Cy 0)61

2) We define subsets V,, and V,, respectively by
Vy1i=(Pyoc) (graph(T,))C(C, 0); X (M, 0)z X(C, 0),
{ Ve i=(Paec™) (V ;1)C(M, 0)2X(C, O),
where ¢, ¢~ denote the following inclusion maps:
¢: graph(¥',) = (C, 0): X(E, e")yr, 5, X(J'M, €°)z.¢.5
{ ™ Vs (C, 0): X (M, 0):X(C, O),.

3) According to the decomposition (6.3) of P, we have the following de-
composition (6.4) of the map germ =x7:

P,
(C, OX(E, e)X(J'M, &) —> (C, 0)X (M, 0)X(C, 0)

0 -
graph(¥',) Vi
6.4) P lﬂ;’ l Tjo P,
n'.
(M, 0) R Vi
L / \ v
(M, 0) < B (M, 0)X(C, 0)

Notation 6.3. We denote a characteristic curve of F, which passes through
a point e=(0, y’; 7:dx;, ) E=TFM X {0}, by

U~(t, y', 9)=X@, v, 9); 5@, v, 9, Z@, v', 7).

Of course, by the definition ¥;:=¥"~|,,, we use the same expression (X; &, Z)
to denote the value ¥;(¢, y’, ;) for 1<7<r.

From now on, we show that the map germ =;,: graph(¥',)—V; is a biholo-
morphic map germ for 1<;<r. First we prove
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Claim 6.4. There exists a holomorphic map germ

(Yv,) Hl): (C: O)tX(Cn_l: O)I’ X(C; 0)51 I (Ti‘él\{, (O; 0));1/’.771

such that
6.5) [‘: ](t, Y'G, %', &), Hi, %', 51))5[; ] and
6.6) [H/]o, X't v, 10, Bt 9, 771))5[:].

Proof. We consider the following map germ
(6 7) { X: (C: O)t X(T§M: (O: 0))y’,7/1 - (Cy O)X(Cn-lr O)x' X(C: 0);'1
' X, 37, n) =t X', 3" 1), Bty 95 n0).

Since (X', £,)]:=e=(y’, 31) holds, we have

o 10
~——— (0, »’, n;)=det *0.
at, y', 771)( V' ) =de L [TJ

Hence, by the inverse mapping theorem, there exists the inverse map germ
x-l(ty x’) gl)z(tl Y’(t; x’) 51)? Hl(t: x’y 51))
which has the desired properties (6.5), (6.6). Q.E.D.

Notation 6.5. 1) Since X,|:;_,=0, we can write X, as the form
-Xl(t: y,) nl):tXT(t! y’) 771)-

2) We set f(y", 71):=$F,)’, 11) where 74(y’, 9:)=(0, »"; 9:d x5, 0).
3) Using these X7, f; and the germ (Y’, H,) mentioned in Claim 6.4, we
define germ A and B, as follows:

{ A(t: x,: 51) ::X’;(ty Y/(ty -x,; 51): Hl(t) x,: El))

6.8)
Bj(ty x,} El) ::fJ(YI<t7 x’: El): Hl(tr x’; El)) for 1§]§7’.

Lemma 6.6. Set a germ H of a hypersurface of CiXMoXC; by
H::{(t, x: El); xlztA(t! x’; El)}-
Then the projection P, induces a biholomorphic map germ h~: graph(T~)—H as
Sfollows:
graph(F~) —— (C, 0uX(E, &)y, 5, X(J'M, &)z ¢..

(6.9) h~ l l P,
HC— 5 (C,0).X(M, 0).X(C, 0),
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Proof. We first observe that P, in fact induces the map A~. Assume that
@y %6 2)=0; 9,95 (X, B, Z)¢, y', po)=graph(T~). It suffices to verify
(6.10) Xu@t, y', p)=tAQ X'@, ¥, 0), 5.0, ¥ 7).
By the definition (6.8) of A, the right hand side of (6.10) is equal to
XY@ X0y, ), Eut, v, ), Hu@ X0t 07, ma), Bt 97, )

Thus the identity (6.6) yields (6.10).
Note that (6.10) shows that the following diagram commutes:

(C, 0)X(TEM, (0, 0)=(C, 0)X(E, ¢®) ———> graph(¥™~)

| Lo
(€, OX(C™, OX(C, 0) — > K

where 2 is the map germ defined by (6.7). Since we know 2 is a biholomorphic
germ, h~ also is. The proof of Lemma 6.6 is complete. Q.E.D.

Proposition 6.7. 1) The map germ =, : graph(¥',)—V,, is a biholomorphic
map germ for 1<7<r.

2) The germ (V,;1,(0,0,)) is defined by the following two equations as a germ
of analytic subset in (C,0); X (M, 0);X(C, 0),

{ tA(t’ x,y 61)_x1:0
Bl(tr xl: El)=0 .

6.11),

Proof. Since ¥,=¥~ly, implies that the map germ x,, is the restriction of
the biholomorphic germ A~: graph(¥~)"H on graph(¥',), the assertion 1) follows.
By virtue of the identity (6.6), we have

(6.12) B,xt, v, N=1,0", 7).
Indeed, by the definition of Bj, the left hand side of (6.12) is equal to
F Y@, v, 9a), Hi(X@, 97, 90)) -
Then the identity (6.6) which is equivalent to
Y@, 37, 9u)), iKW, 37, p0N=", 71)

yields (6.12) as desired.
From (6.12), we have the following commutative diagram:
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(€, 03 X(T¥M, (0, 0))yr, 5, = graph(¥~)

o /

(C, 0). X(f37%0), e")— graph(¥;)
6.13) 112 l lz,, 2|

B7(0)—— V,

L

(C: O)LX(Cn_l; 0):' X(Cr 0)61 > H

The desired equations (6.11); immediately follows from this diagram. The proof
of Proposition 6.7 is complete. Q.E.D.

Remark 6.8. Let us define ideals 4; of the ring Ocxuxc.,0.00 DY
I =AW, x’, &)—x1, By, x, &1)).
Then these ideals are prime for 1</7<r.
Proof. Assume g,8.€J9;, 8:¢9;. Weset gi¢, x/, &1):=g.|x (¢=1, 2). Then
we have gligie(B)), gi¢(B;). We claim
6.14) (B;) is a prime ideal of the ring Ocyc® 1xc. co. 0,07

If (6.14) is established then we have gi=(B;) which yields the desired fact g.=J,.
Note that, by virtue of (6.12), it suffices for (6.14) to show that

(6.15) (f,(3', 11)) is a prime ideal of the ring Oc,xrm, 00,0 -
Recall that f,(y’, %) is irreducible in Oryit. . 0- Hence it suffices for (6.15) to

show the following

Claim 6.9. Let f E0rgu. .00 be an irreducible germ, and let p: CXTHEM
—T%M be the projection. Then the pull-back germ p*f is irreducible in the ring

Ocxryn. co. 0,0+

To show Claim 6.9, we note the following simple fact for fEO0rgu, 0, 0!

(6.16) alt, e)= 20 aPe(orf) & a,e(f)  for all v.

Indeed, by the definition, a=(p*f) means that there exists a germ b(t, e)
=§0bv(e)t” such that a(t, e)=[p*f](, e)b(t, e)=f(e)b(t, e). This is clearly equi-
valent to a,(e)=f(e)b,(e) for all y. Hence we get (6.16).

We continue the proof of Claim 6.9. For a,(, e)=§5 a; (e)t* (=1, 2) we
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assume a;a.<=(p*f), a,&(o*f). By (6.16), it follows that
(6.17) S a,2a0,6(f)  for all 7=0, 1,2, -
2=0

and that there exists g such that
(6.18) a, &)
We choose ¢ as the minimum value of such pg. We want to show
(6.19) as,,E(f) for all v.
We prove (6.19) by induction on v as follows:
1) The case y=0. Taking 7 in (6.17) as g, we have

7
al.paz,o‘["xz Ay, p-2a2,2€(f).
=1

Since a;, ,-2€(f) for A=1, we have a,, ,a,,=(f). Then, by (6.18), it follows
that a, ,=(f) since the ideal (f) is prime.
2) The case y=1. Taking 7 in (6.17) as v+p, we have

v-1 v+ yu
ZZ al,y+p—ja2,1+al,paz,v+ 12 al,v+y—2az,ze(f) .
=0 =y+1

Since a,, ;€(f) for A<y—1 by the inductive assumption, and since @y,v+p-2S(f)
for A=zy+1, we have a, ,a,,E(f). Thus (6.18) implies a.,=(f) as desired.
Hence we get (6.19).

Since (6.16) and (6.19) yield a,=(o*f), we get Claim 6.9. Hence the proof
of Remark 6.8 is complete. Q.E.D.

We conclude this section to show that, if we establish the following Theo-
rems 6.10 and 6.11, then Theorem 5.1 follows:

We consider the following diagram under the assumptions [B.1]-[B.4] of
Theorem 5.1:

Vle{tA_xl=BJ=0} L—b (Cr O)tX(My O)xX(C, 0)61

N
(6.20) (M, 0) «—2 v,
” \

(My O) < P (M: O)r X(C: 0)51

P,

For the diagram (6.20), we state the following two theorems which imply
Theorem 5.1:

Theorem 6.10. Under the assumptions [B.1]-[B.4], there exists an irreducible
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Weierstrass polynomial w,(x, &)E0y.[£:] of the degree
v,= 2 v(p)

reEM;
such that the following equality holds locally at (x, £,)=(0, 0):
(V32, (0, 0)=(w3%0), (0, 0)).

Theorem 6.11. The map germ m,5: V,1—V ;515 a germ of one-sheeted analytic
covering of V =V 5, (0, 0)).

We must show that Theorems 6.10 and 6.11 imply Theorem 5.1. Note that
Theorem 6.10 yields that the map germ m,5: V,.—()M, 0) is a germ of a v;-
sheeted analytic covering of (M, 0). Hence, by Theorem 6.11 and the first
assertion of Proposition 6.7, we conclude that

(6.21) Ty=T;3°T,eom,; is & germ of a v,-sheeted analytic covering of (M, 0)

which is the assertion 1) of Theorem 5.1.

To show the assertion 2) of Theorem 5.1, let u; be the multi-valued germ
defined by the diagram (4.8),, Then, by our constraction of the maps =; it
follows

axlu (X(t: ,) 1)):51(2‘; ,7 1)
6.22) { AXE, 5y ¥

for V(t; 0, y'; mdxi, 00V, (0, €%).

Then, the irreducibility of the defining germ w,(x, &) of V,, yields that the

germ &,=5,(t, ¥/, 1) is exactly v,-valued as a germ of a function in x. On

the other hand, (6.21) shows that the germ u; is at most v,-valued around x=0.

Hence the relation (6.22) shows that the germ u, itself is exactly v,-valued.
Thus Theorem 5.1 follows if we establish Theorems 6.10 and 6.11.

We shall prove Theorem 6.10 in §9, and Theorem 6.11 in §10. Before to
prove these theorems we need some preparation which is done in §§7 and 8.

§7. Newton Polygons of A(¢, 0, &,) and B,(¢, 0, &)

In this section we decide the “principal part” of the Newton polygons of
the restrictions A|, -, and B,|,_, of A, x’, &) and B,(, x', &) for 1</<7,
where A and B; are defined by (6.8) in Notation 6.5.

Definition 7.1. 1) Let N; (=1, 2) be Newton polygons. We say N, is
properly contained in N, (we denote this by N;&EN,) if
(7.1) N,CN, and N,N°N,=@

where 0°N denotes the strict boundary of a Newton polygon N, which is defined
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in 2) in Definition 2.3.
2) Let (X, ¢) be a germ of a complex manifold, and let f, §€0O0sxc.cs.0) bE
germs of functions. We say N(f) and N(g) have a same principal part if

(7.2) N(f —£)EN(f)=N(g) .

3) Let f<Os«c.cs.o be a germ and let f(x, y)= Zocy(x)y" be the Taylor

expansion of f along y=0 (¢,=05,, for y=0, 1, ---). We define the characteristic
polynomial function ch(f) by

(7.3) ch(f)(X, y):= > Loc[e,J(X)y* (X, y)ET,ZXC)

(ord(cy],»)EN( )

where Loc[e¢,]: T,2—C is the localization of ¢, at ¢ (see Definition 2.6).
Note that it clearly follows that N(f) and N(ch(f)) have a same principal
part. Moreover N(f) and N(g) have a same principal part if and only if

ch(f)=ch(g).

For this reason, we call the characteristic polynomial function ch(f) by the name
of the principal part of N(f).
Let us recall the irreducible decomposition of f locally at (0, 0)eT$M:

f(yly 7]1)::F(0; y’: 7]1d-x1: o)zgf](y(; 1}!) (fJEOT"éM, (0,0))-
The aim of this section is to show the following

Proposition 7.2. The principal parts of the Newton polygons N(A(L, 0, &)
and N(B,(, 0, &), L<j<r, satisfy the following (7.4) and (7.5):

7.4 ch(B,(t, 0, &))=ch(f,X(—tL r(e"), &)  for 1=j=r.

(7.5) NLeh(AC, 0, &)t 3:,ch(FX—0L £(e”), )40+ NEIEN().

Remark 7.3. By the assumptions [B.1] and [B.3] of Theorem 5.1, we have
(7.6) N( =N, =+, 0, yz, 71))-

(77) N(f]):N(f]«)} Ty 0: Va, 7]1))~
Proof. The first equality (7.6) is nothing but the stability of N(f) in the
direction of Lr(e’)=—0,,. Since @(x)=0 is a good extension of the Cauchy

data ¢(x")=0, (7.6) follows.
Note that there is a trivial inclusion

(7-8) N(f](y’; nl))DN(f](O; Tty 0: yn: 7]1))
On the other hand, the additivity property of Newton polygons yields
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7.9) N(H= BN
Hence we have, by (7.6) and (7.9), the following equality:
(1.10)  JING)=NND=NGO, =+, 0, 3u, 7= ZING 0, 0, 3, 7).
By (7.8) and (7.10), we conclude (7.7) as desired. Q.E.D.
Let us recall the map germ
U~=(X;5,Z): (C, 0)X(E, ") —> (J*M, e°)
which is induced by the following family of characteristic curves of F':
(=T, e); T~0, e)=e=(0, y’; n1dx,, 0)E(E, e")}.
We expand ¥~ with respect to ¢ as the following form:
X(t, ¥, 79=(0, 3+ Z GV HAXQ, ', 7).
(7.11) E(t; y,y 771)2(771) 0)+z§1(21)_1t7’a%5(0, y’; 7]1)-

2, ¥, p)= 3 G020, ', 7).

Let ¢g:=ord[F(0, x';0,0)], which is equal to the approximation order
ord[F(x, 0, 0)] of the good extension @=0, by virtue of the assumption [B.4].

Notation 7.4. For germs g, h<Osx«c, 0,00 and for an ideal 4 of the ring
Osxc. .0, We denote by N(Ig)CTN(2) [or N(IZ)EN(h) resp.] if
N(eg)cN(h) [N(ag)EN(h)] for any aed.

Lemma 7.5. Let f(y', 7.)=F(0, ¥'; 9:dx,, 0), and let (¥")COsxc.co.0) be the

defining ideal of {0} XCCSXC. Assume the conditions [B.1]-[B.4] of Theorem
5.1. Then the following 1)-6) hold for all i=1:

1) NI ({08 X0, 37, 90)— (=165, f (3", n)HIEN(S).
2) NL(»")%0t5 500, ', p)ICN(f)  for 2<j<n.

3) N[(»")*"*0:Z(0, ', 9)JCN(f).

4) ()1 0EX,0, ¥, p)C(y’, 7)) for 2Sj<n—1.

5) ()OI (0, 7, p TN+ (1)

6) Xat, 9", n)=yn—t.

The proof of Lemma 7.5 will be given in §12.
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In this section we shall prove Proposition 7.2, under the assumption that
Lemma 7.5 is true.

Lemma 7.6. Let (Y’, Hy): (C, 0),X(C™"", 0)z X(C, 0);;—(T¥M, (0, 0))y-, ,, be
the map germ determined by Claim 6.4. Then (Y’, H,) has the following expres-
sion:

7 ’ I~ ’ x” Y”~
7.1 [ Y't, ¥, &)=x'+Y", &, el>=[Xn]+t[ 1 le =&
Hl(t; x,} El)=§l+tHT(t) x” El)
such that
{ Y'~(, 0, ), &)
(7.13)
H3@, 0, O)e@)r .

Proof. By the identity (6.5) and the expansion (7.11), it follows that

x’ X’
(7'14) [S :IZI:H :|(t7 Yl(ty x,; Sl)y Hl(t, xly El))

’

—
=21

Y .
=[ }(l‘, x', &0+ 2 (z'!)“tfa}[
H? i=1

](0) Y’(tr x,’ El): Hl(ty x/) 51))-

Setting t=0 in (7.14), we have (Y’, H))|:-o=(x’, &;). Hence we get

]/'l xl Yl~
(7.15) [ }(t, x' 61)=[ ]+t3[ ](t, x', &1).
H H

1 1 1

Note that the assertion 6) in Lemma 7.5 implies

anYn(ty x’; E,)—t=x,,+tY;(t, x’, 51)“‘f
which shows

(7.16) Y@, x', E)=1.
Substituting (7.15) into (7.14), with using (7.16) and
at(XI; El)(o) y,; 771)=(851F, —mazF—ale)(O, y,; nldxl: 0)

we have the following identities:

x” x” yr~ ang
E[ +i ]+t[ }(0, Y’ Hidxy, 0)
(7.17) x,, xn 1 "‘].

aiX ”

+5 <z'!>-1zi[ P }(o, Y', Hy.

& =6, +tH7+t{—0,F—0,,F}(0, Y’ ; Hidx,, 0)
(7.18) [

+ 3D AE, Y, H).
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Setting x'=0 in (7.17) and dividing it by ¢, we get
_Y”N(t; 0) El):aE”F(O; tY,I~(t’ O: 51)7 t; {El-,_tHT(t; 0) El)}dxlr 0)

+ éz(i!)‘lti"an”(O, tY”~@, 0, &), ¢, &+1HT(, 0, §1).

Thus, by 0sF<(x, & z) which is a consequence of [B.1], the first assertion of
(7.13) follows.
Setting (x’, &,)=(0, 0) in (7.18) and dividing it by ¢, it follows

(7.19)  —H3(t, 0, O)=—1tH7(, 0, 0)0.F(0, tY'~(t, 0, 0); tH3(, 0, 0)d x4, 0)
_ale(O; tY'~(t7 O: 0); tHT(t; 0) O)dxly 0)
+ B E)GE, 1Y, 0, 0), tH(, 0, 0)).

Then the assumption [B.4], that is, F(x; 0, 0)e(x)? yields
(7.20) 02,70, tY'~¢, 0,0); 0, 0)s().
By the assertion 5) in Lemma 7.5, we also have
(7.21) £71015 (0, tY'~(¢, 0, 0), D@ .
From (7.19)-(7.21), we get
—H;i(t, 0, )@ +EH(, 0, 0)

that is, there exist germs a(?), b(t) such that

—Hy(t, 0, 0)=t""a(t)+tH:(t, 0, 0)b(t).

Since 1+1b(t) is an invertible germ, we get the second assertion of (7.13). The
proof of Lemma 7.6 is complete. Q.E.D.

Corollary 7.7. There exist map germs y”~(t, &), 97(t) and o(t, &) such that
Y(t, 0, ED=1t(y"~(t, §1), 1)
{ Hi(t, 0, §)=£:10(t, §)+77(0)
with the following properties:
"¢, EDEW, €)).
(7.22) RO OB
a(0, &)=1.
Proof. We set
Y7t €):=Y""(, 0, &), p7(¢t):=tH3({, 0, 0).
Then, Lemma 7.6 yields that y”~&(, &), ord[97]=gand Y|, _,=t(y”~, 1). On



ON MULTI-VALUED ANALYTIC SOLUTIONS 57

the other hand, it follows
H\@, 0, §)=6+tH1(, 0, &)
=&+1{H1(, 0, 0)+&:%0™(, §1)}
=& +to~(, §))+797(@).
Thus it suffices to set a(t, &) :=1+ta~(, &1). Q.E.D.

Now we prove the assertion (7.4) of Proposition 7.2.
For 1<7<r, Corollary 7.7 yields

B](t’ 0) El)'—_f](Yl(t) Oy 81)’ Hl(t) 07 El))
=f,(y"~ (¢, &), D), §10@, £)+77(1).

Let f,09', )= icw(y’)yj’{ be the Taylor expansion of f;. Then we have

(7.23) B,t, 0, &)= 3 e.,(t(y""(t, &), D)&uo(t, £+ 010}

Claim 7.8. Let us put g,:=ord[f,(y’, 0)]=ord[c,,]. Then we have
B,(t, 0, 0)=Loc[c,;1(9, ,)t%(1+0()).

Proof. Set &=0 in (7.23), then we have

(7.24) B, 0, 0)= 2 ¢, ("¢, 0), )7y
COJ(O; tty 0: t)
moae] T2 @D705e0 0, e, 0, DY, O}
+c,@E7 ¢, 0), D))

since ord[57]=gq by (7.22). Since ord[co;]=g¢; and ord[y”~(t, 0)]=1, it follows
that the second term in the right hand side of (7.24) has a vanishing order at

least
min{g,—|a|+2|a]; |a|=1}>q;.

On the third term in the right hand side of (7.24), we note:

(7.25) q;<q if ¢y,(y") is a unit in Og,,.

Indeed, if ¢, is a unit then p,:=ord[ f,(0, ;)]=1. Since we assume p= é‘ipjgz,

we get r=2. Hence (7.25) follows. By (7.25) we have ’
ord[e,,(H(y"~(t, 0), D)n1(t)]=ord[ci;1+9>g;.

Hence we conclude
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B,(t, 0, 0)—c,,(0, -+, 0, He@)w*!
which shows Claim 7.8. Q.E.D.

From (7.23), we can find a germ g,(t, &) such that
(7.26) By, 0, &)= éo e, (B~ @, &), {610 @, EDP + 1018, &)
Claim 7.9. Let us put

(7.27) By(t, £):= 3 ,(ty" " &, Di&o(, &)

Then it follows that
N(BY)CN(f)  for 1=j=r.

Proof. We write B3, ) as Bj({, &)= ioc;](t)ff;. Then it suffices for
=
Claim 7.9 to derive
(7.28) (ord[c7,1, #)EN(f,) for all p.

From the definition (7.27) of B7, the coefficients c},(f) are given by

(7.29) CZ;(t)=y2:%((ﬂ—V) D704 {eu, (3"~ §1), D)o, 6%} e

which yields
ord[cy;]1= min ord[c,;].
Osvsp

Hence the fact
(ord[c,;], p)=(ord[c,;]1, v)+(0, p—v)EN(S,) for 0=v=p
implies the desired (7.28). Thus Claim 7.9 follows. Q.E.D.
Claim 7.10. For 1<j<r, it follows that
ch(B5(t, £))=ch(f ;) (—tL #(e"), &1).
Proof. Let us denote the set Ver N(f;) of vertices of N(f,) as
(7.30) Ver N(f)={(a(2), p;—b,2)); 0=2=m;}

where the sequences {a;(1)}, {b,(2)} are arranged as monotonely increasing in 2.
Since the Newton polygon N(f;) satisfies the coprimeness condition, it
follows that

(7.31) ch(f ) (—tL p(e%), &)=ch(f,)O, -+, 0, ¢, &)
= E;Loctcpj-bju>,j](ayn)t“j<1>51;j—bj(1) .

Let ¢;:C be the coefficient of #2i¢#£25-%¢» in B3, &,). Since
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N(BF)CN(/f )=N[ch(f ,X(—tL r(e"), £1)]

by Claim 7.9 and Remark 7.3, the expression (7.31) yields that it suffices for
Claim 7.10 to verify

(7.32) eja=Loclcp,-p,0,510y,) for 0<2<m,.
We fix 4. It is clear from (7.27) that e;; depends only on the terms
By~ (¢, 61, W&o, EDF for 0=v=p,—b,(2).
Since (a,(d), p;—b,(A)=Ver N(f,) it follows that
ord[c,,,]>ord[cpJ_bJ(;),j]:aj(Z) if v<p,—b,(2).
Thus e;; depends only on the following term:
Coymbyctr. KLY, £2), D){E10(E, £} 250D
=£81700{g(0, £,)P77% D0} € p,-5,c25,,00, =+, 0, 1)
+ 3 @), yc00,0, -, 0, Dty £} ]
Then, using the inequality
ord[05:cp;-s,c0. 40, -+, 0, D{ty”~(¢, 0)}*1=a,(D)—lal+2]al>a,)
for |a|=1, we get
e, 2t PERIT D =Loccp, 5,25, 51(8y 2 PERI 70D (0, §1)Ps705¢R

Thus, by ¢(0, &)=1 (Corollary 7.7), we conclude (7.32).
The proof of Claim 7.10 is complete. Q.E.D.

Proof of (7.4). By virtue of Claim 7.10, it suffices to show
(7.33) ch[B,(t, 0, £)]=ch(B3(, &)
By the definition (7.27), the equality (7.26) can be written as
(7.34) B,, 0, £)=B3¢, &)+171)g,@, &)

Since N(B7)=N(f;) which is a consequence of Claims 7.9 and 7.10, it suffices
for (7.33) to verify

(7.35) N(77(0)g,(t, EDENS)).

Putting &,=0 in (7.34), we have B,(, 0, 0)=B7(, 0)+77()g,, 0). Since Claims
7.8 and 7.10 lead us to

Loc[B,(t, 0, 0)]=Loc[ B;(t, 0)J=Loc[c,;1(0, )%,
we have 77(t)g,¢, 0)e@®)%*'. Then, by ¢g=g¢q,, we have
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710, ENEMYT+BUEICH)YE, &),

which shows the desired (7.35).
The proof of (7.4) in Proposition 7.2 is complete. Q.E.D.

Now we prove the second assertion (7.5) in Proposition 7.2.
It suffices for (7.5) to show

@36)  Nafae 0, e[ 3, (-0 L), £)d0} [N,
We recall the definition
A(ty x,; El)::XT(t; Y’(tx x’y El)) Hl(t’ x,’ Sl))

where X\(t, v/, 9.)=tX7(t, y’, &) is the first component of the chracteristic curve
t—T~(t, y’, &) of F. Since X7 can be expanded as the form

X‘I(ti y,: ﬂl)zaﬂlF(O: J"i nldxlx O)+ g(i!)—lti—la%’Xl(O, yly 7]1)

=0,/ (", m)+ B,GNEHXO, ¥, 70,
Corollary 7.7 yields that A(t, 0, &) can be written as the form:
A@, 0, £)=X7C, t(y"~, &1, 1), £10@, E)+97()
(7.37) =0,, /(" &), 1), &0(t, §)+7171)
+ %(z D70EXL(0, ¢y (2, €0, 1), €10ty E0+1T()).
Note that the expression (7.37) and the inclusion
(7.38) NN
imply the following equality :
(7.39) & A(, 0, &)

(mod(£>3¢61>

[ £ 31 (DT (1050, (0" £, 1), 610, £)

] +¢: élz @D [0 X4(0, 2y~ (¢, €, 1), E10(t, 1)
{ —(=1)F10510,, f(t(y"~(, &), 1), &10(t, E)].
By virtue of the assertion 1) in Lemma 7.5, we have
(7.40) N[the second term in the right hand side of (7.39)]EN(f).
Hence, if we define I'(¢, &) by

(7.41) ra, 51):=€1ié @D =1)17105,10,, f ("~ @, €), D), €10(t, €1)
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then (7.39), (7.40) and the inclusion N(%,)EN(f(y’, %)) imply
(7.42) N(&, A, 0, £)—1'(t, £))EN(S).

Thus it suffices for (7.36) to derive

(7.43) NLI, 8~ 0:,ch(—0 L s(t®), £)40TEN).

Let f(y’, n)= iocy(y’)m be the Taylor expansion of f. Then (7.41) can

be written as

[, 8)= 3 G0 1= 5 00" £), Whéilbiot, £217

Put I'(t, &)= :é}lk;(t)é’}. Then k;(t) can be written as the form

J k()= é ky()  where

(7.44) a .
} kiD= 2 G D= — 1) ((A—y) Dty

X0 L0 e, (t(y"~(t, &2, IDYat, &1 Dle=o-
Since ord[ k3, 1=i—1+ord[c,]—(F—1)=ord[c,], if follows

(7.45) (ord[ k3], D e(ord[c,], v)+R2CN() for 1=y=2.
{ (ord[ k3], HEN(F)—d"N(f)
(7.46)
if either 1=<y<2 or (ord[c,], v)&Ver N(f).

Note that (7.42) and (7.45) yield

(7.47)  N(&, A, 0, &))Cconvex hull {N(& A, 0, &)—1"(t, ED)UNU (¢, &)}
CN().

Moreover (7.46) yields that, if we put

(7.48) I'(t, &):= > k(8

2z1,(ord[c ], A)EVer N(f)

then we have
(7.49) NU(t, )—1'1(, ED)EN(S).

For 2 satisfying (ord[c,;], )=Ver N(f), we consider k3(t): Setting v=2 in
(7.44), we have

(7.50) ka(l‘)=§‘.l @D (=10 (v, 0), e, 0)471.

We take the expansion
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0y ity (@, 0), 1))
=3§,‘nlc,q(0, tty 0: t)+.a‘221(a !)—laﬂla'ﬁ”cz(o; ) 0: t){ty’,~(t; 0)}01,

and we put
(7.51) %) = :21(z'!)"ti‘l(—l)i“/l{ai,‘n‘c;(o, -, 0, D}at, 0)*

Then the inequality ord[¢y”~(t, 0)]=2 implies
Ord[kfz(l‘)—kﬁx(t)]2i~l+ord[cz]—(Z'—l)-l-lrglliznl{" la|+2]al}

>ord{c,].
Thus, if we put

(7.52) Iy, &)= > RL(EL
Az1,(ord[cy1, A)eVer N(f)

then we have

(7.53) N(I'\(@, &0)—1(t, ED)EN(S).

By virtue of (7.49) and (7.53), it suffices for (7.43) to show
7.54) Nty &)=t 05,ch()—0 L r(e?), £)4OEN).

We denote the set Ver N(f) by {(a(u), p—b(y); 0=p<m}. Then, substituting
A=p—b(p) in (7.51), (7.52) can be written as

m-1
I'y(t, 51)=#§0 kv, p-veur(HERTOH

1

26— 1) (b))

1

=3
#=0
X {041cp-0(0, -+, 0, D)} a2, 0)p-bem-1gR -0,
Note that
v (¥ )=V Loclep5 10y {1+0()} mod(y”)
which implies
85 co-0qn0, -+, 0, =0} [e,t** {14+-01)}]

where ¢,=C denotes the non-zero constant Loc[c,,_b(#,](ayn).
Since N(tew+1gr-0teneN(f), if we put

Tyt £):="5 3 ()t (— 1) (p—b(p)3i e te0gn-be
#=0 1=1
then we have
(7.55) N(Io(t, &)—To(t, E)EN).

Hence it suffices for (7.54) to show
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(7.56) Ity &)=t 2e,ch(FX—0 L r(e?), §40.

We verify (7.56): Since 0tt**=0 if ;>a(p)+1, we have the following
expression of Iy, &)

m-la

WH+1 ) )
Tt 60="5" 3] G171 (= 1 (p—b(u)

____L(l_l_)_!_ a(u)-i+1g£p-bCy)
Xey (@) —i+ D)1 t &3

m=-1 1
=¢-1! — =bepy-1 acpy+1
=1 Elﬂgo O a(p)+1 geer

d+1

x5 Clatu+1, -1
N!

where we set C(N, i)i=m

for 0=</<N. Note that

3 N, iX—1y == —(1= 1) +C(N, 0)=1
which implies

Tty €0=t76: 3 eu(p—b()EE P a()+1) e ws!

:z—lelgta&[i eﬁ“‘“f%“"“’]dﬁ

0 =0

t

=t-lslg 3:,ch(£)0, -+, 0, 6, &)d 0

0

t

=t-‘slg B:,ch(f)(— O L p(e?), £)d0.

0

Hence (7.56) follows.
The proof of (7.5) in Proposition 7.2 is complete. Q.E.D.

§8. Proof of V,=R;'(0) as Germs of Hypersurfaces

In this section we prove that the image set Vj;=m,,(V;) has only one
irreducible component locally at (0, 0)=(M, 0),X(C, 0),, by means of the theory
of resultant. We also show that this irreducible component is given by a zero
set of a resultant R,(x, &) (see Proposition 8.9 and Theorem 8.10).

We first replace the defining germs tA—x; and B; of Vj, which are ob-
tained by Proposition 6.7, with suitable polynomials {P—x, and @; with respect
to the variable ¢:

Lemma 8.1. 1) For 1<j<r, there exist a Weierstrass polynomial Q, with
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respect to t of degree g;:=ord[f,(y’, 0)], and a unit ¢, such that
(81) B](t; x,; El)ZQJ(t: x,; El)sj(t; -x,, El) ln OCXSXC. €0,0.0)

where Q; and e; are uniquely determined by B,.
2) There exist a germ A and a polynomial P with respect to t of degree at

most g—1= é g;—1 such that
j=1

®.2) A, #, &)=, ¥, £) 5 Q,0, ¥, £)+ P, 7, &)
where A and P are uniquely determined by A.

Proof. By Proposition 7.2, we have N(B,(t, 0, £))=N(f,) which yields
ord[B,(¢, 0, 0)]=ord[f,(y", 0)]=g¢,<eo.

Then the assertion 1) follows from the Weierstrass’s preparation theorem. The
assertion 2) is a consequence of the Weierstrass’s division theorem. Q.E.D.

Corollary 8.2. It follows that
8.3 (tA—x,, B,)=tP—x;, Q,)
as ideals in the ring Ocxuxc, 0,00 for 177,
Proof. Let f, g be germs in Ocyyxc, o.0,00- Lhen we have
f¢A—x)+gB,={(ATL Qi P)—x:} +2Qe;
=/(tP—x)+(ge, HfATI QIQ,.
Note that a transformation
(f, 8)—>(f, ge,+tf AT Q)

is invertible, since ¢; is a unit. Hence Corollary 8.2 follows. Q.E.D.

By this corollary we can take tP—x, and @; as defining functions of V,
locally at (0, 0, 0)eCxMxC:

(8-4) (le’ (O) 0; 0)):{<t) x; E’l); tP(t: x,! Sl)_xl—__Q](t) x’y 61)20}'

Lemma 8.3. The principal part of N(P(t, 0, &) has the same property (7.5)
of the principal part of N(A(L, 0, &), that is, it follows that

(8.5) N[ch(P(, 0, 51))—t"§:351€h(f)(—0lz r(e), £)dO1+NENEN(YS).
Proof. By virtue of (7.5) in Proposition 7.2, it suffices to derive

8.6) NE{AQ, 0, £)— P, 0, EDDEN(S).
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By the definition of P we have
@®.2y Alt, 0, £)—P(, 0, £)=4(, 0, £) TL Q,(¢, 0, &).
Note that the additivity of Newton polygons (Proposition 11.3) yields

N(B,):N(QJE])ZN(Q])—I- N(€])=N(QJ)
since ¢, is a unit. Hence it follows that

N(TL Q. 0, 6))= ZNQ,(t, 0, &)= IN(BLL, 0, £).
J=1 =1 =1
Then, by (7.4) in Proposition 7.2, we have
N(IT Q. 0, €)= S N()=N(IL £,)=N0).

Thus the equality (8.2)" yields

N(&.{A(, 0, £)—P(, 0, £)}TNE)+NNHEN(S).
The proof of Lemma 8.3 is complete. Q.E.D.

Remark 8.4. It follows that
g—1z=deg,(P)za(mn—1)=g()+ -+ +¢(m—1)
where (a(m—1), p—b(m—1)) is the rightest vertex of N(f) except for (a(im), 0).
Proof. Note that

BT (atm—1), p—bm—1)—De VerN(t'{ 3;,ch(FX— 0 Lr(e), £)40).

Indeed, for a germ g€0¢:, 0,0y and for a vertex (a, b)eVer N(g) with b=1, it
follows that (a, b—1)eVer N(d;,g), and that the operator

t
g— 1720, £)d0

preserves the Newton polygon N(g). Hence (8.7) follows. Then, by Lemma 8.3,
we conclude deg;(P)=a(m—1). Since the other inequality g—1=deg.,(P) is
trivial by the definition of P, the proof of Remark 8.4 is complete. Q.E.D.

Now we recall the

Definition 8.5. Let © be an integral domain, and let f(¢), g¢)=0[t] be
polynomials with O-coefficients of degree m, n respectively as follows:

fo=3at,  gb= Jz bt

We define a (n-+m)-square matrix D(f, g) by
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n m
— -— 3
7
— N 0 ]
\\\\\ S~y Qo n
8.8 o
8.3 D(f: g)= \am Qm-1 — Qo |
_______________________ L e cm e mem
b N by ! bo 0 1
0 \\\~ R \‘\\ m
bn """" I > bo A

and we also define a resultant »(f, g)=0 of f(t) and g(t) by
8.9) r(f, g):=det D(f, g).

The following Proposition 8.6 is well-known (see, for example: [Na:
Theorem 4.11.1, p. 164]):

Proposition 8.6. Let O, f, g be as same as in Definition 8.5, and 9, be the
(J, n+m)-cofactor of the matrix D(f, g). Then:

1) If either f or g is a monic polynomial then the following (a) and (b) are
equivalent as statements for an element c<0O:

(@) ce(f, g)olt].

(b) There exist e,€0 (1<j<n+m), e=0, and d=0—{0} such that

8.10) =02+ belnim
8.11) e;=(e/d)0; for 1=Z7<n+m.
2) Let X be an algebraic closed field containing the ring ©. Let
SO=anll(t—a), e0=bT1G—B)
be the factorizations of f and g in the ring X[t]. Then it follows that
(8.12) r(f, g)=a'7hb7’fg(ﬁj—ai)-
Corollary 8.7. It follows that

(8.13) r(f, g)e(f, golt].

Proof. Let D:=D(f, g) be the (n+m)-square matrix defined by (8.8), and
let D° be the cofactor matrix of D. Since D°D=(detD)[,+n, We have

0nQo+0nsmbo=det D=r(f, g).
Hence the condition (b) of the assertion 1) in Proposition 8.6 holds if we take
¢;:=0; (1<7<n+m) and d=e:=1.
Thus Corollary 8.7 follows. Q.E.D.
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Now we return to our problem. The first aim in this section is to show
Proposition 8.9 stated below. Before stating this, we introduce the

Notation 8.8. We set D,, R; respectively as
8.14) D;:=D(Q;, tP—x,).
(8.15) R;:=r(Q;, tP—x,)=detD; for 1<j<r.
By Corollary 8.7, it follows that
R,eon(Q;, tP—x,)0[t]
where we put ©:=0y.c, 0.0 Hence we conclude

(8-16) (Vﬂ) (01 0))C(RJ—1(0): (O: 0))-

Proposition 8.9. The germ (R7%0), (0, 0)) of a hypersurface of MXC at
(0, 0) has only one irreducible component, that is, if

RO
®.17) Ryx, &)= 1L Sa(x, &y h?
is an frreducible decomposition of R, at (0, 0), then k(j)=1 follows.

Proof. Since (8.17) is an irreducible decomposition, we note
a) w4, =1,
(8.18) b) S.; 1ZAZk())) are irreducible in Ou.c. .0y, and
¢) there is no germ g(x, &) satisfying S;,=gS:; (A#1").

Claim 1). Set X;:=(S7X0), (0, 0)). Then, for any 1<A<k(j) and for any
sufficiently small open neighborhood U of (0, 0) in MXC, it follows that

[Xi— \J XaInU+@.

Proof. If we assume that Claim 1) is not true then there exist 1 and an
open neighborhood U such that
(8.19) X;ﬂUCZ‘H'AXp .
We set T ::szS" 5~ Then (8.19) yields T|x,=0. Hence the Riickert’s

T
Nullstellensatz (§ 13) implies that
T<=Rad[(S1,)]:={2€0uxc,w.0>; 37, g°E(s2)} -

Since (Sy,) is a prime ideal, we have T'(S;,) which implies that there exists
A’ (#2) such that S;,€(S;). This contradicts the condition c) in (8.18). Hence
Claim 1) follows.
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Claim 2). Let d:=deg,(P), and let us write
PG, o, £)= 5} P.(x', &)t
Then Pg|x,#0 for any 1<2<k(j) where we set X, :=(S57(0), (0, 0)).

Proof. If Claim 2) is not true then the Riickert’s Nullstellensatz yields j
P;=Rad[(S:,)]=(Sz,) for some 4. We note that

(8.20) ord[S1,(xy, 0, -+, 0)]="1 5(2, j)<oo.

Indeed, since @Q; is a Weierstrass polynomial, we have

Tosq i 0
Rix, 0, -, O)=det | 1=z o |=(=x)
P
[
d+l qj

which yields
k() . .
g__‘,l s(4, (4, j)=g;<0.

Hence (8.20) follows.
Since P4(x’, &) is independent of the variable x,, the following division

Py(x’, §1)=0XS2;+Pq

of Py by Si,(x, &) with respect to the variable x, is a Weierstrass division.
On the other hand, the condition P;=(S:;) yields

Pd(x,: El)'_—aa(xy SI)SZ,}_{"O

which is also a Weierstrass division of P, by S;, with respect to x,. " Then
the uniqueness of Weierstrass divisions implies a=0 thus we have P;,=0. This
contradicts the definition of P;. Hence Claim 2) follows.

According to Claims 1) and 2), we have:
(8.21) [X;——(lg'lXpuP;;l(O))]f\th(D for any A, U.
On the other hand, the assertion 2) in Proposition 8.6 yields
(8.22) [Xa—PFO)INUCTo(V,)=V,. for any A, U.
Indeed, for any fixed (x°, &)e[X;—P3z¥0)INU, it follows that
8.23) 0=R,(x* &D="Pa(x", 0% IT (Bs—a)
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where {a,} [or {B:} resp.] denotes the roots of Q,(t, x'°, &) [tP(t, x"°, §)—x1]
in the algebraic closed field C. Since Pg(x'°, £9)=+0, (8.23) yields that there
exists a common root {*:=a,=f,. Hence we have (x°, §)EV ..

Note that (8.21) and (8.22) yield

(8.24) 12(X)#F® and N X)ErF(Xa) for any 2, 2’ (A+21').

On the other hand the inclusion (8.16) implies

k(7

(8.25) Vo= U ml(X).

Thus we conclude that if k(j)=2 then the analytic set V,, is reducible at
0,0, 0)eCxMxC. But we have already shown that Vj is irreducible by
Corollary 8.2 and Remark 6.8. Hence we get k(j)=1 as desired.

The proof of Proposition 8.9 is complete. Q.E.D.

By virtue of Proposition 8.9 and of (8.16), for any 7 (1<j<r) and for any
open sufficiently small neighborhood U of (0, 0) in M XC, we have:
1) There exist an irreducible germ S,(x, &) and an integer v»(j)=1 such that

(8.26) Ry(x, §)=S,(x, &)y on U.

2) Let Py(x’, &) be the leading coefficient in the polynomial P(z, x’, &,).
Then the following inclusions hold:

(8.27) @=[R;M0)—PO)INUCV ,.NUCR;Y(ONU .

The sscond aim of this section is to show

Theorem 8.10. It follows that
(8.28) (V 15, (0, 0))=(R5%(0), (0, 0))

as germs of analytic subsets of MXC at (0, 0).

Our proof of Theorem 8.10 is based on the local dimension theory of analytic
sets which is summarized in § 13. We first remark a simple

Claim 8.11. The map germ mu: (V,, (0,0, 0)—>(V,q, (0,0) is a finite
holomorphic map germ.
Proof. Since (Vj, (0, 0, 0)={(, x, &); tP—x,=Q,=0}, the map germ =z,
is a restriction of a map germ =, defined by the diagram:
(Q3%0), (0, 0, 0)) — (CxMXC, (0, 0, 0))
lprojection

ﬂjg
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Since Q,(t, x’, &;) is a Weierstrass polynomial in ¢, the map germ =z, is finite.
Hence Criterion 3.6 implies Claim 8.11. Q.E.D.

Now we recall a way of regarding an analytic subset X of a domain D in
C" as a reduced complex space (X, Ox) in the sense of [Gr-Re]. According
to the summary of this way in § 13, we set

(8.29) Ox :=(0p/i(X))| x

where i(X) is the ideal sheaf of the analytic set X. Note that the Riickert’s
Nullstellensatz asserts that, if X is defined as a common zero set of f,=0p
(1<i<m) (we denote this by X=Null(f,, -=-, fn)) then

i(X)=iNull(f4, ---, fm))=Rad[(f1-, fw)] (see §13).
Hence any stalk Oy, . is a reduced ring, that is, @y, . has no nilpotent element.
Lemma 8.12. Let (V,,, OVJ.I) Lor (Null(R,), ONuumJ)) resp.] be the reduced
complex space which is obtained from V ;[Null(R,)] by the above way. Then

these complex spaces are irreducible locally at (0,0,0) or at (0, 0) respectively,
that is, the following (8.30) holds:

(8.30) O ;1. 00,0 and ONuliep. .00 Gre€ integral domains.
Proof. By virtue of V,;=Null(P—x,, @,) and of the irreducibility of the
ideal (tP—x,, @;) at (0, 0, 0), we have
iV 100, 0,0 =i(Nullt P—x1, @;))c0,0. 0
=Rad[({P—=x1, Q,)]c.0.00

=(tP—x,, Qa)co,o.o)-
Hence we have

OV”. @.0,0=0cxuxc,,0,0/(P—x1, Q;)(o,o,o)

which shows the first assertion of (8.30).
By virtue of Proposition 8.9, we similarly have

i(Null(R,)) o, 0o=Rad[(R;)]co,»=(S,)c0, 05

where R, and S, are related as (8.26). Since S,(x, &) is irreducible at (0, 0)
we conclude that

ONull(RJ).(D.O)ZQMXC.(o,o)/(Sj)(o,O)
is also an integral domain. The proof of Lemma 8.12 is complete. Q.E.D.
Let X, Y be analytic sets and f: X—Y be a holomorphic map in the sense

of Definition 3.1. If we regard X [or Y resp.] as a reduced complex space
(X, 0x) [(Y, Op)] then the map f can be regarded as a morphism of complex
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spaces (f, f7): (X, Ox)—(Y, Oy) where f~:0p—f4«Ox is a sheaf map on VY,
which is defined in the canonical way mentioned in § 13 (Lemma 13.5).

Now we recall the definition of analytic subset Z of a complex space (X, Ox)
and its local dimension (Definitions 13.9 and 13.10). We regard the map germ
Tyt V=V CNull(R;)=R5%0) as a germ of a finite morphism

Tjp=(Tj2, T32): (V ju, @le) —> (Null(R;), ONull(Rj))

and apply the local dimension theory to the finite morphism =, :

We first note that the finite mapping theorem (Theorem 13.14) yields that
the image V ;== ;»(V ;) is an analytic set of the complex space (Null(R;), ONul;)-
Then we have

(8.31) dim,o,0(V j1, Oy ;) =dimeo, 0V e =dime, oo (Null(R;), Onunce;»)
by virtue of Proposition 13.11. On the other hand, Proposition 13.12 yields

(8.32) dim, oy(Null(R;), Onuncep)=dime, oy (MXC)—1=n.

By the isomorphic map germs

(V35, (0, 0, 0)) <— (graph(@), (0, ¢’, e%)) <— (C, 0)X (Null(F}), ¢°)
we also have s
(8.33) dimg,0,00(V 51, Or,)=dim C+dim E—1=n.
Combining these (8.31)-(8.33), we get
(8.34) dimg, 0V je=dim o, n(Null(R;), Onunce;>) -

Since we have observed that the complex space (Null(R)), Onunicrp) i
irreducible at (0, 0) in Lemma 8.12, we conclude that there exists an open
neighborhood U of (0, 0) in MXC such that

V ,.NU=Null(R )N\U

as a consequence of Proposition 13.13.
The proof of Theorem 8.10 is complete. Q.E.D.

§9. Irreducibility of R,(x, &)

In this section we complete the proof of Theorem 6.10. By virtue of
Theorem 8.10, it suffices to show the following

Theorem 9.1. Under the assumptions [B.11-[B.4], for the resultants
Ri(x, &)=r(Q,t, x’, &), tP(t, x', E)—x1), 1=7<r, it follows:

1) Ry(x, &) is locally irreducible at (0, 0).

2) Ry(x, &) has the finite order vjzng}ljv(y) with respect to &:
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0.1 ord,[R;(0, £&)]=v;.
We derive Theorem 9.1 from the following

Propesition 9.2. The Newton polygon N(R(x,, 0, -+, 0, &) of the restriction
R;| 210 is given by

9.2) N(Rj(xh 0, -, 0, El)):pg{qu(#),v(#)
where we denote by Ng, 3 the following Newton polygon (see Notation 2.10):
9.3) Ne, s:={(s, 1); s=0, t=0, (s/a)+(/B)=1}.

Lemma 9.3. Proposition 9.2 implies Theorem 9.1.

Proof. Since the assertion 2) in Theorem 9.1 is a direct consequence of
9.2), we only have to show the assertion 1) in Theorem 9.1.

By virtue of Proposition 8.9, we have known that R;(x, &) has only one
irreducible component at (0, 0), that is, there exists an irreducible germ S; at
(0, 0) such that the following (8.26) holds:

(8.26) Ry(x, £)=S,(x, &)
Thus it suffices for Lemma 9.3 to show

9.4) v()=1 for 1<5<r.

We first observe the

Claim 9.4. The finite sequence {v(u)/q(u); 1S p<m:=4Seg N(f)} is mono-
tonely decreasing in p:

(9.5) v(1)/gD)>v(2)/q2)> -+ Sv(m)/q(m).

Proof (of Claim 9.4). Recall the definition
(4.6) v(=p(e){a(g -D+1+ge(@{p—b(p—1)—1}
in Definition 4.1, which yields
)/ g(=r(@{a(p—D+1}+p—b(p—1)—1
where x(p):=p(u)/q(¢). Then we have
v(@)/ g(e)—v(p+1)/q(p+1)

=k(e){a(p—1+1—r(p+D{a(@)+1} +b()—b(p—1)
=r({a(@+1—g()} —r(p+D{a(p)+1} 4+ p(p)
={r(p)—£(p+DHa(p)+ 1} —r£(p)g()+ p(p)
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Since p(@)=x(p)g(er) and £(p)—r(p+1)>0, we get
v(p)/g(p)—v(p+1)/q(p+1)>0
which shows Claim 9.4. Q.E.D.

For 1=j<r, we denote the subset M,C{1, 2, -+, m} by
M,=t{p(k); 1Sk <m =4 M;} with 1=p,(D)< - <p,(m)<m.
Then it follows that
9.6) Ver N(R,(x1, 0, =+, 0, &)
={(s, 1); s=q(pt,(1N)~+ -+ +q(p,(k)),
t=v(p,(k+1)+ - +v(g,(my), 0=k =m,}
Indeed, (9.6) easily follows from (9.5) and Lemma 0.2, under the assumption

that Proposition 9.2 is true.

Proof of Lemma 9.3 (continued). Setting x’=0 in (8.26) we have
R(x:, 0, -+, 0, &)=S,(x4, 0, -+, 0, &P
Thus, by the additivity of Newton polygons, it follows
9.8 N(R,(x1, 0, ==+, 0, E))=v(7)N(S,(x1, 0, ---, 0, &)

Note that the Newton polygon N(S,(x;, 0, ---, 0, &,)) can be written as the form
(16D
N(Sy(#1, 0, ++, 0, 6= 3] Nacwr.gi» (Nag is defined by (9.3))

for some positive integers a(i), B(7) satisfying

BL)/a(1)> - >BE(7))/ali(7))>0.
Thus, from (9.8), we have
()
9.9 N(Rx, 0, -+, 0, £0)= 3} Nugpacosueppcos-
Comparing (9.9) with (9.2) we get
(D

Nq(,u).v(,u): > Nv(])a(i).v(])ﬂ(i)

>
PEM =1

~

which implies
{ i(j)=m; (:=%M;) and
v(Na@)=q(p,2)), v(7)BE)=v(g,(?)) for 1<i<m;

since {v(p)/g(w)} and {B(:)/a(?)} are monotonely decreasing. Hence we have
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(9.10) y(j) is a common divisor of Fé{q {g(w), v(w)}.
j

Note that the greatest common divisor (¢(g), v(p)) is given by
(g(p), v(e)=(q(p), p(){a(p—D)+1}+q(p){p—blp—1)—1})
=(g(p), p(){a(p—1+1}).
Hence the coprimeness condition (g(u), p(¢))=1 yields
(g(p), v()=(g(p), a(p—1)+1).

Thus the niceness of the subset M; implies
GCD#gdj{q(ﬂ), v(y)}=GCDﬂg@{q(ﬂ), a(p—D+1}=1.

Then (9.10) yields (9.4) as desired. The proof of Lemma 9.3 is complete.
Q.E.D.

It remains to show Proposition 9.2. We note that it follows
(9.11) N(Qst, 0, E)=N(f (—tL r(e"), £)=N(/,(3", 7)1))=F§W Noew, pew
by virtue of Proposition 7.2, Remark 7.3 and Proposition 2.12.

Lemma 9.5. Under the following condition
9.11y N(Q,(, 0, 51))=#§4qu<#)_1,(#> for 1=j=r

there exist irreducible Weierstrass polynomials Qu(t, £)€0c,[t] (ISps=m=
# Seg N(f)) such that

(9.12) Qi 0, &)= 1II Q¢ &) for 1=j<r, and
HEM;
9.13) N(Q;):Nq(,a), plpd e
The proof of Lemma 9.5 will be given in § 14.

Let g,(), g.(t) and A(t) be polynomials with coefficients in an integral
domain ©@. Let r(g, h) be the resultant of g and % defined by (8.9). Then the
assertion 2) in Proposition 8.6 yields 7(g.g., A)=r(g,, h)r(gs, k). Thus the asser-
tion (9.12) in Lemma 9.5 implies

(9.14) Rj(x1, 0, £)=r(Q,(t, 0, §), tP(, 0, £)—x1)
=7’( H Q;(tr EI)’ tP(t) 0) El)_xl)
,UEMJ'

= II r(Q3@, D, tP(t, 0, &) —x1).

rEM;
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By virtue of (9.14) and of the additivity of Newton polygons, it suffices for
Proposition 9.2 to show the following

Proposition 9.6. For 1<u<m, we put

r,u(x!.) El):zr(Q;(t; 51); tP(t: 0: Sl)_xl) .
Then it follows that

(9.15) N7 2)=Ng>. vep> -
The first step of the proof of Proposition 9.6 is to show the
Lemma 9.7. There exists the following inclusion:
NE)CTNoewy oy for 1ISu<m.
Proof. We write the Weierstrass polynomial Q7 as the form
Q3t, 0= S w0 (weon@)=1 and w, =0 for 0=u<q(x).
We also write
P(t, x', )=:"5 P(x’, &)  and

EP(, 0, 8)— =13 si(E)P — x,

where we set
s(§0):=P,0, &) for 0=v=<g—1.

Remark that it is not necessarily that s, ;0. But if we define a (g+¢(p))-
square matrix D,(x,, &) by

t 1 wocpy-1 - Wo “ 0 1t
(9.16) D, (x,, §1):= ! . o ~ q
0 \‘~\\ N
RN [ R /) L
Sq-y TTTTTTTTIII S \— X1 0
q(g)
L0 e I —% )y
then we always have
9.17) 7 u(xy, §)=det [Dn(x,, §1)]

since Q(t, &) is a Weierstrass, hence a monic, polynomial.
We fix p and denote the (i, £)-component of D,(x1, §;) by dix(xy, §&). Then
d;  is given by the following (9.18) [or (9.19) resp.] for 1</<q [for ¢+1</<
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g+g()]:

9.18) du:{ Woawrar-r(&)) for i<RZitq(p)
0 for k<i or k>i+q(p)
! for i=*%

9.19) dix={ Si-z-1(§1) for i—g<k<i—1
0 for k<i—q or k>i

(¢73] -1
By the expressions Q3(, 51)=q§i wy(&)t* and P(t, 0, El)=q§=}us,({=1)t", we have
(v, ord[w,)EN(Q3) and (v, ord[s,])EN(P({, 0, §1)).
Thus (9.13) in Lemma 9.5 and Lemma 8.3 yield the following inequalities:

{ ord[w,]= —r(u)v+p(g).
ord[s,]=—r(e){v—a(u)}+p—blw)—1.

Now we estimate the Newton polygon N(»,). Since »,(x,, §;) can be written

9.20)

as

g+q(pd
ru(xy, E)= 3 sgn(fr)zlzl1 ds,zx(x1, &1)

7€Sg+a(1)]

where ©[n] denotes the symmetric group of order n, it suffices to estimate

q+q(p)
N( I oo, &) for m=Slg+q()] -

i=1
Note that we may assume that #&&[g+q(p)] satisfies

q+q(p)

9.21) I dixco0.

Under the conditions (9.18)-(9.21), we have

g+g(pd q - -
di.n(w'—‘(g wq(#)H_n(i))(_xﬂa(n)ﬁ]g‘)%isi_nu)-xE(xl)ac.)(gl)ﬁ(..)
such that
9.22) a(z)=4{7; i=q+1, (@)=}
and that S8(x) is estimated from below as follows:
(9.23) B(m)= él[—ﬁ(#){q(#)%-i—n(i)} + ()]
+i2§1 [—kli—n(@)—1—a(w}+p—b(p)—1].
T () #i

Note that (9.23) is equivalent to
9.24) B(m= {v()/g()}Hg(p)—a(m)}.



ON MULTI-VALUED ANALYTIC SOLUTIONS 77
Indeed, the right hand side of (9.23) is equal to

o) 3 (=)} 3] ()]
3, T a1+ p—b(e)—11.

T
Since the first and second terms vanish, (9.23) is equivalent to
(9.23) Bmz=[e({a(w)+1 4+ p—b(p)— 11X {7 ; i=q+1, (i) #1}
=[r(){ale)+1} + p—b(e)—11{g(w) —a(m)}.
Note that the identity &(u)g(¢)=p(g) implies
e()a(e)—b(p)=r(p)a(p—1)—b(p—1).
Hence (9.23) is equivalent to
B)z[e(e){a(u—1)+1} +p—b(p—1)—11{g() —a(x)}
=) [p(){a(p—D+1} +q(p){ p—b(p—1) -1} Hg(p)—alm)}
={v(@)/q(e)Ha()—a(x)}

which shows that (9.23) is equivalent to (9.24).
Note that (9.24) is also equivalent to

(9.25) {a(m)/g(@)} +{B(m)/v(w)} =1
which shows

q+qy) .
N( 11;[1 di.n(i))CN(x?(”)E‘f(”))CNq(m.u(p) for 7=&[g+g(u)].

Hence the proof of Lemma 9.7 is complete. Q.E.D.

In order to complete the preof of Proposition 9.6, we must show the con-
verse inclusion of Lemma 9.7. For this purpose it suffices to show
(9.26) (g(y), O)=N(r,) and
9.27) 0, v()eN(r,) .

Since Q;(t, &) is a Weierstrass polynomial in ¢, it follows

I, ; 0
7 u(%1, 0)=det | 'i'_'-x -------- =(—x,)1®
0
* 10N
; * —x
>

q q(p)
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which shows (9.26).
To show (9.27) we must consider the case that the equality holds in the
inequality (9.23) with a(z)=#{7;i=q+1, n({)=:}=0. Thus we consider

q+qlud

(9.28) Ord[gl sgn(z) 11;[1 dize(x1, £1)]

where > denotes the sum of 7=&[g+q(p)] satisfying

9.29) { 0rduacursi-ro) = —KE)g(e) +i= 7@} + pe)
i<n(@)<i+q(p) for all 1<i<q.

(9.30) { ord[se-scoy-1]=—r(){i—7(i)—1—a(e)} +p—b(e)~1
i—g<n(i)<i  for all g+1=i<qg+q(p).

Note that the coprimeness condition of N(f) yields that (9.29), (9.30) are equi-
valent respectively to

(9.29y () +i—n()=0 or =q(p) (1=i=gq).
a(p—1) or a(y) if 1Ssp<m

(9.30y i—ﬂ(l')—l-——{ . (g+1=i=qg+q(p)).
a(m—1) if y=m

Case 1. When p<m. In this case the sum (9.28) contributes to »,=det D,
as the following form:

(9.31) (9.28)=ordle(det A)(det B)det C)] where e==+1
such that A, B and C are determined by the following (9.32)-(9.35):

N

S 1 | i
Loy !
~. 0 j«— A appears here. '
\\\ VW 1
N ; 0 . B appears here. |
-------------- @------;;\-u_.,--a..--’ :
E 1 ~ Wy : |:
' . . '
’ i . o i q
(= - [ SN, A, boomao
D,= - i !
(9.32) # C appears here. 1 Y ;w" e i
\\\\l \\\ :
I____ 1. N i
b i
________ . - IL < ! wo'J
. — R S
Sq-1 ==------ = 1 Sacm) - 1 Sacp-1 "‘E """""" i —X1 t
~ AN ()
N Ssy Y | | BN
\ ' PR
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(9.33) A=1I,_i_qcwy+(nilpotent)=Mat(g—1—a(s) ; Oc,o)
(9.34) B=wlscp-1y+1+(nilpotent)eMat(a(z—1)+1; Oc,o)
Iq(;z) onq(p)

(9.35) C= cMat(2g(p) ; Oc. o).
Sa.(,u)[q(p) Sa.(,u—l)Iq(p)

From (9.31)-(9.35) we have
ord[(det A)det B)(det C)]
={a(p—1)+1}ord[w,]+ord[det{(Sacu-1—SacwWollam}] -
Since ord[w,]=p(y), the right hand side can be written as
{a(p—D+1} p(p)+q(plord[Sacu-1>—Sacum Wo] -

Hence, by v(p):=p(p){a(pg—1)+1}+q(p){p—b(p—1)—1}, it suffices for (9,27) to
show

(9.36) OdeSa(p—n‘Sa(y)wo]=P_b(ﬂ_l)—1-
Recall that Lemma 8.3 asserts
@5  N[PE 0, &)—t" 9, ch( X0 L(e?), £)40 | +NEIEN()

which implies

O seqpE) =2t B LocTe, 110, )67 H1+0@)  for p<m

where ¢,(y’) denotes the v-th Taylor coefficient of f(y’, 7.).
To derive (9.36) we need to write the value A,&C—{0} defined by

(9.38) wo(§1)=07(0, §)=A,E7(1+0(),
by means of the terms {Loc[cp-pc2>1(0y,); 0SA<m}.

We shall prove the following

Lemma 9.8. It follows that

(9.39) A,u:Loc[Cp—b(p—l)](ayn)/LOCECp—b(,u):l(ayn> for u=1.

In order to show Lemma 9.8, we use the following properties of charac-
teristic polynomial functions:

Lemma 9.9. Let (2, g) be a germ of (n—1)-dimensional complex manifold
at a point ¢ with n=2. Let f, g be holomorphic germs on X XC at (g, 0), and
let ch(f), ch(g) be the characteristic polynomial functions of f, g which are de-
fined by Definition 7.1. Then we have
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D ch(ch(f)=ch(f).

2) ch(fg)=ch(f ch(g))=ch(g ch(f)).

Proof. Recall the following equivalence

ch(g)=ch(h) & N(g—h)EN(g)=N(%).
Then the assertion 1) immediately follows from
(9.40) N(f —ch(f)EN(f)=N(ch(f)).
Note that (9.40) and the additivity property of Newton polygons yield
N(fg—f ch(g)=N(f)+N(g—ch(g))

EN(f)+N(g)=N(f)+N(ch(g)).
Hence we have
N(fg—f ch(g))EN(fg)=N(f ch(g)).

Thus the assertion 2) also holds. Q.E.D.

Corollary 9.10. For holomorphic germs gi, -+, 8x on 2 XC at (o,0), it
follows that

9.41) ch( ]13 g5)=ch( JIi]:lch(g,)).

Proof. When k=1, (9.41) is nothing but the assertion 1) in Lemma 9.9.
Thus we may assume ~2=2. Then the assertion 2) in Lemma 9.9 implies

ch(ﬁ g]>=ch[<i1;1i g,)Ch(gk)] .

k-1 k-
Regarding (J_I;[lgj)ch(gk)zgk_l X(JI]jg;)ch(gk), and applying 2) in Lemma 9.9,

we have
eh( 11 g)=ch (T £,)ch(gs )eh(ey)]
Repeating such processes, we get (9.41) as desired. Q.E.D.
Proof of Lemma 9.8. Applying Corollary 9.10 to
SO, -+, 0,4, £)=TL0, =, 0,1, &),
we have

9.42) ChLF(O, -, 0,1, €)]=ch| TLch{f,(0, =, 0,1, £} .
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Note that Remark 7.3 implies

©.43) { ch[f(0, -+, 0, ¢, &)]=ch(f)O0, -+, 0, ¢, &)
ch[f,0, ---, 0, t, &)]=ch(f,X0, ---, 0, ¢, &)  for 1<j<r.
Recall that Proposition 7.2 asserts
(7.4 ch(f;X0, -+, 0, ¢, £&,)=ch(B,(, 0, £1)).
Since B,=Q,e; with £,(0)+0, Corollary 9.10 yields
(9.44) ch(B,(¢, 0, &))=chlch(e,(t, 0, £))ch(Q,(, 0, £,))]

=ch[e,(0)ch(Q,, 0, £))]1 .
Since, for a non-zero constant a<C, it is easily verified that
ch(ag)=a ch(g)
by the definition (7.3) of characteristic polynomial functions, (9.44) derives
(9.45) ch(B,(¢, 0, §&)=¢,(0) ch(Q,, 0, &) .
By virtue of (9.43), (9.45) and (7.4), we can write (9.42) as

9.46) ch(F)O, -+, 0, t, &)=ch| TTch(B,(t, 0, &)]

=ch I {=,)eh(Q,, 0, £)}]

—e ch[ [T eh(@,(t, 0, £)]

where we put s:--f[lej(O)eC—-{O}.
=

Now, using the irreducible decomposition

(9.12) Q)¢ 0, &)= II Q@ &)

HEM;

in Lemma 9.5, we claim
©.47) eh(XO, -+, 0, 1, &)=e chl TTch(Qtt, £)].
Indeed, by (9.46), (9.12) and Corollary 9.10, we have

ch(/XO, -, 0, 4, &)=ech T Qut, 0, &)|=cch| TT 1T 05t &)]

=1 pEM;

=e ch[ T, so]:e ch[ T encoz 51»] .
Hence (9.47) follows.
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Since N(Q7)=Ngyu», p¢uy, the coprimeness condition yields
(9.48) ch(Q7)=19¢" 4 A &0

where A, is the non-zero constant defined by (9.38).
We note that Lemma 0.2 implies

(9.49) o] fTen@st, 6] =ch[ 1T e+ 4,60

p=1
m V< m
— () Py
= 2 (f1e)( I Asere).
On the other hand, we have the following expression:

(9.50) ch(F)O, -+, 0, 8, &)= 3 Loclcp-pcur 1@y, )t 2 #6570
£#=0

where ¢,(y’) is the v-th Taylor coefficient of f(y’, 9.).
By virtue of (9.49) and (9.50), we conclude that (9.47) is equivalent to

© m
LocLep-pn]@, 28 w=e( 1T r0)( 11 A1),
that is,
Loclcp-su]@y,)=€Aps1Apsz =+ An for 0<p<m.

Hence we get the formula (9.39) as desired.
The proof of Lemma 9.8 is complete. Q.E.D.

Proof of Proposition 9.6 (continued). By virtue of the expression (9.37)
of sq¢uy(&) and of Lemma 9.8, we calculate the left hand side of (9.36) as
follows:

Sa(p—l)—sa(,u)wo

:%L"CECP-w—nl@yn)&ﬁ"“"'”"{1+0<el>}

'2@&? Loclep-su](@y )67 "0 A 67 {14061}
:5?‘bcu—1)-1{1+0(51)}{2(—;é_w1)—;+12 Loc[cp_,,(,,_l,](ayn)

N Z(;i’ﬁfl) LocLC p-ucs 1@y XLOCTC-cu-1:]/LOCLCp -0 1)@y )f

=140~ Lo Locley 016,

Thus it suffices for (9.36) to verify
(p—b(e—1))Xa(p)+1)—(p—b(w))a(p—1)+1)#0.
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But this is trivial since

p—blp—1)>p—b(g) and a(p)+1>a(p—1)+1.

Hence we get (9.36) which implies (9.27) as desired in the case 1.

Case 2. When p=m.
form

In this case the sum (9.28) contributes

(9.51) (9.28)=ord[e(det Iy¢my-1)(det B)(det C~)] (e==1)

such that B and C~ are determined by the following (9.52)-(9.54):

(9.52) B=wolsm-1y+1--(nilpotent)
(953) C~:Sa(m—1)Iq<m)
£— Iy¢m>-1 appears here.
frmmmmemcenae - B appears here. !
1 it VW W :I
. 1! \\\ l §
- - . 1
E 1 1 Wo E i
1 \\ : ~ H ]
1 N ~o | 1
E RN S !
1 IS i
(9.54) p_=| C~ appears here. N E e i
5 R Wo
______________ i,.-----_---..---_i.--------- [ ——
Sg-1 ---m--- VSam-1  —--- ) --mee- i_x‘
. V. i N,
N ] o i H N
S ] o ] | o
i a
L i-sq-l Su(m-l)j e S %
g—l—a(m—1) g(m) a(m—1)+1
=g(m)—1

From (9.52) and (9.53), we have
ord[(det Icm;-;)(det B)(det C™)]
={a(m—1)+1}ord[w,]+g(m)ord[sacm-1]
={a(m—1)+1} p(m)+¢(m){p—b(m—1)—1}
=v(m).

Thus (9.51) implies (9.27) as desired also in the case 2.

83

to r, as the

q(m)

The proof of Proposition 9.6, hence that of Proposition 9.2, is complete.

Q.E.D.
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§10. Omne-sheetedness of Map Germs =,

In this section we prove Theorem 6.11 which asserts that the finite map
germs m,,:V;—V,, are germs of one-sheeted analytic coverings of V,, for
1<j<r. Our proof starts from the following Euclidean algorithm:

Definition 10.1. Put ©:=0yxc.0.0» and let KX be the quotient field of 0O,
that is, the field which consists of germs of meromorphic functions at (x, &)
=(0, 0). We fix 7 and we define a finite sequence {s;(¢); 1=<y=<*%} of polynomials
in X[t] as follows: For v=1, 2, we put

(10 l { S;'(t)::tp(t) x’: El)_xl; S;(Z)::Q](t, -x’; }1)1 if 1+deg;qu]:deth]-
' S1t):=Q,(t, x’, &), sE@):=tP({, x', &)—x,, if 1+deg.P<g;.

For v=3, we inductively define sJ(¢), 0,()X[¢t] by the following division in
J[t] (the Euclidean algorithm):

(10.2) So_s=0,s,_,-Fs, such that deg(s;)<deg(s;-1).

Since K[t] is a Euclidean ring, the division (10.2) determines {(s;, ¢,)} for
3=<y=<*k where k is the integer satisfying

(10.3) deg(sy)=0<deg(s;1)< --- <deg(sz)=deg(s?).
Since deg(sz)=min{q,, 1+deg,P}=1, it follows that ~2=3.

Lemma 10.2. For 3<y<k, there exist [, g, KX[t] such that
(10.4) s, =f,s2+g,sT and
{ deg(f})=deg(s7)—deg(si1)

(10.5)
deg(g;)=deg(sy)—deg(s;"1).

Proof. By induction on y: For y=3, since
S =—035;+S7

we can take f3=—g,; g;=1. Indeed, deg(gs)=deg(1)=0=deg(sy)—deg(ss) is
trivial, and the inequality

deg(sy)<deg(sz)=deg(s?)
implies
deg(fs)=deg(cs)=deg(s7)—deg(s?).

Next, for y=4, since

Sy =82 —0,55=8;—0,(—038;+57)=(030:+1)s5—a,s7
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We can take f,=o0.0,+1, gi=—0,. Indeed, we have
deg(f)=deg(gs0,+1)=deg(s7)—deg(s7) and
deg(gy)=deg(—a,)=deg(sz)—deg(s3).

Now let y=5. By the inductive assumption it follows that
Sy =8,10— 058,01
= f1aSa g0 esT— (1S +g0musT)
=(fT =0 [ )82 +(g5 a—0,80-1)sT .

Thus it suffices for (10.4) to put
[Ui=le—oufil, 801 =80 0.8

Then the inductive assumption yields
deg(f; »)=deg(s7)—deg(s;~s) and
deg(o.f7)=deg(,)+deg(f;"1)

=deg(s;_s)—deg(s;-1)+deg(s1)—deg(s; s)
=deg(sy)—deg(s,~).

Since the inequalities (10.3) and v—3=2 imply

deg(s;-1)<deg(s; .)<deg(s; s),
we get
deg(fy)=deg(a,f;,)=deg(s7)—deg(s;1).

The similar argument also yields
deg(g;)=deg(0,8;_,)=deg(s?)—deg(s; ).

Hence we get Lemma 10.2.

Q.E.D.

85

Lemma 10.3. For 3<y<k, there exist f,, £,<0[t] and c,, d,=0—{0} such

that if we set s,:=(d,/c.,)s; then the following (10.6)-(10.8) hold:
(10.6) sy=1,87+g,sT.
(10.7) deg(f,)=deg(s7)—deg(s;=1), deg(g,)=deg(sz)—deg(s;_1).

The polynomial h,:=tTf,+g, is a primitive polynomial,
that is, there exists no non-unit common divisor of all
coefficients of h,E0[t], where we put

g7 :=deg(s?)=min{g;, 14+deg,P}.

(10.8)
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Proof. Let f}, g5 =X[t] be the polynomials in Lemma 10.2. We put
hy =15 fr+gre L],
Note that, by (10.5) in Lemma 10.2 and deg(s;_,)=1, we have
(10.9) deg(g))=¢;—1.
Since © is a unique factorization domain, this A} can be written as the form
BO= 5 (busault (Ni=g;+deg(f2)
where a;,, b,,€0 are taken such as a;, and b,, have no non-unit common divisor,
that is, they are coprime for 0=</;<N. We take
¢, :=GCD{boy, by, =+, ban}

where the notation GCD denotes the greatest common divisor (Note that such
¢, is uniquely determined up to unit elements, since © is a unique factorization
domain.). Then we have

N
h:/cu:" 2 (b{v/aiv)ti
i=0
where b;, and a;, are coprime for 0</<N, and where

GCD{b;,, b1, -+, biyy,}=1 up to unit elements.
Now we take

dv::LCl\/I{aow Ay "y aNy}
where LCM denotes the least common multiplier. Then it follows that
(10.10) (dv/cy)hy=0[t] and is a primitive polynomial.

Thus, if we set
fu :=(d,,/c,,)f:, 8y :=(dv/cv)g:

then (10.9) and (10.10) yield f,, g,=0[t]. Such constructions of ¢,, d, and of
f., g, easily imply the desired conditions (10.6)-(10.8).
The proof of Lemma 10.3 is complete. Q.E.D.

Definition 10.4. We define s,(t)e0[t] for 1=yv<Fk as follows:
1) For v=1, 2, we set

$1:=S87, S3:=S83.
2) For 3=y=<k, we define s,=(d,/c,)s; by Lemma 10.3, where £ and s, are
defined by Definition 10.1.
Proposition 10.5. For the finite sequence {s,(t);1=v<Fk}CO[t] given by
Definition 10.4, it follows that

(10.11) deg(sx-)=1.
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Proof. We prove (10.11) by contradiction. Note that if ¢7=deg(s;)=1
then k=3 follows, from deg(s;)=deg(s7)<deg(sy)=¢7=1. Thus (10.11) holds if
g7=1. Hence we may assume that ¢;=deg(sz)=2.

We assume that the conclusion (10.11) is not true. Then (10.7) in Lemma
10.3 yields

10.12) { deg(f »)=deg(s;)—deg(s,-,)=deg(s;)—2 and
deg(g)=deg(s,) —deg(s;-) =deg(ss)—2.

Note that the following inequalities hold:

deg,(tP—x,)=q if sy=tP—x,.

deg(Q,)=g; if s7=0Q,.

deg:(Q)=q; if sy=tP—x,.

deg,(tP—x,)<q if s7=0Q;.

(10.13) deg(sl)=deg(5?)={

(10.14) deg(sz)=deg(s;)={

By virtue of (10.12)-(10.14), we can write f,(t)s:(f)+g:()s,(t) as the following
form:

f:Qi+g:(tP—xy) if s;=tP—x,, 5,=0Q;
(1015) fk32—|-gk51=

fe@P—x1)+8:Q; if $,=Q;, s;=tP—x,
-2 ) q;—2 i
=(Eet)o+( g etr)eP—x) (where e, ejco).

Let us recall the (g+¢;)-square matrix D;=D(Q;, tP— x,) defined by Notation
8.8 and Definition 8.5. We note the

Remark 10.6. Let a,€0 (0=i=¢—1) and b,€0 (0=i=¢;,—1). Then the

following 1) and 2) are equivalent:
g+g;—1

g-1 9t )
1 (go aitl)Qj+( = bﬂ")(tP—xl): s
2) (cq+qj-1: cq+qj—2, STty CO)=(aq—1; ey, Qo bqj—lx oy bO)Dj-

Remark 10.6 and (10.15) yield that the relation

Se=JrS2+85:€0N(s1, 52)O[1],

which is (10.6) for y=*%, can be written as the following form:
(10'16) (0: Ty 0: Sk)=(0, €g-2, ***, €0, 0: eéj—b Tty ell))Dj-

Let d; be the (¢, g+g;)-cofactor of D; and let D§ be the cofactor matrix of
D;. Operating D§ to (10.16) we have

(10'16), (07 B O) Sk)D;":(O; Cq-3, ", @o; 07 eéj-z; Ty el;)Rqu-f-qj
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since D;Dj=(det D;)Ig+q;= R I+,
On the other hand, DjD;=R;ly+q, yields
5quo"5«1+qj-xl"——I?j,

where Qjo(x’, &) denotes the coefficient of degree 0 in ¢ of Q;(¢, x’, &). Hence
we have

(10.17) 0, E(R;) or dgug;E(R)).

Indeed, if we assume that (10.17) is false then we can find 47, a+e; such that
0,=R,07, Og+q;=R,03+q;- Hence we get

(1*5;Q10+5;+qjx1)Rj:0 .

Since R;#0, it follows 1—0;Q;0+03:q,%,=0. This is a contradiction because
9,00, 0)=0. Thus (10.17) is true.
Note that (10.16)’ is equivalent to

(10.16)” $k(01, -+, 5q+q;)=Rj(0: €g-2, €03 0, e;j-z; e, ).
Thus (10.17) yields
(10.18) $:E(R,)

since the ideal (R;) is a prime ideal of © (Theorem 9.1).

We return to the equality (10.16). Let D} be the (g+¢;—2)-square matrix
which is obtained by excluding from D; the first column and row and the
(g+1)-th column and row. Then (10.16) can be written as the form

(10.19) (O; ttty, 0; sk)=(eq—2y i, @0y eéj—b Tty el’))D;'
Restricting (10.19) on {R;=0}, and using (10.18), we have
(10.20) 0=(eqess =+ €0 €iyoas > DD}l iy -
Since
g-z -2 ]
i%eit”qf-l- Z“,) ejtt (if s;=tP—xy)

he=tTfr+gr=

2;-2 deg(P)-1 .
20 e;tz+1+deg(P)_|_ .20 et (lf S1:Qj)
=i i=l

is a primitive polynomial (Lemma 10.3), it follows that
(10.21) (eg-2, **+ €03 e;j_z, e eé)]mi:o,s&O.
By virtue of (10.20) and (10.21), we get

det(D}) ;-0 =0.

Hence the Riickert’s Nullstellensatz yields det(Dj)eRad[(R;)]. Since (R;) is a
prime ideal, we get



ON MULTI-VALUED ANALYTIC SOLUTIONS 89
(10.22) det(D))e(R,).

But (10.22) is a contradiction. Indeed, by the definition of the matrix Dj,
it follows that
ord[(det D) (x1, %', ED)l zr,ep=o]=g;—1

since Q,(t, x’, &) is a Weierstrass polynomial in ¢. On the other hand, we know

Ord[R](xly 0) O)]:ql'
Thus we have
(det Dj)(x1, 0, 0)E(R (x4, 0, 0))

which contradicts (10.22). This contradiction comes from our assumption
deg(s,-1)=2. Hence it follows that deg(s,_,)=1 as desired.
The proof of Proposition 10.5 is complete. Q.E.D.

By virtue of Proposition 10.5, the polynomial s,_,(¢) can be written as

(10.23) sty x, E)=a(x, E)t+b(x, &)).

In this situation we have the

Proposition 10.7. It follows
(10.24) a(x, &)l {R]=o;—.:50 .

Proof. We first show the assertion (10.24) in the case £=3.
If =3 then Proposition 10.5 yields

deg(SZ):l-
By Definitions 10.4 and 10.1, we have

{ Qj if q,-§1+deg;P.
e
Tl tP—x if g, >14deg.P.

Thus, in the case ¢;=<1+deg.P, we conclude that the Weierstrass polynomial
Q; has degree one. Hence a(x, §&)=1 holds. On the other hand, in the case
g;>1+deg. P, we get deg,P=0 which derives a(x, &)=P. Since the Claim 2)
in the proof of Proposition 8.9 shows that the leading coefficient of P does not
vanish identically on {R;=0}, (10.24) also holds in the case ¢;>1-+deg,P. Hence
Proposition 10.7 holds if ~2=3.

Now we prove Proposition 10.7 in the case £=4. We assume that the con-
clusion (10.24) is not true. Then, since (R,) is a prime ideal of ©@:=0yc, 0,0,
the Riickert’s Nullstellensatz yields a(x, &)=(R,;). Hence we can find a germ
<0 such that

(10.25) a=R;a.
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By virtue of (10.25) with the assumption 2—1=3, Lemma 10.3 yields
Rjdt+b=3k_1=fk—132+gk—lsle(Qj, tP'—xl)ol:t:l .
Since R;=(Qj;, tP—x,)O[t] (Corollary 8.7), we get

(10.26) b=oN(Q,, tP—x,)0[t].

By Proposition 8.6, (10.26) yields that there exist ¢,€0 (1=i=<¢+gq,), e€0 and
de0—{0} such that

(10.27) b=Q,0eq— %109+q; and
(10.28) e,=(e/d)d; for 1=i=q+gq;

where §; denotes the (7, ¢+g;)-cofactor of the matrix D, in Notation 8.8.
Recall the relation

(10.29) Rj=5qQJo_5q+qjx1

which is a consequence of D;D,;=R;l,.,; (D° denotes the cofactor matrix of D;).
By (10.27)-(10.29) we have

(10.30) db=Q,-odeq—xlde“q]:Qjerq—x125q+q1=eR].
Claim 10.8. It follows that be(R;).

Proof. Since (R;) is a prime ideal of ©, if we assume that Claim 10.8 is
false then (10.30) yields d=(R;), that is, there exists a germ d~<0O such that
d=R;d~. Thus (10.28) can be written as

R;d"e;=de;=ed;  for 1=<i=q+g;.

Hence, by (10.17), we get e=(R;). But we can choose d, e=0 in (10.28) such
as d and e are coprime since © is a unique factorization domain. Thus it is a
contradiction that both d and e lie in (R,). Hence Claim 10.8 follows.

Q.E.D.

We continue the proof of Proposition 10.7. Recall the relation

(10.31) Se1=[p-1S2F8r-151

which is a consequence of Lemma 10.3. Since the assumption k=4 yields
deg(s;_s)>deg(s,_;)=1, we have

{ deg(f -1)=deg(s:)—deg(s,_.)=deg(s;)—2 and
deg(g._1)=deg(s.)—deg(s,-.)=deg(s,)—2.
Thus the inequalities (10.13, 14) imply that there exist ¢;, c;=0O such that

fk—152+gk—151=(§ Citi)Qj'i'(igf C{Z‘i)(tP——xl) .
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Then Remark 10.6 yields that (10.31) can be written as
(10-32) (0; ) 0: a, b)=(0, Cg-2, ***, Co, 01 C(;]-—Zy ] c(’))DJ'

Recall the (¢g+4¢,—2)-square matrix Dj obtained by excluding the first column
and row, and the (¢g+1)-th column and row of D;, which is used in the proof
of Proposition 10.5. Then the relation (10.32) can be written as the form

(10.32) 0, -+, 0, @, b)=(cq-3, ***, Co; Cqj-2, 5 CO)D;.

Restricting (10.32) on {R,=0} and using a, b=(R,) we have

Oz(cq—Z; ty Cos Céj—Z’ Sty cé)DH«RJ:o)
which yields

(10.33) (det Dj)] (Rj=0)=0

since the polynomial h,_,=i%f,_,+g,_; is a primitive polynomial. Then
Riickert’s Nullstellensatz and the primeness of (R;) imply that (10.33) is equiv-
alent to

(10.34) detD)=(R,).
But (10.34) is a contradiction since
detD;(xl; 0: O)E(xl)qj—li %(Rj(xh 0: 0)):(x1)q]

as like as in the proof of Proposition 10.5. This contradiction comes from our
assumption that Proposition 10.7 is not true. Hence Proposition 10.7 follows.
The proof of Proposition 10.7 is complete. Q.E.D.

As a corollary of Propositions 10.5 and 10.7, we get Theorem 6.11:

Proof of Theorem 6.11. For the polynomial s,_(t)=a(x, &)i+b(x, &), we
define a map germ p: (MXC, (0, 0)—~(CxXMXxC, (0, 0, 0)) by setting as

(10.35) p(x, &) :=(—{b(x, §)/a(x, §,)}, x, &1).
We show that p induces a meromorphic inverse V;,—V, of the map germ
Tyt V= {tP—x,=0Q,;=0}-V ,,={R,=0}.

Note that V ;,—{a(x, &)=0} + @ (Proposition 10.7) implies that the intersection
germ 2;:=V;;N{a=0} is a germ of nowhere dense analytic subset of V,,. Let

(x° &=V ;,—2;. Since m,, is an open map germ, that is, x,, is surjective to
(V 3, (0, 0)), there exists t°<(C, 0) such that (#°, x°, §)V,;,. Then we have

(10.36) a(x®, ENE°+b(x°, EN=s,1(t°, x°, §H=0

by virtue of sp.1=f1 182+ grs:EEP—x,, Q). Since a(x’, £3)+0, the equation
(10.36) yields

@, x°, ED=p(x° &)
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which shows that the induced map germ
72.';2 : Vj1—ﬂ.']_'21(2]) —_—> VJZ_ZJ'

is a biholomorphic map germ.
It only remains to show that

(10.37) 73(2;) is a germ of a nowhere dense analytic subset of V.
But this is easy: Since x,, is an open map germ at (0, 0, 0), we have
n']_'ZI(ZJ)?&le .

Then the irreducibility of V; at (0, 0, 0) yields (10.37).
The proof of Theorem 6.11 is complete. Q.E.D.

Chapter IV. Appendices
§11. Generalities of Newton Polygons

In this section we summarize basic facts on Newton polygons. The aim
of this section is to give proofs of Propositions 2.11 and 2.12.
Let S be a domain in C* }(n>=2) which contains the origin throughout this

section. For a holomorphic germ
f, 9= 2 e)" E0sxc.0.0(¢:E05.0)

we define its Newton polygon N(f), the strict boundary @°N(f) of N(f), and
segments and vertices of N(f), by Definition 2.3. We also use Notation 2.4.

Definition 11.1. Let N be a Newton polygon. For a vertex A=Ver N:
1) We define the left [or right, resp.] segment L(A) [R(A)] of A as follows:
We arrange vertices of N as

Ver N=:{A(p)=(a(y), p—b(u)): 0= p<m}

where finite sequenses {a(y)}, {0(¢)} are monotonely increasing in g#. We set

{tAW+1-0A(p—1); 0=i<1}  if p=zl
L(A(/!)):={ _

A(0)+0XR. if p=0.

{tA()+A—-0A(p+1); 0=t<1} if p<m
R(A(#)):z{ _ # _ #

A(m)+R. %0 if p=m.

2) We set £(L(A)) [or, x(R(A)) resp.]€Q,\U{} by

w(p) if y<m]

if >1
RS [m(R(A(y)»:{O

&(L(A(w)) :={

o if Q= if u=m
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where £(u):=p(p)/q(¢)=Q. is defined by (2.8) in Notation 2.4.
First we show the

Proposition 11.2. Let f, g be germs on (SXC, (0, 0)) and let A=N(f), B=
N(g). Then the following statements are equivalent:

1) A+BeVer(N(f)+N(g)).

2) AcVer N(f), B&Ver N(g) such thal

(1L.1) min{e(L(A)), k(L(B))} >max{s(R(A)), £(R(B))} .

Proof. Note that the vector sum N(f)+N(g) is a closed, R}-invariant,
convex set, thus we can define Ver(N(f)+N(g)).
We first show 1)=2). Since 1) yields

A+ BeVer(N(f)+N(g)T o (IN(f)+N(g))

we easily have A=0’N(f) and B=ad°N(g).
To show A&Ver N(f), we derive the following implication (11.2):

1L2) {AztA’—}-(l—t)A”(A’,-”EN(f) with A’#A” and t<[0, 1])
=t=0 or =L
Indeed, A+B=Ver(N(f)+N(g)) vields the implication
A+B=t(A"+B)+(1-t)(A"+B)=1t=0 or t=1

since A’+B, A”+B&N(f)+N(g) with A'+-B+A”+B and t<[0,1]. Hence
(11.2) follows, that is, A=Ver N(f). We similarly have B=Ver N(g).
Now we show the inequality (11.1) under the assumptions

(11.3) A<=Ver N(f), B&Ver N(g) and A+BeVer(N(f)+N(g)).
Since #(L(A))>k(R(A)) and £(L(B))>&(R(B)) are trivial, (11.1) is equivalent to
(11.4) e(L(A)>k(R(B)) and &(L(B))>k(R(A)).

By the symmetricity of A and B, we only have to check the first inequality of
(11.4). Note that in the case k(L(A))=o or g(R(B))=0 the assertion is trivial,
hence we may assume £(L(A))<oo and £(R(B))>0, that is, both L(A) and R(B)
are segments in the sense of Definition 2.3.

We can therefore write L(A) and R(B) as

L(A={tA+(1—A4’; t=[0, 11}
R(B)={tB+(1—t)B’; t=[0, 13}

where A’&Ver N(f), B'eVer N(g) with A+ A’, B#B’. Note that the first
inequality of (11.4) is equivalent to the following (11.5) (see figure):
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(11.5) A+ Béthe closed half plane given by the closure of the upper
side of the line joining A’+B and A+B’.

A'+By B 1(A) with the slope —r(L(A))
A+B rA+R(B) with the slope —&(R(B))

A+B’
0 +

We note that A+B=Ver(N(f)+N(g)) implies (11.5), since A’+B, A+ B’ both
belong to N(f)+N(g). Hence we have the first inequality of (11.4) as desired.
Thus 1) implies 2).

Conversely we assume 2). It suffices for 1) to show that there exist two
lines ¢, ¢’ passing through A+ B with non-positive distinct slopes such that

(11.6) N(f)+N(g)cthe closure of
(the upper side of ¢)M\(the upper side of a’).
We construct g, ¢’ as the following forms:
0:=A+B+{(x, y); y=—cx}
" :=A+B+{(x, 3); y=—c'x}
¢ :=min{k(L(A)), &(L(B))} >¢’ :=max{£(R(A)), (R(B))}

where, in the case ¢=oo, the line “y=—cx” denotes the vertical line x=0, and
“the upper side of ¢” denotes the right side of o.

Let v[or v’ resp.] be a linear functional on R? which takes positive values
on the upper side of the line y=—cx[y=—c’x]. Then the inequality (11.1)
yields the following inclusions:

N/ )C{4’; v(A)zv(4) and v'(A)zv'(A)}
N(g)C{B’; v(B)zv(B) and v'(B")zv'(B)}
which imply
N()+N@CT{A'+B"; v(A'+B")zv(A+B) and v'(A'+B")zv'(A+B)}.

Hence we get (11.6) as desired.
The proof of Proposition 11.2 is complete. Q.E.D.

Proposition 11.3 (the additivity property of Newton polygons). For any
holomorphic germs f and g on (SXC, (0, 0)), it follows that

(11.7) N(fg)=N(f)+N(g).
Proof. We take the Taylor expansions
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fO, =R, g, D= B dor

Of course we have (fg)(y, r):é(éoczdy_;>r”.

We first show

(11.8) N(fg)CN(f)+N(g).
It suffices for (11.8) to prove

(11.8y <ord[éoc1d,_;], V)ENH+NE)  if é}ocxd,_ﬁeo

since N(f)+N(g) is a convex, RZ-invariant set.

Assume zi_‘,oc;dy_; #0. Then we have

(11.9) oo>ord[ éocxdy_x]gogig fordle;]-+ord[d,-1} .
Choosing A'(0<1’<y) to attain the right hand side of (11.9), we have

<ord[ é(’c;d,,_z], v)&(ordler ], X)+(ordldss.], v—2)+ R
CN(f)+N(g).

Hence the inclusion (11.8) follows.
Now we prove the converse inclusion of (11.8). It suffices to show

(11.10) Ver(N(/)+N(g)CN(fg).

Let A=N(f), BEN(g) satisfy A+BeVer(N(f)+N(g)). By virtue of Proposition
11.2, we may assume there exist /(0<A’<y) such that

A=(ord[c;.], X)=Ver N(f), B=(ord[d,_1-], v—2")=Ver N(g).
We must show
(11.11) ord| 3} cad s | =ord[es J+ord[d,-s.].
Note that it suffices for (11.11) to verify
(11.12) ord{c;]4ord[d,_;]>ord[cs 1+ord[dy-2]
for all A(#2), 0215y,
Since (ord[c;], AH=N(f), (ord[d,_;], v—A)=N(g), we have the following

inequalities :
A= —r(L(A))ord[c;]—ord[cs 1)+ A" and

(11.13) {
y—2=—k(R(B))ord[d,-2]—ord[dy-z ])+v—2'

} for V=ViZy.
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2= —k(R(A))ord[c;]—ord[cs - 1)+4" and

} for 0SVAZA .
yv—2A=—k(L(B))ord[d,-;]—ord[dy_z ])+v—2

(11.14) {

Consider the case A>>2’. The inequalities (11.13) yield
ord[c;]1+ord[d,_;]
zord[cy ]+ord[dy-z J+(A—2){1/k(R(B)—1/e(L(A)}
>ord[cs]+ord[d,-; ]

since k(L(A)>k(R(B)). In the case A< A, the inequalities (11.14) imply (11.12)
as similar as the case A>21’. Hence (11.11) follows. Thus we have (11.10) as
desired. The proof of Proposition 11.3 is complete. Q.E.D.

Corollary 11.4. Let A=N(f), B&N(g) such that
A+BeVer(N(f)+N(g))=Ver N(fg).
Then it follows that the left segment L(A+B) of A+DB is given by
A+L(B) if  &(L(A)>e(L(B)).
(11.15) L(A+B)=y B+L(A4) if w(L(A)<k(L(B)).
LA+LB)  if s(L(A)=r(L(B)).
Proof. We classify the proof in the following three cases:
Case 1 k(L(A)#k(L(B)), Case 2 k(L(A))=k(L(B))<e and
{ Case 3 k(L(A)=k(L(B))=co.

First we consider the case 1. By the symmetricity of the roles f and g,
we may assume k(L(A))>k(L(B)). Since x(L(B))< oo, L(B)is a segment of N(g).
Hence we can find B’(#B)=Ver N(g) such that L(B) can be written as

L(B)={tB+(1—t)B’; t<[0, 17}.

Since the proof of 2)=1) in Proposition 11.2 shows that

N()+N@ITA+B+{(x, y); y=—&(L(B))x}

it suffices for L(A+B)=A+ L(B) to show

(11.18) A+B'eVer(N(f)+N(g)).

The relation R(B’)=L(B) and the inequality (11.1) yield
£(L(A)>k(L(B))=k(R(B"))
k(L(B")>k(R(B")=r(L(B))>r(R(A),.

and
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Hence, by Proposition 11.2, we get (11.16) as desired.
Next we consider the case 2. Since both L(A), L(B) are segments, we can
write them as

L(A)={tA+(1—nA’; t<[0, 1]} and L(B)={tB+(1—1t)B’; t0, 11}
where A'(#A)eVer N(f), B'(#B)eVer N(g). Then it follows
&(L(A")>r(L(A)=k(L(B)=r(R(B")
&(L(B"))>x(L(B)=x(L(A)=x(R(A").

and

Hence Proposition 11.2 yields that A’+B’eVer(N(f)+N(g)) as desired.
In the case 3, it is trivial that

N(/)+N(g)cA+B+R.XR

which shows L(A+B)=A+B+0xXR,=L(A)+L(B).
The proof of Corollary 11.4 is complete. Q.E.D.

Remark 11.5. Proposition 2.11 follows from Proposition 11.3 and Lemma 0.2.

Proof. The additivity property of Newton polygons immediately implies
N(IL/ 3, o)== Zv(IN(,).-
J=1 J=1

Thus the left equality of Proposition 2.11 is a direct consequence of Proposition
11.3. Hence it suffices for Proposition 2.11 to verify

(11.17) N(f¢>=§qu<y>.p<p>-

But this immediately follows from Lemma 0.2. Indeed, since we assume p(1)/
g(1)>-+->p(m)/q(m) in Notation 2.4, we get

Ver( 31 Naqus, peps ) =Ver N(F)

u=1

which shows (11.17). Q.E.D.
Now we recall the coprimeness condition (Definition 2.5).

Proposition 11.6. Let f, g be holomorphic germs on (SXC, (0, 0)) satisfying
f0, ©)g(0, 7)=£0. Then the following statements are equivalent:
1) N(fg) satisfies the coprimeness condition.
2) Both N(f), N(g) satisfy the coprimeness condition, and the following con-
dition holds:
£(L(A))#x(L(B))
(11.18) for all AeVer N(f), B&Ver N(g) satisfying

£(L(A))<oo, w(L(B))<oo.
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Proof. Since (fg)y, 0)=f(y, 0)g(y, 0), we only have to consider the second
condition in Definition 2.5.

We assume that N(fg) satisfies the coprimeness condition. We first show
the condition (11.18) by contradiction. We assume that there exist A=N(f),
B&N(g) such that

(11.19) k(L(A))=k(L(B))< .

Then it follows
k(L(A)=k(L(B))>£(R(B))

e(L(B)=r(L(A)>k(R(A)).

and

Hence A+Be&Ver N(fg) by Propositions 11.2 and 11.3. Then Corollary 11.4
yields L(A+4B)=L(A)+L(B), which shows that N(fg) does not satisfy the
coprimeness condition. This contradicts the assumption. Hence we have the
implication “1)=(11.18)” in Proposition 11.6.

Next we prove, under (11.18), that N(f) and N(g) both satisfy the co-
primeness condition if and only if N(fg) satisfies the same condition. Note that
N(f) and N(g) can be written as the form (11.20), since f(y, 0)g(y, 0)%0 and
1(0, )5(0, 7)=£0:

N(f)= Igqul(,u),pl(p), N(g)= quzm,pz(») .
171(1)/(]1(1)>"' >P1(m1)/41(m1)>0 .
D2(1)/qa(1) >+ > po(ma)/ ga(1m2) >0.

Since the condition (11.18) is equivalent to

(11.20)

(11.21) Pi()/ q:i()# p(v)/qo(v)  for all 1=p=m,, 1Sv=m,,

Proposition 11.3 yields that
m1 me
(11.22) N(fg)=N(f)+N(g)= El Ny, oyt »§1 Ny, py

with the distinct ratios {p:(u)/g:(}hispsm,\I{D2(2)/qs(¥)}1<vsm,. Hence we get
the following equivalence under the condition (11.18):

Both N(f) and N(g) satisfy the coprimeness condition.

(11.23) { p:(¢) and g,(p) are coprime for 1=p<m,;, and
- pe(v) and g.(v) are coprime for 1=y<ms,.

& N(fg)=N(f)+N(g) satisfies the coprimeness condition.

By virtue of (11.23) and the implication “the condition 1)=(11.18)” we get
the desired equivalence between 1) and 2) in Proposition 11.6.
The proof of Proposition 11.6 is complete. Q.E.D.
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Proof of Proposition 2.12. We may assume our situation be as follows:
Let S be a domain in C™""' containing the origin. Let f(y, T)€0sxc, 0,0 be a
holomorphic germ which has a finite order p=[1, =) with resprct to z.

Let us denote the irreducible decomposition of f locally at (0, 0) by

(11.24) F=T1 .
J=1

We assume that the Newton polygon N(f) satisfies the coprimeness con-
dition, that is, the following two conditions hold:

(11.25) NAONRX)~=D .
(11.26) p(p) and g(y) are coprime for 1< p<m:=#Seg N(f).
Recall that the integers p(y) and g(g) in (11.26) are defined by

Write Ver N(f)=:{(a(p), p—b(y)); 0<p<m} with
0=a(0)<a()< - <a(m)=g:=ord,[ f(y, 0)]
) 0=b(0)<b(1)<-+-< b(m)=p=o0rd.[ f(0, 7)]
Land put p(p):=b(u)—b(p—1) and q(p):=a(p)—a(p—1).

(11.27)

It suffices for Proposition 2.12, to show the following

1) »(=1 for 1<7<r.

2) N(f;) satisfies the coprimeness condition for 1<j<r.

3) There exist subsets M; of {1, 2, ---, m}(1=<s7=r) such that
(@ M;N\M,=@ if j=+k.
(b) (1,2, mi=UM,
(c) N(f;)ZFEEMJ_Nq(#),pW for all 1<j<r.

(11.28)

We first show the assertion 2) in (11.28). We fix j, and put
gj:_—_fycj)—lgfl{(i) .

Then, applying Proposition 11.6 to f=f;2; we get the coprimeness of N(f;).
Next we show the assertion 1). Assume that 1) is not true, then there
is"a number j(1=<j7<r) such that »(j)=2. For such a number j, we put

gy = 1921 f1.
1#]
Then, applying Proposition 11.6 to f=f}g7, we have
(11.29) N(f?) satisfies the coprimeness condition.

Then, applying Proposition 11.6 to f2, we get
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{ £(L(A))#£(L(B))
(11.30)

for all A, B&Ver N(f,) satisfying x(L(A)), k(L(B))< o .

But (11.30) is impossible for A=2B8 satisfying x(L(A))< co (note that the existence
of such a vertex A is a consequence of #Ver N(f;)=2). This contradiction
comes from the assumption »(j)=2. Thus we get the assertion 1) in (11.28).

Now we prove the assertion 3) in (11.28). By virtue of 1) in (11.28), we
have the following irreducible decomposition of f locally at (0, 0):
(11.24y f= ]1_1_1 £
Since each N(f,) satisfies the coprimeness condition, we can write N(f,) as the
following form for 1<;<r:

mj

N(f )= El Nq,(u).p](w
pA1)/q, 1) >p2)/q,2) >+ > p,(m;)/q,(m;)>0.
Claim 11.7. If j+Fk then it follows that

(11.32) {pJ(V)/QJ@)}lgvsmjﬂ {0:(v")/ 0¥ )} 1gv smp= D .

(11.31) {

Proof. If contrary, there exist numbers j and k(j#£k) and v,y with 1<
y=my;, 1=<v'<m, such that

(11.33) 2,0/ a,(v)=pr(")/q:(0").

Then Proposition 11.6 yields that N(f;f,) does not satisfy the coprimeness con-
dition. Hence, regarding f as f=(f,f.) II f.), Proposition 11.6 leads us to
i#),k

N(f) also does not satisfy the coprimeness condition, which contradicts the as-
sumption of Proposition 2.12. Thus Claim 11.7 follows. Q.E.D.

By virtue of Proposition 11.3 and Claim 11.7, we get

(1134 NY= BN )= 2 5 Neyon,00

with the distinct ratios \r)l{p,(u)/q,(u)}lsygmj-
=
Comparing (11.34) with

{ N()= 3 Nocw. v
/0> p(2)/( )>++> pm)/g(m),

we get the following disjoint decomposition of the set of ratios:

(11.35) {p(ﬂ)/Q(#)}lgysm:JQ {0,/ 9, svsm,; -
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Note that the coprimeness conditions of N(f) and N(f,) yield the following
equivalence:

p(u)=p,(v) and
a(p)=q,(v).
Thus, putting M;cC {1, 2, -+, m} for 1<j<r as

M;:={g; Iv (1=v=m;) such that p(p)/q(p)=0,)/q,)},

(11.36) p(e)/ ()= ,(v)/ q;(v)@{

we conclude the assertion 3) in (11.28) as follows: Indeed, the assertions (a)
and (b) in 3) follow from the decomposition (11.35). Then the assertion (c)
follows from (11.31) and (11.36).

The proof of Proposition 2.12 is complete. Q.E.D.

§12. Proof of Lemma 7.5

In this section we prove Lemma 7.5.
Recall the notation: let t—¥(¢, y’, 9)=(X; &, Z)Xt, y’, 7,) be the charac-
teristic curve of F(x;§&, 2)=G(x; &, &”, z)—&,, such that

=0, y', 7=, y"; mdx,, )€ E=TEMx {0} .
We assume the assumptions [B.1]-[B.4] of Theorem 5.1. For simplicity of
notations, we denote the variables (y’, 9,)ETEM=C""'XC by (y, 7).

Lemma 12.1. We consider the following commutative diagram of holomorphic
map germs:

Y
(C, 1) ——(C¥, ¥")

(12.1) A l H
(€, 2%

Then, for Yi=1 it follows
(12.2) (/¢ !)3Eh(t)=1§|§]§i (1/aNY@5HXY (1))

1L 11 1/, )03 2Y (1)

{8¢7, D}y y=12=1

X

where {i(j, A); 1=<7=N, 1<A<a;} runs through the following set:

i(j, =1 for any (5, ), and
(12.3) N aj . )
2 2, H=t.
j=12=1
Proof. Let t7<(C, t°), y"=Y({")=(C”, »°). We take the Taylor expansions
of H [or Y resp.] at y~ [at t7]:
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H)=Hy)+ 2 (/ahagHy Xy =y

Y O=Y )+ DW/i3Y )~y for 1<F<N.
Substituting y,;=Y (1), y7=Y,(t"), we have the following expression of A(t):

R =H(Y 1))
=HY N+ 2 (/aDogHY )Y O—-Y @)}

N 3 .
=h(t")+ 3 W/aWogHYENIL{ X (1/i(7) N0iPY (™)t —t") P} o5,
lalz1 Jj=1 1i¢z1
Thus the coefficient of (t—¢")* in the expansion of h(¢) is given by

S (VanogH @) 2 T IEA/iG, HD0PY ()

lajzl

where {i(j, A)} satisfies (12.3). Note that i(j, )=1 yields
- N a] . . N
=23 2], HzX a,=|al.
j=12=1 =1
Hence @ runs through 1< |a| <4,

The proof of Lemma 12.1 is complete. Q.E.D.

Now we prove Lemma 7.5. Since the assertion 6) in Lemma 7.5 is trivial
by the fact 9., F=—1, we only have to prove the assertions 1)-5).
We use induction on 7=1. Note that

N((»PDCN(f) and N()(pDHEN(S)
which are direct consequences of the definitions
g:=ord[f(y, 0)] and f(y, 9):=F(0, y; 7dx,, 0).
Hence it suffices to prove Lemma 7.5 for 1<7<q.

Step 0. When i=1.
1) Since 9.X\(0, v, 9)=0¢F (0, y; dx1, 0=0,f(y, 7), it follows

NL(7{0. X0, v, 7)—0,/(y, M}=NO0)=@EN(f).
2) For 2<;7=<n, we have Z,(0, y, 7)=0 which yields
0.20, v, P)=—E5,0, y, 9)0.F(0, ¥ ; ndx1, 0)—3:,F (0, y; ndxs, 0)

:_‘ayjf(y; 77)-
Hence we get

NI()8:5 0, y, 7)I=NL(»)0y,/(y, PDICN().

3) Since &40, v, 9)=08,;m (3,; is a Kronecker’s delta) for 1<;7<n, we get
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0:2(0, v, 9)=10e,F(0, y; ndx,, 0)=20,1(y, 7).
Thus we have
N[3.Z(0, y, p)IJCN(f).

4) For 2=<j=<n—1, the assumption [B.1] yields aejF(O, ¥ ndxs, 00y, p)
hence we get

0. X0, v, 1;)=8§jF(0, y; pdxy, 0y, 7).
5) Since 0,50, v, 7)=—20.F(0, y; ndx,, 0)—0,,F(0, y; pdxi, 0)
=—08,,F(0, y;0,0) mod(n)
the assumption [B.4], that is, ord[F(x; 0, 0)]=q implies
0:5:(0, y, () 1+(n).

The assertions 1)-5) in Lemma 7.5 have been proved for ;=1.

Next let i=2. We assume that Lemma 7.5 is true for 7/ (1< <i—1).

Step 1. Proof of the assertion 1).
We use the following

Notation 12.2. Set Z,:=NU{0}. For a multi-index

(a; B, B)y=(ay, @”, an; B1, B'; RYEZLIXZLIXZ,
we set

(12.4) F&"'}aﬁ,,','ﬁb(y, n)'=a§3@8’§F(x ; €, 2) (z;€,2)=00,y; 7dz,,0)

Note that the sub-index (a”, @,, B8:) is associate with the tangential varia-
bles (x”, xn, &) of E=TEMx{0}=T%M.

According to Lemma 12.1, it follows
(12.5) (1/: 190 X,(0, 3, 1)
=1/HLA/G—=1)N0i 0, F (X ; &, Z)]li=0

=, B (@B e

1s|al+IBl+ksi-1

K(a, B, k;{u(j, ), d(7, D}

w0, 4, 1

where K(a, B, k;{u(j, 2), d(j, A}) is given by
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(12.6) K(a, B, k; {u(j, D, d(j, D}

al n ‘B
=TI (1/u(, ANFEP X0, v, PIL I /ui, AN PELO, y, )

j=22=1

aj

Xﬁ[l(l/u(n+1, NeEr+HZ0, y, )] (17d(5, HNAEI» X0, v, )

j=22=1
B
x T1,(/d(, HHFESPE0, 3, 7)
and where {u(j, A), d(J, )} runs through the following set:

u(y, =1, d(, =1 and
12.7) [

336, 0+ B3dG, p=i-1,

We classify the proof of the step 1 into the following four cases:
Case 1.1. a,+|f'1+k=1.

[Case 1.2, ay+|B'|+k=0, B,=1.

lCase 13. art|f|+k+p=0, |a”|=1.
Case 1.4. a,+|f'|4+~+B:+1a”|=0.

Case 1.1. In this case we note that K(a, B, k; {u(j, 4), d(J, A)}) belongs to
the ideal

@D X)+ 2 04 DI )@ PZ) 1o
Thus it follows
(12.8) ) (X Kla, B, k;{u(f, ), d(j, D})
c:(y)"“(n)[(az‘“- “X1)+JZZ}2(62‘<]'- DE N (@perrn bz)] ! .
Tyt DL(p) DY) @E P Xy | 1=0) I
+ 330D P@E P, )]
()it D[yt DG D Z] )]s
Note that (12.7) yields
i—lz;i:u(j, Dzu(,d) for 1=j<n+1

and that the three blackets [ Jq, (v=1,2,3) in the rightest hand side of (12.8)

satisfy
N Je)CN()

which is a consequence of the inductive assumption. Hence we get
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N[ *(K(a, B, k; {uf, A, d(7, D]

Cconvex hull[N((»)1)UN ((9)1)]J+N(f)
EN().

Case 1.2. In this case, note that
Ka, B, k; {u(j, ), d(j, DhH= ﬁl(a?“'“a”llho).
Hence it follows
D) (NFGalady, 50X K@, B, k5 {u(s, A), d(7, DD

. ‘@1 (el
Cy) =2 DU F @3, pyen) IL () D@D E, 1)

C(y)“'z‘d“'“‘“(71)(F<‘c?b,°a°,2,§1+1>)ﬁ1[(y)q’l-l-(n)]
by the inductive assumption. Note that
TSRS ST
which yields
(12.9) ) (U Golady, s+ ) Kla, B, k5 {u(j, ), d(j, DY)
C(y) 2 D) FE%D, ,+0) ()T (1]
We first observe
(12.10) N[(y)s= =2 D=0 (F &0, 50X n)PIEN ().
Indeed, we can write
(12.11)  N[(p)-2@@D-U()F&Bo%Y, 5,40)(1)P1]
=N[(y)* 214 DI L NP1 F 8%, py00]
=N[(y)i-t-F@aHtmeri=an TN (3”) (3 2) ()P F %0, 5,40]
by virtue of the additivity of Newton polygons. Note that
i—1=2{d(, 2)—1}—|a"1—angz’—1—j§ d(j, )+pi=p>0
which yields the first term in the rightest hand side of (12.11) is contained in
N((»)1). On the other hand, we have

NI()¥ ()22 ()P F@%% g ]CN(S).

Hence (12.11) implies (12.10).
Next we observe
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(12.12) N[(y)i=1- 2@ D0 F Q%% 5,+0)(3) IEN(S).

Indeed, we have
(p)i=1=Ziec D=1i(p)(y )21 ()Y 7)

which yields (12.12).
By virtue of (12.10), (12.12), the inclusion (12.9) implies

NI F Gy, e0)Kle, B, k5 {u(s, 2), d(7, HDHIEN(S)

in the case 1.2 as desired.

Case 1.3. In this case we have

n-1

K, B, k; {u(G, 2, 4G, DhHe TL L@ X;1.).
Thus it follows

NI (X E el o)X K@, B, k5 {u(f, D), d(j, D]

n-1

CNLOXF, ) T L (0% 27082 X, 0]

(12.13)
+N[(p)¥5ua 1] (we denote 57:= 31 )
CNL(, 1) “(PF &%, ]+ NL(y) =50 boug ]
which is a consequence of the inductive assumption. Since (12.7) yields
i—1=3 S {dG, D1} =la"|+i-1- 5] :idcj, 2)

=|a” | ta,
we have
NLODFE%2, »]+N[(y)i - ¥ 2 ea.b-n1]

CNL() *+en(q)F @ an 0]
CN().
Hence (12.13) implies
NI (F&@an vk a, B, k5 {u(, D), d(j, HH)]
CNI(y, m)'*"1]+N(f)
EN()

as desired, since |a”|=1 in the case 1.3.

Case 1.4. This case contributes to (12.5) as the following sum:

1214 (/)3 A/ OFEE0 2, T Wdm, p1orpX,
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where {d(n, 2); 1<A<a,} runs through
(12.15) d(n, H=1 and :Z:‘,ld(n, D=i—1.

If a,<7—1, then it follows
NI (F 2,20 ICNIG) 11+ NI()*(NFE, a ]
CNL(MLI+N)
EN(f).
It remains the terms in the case a,=:—1. Note that (12.15) yields
d(n, =1 for all 1<1Za,=i—1
in this case. Hence it suffices to observe the following term:
(12.16) (/A G—D)DFE:201:{0:Xa(0, v, P}
Since
0:.X:(0, y, p)=—1 and F§:20»=0y.'9,/(3, )
the term (12.16) is nothing but
(L/2I(—1)"195,10,/ (3, 7).
Thus the proof in the cases 1.1-1.4 leads us to
NI A/, 3, )= (/i N=1)3539,1 (3, MITEN ()

which is the assertion 1) of Lemma 7.5.

Step 2. Proof of the assertion 2).
We use the following simpler notation than Notation 12.2:

Notation 12.3. For a multi-index (a; 8, k)=(ay, a’; Bi, B, k), we set
(12.4y Fn ,‘31)’”(3), 1) :=8§3@3’§F(x ;6 2l ase o= p ndzy.0)

that is, we denote (a,, @”) in Notation 12.2 by a’.

By virtue of Lemma 12.1, for 2<j<n, we have the following expression:
1/iNai5 0, y, 1)
=(/DLA/G-1)N{—E0,F(X; E, Z)—0:,F(X; 5, Z)} 0]
=(1/7) > (@!BVe)0(Eh 515 {—60.F—0:,F } | iz

islal+ifi+ksi-1

X 2 Kla, g, k; {uf, D, (G, DD

ucd, 2,4,
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where K(a, 8, k; {u(s, 2), d(j, A)}) is defined by (12.6), and where the index
{u(y, ), d(J, )} runs through the set determined by (12.7).
We classify the proof in the step 2 into the following five cases:

Case 2.1. |B'|+k=1.

Case 2.2. |B'|+£=0, a;=1, and B,=1.
Case 2.3. |B'|+k+5:=0, a,=1.

Case 2.4. [f'|+k+a,=0, B,=1.

Case 2.5. |B'|+k+a;+p,=0.

Case 2.1. Note that in this case we have
K, B, k3 (u(i, D, d(7, D)= 30 DE)+@ P 2)] ico.
Hence it follows
() Kla, B, k; {u(f, D), d(7, D)
S O (O R A
+(y)i+1—u(n+l,Z)E(y)u(nﬂ,X)—lag(ni-l,l)Z]t=o](2)_
Since the inductive assumption yields the blackets [ ¢, (v=1, 2) satisfy

N([](y))CN(f)’
we get
N[(»)‘K(a, B, k; {u(f, D), d(7, D}ICN(f)

in the case 2.1.

Case 2.2. In this case we note that the inductive assumption yields
(W (Kla, B, k; {u(j, D), d(j, D})
T2 X:(0, v, MI@F-PE0, v, 7))
C(y)irarut D D)yt DG DX, |, )]
X[ D@D E [ 1m0)]
COY LI DX [ {(9)0 ()} ]
since i—1=u(l, A)+d(, 2). Then the following facts
NIy JEN(f) and N[(p)** P H(n)agt X0, y, NICN(S)

yield
NL(»)'K(a, B, k; {u(f, D), d(7, HHICTN()

in the case 2.2.
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To consider the remaining Cases 2.3-2.5, we need the

Remark 12.4. If |p’|+%=0 and 2=<;j=<n, then it follows
(12.17) 05t 59 {—€,0.F—0:,F}(0, v ; ndx,, O=—F@ue%,.

Proof. Since the derivation does not involve that of in the &,-direction we
have

B$eh D | —&,0,F—0, F)=—,00ah 35 F—0(any Vs ,F.

Thus, restricting this on E=T¥M X {0} and using Z,0, v, 7)=0, we get (12.17)
as desired. Q.E.D.

Case 2.3. In this case, Remark 12.4 yields

(06~ 82 {—&,0.F'—0:,F}(0, y ; ndxy, 0)]K(a, B, k; {u(j, 2), d(7, D)
CFEREMN0F P X0, v, 7).

Thus it suffices to show
(12.18) NL(y) Fé&ud %02 X,(0, y, PICN(S).

We first note
(12.19) FQuas(y) 1o = 14(g).
Indeed, the assumption [B.4] implies

DELMF (x5 0, ) (xyeiar =1,
Hence we get
FE&n80(y, )| peaS(y)i-t1e-an,
Thus (12.19) follows.
By virtue of (12.19) we have the inclusion

(12.20) (PEFELSN0EH P X0, v, 7))

C(yyra 11 i=a(Grth D X, | o)+ (9)(9)0F DX, [ 1).
Note that

i+g—1— Ia’[——algq—l-z'——l—é}z é s, A— :2:1 ul, A=q
since |B’|+k~+8,=0 in the case 2.3. Hence ¢:=ord[f(y, )] yields
N[(yyre-ime =1 JON[(y ) JCN(/).-
On the other hand, it follows
NI ()@ X, | ¢_o)
=N(p) 1= DIEN(p) DY )ar DX, | ]
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CN()
by the inductive assumption. Thus (12.20) implies (12.18) as desired.

Case 2.4. In this case we have
K(a, B, k; {u(j, 2), d(J, 2)})613{ 0F D51 10).
Thus, by Remark 12.4, it suffices for the proof in the case 2.4 to show
(12.21) NI (F &%), ﬂl))j’ia?u' P& JCN(S).
The left hand side of (12.21) is contained in

8
(12.22) N[(p)=2 ¢t D=0(F Go4D 4)5) Zlil1 ()it DF, o]

by
CN[(yy 2¢O RF 48 5 TL A +(n)}]
CNL() -2 DDF oY g {0 (P}
Note that the inequality
B 8
i— 2 {d1, D—12pitl+i—1— 3 d(1, D=i+1

yields
N[(y)i-Fea.H-n(yy-111CN[(y)]CN(f).

On the other hand, we have
N[(p)i-2e D)5 F @2 5]
CN[(y)i-Fract-H=n=1a" =11 1L N[ ()1 *" 1+()P1F (%% 2, 5)5]
where we note
S . B8y n 9 .
i— 2 A, D=1}~ —12Biti=1— 3 d(L, D=3 3 d(, D)

=33
>0.
Thus we get

NL(yy- =@ D-0 (AP @42, 5y ICNI(G)« FHPF G, 5,5]
=NL()'« 1+ ()"185 +2051f (3, 1)]
CN().
Hence (12.22) implies (12.21) as desired.
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Case 2.5. Since |f’{+k+a;+B.=0, Remark 12.4 yields that it suffices to
show

(12.23) NIO)YF &%, 0 ]CN).
The left hand side is contained in
NIG) e (y) @ F &g, o JENL()' HUF @42 0]
=N[(y)'*" "*a95 i f(y, )]

CN(().
Indeed, we have

n

i—1-la’|zi-1- 3 3 d(, =0

<.
[X)

which yields the first inclusion, and it is trivial that the second inclusion holds.

By the cases 2.1-2.5, we get

NL(»)0iZ40, y, p)ICN(f)  for 2=<j<n
as desired.

Step 3. Proof of the assertion 3).

We use the Leibniz’s rule which makes our proof of 3) reduce to another
assertions of Lemma 7.5.

We first note that the Leibniz’s rule yields

(1/iNatZ (0, y, 1)

=(/inat 3 5,0,F (X5 3, 20}

= t=0

-

—/i 3 T Cli—1, MO 1m0}04 {05, F(X; 5, Z)}Huma

J=1 8§=0

where C(r, s):=@!)/{sl(r—s)!}. We classify the proof of the assertion 3) into
the following four cases:

Case 3.2. j=2,s=0.
lCase 3.3. j=1,s=1.
Case 3.4. j=1, s=0.

ICase 3.1. j=2,s=1.

Case 3.1. Since s<i—1, the inductive assumption yields
N[(»)7'0:5 0, v, nI=NL(y)*"*(»)°6:5,(0, y, 7)]
CN[(»)at5,0, y, 7)]
CN().
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Case 3.2. Since Z40, y, 5)=0 for j=2,
NI(»)1540, ¥, PI=NO)=ZCN(f).
Case 3.3. Note that the inductive assumption yields
(¥)H0EE L0, y, MN0F*~*{0:, F(X; &, Z)} im0
=[(y)"*(0:5:(0, v, )IL(Y)~*7H(0F X1l e=)](y)
CLO I 0 Xu | e=0)] -
Since N((y)21)cN(f) and since
NL(»)=*=1(mai~*X,(0, v, MI=NL(»)' = (g)(—1)"°705; 70, f]

CN()
we get
N[(y):-1{0:5:(0, y, M}oi~*~*{0:,F(X; &, Z)} |:-0]TN(f)

in the case 3.3.

Case 3.4. Note that the assertion 1) of Lemma 7.5 has been already show
for 7 (Step 1). Thus we have

NL[()*&40, v, 9ok {0, F(X; 5, Z)} 1]
=NI[(»)" (7)ot X:(0, v, 9)]
CN().

By the cases 3.1-3.4, we get the assertion 3) of Lemma 7.5.

Step 4. Proof of the assertions 4) and 5).

Since the assertion 4) is trivial for /=2, we only have to prove the assertion
5). We may assume ¢=2, since if ¢=1 then the assertion 5) is trivial.

We use Notation 12.3. By virtue of Lemma 12.1 we have:

(1/iD)atE4(0, v, )
=(1/)IA/G=DNoF{—E510.F(X; E, Z)—0.,F(X; 5, Z)}H o
=(1/17) b (! B1R1)10 Sy P {—£10,F—02, F}O, v, ndx,, 0)

isja|+|Bi1+ksi-1

K(a, B, k; {u(j, D), d(5, D}

(u(j, 2),d¢, )

where {u(j, 2), d(j, A)} and K(e, B, k; {u(j, 2), d(j, 2)}) are defined by (12.7)
and (12.6) respectively.
By the Leibniz’s rule it follows

oiar B3P {—£,0,F—8,,F}O, y ; pdx,, 0)

_ (a1, B/ ke D _ I (ay, Bk 1,8,k
——7}F(§‘,1,§1) D — F$E1ghl ) — FEughfr
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Remark 12.5. The following inclusion of ideals holds:

Y (= nF gl #+0 —F&ugeB > K(a, B, k;{u(, b, 4G, D)

(u(d, 2>, d e, A
C()**+().
Proof. We only have to verify

(12.24) Y —Fnf @ Ka, B, b3 {u(, 2, 4, HNSOI+0).

Note that this term appears only if f,=1. Hence the left hand side of (12.24)
is contained in the following ideal J:

=) Frptlp o P EL(0, p, 1)
Since d(j, A)<i—1, the inductive assumption yields
I=(y)mtED(y)r P EDED, v, P ().
Thus (12.24) follows. Q.E.D.

By virtue of Remark 12.5, it suffices for the assertion 5) to show

(12.25) WY FGugy P K(a, B, ks {u(j, D), A7, DMCT)* +(n).

We classify the proof of (12.25) into following three cases:

Case 4.1. |B'|+k=1.
Case 4.2. |p’'|+k=0, B,=1.
Case 4.3. |B'|+k+B.=0.

Case 4.1. In this case we have
K(a, B, k; {u(j, A, d(j, HHe (3”“ DE ] en) 0D Z ] 120)
which implies that the left hand side of (12.25) is contained in

oy f%(aw%(o, ¥, MH@PZ(, 3, 7))

= 2 (y)i-t-ua D[(y)es DG DE (0, 3, 7)o

()it DIyt DG DZ(0, 5, )]s -

Note that the Newton polygons of the blackets [---1¢;; (1<7<n) are contained
in N(f) by the inductive assumption, and that

N(/)CNg-1,1:={(s, 1); (s/(g—1)+t=1} .
Hence we get (12.25) in the case 4.1.
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Case 4.2. In this case we have
K(a, B, ks {u(j, 2, d(j, DHE@FPEL, v, 7).
Thus the left hand side of (12.25) is contained in
() HOEHPE0, 3, P)=() 2P D UGN PE(O, 3, )]
C() ()

which is a consequence of the inductive assumption.

Case 4.3. In this case we have the left hand side of (12.25) is contained in
(Y HEGES > )ICOY )= ()}
since the assumption [B.4] implies
i | paa (oo,
Hence the following inequality
i—ltg—l-a—la’'izg—1
yields (12.25) as desired.
The assertion 5) in Lemma 7.5 is proved.

The proof of Lemma 7.5 is complete. Q.E.D.

§13. Summary of Local Dimension Theory

In this section we give a summary of local dimension theory of analytic
sets. Our summary starts from a review of a way of regarding an analytic
set X of a domain D in C¥ as a reduced complex space (X, Ox). We only
give outlines of this way (for its detail, see [Gr-Re]).

Let X be an analytic set of a domain D, that is, X can be defined locally
as a common zero set of finitely many holomorphic germs of functions on D.

Definition 13.1. We define the ideal sheaf i(X) of X as the sheafication of
the following presheaf {(U, i(U))} of ideals of Op:

(13.1) U:openinDv+—— i(U):={f<0,U); | xnv=0}.

Definition 13.2. We define a structure sheaf Ox on X by
(8.29) Ox :=(Op/{(X )| x

that is, the restriction on XCD of the sheaf ©p/i(X) on D, where Op/i(X) is
defined by the sheafication of the presheaf on D which is determined by the
following data:
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U : open in D — OxU)/i(X)U).

Note that each stalk ideal i(X),:=limi(X)U) is a reduced ideal of Op,.,
Uz

that is, if f™=i(X).(Im) then f=i(X), follows. Thus the stalk Ox, . of the
structure sheaf Oy has no non-trivial nilpotent elements, that is, the ringed
space (X, Oy) is a reduced ringed space.

We regard an analytic set X in D as a complex space by this way, where
we use the terminology of “complex space” in the sense of [Gr-Re], that is,
a ringed space (X, ©) is called a complex space if it is a C-ringed space with a
coherent structure sheaf O, and with a Hausdorff topological space X.

Remark 13.3. It needs more work to show that our reduced ringed space
(X, 0x) forms a complex space. This justification is based on the famous
Cartan’s coherence theorem [Gr-Re: Fundamental Theorem 4.2, p. 84], which
says that the ideal sheaf i(X) is a coherent O@p-sheaf.

Definition 13.4. Let (X, Ox) be a complex space. We say (X, Oy) is locally
irreducible at x=X, if the stalk Oy, ., is an integral domain.

Next we explain a way of regarding holomorphic maps in the sense of
Definition 3.1 as morphisms in the category of complex spaces.

Let X [or Y, resp.] be an analytic set of a domain D[D’], and let
f: X—Y be a holomorphic map in the sense of Definition 3.1. Recall the (0-th)
direct image sheaf f.«Ox which is defined as the sheafication of the following
presheaf {(U, (fx0x)U)}:

(13.2) U:openin Y — (fx0x)U):=0x(f"XU)).
We want to construct a morphism of the form
(f! f~): (X: OX) — (Y, OY)

where f~: Op—f+Ox is a sheaf map on Y, and where (X, Ox), (Y, Oy) are the
reduced complex spaces constructed by the way of Definition 13.2.

Since f: X—Y is a holomorphic map in the sense of Definition 3.1, there
exists a holomorphic map g: D—D’ such that f is induced by g:

X—>Y

(13.3) ] . q

D—D
We consider the pull-back g*: ©Op—f«Op and show the

Lemma 13.5. There exists a canonical sheaf map f~: Op—f+Ox on Y which
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is induced by g*.

Proof. Let U be an open set in Y, and let u€Op(U). Recall that Oy is
defined by the restriction on Y C D’ of the sheaf Op/i(Y)on D’. Hence we have
the following 1) and 2):

= e .
1) Uu (uy) yl;.[UOY. v
2) For any y<U, there exists an open neighborhood E’ in D’ and a section

vE0p(E")/(Y XE)
such that

(13.4) U, =Sgr (V) for any z€ E'NY

where si.,: Op(E"/ (Y YXE")—0Oy,,=0p ,/i(Y), is the canonical map.
We need the following simple

Claim 13.6. If v~€i(YXE’) then g*v~=i(X)g YE’)). Hence there exist a
canonical map

(13.5) [g*]: Op (E")/ (Y XE") —> Op(g~(E")/(X g (E").

Proof. This claim is a direct consequence of Definition 13.1 and (13.3).
Indeed, we have

v eV YE) &= v gnr=0
= v~ (gx)=0 Vxeg (ENNX
= g el X)g (E).
Hence Claim 13.6 follows. Q.E.D.

Using the map [g*] given by (13.5), we define a section

w =" (w)E0x(fU)=(f+0x)U)

as follows:
w:(wx)e II Ox.-
(13.6) { seitlay
We i=Sg~1mry, 2([¥IV)EOp, /(X ) =0, 2

where s -1z, 2 : Op(g " (E")/i(X)g (E")—0Op,»/i(X), is the canonical map.
We must verify that the definition (13.6) is well-defined. Let ycU (CY),
let E; (=1, 2) be open neighborhoods of y in D’, and let

viE0p (ED/UYXED (=1, 2)

be sections satisfying
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U, =Sy, {V1)=5gy, (V2) for any z€ ENE;NY.
Putting E”:=E{NE;, we have
(w1—vs.)|z»=0 as an element of Oy (E”)/i(YXE”).
Thus we get
Se—1cen, o([g%1(1—12))=0€0y,, for any x=g (E")
which shows that the section w=(w;)€ II Ok, . given by (13.6) is determined

zef~tan
independently of the choice of v satisfying (13.4). Hence the sheaf map

[Ti0yu—w=f"(u)sf+O0x is well-defined.
The proof of Lemma 13.5 is complete. Q.E.D.

Definition 13.7. Let (f, /™) : (X, O0x)—(Y, Oy) be a morphism of complex
spaces. We call (f, f™) is a finite morphism if the underlying map f: X—Y is
a finite holomorphic map in the sense of Definition 3.3.

Now we recall a definition of analytic subsets in a complex space, and their
local dimensions.

Definition 13.8. Let (X, Ox) be a complex space. We call a subset Z of
X is an analytic subset at a point x=X if there exist finitely many germs
f1, =+, frE0x, . such that the germ (Z, x) of a subset Z at x is given by the
common zero set of f,, ---, f,. We denote this by (Z, x)=Null(fy, -+, f2).

Definition 13.9. Let (X, Ox) be a complex space. We define its local
dimension dim (X, Ox) at a point xX by

dim.(X, Ox):=min{k; 3f,, -+, f1EOx, . such that
Null(fy, -, fe)NX={x}}

that is, the minimum integer of such numbers % of germs f,, -+, [, €0x. 2
which make the point x be isolated in Null(fy, -+, f.).

Definition 13.10. Let Z be an analytic set of (X, Ox) at x€ZCX. We
define its local dimension dim.Z at x by

dim,Z:=dim,(Z, 05)
where (Z, 0;) is the closed reduced complex subspace of (X, Oy) defined by
07:=0x/(Z)|z

as similar as Definition 13.2.

Now we quote several propositions which are used in §§8 and 14.
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Propositon 13.11 [Gr-Re: Remark 5.1.1, p.94]. Let
(f) fN): (-X, OX) — (Y, OY)
be a finite morphism of complex spaces. Then

dim.(X, 0x)=dim; (Y, Oy).

Proposition 13.12 [Gr-Re: Active Lemma 5.2.4, p. 100]. Let (X, Ox) be a
complex space and let g<0Ox. , be a germ. If the zero set Null(g) of g is
nowhere dense in (X, Ox), then

dim,Null(g)=dim,(X, Ox)—1.

Proposition 13.13 [Gr-Re: Proposition 5.3.2, p.103]. Let (X, Ox) be a
complex space which is locally irreducible at xX. Let Z be an analytic subset
at x of (X, Ox). If

dim,Z=dim,(X, Ox)

then there exists an open neighborhood U of x in X such that
ZNU=XNU .
We also use the following theorem in §§8 and 14:
Theorem 13.14 [Gr-Re: Finite Mapping Theorem 3.1.3, p. 64]. Let

f, (X, 0x)—>(, Oy) be a finite morphism. Then the image f(X) is an
analytic set in (Y, Oy).

The following famous theorem is used in §§4, 8, and 10:

Riickert’s Nullstellensatz [Gr-Re: Theorem 4.1.5, p. 82]. Let (X, Ox) be a
complex space, and let 9COx be a coherent sheaf of ideals with zero set Null(9).
Let i(Null(99)) denote the ideal sheaf of the analytic set Null(9), and let Rad(J9)
denote the radical of 9, that is, the sheafication of the following presheaf
{(U, Rad(9)U))} of ideals of Ox:

U: open in X—Rad(9)U):={fcoxU); *m=N, f*=4U)}.

Then it follows that
i(Null(9))=Rad(9).

§14. Proof of Lemma 9.5

In this last section we prove the following Theorem 14.1 which contains
Lemma 9.5 as a special case.

Let us consider a non-zero germ f &0, of two independent variables. For
a local coordinate system (x, y) at the origin satisfying
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(14.1) f(x, 0)f(0, »)0,

we define the Newton polygon N(f) of f with respect to the coordinate system
by

f, 9= 5 cnwlyt —> Nf)i=ch| U (G, )+

where ch[A] denotes the convex hull of ACR? and we set R, :={tcR; t=0}.
Since we assume (14.1), we can find positive integers p(u), ¢(u) where
1=p=<m:=#Seg N(f) such that N(f) can be written as

(14.2) N()= 3 Necw. o

where we set
Na.s:={(s, )ER?; (s/a)+(t/b)=1}.

We may assume that p(y), g(p) are arranged as
(14.3) p(1)/q(1)>p(2)/q(2)> --- > p(m)/q(m).

In this situation we have the

Theorem 14.1 There exist positive integers i(u), c(u, i), v(y, i) and non-unit
germs f uiE0c2,0 such that the following 1)-3) hold:
1) The following decomposition

m i )
(14.4) f(x, y)= I ﬁ:fyi(x, yyen

is an irreducible decomposition of f(x, y) in the ring Ocz,,.
2) Each Newton polygon of f.{x,y) is given by

(14.5) N(f pi)=c(g, D)Ng~, 2™ for 1=p=m, 1=i<i(p).
In (14.5), the integers p~(u), g~ (u) are defined by
() ==p(e)/(p(e), q(1)), g~ () :=q(p)/(p(pr), q())

where (a, b) denotes the greatest common divisor of a, beZ.
3) For any p, {c(p, 1), vy, i); 1<i<i(p)} satisfies

9]
(14.6) 2 e, e, D=(0m), 4

Remark 14.2. Theorem 14.1 contains Lemma 9.5 as the special case that
the following condition holds:

(14.7) (p(p), g(p)=1  for all Ispu=<m.
Proof. The conditions (14.6), (14.7) imply

i(p)=1, c(g, D=y(g, =1, and
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P (w=p(w), ¢ (w)=q(u).

Hence ,Theorem 14.1 yields an irreducible decomposition
£, )= 11 f (s 9)
with the conditions
N 2)=Ngcw>. pep> for 1=p=<m.

‘Thus Lemma 9.5 follows from Theorem 14.1. Q.E.D.
Now we prove Theorem 14.1. We derive this theorem from the following

Proposition 14.3. Let g<0c:,0—1{0} be a non-unit germ. Assume that the
complex curve Null(g) has only one irreducible component locally at the origin.
Then, for any local coordinate system (x, y) at the origin satisfying

(14.1y &(x, 0)g(0, y)=£0,
it follows that N(g) has only one segment, that is,
(14.8) #Seg N(g)=1.

Proof of “Proposition 14.3= Theorem 14.1”, Let

(14.9) f=1gf ™

be an irreducible decomposition of f in the ring Oc:,, and let (x, y) be a local
coordinate system at the origin satisfying (14.1). Since this coordinate system

satisfies (14.1)" for all g;, Proposition 14.3 yields
(14.10) N(g;)=Nacp.oe

for suitable positive integers a(j), b(y). With no loss of generality we may

assume
b(1)/a(1)2b(2)/ a(2)= -+ Zb(k)/a(k).

We take integers
O0=7,</1< - <js=k
such as

{ b(l+72-1)/a+72-1)=b(j2)/a(j2) and
(14.11)

b(j1-0/a(G2-)>b(72)/a(j2)  for all 1=2<s.

We set ayz, by (1<1<s) by the following conditions:
bi/a;=b(j1)/a(j2) and

14.12) { R

(az, ba)=1.
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Then, for 1<j<k, we can find an integer d(;)>0 such that

{ a(f)=d(j)az

b(N=d(b:  for 14+j1.=7=7,.

Thus, by the additivity of Newton polygons, (14.9)-(14.12) yield
k X s Ja . .

{ N(f)= §1v~<])Na<j),b<j>= /12:31 {]=1§l—1y (])d(])}Nax,bz .

(14.13)
bi/ay;>bs/ay> -+ >bs/as.

Now, comparing (14.13) with (14.2), we get

in
3 GG e

m:=%{p}=4%{A}=s and
{ 5 }

(W=7 _= v (d(Nrax, dp)=

() {f=1+f,4_1” Nd)pan, g {J=1+:,,_1

Note that the coprimeness (14.12) of a,, b, implies

(14.14) (w=a,, p=by, and (p(g), o= ¥ ().
J“1+J‘u_1

We define i(y), c(g, ), (g, i) (1=i<i(p)) and f,.(x, y) as follows:

() ::J.[l—jﬂ—l

c(p, 0):=d@+7p-1), g, 1) =y @E+7 1)

(14.15)

fui =8itiy

Then, from (14.14), (14.15), we have the irreducible decomposition

(1473 m  t(y)

VY (] 1) — v(g, 1)

ey wer=11 1L/
” 2=11

B m
f=Igy =11
=1 #=1

with the conditions
N(fyt)zN(giH'#_l):Na(i+j#_1),b(i+j‘u_1)
:d(i'i']'/x-l)Na‘u,b‘u:C(ﬂ: Z.)Nq"(p),p"'(y) and

i . . e . . . .
ig,l c(p, (g, )= ;2{ AGE+7 V@ + 7 pmn)

Ip
= 3
j=1%7

a7 (=(p(w), qlp))-
p—1
Thus Theorem 14.1 follows if Proposition 14.3 is established. Q.E.D.

From now on we prove Proposition 14.3. We shall prove the following
contrapositive proposition of Proposition 14.3:

Proposition 14.4. Let g=0Ocz,0—{0} be a non-unit germ. If there exists a
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local coordinate system (x, y) at the origin such that
(14.16) &(x, 0)g(0, y)£0 and
(14.17) m:=4§Seg N(g)>1

then the complex curve Null(g) has at least two irreducible components locally at
the origin.

We prove Proposition 14.4 by induction on v:=ord,[g]. Since y=1 im-
mediately yields m=1, Proposition 14.4 is trivial in the case v=1. Let v=2,
and assume that Proposition 14.4 holds for any germs with order <w.

We first show the

Lemma 14.5. Let g(x, y) be a germ with a vanishing orvder v=2, and let
(x, ) be a local coordinate system satisfying (14.16) and (14.17). Then there
exists a local coordinate system (x~, y~) at the origin such that

(14.16)~ g7 (x~, 0)g~(0, y™)=0
(14.17)~ m~:=#Seg N(g™)>1 and
(14.18) ord[g™(x~, y™)|y~o0l=v

where g~(x~, ¥~) denotes the expression of g by the coordinate system (x~, y~),
and N(g™) denotes the Newton polygon of g~ with respect to (x~, y~).

Proof. If either ord[ g(x, 0)]=v or ord[g(0, y)]=v, then we can take a
local coordinate system (x™~, y~) as

(x~, y™):=either (x, y) or (y, x).
Thus we may assume

(14.19) y<min{ord[g(x, 0)], ord[g(0, ¥)1}.
Using the identification
TC?*=2X0,+Yd, —> (X, Y)=C*
we write g(x, y) as the form

(14.20) 8(x, y)=Loc[g](x, y)+h(x, ¥)

where ord[2]>y, and Loc[g] is a homogeneous polynomial of degree v. Note
that Loc[g] can be written as the form

(14.21) Loc[g](x, y)=cxiy’ kf:Il (x—epy)®

where 7, j, n=0, v(k)=1 satisfy the relation
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i+t 3 wk)=v
and where ¢, e,€C—{0}. Moreover the condition (14.19) yields
(14.22) >0 and ;>0.
Taking a linear coordinate transformation

~

x~i=x, y~:i=x—ey (e+0)

we can write Loc[g] as
Loc[g~](x~, y)=cx~te i (x~—y~) ,}1 (x~—eze(x~—y™)®
=ceIx~(x~—y~y kIT:Il {I1—ere )x~+e e ty~}>e®,

Hence if we choose ¢ such as e=C—{0, ¢y, -+, e,} then we have
(14.23) Loc[g~1(x~, 0)=0, and Loc[g~](0, y~)=0.
Since (14.22), (14.23) yield
(v, 0), ¢, v—i)=N(g™) with (v, 0)#(7, v—17)
0, »)&EN(E
we get (14.17)~ and (14.18). Note that {x=0}={x~=0} which yields
ord[g~(0, y™)]=ord[g(0, y)]<eo.
Hence (14.16)~ also follows. The proof of Lemma 14.15 is complete. Q.E.D.

Now we prove Proposition 14.4 for the case v=2. By virtue of Lemma
14.5, we may assume

(14.24) 2<y:=ord[g]=ord[g(x, 0)]<ord[g(0, y)]<=.

Hence we have the following expression:
(14.25) Loc[g](x, y)=cx* 1T (x—exy}®
where =1, n=0, v(k)=1 with the relation
i+ 3 u(k)=y
k=1
and where ¢, ¢,€C—{0} with e,+#e,. if 2+Ek"~.

In order to prove Proposition 14.4 by induction, we use the notion of blowing
ups of the complex curve Null(g) with center a point.
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Definition 14.6 (see, for example, [Hi: Lecture 1]). Let Z:=C? let
Tyt C*—{0} —> P:=(C*—{0})/(C—{0})
be the natural map. Let Z’ be the closure of
graph(zo)={(x, y ; [§: pDE(C*—{0HX P*; xn=y§}
in C*XP*, and let n: Z'—Z be the map induced by the following diagram:

z —— c:xp

. lpro jection
Z=C"*

This map n: Z'—Z is called the blowing up (or the quadratic transformation) of
Z with center {0}.
Note 14.7. The blowing up =: Z’'—Z has the following properties:
(14.26) Z'=graph(m,)\J({0} X P?)
(14.27) "} 0)={0} x P*

and the map n: Z’—Z induces an isomorphism
(14.28) Tz it Z'—1(0) —> Z—{0}.

Proof. Since (14.27), (14.28) easily follow from (14.26), we only have to verify
(14.26). Let {(xn, ¥2n;[&x: N2))}nr2... be a sequence in graph(z,) which con-
verges to a point (x, y;[£:%])in C*XP'. Then the following two cases occur.

{ Case 1. When (x, v)+0.
Case 2. When (x, y)=0.

In the case 1, with no loss of generality, we may assume x+0. Then we
have x,#0 for n»>1. Hence the condition (x5, y»; [ér: Na])=graph(z,) can bz
written as

[0 9a]=[1:ya/x,] for n>1.

Thus, taking the limit n—oo, we have
(%, y; [E:9])=(x, y; [1: y/x])Egraph(m,).

In the case 2, for any [§: p]= P!, we can choose a sequence in graph(z,)
which converges to (0, 0; [&: »]) as follows: we set

A/n, (q/&)/n; [E:9]) if §+#0

(Xa, Y3 [&a: nn]):={ _
&/n)/n, 1/n;[§:9])  if 5+#0.
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Then the sequence satisfies the desired property.
Hence we get (14.26) as desired. The proof of Note 14.7 is complete.
Q.E.D.

We remark that Z’ is equipped with a structure of complex manifold of
dimension 2. Indeed, we define two maps w,, w, by

{ wy: C*(x, y)—(x, xy.; [1: y,.1)EZ’

Wyt C*3(xy, y)—>xy, ¥; [x:1)EZ’
and set
Q.:=w,(C?, Q,:=w,(C?.

Then they have the following properties (14.29)-(14.31):

(14.29) Z'=R.U8,.
(14.30) c:>Q,cz,, C*Q0,c7.
Wz Wy
wx(xf yl):wy(xh y)EQzF\Qy =
(14.31)
“xy#0 and r,=x/y, y:=y/x” or “x=y=0, x,y,=1".

Notation 14.8. We denote the variable x; [or y, resp.] by x/y [y/x].

According with this notation, we have the following 1)-3):
1) The coordinate neighborhoods £, and 2, can be written as follows:

{ Q.={(x, x(y/2); [1: 9/x1)EC*X P*; (x, y/x)EC?}.
Q,={(y(x/y), y; [x/y: 1NEC* X P*; (x/y, y)=C?}.

2) The blowing up =: Z'—Z can be represented on the coordinate neigh-
borhoods 2., 2, as follows:

(14.32)

wlo,: 2.2C*>(x, y/x)—> (x, x(y/x)EZ.
(14.33)
Tlo,: 2,=C*=(x/y, y) —> (¥(x/3), )=Z.
3) In particular it follows that
{ Q. Y0)={(x, y/x); x=0}.
2,Nz (0)={(x/y, y); y=0}.
By virtue of the above 1)-3) we get the following figure (14.35) of Z’:

Z'=0,UR, z=C?

(14.34)

- 77Y0)= P Y

(14.35)

the origin of 2, x/y T

the origin of 2, -—---- 4 x
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Definition 14.9. Let X be a complex curve defined by f(x,y)=0 in a
neighborhood of the origin of Z. Let v=ord,[f] be the (vanishing) order of f
at the origin. We can write the pull-back f-x as

{ Flx, x(y/x)=x"fix,y/x)  on (25, :Nx"*(0))
f(x/9), M)=y"fx/y,y) on (2, 2,Nz"(0))

where fi{ [or f; resp.] is a holomorphic germ defined in a neighborhood of
2.Nz"Y0) [of 2,Nx"*0)]. We set

{ Xii=w({(x,y/x); filx, y/x)=0})CQ,
Xii=w,({(x/3,9); fix/y, y)=01CL,.

Then X{UX; determines a complex curve X’ in a neighborhood of #~'(0) in Z’.
We call X’ the strict transform of X by the blowing up =. Note that the blow-
ing up n: Z'—Z induces a holomorphic map

(14.36)

(14.37)

(14.38) b X —> X.

This map p is called the strict transformation of X with center {0}.

Proof of the well-definedness of X’. We have
x=y(x/y), y=x(y/x) and (x/y)y/x)=1 on 2.N2,

which yield
¥ fi(x, y/2)=y"(x/yYf1(y(x/3), (x/3)71).

Thus it follows that
(14.39) Fdx/y, y)=(x/yY[(y(x/ ), (x/3)").
Since x/y does not vanish on £2,N2,, (14.39) implies
Xi{=X; on £2,n2,
as desired. Q.E.D.

Now we return the proof of Proposition 14.4. Let g(x, y) be a germ of the
order y=2, and let (x, y) be the local coordinate system satisfying (14.24) and
(14.17). Recall the expression of the localization Loc[g] at the origin:

LOC[g](x,y)=cx"kﬁ(x—eky)“"”
where 7121, n=0, and ¢, e,€C—{0} with e,+#e,-(E#k™).

(14.25) {

Lemma 14.10. Set X:={(x, y); g(x, y)=0}=Null(g), and let X’ be the strict
transform of X. Then
1) The pre-image p~'(0)=X'"\x"'(0) consists of the following finite points

(14.40) {(x/y,9)E2,; y=0,x/y=0, ey, , e,}.
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2) Let gi(x/y,) be the defining germ of 2,NX’'. Then it follows
(14.41) ordw,n[gz]=¢
(14.42) orde, wlgil<u(k)  for k=1,--,n.

Proof. We calculate the defining germs gi(x, y/x), gx(x/y,y) as follows.
Since g(x, y) can be written as

g=Loc[gl+h  (where h(x, y)=q”2>chrqu’)
the definition (14.36) and the expression (14.25) lead us to

(14.43) gix/y, y)=y~*{Loc[g](y(x/y), y)+w2>y Car(x/Y)y%* 7}

=Loc[gl(x/y, l)+q”2>y Cor(x/y)yetm™>

=c(x/9) T (2/9)— ey 433 halx/3, 3).
Since 2,z " 0)={(x/y, ¥); y=0}, we get
(14.44) P7HONL,={(x/y, )=(0, 0), (ex, 0)=2,; 1Sk n}.
We similarly have

gi(x, y/x)=Loclg)l, y/x)+ 3] corx®(y/x)"

=c IL(A—es(y/m)y® +xhi(x, 3/x).
Thus (x, y/x)=(0, 0)¢t {gi=0} which shows that
(14.45) (Q.—2)N\p(O)=0 .

Hence the assertion 1) of Lemma follows from (14.44) and (14.45).
The assertion 2) is a direct consequence of the expression (14.43): Indeed,
we have

ordc,n[gsl=ord[gxx/y, 0)]=i  and
orde,. o[ gz]=ord.,[g:(x/y, 0)]=u(k).
Hence the proof of Lemma 14.10 is complete. Q.E.D.

Corollary 14.11. The strict transformation p: X'—X determines the finite
holomorphic map germs

(14.46) pE (X, (er, 0) —> (X, (0,0))  £=0,1,-, 7

where we set e,:=0.

We classify the proof of Proposition 14.4 for y=2 into the following two
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cases:
{ Case 1. When n=1, that is, $p Y (0)=n+1=2.
Case 2. When n=0, that is, £p~*(0)=1.
Proof of Proposition 14.4 in the case 1. Since p® (=0, 1, :--, n) are finite
map germs, we can regard them as finite morphisms by the way given in §13.

Thus, by virtue of Proposition 13.14, the images p*’(X’) are analytic sets of
X, for 0£k2<n. Then Propositions 13.11 and 13.12 yield

1=dime,, X' <dime, o [p*(X")]=dim, 0 X=1.

Hence we conclude that p¢*>(X’) are complex curves at (0, 0) contained in X.
On the other hand the blowing up =: Z’—Z induces the isomorphism (14.28).
Thus we get p®(X')#=p*">(X’) as germs of curves at (0, 0) if k+#%~. Con-
sequently we get X={g=0} has at least two irreducible components locally at
the origin in the case 1, as desired. Q.E.D.

It remains the proof of Proposition 14.4 in the case 2.

We observe the effect of the strict transformation p: X’'—X to the Newton
polygon N(g). Since we assume (14.17), (14.24), and the case 2, there exist
positive integers m (=2) and a(y), b(y) (1<p<m) such that

(14.47) N(g)zlglNa(p),b(y) where Ng ,:={(s, t); (s/a)+(t/b)=1}
(14.48) b1)/a(l)> -+ >b(m—1)/a(m—1)>b(m)/a(m)>1.
The effect of p: X'—X to N(g) is given by the

Lemma 14.12. Let gi(x/y, v) be the defining germ of the strict transform
X' on the coordinate neighborhood 2,. Assume the case 2. Then it follows

(14.49) N(gé)zﬁglNac;n,b(,a)—acy)

where we denote by N(gi) the Newton polygon of gy at the unique pre-image
(0, eo) of (0, 0)=X by p, with respect to the coordinate system (x/y, y).

Proof. Since we assume the case 2, the expression (14.43) yields
(14.50) 8ex/y, Y)=c(x/yy+ 2 coar(a/yyyr™.
In particular we have
ordo[gx(x/y, 0)]=v,  ordi[£20, y)]=min{r—y; cor #0}.

which yield



ON MULTI-VALUED ANALYTIC SOLUTIONS 129

(v, 0)=d°N(gs)CN(gs)  and
(14.51) 0, b(1)+ - +b(m)—a(1)— -+ —a(m))
=(0, b(1)+ -+ +b(m)—r)=0°N(g5)CN(g2) .
On the other hand, since (g, »)EN(g) if ¢, #0, it follows
(14.52) r=—()/ a(p)lg—{a()+ - +a(p)}]
+b(p+1)+ - +b(m)  for 1Su<m.
Indeed, Lemma 0.2 leads us to
Ver N(g)={(a(l)~+ -+ +ay), b(u+1)-+ - +b(m)); 0= pu=<m}.
By the inequality (14.52), we have
g+r—yv=—{b(p)/ a(@)—1}[g—{a)+ - +a(p)}]
+a)+ - +alp)+o(p+1)+ - +b(m)—y.
Thus, from v=a(1)+ --- +a(m), we get
(14.53) g+r—y=—{b(p)/ a(@)—1}[g—{a)+ - +a(p)}]

+{b(p+1)—a(p+1)}+ - +{b(m)—a(m)}.
From (14.53) and (14.51) we conclude

(14.54) N(gé)C;;]l Nacw.scpr-aca -

Let us fix 1<p<m. Note that the equalities hold in (14.52) simultaneously
for ¢ and for p+1 if and only if

(g, r)=(a(l)+ - +ap), l(p+1)+ - +b(m)) .
Thus we get

(14.55)  (a(D)+ - +a(w), b(p+1)+ -+ +b(m)—a(p+1)— -+ —a(m)EN(g2)

for 1ISpu<m.

By (14.51), (14.54) and (14.55), we conclude the equality (14.49) as desired.
The proof of Lemma 14.12 is complete. Q.E.D.
Proof of Proposition 14.4 in the case 2. Let us divide b(m) by a(m):

b(m)=a(m)d+c

{ 0Zc<a(m), and d=1 (¢, deZ).

(14.56)

We classify the proof as follows:
{ Case 2a). When ¢=0.
Case 2b). When ¢>0.
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First we prove Proposition 14.4 in the case 2a). We consider the follow-
ing sequence of blowing ups:

1 Ta-1
7=C«——— 7' «— ... «— 7D

(14.57) J J J
D1 Da-1
X=g0) «<— X" «<— s «<— XD

where x;: Z9—ZY"Y is the blowing up of Z9 ™ with center {x;.,}, and
J J

pjs XP-XG-H g the strict transformation of X%~ induced by =; such that
x;€EX P satisfies

(14.58) PAx)=%;4 for j=1.
Note that such a sequence (14.57) is determined uniquely if we give x, by
(14.59) x0:=(0, 0)= X=Null(g)
since the germ (XY%, x;_,) lies in the case 2, for 1<7<d—1.
By virtue of Lemma 14.12, we have

(14.60) N(g¥)= %lNa(y).b(p)-ju(,u) at x;eXP (0;<d-1)
=

where g is the defining germ of X% at x;, Then ¢=0 implies that the germ
(XD x,_,) lies in the case 1, since (14.60) yields

m-1
(14.60) N(g(d_l))':#glNa(,u%b(p)-(d—l)a(p)+Na(m),a.(m)

with
m=2 and

{b(p)—(d—1)a(w)}/ a(p)={b(u)/ a(p)} —(d—1)
>{b(m)/a(m)} —(d—1)=1 for p<m.

Thus X~V has at least two irreducible components locally at x,., (note that
the expression (14.60) yields # Seg N(g¢@ ?)=# Seg N(g)>1).
Since the composite map germ

Prepee o ooyt (X0, x4.1) —> (X, x0)
is a finite map germ which induces an isomorphic map germ
(XD —{x4.1}, Xq-1) —> (X—{x0}, x0),

we conclude that X={g=0} also has at least two irreducible components at
x,=(0, 0) as desired.
The proof of Proposition 14.4 in the case 2a) is complete.

It only remains the case 2b). As similar as the case 2a), we consider the
following sequence of blowing ups:
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1 Tag-1 a
7=C<«———— 7' «— viv e FW@-D o 7D

aasry J b J Da-1 J dJ
X=g(0)<— X' «— - c—— X@ D X@®

where z; and p; are as same as in the above proof of the case 2a).
Note that ¢>0 implies

(14.61) (X495, x,_,) lies in the case 2 for 1=5=d, and
(14.62) ordxd[g(‘“]<v:0rdxd_1[g<d‘”]= --- =ord.[g].

Indeed, Lemma 14.12 yields that the Newton polygon N(g¢’) is given by the
expression (14.60) with the inequalities

>d+{c/a(m)}—(d—1)>1  for j<d—1.

{o(m)—ja(m)}/ a(m){ i
=d+{c/alm)}—d<1 for j=d.

Thus we have the assertions (14.61) and (14.62).

Note that the expression (14.60) yields # Seg N[g¢®]=% Seg N(g)>1. Hence,
by virtue of (14.62), we can apply the inductive assumption to the curve X®,
which says that X has at least two irreducible components at xg,.

Thus, the finiteness of the composite map germ

Dprepaee o Pg (X(d)y Xgq)—> (X, Xo)
and the isomorphness of the induced map germ

(XD (x4}, xa) —> (X—1{x0}, %o)

yield that X={g=0} also has at least two irreducible components at x,=(0, 0)
as desired.
The proof of Proposition 14.4 is complete. Q.E.D.
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