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Introduction

In this article we study the first order non-linear Cauchy problems of the

form
( F(x; du(x\ tt(;c))=0

( u s=<j>

where (1) are defined in a complex domain M in Cn, n>2. Our aims are to find

analytic solutions of (1) multi-valued in general, which ramify around a fixed

point x° in M, and to calculate their ramification degrees there.
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* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
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We always consider (1) in the following situation (2):

' a) F(x ; £, z) is holomorphic in an open neighborhood of a fixed base
point

eQ=(x°; £°, z^e

where we denote by J1M= (J J1
XM the first order complex jet bundle

x<EM

over M, which can be identified to the product space T*MxC.
b) S is a non-singular complex hypersurf ace of M passing through

the point x°^M. S is defined by a holomorphic germ s^OMtXo locally
at x°, that is, S={*eM; s(x)=Q} near *°.

c) (j)^OSiXQ is a holomorphic Cauchy data on S at x° satisfying

In c) of (2), c*: T*M\S-*T*S denotes the dual bundle map of the injective tan-
gent map c*: TS-^TM\S induced by the inclusion map c: Sc*M.

We assume the following three conditions [A.I], [A.2] and [A.3] :
The first condition is

[A.I] SIVV)!*0
3=1 3

where (f l f ••• , £„) is the dual coordinate system of a local coordinate system
(%i, -•• , xn} of M around the point z°eM. We note that (xlt ••• , xn ; &, ••• £ re, z)
forms a local coordinate system of /W around e°=(x°; f°, z°). We remark that
the condition [A.I] is independent of a choice of local coordinate systems.

The second condition is

r The function r-»F(*° ; rds(x°)+% °, *°) of the one variable r
I vanishes with a finite vanishing order £^1 at r=0.

We note that the special case p=l is nothing but the case the following condi-
tion holds :

(3)

We call S is non-characteristic for F micro-locally at e°, if the condition (3) holds.
Thus our condition [A.2] involves the non-characteristic case.

The third condition is, roughly speaking, stated as the following form :

exists a holomorphic approximate solution 0^OM,xo of the
\ Cauchy problem (1) such that 0 has several "good" properties.

These "good" properties of 0 in [A.3] are stated by means of the Newton
polygon of the function

f * ( y , r) :=F(y ;
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In this article such an approximate solution 0 with "good" properties is called
by the name of a good extension of the Cauchy data <j>.

This naming comes from the following definition : We call a germ @^OM,xo
an approximate solution of (1) at e° of the approximation order k^N\J{°°} if

(4)

where the notation ordxo[/(^)] denotes the vanishing order of / at X = XQ.
Note that the condition [A.3] can be said for short the following form :

[A.3]' There exists a good extension 0 of the Cauchy data $.

For a precise definition of the good extensions, see §2 (Definition 2.16).

Now we assume the conditions [A.1]-[A.3]. Let 0 be a good extension of
the Cauchy data <p of (1). We consider a map germ

, (jc°, 0))— >(/1M,

and the pull-back f* of F by

(6) f*(y,T):=(

Taking the Taylor expansion

f*(y, r)= Scy(30ry (c,e=05iJBo for v=0,l,2, -)
v = 0

of /* along {r=0}, we define the Newton polygon N(/0) (?/ f* at (x°, 0) by

(7) N(/*) :=ch[

where the notation ch[^4] for a subset ^4 of R2 denotes the convex hull of A,
and where R+ denotes the set of non-negative real numbers.

In order to construct solutions of the Cauchy problem (1), we utilize the
classical theory of characteristic curves. Let

(8) /*(3',o=n/*(y,T) i 'c«
j=i

be the irreducible decomposition of f0 in the local ring 05 xccxo,o). We set germs
Vj (1^/^r) of analytic sets of (C, 0)£X(SxC, (*°, 0))Cv . r> by

(9) V,: = {(t, ^r);/?(y,r)=0}.

Let t*-*¥(t, y, r) be the characteristic curve of F (the integral curve of the
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characteristic vector field YF associated to F) satisfying the initial condition
0, y, r)=r$(y, r}^(JlM, e*}, where YF is given by

(10) YF= S 0«/)3,,- S {f;0^)+3, F}3=.+( S f A/X •
j=l J J j = l J J \j = l J /

Then we have the following induced map germs W3 and nj for 1^/^r:

— V,- * (F-m <f)

v ?r i

(11)
; (*«, 0)) > (PM,

projection projection

Uj

Indeed, the following property of the characteristic curves

(12)

yields W(V^F-\G). Thus we have the induced map germs W3 (l<j<r}.
Our main result is the following

Theorem 4,2e Assume the conditions [A.I], [A. 2] and [A. 3]. Then, for
any l^j<*r, the following statements 1) and 2) hold:

1) The map germ T?J is a germ of an analytic covering of (M, x°) such that
its ramification degree at XQ is the positive integer Vj which can be obtained from
the Newton polygon N(f0) by means of the formula (4.7) stated in § 4.

2) Let Ij be the critical locus of the germ KJ of an analytic covering of
(M, x°) (see §3). Then there exists a multi-valued germ Uj on (M—IJ} *°) which
makes the diagram (11) commute, such that

(a) F(x; du3(x\ M,(*))=0 and

(b) Uj is exactly Vj-valued on (M—£J} XQ)
(the ramification degree of Uj at the point x° is equal to v3).

We remark that the assertion of the main theorem involves the classical
result in the case p=l (Theorem 1.6), which says that if p=l then the rami-
fication degree is equal to one (unramified), see Remark 4.4.

Our program proceeds as follows:
In § 0, we give an example in C2, which is a prototype of our theory.
In Chapter I, we give preliminaries to state the main result. In § 1, we
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summarize the classical theory of characteristic curves from our view point.
In §2, we give a precise definition of the good extensions. In §3, we prepare
several geometric notions such as finite holomorphic maps and germs of analytic
(ramified) coverings.

In chapter II, we state the main theorem and its direct corollaries. The
first corollary is related to the analytic continuation of holomorphic local solu-
tions of the Cauchy problem (1) at generic points y in S—{x°}. The second
corollary asserts the neccessity of the non-charactericity (3) for the existence
of holomorphic local solution of (1) at x°, under [A.I], [A.2] and [A.3].

In chapter III, we give a proof of the main theorem. In § 5, we carry out
a reduction of the main theorem to a simpler Theorem 5.1. In §6, we introduce
map germs ^7 (1^/^r) and their decompositions. By virtue of these decom-
positions, our proof of Theorem 5.1 can be reduced to those of Theorems 6.10
and 6.11. In §§7-10, we prove these theorems.

In chapter IV, we give proofs of several basic facts which are assumed in
chapter III.

The logical relations among the sections in Chapters III and IV except for
§11 are as follows (the content of §11 is used almost everywhere):

• § 5 —> § 4 (Main Theorem 4.2)

Acknowledgement. The author expresses his deep gratitude to Professor
Shigetake Matsuura for his encouragement and helpful comments.

§ 0. A Typical Example

In this section we give a simple example which is a prototype of our
general theory.

Example 0.1. In C2, we consider a Cauchy problem

under the following assumptions (a), (b) and (c) for the positive integers
and

(a) p(l)/q(l}>"->p(m}/q(m}.

(b) p(fi) and q(fjt) are coprime for l^fjt<m.
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If we put a(0):=0, a(p):=q(l)-\ ----- h?(/0 for
(c)

then q(/j,) and a(p—l)+l are coprime for l<J/*<:ra.

We fix a base point e°:=(0, 0; 0, 0, O^/'C'nF-'CO), where F is given by

m
(0.2) F(* ; f, z)=

We note that the assumptions [A.I] and [A. 2] of the main theorem are satisfied
in this example, since we have

3f8F=-l and

ord0[F(0, Q;

We take an extension @(x)=Q of the Cauchy data 0(*2)=0, and consider
the function f ( y , r) defined by

(0.3) f ( y , r):=f*(y, r)=F(0, y ;

=F(0, y,T,Q, ty= ft=i

Since Newton polygons have the additivity property

(see §11, Proposition 11.3)
we have

(0.4) N(/)=
P=I

Lemma 0.2- For positive integers p(p}, q(fji), we put

m
Let N:— ^^qa^,Pa^ be the vector sum of these {Ngcjo.pc^o} in R2. If the finiteP=I
sequences {/>(j«)}/*=i.2,...,m and {^(^)}/£=1,2,...,m satisfy the condition (a), then the
vertices of N are given by

(0.5) {(fl(jf), p

where we define a(fjt) as in the assumption (c), and we put

&(0):=0, and b(fjt)\ = p(l)+ -• +p(pt) fo

p:=b(m).

m
Proof. Let (c, d)= S (c«, rf«)eN with (c^, d^^Nq^^p^^ for l^^^m. We0=1

can write (c«, d«) as follows:
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(0.6)
(c~, d~)e[the segment joining (0, p(p)) and (q(p\ 0)] .

For our aim, it suffices to show the following facts:

(0.7) p(p)c+g(p)d^p(p)a(p)+q(p){p-b(p)} for

and the equality holds in (0.7) if and only if

=(?«), 0) if

=(0, p(X» if

e[the segment joining (0, p(p)) and (q(p\ 0)] if A=fjt.

By the expression (0.6), we have

m m
(0.9) P(p)c+q(p)d = S {P(fi)ci+q(fjt)di}^ S

(0.8)

Since the assumption (a) yields
<0 if

-0 if Z=

>0 if

the Tightest hand of (0.9) (hence also p(^c+q((i)d') is minimized only if the
condition (0.8) holds. Conversely, if (0.8) holds then we have

Hence we get Lemma 0.2. Q. E. D.

Since it is clear that N(rpc/0 — ̂ 5 C^ ))=NgC^)> Pc^) for l^p^m, the equality
(0.4) and Lemma 0.2 yield the following figure of N(/):

ord(r)

p=b(m)

P-Kp-U

p-Kl*)
^KP>~ ^^^uu^utui^

a(m) ord(^)
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The aim of this section is to show the following

Proposition 0.3. For l^p^m, we define a positive integer v(/j) by

(0.10) v(^:

Then the Cauchy problem (0.1) has a v(p)-valued analytic solution u^x) around
the origin of C2 for l<^f

To show Proposition 0.3, we utilize the classical theory of characteristic
curves. Let t*-*(X; 3, Z}(t, y, r) be the characteristic curve of F(x ; £, z) given
by (0.2), passing through a point (0, y,T,Q, 0)eF"1(0) at the initial time f=0.
Note that the definition (0.3) of f ( y , r) yields

(0, y,T,Q, 0)eF-1(0) $=$ (y,

We set complex curves D(p) (l<^<m) by

(0.11) D(tf:={(y, r); T
p^-y^^=0}.

Then we have the following irreducible decomposition:
m

/-1(0)=U /?(/!).
A* = l

We construct solution u^x) of (0.1) by the following diagram:

(X° " Z}
(C, 0)tX(D((i\ (0, 0)),., - — - ^(F-'CO), «»)X!f .

1projection *
Q)k < - (/1Cij ̂ ^^

projection

We must show that the diagram (0.12) determines a multi-valued germ w^
around the origin. It suffices to show the map

(0.13) X: (C, OcXOtyO, (0, 0)),,r — > (C2, (0, 0)),

is a germ of an analytic covering of (C2, (0, 0))x (for the terminology, see § 3).
To verify this fact, we observe the components (Xlt X2, E^ which satisfy

[ m
U

\ dtXz=d(zF=-l and StSl^

(0.15) (X,, X,, B&Q, y, r)=(0, y, r)

We solve (0.14)-(0.15) explicitly as follows. First we obviously have
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Xz(t, y, T}=y—t and
(0.16)

y, r)=r .

Then the first equation of (0.14) can be written as the form

[ TO "I

U{Tpa>-(y-tyK*>} ,
*=1 JW.,,,

We put

(0.18)

=f(y-t, r)= 2 Ci./^-O
*, .7=0

where the coefficients citJ^C satisfy

(0.19) ct.j±Q only if (i, ;)eN(/).

Using the function g and its expansion, we solve (0.17) as

(0.20)
Note that, by virtue of the assumption b), the curve D(fjt) defined by (0.11)

has a resolution of singularity of the form

(0.21) p : (C, 0)a 5 i — > (y, r)=(flpc^

We define (X~ ; 5~, Z^)(f, 5) as the pull-back of (X; 3, Z) by the mapping

Ix/o
(C, 0),X(C, 0), - > (C, 0\X(D(tf, (0, 0))y.r .

Then we have the following expressions (0.16)" and (0.20)":

(0.20)" X~(t, d)= ]
i,;=o

In order to count the ramification degrees of (t, 0} as a multi- valued func-
tion of ( x i , x2), we consider the following equation in (t, 6):

X~(t, 0)=*!
(0.22)

Note that A"7(^, 0) involves the variable t only of the form X^(t, 0\ Thus we
can write X~(t, 6) as the form
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(0.23) X~(t, O^H^O, X~z(t, 0}

where H^O, xz) is given by

i,j=Q

In this situation we have the following

Lemma 0.4. Assume (a), (b) and (c). We set

(0.24) hft(xi, xz, 6)1=11^(0, xz}-

Then it follows that

0, 0, 0)]=v(«) =
def.

f. Note that

(0.25) hp(Q, 0, 0)=#X0* 0)= S {yc.^/tf+1)}^

which yields the inequality

(0.26) ordE/z^O, 0, OJ]^p(^-

For Lemma 0.4, it suffices to show the following (0.27) and (0.28):

(0.27) mm{p(p)i+q(itij',citj*Q, j^l

(0.28) 2 yci.y/(i

where IdZ2 denotes the set of (2, /) attaining the minimum value (0.27).
By virtue of (0.19), we consider the linear functional

(0.29) kfl : R
z^(i, /) ^-> p(ftt+q(f*)jGR

and observe that the minimum value of kp on N(/)n{(z, ;); /^l} is given by
the right hand side of (0.27). Note that, for any c^R, the level set k~\c) forms
a line with the slope —p(ft)/q(p\ Thus the minimum value is attained if and
only if the level set k~\c) coincides with the line joining (a(fi— 1), p—b(p—l})
and (a(/£), p-b(fjL)). Hence the assumption (b) and the condition /^l yield that
the minium value can be attained by (i, /) if and only if the following (0.30)
holds :

a(^-l), p-b(p-D) or (a((ji), p-b(fji)) if ft<m.
(0.30) (i, j)= ,

(a(m—1), p—b(m—i)) if fjt=m.
Thus we have
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which shows (0.27).
Now we prove (0.28). First we claim

(0.31) ciS6/;

if

if p=m.

Proof of (0.31). Since c l t j is the Taylor coefficient of ylrs in

we especialy have

(0.32) caC;o.p-6c;o=(-l)'1 fo

Indeed, Lemma 0.2 yields that (a(^), p—b(p.}} is a vertex of N(/). Thus the
condition (0.8) in the proof of Lemma 0.2 holds, which derives the following
implications :

fa, /;)^N(rpc;i)-;y5c;i)), l^l<m, such that

(q(X), 0) if
=K'V» JJ=(q(t*)> 0).(0, #W)) if

Hence we get

Thus we have (0.32). Then it is obvious that (0.30) and (0.32) yield the desired
(0.31). Q.E.D.

We continue the proof of (0.28). But this is easily verified from (0.31)
since a(fji) and b(p') satisfy the inequalities

and p-b(fjL

The proof of (0.28), hence of Lemma 0.4, is complete. Q.E.D.

Since hp(xi, xz, 0)=Hp(6f x2)—x1 vanishes at (0, 0, 0) with order one,
hp(x\, x*> 0) is irreducible at the origin. Hence Lemma 0.4 yields that the
function 6(xlf xz) determined by the equation

(0.33) /^Ui> x*, 0)=0

is exactly v(^)-valued. We therefore have the following at most v(^)-valued
inverse (t(x\ 0(x}} of the mapping X~: (C, 0)tX(C, 0)^->(C2, 0),, which gives
the solutions of the equation (0.22): Indeed, if we put
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then we have

Thus we have the following diagram:

(C, O),X(£(AI), (0, 0)),.r

fix,1 (X~; S-, Z~)
(C, 0)«X(C, 0), - - - > (F-'(O),

(0.34) n
projection v

, (0, 0)), < - (PC

| projection

(c, 0),

Hence the multi-valued germ u^x) can be denned by the diagram (0.34), or by
the diagram (0.12), such that u/i(x) is at most v(j«)-valued and satisfies the equa-
tion

m
F(x; du,(x\ M^))=n(Ox1M^)pc^-^r))-3x8M /i=0.

It remains to show that the germ Up(x) is exactly t;(^)-valued.
To verify this we use the well-known relation

(0.35) dXlu,W=^W

where the function fi(;e) is given by the following diagram (0.36):

( y~ y~~ "~^
(0.36) (C, 0),x(C, 0), - - — ^(C2 , (0, 0)),x(C, 0)ft - *(C, 0)fl

1I
! \ - \ - / » - x"// f~,2 ,~^ t \\j^

Lemma 0.5. The function ^(x) defined by (0.36) is also v(fjt~)-valued.

Proof. By the definition of 3f(t, 6), we have

3l(t, 6):=3,(t, y, r)|c, l

which implies

(0.37) £,(*)= 0(*
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Thus when 6(x) rounds its singular points one-time, £i(;c) rounds its singular
points ^(^)-times.

Note that, for l^/Jt<m, the assumptions (b), (c) yield that

(0.38) q(fjL) and v(fjt) are coprime.

Indeed, if we denote the greatest common divisor of a, b^Z by (a, b\ then we
have

[V

= 1. [v the condition (c)]

Hence we have the following implication:

(0.39) q(fi)ks=v(ii)Z ==> k ̂ v(p)Z .

Hence we conclude that the function ^(x) is exactly t;(^)-valued. Q. E.D.

As a consequence of Lemma 0.5 and the relation (0.35) we get that the
multi-valued solution u^ is exactly z;(^)-valued as desired.

The proof of Proposition 0.3 is complete. Q.E.D.

We conclude this section to give the simple

Corollary 006. We consider a very special case that

(0.40) m=l, p = p(l)=2 and <?(1)=1

hold in Example 0.1:

(0.41)

Then the Cauchy problem (0.41) has a 3-valued analytic solution.

Proof. We only have to verify z;(l)=3. The assumption (0.40) yields

=3. Q.E.D.

Remark 0.7. By a direct computation, we have the following explicit ex-
pressions of the functions X~(t, 6} and 0(x) of the Cauchy problem (0.41):

X~(t, 0)=20t, X?(t, 6)=62-t
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Thus the 3-valuedness of the function

Is a consequence of the 3-sheetedness of the following mapping TT:

(0.42) ic : AiXO) c=_ (C3, 0),, , -- > (C2, 0), .
projection

We give an illustration of the surface h~i\®)r\R* as follows:

x-\S)

X2

/— (the critical locus I of

Note that this kind of singularity of the map germ n is called by the name of
"Whitney's tuck" (see e.g. [Ar: Appendix 12, Lagrangian singularities]).

Chapter I. Preliminaries

§ 1. Classical Theory of Chracteristic Curves

In this section we give a summary of the classical theory of characteristic
curves from our view point, by introducing an afflne bundle E—E((j)} over the
initial hypersurface S. This bundle E is, roughly speaking, a space of jets

where @^OM,x° runs through all holomorphic extensions of the data
of the Cauchy problem (1).

Let us recall the Cauchy problem (1) with the condition c) in (2):

where eQ=(xQ ; f°, z°) is the base point lying in a neighborhood the equation
F(x, £, z) is defined, and where ^*: T*M|5->T*S denotes the dual bundle map
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of the tangent bundle map c* : TS->TM\ s induced by c : Sc»M.

Definition 1.1. We define a subset E=E((f>) by setting

(1.1) E=E(0) := {(y ; £,

and we also set the fiber of E by

(1.2) Ey:=En/JM for

The meaning of £ is clarified by the

Lemma 1.2. 1) For any local extension 0^OM,yo of the data <f> at yQ^S we
have

(1.3) (d®(y\ 0(30)eEy for

where (S, y°) denotes the germ of S at y°, that is, the set which consists of all
sufficiently near y°.

2) For y^S, the set Ey forms an one-dimensional affine subspace of the
)-dimensional complex vector space JyM=T^MxC. More precisely, for any

local extension 0^OMty of (j) at y, the following equality holds:

(1.4) Ev={(Tds(y)+d0(y), #30)e/JM; reC}.

Proof. The first assertion (1.3) is a direct consequence of the commutativity
of the pull-back £* and the exterior derivativation d :

tfd0(y)=d(c*0)(y)=d$(y) if 0

Note that (1.3) and s=0 on S imply the inclusion

for any holomorphic extension 0 of 0. Hence it suffices for (1.4) to show the
converse inclusion of (1.4)". Let (£, $(y))^Ey. Then (1.3) yields

0, that is, <£-d0(y\ c*y(TvSy> = 0.

Hence we get ^—d0(y)^Cds(y) which shows the equality (1.4). Q.E.D.

Corollary 1.3. Let u^OM,y^ be a holomorphic local solution of the Cauchy
problem (1). Then it follows

(1.5) (y ; du(y\ u(y}^E^F~\^ for Vy^(S, /) .

We shall give a summary of the theory of characteristic curves, by con-
cerning geometric nature of E^F~\0) as a hypersurface of E.

Let us recall the characteristic vector field Y F on the germ (J1M, e°) asso-
ciate with F, which can be written as the form
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(1.6) Y f = 2 ( 3f/)9,,- S (f

by means of any local coordinate system of the form (xit ••• , xn ; fi, ••• , £n>

Notation 1.4. 1) We denote by

(C, 0)3f • — >¥~(t, e)=(X-, 3, Z)(t, e}^(JlM, e')

the characteristic curve of F, passing through a point e^(E, e°) at the initial
time £=0, that is, a uniquely determined integral curve of Y F passing through
e. This family of characteristic curves determines a holomorphic map germ

(1.7) F~: (C, 0)X(£, e°) — > (J1M, e°) ,

2) We define an analytic set V by

(1.8) F :=(C, 0)X(^nF-1(0), e°) .

Restricting the map germ ¥~ on F, we have the induced map germ

(1.9) V : ( V , ( Q , e°))— >(^'1(0), e°)

since the characteristic curve W~ satisfies

(1.10)

Note that the induced map ¥ is holomorphic as a map between analytic sets
(see Definition 3.1).

3) We define a tangent vector LF(e°^TxoM by

(1.11) LF(e*):

Note that this vector is nothing but the image vector of the characteritic
vector YF(eQ)^TxQ(J1M) at eQ under the tangent bundle map x*,xQ'.TMlM}
->T^oM of the natural projection TT : J1M-*M.

Using these notations, our conditions [A.I] [A. 2] can be written as

[A.I]' LXO^O.

[A.2]' ordeo[FU:r0]=:#e[l, oo) .

Note that [A.2]' implies F|^0, hence the intersection Er\F~l(Q) is a com-
plex hypersurface of E. Thus the germ (V , (0, e°)) defined by (1.8) is a n-
dimensional hypersurface of (C, 0)X(£, e°), which has singular points Fsing con-
taining %0 if

The classical theory of characteristic curves is based on the fact (1.10) and
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the following well-known

Lemma 1.5. We denote by Freg:=F — Fsing the regular part of V which
forms a n-dimensional complex manifold. Then it follows that the pull-back of

n
the fundamental 1-form dz—^^dxj on J1M by W vanishes on Freg:

(1.12) W*(dz- S Sjdxj}=Q on Freg .
\ j = l /

Let TTF : (V, (0, e°))-»(M, x°) be a holomorphic map germ determined by the
following diagram:

(V, (0, *'))

The above properties (1.10) and (1.12) of characteristic curves derive the
following classical existence theorem:

Theorem 1.6 (see, for example, [Ar: Appendix 4 M]). There are the im-
plications 1) =T> 2) =} 3) /or £/ze following conditions :

1) T/zg induced map germ

xv 1 ,=0 : (Er\F-\V), e°) cz_ (/ W| s, e°) — > (S, x»)

2S locally biholomorphic at e°, that is, the vanishing order p in [A.2] is equal to
one. (S is non-characteristic for F micro-locally at e°).

2) The map germ nv is locally biholomorphic at (0, 0°).
3) There exists a unique holomorphic local solution u^OM,x^ of the Cauchy

problem (1) at x° satisfying

(1.13) (xQ

This unique holomorphic solution u is determined by the following diagram :

W

(M, X«) «H

projection

It is our starting point of this article to consider the
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Problem 1.7. // we weaken the condition 1) in Theorem 1.6 to our condition
[A.2] (or [A.2]') then what kind of solutions of the Cauchy problem (1) do appear
around the point x°^M ?

§2. Definition of Good Extensions

In this section we give a precise definition of "good extension" in our con-
dition [A.3]. First we recall the

Definition 2.1. A holomorphic germ 0^OM,xo is called a holomorphic ap-
proximate solution of the Cauchy problem (1) of the approximation order k at
eQ=(x°, £°, 2r°) if 0 satisfies the condition (4) in the introduction.

From now on we call such a 0 an approximate solution for short.

Notation 2.2. Let 0 be an approximate solution of (1). 1) We set a map
germ r<z>: (SxC, (x°, 0))->(E, e°) by

(2.1) r$(y> *):=(? ; vdsW+dQW, 0(30) •

By virtue of Lemma 1.2, the map germ 7$ is locally biholomorphic.
2) We define a germ f0 of a function as the pull-back of the restriction

F\E by the biholomorphic map germ r0:

(2.2) /*:

Definition 2.3. Let /0(;y, r)= S c^y be the Taylor expansion along r=0.
K=0

1) We define a Newton polygon N(/0) of f0 at (*°, 0) by

(2.3) N(/0):=convex hull \J [(ord(cy), iO+fl£]
Cy^O

where ord(cy) denotes the vanishing order of cv(y) at 3; = *° and we put

2) For a Newton polygon N we define its strict boundary 3°N by

(2.4)

Note that 9°N consists of either only one point or a union of finitely many
segments, where we call a subset o-c3°N by the name of a segment of N if
there exists a line a~ in Rz such that a = ff~r\d°N with #(7^3.

3) A point yl<=9°N is called a vertex of N if the following implication (2.5)
holds for any B, CeN with 5^C and for fe=[0, 1] :

(2.5) 4=fB+(l-OC=}f=0 or f=

Note that the assumption [A.2] yields the point (0, p)^R2 is always a vertex
of N(/0), since we have ordr=0[/V, r)]=ordeo[FUx0]=/>.
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Notation 2.4. 1) We denote by SegN [or VerN respectively] the set of
all segments [vertices] of a Newton polygon N.

2) Let $^OM>xo be an apploximate solution of (1). We set

(2.6)

where sequences (a(p)} {b(fj.)} are arranged as strictly monotone increasing:

(2.7) 0=a(0)<fl(l)< ••• <a(m)

3) For 1^/jt^m, we define positive integers q(fj.\ p(fjt) and a positive rational
number tc(fjt} as follows:

and
(2.8)

Note that —ic(fjt) represents the slope of the fjt-th segment of N(/0), thus we
get

Definition 2.5. We say a Newton polygon N(/0) satisfies the coprimeness
condition if

1) f * ( y , 0)^0, that is, the Newton polygon N(/0) intersects the horizontal
axis RxQ.

2) For l^/ji^m, the integers j&(j«) and q(fjt) are coprime.

Definition 2.6. Let ceO5,xo be a germ. For a local coordinate system
(yi, ~m > yn-i) of S at x°, let c(3;)=Saa3;a be the Taylor expansion of c(y) with
respect to the coordinate system. We define the localization Loc[c] : TxoS-+C
of the germ c at %°eS by

(2.9) LocMfs Yjdyj) := ^ aaY« .
\j = l J / | a i=ord(c)

Note that the localization Loc[c] is determined, as a homogeneous polynomial
function on TxoS, independently of a choice of local coordinate systems.

Remark 2.7. If /):=ordeo[F|5a.0]^2, then the tangent vector LF(e°) defined
by (1.11) can be regarded as a non-zero vector in TxoS.

Indeed, we have

if p^2. Hence it follows LF(eQ}^c*(Tx0S) ^ TxQS.
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Definition 2.8. Let L be a non-zero vector in TxQS. We say a Newton
polygon N(/0) is stable in a direction of L, if

(2.10) Loc[cv](L)=£0 for all v satisfying (ord(e»,), v)eVerN(/0)

where cv(y) is the v-th Taylor coefficient of /0(;y, r).

Remark 2.9. Let (C, 0)3^^j(^)e(S, %°) be a complex curve satisfying

where L is a non-zero vector in Definition 2.8. For such a curve y(6) we set

Then the condition (2.10) is equivalent to

(2.10)'

Proof. Since X^) can be expanded as

we have

which yields the equivalence between (2.10) and (2.10)'. Q. E.D.

Notation 2.10. 1) Now we denote an irreducible decomposition of F\E in
the local ring OEieQ by

(2.11) F\S=UF?»
j=i

where r, i>(j] are positive integers and where F3^OE,eQ are irreducible such that
Fj^gFk for any germ g^OE,eo if j^k.

2) For an approximate solution 0 of the Cauchy problem (1), we set

(2.12) /?:=r^e(?f lxCi(x0l0) for l^j^r .

3) For positive integers p(p), q(p) in Notation 2.4, we put

N^).Pc^: = {(s, «e««: s, ^0,

Proposition 2.11. Lfrzder Notations 2.4 GTZ^ 2.10, zY follows that
r

(2.13) N(/*)= S

Proposition 2.12. Assume that N(/^) satisfies the coprimeness condition. Then
we have

1) P(;)=! /or a// j.
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2) N(/f) satisfies the coprimeness condition for all j.
3) There exist subsets M, of {1, 2, ••• , m}, l^j^r, suth that the following

(2.14)-(2.16) hold:

(2.14)

r
(2.15) {1, 2, ••• , m}= U M;- (disjoint union).

j=i
(2.16) N(/f)= 2 N.^.ptp) /or l^j^r.

The proofs of Propositions 2.11 and 2.12 are given in §11.

Remark 2.13. In Proposition 2.12, the assertion 2) follows from the asser-
tion 3). Indeed, the equality (2.16) and the coprimeness of N(/0) imply the co-
primeness of N(/f) for l<y<^r.

Definition 2.14. We say a subset M^ defined by 3) in Proposition 2.12 is a
nice subset if the following condition (2.17) holds:

(2.17) GCD[
Ai

where GCD[5] denotes the greatest common divisor of a finite subset BaZ.

Remark 2.15. Let /" be the integer satisfying leM;-. Then M^ is a nice
subset, since

U

In particular, if the germ F\E is irreducible, we have that Mi={l, ••• , 772} is a
nice subset.

Now we can give a precise definition of " good extension " as follows :

Definition 2.16. Let 0^Oj^.xo be an approximate solution of the Cauchy
problem (1) at e° of a finite approximation order k^N.

1° In the case p=l, we say 0 is a good extention of the Cauchy data <p if
the Newton polygon N(f0) satisfies the coprimeness condition (Definition 2.5).

2° In the case p^2, we say 0 is a good extention of the Cauchy data <j> if
the following conditions 1)~4) holds:

1) The Newton polygon N(/^) satisfies the coprimeness condition.
2) N(/0) is stable in the direction of the tangent vector

(Definition 2.8 and Remark 2.7).
3) The subsets Mj are all nice for l^j^r (Definition 2.14).
4) The approximation order k^N of 0 is greater than ^(m)"

(2.18) k :=ordx0lF(x
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where —ic(m) is the slope of the Tightest segment of N(/0).

Remark 2.17. In the case that p=l, there exists an good extention of the
Cauchy data 0. Thus our assumption [A. 3] is trivial if p=l in [A. 2],

Proof. Since p=l it suffices to find 0 satisfying the first condition of
Definition 2.5, that is, ord*0[/

0(3>, 0)]<oo. Recall that, by Theorem 1.6, we
can find a unique holomorphic solution u<=OM,xo of (1) such that

(1.13) ( x ° ; d u ( x ° ) , u(x°)}=eQ.

We construct a desired approximate solution 0 of (1) of the following form :

Since d0(y)=du(y)+w(y)ds(y) on S, if we choose w as M/(jc°)=0 then 0 is an
approximate solution of (1) at e°. By the Taylor expansion and the equation
F(xm,du(x), M(#))=0, we have

F(y;d0(y\ <f>(y))= S (djF)(y, du(y\ <j>(y}}w(yy^ {ds(y}}«
| O H > 1

= <Lp(y ; du(y\ <j>(y}\ ds(y»w(y}+0(w(y

Recall that <LF(e°), rfs(%°)>^0 if />=!, which yields that

Hence we get a desired 0 if we choose w as ord[i6'|AS]<oo.
The proof of Remark 2.17 is complete. Q. E. D.

Example 2.18. Recall the typical Example 0.1 under the assumptions (a), (b)
and (c). Then 0(x1} x2):=0 is a good extension of the data $(xz):=Q.

Proof. By Remark 2.17 we may assume p^2. Since
m

F(x1} xz;dxi0, dX20}= n(ffc/ l )-^P ))-f,ic§1

the approximation order of 0=0 is q~q(Y)+ ••• +q(m). Note that the inequality
q<K(m}~1 implies p:=p(l)+ ••• +/>(m)=l. Hence we have the inequality (2.18)
in the case p^2. By the definition, we also have

m
f*(y, r)=F(0, j ; r, 0)- H (rp^>-^«^).[i=i

Then the assumption (b) [or (c) resp.] means that N(/0) satisfies the coprimeness
condition [or, that M^={^} is all nice for l<^5jra]. On the other hand, the
stability of N(/*) in the direction of LF(e°)=-dx, is trivial because S={x1=Q}
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is one-dimensional. Q. E. D.

Example 2.19. In CB, we consider the following Cauchy problem

F(y, z; ux, uy)~ul-
(2.19)

u(0, y, z)=<f>(y, *):=

with a base point e°:=(0;0, 0)e/1C3nF-1(0) Then, a local extension

<f>(x, y, z)=xA(x, y, z)+$(y, z) (A^OCs,Q)

is a good extension of the data <j> if and only if the germ

(2.20) A(x, y, z)=xsr(x, y} *)+ S x^a^+y^y, z)}
1=0

satisfies
Bt(=(y, z?-1 for f=0, 1, 2 and

(2.21)

Proof. We put a(y, z):=A(Q, y, z). Then we have

which gives an irreducible decomposition of /^, since

are both irreducible in O5 xc,co,o).

Claim (1). N(/0) satisfies the coprimeness condition if and only if

(2.22) ae(3>, z)2.

Indeed, the necessity of (2.22) is obtained since, if we assume that (2.22) is
not true, then it follows

N(/f)={(s, 0; s+f2& s^O, ^0}

which does not satisfy the coprimeness condition. This contradicts the assertion
2) in Proposition 2.12. Conversely if we assume (2.22), then the Newton polygon
N(/(p)=N(/f)+N(/f) is given by one of the following (2.23). Hence we have the
coprimeness condition of N(/0):
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N(/*) 5

3
I >C/_

(2.23)

\ N(/*)

0 1 4 6 s 0 1 4 7 s

The case a<=(y, z)*-(y, z)3 The case a<=(y, zf

Note that, under the condition (2.22), the subsets Mi=:{2}, M8={1, 3} of
{1, 2, 3} are both nice subsets,

Claim (2). Under the condition (2.22), N(/0) is stable in the direction of
LF(e°)=-dy if and only if one of the following (2.24)-(2.26) holds:

(2.24) a^(y, z?-(y, zf and Loc[a](3y)^0.

(2.25) a<=(y, z)B-(y, zY and Loc[a](3y)^l.

(2.26) a^(y,z)\

Indeed, since we easily observe

(2.27) Loc[3!/0(;y, z, 0)](3y)^0 for j = l, 3, 5

we only have to consider (2.27) for i=Q. Note that

3^, z,

if a<=(y, z)z-(y,

r4-Z4} if

. if

Thus we get Claim (2) as desired.

Claim (3). An extension 0=xAJr(j> has an approximation order greater than
/K3)-1 if and only if either the following (2.28) or (2.29) holds:

(2.28) as=(y, z?-(y, zf and dyA<=(x, y, z}\

(2.29) a<=(y, zf and dyAsE(x, y, z)3.

Indeed, we easily observe

F(y, z ] d x ® , 8y0)=-xdyA mod(z, y, z

On the other hand, by the figure (2.23), we have



ON MULTI-VALUED ANALYTIC SOLUTIONS 25

2 if a^(y, zf—(y, z)3.

3 if a^(y, z)3.

Hence we get Claim (3).

Note that (2.24) and (2.28) are not compatible since, under (2.24), we have
ord[dyA]<ord[dya~] = l. Thus it suffices for the conclusion (2.21) to consider
the compatibility conditions of (2.25) and (2.29), or of (2.26) and (2.29). Note
that, for a germ A(x, y, z) of the form (2.20), we have

f (2.29) & as=(y, z}3 and ydy^+B^y, zTl (*=0, 1, 2)
(2.30)

[ $=$ a^(y, z)3 and ^^(y, z)3 l (2=0, 1, 2)

since the operator ydy-\-l preserves the vanishing order of fil. In particular we
have j 3 Q ^ ( y , z)3 which yields the equivalence

(2.31) a=aQ

Hence we get

(2.32) Loc[a](5,)-0 (^=1) if

From these (2.30)-(2.32) we conclude that 0 is a good extension if and only
if the condition (2.21) holds, as desired.

Thus the assertion of Example 2.19 is proved. Q. E. D.

§3. Germs of Analytic Coverings

In this section we prepare several geometric notions such as finite
holomorphic maps, germs of analytic coverings, which are needed to state our
main result in § 4. We refer [Gr-Re] for this section.

Definition 3.1. Let X [or, Y resp.] be an analytic set of a domain D [D7]
in C^ [C*'], that is, locally at any x^X QyeF], X [F] is defined as a
common zero set of finitely many holomorphic germs

u.x [Ai, ••• ,

A continuous map / : X— >F is called a holomorphic map if there exists a
holomorphic map g : D-+D' in the sense of theory of complex manifolds such
that the map / is induced by g, that is, the following diagram commutes:

Dr
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Example 3.2. The map germ ¥:(V, (0, e°))->(F-1(0), e°) defined by (1.9) is
a holomorphic map since it is induced by the map germ W~ defined by (1.7).

Definition 3.3. Let X, Fbe analytic sets, and let / : X-+Y be a holomorphic
map. We call / is a finite map if / is a closed map and each fiber f~\y) of
y e Y is a finite subset in X.

Lemma 3.4 [Gr-Re; Proposition 3.1.2, p. 63]. Let f : X-*Y be a holomorphic
map. Suppose x<=X is an isolated point of the fiber /"K/OO)- Then there exist
open neighborhoods U of x in X and V of y in Y with /(C7)cF such that the
induced map

fu,v:U—>V
is a finite map.

This Lemma 3.4 asserts that the notion of finite maps is localizable, that is,
a notion of finite holomorphic map germs makes sense:

Definition 3.5. A holomorphic map germ / : (X, x}-*(Y, y) is called a finite
holomorphic map germ if there exist open neighborhoods U of x in X and V of
y in Y with f(U)C.V such that the germ / has a finite holomorphic represen-
tative fu.v'-U-+V.

Criterion 3.6. A holomorphic map germ f: (X, *)->( Y, y) is a finite map
germ if and only if x is isolateted in the fiber f~\y).

Proof. The "only if" part is trivial since any finite holomorphic representative
fu,v of / has a finite fiber (fu,vY\y}- The "if" part is easily obtained by
applying Lemma 3.4 to a holomorphic representative of /. Q. E. D.

Definition 3.7. A holomorphic map germ / : (X, *)->(F, y) is called an open
holomorphic map germ if there exist open neighborhoods U of x in X and V of
y in Y with f(U)dV such that the germ / has a holomorphic representative
fu.v-U-+V which is open at x, that is, for any open neighborhood U~ of x in
X with U~dU, the image fu.v(U~) is an open neighborhood of y in Y.

Example 3.88 Let

W(X, Z}'=zk + ^W,(x)zk-'^0Cn.*[z\

be a Weierstrass polynomial in z of degree k, that is, 1^(0)=0 (l^/^&). We
set X:=w'\0) and Y:=Cn. Then the holomorphic map germ / defined by
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(YxC, (0, 0))

I projection

is a finite open holomorphic map germ.

Definition 3.9. Let / : (X, x)-+(Y, y} be a finite open holomorphic map germ.
The germ / is called a germ of an analytic covering of (Y, y\ if there exists a
germ (J?, 3;) of a nowhere dense analytic subset of Y at y such that

1) (f~\2\ x} is a germ of a nowhere dense analytic subset of X at x.
2) The induced map germ

r ' (X-/-m*) — > (F-J, y)

is a locally biholomorphic map germ.

Remark 3.10. Let / : (Z, x)-+(Y, y) be a germ of an analytic covering of
(Y, y\ and let (Sif y) be germs of nowhere dense analytic subsets of Y at y
satisfying the conditions 1) and 2) in Definition 3.9 for i=l, 2. Then the
intersection germ (JinJ2, y) also satisfies the conditions 1) and 2).

Definition 3.11. By virtue of Remark 3.10 and of the Noether property of
the ring OY,y [Gr-Re; Corollary 2.2.1, p. 44], there exists a unique germ (SQ, y)
of a nowhere dense analytic subset of Y at y such that (S0, y) is minimal in
such germs (2, y} satisfying the conditions 1) and 2) in Definition 3.9. This
germ (SQ, y) is called the critical locus of the germ / of an analytic covering.

Definition 3.12. Let / : (X, x)-*(Y, y) be a germ of an analytic covering of
(Y, y) with a critical locus (I, y). Then the following germ v(z) of a function
determined by

v(z):=^f-1(z) for z<=(Y-S, y}

is locally constant. In particular, if (Y— I, y} is connected, then v(z) is constant
there :

(3.1) v(z)=3vtEN on (Y-Z, y).

When this (3.1) occurs, we call that / is a v-sheeted germ of an analytic covering
of (Y, y\

Remark 3.13. It is known that if (F, y) is a germ of a complex manifold
then, for any germ (J, j) of a nowhere dense analytic subset of Y at y, it
follows that (F— 2, y) is connected. This fact is a direct consequence of the
following
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Riemann's Extension Theorem [Gr-Re; Theorem 7.1.3, p. 132]. Let X be
a complex, manifold, let A be a nowhere dence analytic subset of X and let
f(=O(X—A) be a holomorphic function on X—A. Assume that f is bounded near
A. Then f has a unique holomorphic extension f~ to X,

Example 3.14. Let Xi=C, and let F be a complex curve in C2 defined by

Y:={(y,z);y>-z<=0}.

If the integers p and q are coprime, then the following map germ

f:X—*Y /(*) :=(*«, *')

is a one-sheeted germ of an analytic covering of (F, (0, 0)) with a critical locus
J={(0,0)}.

Proof. It suffices to show the existence of an inverse map germ

g'Y-m 0)} — >Z-{0}

of /Lr-ioj. We first remark that

(3.2) F-{(0, 0)}cFn{(3>, *); yz*Q}.

Since p and q are coprime, we can find integers a, b such that

(3.3) ap+bq=l.

We define g(y, z):=ybza. Then (3.2) yields g^O(Y—{(0, 0)}). Moreover
(3.3) implies that

(g°nM=(xq)b(xp)a=xap+bq=x for any

On the other hand, since yp=zq on F, we also have

(f*gXy, z)=((y*zay, (y^aY}}

=(y, z) for any (y, z}^ Y-{(0, 0)}.

Thus the assertion is proved as desired. Q. E. D.

Chapter II. Results

§4. Statement of the Main Result

In this section we state our main result (Main Theorem 4.2) and show its
corollarieSo

We return to the situation at where the classical Theorem 1.6 is stated.
We assume the conditions [A. 1, 2, 3] and recall the diagram in Theorem 1.6 :
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V
(V, (0, «°)):=(C, 0)X(£riF-'(0), «•) > (^-'(0), «•)

(4.1)

(M,

We also recall the irreducible decomposition

(4.2) F\s=Tl Fjc^= n F, M/)=l, see Proposition 2.12)
= =

locally at
We define germs (F,, (0, e°)) for l^S/^r, of analytic hypersurfaces of CxE

at (0, e°) by setting

(4.3) (7,, (0, e°)) :=(C, 0)x(Fj1(0), e°).

Then the germ (V, (0, e°)) can be decomposed into the following union of irre-
ducible components at (0, e°}:

(4.4) (V,(0, O)
j=i

Now we consider the following r-diagrams instead of (4.1):

(4.5),

(M, ,T°) < - (/W, e°) for

Our result asserts that the map germs TT, : (VJ} (0, e°))-^(M, ;c°) are germs
of analytic coverings of (M, ^°) and that their numbers of sheets are calculable
by means of the Newton polygon N(/0), where 0 is a good extension at e° of
the Cauchy data <j>.

Definition 4.1. 1) For 1^^^7?i:=#SegN(/(p) we set

(4.6) i/(Ai):

where a(^ti), &(^X j^(^) and ^(^) are the integers determined by Notation 2.4.
2) We define integers Vj for 1^/^r by

(4.7) Vj:= S

where M, (C{1, 2, ••• , m}) is the subset which is defined by the assertion 3) in
Proposition 2.12.

Now the time has come to state our main result:
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Main Theorem 4.2. Assume the conditions [A.I], [A.2] and [A.3]. Then,
for l<j^r, the following statements hold:

1) The holomorphic map germ KJ : (V j} (0, e°))->(M, *°) determined by the
diagram (4.5)^ z's a vrsheeted germ of an analytic covering of (M, #°).

2) L£? (J?,-, *°) 6e £/i£ critical locus of TCJ. We define a germ u}(x) on
(M—2j, x°) of a multi-valued analytic function by the following diagram (4.8)^:

, (0, «•)) C - > (VJt (0, ««)) - -* (F-'(O),
17 1 "4 i

projection

Then the germ Uj is exactly vrvalued, that is, for Mx^(M—Ij, x°) the multi-
valued germ Uj has vrbranches u^x^OM,x (1^'^Vj) such that any two branches
of Uj can be continued each other along a path in (M—2j, z°).

Remark 4.3. If the assertion 1) of Main Theorem 4.2 is established then
the multi-valued germ Uj is well-defined by the diagram (4.8)J7 since the induced
map germ 7r~: (Vj—n^Ij), (0, e°))->(M— 2j> x°) is a locally biholomorphic map
germ.

Remark 4.4. Main Theorem 4.2 includes Theorem 1.6 as a special case.
Indeed, if p = l then there exists an approximate solution 0 of (1) such that
^:=ordx0[/^]<oo (Remark 2.17). Thus we have N(/0)=Ngil (Notation 2.10).
Hence Theorem 4.2 yields that the ramification degree is given by

= 1.

In the remaining part of this section, we state and show the following
Corollaries 4.6 and 4.7.

The first one is related to the analytic continuations of holomorphic local
solutions of the Cauchy problem (1). To state this, we prepare the

Lemma 4.5. Assume [A.I, 2, 3]. We define a germ Q by

(4.9) Q: = {e=(y;

Then the following 1) and 2) hold:
1) Q is a non-empty germ at e°.
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2) For any e^Q there exists a unique j (1^/^r) such that

(4.10) eeFyXO-UFVCO).
t#j

Lemma 4.5, Theorem 1.6 and Main Theorem 4.2 immediately yield the

Corollary 4.6. Let e—(y ; f, <j)(y}}^Q and let j be the unique number satisfy-
ing (4.10). Then the following 1) and 2) hold:

1) There exists a unique holomorphic local solution u^^OM,y of the Cauchy
problem (1) satisfying (y ; du~(y\ u~(y}}—e.

2) The holomorphic local solution Uy^OM,y mentioned in 1) can be continued
analitically to the multi-valued germ Uj determined by (4.8)^ on (M—2j, #°). Hence
the analytic continuation of u^ around the point x°<^M is exactly Vj-valued.

Proof of Lemma 4.5. We only have to verify the assertion 1), since the
assertion 2) is a consequence of the fact

It suffices for the assertion 1) to show that, for any open neighborhood U
of (jc°, 0) in SxC, and for l<j^r, it follows that

(4.11) /71(0)nf/-[0T/J)-
1(0)u U /71

i*j
where we set

f , ( y , T):=(rtFJ(y, T)=FJ(y]

Recall that the coprimeness condition yields that the germ F\E has no multiple
factor FJ (see Proposition 2.12). Therefore the factorization

(4.12) /*(^T)
J=l

is an irreducible decomposition of the germ f0:=
We show (4.11) by contradiction. If we assume that (4.11) is not true then

we can find an open neighborhood U and a number / such that

(4.i3) /jxo^ca/.rxov u /ixo) .
We set h(y, r):=ar/,(f, r)X T l f l ( y , r). Then (4.13) yields

i*J

(4.13)' h ,-IM=Q.

Hence, by virtue of the Ruckert's Null st ell ensatz (see § 13), we have

Since the ideal (/,) is a prime ideal, it follows that h ^ ( f j ) thus we have
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3r/,e(/,) or

This contradicts the facts that /, is irreducible and that (4. 12) is an irreducible
decomposition. Hence (4.11) follows. Q. E.D.

Our second corollary (Corollary 4.7 below) asserts the converse of the
classical Theorem 1.6 under the assumptions [A.I, 2, 3].

Corollary 4.7. Assume the conditions [A.I, 2, 3]. // there exists a holomor-
phic local solution u^OMiXo of the Cauchy problem (1) satisfying (x° ; du(x°), u(x°))
=eG, then it follows that

orde0[F|^0]-l.

Proof. By virtue of Main Theorem 4.2, the assumption of Corollary 4.7
yields that there exists a number j (1^/^r) such that

(4.14) v,

By the definition (4.6) of v((t) we have

because p(fji), q(fjt)>Q and a(^—1), p — b(fj>—l}—1^0. Hence (4.14) implies

#Mj=l, that is, Mj={3^°} and

which yield
^°=m=l and ^=X1)=1.

Hence we get Corollary 4.7 as desired. Q. E.D.

Example 4.8. Let us recall Example 2.19. We calculate the ramification
degrees Vj (; = 1, 2) of multi-valued analytic solutions of the Cauchy problem
(2.19) as follows: By the condition (2.21), any good extension 0 = xA(x, y, z)

, z} of the data ^ satisfies

ay,z): = A(Q, y, z}t=(y, z}\

Hence, by the right figure of (2.23), it follows that

v(l)=6, v(2)=10 and v(3)=5 .

Since we have Mi={2}9 MZ={1, 3}, we get
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which shows that

(4.15) {
the Cauchy problem (2.19) has two sorts of multi-valued analytic
solutions Ui and u2 of IQ-valued and 11-valued respectively.

Chapter III. Proof

§ 5. Reduction of the Main Theorem to Theorem 5.1

In this section we reduce the proof of Main Theorem 4.2 to that of the
following Theorem 5.1.

We consider the following Cauchy problem (5.1) which is defined in an open
neighborhood M of the origin of Cn with the zero Cauchy data:

F ( x ;
(5.1)

where ( x l t x", xn)^CxCn'zxC. We treat (5.1) with a base point

e"=(0;0, 0)e/1MnF-1(0)

and with the following assumptions [B.1]-[B.4]:

[B.l] 0(0;^, r, 0)e(f1; f ")2 •

[B.2] ord0[G(0; £„ 0, 0)]=:/>e[2, oo)

[B.3] $(;c):=0 is a good extension of the data <j>(x'):=Q .

[B.4] {
The approximation order ord0[F(z ; 0, 0)] of @=Q is equal
to the order q:=ordQ[f0(x', 0)]=ord0[F(0, x' ; 0, 0)].

Note that the condition [B.4] is stronger than the inequality

ordo[F(;c; 0, 0)]>/c(m)-1 (the fourth condition of [B.3])

since the condition p^2 implies

Theorem 5.1. Under the assumptions [B.1]-[B.4], the conclusions 1) and 2)
of Main Theorem 4.2 hold for the reduced Cauchy problem (5.1).

Let us return the situation of Main Theorem 4.2.
We must show that Theorem 5.1 implies Main Theorem 4.2. Note that,

since in the case p = l the assertion of Main Theorem 4.2 is contained in that
of Theorem 1.6, we may assume pl^2, where p is the vanishing order in the
condition [A.2], that is, p=ordT=£F(x° ; rds(x°)+%0, z°)].

Our reduction starts from a simple
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Lemma 5.2. There exists a local coordinate system (xly • • • , xn) of M around
x° such that

(5.2) S^^O} and

(5.3) Lp(e*)=-dXn.

Proof. Taking a coordinate system as xi=s(x), we may assume that a
system satisfying (5.2) is already chosen. The assumption p>2 yields d^F(e°)
=0, hence, by the condition [A.I], we may assume 9^F(e°)^0. We take a
linear coordinate transformation of the form

/...
0

0

•iff

*n

and choose W, 2n) as

^"-[SfnW]-1, ^:=J»V(*°) for

Then it is easily verified that the coordinate system (x~, • • • , #£) satisfies the
conditions (5.2), (5.3) as desired. Q.E.D.

The next step of our reduction is to show the existence of another good
extension @~ with a "better" approximation order than that of the original 0:

Proposition 5.3. Let 0 be a good extension of (j>. For the irreducible de-
composition (4.2) of F\E locally at e°, we set

(5.4)
CO

e')> <j)(x'))= S Cv,j(*

a good extension 0~~ of <j> such that

1) N(/?)-N(/f) for all /=!, 2, - , r.

2) Loc[cv] =Loc[c"]

/or Vv satisfying (ord[cy], p)eVerN(/0) (=Ver

3) ordxQ[F(x', d0~(x), 0~(x))l=q (:=ordxoif0(xf, 0)])

where we use the analogous expression of f®~" [or /f~ resp.~\ which is gained by
replacement of (0, cv} [($, cvj}~] in (5.4) with (0~, c~} [((P% C,^)]-

We seek the desired "better" extension 0~ as the form
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where (x1} ••• , xn) is a local coordinate system of M at x°, which is obtained
by Lemma 5.2. Note that the assumption p^2 implies

(5.5)

We denote the approximation order of 0 by k :

(5.6) k :=ordxQlF(x ; d0(x}, 0(x

Since Proposition 5.3 clearly holds for 0~; = 0 if q<ik, we may assume

(5.7) q>k.

We first give a sufficient condition of w for the assertions of Proposition
5.3 except for the assertion 3):

Lemma 5.4. // w^OM,xo satisfies the condition

(5.8) ord*o[>]^A?

then the assertions of Proposition 5.3 except for the assertion 3) follow.

Proof. Note that d0~(Q, x')=w(Q, x')dx1
J
rd0(Q, *') yields that the germ

0^ is a holomorphic approximate solution of the Cauchy problem (1), since the
inequalities (5.6) and (5.8) imply w(Q, 0)=0. Moreover we have

(5.9) f*~(x', &)=/ V, &+w(Q, x'}}= fj
v=0

where C(v, 2) denotes C(v, l}\=^\/(X\(i>—X}\}. We similarly have

(5.9)' f*~(x', ^= S 2 C(p, ^.Xx
;j=0 L v=i

We fix / and first show the following inclusion :

(5.10) N(/f)cN(/?).

We define positive integers p}, a}(fjt) and &/^) for j«eM, by

:=ord[/f (0,101 and

,(A«):= S ?W). *;(j«):= S X^).
^eMj,-?^^ ^eM^,^^^

Then Lemma 0.2 and the assertion 3) of Proposition 2.12 yield that
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Hence (ord[cViJ], v)eN(/f) implies the following inequality:

(5.11) vS-*(jM){ord[Cp^]-fl,(jti)}+^-ft^) for A*eM,; p=

where ic(fjt)=p(fjt)/q(fji). Thus (5.9)' yields the following inequality:

;— ;i)ord|>(0,
v^^

= {!-*(/£) ord|>(0, A:')]

since (5.8), (5.6) imply /e(ju)ord[>(0, x')]^(m)£>l. Hence (5.10) follows.
Interchanging the roles of 0 and 0", we also have the converse inclusion

of (5.10). Hence we conclude the assertion 1) of Proposition 5.3.
Note that this assertion 1) implies that

»)= S N(/f)= S NOT)=N(/*~)
.7 = 1 .7 = 1

which show that the Newton polygon N(/^~) satisfies the coprimeness condition
and that all the subsets Mj (1^/^r) are nice subsets of {1, 2, ••• , m}.

For the proof of the assertion 2), it suffices to show

(5.12) ord[cp-.6C/o] = a(AO< min
^>p-sc,«)

for
since we have

by (5.9). By virtue of ord[>(0, *')]^£, it suffices for (5.12) to derive

(5.13) fl(A«)< min {oTtf_cv~]+(v—p+b(uj)k} for 1^«^?72 .
v>p-6(/z)

From (ord[cj, v)eN(/0), we have the inequality

for 1^/^^m; i;=0, 1, •••

which is equivalent to ord[cy]^a(^)— jcC^)'1^— p+b(fjt)). Hence it follows

f/ie n'̂ M /land szde o/ (5.13) ^G(M)+ rnin {y—
-

Thus, by virtue of k>K(mYl^K(pYl, we get (5.13).
Note that the assertion 2) of Proposition 5.3 implies the stability of the
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Newton polygon N(/0~) in the direction of the tangent vector LF(eQ). Thus if
we establish the assertion 3) of Proposition 5.3, then the holomorphic approxi-
mate solution @~ is a good extension of the Cauchy data $(x').

The proof of Lemma 5.4 is complete. Q. E. D.

We continue the proof of Proposition 5.3. If suffices to find a germ w(x)
satisfying (5.8) and the assertion 3) in Proposition 5.3 when we set @~ as

Taking the Taylor expansion of F at (x\ f, z)=(x ; d0(x), $(x)\ we have

(5.14) F(x ; d$~W, 0~(*))= 2 («i \Yl

Note that the coefficients of the first term in (5.14) have the following ex-
pressions (5.15): Since there exists a holomorphic germ g(x, £j) such that

we have

(5.15) df}F(x ; d(P(x), (P(x))=3f1i/*(x/, 0)+x13?1ig(x, 0)

^^)} for

In particular, taking «i=0, we note

(5.16) ord[g0]=ord[F(% ;

On the other hand, the second term in the right hand side of (5.14) can be
divided by xlt thus it can be written as the form

(5.17) ,TI S 9* F(% : d$(x\ 0(xWx w+82F(x : d0(x}, 0(x)}w
Lj=* J J

where 7f satisfies

(5.18) ^(% ; *i£i+z, f', ^)e(^ili+2)+(^i)(fr, -z)2.

Hence, from (5.15) and (5.17), we can write (5.14) as the following form:
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(5.19) F(x ; dQ~(x), 0~U))= j {cai(x')
a^=Q

+xl\ 23 3f.F(x ; d$(x), 0(xydti\_j=Z J J

+K(x ; XidxiW+w, dx>w, w} .

We claim that the following inequality holds under (5.8):

(5.20) wtf.Ca&'Kxd^w+wY^q for all a^Q .

Indeed, from the inclusion

(ord[cfll], ai)eN(/*)C{(s, 0; t^-K(m)(s~q)\

and (5.8), we easily have

the left hand side of (5.20)^#— a1rc(m)~1-ra1ord[w^

By virtue of (5.19) and (5.20), it suffices for Proposition 5.3 to show the
existence of a holomorphic germ w(x) satisfying (5.8) and the following equation
(5.21) for some /i1(^)e(^r1:

(5.21) S g
a i=0 j=Z

, dx,w, w)=3h1(x) .
We set

( h(x):=g0(x)—hi(x) and

(5.22) H(x ; g, z) := S ^«1(^)(^i€i+^)fll+ 23 d€ja x =l j=2 J

Note that (5.16) yields

(5.23)

We seek a solution u; of the non-linear equation

(5.21)' H(x ; dxw, w)=Q

with the condition (5.8), that is, ord[u;]^^. Since the condition (5.18) yields
I, z), we note

(5.24) H(0 ; £ 0)- 2
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Then the Weierstrass's preparation theorem leads us to

(5.25) H(x ; f, z)={H~(x ; &, f', *)-£»}*(* ; £, z)

locally at (x ; £, z)=(0; 0, ••• , 0, /z(0), 0) for some holomorphic germs

=cnxCn-lxC, ( 0 ; 0 , 0 ) > ^cnxCnxC, C0;0,-, 0, MO), 0)

with #~(0; 0, 0)=A(0), 0(0; 0, - , 0, A(0), 0)^0. From (5.25) we have the

Claim. For any germ w(x} satisfying (dw(Q), w(Q))=(Q, ••• 0, /z(0), 0), the
equation (5.21)' is equivalent to the following normal formed one:

(5.26) dXnw=H~(x ; 9^10, dx*w, w}

where H~(x ; |i, f /x, z) satisfies

(5.27) ord[#~(* ; 0, 0, 0)-A(0)]^max{ A-l, 1}.

Proof. It only remains to verify (5.27). Setting (£, z)=(0, ••• , 0, A(0), 0) in
(5.25), we have

(5.28) H(x ; 0, - , 0, A(0), Q)={H~(x ; 0, 0, 0)-A(0)}*(* ; 0, - , 0, A(0), 0).

On the other hand, the definition (5.22) of H yields that

(5.29) H(x; 0, ••• , 0, A(0), 0)=9fnF(x ; d(P(^), 0(z))/i(0)+/z(z)

+#U; XiO+0, 0, ••• , 0, A(0), 0).

Since H(Q; 0, ••• , 0, A(0), 0)=0 by (5.24), it follows that

ord[H(x; 0, ••• , 0, /z(0), 0)]^l=max{^-l, 1} if A?=l .

If ^^2 then A(0)=0 since AeU)*'1. Therefore, (5.18) and (5.29) yield

H(x\ 0, - , 0, A(0), 0)=fc(x)+/ir| (e.,5.Co.o>=A(jc).

Thus we have

ord[#(*; 0, ••• , 0, A(0), 0)]=ord[A]^fe-l=max{fe-l, 1}.

Hence, from (5.28), we get (5.27). The proof of Claim is complete. Q. E. D.

Since the equation (5.26) can be solved with any holomorphic data on
{xn=Q}, we can find a unique holomorphic solution w(x\ WQ) of (5.26) satisfy-
ing the following data:

(5.30) w(x;

It suffices for the proof of Proposition 5.3 to show

(5.31) ordOU;
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We write H~(x ; £1, f ", z) as the form

H~(x ; Si, r, z}^a3(x ; £lf |", *&+&(x ; glf f", z]zj=i

+H~(x; 0, 0, 0)-A(0)+A(0).

Then the solution w;(^ ; i#0) satisfies the following linear equation

(5.32) 3 , "B

where we put

Aj(x): = dj(x ; SXlw(* J u;0), dx»w(x ; M;O), i^(

B(x):=b(x; d X l w ( x ; WQ\ dx»w(x; WQ\ w(x ;

C(x):=H~(xi 0, 0, O)-A(O).

By virtue of (5.27), it suffices for (5.31) to verify the

Lemma 5.50 Lef M;(^) ^?g the unique holomorphic solution of the linear Cauchy
problem (5.32) with the data (5.30). Let k^l and assume

(5.33) ord*0[C]^max{£-l, 1}.

Then it follows that

(5.8) ordso

Proof. We expand w(x) in xn as u;(^)= S Wu(xi, x'^x^' Then the equa-
/l=0

tion (5.32) yields the following equalities:

i, x*)=C(xl9 x", 0)+/z(0) mods'
(5.34)

^, 0)

for ^2.
We prove

(5.35) ord[^(^!, x'^k-fi for 0^^^^

by induction on p.. Note that if k=l then there is nothing to prove. Thus we
may assume that k^2, hence /z(0)=0. In the case ^=1, the equality (5.34)
with the assumptions (5.33) and (5.30) yields that ord[w;i]^&— 1.

Now let &^jM^2, and assume

(5.36) ordlwA^k-* for O^^^-l.

Then (5.34) with the assumptions (5.33) and (5.36) yields that
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i, *", 0)], min
lljin-l

min {fc-l-J, fc-;

Hence the proof of Lemma 5.5 is complete. Q. E.D.

By virtue of Lemmata 5.4 and 5.5, we get Proposition 5.3. Thus the proof
of Proposition 5.3 is complete. Q. E.D.

The third step of our reduction is the changing of unknown function from
u(x) to the following u(x\ We denote by 0 the good extension @~ which is
gained by Proposition 5.3. We set u(x) and F"(x ; £~, O by

(5.37)

Note that if u is a solution of the Cauchy problem

(5.38)

then u=ft+0 is a solution of the original Cauchy problem (1).

Lemma 5.6. Let t^W~(t, 6)=(X"(t, e)\ 3\t, e}, Z~(t, £)) be the characteristic
curve of F" which passes through

e:=(Q,y'i yjidxlf 0)e£: = T$Mx{0}

at the initial time t=Q. We set a biholomorphic map X: E-+E by

and we put

Then t*-*W$(t, l(e}} is a characteristic curve of F passing through l(e) at the
initial time t=Q.

Proof. Since we have

S3F^=dSjFf and

it follows that
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( dtX-j=dt,F(?t(t,

3=1

n
-Sri f £7^

— 2j i & 3 ~
j=l

Hence we get Lemma 5.6. Q. E. D.

Let us recall the irreducible decomposition

(2.11) /

and we set

where 2: £^(0, y' ; ^dxl9 0>->(0, ;y'; ^1dx1-\-d0(0) y'), 0(0, ;y'))eE is the map
germ which is introduced in Lemma 5.6. Since the map germ A: E-^E is a
biholomorphic map germ, we have the following irreducible decompositions:

(5.39) F~\E=flF~.
j=i

(5.40) V":=(C, 0)X(£nFA-1(0), «°)= U FJ

where we set V;:=(C, 0)X(F;-1(0), g°) and ^°:=:(%0; 0, 0).

Definition 5.7. Let /t: (Zi, ^t)->(F, y) be germs of analytic coverings of
(7, y) for 2=1, 2. We call /\ and /2 are equivalent if there exists a biholo-
morphic map germ g: (X1} Xi)^(X2, xz) such that the following diagram com-
mutes :

g

Note that if /i and /2 are equivalent then they have the same critical locus
. On each connected component of (Y—2, y), we have

Using this terminology, we have:

Corollary 5.8. We define the map germs TT} : (7J, (0, 2°))->(M, *°)
s the contraction of KJ fromWj. Then the following diagrams
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(5.41)^ commute for 1^/^r:

(C, 0)X(£, e°) « > ( V ~ , (0, g°)) 1 wj

J (M, x°)

(C, 0)x(£, *•) < - > (K,, (0; «•)) - f*r,

Hence the germs KJ and TT} of analytic coverings of (M, %°) are equivalent. In
particular, if the conclusion of Main theorem 4.2 holds for K~jy then it also does
for a,.

Remark 5.9. The function F~(x ; £~, z")=F(x ; ̂  + d$W, z" + <P(x)) satisfies
the following conditions [A.1]"-[A.3]" and [A.4] :

[A.3]^ 0~(x)=Q is a good extension of jTOc')=0.

[A.4] ord[F^U; 0, 0)]=g:=ord[F^(0, x' ; 0, 0)]

where eQ=^\eQ)=(xQ ; 0, 0)e£nF^1(0).

By virtue of Corollary 5.8 and Remark 5.9, our main theorem for the Cauchy
problem (1) is reduced to that for the Cauchy problem (5.38) under the assump-
tions [A.ir-[A.3r and [A.4].

Now we proceed the fourth step of our reduction, that is, we reduce F~ to
the form of (5.1). We denote by F the function F" satisfying [A.I]" — [A.3]"
and [A.4]. By virtue of [A.I]" and of the Weierstrass's preparation theorem,
we can find a holomorphic germ G(x ; £1, £ ", z) and a unit e(x ; ?, z) such that

(5.42) F(x ; f , z)=[.G(x ; f,, r, z)-f«]s(x ; f, z)

holds locally at e°:=(z°; 0, 0). We set

F ~ ( x ; f , z ) : = GU; 5i,r,^)-f».

Note that — F~ is a Weierstrass polynomial in gn of degree one.

Notation 5.10. We denote by t>-+¥~(t, e^=(X~; 3~, Z~)(t, e~] the charac-
teristic curve of F~ passing through a point 0~=(0, yr ; f idxlf 0) in the analytic
set EnF'XO), where £:=TfMx{0}.

We consider the relation between the characteristic curves ¥~ of F^ and
f of F, and have the

Lemma 5.11. Let g(t, e)^OcxE,«*,eO) be the unique solution of
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3tg=e(¥~(g, e))
(5.43)

0, *)=0.

f/ie following 1), 2)
1) 77z0 map germ gxids: (C, 0)X(£, e°)->(C, 0)X(E, O zs fl biholomorphic

map germ.
2) TF* set

(5.44) y#(f, e): = [^-teX^)]ft, e)=V~(g(t, e\ e}.

If e<=Er\F~l(V), then t>->¥$(t, e) is the characteristic curve of F passing through
e at f=0, that is, we have ¥#=¥ on (C, 0)X(EnF-1(0), e°).

Proof. Since g is a solution of (5.43) it follows that

because e(^ ; |, z) is a unit. Hence the assertion 1) follows.
Since t^>¥~(t, e) is a characteristic curve of F", we have

, e\ e}}.

The assumption geF"1(0)=F"-1(0) yields f~(s, g)eF~~1(0) for ¥5, hence we have

d,.e.,F(¥~(g(t, e\ e))=[(ixie.,F-)s](?T-(gtf, e), e))

which implies

tt e\ e}),

Since g(0, e)=0, we also have ¥^(0, e)=¥~(g(0, e\ e}=W~(b, e)=e. Thus the
proof of Lemma 5.11 is complete. Q. E. D.

Corollary 5.12. We define the map germs xj: (Vj} (0, 0°))->(Af, x°) from
¥j:=W~\Vj. like as the const? -action of TT,- from ¥}. Then the following diagrams
(5.45)^ commute for l^j^r:

(C, 0)X(£f «°) - - D (F,-, (0,

(5.45), gXid^? | (Af,*8)

(C, 0)X(F, «•) - - ^ (F,-, (0, e0)) - J w>

Hence the map germs KJ and xj are equivalent as germs of analytic coverings of
(Mj %°). Thus if the conclusion of Main Theorem 4.2 holds for xj then it also
does for nja
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To complete the reduction of Main Theorem 4.2 to Theorem 5.1, it remains
to verify the

Lemma 5.13. Let F=F~e be a germ satisfies the conditions [A.I]" — [A.3]"
and [A.4] such that —F~ is the Weierstrass polynomial of F in %n of degree one:

Then F~ satisfies the assumptions [B.I] — [B.4] of Theorem 5.1.

Proof. Since [B.2] and [B.4] are trivial by [A.2]" and [A.4], we only
have to show [B.I] and [B.3]. By virtue of [A.I]", we have

n±ld^G(^'} 0, 0,
.7=1 J

which shows

; 0, 0, 0)=0 for lrg/^-1

' ; ^dxl9 0)

~(x', &):=/-*(*', £J=F~(0, x' ; ^dxl9 0)=G(0, x' ; f^^!, 0)

Thus we have the condition [B.I].
Now we check the condition [B.3]. We set

(5.46)

Then we have /— /~£° (e° is a unit) which yields

(5.47) N(/)=N(/~)+N(e°)=N(r)

since Newton polygons have the additivity N(gh)=N(g)+N(h) (see § 11).
By (5.47), we know that N(/~) satisfies the coprimeness condition, and that

each subset M7~ M, of {1, 2, --m} is a nice subset for 1^/^r.
Note that the condition [B.4] implies the inequality

~U; 0, 0)]=ord[/~(x', 0)]=

since we assume
It remains to show

(5.48) N(/~) is stable in the direction of LF~(e°)=-dXn.

To show (5.48) we utilize the following

Claim 5.14. Let

f ( x ' , W= I] cv(x'^i, f~(xf, fi)= S C(^')ft
V=0 V=Q

be the Taylor expansions of the germs f and f~ given by (5.46). Then we have
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(5.49) Loc[cv] = s(e°) Loc[C]

for Vy satisfying (ord[cv], p)eVerN(/).

Proof. Let e°(;c', f i)= S £„(*')£ i be the Taylor expansion. Then we have
v=0

^v= S £T£V-;. Assume (ord[c~3> v)eVerN(/)==VerN(/~) then it follows that

ord[cT]>ord[C] for
Hence we have

[ v-l I
s ^sp-A-2 = 0 J

which shows (5.49) as desired. Q. E.D.

The assertion (5.48) immediately follows from Claim 5.14. Thus we complete
the proof of Lemma 5.13.

Our reduction of the proof of Main Theorem 4.2 to that of Theorem 5.1 is
also complete.

§6. Decomposition of Map Germs nj

We begin to prove Theorem 5.1. In this section we consider map germs
jrj: graph(?Fj)-KM, 0) which are equivalent to ^: (Vj, e°)-*(M, 0) for l^j^r.
Recall that we have reduced x° [or e° resp.] to the origin of Cn\_(x\ ? , z)=
(0 ; 0, 0)] in § 5.

An advantage of this consideration comes from the fact that ^7 is decom-
posable to a composition of three map germs as the form ^3°^20?rji. The
aim of this section is to show that the first map germ KJI is a biholomorphic
map germ for l^j^r. This fact yields that the analysis of KJ can be reduced
to those of 7tj2 and ^3 (see Theorems 6.10 and 6.11 at the end of this section).

Let us recall the diagrams

(V,, (0, «'))

(M,0)

where (V 3, (0, e°))=(C, 0)X(^71(0), e°) is an irreducible component of

(V, (0, e°))=(C, 0)X(£nF-1(0), e°), for 1^/rgr.

Definition 6.1. We define map germs 7r7 for l<j<r by the following
diagram :

c
(VJ9 (0, *°)) -^ graph(V,)c > (C, 0)X(£, e°)x(J1M) e°)

(6-2) ^~ projection
v nrnif»r.tion Tprojection

(M, 0) <
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Since KJ and n'J are equivalent as germs of analytic coverings of (M, 0) in
the sense of Definition 5.7, we may consider ^7 instead of KJ.

Definition 6.2. 1) We decompose the composite projection

P: (C, 0)x(£, OxtTAf, *°) —> CTAf, *°) —> (M, 0)

as follows:

(C, 0)«X(£, «0V,iiX(/ lAf f e°)x.£,2 »(C, 0)tX(M, 0),X(C, 0)fl

(6.3)
p

(M, 0), ^ - (M, 0),X(C, 0)^

2) We define subsets F^ and VJ2 respectively by

))C(C, 0)tx(M, 0)XX(C, 0)€l

/,0),X(C, 0)fl

where r, ^ denote the following inclusion maps:

r. graph(^) CZL^ (C, 0)tx(£, Oy.^xC/W, e°)x.€..

r: F,i d^ (C, 0)£X(M, 0)xx(C, 0)fl.

3) According to the decomposition (6.3) of P, we have the following de-
composition (6.4) of the map germ TT}:

(C, 0)X(£, e°)x(/1M, e°) ; > (C, 0)X(M, 0)X(C, 0)

' graph (f,)

(6.4)

(M, 0)

(M, 0) « (M, 0)X(C, 0)
•̂ 3

Notation 6.3. We denote a characteristic curve of F, which passes through
a point e=(0, /; ^^JCj, 0)e£=TSMx{0}, by

^tf, 3^', 70=(^» 3^', ̂ ',5(t, y', 77,), Ztf, y', ?0).

Of course, by the definition Wj:=W^\Vj) we use the same expression CX"; 5, Z)
to denote the value Wj(tt y'', )ji) for 1^/^r.

From now on, we show that the map germ njl: graph (W3}—>Vn is a biholo-
morphic map germ for 1^/^Sr. First we prove
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Claim 6.4. There exists a holomorphic map germ

(F', HJ: (C, V)tX(C"-1, 0)^x(C, 0)^ — >(T|M, (0,

(6.5)

rr'i
(6.6) (f, *U y, 71), Sift y, ?i)

L/^-l

Proof. We consider the following map germ

I: (C, 0)£X(7W, (0, 0)),-.,!— * (C, Q)x(C»-\ 0),-x(C, 0)5l
(6.7)

y, 7i):=ft *'ft
Since (Z', 5I

1)|(==0=(3;', 5^) holds, we have

3X r1

SftTT^*''- ")=d<!t L
Hence, by the inverse mapping theorem, there exists the inverse map germ

which has the desired properties (6.5), (6.6). Q. E.D.

Notation 6.5. 1) Since Z1|t=0=0, we can write A'j as the form

2) We set //y, ?i):=(r$^)(y, 9i) where r*(y, 7i)=(0, y' ; Vidx^ 0).
3) Using these X~, f j and the germ (Y1, HI) mentioned in Claim 6.4, we

define germ A and B, as follows :

A(t, x', ft) :=JfT», F'a, ^', fO, H,(f, x', &)
.8)

/f , x', f ,) :=ffy'<t, x', ^), H&, x', f 0) for 1^/^r .

Lemma 6.6. Se? a ^er?w H of a hyper surf ace of CtXM^xC^ by

T/zew f/ze projection PI induces a biholomorphic map germ h~ : graph(¥~)-+H as
follows :

graph (¥~) <• - > (C, Q)tx(E,

(6.9)

(C, 0)tx(M, 0),x(C,
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Proof. We first observe that PI in fact induces the map h~. Assume that
(t; y, tli; x, f, z)=(t; y', f],; (X, 3, Z)(t, y', i?0)egraph(F~). It suffices to verify

(6.10) X&, yf, 7id=tA(t, X'(t, y', )?i), 3$, y', ^0).

By the definition (6.8) of A, the right hand side of (6.10) is equal to

V f-j. V ' f f yf(f >\)f yi^ H1 (i -i;7 f}\\ J-f (f X f ( f \)f Y) ^ ^ (f /\)f T) }\]

Thus the identity (6.6) yields (6.10).
Note that (6.10) shows that the following diagram commutes:

(C, 0)X(T|M, (0, 0))s(C, 0)x(£, «°) —^ graph(¥~)

ii
(C, 0)X(Cre-1, 0)X(C, 0)

where I is the map germ defined by (6.7). Since we know % is a biholomorphic
germ, h~ also is. The proof of Lemma 6.6 is complete. Q. E.D.

Proposition 6.7. 1) The map germ xn : graph(?r
i7)-^Vr.7i is a biholomorphic

map germ for l^j^r.
2) The germ (V jl} (0, 0, )) is defined by the following two equations as a germ

of analytic subset in (C,0) tX(M,0)xX(C,0) f l:

(6.11),
£,(*,*', £0=0.

Proof. Since ¥j=¥^\Vj- implies that the map germ n}l is the restriction of
the biholomorphic germ /r : graph(f~)^/f on graph^), the assertion 1) follows.

By virtue of the identity (6.6), we have

(6.12) fl,»&y,?i))=/,(y,7i).
Indeed, by the definition of Bjt the left hand side of (6.12) is equal to

Then the identity (6.6) which is equivalent to

(Y'(TL(t, y', 7l)), HMt, y', 70))=(3'/, 7i)

yields (6.12) as desired.
From (6.12), we have the following commutative diagram:
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(C, 0)tx(T|M, (0, 0)),..,, > graph(?")

</
(C, 0)«x(/7'(0), «•)—- graph (?0)

1 1
B;'(O) to,

4T
^/^ n^ ^apn~i c\\ \/(tr* ^^ '^^^ly, \j)t;\\\s , ^>/x' Xv,*^» ^/?i

(6.13)
ffyi

The desired equations (6.11); immediately follows from this diagram. The proof
of Proposition 6.7 is complete. Q.E. D.

Remark 6.8. Let us define ideals Sj of the ring #c x j fxc .co,o .o) by

Jj:=(tA(t, *', &)-*!, Bj(t, x', &)).

Then these ideals are prime for

Proof. Assume gtg^Jj, gi£Jj. We set gl(t, x', f 0 :=gt \ H (i=l, 2). Then
we have glg^(Bj), gl£(Bj). We claim

(6.14) (Bj) is a prime ideal of the ring tfcxc-^xc.co.co.o) .

If (6.14) is established then we have gl^(Bj) which yields the desired fact g^S]f

Note that, by virtue of (6.12), it suffices for (6.14) to show that

(6.15) (fj(yr, 71)) is a prime ideal of the ring 0c txrsjr.co.o.o» .

Recall that f3(y't f]i} is irreducible in Or*3/,Co,o). Hence it suffices for (6.15) to
show the following

Claim 6Ja L0£ /eOrjj/.co.o) ^ ^n irreducible germ, and let piCxT^M
— >TJAf 6e ^/zg projection. Then the pull-back germ p*f is irreducible in the ring
QcxT*sM, CO. (0 ,0 ) ) .

To show Claim 6.9, we note the following simple fact for

(6.16) a(t, e)= S av(e}tv <=(p* f} £=$ avs=(f) for all v .
v=Q

Indeed, by the definition, a^(p*f) means that there exists a germ b(t, e)

= ^bv(e)tv such that a(t, e}=\_p*f~](t, e)b(t, e)=f(e)b(t, e}. This is clearly equi-
v=Q

valent to av(e)=f(e)bv(e) for all v. Hence we get (6.16).

We continue the proof of Claim 6.9. For al(t, e}= S aitV(e)tv (i=l, 2) we
V=Q
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assume a1a2^(p*f\ a^(p*f). By (6.16), it follows that

(6.17) 2 a l i r_,a2 , ,e(/) for all r=0, 1, 2, -
^=0

and that there exists p such that

(6.18) *!.„£(/).

We choose ^ as the minimum value of such fjt. We want to show

(6.19) a2,ye(/) for all p.

We prove (6.19) by induction on v as follows:
1) The case v=0. Taking p in (6.17) as /*, we have

Since a l i f l - z ^ ( f ) for ^1, we have fli.^.o^C/)- Then, by (6.18), it follows
that c2,0e(/) since the ideal (/) is prime.

2) The case y^l. Taking 7 in (6.17) as v+ju, we have

Since a2 )^e(/) for l<v—1 by the inductive assumption, and since a l t V + f i - x ^ ( f }
for fev+l, we have a 1 , f J t a Z i ^ ( f ^ . Thus (6.18) implies a2,ye(/) as desired.
Hence we get (6.19).

Since (6.16) and (6.19) yield aae(/o*A we get Claim 6.9. Hence the proof
of Remark 6.8 is complete. Q. E. D.

We conclude this section to show that, if we establish the following Theo-
rems 6.10 and 6.11, then Theorem 5.1 follows:

We consider the following diagram under the assumptions [B.1]-[B.4] of
Theorem 5.1:

V^itA-x^B^Q] C_^ (C, 0)£X(M, 0)XX(C, 0)ei

Jw,,

(6.20) (M, 0) «— Vj*

(M, 0) < (M, 0)XX(C, 0)fl

For the diagram (6.20), we state the following two theorems which imply
Theorem 5.1:

Theorem 6.10. Under the assumptions [B.1]-[B.4], there exists an irreducible
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Weierstrass polynomial w3(x, fi)^0jf,oKi] of the degree

Vj= S

SMC/I that the following equality holds locally at (x, fi)=(0, 0):

(V,*, (0, 0))-(u;71(0)5 (0, 0)) .

Theorem 6.11. The map germ nj2 : V n-+V ]Z is a germ of one-sheeted analytic
covering of Vj2=(Vjz, (0, 0)).

We must show that Theorems 6.10 and 6.11 imply Theorem 5.1. Note that
Theorem 6.10 yields that the map germ nJ3: VJZ->(M, 0) is a germ of a vr

sheeted analytic covering of (M, 0). Hence, by Theorem 6.11 and the first
assertion of Proposition 6.7, we conclude that

(6.21) ^=7TjS°7j:J2
o^ji is a germ of a ^-sheeted analytic covering of (M, 0)

which is the assertion 1) of Theorem 5.1.
To show the assertion 2) of Theorem 5.1, let uj be the multi-valued germ

defined by the diagram (4.8);. Then, by our constraction of the maps KJ it
follows

8XlUj(X(t, yf, 71))=51tf, yf, 7?0
(6.22)

for V( f ; 0, y'; ^dx,, 0)e(F,, (0,

Then, the irreducibility of the defining germ w3(x, ?i) of VJ2 yields that the
germ ^1=B1(tf yf, 3?0 is exactly ^-valued as a germ of a function in x. On
the other hand, (6.21) shows that the germ iij is at most ^-valued around *=0.
Hence the relation (6.22) shows that the germ uy itself is exactly ^-valued.

Thus Theorem 5.1 follows if we establish Theorems 6.10 and 6.11.

We shall prove Theorem 6.10 in §9, and Theorem 6.11 in §10. Before to
prove these theorems we need some preparation which is done in §§ 7 and 8.

§ 7o Newton Polygons of A(t, 0, f 0 and B3(t, 0, &)

In this section we decide the "principal part" of the Newton polygons of
the restrictions A\X>=Q and B j \ X ' = 0 of A(t, x'', £0 and Bj(t, x', ?i) for 1^/^r,
where A and Bj are defined by (6.8) in Notation 6.5.

Definition 7.1. 1) Let N* (/=!, 2) be Newton polygons. We say Ni is
properly contained in N2 (we denote this by Ni^N2) if

(7.1) NiCN2 and N1n3°N8=0

where 9°N denotes the strict boundary of a Newton polygon N, which is defined
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in 2) in Definition 2.3.
2) Let (I, a} be a germ of a complex manifold, and let /, geC^xc.cer.o) be

germs of functions. We say N(/) and N(g) /zaz;e a same principal part if

(7.2) N(/-g)<^N(/)=Nte).

3) Let /eOjx C ,((T,o) be a germ and let f ( x , y)= ^cv(x)yv be the Taylor
V = 0

expansion of / along y=Q (cv<=Oz,a for v=0, 1, • • • ) • We define the characteristic
polynomial function ch(/) by

(7.3) ch(/)CY,;y): = S LocMUO^ ((X,

where Loc[cv] : TaZ— >C is the localization of cv at a (see Definition 2.6).
Note that it clearly follows that N(/) and N(ch(/)) have a same principal

part. Moreover N(/) and N(g) have a same principal part if and only if

ch(/)=ch(g).

For this reason, we call the characteristic polynomial function ch(/) by the name
of the principal part of N(/).

Let us recall the irreducible decomposition of / locally at (0,

f(y', yd:=F(Q, y ' \ i ) i d x l 9 0)=n/,(;y', ?0 (

The aim of this section is to show the following

Proposition 7.2. The principal parts of the Newton polygons N(A(t, 0, £0
and N(Bj(t, 0, 10), 1^/^r, satisfy the following (7.4) and (7.5):

(7.4) chCB/f, 0, f 1))=ch(/,)(-fLF(e°), W for 1^/^

(7.5) N[ch(^a, 0, ^}}-t-

Remark 7.3. By the assumptions [B.I] and [B.3] of Theorem 5.1, we have

(7.6) N(/)=N(/(0, -,0, yn, 7l)).

(7.7)

Proof. The first equality (7.6) is nothing but the stability of N(/) in the
direction of LF(e°)=—dXn. Since 0(x)=Q is a good extension of the Cauchy
data 0(*')=0, (7.6) follows.

Note that there is a trivial inclusion

(7.8) N(/,(3>', ^^^Na/O, - , 0, yn,

On the other hand, the additivity property of Newton polygons yields
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(7.9) N(/)=SN(/ J).

Hence we have, by (7.6) and (7.9), the following equality:

(7.10) I3N(/,)=N(/)=N(/(0, - , 0, yn, ?0)= ijN(/,(0, - , 0, yn, 7 l))-

By (7.8) and (7.10), we conclude (7.7) as desired. Q.E.D.

Let us recall the map germ

V~=(X; S, Z): (C, 0)x(£, e°) —> (/'M, e°)

which is induced by the following family of characteristic curves of F:

{t^F~(t, *); ¥~(Q, e)=e=(Q, y ' ; i j i d x l 9 0)e=(£, e°)}-

We expand ?F~ with respect to f as the following form:

X(t, yr, 7l)=(0, y)+ S (* !)-V3{

(7.11) , 3^', ?i)=(7i, 0)+2^

Let ^:=ord[F(0, ^';0, 0)], which is equal to the approximation order
ord[F(%, 0, 0)] of the good extension 0=0, by virtue of the assumption [B.4].

Notation 7.4. For germs g, h^Os*c,u,v and for an ideal S of the ring
Osxc.co.o), we denote by N(^)cN(/z) [or N(Jg)mN(h) resp.] if

N(a^)cN(A) [N(fl£)<^N(A)] for any

Lemma 7.50 Let f ( y ' , ^0=^(0, y' ; ^ i r f jc j , 0), andf
defining ideal of {OJxCcSxC. Assume the conditions [B.1]-[B.4] o/ Theorem
5.1. T/zen ^/zg following l)-6) /io/d /or a/

2) NK^O'SI^/O, y', ^)]CN(/) for 2^j^n.

3) NKy')*-1^^,^', 7i)]cN(/).

4) (^O^'O^O, 3^',

5) (^O'-'O^iCO, y',

6) jyB(f, y, )y1)=^»-f .

The proof of Lemma 7.5 will be given in § 12.
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In this section we shall prove Proposition 7.2, under the assumption that
Lemma 7.5 is true.

Lemma 7.6. Let (¥', HJ: (C, ̂ tX(Cn~\ 0)^X(C, 0)fl^(T|M, (0, 0)V.7l be
the map germ determined by Claim 6.4. Then (Yf, HJ has the following expres-
sion :

,

(7.12) Y'(t, x', M=x'

( H,(t, x', M=Si
SMC/i f/lflf

"~a, o, eoeft
(7.13)

7tf, 0,

Proof. By the identity (6.5) and the expansion (7.11), it follows that

(7.14)
f

a, x', w+ s (f i)-v3< o, F'a, *', w, ^a,

Setting i=0 in (7.14), we have (F'; /f1)|t=0=U', fj). Hence we get

rrn rx'
(7.15) a, *',«=

UJ Lf
Note that the assertion 6) in Lemma 7.5 implies

xn=Yn(t, x', £J-t=xn+tY»(t, x', M-t
which shows

(7.16) Yn(t, x', f,)=l •

Substituting (7.15) into (7.14), with using (7.16) and

dt(X', 3^(0, y', ij^OpF, -7AF-3./XO, y'-.ij^x^ 0)

we have the following identities:

\x"-\ rx'l \Y"~] rdpFl
= \+t\ \+t\ \(0,Y';Hldxl,Q')

(7 17s I LXn] LXnl L 1 J L-1(7-17)

l, 0)



56 MAKOTO KAMETANI

Setting x'=0 in (7.17) and dividing it by t, we get

-Y"~(t, 0, ft)=3rF(0, tY"~(t, 0, ft), t; {ft+f#T(f, 0, ft)}dxlf 0)

(i\rV-1diX'(Q, tY"~(t, 0, ft), f, ft+fHT<f, 0, ft)).
i=2

Thus, by d§'F^(x, f, z) which is a consequence of [B.I], the first assertion of
(7.13) follows.

Setting (*', £0=(0, 0) in (7.18) and dividing it by t, it follows

(7.19) -#7(*, 0, 0)=-tH~(t, 0, 0)33F(0, tY'~(t, 0, 0) ; £#7tf, 0, 0)dxl9 0)

-3,^(0, ^F-a, 0, 0); tH^t, 0, 0)djd, 0)

+ ad'irv-^^o, ^r^tf, o, ox ̂ ra, o, oj).
1 = 2

Then the assumption [B.4], that is, F ( x ; 0, 0)e(%)9 yields

(7.20) 3X1F(0, ?F^a, 0, 0) ; 0, 0)e(0fl' * -

By the assertion 5) in Lemma 7.5, we also have

(7.21) tt-WtS^O, tYr~(t, 0, 0), OeW1 .

From (7.19)-(7.21), we get

-Hra, o, oew^+a^Ttf, o, o))
that is, there exist germs a(t), b(t) such that

-ffia, o, o)=^-i

Since l+tb(t) is an invertible germ, we get the second assertion of (7.13). The
proof of Lemma 7.6 is complete. Q. E. D,

Corollary 7.7. There exist map germs yff~(t, £0, ^7(0 and o(t> £0

a, o, ft)=ft<jtf, ft)+>?r(
following properties :

(7.22)

<7(0,£0 = 1-

f. We set

y"~(t, ^): = Yff^(t} 0, £0, 77(0:=f#7(*, 0, 0).

Then, Lemma 7.6 yields that y"~^(t, £0, ord[^7]^^and F'U^o^K/'^ 1). On
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the other hand, it follows

ffitt, 0, M=&+tH~(t, 0, £

7& 0,

Thus it suffices to set (70, fO^l+to-tf, &). Q.E.D.

Now we prove the assertion (7.4) of Proposition 7.2.
For l<j^r, Corollary 7.7 yields

B,(t, 0, $ J = f j ( Y ' ( t , 0, £0, #i(f, 0, £ 0)

Let //y, )7i)= Scv/y)^! be the Taylor expansion of fjm Then we have
v=Q

(7.23) B/i, 0, {0= S c.XfCy'-tf, f t),
=

Claim 7.8. Le£ ws ^ ^:=ord[//3;/, 0)]=ord[c0J. Then we have

B,(t, 0, 0)=Loc[coJ(3yB)^(l+0(0).

Proof. Set fi=0 in (7.23), then we have

(7.24) B,(t, 0, 0)- S ^(K^^a, 0), 1)^7(0"
V^O

coj(0, -.0,0

+ 2 (a D-'SS^o/O, - , 0, OU/'~a, 0)}a

since ord[^7]^^ by (7.22). Since ord[c0/]=^ and ord[3;//^, 0)]^1, it follows
that the second term in the right hand side of (7.24) has a vanishing order at
least

On the third term in the right hand side of (7.24), we note:

(7.25) Qj<Q ^ Cu(y'} is a unit in OS,Q.
r

Indeed, if cl3 is a unit then p3 :— ord[/;(0, )^i)] = l. Since we assume p= 2 Pj^^,j=i
we get r^2. Hence (7.25) follows. By (7.25) we have

ord[^(K/'~a, 0),

Hence we conclude
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B,(t, 0, 0)-c0,(0, -,0,

which shows Claim 7.8. Q. E. D.

From (7.23), we can find a germ g3(t, £0 such that

(7.26) B,(t, 0, &)= 2 ^ftG>*~ft, W,
V=Q

Claim 7.9. Lei MS put

(7.27) 57(r, f 0 := S <:„(*(?*-
V=0

T/zen /f follows that

. We write Bj(t, £J as 57ft, fO= S c^(OK- Then it suffices for

Claim 7.9 to derive

(7.28) (ord[c;,]t Af)eN(/,) for all ^e

From the definition (7.27) of Bj, the coefficients c^ft) are given by

(7.29) c;XO= 2 ((p-») irld^{c,My^(tf f 0, l))aft, fc)11} | fl=0

which yields
ord[c7tf]^ min ord[cy,-] .

Ogpg^u

Hence the fact

(ord[cvj, j«)=(ord[cl,Jf p)+(0, ^-L)eN(/;) for O^L^/^

implies the desired (7.28). Thus Claim 7.9 follows0 Q. E. D.

Claim 7.10. For l<j^r, it follows that

Proof. Let us denote the set VerNC/j) of vertices of N(/;) as

(7.30)

where the sequences {a/^)}, {^W)} are arranged as monotonely increasing in L
Since the Newton polygon N(/y) satisfies the coprimeness condition, it

follows that

(7.31) ch(/,)(-fLX*°), 6i)=ch(/j)(0, - , 0, t, 10
mj

Let e^eC be the coefficient of i0^;^^-^<ij jn B~j(t, f^. Since
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by Claim 7.9 and Remark 7.3, the expression (7.31) yields that it suffices for
Claim 7.10 to verify

(7.32) eil=Locl.cPl-tju,.i'](dllJ for (KArgm,.

We fix L It is clear from (7.27) that e}i depends only on the terms

c»,(f(y'~(f, &), l)){fiff(f, fi)}' for Q£v£p,-b,(X).

Since (a,(Z), p}— &,U))eVerN(/,) it follows that

Thus e^ depends only on the following term:

c-o./O, - , 0, 0

,.^, - , 0, f){ty'~(t,

Then, using the inequality

ord[3^pj._6.c,Xj-(0, -, 0,

for \a\ ^1, we get

yjr,.c^

Thus, by <r(0, f 0=1 (Corollary 7.7), we conclude (7.32).
The proof of Claim 7.10 is complete. Q.E.D.

Proof of (7.4). By virtue of Claim 7.10, it suffices to show

(7.33) ch[B/f, 0, 60]=ch(B7tf, £0).

By the definition (7.27), the equality (7.26) can be written as

(7.34) B,(t, 0, £0=fl7(f,

Since N(Bj)=N(fj) which is a consequence of Claims 7.9 and 7.10, it suffices
for (7.33) to verify

(7.35) N()?7(0^a,fi))^N(/,).

Putting f1==0 in (7.34), we have 5,(f, 0, 0)=B7(f, 0)+77(0^(^ 0). Since Claims
7.8 and 7.10 lead us to

,(f, 0, 0)]=Loc[B7(f, 0)]=

we have i]~(t)gj(t, 0)e(0^+1. Then, by g^^, we have
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f, ft),

which shows the desired (7.35).
The proof of (7.4) in Proposition 7.2 is complete. Q. E.D.

Now we prove the second assertion (7.5) in Proposition 7.2.
It suffices for (7.5) to show

(7.36) N f t ^ ( f , 0, £ i)-r

We recall the definition

A(t, x', £J:=X~(t, Y'(t, x', ft), H&, x', ft))

where .X^O?, y, -f]^=tX~[(t, y' , ft) is the first component of the chracteristic curve
t-*¥~(t, y', ft) of F. Since Z^ can be expanded as the form

Xl(t, y', 90=3,^(0, y'; 7idxi, 0)+ j^rf-'S^O, y, 7l)

=3,1/(y, J^+S^'O-'f'-WO), y, 71),

Corollary 7.7 yields that A(t, 0, ft) can be written as the form :

A(t, 0, ft)=^T(f, f(/'~(f, ft), 1), ftffft, ft)+^T(0)

(7.37) =d,lf(t(y'~(t, ft), 1), ftfftf, ft)+>?T(0)

+ S (» D-V-S^.CO, f(j;"~a, ft), 1),
1 = 2

Note that the expression (7.37) and the inclusion

(7.38)

imply the following equality:

(7.39) &A(t, 0, ft)

' ft Sd'lJ-V-x-i)1-1^-^,/^'^, ft), l), ftffft, ft))

+ft 23 (* O"1**"'[S^fiCO, £(y~a, ft). IX ftfftf, ft))

y'"%f> ft), 1), ftfftf, ft))]-

By virtue of the assertion 1) in Lemma 7.5, we have

(7.40) Nit he second term in the right hand side of (7.39)]<^N(/).

Hence, if we define F(t, ft) by

(7.41) F(t, ft) :=ft 23 tf IJ'V'X-l)'"1^'^^/^"^ fO, D, ft^tf, fi))t=i
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then (7.39), (7.40) and the inclusion N(tq^^N(f(yf, ^0) imply

(7.42) N(M(f, 0, W-rff, f0

Thus it suffices for (7.36) to derive

(7.43) N[/U fO-fi

Let f ( y ' , r]^ = ^cv(y
r}f]l be the Taylor expansion of /. Then (7.41) can

be written as

i=l v=i n

Put F(t, £0= : J] £ji(0£i- Then k&) can be written as the form

_ where
v=l

(7.44)

Since ord[^jj^z —l+ord[cv]—(z —l)=ord[cv], if follows

(7.45) (ordOrJ, A)e(ord[cJ, v)+5|cN(/) for

(7.46)
if either l^v<A or (ord[cv]( v)£VerN(/).

Note that (7.42) and (7.45) yield

(7.47) N(|^(f, 0, f^cconvex hull {N(f^(f, 0, fO-r(f, fO)WN(r(f, 10)}

Moreover (7.46) yields that, if we put

(7.48) A(f ,f i ) := 2

then we have

(7.49)

For ^ satisfying (ord[c^], /i)eVerN(/), we consider ku(t): Setting i>=Ji in
(7.44), we have

(7.50) ku(t}= ^(i\Yltl-\-iri^{d^c,(t(y^(t} 0), m<j(t, O)^-1 .

We take the expansion
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3ftcMy"~(t, 0), l))

=3',-1Ci(0, - , 0, 0+ S (air'Si-'SXXO, - , 0, t){ty"~(t, 0)}«,
i a| Si

and we put

(7.51) kW-= StfirV-X-D'-^iS^^CO, - , 0,

Then the inequality ord^jy^G?, 0)]^2 implies

>ord[c;i].
Thus, if we put

(7.52) /%(*,&): =
Jsi, cord[c^]

then we have

(7.53) N(A(f , f !)-

By virtue of (7.49) and (7.53), it suffices for (7.43) to show

(7.54)

We denote the set VerN(/) by {(a(^), p—b(^)\ O^^^m}. Then, substituting
Z=p — b(fjt) in (7.51), (7.52) can be written as

m-l

= s
Xidticp-wQ, - , 0, t}}a(t,

Note that

which implies

3^p-&c,)(0, - , 0, 0=3{-1EMOC

where g^^C' denotes the non-zero constant
Since N(rc^+1pr6c^)^N(/), if we put

then we have

(7.55)

Hence it suffices for (7.54) to show
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(7.56) r,(f, ^=t-1

We verify (7.56): Since 3rVac^=0 if *>a(jf)+l, we have the following
expression of F3(t, &) :

X S

AT!
where we set C(N, / ) :— ' for Q^i^N. Note that

S CW iX-D'-^-d-l^+CW 0)=1

which implies
m-l

)=r'& 231
/i=0

S t r m ~i
3fl 23 ^"""Pr600

o Lj«=o J

=r1f1J[3eich(/)(0, - , 0, 0,

Hence (7.56) follows.
The proof of (7.5) in Proposition 7.2 is complete. Q. E. D.

§8. Proof of VJi=R~j\^) as Germs of Hypersurfaces

In this section we prove that the image set FJ-2=
:^2(Fi7-i) has only one

irreducible component locally at (0, 0)^(M, 0)a;X(C, 0)fl, by means of the theory
of resultant. We also show that this irreducible component is given by a zero
set of a resultant R3(x, £i)(see Proposition 8.9 and Theorem 8.10).

We first replace the defining germs tA—Xi and Bs of Vji, which are ob-
tained by Proposition 6.7, with suitable polynomials tP—xl and P./with respect
to the variable t:

Lemma 8.1. 1) For l^S/^r, there exist a Weierstrass polynomial Q3 with
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respect to t of degree ^:=ord[//3;', 0)], and a unit £; such that

(8.1) Bj(t, x', %i)=Qj(t, xf, fOe/f, x', fi) m OcxSxc .co .o .w

where Qj and £j are uniquely determined by B3.
2) T/zere e;ds£ a germ A and a polynomial P with respect to t of degree at

most q—l=^qj—l such that

(8.2) A(t, x', &)=A(t, x', f 0 S Q,a, x', fO+Ptf, x', f 0
J=l

/N/

where A and P are uniquely determined by A.

Proof. By Proposition 7,2, we have N(5/f, 0, f))=N(/J) which yields

ord[B,(f, 0, 0)]=ord[/J(y
/, 0)]=^<oo.

Then the assertion 1) follows from the Weierstrass's preparation theorem. The
assertion 2) is a consequence of the Weierstrass's division theorem. Q. E.D.

Corollary 8.20 It follows that

(8.3) (tA-xlf BJ=(tP-xl9 Q,)

as ideals in the ring 0 C x j f x c , c o , o , o ) f°r l^ij^r.

Proof, Let /, g be germs in £>cxMxc ,co ,o ,o ) . Then we have

Note that a transformation

is invertible, since BJ is a unit. Hence Corollary 8.2 follows. Q. E. D.

By this corollary we can take tP—Xi and Qj as defining functions of V o

locally at (0, 0, 0)eCxA/xC:

(8.4) (7,lf (0, 0, 0))={tf, x, fO;

Lemma 8.3. T/ze principal part of N(P(t, 0, f x)) /zas ^e same property (7.5)
o/ rte principal part of N(A(t, 0, f 0),

(8.5) N[ch(Ptf, 0, fiW-

Prd?^?/. By virtue of (7.5) in Proposition 7.2, it suffices to derive

(8.6) N&Mtf, 0, ̂ )-P(t, 0, fO
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By the definition of P we have

(8.2)^ A(t, o, eo-ptf, o, ej=A(t, o, eo n <?,(*, o, e o .
Note that the additivity of Newton polygons (Proposition 11.3) yields

since e, is a unit. Hence it follows that

N(n Q,(t, 0, ft))= 23 N(Q,& 0, &))= 23\ j= i / .7=1 j=i

Then, by (7.4) in Proposition 7.2, we have

o,(f, o, &)=

Thus the equality (8.2)' yields

N^Mtf, 0, W-Ptf, 0, fO

The proof of Lemma 8.3 is complete. Q. E. D.

Remark 8.4. It follows that

where (a(m—l\ p—b(m—T)} is the rightest vertex of N(/) except for (fl(m), 0),

Proof. Note that

(8.7) (fl(m-l), ^-Km-D

Indeed, for a germ g<=OC2, co .o) and for a vertex (a, 6)eVerN(#) with fe^l, it
follows that (a, &— l)eVerN(3flg), and that the operator

preserves the Newton polygon N(g). Hence (8.7) follows. Then, by Lemma 8.3,
we conclude dQgt(P)^a(m— 1). Since the other inequality q— l^deg£(F) is
trivial by the definition of P, the proof of Remark 8.4 is complete. Q.E.D.

Now we recall the

Definition 8.5. Let O be an integral domain, and let f(t\ g(t}^O[_t~] be
polynomials with O-coeJfficients of degree m, n respectively as follows:

i=0 j=Q

We define a (n-\-m}-square matrix D(f, g} by
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n m

(8.8) D ( f , g ) : =

0

flm-1 Co

' V 0

and we also define a resultant r(f, g}^O of f(t) and g(0 by

(8.9) r(/,*):

The following Proposition 8.6 is well-known (see, for example: [Na:
Theorem 4.11.1, p. 164]):

Proposition 8.6. Let O, f, g be as same as in Definition 8.5, and dj be the
(j, n+m)-cof actor of the matrix D(f , g). Then:

1) // either f or g is a monic polynomial then the following (a) and (b) are
equivalent as statements for an element c^O:

(a) ce=(f,g)om.
(b) There exist e3^O (1^/^n+m), e^O, and d^O—{Q} such that

(8.10) c=a0enJrbQen+m

(8.11) ej=(e/d)dj for l^j^n+m.

2) Let JC be an algebraic closed field containing the ring O. Let

1 = 1 .7 = 1

^ the factorizations of f and g in the ring JC[f], Then it follows that

(8.12) r(/,5r)=fl

Corollary 8.7. It follows that

(8.13) r(/,*)e

Proof. Let D:=D(f, g) be the (n+m)-square matrix defined by (8.8), and
let Dc be the cofactor matrix of /}. Since D°D=(dQtD)In+m, we have

Hence the condition (b) of the assertion 1) in Proposition 8.6 holds if we take

eji=dj (l<j<n+m) and d=e:=l.

Thus Corollary 8.7 follows. Q. E. D.
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Now we return to our problem. The first aim in this section is to show
Proposition 8.9 stated below. Before stating this, we introduce the

Notation 8.8. We set DJ} Rj respectively as

(8.14) DJ:=D(Qj,tP-x1\

(8.15) Rj:=r(QJttP-x^=dQtDj for l<j^r.

By Corollary 8.7, it follows that

where we put O:=OMxC,^,o^ Hence we conclude

(8-16) (F,2, (0, 0))c(^71(0), (0, 0)).

Proposition 8.9. The germ (Rj^Q), (0, 0)) of a hyper surf ace of MxC at
(0, 0) has only one irreducible component, that is, if

kW)
(8.17) R,(x, &)= n S2,(x, W*'"

is an irreducible decomposition of Rj at (0, 0), then k(j)=l follows.

Proof. Since (8.17) is an irreducible decomposition, we note

a)

(8.18) b) S*j (1<^<^&(/)) are irreducible in OMxc,u,v, and

c) there is no germ g(x, £0 satisfying S^j^gS^'

Claim 1). Set X* :=(Sj/(0), (0, 0)). Then, for any l^X<k(j] and for any
sufficiently small open neighborhood U of (0, 0) in MxC, it follows that

Proof . If we assume that Claim 1) is not true then there exist 1 and an
open neighborhood U such that

(8.19)

We set T:=USz,j. Then (8.19) yields T|^^=0. Hence the Riickert's

Nullstellensatz (§ 13) implies that

Since (5^) is a prime ideal, we have Te(S^;) which implies that there exists
7J (ifc^) such that S^e(5/i). This contradicts the condition c) in (8.18). Hence
Claim 1) follows.
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Claim 2). Let d :=deg£(P), and let us write

P(t, *', £0= S /V*', fOf .
t=Q

Then Pd\z^Q for any l^l<k(j] where we set Xx :=(Sj/(0), (0, 0)).

Proof. If Claim 2) is not true then the Riickert's Nullstellensatz yields
for some L We note that

(8.20) ord[S^(xlf 0, ••• , 0)]= : stf, ;)<oo.

Indeed, since Qy is a Weierstrass polynomial, we have

0, • • • , 0)=det

/*+! ! 0

-x,
X °

— Xi

which yields

Hence (8.20) follows.
Since Pd(x', £0 is independent of the variable xlf the following division

Pd(x', €0=OxS^+Pd

of Fd by SJI/A:, f 0 with respect to the variable %i is a Weierstrass division.
On the other hand, the condition Pde(S^-) yields

which is also a Weierstrass division of Pd by S^j with respect to ^i. '' Then
the uniqueness of Weierstrass divisions implies a=Q thus we have P^^O. This
contradicts the definition of Pd. Hence Claim 2) follows.

According to Claims 1) and 2), we have:

(8.21) LX,-(^X,f\JP-d
1(mr\U^0 for any X, U.

On the other hand, the assertion 2) in Proposition 8.6 yields

(8.22) [^-P?(0)]n£/cM^i)=^« ^ any Jl, U.

Indeed, for any fixed (x°, fD^PG-P^^fW, it follows that

(8.23) 0=P/*°, fD^PrfU'0, fl^nCjS*-^)
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where {a,} [or {£*} resp.] denotes the roots of Q3(t, x'Q, £5) [tP(t, x'°, £S)-*S]
in the algebraic closed field C. Since Pd(x'°, £!)=£(), (8.23) yields that there
exists a common root tQ:=al=fik. Hence we have (x°,

Note that (8.21) and (8.22) yield

(8.24) 7ujj(Xi)±0 and ^(X^n^X^,) for any 1, *'

On the other hand the inclusion (8.16) implies

*o>
(8.25) 7J1= JJ^Z,).

Thus we conclude that if &(/)!> 2 then the analytic set V 3\ is reducible at
(0, 0, 0)eC7xMxC7. But we have already shown that V n is irreducible by
Corollary 8.2 and Remark 6.8. Hence we get &(/)=! as desired.

The proof of Proposition 8.9 is complete. Q.E. D.

By virtue of Proposition 8.9 and of (8.16), for any j (l^j^r) and for any
open sufficiently small neighborhood U of (0, 0) in MxC, we have:

1) There exist an irreducible germ Sj(x, £0 and an integer v(/)^l such that

(8.26) R3(X, £ 1)=S,(x, fO1*" on t/.

2) Let -PdU', f i) be the leading coefficient in the polynomial P(t, x'} f i).
Then the following inclusions hold :

(8.27) 0^[/?71(0)-P

The second aim of this section is to show

Theorem 8.10. It follows that

(8.28) (VJ2) (0, 0))-(^71(0), (0, 0))

as germs of analytic subsets of MxC at (0, 0).

Our proof of Theorem 8.10 is based on the local dimension theory of analytic
sets which is summarized in § 13. We first remark a simple

Claim 8.11. The map germ nj2: (VJ1} (0, 0, 0))-KVJ2, (°> °)) « a finite

holomorphic map germ.

Proof. Since (Vjlf (0, 0, 0))={(£, x, £1); tP— x1=QJ=Q}f the map germ K&
is a restriction of a map germ 7rJ2 defined by the diagram:

(CjXO), (0, 0, 0)) C > (CxMxC, (0, 0, 0))

projection
If

-^ (MxC, (0, 0))
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Since Q}(t, x', £0 is a Weierstrass polynomial in t, the map germ 7rJ2 is finite.
Hence Criterion 3.6 implies Claim 8.11. Q.E.D.

Now we recall a way of regarding an analytic subset X of a domain D in
CN as a reduced complex space (X, Ox] in the sense of [Gr-Re]. According
to the summary of this way in § 13, we set

(8.29) Ox:=(0D/i(Xy)\x

where i(X) is the ideal sheaf of the analytic set X. Note that the Riickert's
Nullstellensatz asserts that, if X is defined as a common zero set of
(l<i^m) (we denote this by ^r=Null(/i, — , /m)) then

i(X)=i(N\ill(fl9 - , /m))=Rad[(/1- , /„)] (see § 13).

Hence any stalk Ox. x is a reduced ring, that is, Ox, x has no nilpotent element.

Lemma 8.12. Let (VJ1} OVjl) \_or (Null(^), ONulKRjJ resp.~] be the reduced
complex space which is obtained from Vjl[Null(Rj)'] by the above way. Then
these complex spaces are irreducible locally at (0, 0, 0) or at (0, 0) respectively,
that is, the following (8.30) holds:

(8.30) 0 !̂. co, o . o > and #NUIKB^.CQ,O) are integral domains.

Proof. By virtue of VJ1=Null(tP—x1, Q3) and of the irreducibility of the
ideal (tP-xl} Qj} at (0, 0, 0), we have

'•(V^Oco. o, o) = i(Null(tP- Xlf Q,))co, o, o)

Hence we have
^F^!, CO, 0 , 0 5 — OcxMxC.tQ.O.Ql/tfP—Xi, Oj )co .0 ,0 )

which shows the first assertion of (8.30).
By virtue of Proposition 8.9, we similarly have

where Ry and Sj are related as (8.26). Since S}(x, fO is irreducible at (0, 0)
we conclude that

ONUIKR^, co, o)— OM*C, co, o)/(S.?)co, o)

is also an integral domain. The proof of Lemma 8.12 is complete. Q.E.D.

Let X, Y be analytic sets and / : X-+ Y be a holomorphic map in the sense
of Definition 3.1. If we regard X [or Y resp.] as a reduced complex space
(X, Ox) [(Y, #r)] then the map / can be regarded as a morphism of complex
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spaces (/, /"): (X, Ox)-*(Y, OY} where /": OY-*f*Ox is a sheaf map on F,
which is defined in the canonical way mentioned in § 13 (Lemma 13.5).

Now we recall the definition of analytic subset Z of a complex space (X, Ox]
and its local dimension (Definitions 13.9 and 13.10). We regard the map germ
Kjz> 7,i->7,2cNull(/?,)=./?71(0) as a germ of a finite morphism

and apply the local dimension theory to the finite morphism xjz :
We first note that the finite mapping theorem (Theorem 13.14) yields that

the image 7,2=7r,2(7,0 is an analytic set of the complex space (Null(#,), ^NUIKB,)).
Then we have

(8.31) dimCo.o.o>(7,1, O

by virtue of Proposition 13.11. On the other hand, Proposition 13.12 yields

(8.32) dimco.o)(Null(/?,), (?Nuii«,))=dimco,o)(MxC)-l=7z.

By the isomorphic map germs

(7,!, (0, 0, 0)) ^- (graph(F ,), (0, e\ *°)) <^ (C, 0)x(Null(F,), *•)
Xji

we also have

(8.33) dimco> 0.03(^1, (5r,1)=dimC+dim£ — l=n.

Combining these (8.31)-(8.33), we get

(8.34) dimco, 0>7,2=dim(0. 0)(

Since we have observed that the complex space (Null(/?,), ONUIIC^)) is
irreducible at (0, 0) in Lemma 8.12, we conclude that there exists an open
neighborhood U of (0, 0) in MxC such that

as a consequence of Proposition 13.13.
The proof of Theorem 8.10 is complete. Q. E.D.

§ 9. Irreducibility of R3(x, f 0

In this section we complete the proof of Theorem 6.10. By virtue of
Theorem 8.10, it suffices to show the following

Theorem 9.1. Under the assumptions [B.1]-[B.4], for the resultants
Rj(x, fi)=r«?/f, x', &), tP(t, x', £i)-xO, l^j^r, it follows:

1) Rj(x, 60 w locally irreducible at (0, 0).
2) Rj(x, 60 has the finite order v, := S v(fjt) with respect to 61 :

GM
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(9.1) ord0[/?XO,fi)]=^.

We derive Theorem 9.1 from the following

Proposition 9.2. The Newton polygon N(Rj(xlt 0, ••• , 0, £0) of the restriction
RJ\X'=Q is given by

(9.2) N(/?,(*lf 0, - , 0, ft))=
Ai

where we denote by N a > j g £/z0 following Newton polygon (see Notation 2.10):

(9.3) Na.^:={(s, 0; s^O, f^O, (s/a)+(f/j8)^l} .

Lemma 9.3. Proposition 9.2 implies Theorem 9.1.

Proof. Since the assertion 2) in Theorem 9.1 is a direct consequence of
(9.2), we only have to show the assertion 1) in Theorem 9.1.

By virtue of Proposition 8.9, we have known that Rj(x, £0 has only one
irreducible component at (0, 0), that is, there exists an irreducible germ Sj at
(0, 0) such that the following (8.26) holds :

(8.26) Rj(x9^=Sy(x9^rs^

Thus it suffices for Lemma 9.3 to show

(9.4) p(/)=l for l^;^r.

We first observe the

Claim 9.4. The finite sequence {v(fA)/q(fji); l^jM^m:=#SegN(/)} is mono-
tonely decreasing in p :

(9.5) v(l}/q(l}>v(2}/q(2}> - >v(m)/q(m}.

Proof (of Claim 9.4). Recall the definition

(4.6) v(^p(^{a(^

in Definition 4.1, which yields

where K(fjL):=p(ft)/q(fJi). Then we have
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Since p(fjt)=/o(fjt)q(fji) and ic(fj)— tc(fji+l)>Q, we get

which shows Claim 9.4. Q.E.D.

For 1^/^r, we denote the subset M;c{l, 2, ••• , m} by

M ;=:{^(fc); l<k<mj:=^Mj} with

Then it follows that

(9.6) VerN^/^O, - ,0,60)

= {(s, 0; s=0(A(

Indeed, (9.6) easily follows from (9.5) and Lemma 0.2, under the assumption
that Proposition 9.2 is true.

Proof of Lemma 9.3 (continued). Setting x'=Q in (8.26) we have

#,(*!, o, - , o, eo=s,ulf o, -,o,£o i ;c'>.
Thus, by the additivity of Newton polygons, it follows

(9.8) N(fl,(*!, 0, - , 0, fO)=^0')N(SJ(xlf 0, - , 0, £0).

Note that the Newton polygon N(Sj(x1} 0, ••• , 0, fO) can be written as the form

N(S,Ulf 0, - , 0, &))= ]§ N a C i ) i j 8 c» (Na ,^g is defined by (9.3))

for some positive integers a(i), fi(i) satisfying

Thus, from (9.8), we have

t C j )
(9.9) N(Rj(xlf 0, - , 0, fO)= 53

Comparing (9.9) with (9.2) we get

iO')
S Ngc^)>t3c ; l)= 2 NvCi7

pGMj i = l

which implies

i'0')=^ (:=*M^) and

since (v(^)/q(iJL)} and {j8(0/«(0} are monotonely decreasing. Hence we have
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(9.10) v(j) is a common divisor of U {q(p\ v(u)} .
^eMj

Note that the greatest common divisor (q(fji), v(p}} is given by

Hence the coprimeness condition (q(p\ p(p))=l yields

Thus the niceness of the subset M,- implies

GCD u (q(i*\ *(AI)}=GCD u

Then (9.10) yields (9.4) as desired. The proof of Lemma 9.3 is complete.
Q.E.D.

It remains to show Proposition 9.2. We note that it follows

(9.11) N(Qj(t, 0, f1))=N(/J

by virtue of Proposition 7.2, Remark 7.3 and Proposition 2.12.

Lemma 9.5. Under the following condition

(9.11)' U(Q,(t, 0, &))=

irreducible Weierstrass polynomials Q^(t, fi
#SegN(/)) such that

(9.12) 0/f, 0, ft)= n O^y, fi) /or 1^/^r, GTirf
//eMj-

(9.13) N(Op=N^).pc/.).

The proof of Lemma 9.5 will be given in § 14.

Let gi(t), g2(t) and h(t) be polynomials with coefficients in an integral
domain O. Let r(g, h) be the resultant of g and h defined by (8.9). Then the
assertion 2) in Proposition 8.6 yields r(gig2, h)=r(g1} h)r(gz, h). Thus the asser-
tion (9.12) in Lemma 9.5 implies

(9.14) R j ( X l , 0, $i)=r(Q/f, 0, ft), tP(t, 0, f^-^i)

=K n QW, fo, ̂ a, o, eo-^o
p&

= n
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By virtue of (9.14) and of the additivity of Newton polygons, it suffices for
Proposition 9.2 to show the following

Proposition 9.6. For l<^m, we put

rfl(xl9 £i):=r(Q~(f, &), tP(t, 0, ̂ -x,) -

Then it follows that

(9.15) N(rAI)=N (zCAD.^).

The first step of the proof of Proposition 9.6 is to show the

Lemma 9.7. There exists the following inclusion :

N(7>)CNflCAo.t>c/o for 1^/z^m .

Proof. We write the Weierstrass polynomial Q~ as the form

«cjo
Qltt, fi)= : S u>v(£i)f (uw>(fi)=l and u;l;(0)=0 for Orgy <<?(,«)).

v=0

We also write

r P(^, x', H=:*SPv(x
f, Mf and

where we set
for

Remark that it is not necessarily that s5_i^0. But if we define a (q+q(ft))-
square matrix Dfjt(x1, f 0 by

1 Wqtpl-i WQ ̂

o ^^
^x 1

1

Sq-l Sfl

Sq-i "

0

^x^

x Ijl

x^ o

then we always have

(9.17) r,(Xl, f0=det [/y*lf f0]

since Qj(^, fi) is a Weierstrass, hence a monic, polynomial.
We fix fj. and denote the (2, &)-component of D^XI, f 0 by d i k ( x i , f i). Then

rfi.* is given by the following (9.18) [or (9.19) resp.] for l^i<q [for



76 MAKOTO KAMETANI

q+q(t*ft:

(9.18) ditk=\ Wq^+l~k

( 0 for k<i or k>i+q([t)

— Xi for i—k

(9.19) d« .* = ' Si-*-i(£0 for i—q^k^i—1

0 for k<i—q or &>z

By the expressions Q^(t, £0= 2 wJJzdt* and P(J, 0, f 0= 2 SiX£iX"> we have

Thus (9.13) in Lemma 9.5 and Lemma 8.3 yield the following inequalities:

(9.20) I

Now we estimate the Newton polygon N(r^). Since rp&i, f 0 can be written
as

r^Xi, |0= 2 sgn(^) n di.«ct)(^i, fi)

where (5[n] denotes the symmetric group of order n, it suffices to estimate

for

Note that we may assume that 7re<5[#+#C«)] satisfies

(9.2i) q+n d i i j rc»*o.
i = i

Under the conditions (9.18)-(9.21), we have
g+gC/O x g v

TT ^ —I TT ^ . V yr \a(?T) TT ^.

1=1 ' \ i=l ' / i^q+l
x&rt

such that

(9.22) aW=)jt{t; i^q+1, x(i}=i]

and that ^(TT) is estimated from below as follows:

(9.23) £(TT)S 2 It=i
+i^i[~

Note that (9.23) is equivalent to

(9.24)



ON MULTI-VALUED ANALYTIC SOLUTIONS 77

Indeed, the right hand side of (9.23) is equal to

q

-K(ft) 23 {i-ff(0}+S

Since the first and second terms vanish, (9.23) is equivalent to

(9.23)'

Note that the identity K(fjt)g(fi)= p(ji) implies

K(p)a(fi)

Hence (9.23)' is equivalent to

which shows that (9.23) is equivalent to (9.24).
Note that (9.24) is also equivalent to

(9.25) {a

which shows

( ?..

1 = 1 /

Hence the proof of Lemma 9.7 is complete. Q. E. D.

In order to complete the proof of Proposition 9.6, we must show the^con-
verse inclusion of Lemma 9.7. For this purpose it suffices to show

(9.26) (q(fjt\ O)G=N(T>) and

(9.27) (0, v(ju))eN(7>).

Since Qffi, f0 is a Weierstrass polynomial in t, it follows

0
ti, 0)=det
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which shows (9.26).
To show (9.27) we must consider the case that the equality holds in the

inequality (9.23) with a(;r)=#{* ; i^q+1, n(i)=i}=0. Thus we consider

(9.28) ordCS' sgn(jr)
a i=l

where S' denotes the sum of ?re (5 [#+#(/*)] satisfying

f
(9.29)

( i^n(i)^i+q(tf for all l^'^tf.

f
(9.30)

for all

Note that the coprimeness condition of N(/) yields that (9.29), (9.30) are equi-
valent respectively to

(9.29)' q(tf+i-n(i)=Q or =

fl(«— 1) or a((i) if !<
(9.30)' i-w(i)-l =

a(m—l) if fjt= m

Case 1. When n<m. In this case the sum (9.28) contributes to r^=
as the following form:

(9.31) (9.28)=ord[£(det ^)(det 5)(det C)] where e = ±l

such that A, B and C are determined by the following (9.32)-(9.35):

(9.32)

| ,;— w0 ̂ ^ ^ appears he

%x 1 j WQ \ B app

H1\.l"-\1 ^ .̂..̂ .........j
C appears here. x--X x

0 i Q c

°q-l i ^a(^£) ^a(^i-i)

;re.
jeers h

^
l

^ " x x v

ere.

x.

i, — »ra»j

x

~*1

q

9(
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(9.33) A

(9.34) B

From (9.31)-(9.35) we have

ord[(det4)(det£XdetC)]

Since ord[_wQ~]—p(fjt)} the right hand side can be written as

Hence, by v(^):=XA«){a(^-l)+l}+^){#-%-l)-l}f it: suffices for (9,27) to
show

(9.36) ord[sac^-i) — sa^^w^\=p— b(p — 1)— 1 .

Recall that Lemma 8.3 asserts

(8.5) N|>(f, 0, W-r^chC/X-flLX*0), W

which implies

(9.37) S a c ^ ( f i ) = L o c [ c p . 6 ^ ) ] ( 3 V B ) f ? - 6 c ^ - M l + 0 ( W } for

where ^^(3;') denotes the i;-/f/i Taylor coefficient of f ( y ' , )?i).
To derive (9.36) we need to write the value A^C— {0} defined by

(9.38) w*(M=Q~(Q, f i)=^f f

by means of the terms {Loc[cp_&CA)](91/7l); O
We shall prove the following

Lemma 9.8. It follows that

(9.39) ^Ai=Loc[Cp.6^-i)](3yn)/Loc[cp_fl^)](3yn) /or /^l.

In order to show Lemrna 9.8, we use the following properties of charac-
teristic polynomial functions :

Lemma 9.9. Let (S, G] be a germ of (n — Y)-dimensional complex manifold
at a point a with n^2. Let f, g be holomorphic germs on 2xC at (a, 0), and
let ch(/), ch(g) be the characteristic polynomial functions of f , g which are de-
fined by Definition 7.1. Then we have
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1) ch(ch(/))=ch(/) .

2) ch(/s)=c

Proof. Recall the following equivalence

ch($)=ch(A) «=4 N(£-A)

Then the assertion 1) immediately follows from

(9.40) N(/-ch(/))^N(/)=N(ch(/)) .

Note that (9.40) and the additivity property of Newton polygons yield

-f ch(g))=N(/)+N(g-ch(g))

Hence we have

Thus the assertion 2) also holds. Q. E.D.

Corollary 9.10. For holomorphic germs gi, ••• , gk on ZxC at (a, 0), it
follows that

(9.41) ch( n gj)=ch( n chte,)) .
\.7 = 1 / \J = 1 /

Proof. When k=l, (9.41) is nothing but the assertion 1) in Lemma 9.9.
Thus we may assume k^2. Then the assertion 2) in Lemma 9.9 implies

n *,)=ch[( n

( k-i \ /k~z \
Hgj)^(gk}^=gk-iX(JIgj)ch(gk)f and applying 2) in Lemma 9.9,
.7=1 / \j = l /

we have

ch(n ^)=ch[^(*n ̂ chfe^Ochfe,)] .

Repeating such processes, we get (9.41) as desired. Q.E.D.

Proof of Lemma 9.8. Applying Corollary 9.10 to

/(O, - ,0 l f , f 1 )=n/ /0 f -,0,^),
;=i

we have

(9.42) ch[/(0, -., 0, t, fi)]=ch[nch{/XO, -, 0, f, foH.
LJ = 1 J
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Note that Remark 7.3 implies

f ch[/(0, - , 0, t, fi)]=ch(/XO, -,Q,t, fO
(9.43) \

{ ch[/,(0, - , 0, t, fi):=ch(/,XO, - , 0, t, &) for l£j£r.

Recall that Proposition 7.2 asserts

(7.4) ch(/,)(0, .- , 0, t, ^=ch(B,(t, 0, £,)).

Since B,-=Q,Bj with s/0)^0, Corollary 9.10 yields

(9.44) ch(fl/f, 0, f1))=ch[ch(ej(f, 0, £0)ch«?,(f, 0, &))]

=ch[e,(0)ch«?/f, 0. f 0)] •

Since, for a non-zero constant a<E.C, it is easily verified that

by the definition (7.3) of characteristic polynomial functions, (9.44) derives

(9.45) ch(fl,(f, 0, ei)=eXO) <±(Q,(t, 0, f 0) .

By virtue of (9.43), (9.45) and (7.4), we can write (9.42) as

(9.46) ch(/)(0, - , Q,t, f1)=ch|" f[ ch(fl,tf, 0, f t)L J = I

=ch[nie,(0)ch(0J(ff 0,
LJ = 1

where we put e:=ne/0)eC--{0}.^=1
Now, using the irreducible decomposition

(9.i2) Q,U, o, eo= n o^
^ueMj

in Lemma 9.5, we claim

[ 771
D-

Indeed, by (9.46), (9.12) and Corollary 9.10, we have

ch(/xo, - , o, t, f o=s ch[ n Q,(t, o, f ol=e chf n n QW, e
L J = I J LJ= I ^eM^- p

[ TO i r TO 1
nweo =ech nchco-^fo) .P=I J L^=i J

Hence (9.47) follows.



82 MAKOTO KAMETANI

Since N((?~)=Nq^ ip^r the coprimeness condition yields

(9.48)

where Ap is the non-zero constant defined by (9.38).
We note that Lemma 0.2 implies

r m "1 r r
(9.49) chl nch(Q;a, fOj=ch| H

.5.
On the other hand, we have the following expression:

in.

(9.50) ch(/)(0, - , 0, t, £,)= :

where cv(y
r) is the v-^/z Taylor coefficient of f ( y ' , f]i}.

By virtue of (9.49) and (9.50), we conclude that (9.47) is equivalent to

( A* \ / m

n^%n+

that is,
Loc[Cp_6CAO]OyJ=e^lAH.i>lAI+a ••• Am for

Hence we get the formula (9.39) as desired.
The proof of Lemma 9.8 is complete. Q.E.D.

Proof of Proposition 9.6 (continued). By virtue of the expression (9.37)
of saCAo(fi) and of Lemma 9.8, we calculate the left hand side of (9.36) as
follows :

-b(^-l') p-b(ft)-

Thus it suffices for (9.36) to verify
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But this is trivial since

p—b(fjt — l)>p—b(fjt) and a(fi)-\-\>a(fjL—1)+1.

Hence we get (9.36) which implies (9.27) as desired in the case 1.

Case 2. When fjL=m. In this case the sum (9.28) contributes to r^ as the
form

(9.51) (9.28)=ord[s(det /5Cm)_1)(det £)(det C~)] (e=±l)

such that B and C~ are determined by the following (9.52)-(9.54) :

(9.52)

(9.53) C-=soCm.1)/ac l f l)

r— /gcm>-i appears here.

0-54)

.».. „»— _ -J .

! i
C" appears here. — i

L i.

\sq-l Sadm-D

1
WQ

^x

^^ 1

h..........

a
8

**^N ^x^x Nx

111M/o

~~X\

/

From (9.52) and (9.53), we have

ord[(det Ac^^.iXdet S)(det C~)

Thus (9.51) implies (9.27) as desired also in the case 2.
The proof of Proposition 9.6, hence that of Proposition 9.2, is complete.

Q.E.D.
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§ 10. One-sheetedness of Map Germs &J2

In this section we prove Theorem 6.11 which asserts that the finite map
germs nj2 : Vj1-^Vj2 are germs of one-sheeted analytic coverings of VJ2 for
l^j^r. Our proof starts from the following Euclidean algorithm:

Definition 10.1. Put O'.=OMxC,u,v and let JC be the quotient field of O,
that is, the field which consists of germs of meromorphic functions at (x, f i)
=(0, 0). We fix j and we define a finite sequence {s7(0; 1^^} of polynomials
in JC[£] as follows: For v=l, 2, we put

if
(10.1)

For v^3, we inductively define s~(t), av(f)^JC[t'] by the following division in
JCp] (the Euclidean algorithm):

(10.2) s~-2=ffvs~-i+s~ such that deg(sD<deg(sr-i).

Since JC[f] is a Euclidean ring, the division (10.2) determines {(s~, av}} for
3<iu<^k where k is the integer satisfying

(10.3)

Since deg(sST)=min{^, l+deg£P}^l, it follows that k^3.

Lemma 10020 For 3<^v<^k, there exist /^, g^^JC[t'] such that

(10.4) s~=f~sl;:+g~s~ and

( deg(/D=deg(sD—
(10.5) I

(

Proof. By induction on v\ For v=3, since

we can take fi= — aa, g7=l- Indeed, deg(^)=deg(l)=0=deg(s^)— deg(sD is
trivial, and the inequality

implies

Next, for y=4, since
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We can take f^=a^a^+l, g1——cr±. Indeed, we have

deg(/7)=deg((7s<74+l)=deg(sr)— deg(s7) and

Now let i^5. By the inductive assumption it follows that

Thus it suffices for (10.4) to put

/7 :=/r~2— tfy/7-i , g^ :=<§7-2— tfv

Then the inductive assumption yields

deg(/r-a)=deg(sr)— deg(sr-s) and

Since the inequalities (10.3) and v— 3^2 imply

we get

The similar argument also yields

Hence we get Lemma 10.2. Q. E. D.

Lemma 10.3. For 3^y^k, there exist fv, gv^O[_t~] and cv, d»^O— {0} such
that if we set sv:=(dv/cv)s~ then the following (10.6)-(10.8) hold:

(10.6)

(10.7)

The polynomial h^:=tq7fv+gli is a primitive polynomial,

(10.8) that is, there exists no non-unit common divisor of all
coefficients of hv^O[f], where we put

=min{^, 1+degjP}.
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Proof. Let /~, g^^.JC[f] be the polynomials in Lemma 10.2. We put

Note that, by (10.5) in Lemma 10.2 and deg(s~-i)^l, we have

(10.9)

Since O is a unique factorization domain, this /C can be written as the form

/C(0= S (Jw<Of* (#:=0;+degU7))
t=0

where a^, blv^O are taken such as aiy and &*„ have no non-unit common divisor,
that is, they are coprime for Q^i^N. We take

cv:=GCD{bov, blv, • • - , &#„}

where the notation GCD denotes the greatest common divisor (Note that such
cv is uniquely determined up to unit elements, since 0 is a unique factorization
domain.). Then we have

h;/cv= S (bUaivy
i=Q

where b(v and aiv are coprime for Q^i^N, and where

GCD{^, b(v, "- , b'Nv} — l up to unit elements.
Now we take

w, alv, ••• , G^}

where LCM denotes the least common multiplier. Then it follows that

(10.10) (dv/cv}h~^O[t^ and is a primitive polynomial.

Thus, if we set
f* :=(dv/cv)fZ, gv '.=(dv/cv}g~

then (10.9) and (10.10) yield /„, gv^O[f\. Such constructions of cv, dv and of
/„, gv easily imply the desired conditions (10.6)-(10.8).

The proof of Lemma 10.3 is complete. Q. E. D.

Definition 10.4. We define sv(t)E:O[f] for l^v^k as follows:
1) For n=l, 2, we set

2) For 3^v^^, we define sv=(dv/cv)s~ by Lemma 10.3, where k and s^ are
defined by Definition 10.1.

Proposition 10.5. For the finite sequence {sv(t); l^v^k}dO[_t~] given by
Definition 10.4, it follows that

(10.11) deg(s*.1)=l.



ON MULTI-VALUED ANALYTIC SOLUTIONS 87

Proof. We prove (10.11) by contradiction. Note that if <?J—deg(s2)=l
then k=3 follows, from deg(s8)=deg(sD<deg(sT)=tf7=L Thus (10.11) holds if
qj=l. Hence we may assume that #J=deg(s£)2^2.

We assume that the conclusion (10.11) is not true. Then (10.7) in Lemma
10.3 yields

f deg(/*)=deg(si)—deg(s*_i)^deg(si)—2 and
(10.12) \

( deg(g k)=deg(s2) - deg(sk _ 0 ̂ deg(s2) -2.

Note that the following inequalities hold:

P-Jd)^ if sr=tP-Xl.
(10.13)

if sr=<?,.

(10.14)
t(tP-x^q if s~=Qj.

By virtue of (10.12)-(10.14), we can write /*(0s2(0+£*(0si(0 as the following
form :

kQj+gk(tP-xJ if Sl=tP-xlf s2=Qj
(10.15)

if s,=Qjt s2=tP-Xl
qr

= ( ^ e J ^ Q j + f S ^tfP-^O (where e,, e'
\z=0 / \ i=o /

Let us recall the (#+ ̂ -square matrix Dj=D(Qj, tP—xJ defined by Notation
8.8 and Definition 8.5. We note the

Remark 10.6. Let at^O (Q^i^q—1) and b^O (Ogi^^— 1). Then the
following 1) and 2) are equivalent:

.
-*i)= S c/.

i=0 / \ 1=0 / 1=0

2) (Cg+g^.-i, Cq+qj-2f '•' , ^^(flg-i, "" > floj ^--1? "• > bo

Remark 10.6 and (10.15) yield that the relation

which is (10.6) for v=k, can be written as the following form:

(10.16) (0, - , 0, s*)=(0, eq-z, ••• , e0; 0, ^._2, ••• , efiDj.

Let 5i be the (2, ̂ +^)-cof actor of D^ and let Z)J be the cof actor matrix of
DJ. Operating Dj to (10.16) we have

(10.16)' (0, - , 0, s*)Z?J=(0, eq-i, - ,
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since DjDj=(det Dj)Iq+qj=RjIq+qj.
On the other hand, DjDj=RjIq+qj yields

where QjQ(x', £ 0 denotes the coefficient of degree 0 in t of Qj(t, xf, &). Hence
we have

(10.17) dq£(Rj) or dq+qj£(RJ.

Indeed, if we assume that (10.17) is false then we can find 5q, dq+Qj such that
dq=Rjdq, dq+qj=Rjdq+qj. Hence we get

Since Rj^Qt it follows l—5qQjQ+dq+qjXi=Q. This is a contradiction because
Q,0(0, 0)=0. Thus (10.17) is true.

Note that (10.16)' is equivalent to

(10.16)* sk(dlf "- , 5q+qj}=Rj(

Thus (10.17) yields

(10.18)

since the ideal (/?^) is a prime ideal of O (Theorem 9.1).
We return to the equality (10.16). Let Dj be the (q+qj— 2)-square matrix

which is obtained by excluding from Dj the first column and row and the
column and row. Then (10.16) can be written as the form

(10.19) (0, - , 0, s,)=(*«_8, - , eQ; eqj-t, - , efiD}.

Restricting (10.19) on {^=0}, and using (10.18), we have

(10.20) 0=(^g_2, .•• , eQ; <._2, - , e'0)D'j\ {Rj==0} .

Since

's eit* (if s^tP-
1=0

(if s^

is a primitive polynomial (Lemma 10.3), it follows that

(10.21) (eq_2, .-. , 00 ; eqr*, ••• , ^o) lf^=o}^0.

By virtue of (10.20) and (10.21), we get

Hence the Riickert's Nullstellensatz yields det(Z)J)eRad[(^)]. Since (Rj) is a
prime ideal, we get



ON MULTI-VALUED ANALYTIC SOLUTIONS 89

(10.22)

But (10.22) is a contradiction. Indeed, by the definition of the matrix D'3,
it follows that

ord[(det£>;)Ui, *', fi)lc*',e1)=o]=^—1

since Q3(t, x', £0 is a Weierstrass polynomial in t. On the other hand, we know

Thus we have
(det0})(*lf 0,0)^(^(^,0, 0))

which contradicts (10.22). This contradiction comes from our assumption
deg(s&_0^2. Hence it follows that deg(s*_0=l as desired.

The proof of Proposition 10.5 is complete. Q. E. D.

By virtue of Proposition 10.5, the polynomial sA_i(0 can be written as

(10.23) sk.i(t, x, £0=a(x, £i)t+b(x, £0.

In this situation we have the

Proposition 10.7. It follows

(10.24) a(x, £i)|uz j=o^0.

Proof. We first show the assertion (10.24) in the case &=3.
If k=3 then Proposition 10.5 yields

deg(sa)=l.

By Definitions 10.4 and 10.1, we have

lj if ^-^1+degjP.

P-x1 if ^>l4-deg£P.

Thus, in the case ^-^1+degjP, we conclude that the Weierstrass polynomial
Qj has degree one. Hence a(x, £0=1 holds. On the other hand, in the case
^>l+deg£P, we get deg£P=0 which derives a(x, fi)=P. Since the Claim 2)
in the proof of Proposition 8.9 shows that the leading coefficient of P does not
vanish identically on {Rj=Q}, (10.24) also holds in the case ^->l+deg£P. Hence
Proposition 10.7 holds if ft=3.

Now we prove Proposition 10.7 in the case ^^4. We assume that the con-
clusion (10.24) is not true. Then, since (Rj) is a prime ideal of Om.=OMxc,<A,v,
the Riickert's Nullstellensatz yields a(x, £0^(^-). Hence we can find a germ

such that

(10.25) a=RjQ.
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By virtue of (10.25) with the assumption £ — 12^3, Lemma 10.3 yields

Since R^(QJ9 tP-xjOif] (Corollary 8.7), we get

(10.26) b<=OC\(Qj, tP-xjom •

By Proposition 8.6, (10.26) yields that there exist el^O (l^i^q+qj, e^O and
— {0} such that

(10.27) b=QJ0eq—x1eq+qj and

(10.28) ei=(e/d)dt for

where di denotes the (*", #+^-)-cof actor of the matrix Dj in Notation 8.8.
Recall the relation

(10.29) RJ=dqQjQ-dq+qjx1

which is a consequence of DjDj=RjIq+qj (Dc denotes the cof actor matrix of Dj).
By (10.27)-(10.29) we have

(10.30) db=Qj0deq—x1deq+qj=QjQedq—x1edq+qj=eRj.

Claim 10.8. It follows that ft e (/?,).

Proof. Since (Rj) is a prime ideal of O, if we assume that Claim 10.8 is
false then (10.30) yields d^(Rj), that is, there exists a germ d~&O such that
d=Rjd~. Thus (10.28) can be written as

RJd^ei=dei=edi for l^i^q+qj.

Hence, by (10.17), we get e^(Rj). But we can choose d} e^O in (10.28) such
as d and e are coprime since O is a unique factorization domain. Thus it is a
contradiction that both d and e lie in (R}). Hence Claim 10.8 follows.

Q.E.D.

We continue the proof of Proposition 10.7. Recall the relation

(10.31) sk.1=fk.1s2+gk,1s1

which is a consequence of Lemma 10.3. Since the assumption &^4 yields
deg(s jk_a)>deg(s jfc_i)=l, we have

( deg(/^.1)=deg(51)-deg(sA_2)^deg(s1)-2 and

I deg(^A_1)=deg(s2)-deg(sfe_2)^deg(s2)-2.

Thus the inequalities (10.13, 14) imply that there exist cit c'^O such that
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Then Remark 10.6 yields that (10.31) can be written as

(10.32) (0, - , 0, fl> 6)=(0, cg_2, - , c0; 0, c^._2, ••• , c$D,.

Recall the (q+q3— 2)-square matrix Dj obtained by excluding the first column
and row, and the (g+l)-th column and row of Djt which is used in the proof
of Proposition 10.5. Then the relation (10.32) can be written as the form

(10.32)' (0, - , 0, a, 6)=(cQ_2, - , c0; 4,_2, - , c$D',.

Restricting (10.32)' on {Rj=0} and using a, b^(Rj) we have

0=(cg_2, ••• , c0 ; c'qj-i, ••• , CQ)DJ\IRJ=:Q}

which yields

(10.33) (detD;)|«^w=0

since the polynomial hk-i=t97fk^i+gk-i is a primitive polynomial. Then
Riickert's Nullstellensatz and the primeness of (Rj) imply that (10.33) is equiv-
alent to

(10.34)

But (10.34) is a contradiction since

det />;(*!, 0, OJeCx^J-1, £(R,(xl9 0, 0))=(

as like as in the proof of Proposition 10.5. This contradiction comes from our
assumption that Proposition 10.7 is not true. Hence Proposition 10.7 follows.

The proof of Proposition 10.7 is complete. Q. E. D.

As a corollary of Propositions 10.5 and 10.7, we get Theorem 6.11:

Proof of Theorem 6.11. For the polynomial sk-i(t)=a(x, £i)t+b(x, £0, we
define a map germ p : (MxC, (0, 0))->(CxMxC, (0, 0, 0)) by setting as

(10.35) p(x, &):=(-{&(*,

We show that p induces a meromorphic inverse V jZ-+V 3l of the map germ
n»:Vjl={tP-Xi=Qi=V}-+V»={R,=V}.

Note that Vj2— {a(x, ft)=0} ^ 0 (Proposition 10.7) implies that the intersection
germ 2 j :=V jZr\{a=Q} is a germ of nowhere dense analytic subset of VJZ. Let
(*°, £i)eV;-2— Jj. Since TT^ is an open map germ, that is, ^rj2 is surjective to
(Vjz, (0, 0)), there exists f°e(C, 0) such that (^°, x°, ̂ OeF^. Then we have

(10.36) a(x°, &)P+b(x', fS)=s*-i(f°, x°, K)=0

by virtue of s fe_i=/ fe-iS2+51jfe-iSie(^P— xif Qj). Since a(z°, f?)^0, the equation
(10.36) yields

(?, x\ &)=p(x', f?)
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which shows that the induced map germ

is a biholomorphic map germ.
It only remains to show that

(10.37) K^Z(£J} is a germ of a nowhere dense analytic subset of Vji

But this is easy : Since 7CJ2 is an open map germ at (0, 0, 0), we have

Then the irreducibility of Fyi at (0, 0, 0) yields (10.37).
The proof of Theorem 6.11 is complete. Q. E. D.

Chapter IV. Appendices

§ 11. Generalities of Newton Polygons

In this section we summarize basic facts on Newton polygons. The aim
of this section is to give proofs of Propositions 2.11 and 2.12.

Let S be a domain in Cn~l(n^2) which contains the origin throughout this
section. For a holomorphic germ

f ( y , r)= ^c,(y}Tv^OSxC, co, (ofoeOs.o)
V=0

we define its Newton polygon N(/), the strict boundary 9°N(/) of N(/), and
segments and vertices of N(/), by Definition 2.3. We also use Notation 2.4.

Definition 11.1. Let N be a Newton polygon. For a vertex
1) We define the left [or right, resp.] segment L(A) [R(Ay\ of A as follows :

We arrange vertices of N as

where finite sequenses {0(0)}, {6(0)} are monotonely increasing in 0. We set

f {tA(fji)-\-(L—t)A(fji—l); OfJ^l} if 02^1

1 A(0)+OxS+ if 0=0.

1 A(m)+R+xQ if jj.-—m.

2) We set ic(L(A)) [or, *(R(Aj) resp.]eQ+u{oo} by

(0) if 02^1 r f A;(0) if 0<z
\K(R(A(fji))):=l

o if «=0 L I 0 if ££=^
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where ic(fjt):=p(^)/q(fjL)^Q+ is defined by (2.8) in Notation 2.4.
First we show the

Proposition 11.2. Let f, g be germs on (SxC, (0, 0)) and let ^
N(g). Then the following statements are equivalent :

2) ,4eEVerN(/), BeVerNfe) sucfc

(11.1)

Proof. Note that the vector sum N(/)+N(g) is a closed, fij-invariant,
convex set, thus we can define Ver(N(/)+N(g)).

We first show 1)=}2). Since 1) yields

we easily have A^d°N(f) and
To show ^4^VerN(/), we derive the following implication (11.2):

f A=tA'+(l-f)A"(A', ^eN(/) with ^'^^x/ and f£E[0, 1])
(11.2)

i =^^=0 or f=l.

Indeed, A+5eVer(N(/)+N(g)) yields the implication

t=Q or t=l

since ^'+5, ^ + 5eN(/)+N(^) with A' + 5^,4" + 5 and ?e[0, 1]. Hence
(11.2) follows, that is, ,4eVerN(/). We similarly have 5eVe

Now we show the inequality (11.1) under the assumptions

(11.3) AeVerN(/), BeVerNfe) and

Since /c(L(^))>A;(^(A)) and tc(L(B}}>K(R(B}) are trivial, (11.1) is equivalent to

(11.4) ic(L(A))>ic(R(B)) and ic(L(B»>ic(R(A)).

By the symmetricity of A and 5, we only have to check the first inequality of
(11.4). Note that in the case fc(L(A))=oo or ic(R(By)=Q the assertion is trivial,
hence we may assume fc(L(A))<oo and ic(R(B))>Q, that is, both L(A) and R(B)
are segments in the sense of Definition 2.3.

We can therefore write L(A) and R(B) as

L(A)={tA+(l-t)A'; f€=[0, 1]}

0, 1]}

where yl'eVerNC/), jB'eVerN(^) with ^^ylx, 5^=5'. Note that the first
inequality of (11.4) is equivalent to the following (11.5) (see figure):
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(11.5) A+B^the closed half plane given by the closure of the upper
side of the line joining A'+B and A+B'.

"A'+B\ r—B+L(A) with the slope -K(L(A))

0

A+R(B) with the slope -ic(R(B))

A+B'

We note that ^+5eVer(N(/)+N(g)) implies (11.5), since A'+B, A+B' both
belong to N(/)+N(g). Hence we have the first inequality of (11.4) as desired.
Thus 1) implies 2).

Conversely we assume 2). It suffices for 1) to show that there exist two
lines a, a' passing through A+B with non-positive distinct slopes such that

(11.6) N(/)+N(s)cthe closure of

(the upper side of (j)n(the upper side of a'}.

We construct a, a' as the following forms :

a:=A+B+{(x, y); y = -cx}

a':=A+B+{(x, y); y = -c'x}

c :=mm{ic(L(A)\ K(L(B}}}>c' :=max{fc(R(A)), tc(R(B)}}

where, in the case c = °o, the line "y = — ex," denotes the vertical line *=0, and
"the upper side of a" denotes the right side of a.

Let vior v' resp.] be a linear functional on Rz which takes positive values
on the upper side of the line y =—cx[y =—c'x']. Then the inequality (11.1)
yields the following inclusions:

and v'(A

and v'(B

which imply

and

Hence we get (11.6) as desired.
The proof of Proposition 11.2 is complete. Q.E.D.

Proposition 11.3 (the additivity property of Newton polygons). For any
holomorphic germs f and g on (SxC, (0, 0)), it follows that

(11.7)

Proof. We take the Taylor expansions
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f ( y , r)= S ca(y}r", g(y, r)= j
v=0 V=0

oo / y

Of course we have (fg)(y, r)= S ( 2
y = 0 \Jl=0

We first show

(11.8)

It suffices for (11.8) to prove

(11.8)' (ord[ilo^-, veN(/)+Nte) if 2

since N(/)+N(g) is a convex, 5^-invariant set.
V

Assume 2 c ^ r f y _ ^ ^ 0 . Then we have

(11.9) oo> 0rds c^dv. ^ min {
L^=o J os^gu

Choosing ^'(0^^'^v) to attain the right hand side of (11.9), we have

Hence the inclusion (11.8) follows.
Now we prove the converse inclusion of (11.8). It suffices to show

(11.10) Ver(N(/)+N(£))cN(/£).

Let 4eN(/), 5eN(g) satisfy 4+5eVer(N(/)+N(g)). By virtue of Proposition
11.2, we may assume there exist ^'(0^'^v) such that

We must show

(11.11) o

Note that it suffices for (11.11) to verify

(11.12) o

for all

Since (ord[cA], >l)^N(/), (ord[dv.^], i/— ̂ )^N(g), we have the following
inequalities :

and
(11.13) for
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and
(11.14) for O^Va^

Consider the case JOA'. The inequalities (11.13) yield

since £(L(,4))>/5;(#(£)). In the case l<lf, the inequalities (11.14) imply (11.12)
as similar as the case X>X. Hence (11.11) follows. Thus we have (11.10) as
desired. The proof of Proposition 11.3 is complete. Q. E.D.

Corollary 11.4. Let 4eN(/), 5eN(g) such that

(11.15) L(A+B)=

Then it follows that the left segment L(A+B} of A+B is given by

A+L(B} if

B + L(A) if

L(A)+L(B) if

Proof. We classify the proof in the following three cases:

Case 1 K(L(Ay)*ic(L(B)\ Case 2 ie(L(A))=K(L(B)}<co and

Case 3

First we consider the case 1. By the symmetricity of the roles / and g,
we may assume je(LCA)) >*(£(£)). Since *(£(£))< oo, L(B) is a segment of
Hence we can find 5/(^5)eVer N(g) such that L(5) can be written as

L(B)={tB+(l-t)Bf ; t^lQ, 1]}.

Since the proof of 2)=H) in Proposition 11.2 shows that

it suffices for L(A+B}=A+L(B) to show

(11.16)

The relation R(B'}=L(B) and the inequality (11.1) yield

and
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Hence, by Proposition 11.2, we get (11.16) as desired.
Next we consider the case 2. Since both L(A), L(B) are segments, we can

write them as

L(A)={tA+(l-t)A'; fe[0, 1]} and L(B)={tB+(l-t)B' ; fe=[0, 1]}

where A'(*A)^Ver N(/), 5'(^5)eVer N(g). Then it follows

and

Hence Proposition 11.2 yields that A'+5'eVer(N(/)+N(g)) as desired.
In the case 3, it is trivial that

which shows L(A+B)=A+B+QxR+=L(A)+L(B).
The proof of Corollary 11.4 is complete. Q. E. D.

Remark 11.5. Proposition 2.11 follows from Proposition 11.3 and Lemma 0.2.

Proof. The additivity property of Newton polygons immediately implies

Thus the left equality of Proposition 2.11 is a direct consequence of Proposition
11.3. Hence it suffices for Proposition 2.11 to verify

m
(11.17) N(/*)=2iN4{^.p(/,,.

But this immediately follows from Lemma 0.2. Indeed, since we assume />(!)/
q(l)>--->p(m}/q(ni) in Notation 2.4, we get

which shows (11.17). Q.E.D.

Now we recall the coprimeness condition (Definition 2.5).

Proposition 11.6. Let f, g be holomorphic germs on (SxC, (0, 0)) satisfying
/(O, rfgW, r)^0. Then the following statements are equivalent :

1) N(/g) satisfies the coprimeness condition.
2) Both N(/), N(g) satisfy the coprimeness condition, and the following con-

dition holds'.

(11.18) for all .4eVerN(/), BeVerN(g) satisfying
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Proof. Since (fg)(y, 0)= f ( y , tyg(y, 0), we only have to consider the second
condition in Definition 2.5.

We assume that N(/g) satisfies the coprimeness condition. We first show
the condition (11.18) by contradiction. We assume that there exist
B^N(g) such that

(11.19) ic(L(Ay)=K(L(B))< oo .

Then it follows

and

Hence A+B^Ver N(fg) by Propositions 11.2 and 11.3. Then Corollary 11.4
yields L(A+B) = L(A)+L(B\ which shows that N(/g) does not satisfy the
coprimeness condition. This contradicts the assumption. Hence we have the
implication "1H(11.18)" in Proposition 11.6.

Next we prove, under (11.18), that N(/) and N(g) both satisfy the co-
primeness condition if and only if N(/g) satisfies the same condition. Note that
N(/) and N(#) can be written as the form (11.20), since f ( y , tyg(y, 0)^0 and

<1L20)

Since the condition (11.18) is equivalent to

(11.21) pi(pVqi(fi*PM/qM for all

Proposition 11.3 yields that
mi

(11.22)

with the AstfTzc^ ratios {pi(^}/Qi(^}i^^^m^{pM/qM}i^^m^ Hence we get
the following equivalence under the condition (11.18):

Both N(/) and N(g) satisfy the coprimeness condition.
pi(fjt) and ^i(^) are coprime for l^p^mi, and

(11.23)
and g2(^) are coprime for I^u<

a N(/g)=N(/)+N(g) satisfies the coprimeness condition.

By virtue of (11.23) and the implication "the condition 1)=X11.18)" we get
the desired equivalence between 1) and 2) in Proposition 11.6.

The proof of Proposition 11.6 is complete. Q. E. D.
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Proof of Proposition 2.12. We may assume our situation be as follows:
Let S be a domain in C71'1 containing the origin. Let f ( y , r)e^5xClco,o) be a
holomorphic germ which has a finite order £<=[!, oo) with resprct to r.

Let us denote the irreducible decomposition of / locally at (0, 0) by

(n.24) /-n/;a).
.7=1

We assume that the Newton polygon N(/) satisfies the coprimeness con-
dition, that is, the following two conditions hold:

(11.25) N(/)n(/2x 0)^=0.

(11.26) p(fjL) and q(p) are coprime for l<[ji^m:=#Seg N(/).

Recall that the integers p(fjt) and q(pL) in (11.26) are defined by

'Write VerN(/)=:{(fl(jf), p-b(fjt}); Org/^m} with

(11.27)
0=6(0)<6(l)<-<'ft(m)=i>=ordo[/(0,T)]

and put p(fjt):=b(u)—b([A—l) and

It suffices for Proposition 2.12, to show the following

(11.28)

2) N(/j) satisfies the coprimeness condition for l^j<*r.

3) There exist subsets M, of {1, 2, ••• , m}(l^/^r) such that

(a) M,-nMfe = 0 if j^k.

(b) {1,2, - , m } = U M ,
j=i

(c) N(/,)= S N^,.,^) for all l^j^r.

We first show the assertion 2) in (11.28). We fix ;', and put

Then, applying Proposition 11.6 to f—fjgj, we get the coprimeness of
Next we show the assertion 1). Assume that 1) is not true, then there

is^a number /(1^/^r) such that iXj)^2. For such a number /, we put

Then, applying Proposition 11.6 to / — f j g j , we have

(11.29) N(/J) satisfies the coprimeness condition.

Then, applying Proposition 11.6 to f], we get
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(11.30)
for all A, 5eVer N(/,) satisfying n(L(A)\ /e(Z,(B))<oo .

But (11.30) is impossible for A—B satisfying ic(L(A))< oo (note that the existence
of such a vertex A is a consequence of #Ver N(/</)^2). This contradiction
comes from the assumption v(/)^2. Thus we get the assertion 1) in (11.28).

Now we prove the assertion 3) in (11.28). By virtue of 1) in (11.28), we
have the following irreducible decomposition of / locally at (0, 0) :

(11.24)' /=J?A

Since each N(/;) satisfies the coprimeness condition, we can write N(/<7) as the
following form for 1^/^r:

mj

f N(/,)=
(11.31)

3) > 0 .

Claim 11.7. If j*k then it follows that

(11.32) {^M/^»}i^

Proof, If contrary, there exist numbers / and k ( j ^ k } and v, v' with 1^
such that

(11.33) PM/qM--=Pk(v')/qkW.

Then Proposition 11.6 yields that N(/^/») does not satisfy the coprimeness con-
dition. Hence, regarding / as f=(fjfk)( II A), Proposition 11.6 leads us to

i*J,k

N(/) also does not satisfy the coprimeness condition, which contradicts the as-
sumption of Proposition 2.12. Thus Claim 11.7 follows. Q.E.D.

By virtue of Proposition 11.3 and Claim 11.7, we get
r r mj

(11.34) N(/)= S N(/,)-= S 2 N, oo, p a,,
J = l J = l V=l J J

r
with the distinct ratios U

; = l

Comparing (11.34) with

we get the following disjoint decomposition of the set of ratios:

(11.35)
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Note that the coprimeness conditions of N(/) and N(/>) yield the following
equivalence :

( p(p)=pj(v) and
(11.36) P(&/q(&=PMIqM&\

( 4(^=

Thus, putting MjC{l, 2, ••• , m} for l<j<r as

M, : = {//; 3y (l^v^m,-) such that

we conclude the assertion 3) in (11.28) as follows: Indeed, the assertions (a)
and (b) in 3) follow from the decomposition (11.35). Then the assertion (c)
follows from (11.31) and (11.36).

The proof of Proposition 2.12 is complete. Q. E.D.

§ 12. Proof of Lemma 7.5

In this section we prove Lemma 7.5.
Recall the notation: let t*-*W~(t, y', i)J=(X;B, Z}(t, y', rj,} be the charac-

teristic curve of F(x ; £, z)=G(x ; fi, {", z)—(-n, such that

?T"(0, y', ?0=(0, y' ; ̂ dxl9 0)eE-T|Mx {0} .

We assume the assumptions [B.1]-[B.4] of Theorem 5.1. For simplicity of
notations, we denote the variables (y'} 7]1)^T%M=Cn~1xC by (y, )?).

Lemma 12.1. We consider the following commutative diagram of holomorphic
map germs :

(12.1)
n

-»(C,

Then, for W^l it follows

(12.2) (1/«!)3{A(0= 2

x S nfi(l/i(;,

{&'(/, ^); l^j^N, l<A<^aj} runs through the following set'.

f *'(
(12.3) y

. Let Te(C, f ), ^"=7(0^^, 3^°)- We take the Taylor expansions
of H [or Y resp.] at y~ [at T] :



102 MAKOTO KAMETANI

Substituting yj=Yj(t), y^=Yj(C), we have the following expression of

s
l a i f c l

=A(O+ 23
I f l t l g l .7=1

Thus the coefficient of (if— O* in the expansion of /i(0 is given by

SU/aDWnO) 2 nfid/iV.-ZW-^Cr)
l a i s i y «a.^)}J = U=l

where {/(/, Z)} satisfies (12.3). Note that i(j, Z)^l yields

Hence a runs through l^|a|^/.
The proof of Lemma 12.1 is complete0 Q.E. D0

Now we prove Lemma 7.5. Since the assertion 6) in Lemma 7.5 is trivial
by the fact d%nF= — 1, we only have to prove the assertions l)-5).

We use induction on z^l. Note that

N((3051)CN(/) and

which are direct consequences of the definitions

0:=ord[/(;y, 0)] and f ( y , tf:=F(Q, y ; y d x ^ , 0).

Hence it suffices to prove Lemma 7.5 for l<i<qe

Step 0. When i=L
1) Since 3,^(0, y, 7])=dhF(o, y ; i)dxl9 Q)=d,f(y, 7), it follows

miWtXiW, y, ^-d,f(y, ?)}]=N(0)=0<g=N(/).

2) For 2^/^n, we have ^(0, y, ^)=0 which yields

3,5/0, y, 17)— 5/0, 3>, ?)3*m 3^ ; 7^^i, 0)-3,/(0, y ; ^^ 0)

= -dVJf(y, 7)-

Hence we get

N[(j)3£5XO, j, 7)]=N[(y)3y/(y, 7)]CN(/).

3) Since 5X0, y> ^= dirt ($u 'ls a Kronecker's delta) for lfg/^n, we get
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3tZ(0, y, )?)=7?3flF(0, y ; ydxl9 O^^/b, T?).

Thus we have

N[3,Z(0,;y,

4) For 2g/gn-l, the assumption [B.I] yields 3f/(0, y; ijdxl9 0)e(;y,
hence we get

8tXj(Qf y, 3)=3e/(0, j ; T?^, 0)e(;y, 7).

5) Since 3^(0, ;y, 7)=-i?3,F(0, y ; 9dz l f 0)-3XlF(0, 3; ; i)dxl9 0)

= -9,^(0, 3^ ;0 , 0) mod (17)

the assumption [B.4], that is, ord[FO ; 0, 0)]=# implies

The assertions l)-5) in Lemma 7.5 have been proved for /=!.

Next let 2^2. We assume that Lemma 7.5 is true for i'

Step 1. Proof of the assertion 1).
We use the following

Notation 12.2. Set Z+:=N\J{0}. For a multi-index

(a ; 0, fc)=(alf «/x, «„ ; ft, £' ;

we set

(12.4) F}fr&;fo(y9 tf:=d«x

Note that the sub-index (ax/, an, j9i) is associate with the tangential varia-
bles (x", *,.,&) of JE=T|fMx{0}sTSM.

According to Lemma 12.1, it follows

(12.5) (l/i 1)3^(0, ^ 7)

=(l/i)[(l/(i-l)!)3{-l3e1F(^; S, Z)] t=0

=(1/0 S (« 1/3 16 D-^ftj^' Ji
!S|aH-lj3|+*Si-l

X S /f(«, j8, * ; { «
( M C J , J l ) , d c / , J Z ) }

where K(a, j8, * ; {w(/, i), d(;, ̂ )}) is given by
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y, ^)niI

xn

and where {u(y, >l), d(/, X)} runs through the following set:

( u ( j , X ) ^ l , d ( j , X ) ^ l and
(12.7) ,_ ,_ / •

1 j = i x u ' ' • j=i

We classify the proof of the step 1 into the following four cases:

'Case 1.1. ai+|j8 ' |+fe^l.

Case 1.2. a1+\fi'\+k=Q, fr^l.

Case 1.3. ax+ j8' +^+^i=0, ax / |^l.

Case 1.4. ai+|j8' |+fe+j8i+|a' l ' |=0.

Case 1.1. In this case we note that K(a, ft, k; {u(j, X), d(j, /I)}) belongs to
the ideal

Thus it follows

(12.8) (yy-'WKa, fi, k ; {u(j, X), d(j,

Note that (12.7) yields

i-l^"2 u(/, /i)^M(/, J) for lgjg

and that the three blackets [ ](v> (v=l, 2,3) in the rightest hand side of (12.8)
satisfy

N([ ]ao)CN(/)

which is a consequence of the inductive assumption. Hence we get



ON MULTI-VALUED ANALYTIC SOLUTIONS 105

& k; {u(j, X), d(j,

Cconvexhull[N((3»)l)UN((i7)l)]+N(/)

Case 1.2. In this case, note that

K(a, P , k ; { u ( j , X), d(j,

Hence it follows

Wl^(K(a, p , k ; { u ( j , X), d(j, X)})

B\/i1+i))lI(3') l lc l- i>-1(

by the inductive assumption. Note that

which yields

(12.9) W'

We first observe

(12.10) NC(y)1-

Indeed, we can write

(12.11)

by virtue of the additivity of Newton polygons. Note that

which yields the first term in the rightest hand side of (12.11) is contained in
N((3/)l). On the other hand, we have

Hence (12.11) implies (12.10).
Next we observe
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d2.i2) myy-'-^-^wF&fr^
Indeed, we have

which yields (12.12).
By virtue of (12.10), (12.12), the inclusion (12.9) implies

(a9 P , k ; { u ( j , X), d(j,

in the case 1.2 as desired.

Case 1.3. In this case we have

K(a, p , k ; { u ( j , X), d(j,

Thus it follows

X', n) "n
. loj

(we denote 2" := "s
\ J=2

which is a consequence of the inductive assumption. Since (12.7) yields

i-l- "2 S {rf(/, ;)-!}= | a' | +i-l- "S S rfO', «
J = 2 J l= l ^=2 ^=1

^|a
we have

Hence (12.13) implies

)*-1^?)^,0^,!)^^, j3, fe; [u(j, X), d(j,

as desired, since |«"|^1 in the case 1.3.

Case 1.4. This case contributes to (12.5) as the following sum:

(12.14) (1/0 S (l/o» Dn8;.0^ Sn
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where {d(n, X); l^<an} runs through

(12.15) d(n,Z)^l and ^d(n,X)=i-l.

If an<i—\, then it follows

^
CN[(301]+N(/)

It remains the terms in the case an=i—l. Note that (12.15) yields

d(n, Z)=l for all l^l^an=i-l

in this case. Hence it suffices to observe the following term:

(12.16) (l/0(l/(i-l)!)no/i0-Si){3^»(0, 3>, 7)}'-1.

Since

dtXn(Ofy,^=-l and W-^SftVC^ 7>

the term (12.16) is nothing but

(l/ilK-iy-Wf&Ky,!)).

Thus the proof in the cases 1.1-1.4 leads us to

which is the assertion 1) of Lemma 7.5.

2. Proof of the assertion 2).
We use the following simpler notation than Notation 12.2:

Notation 12.3. For a multi-index (a; 0, fe)=(a1, a'; ft, $', k), we set

(12.4)' Fi&fo*\y,yY.=dld^

that is, we denote (al9 a") in Notation 12.2 by a'.

By virtue of Lemma 12.1, for 2^/^n, we have the following expression:

(1/0 S (a !]8Ift ir^^'/M
lS|a| + l ^ 9 | + *S<-l

x S ff(a,0, fc; {u(j',«, dO',
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where K(a, /3, k ; {u(j, X), d(j, X}}} is defined by (12.6), and where the index
{u(j> X), d(j, X)} runs through the set determined by (12.7).

We classify the proof in the step 2 into the following five cases:

/Case 2.1.

Case 2.2. j8 / |+fe=0, a^l, and fa^l.

Case 2.3. |j8' +Jfe+j8i=0, «i^l.

Case 2.4. ||8'|+fe+ai=0, fa^l.

Xase 2.5. \&\+k+al+pl=Q.

Case 2.1. Note that in this case we have
n

K(OLy j8, ^

Hence it follows

Since the inductive assumption yields the blackets [ ]C v> (v=l, 2) satisfy

we get

in the case 2.1.

Case 2.2. In this case we note that the inductive assumption yields

since z— l^w(l, ^)+d(l, >J). Then the following facts

NEOO'Cyr^NCO and NKy)-41-^

yield
N[(y)'A-(a, |8, * ; [u(j, X), d(j,

in the case 2.2.
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To consider the remaining Cases 2.3-2.5, we need the

Remark 12.4. If \$'\+k=Q and 2^/^n, then it follows

(12.17) d&$${-efrF-d

Proof. Since the derivation does not involve that of in the f ̂ -direction we
have

9»V {-£3.̂ -3^

Thus, restricting this on jE=TJMx{0} and using 33(Q, y, J?)=0, we get (12.17)
as desired. Q.E. D.

Case 2.3. In this case, Remark 12.4 yields

1+e}!)o))(3fcli^:)^i(0? y, ?]}}'

Thus it suffices to show

(12.18) ^(y^F^e^d^'^X^Q, y} 7?)]cN(/).

We first note

(12.19)

Indeed, the assumption [B.4] implies

j'
Hence we get

F^+l'j%(y, 7])\y=0^.(y)q-
Thus (12.19) follows.

By virtue of (12.19) we have the inclusion

(12.20) (3,

Note that

since i / 3 ' l + ^ + ^i^O in the case 2.3. Hence ^r:r=ord[/(3;, ^)] yields

On the other hand, it follows

f51-'^! «..)
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CN(/)

by the inductive assumption. Thus (12.20) implies (12.18) as desired.

Case 2.4. In this case we have

K(a, ]8, *; {u(j, A), d(j, #})e (dt11-*^ t=0).

Thus, by Remark 12.4, it suffices for the proof in the case 2.4 to show

(12.21)

The left hand side of (12.21) is contained in

(12.22)

Note that the inequality

i- St (d(l, ^)-l}^j8t+H-i-l- ,J2

yields

On the other hand, we have

where we note

i- 2 {dd.^-lJ-ia'l-l^jS.+j-l- 2

Thus we get

Hence (12.22) implies (12.21) as desired.
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Case 2.5. Since j8'| +fe+aJ+jS I=0, Remark 12.4 yields that it suffices to
show

(12.23)

The left hand side is contained in

Indeed, we have

% °J

= j=z Z=i

which yields the first inclusion, and it is trivial that the second inclusion holds.

By the cases 2.1-2.5, we get

N[_(yYdi5j(Q, y, ^)]CN(/) for 2^/^Jn
as desired.

Step 3. Proof of the assertion 3).
We use the Leibniz's rule which makes our proof of 3) reduce to another

assertions of Lemma 7.5.
We first note that the Leibniz's rule yields

(l/z!)S!Z(0, y, if)

=(!/«!) 2 2C(»-1,
.7 = 1 S^O

where C(r, s):=(r\)/{s\(r—s)\}. We classify the proof of the assertion 3) into
the following four cases :

(Case 3.1. /

Case 3.2. /^2, s=0.

Case 3.3. ;=l,s^l.

iCase 3.4. y=l, s=0.

Case 3.1. Since s^z— 1, the inductive assumption yields

fS/O, y, 7)]=NE(y)i-1-i(^)'3^J(0, 3>,

cN[(3;)sa?S,(0, 3^, 7)]
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Case 3.2. Since a/0, y, 5j)=0 for j>2,

NCW-'s/O, y, J?)]=N(0)=0CN(/).

Case 3.3. Note that the inductive assumption yields

)'— 'Of'1*! I «-o)] •

Since N((;y)«l)cN(/) and since

CN(/)
we get

in the case 3.3.

Case 3.4. Note that the assertion 1) of Lemma 7.5 has been already show
for i (Step 1). Thus we have

; 5, Z)} «=0]

By the cases 3.1-3.4, we get the assertion 3) of Lemma 7.5.

Step 4. Proof of the assertions 4) and 5).
Since the assertion 4) is trivial for j'^2, we only have to prove the assertion

5). We may assume q>2, since if q=l then the assertion 5) is trivial.
We use Notation 12.3. By virtue of Lemma 12.1 we have:

=(1/0 S (aljaiAO-'S^iJ^M-W-f-Sx^KO, >,
i S i a i + ! jS |+ feg i - i

X 2 K(a,p, k; {u(j,X),d(j,X)}')u(x-cL

where {u(j, Z), d(j, X)} and K(a, ̂ 8, ̂ ; {w(/, 2), d(/, ̂ )}) are defined by (12.7)
and (12.6) respectively.

By the Leibniz's rule it follows

3^ ; ^rf^i , 0)
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Remark 12.5. The following inclusion of ideals holds:

)^K{-)?F(^^f;'^^-F^V/;^U S K(a, & k ;

Proof. We only have to verify

(12.24) (y?-\-Ftf^{L$K(a, ft, k ; {u(j, X), d(j,

Note that this term appears only if 0i^l. Hence the left hand side of (12.24)
is contained in the following ideal S\

Since d(j, /O^z — 1, the inductive assumption yields

Thus (12.24) follows. Q. E. D.

By virtue of Remark 12.5, it suffices for the assertion 5) to show

H9 9^ fiAt-ifFlai-^'P'•& fffsv R bm t u f j Jh /Ki\Ltj.tjO) \y ) \-* (a , j 9 i ) i\~\ui} p} K , \ a\j, A/, u,\j,

We classify the proof of (12.25) into following three cases:

Case 4.1. | j8 ' |+fe^l .

Case 4.2. | j8' |+£=0, ^^1.

Case 4.3. | /

Case 4.1. In this case we have

K(a, ft, k ; {u(j, X), d(j, 2)})e

which implies that the left hand side of (12.25) is contained in

''^3j(0f y, 7}}}Jr(d't<in+1';(:>Z(Q} y,

Note that the Newton polygons of the blackets [•••]o) (1^/^n) are contained
in N(/) by the inductive assumption, and that

l i i : = {(s, 0; (s/(g-

Hence we get (12.25) in the case 4.1.
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Case 4.2. In this case we have

K(a, /3, k ' , { u ( j , X), d(j, JOneOf^

Thus the left hand side of (12.25) is contained in

(jO'-W'-^iCO, y, 7))=(y)i-dcl'

which is a consequence of the inductive assumption.

Case 4.3. In this case we have the left hand side of (12.25) is contained in

W'-W'1^

since the assumption [B.4] implies

Ffr$-°'"\v,*e(yrl-*l-*a'}.

Hence the following inequality

yields (12.25) as desired.

The assertion 5) in Lemma 7.5 is proved.

The proof of Lemma 7.5 is complete. Q.E.D.

§ 13. Summary of Local Dimension Theory

In this section we give a summary of local dimension theory of analytic
sets. Our summary starts from a review of a way of regarding an analytic
set X of a domain D in CN as a reduced complex space (X, Ox}> We only
give outlines of this way (for its detail, see [Gr-Re]).

Let X be an analytic set of a domain D, that is, X can be defined locally
as a common zero set of finitely many holomorphic germs of functions on D.

Definition 13.1. We define the ideal sheaf i(X} of X as the sheafication of
the following presheaf {(£/, <(£/))} of ideals of OD:

(13.1) £7: opening i — > i(U}:

Definition 13 .2, WTe define a structure sheaf Ox on X by

(8.29) Oz:=(

that is, the restriction on XaD of the sheaf OD/i(X} on D, where OD/i(X} is
defined by the sheafication of the presheaf on D which is determined by the
following data:
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U : open in D > — > OD(U}/i(X}(U} .

Note that each stalk ideal i(X}x~\\mi(X}(U} is a reduced ideal of ODtX,
U3X

that is, if fme=i(X)x(3m) then f ^ i ( X } x follows. Thus the stalk tfjr,* of the
structure sheaf Ox has no non-trivial nilpotent elements, that is, the ringed
space (X, Ox} is a reduced ringed space.

We regard an analytic set X in D as a complex space by this way, where
we use the terminology of "complex space" in the sense of [Gr-Re], that is,
a ringed space (X, O} is called a complex space if it is a C-ringed space with a
coherent structure sheaf O, and with a Hausdorff topological space X.

Remark 13.3. It needs more work to show that our reduced ringed space
(X, Ox} forms a complex space. This justification is based on the famous
Cartan's coherence theorem [Gr-Re : Fundamental Theorem 4.2, p. 84], which
says that the ideal sheaf i(X} is a coherent (5^-sheaf.

Definition 13.4. Let (X, Ox} be a complex space. We say (X, Ox} is locally
irreducible at x^X, if the stalk Ox,x is an integral domain.

Next we explain a way of regarding holomorphic maps in the sense of
Definition 3.1 as morphisms in the category of complex spaces.

Let X [or Y, resp.] be an analytic set of a domain £[£'], and let
/: X-+Y be a holomorphic map in the sense of Definition 3.1. Recall the (0-th)
direct image sheaf f*Ox which is defined as the sheafication of the following
presheaf {(17, (f*Ox}(U}}} :

(13.2) U:

We want to construct a morphism of the form

where /~: OY-+f*Ox is a sheaf map on Y, and where (X, Ox}, (Y, OY} are the
reduced complex spaces constructed by the way of Definition 13.2.

Since /: X—>Y is a holomorphic map in the sense of Definition 3.1, there
exists a holomorphic map g : D-+D' such that / is induced by g :

(13.3)

We consider the pull-back g*: OD>—>f*OD and show the

Lemma 13.5. There exists a canonical sheaf map f~: OY-*f*Ox on Y which
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is induced by g*.

Proof. Let U be an open set in Y, and let u^OY(U}. Recall that OY is
defined by the restriction on YdD' of the sheaf OD*/i(Y) on Dr. Hence we have
the following 1) and 2):

2) For any y^U, there exists an open neighborhood Ef in Dr and a section

such that

(13.4) u,=s'E..g(v) for any

where s^> 2 : OD'(Ef}/i(Y}(E'}-^OY,z—OD',z/i(Y}z is the canonical map.
We need the following simple

Claim 13.6. // zT&-(F)(£') then g*v~^i(X}(g-\E'}}. Hence there exist a
canonical map

(13.5) [g*] : 0D,(E'}/i(Y}(E'} — > OD(g-\E'}}/i(X}(g-\Ef^ .

Proof. This claim is a direct consequence of Definition 13.1 and (13.3).
Indeed, we have

Hence Claim 13.6 follows. Q.E.D.

Using the map [g*] given by (13.5), we define a section

w '.=
as follows:

II
(13.6)

where s8-ias')tx\O]&g-\Er))/i(X)(g-\E'))-+ODtX/i(X)x is the canonical map.
We must verify that the definition (13.6) is well-defined. Let y^U (CF),

let Ei (i=l, 2) be open neighborhoods of y in D', and let

0 = 1, 2)

be sections satisfying
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u,=SE>1.t(v1')=SE'2.z(v2') for any z^E(r\E'zr\Y .

Putting E" ~E(C\E'29 we have

(vi-v2)\E.=Q as an element of OD,(Eff)/i(Y)(Eff).

Thus we get

s*-ic*o,*([£*](t>i— z>2))=0e0^ia. for any x^g~\E*)

which shows that the section w=(wx)^ II Ox,x given by (13.6) is determined
x^f~l(U)

independently of the choice of v satisfying (13.4). Hence the sheaf map
f~\OY^u*-+w=f~(u)^f*Oz is well-defined.

The proof of Lemma 13.5 is complete. Q. E. D.

Definition 13.7. Let (/, /~) : (X, OX}-*(Y, OY) be a morphism of complex
spaces. We call (/, /") is a finite morphism if the underlying map / : X-+Y is
a finite holomorphic map in the sense of Definition 3.3.

Now we recall a definition of analytic subsets in a complex space, and their
local dimensions.

Definition 13.8. Let (X, Ox} be a complex space. We call a subset Z of
X is an analytic subset at a point x^X if there exist finitely many germs
/!, ••• , fk^Oz.x such that the germ (Z, x) of a subset Z at x is given by the
common zero set of flt ••• , / fe. We denote this by (Z, #)=Null(/i, ••• , fk).

Definition 13.9. Let (X, Ox} be a complex space. We define its local
dimension dimx(X, Ox} at a point x^X by

6imx(X, Ox):=mm{k', 3flf ••• , fk^OXiX such that

that is, the minimum integer of such numbers k of germs flf • • • ,
which make the point x be isolated in Null(/i, ••• , /*)•

Definition 13.10. Let Z be an analytic set of (X, Ox) at x^ZdX. We
define its /oca/ dimension dim^Z at x by

dimxZ:=dimx(Z, Oz)

where (Z, Oz) is the closed reduced complex subspace of (X, Ox) defined by

Oz~(Ox/i(Z)}\z

as similar as Definition 13.2.

Now we quote several propositions which are used in §§8 and 14.
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Propositon 13.11 [Gr-Re: Remark 5.1.1, p. 94]. Let

be a finite morphism of complex spaces. Then

dimx(X, Ox)^dimf<x,(Y, OY).

Proposition 13.12 [Gr-Re: Active Lemma 5.2.4, p. 100], Let (X, Ox} be a
complex space and let g^Ox.x be a germ. If the zero set NullCgO of g is
nowhere dense in (X, Ox), then

dimxNull(g)=dimx(X, 0jr)-l.

Proposition 13.13 [Gr-Re: Proposition 5.3.2, p. 103]. Let (X,OZ) be a
complex space which is locally irreducible at x^X. Let Z be an analytic subset
at x of (X, Ox). If

dimxZ=dimx(X,

then there exists an open neighborhood U of x in X such that

zr\u=xrMJ.
We also use the following theorem in §§8 and 14:

Theorem 13.14 [Gr-Re: Finite Mapping Theorem 3.1.3, p. 64]. Let
(f, /~) • (X, Ox)— *(Y , Oy) be a finite morphism. Then the image f(X) is an
analytic set in (Y, OY}.

The following famous theorem is used in §§ 4, 8, and 10 :

Riickert's Nullstellensatz [Gr-Re: Theorem 4.1.5, p. 82]. Let (X, Ox} be a
complex space, and let JdOx be a coherent sheaf of ideals with zero set NulKJ).
Let i(Null(c?)) denote the ideal sheaf of the analytic set Null(J), and let Rad(J)
denote the radical of J, that is, the sheafication of the following presheaf
{(U, Rad(i*)(£/))} of ideals of Ox :

U: open in Z-»Rad(J)(t/):={/eOz(C7); *m^N, fm>=J(U)}.

Then it follows that

§ 14. Proof of Lemma 9.5

In this last section we prove the following Theorem 14.1 which contains
Lemma 9.5 as a special case.

Let us consider a non-zero germ/ee>C2,o of two independent variables. For
a local coordinate system (x, y) at the origin satisfying
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(14.1) /(

we define the Newton polygon N(/) of / with respect to the coordinate system
by

f(x, y)= 2 cjkx*y* •— >N(/):=ch[ U (j,
J , k = Q LCjk*0

where ch[4] denotes the convex hull of AdR2, and we set R+:={t^R;
Since we assume (14.1), we can find positive integers p(p\ q(p) where

such that N(/) can be written as

(14.2) N(/)=

where we set

We may assume that p(p\ q([i) are arranged as

(14.3) p(l}/q(l)>p(2}/q(2)> - >p(m)/q(m}.

In this situation we have the

Theorem 14.1 There exist positive integers i(fjt), c(ft, i}, v(fjt, i) and non-unit
germs fpi^OC2,o such that the following l)-3) hold:

1) The following decomposition
m «AO

(14.4) f(x,y)=U ILfpt(x,yri'-i>P=I 1=1

is an irreducible decomposition of f ( x , y} in the ring Oc2,Q.
2) Each Newton polygon of ffn(x, y) is given by

(14.5) N(/,0=c(^i^Vc/o.p~c,o for l^p^m, l^i^i(

In (14.5), the integers p~(f£\ q^(fJt) are defined by

where (a, b) denotes the greatest common divisor of a,
3) For any p, {c(p, i), v(p, i}} l^i^i(p}} satisfies

i<.p)

(14.6) 2 C(?L, f MAI, 0=(XA«), q(!?b -
i = l

Remark 14.2. Theorem 14.1 contains Lemma 9.5 as the special case that
the following condition holds:

(14.7) (p(p), q(py)=l for all

Proof. The conditions (14.6), (14.7) imply

i'(AO=l, c(A£, l )=p(A«, l )=l f and
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Hence^Theorem 14.1 yields an irreducible decomposition

/(*, y ) = f L f p i ( x , 30

with the conditions

N(/ /ii)=N f l (AI) ip(A() for l^ugm.

Thus Lemma 9.5 follows from Theorem 14.1. Q,E. D.

Now we prove Theorem 14.1. We derive this theorem from the following

Proposition 14.3. Let g^Oc2,Q— {0} be a non-unit germ. Assume that the
complex curve Null(g) has only one irreducible component locally at the origin.
Then, for any local coordinate system (x, y) at the origin satisfying

it follows that N(g) has only one segment, that is,

(14.8) #SegN(£)=l.

Proof of "Proposition 14.3=} Theorem 14.1". Let

(14.9) f=ILgf™
J=l

be an irreducible decomposition of / in the ring OCz,o, and let (x, y) be a local
coordinate system at the origin satisfying (14.1). Since this coordinate system
satisfies (14.1)' for all gJ9 Proposition 14.3 yields

(14.10)

for suitable positive integers a(j\ b(j). With no loss of generality we may
assume

We take integers
0=Jo</i< - <Js = k

such as
and

(14.11)
for all

We set flji, b* (l^U^s) by the following conditions:

and
(14.12)
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Then, for l^j^k, we can find an integer d(j)>Q such that

for

Thus, by the additivity of Newton polygons, (14.9)-(14.12) yield

(14.13)
b1/a1>bz/a2> — >bs/as.

Now, comparing (14.13) with (14.2), we get

: = # { f } = *W = s and

j_

Note that the coprimeness (14.12) of a^, b^ implies

(14.14) q~(ft)=a^, £~(jfO=&j£, and (p([i), q(pi)}= S

We define i(p), c([t, i\ v(/i, i) (l^^z'(^)) an(i //^t(;!:
J 30 as follows

(14.15) c(^, 0 :=d(z+yA£_i), v(^, 2) ::=i

Then, from (14.14), (14.15), we have the irreducible decomposition
k m *(AO m iC/i)

with the conditions

and

- S
J=I+JP

Thus Theorem 14.1 follows if Proposition 14.3 is established. Q.E.D.

From now on we prove Proposition 14.3. We shall prove the following
contrapositive proposition of Proposition 14.3:

Proposition 14.4. Let g^Ocz,Q— {0} be a non-unit germ. If there exists a
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local coordinate system (x, y) at the origin such that

(14.16) g(x, 0)g(0, 3>)^0 and

(14.17) m:

then the complex curve Null(g) has at least two irreducible components locally at
the origin.

We prove Proposition 14.4 by induction on y:=ord0[g]. Since v=l im-
mediately yields m=l, Proposition 14.4 is trivial in the case v=l. Let v^2?

and assume that Proposition 14.4 holds for any germs with order O.

We first show the

Lemma 14.5. Let g(x, y} be a germ with a vanishing order v^2, and let
(x, y) be a local coordinate system satisfying (14.16) and (14.17). Then there
exists a local coordinate system (x~, y~) at the origin such that

(14.16F g~(x~, 0)^(0, 3O^O

(14.1?r m~:=%SQgN(g~)>l and

(14.18)

where g~"(x~, y~) denotes the expression of g by the coordinate system (x~, y"),
and N(g") denotes the Newton polygon of g~ with respect to (x~, y").

Proof. If either ord[g(x, 0)]=i^ or ord[g(0, y)]=v, then we can take a
local coordinate system (*~, 3;") as

(x~, y~) := either (x, y) or (y, x).

Thus we may assume

(14.19) 2,<min{ord[gU, 0)], ord[g(0,

Using the identification

we write g(x, y) as the form

(14.20) g(x, y)=Loc[g](x, y)+h(x, y)

where ord[/i]>p, and Loc[g] is a homogeneous polynomial of degree v. Note
that Loc[g] can be written as the form

(14.21) Loc[*](*, y)=cxV ft (x-

where i, /, w^O, v(k)^l satisfy the relation
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»+/+ S v(k)=
k=l

and where c, ek^C—{Q}. Moreover the condition (14.19) yields

(14.22) i>0 and ;>0.

Taking a linear coordinate transformation

we can write Loc[g] as

Hence if we choose e such as eeC— {0, el7 ••• , en] then we have

(14.23) Loc[£r](x~f 0)^0, and

Since (14.22), (14.23) yield

(v, 0), (i, p-f)eN(^) with (P,

(0, p)^N(g-)

we get (14.17)~ and (14.18). Note that {x--=Q} = {x~=Q} which yields

Hence (14.16)" also follows. The proof of Lemma 14.15 is complete. Q.E.D.

Now we prove Proposition 14.4 for the case i^2. By virtue of Lemma
14.5, we may assume

(14.24) 2^:=ord[g]=ord[£(*, 0)]<ord[,§-(0, ;y)]<oo .

Hence we have the following expression:

(14.25) LocHrfU, y)=cx* D. (x

where f^l, n^O, v(fe)^l with the relation

and where c, ek^.C— {0} with ek^ek~ if

In order to prove Proposition 14.4 by induction, we use the notion of blowing
ups of the complex curve Null(g) with center a point.
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Definition 14.6 (see, for example, [Hi: Lecture 1]). Let Z:=C2, let

;TO: C2-{0} —> P1:=(C2-

be the natural map. Let Z' be the closure of

graphic)-{(*, 3>; K: )?])e(C2-

in C2xP1, and let TT: Z'-»Z be the map induced by the following diagram:

C8XP1

projection

> Z=C2

This map TT : Z'— »Z is called the blowing up (or the quadratic transformation) of
Z i6>z'£/z center {0}.

14.7. The blowing up TT: Z'-»Z has the following properties:

(14.26) Z'=graph(7To)U({0} xF1)

(14.27) W1(0)={0}XP1

and the map TT: Z'->Z induces an isomorphism

(14.28)

. Since (14.27), (14.28) easily follow from (14.26), we only have to verify
(14.26). Let { ( x n , yn\ Cf n ' ^n])}n=i.2.... be a sequence in graph(^0) which con-
verges to a point (x, y ; [f : 77]) in CzxP1. Then the following two cases occur.

Case 1. When (x, ;y)=£0.

Case 2. When (%, ^)=0.

In the case 1, with no loss of generality, we may assume x^Q, Then we
have xn^Q for n>l. Hence the condition (xn, yn', Cln : ^7i])^graph(^0) can b3
written as

Thus, taking the limit n->oo, we have

(x, y ; K: 7])=(^> ^ »'

In the case 2, for any [f : 37] eP1, we can choose a sequence in graph(^r0)
which converges to (0, 0; [£: 77]) as follows: we set

( l /n ,d?/f) /n;K: 7 ] ) if
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Then the sequence satisfies the desired property.
Hence we get (14.26) as desired. The proof of Note 14.7 is complete.

Q.E.D.

We remark that Z' is equipped with a structure of complex manifold of
dimension 2. Indeed, we define two maps wx, wy by

wx: C23(;c, yj*—+(x, xy^, [1: 3>i

wv : C83(x l f y} H— > ( y X l 9 y ; [^
and set

Qx: = wx(C*), Qy: = w y ( C 2 ) .

Then they have the following properties (14.29)-(14.31):

(14.29) Z'=Qs\uQv.

y
W

(14.30) C2—>Qxc.Zr, Cz—>Qyc:Z'.

(14.31)
and Xi=x/y, yi—y/x" or "x=y=Q, x^i^l".

Notation 14.8. We denote the variable x1 [or yl resp.] by x/y \_y/x~\.

According with this notation, we have the following l)-3):
1) The coordinate neighborhoods Qx and Qy can be written as follows:

(14.32)
Ov={(y(x/y\ y ; Lx/y :

2) The blowing up ?r : Z'-^Z can be represented on the coordinate neigh-
borhoods Qx, Qy as follows :

(14.33)

3) In particular it follows that

(14.34)

By virtue of the above l)-3) we get the following figure (14.35) of Z' :

(14.35) !

the origin of Qy
^y/x

the origin of Q



126 MAKOTO KAMETANI

Definition 14.9. Let X be a complex curve defined by f ( x , ;y)=0 in a
neighborhood of the origin of Z. Let v=ord0[/] be the (vanishing) order of /
at the origin. We can write the pull-back /°TT as

f f ( x , x(y/x»=x*fi(x, y / x } on (Qx, ^n^O))
(14.36)

I f(y(x/y), y)=yvfi(x/y, y) on (Qy, Oyr\n'l(0y)

where f( [or f'2 resp.] is a holomorphic germ defined in a neighborhood of
ty [of flyOTT'CO)]. We set

Xi : = wx({(x, y / x ) ; f ( ( x , y/x)=
(14.37)

i: = w y ( { ( x / y , y] ; f i ( x / y , y)=

Then X{\jX'2 determines a complex curve X' in a neighborhood of n~\ty in Z'.
We call X' the sfratf transform of Z by the blowing up TT. Note that the blow-
ing up ^ : Z'-*Z induces a holomorphic map

(14.38) p:X' — >X.

This map p is called the strict transformation of A" wzY/i center {0}.

Proof of the well-definedness of X' . We have

x=y(x/y), y=x(y/x) and (x/y)(y/x)=l on QxC\Qy

which yield

Thus it follows that

(14.39) f i ( x / y , y)=(x/yy

Since x/j does not vanish on Qxr\Qy, (14.39) implies

X(=X'2 on Qxr\Qy

as desired. Q. E. D.

Now we return the proof of Proposition 14.4. Let g(x, y] be a germ of the
order v^2, and let ( x , y ) be the local coordinate system satisfying (14.24) and
(14.17). Recall the expression of the localization Loc[g] at the origin:

(14.25) k=1

where z'^1, n^O, and c, ek^C— {0} with

Lemma 14.10e Set X: = {(x, y} ; g(x, y}=Q} =Null(g\ and let X' be the strict
transform of X. Then

1) The pre-image p~l(ty=X' ^\K~\ty consists of the following finite points

(14.40) { ( x / y , y}^Qy ; y=Q, x/y=0, el9 - , *„}•
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2) Let g'2(x/y,y} be the defining germ of Qyr\Xr. Then it follows

(14.41) ordCo,o)[*J]^

(14.42) ordce;fe,o>[£2]^(£) for k = l, - , n .

Proof. We calculate the defining germs g((x,y/x\ gz(x/yfy) as follows.
Since g(x, y} can be written as

(where h(x, y}= S cqr5+r>y

the definition (14.36) and the expression (14.25) lead us to

(14.43) g&x/y, y)=y-v{Loclgl(y(x/y),y}+ S c^/
3+r>y

=Loc[£](x/;y, 1)4- 2 c9r
3-1- r>v

Since fiv/^7r"1(0)={(A'/3') ̂ ); ^=0}, we get

(14.44) rW^^K*/?, y)=(0, 0), («., 0)eC,; l^^^w}.

We similarly have

8i(x, y/x)

+ x3h1(x, y/x).
k = l

Thus (x, y/x)=(Q, 0)^{^/
1=0} which shows that

(14.45) (fl,-

Hence the assertion 1) of Lemma follows from (14.44) and (14.45).
The assertion 2) is a direct consequence of the expression (14.43): Indeed,

we have
ordCo.o>[g2]^ord0[gi(;r/:y, 0)]=*' and

Hence the proof of Lemma 14.10 is complete. Q. E.D.

Corollary 14.11. The strict transformation p : X'-^X determines the finite
holomorphic map germs

(14.46) / ,<*> : ( X ' , ( e k , 0)) — > (Z, (0, 0)) 6=0, 1, - , n

where we set eQ :=0.

We classify the proof of Proposition 14.4 for u^2 into the following two
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cases :
Case 1. When n^l, that is, %p~l(ty

Case 2. When n=0, that is, %p-\Q}=L

Proof of Proposition 14.4 in the case 1. Since £ c*> (&=0, 1, ••• , ri) are finite
map germs, we can regard them as finite morphisms by the way given in § 13.
Thus, by virtue of Proposition 13.14, the images p<k>(X') are analytic sets of
X, for 0<k^n. Then Propositions 13.11 and 13.12 yield

Hence we conclude that p^\Xf) are complex curves at (0, 0) contained in X.
On the other hand the blowing up TT : Z'-^Z induces the isomorphism (14.28).
Thus we get p<k\X')J=p<k~>(X') as germs of curves at (0, 0) if &^&~. Con-
sequently we get X={g=Q} has at least two irreducible components locally at
the origin in the case 1, as desired. Q. E. D.

It remains the proof of Proposition 14.4 in the case 2.
We observe the effect of the strict transformation p : X'-*X to the Newton

polygon N(g). Since we assume (14.17), (14.24), and the case 2, there exist
positive integers m (3^2) and a(p\ b(fji) (!<^<m) such that

(14.47) N(*)= SNacjo.Kjo where N«.6 : = {(s, 0;

(14.48)

The effect of p : X'-^X to N(g) is given by the

Lemme, 14.12. Let g z ( x / y , y} be the defining germ of the strict transform
X' on the coordinate neighborhood Qy. Assume the case 2. Then it follows

m
(14.49) NteJ)=S iNfl^).«A.)-ac^

where we denote by N(g'2) the Newton polygon of gi at the unique pre-image
(0, 00) of (0, 0)eZ by p, with respect to the coordinate system ( x / y , y).

Proof. Since we assume the case 2, the expression (14.43) yields

(14.50) gi(x/y,y)=c(x/yy+
g

In particular we have

which yield
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(*, 0)ea°NteJ)cN(gJ) and

(14.51) - (0, &(!)+ •

-(0, 6(1)+

On the other hand, since (q, r)eN(g) if csr^0, it follows

(14.52) r^-(KAO/fl(AO)[?-{fl(l)+ - +fl(/f)}]

+ % + l)H ----- h&(m) for l^p^m.

Indeed, Lemma 0.2 leads us to

VerN(g)={(a(l)+ -

By the inequality (14.52), we have

Thus, from y=a(l)+ ••• H-a(ra), we get

(14.53)

From (14.53) and (14.51) we conclude

m
(14.54)

Let us fix l<n<m. Note that the equalities hold in (14.52) simultaneously
for fjL and for /£+! if and only if

(q, r)=
Thus we get

(14.55)

for l<^fi<m .

By (14.51), (14.54) and (14.55), we conclude the equality (14.49) as desired.
The proof of Lemma 14.12 is complete. Q.E. D.

Proof of Proposition 14 .4 in the case 2. Let us divide b(rri) by a(m) :

b(m}~a(m)d + c
(14.56)

' $<c<a(m), and d^l (c, dt=Z).

We classify the proof as follows:

Case 2a). When c=0 .

Case 2b). When c>0.



130 MAKOTO KAMETANI

First we prove Proposition 14.4 in the case 2d). We consider the follow-
ing sequence of blowing ups :

(14.57) ,] J J
U U

where nji Z0)->Z°""1) is the blowing up of Z°~15 with center {xj-i}, and
^: Z0)-»Za~1:) is the strict transformation of Z°'~1:) induced by KJ such that

satisfies

(14.58) 0/*,)=*y-i for y^l .

Note that such a sequence (14.57) is determined uniquely if we give XQ by

(14.59) Xo :--=(

since the germ (Z0'-13, *^_i) lies in the case 2, for 1^/^d— 1.
By virtue of Lemma 14.12, we have

(14.60) N(^^)= SN0c^ l f l^).yac/.) at *,

where ^°") is the defining germ of Xu:> at xjt Then c=0 implies that the germ
(X^d~l\ xd_J lies in the case 1, since (14.60) yields

771-1

(14.60)' N(5C d-1 ))=SNa^).&^)-Cd.i)a^) + N a C m ) . a C m )

with
and

>{b(m)/a(m)}-(d-l)=l for ^<m.

Thus X^d~^ has at least two irreducible components locally at xd-i (note that
the expression (14.60)' yields # Seg

Since the composite map germ

is a finite map germ which induces an isomorphic map germ

we conclude that X={g~Q} also has at least two irreducible components at
,\'0=(0, 0) as desired.

The proof of Proposition 14.4 in the case 2a) is complete.

It only remains the case 2b\ As similar as the case 2a), we consider the
following sequence of blowing ups:
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(14.57)'
Pi

X=g-1(Q)^-X'

where TT,/ and pj are as same as in the above proof of the case 2a).
Note that c>0 implies

(14.61) (Xu~1:>, Xj-i) lies in the case 2 for l^j^d, and

Indeed, Lemma 14.12 yields that the Newton polygon N(^0)) is given by the
expression (14.60) with the inequalities

for j^d-1.
{b(m)—ja(rri)}/a(m)\

for j=d .

Thus we have the assertions (14.61) and (14.62).
Note that the expression (14.60) yields # Seg N[gcd)] = ^Seg N(g)>l. Hence,

by virtue of (14.62), we can apply the inductive assumption to the curve
which says that X^ has at least two irreducible components at xd.

Thus, the finiteness of the composite map germ

and the isomorphness of the induced map germ

yield that X={g~Q} also has at least two irreducible components at jto^CO, 0)
as desired.

The proof of Proposition 14.4 is complete. Q. E. D.
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