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Finiteness of Numbers of Curves on a
Minimal Surface with «=1

By

Yoshio FUJIMOTO

§ 0. Introduction

In [4], Namikawa proposed the following problem.

Problem. Let S be a minimal compact analytic surface. For an arbitrary
curve (i. e. a reduced, irreducible effective divisor) C on S, let us define the arith-
metic genus of C by

;r(C)=-~-C(C-\-Ks)-\-l, where Ks is the canonical divisor on S.

If we fix, a non-negative integer g, how many algebraic families of curves of genus
g are there on S?

And he proved the finiteness of numbers of algebraic families of curves
with the fixed arithmetic genus modulo Aut(S) except the case where ic(S)=l.
The purpose of this note is to prove that the above finiteness also holds in the
case where tc(S)=l. We state our main theorem.

Theorem A. Let S be a minimal analytic surface with ic(S)=l and g be a
fixed non-negative integer. Then the number of algebraic families of curves on S
with the arithmetic genus g is finite modulo Aut(S). In particular, the number
of non-singular rational curves on S is finite modulo Aut(S).

Notations and Convention

By a surface, we mean a compact complex manifold of dimension two.
For a compact connected complex manifold X, we use the following notation.

Kx: the canonical bundle of X.
ic(X): the Kodaira dimension of X.
Pic(X) :=H1(X, O$): the Picard group of X, which has the natural structure of
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a commutative complex Lie group0

NS (X) : the Neron-Severi group of X, L e. the group of algebraic equivalence
classes of divisors on X.

Ox : the structure sheaf of X.
p(X);=rankzNS(X); the Picard number of X.
1(QX} : the Euler-Poincare characteristic.

The symbol « (resp. ~) indicates algebraic equivalence (resp. linear equivalence)
of divisors.

§ lo Preliminaries

In this section, we shall prove Theorem A in the case where S has the
structure of the Jacobian fibration (i. e. elliptic fibration with a section). The
following theorem is fundamental.

Theorem 1.1. (Miyaoka, Umezu [3]) Let S be a surface with £(S)^0 and
fix a non-negative integer g. Then there exists a positive integer N=N(S, g)
which is determined only by S and g such that C-KS<N for any curve C on S
with the arithmetic genus g.

Proposition 1.2. Let f : 5— >A be a relatively minimal elliptic surface over
a non-singular complete curve A with the zero section (o) and at least one singular
fiber. Assume that tc(S)=l and fix a non-negative integer g. Then the number
of algebraic families of curves on S with the arithmetic genus g is finite modulo
Aut(S).

Corollary 1.3. Under the same conditions as in Proposition 1.2, if the
Mordell-Weil rank of S vanishes, the number of algebraic families of curves on
S with the fixed arithmetic genus g is finite.

Proof of Proposition 1.2. Fix a non-negative integer g and take an arbitrary
algebraic curve C on S with the arithmetic genus g. Since all sections are
mapped to the zero section (o) by an automorphism of S and each irreducible
component of a reducible singular fiber is a non-singular rational curve with
self-intersection number -2, we may assume that C is a multi-section, that is,
f\ c- C-»A is a finite covering of degree m>l.

Now let r be the rank of the Mordell-Weil group G(K) and take r generators
Si, ••• , sr of €(K) modulo the torsion group €(K)to^ £(K}t0\ is generated by at
most two elements tlt £2 of order elf e2 with I^e2, ez\e1; \€(K)t0i\ =0i02. Let
{^he& (resp. F} be the set of all singular fibers of / : S->A (resp. generic fiber
of /) and for each JleA we denote by 9^ti (O^z^ra^— 1) the irreducible com-
ponent of FI, mi being the number of irreducible components. Then we have
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^ = 0^0+2 S^.^.t, [tA.i^Q,

where @ ^ > 0 is the unique component of F^ intersecting the zero section (o). By
a theorem of Shioda [5], C can be written uniquely in the following way :

2 di,k02,k,

where a, £, at, ^ and d*,k are all rational integers.

Claim 1. m:=(C, F) zs bounded above by a constant A=A(S, g), which is
determined only by S and g.

Proof of Claim 1. By the canonical bundle formula of Kodaira [2], we have
Ks^(2n(&)~2+Z(OsW. Since *(S)=1, we have 2;r(A)-2+*(05)>0. Moreover
by Theorem 1.1, there exists a constant N=N(S, g) depending only on S and

g such that C-KS<N. Put A(S, g)= 0 /A^'fL* N • Since C-F=m, we haveZTT(A)— Z+/L(O5;
m<A q.e.d.

zm 2. In the above situation, by translating C by a suitable automorphism
0 of S, we may assume that 0^fli<m for all l^i^r.

Proof of Claim 2. We can consider S as a one-dimensional abelian variety
6 over the function field K of A, given with a ^-rational point o. Then each
section st (l<i<r} defines a /C-rational point st and let at be a birational map-
ping of S induced from a translation of 6 by s* over K. Since S is relatively
minimal, <jt is an analytic automorphism of S. We choose integers Ci and
dx with al=mci+dl, Q<di<m and define an automorphism 0 of S by 0=
Ol1)'1' ••• °(<7;.1)Cr. Put C = 0(C}. Clearly C is also a ??x-section of S, where
we have

/ r v r 2 m / l~ 1 _

Put C':=(a+7n2^)(c»)+ j8
/F+2^s i+2^^+2 S d^ke^k. The divisor C

\ € = 1 / i = l j = l JL k=l

(resp. C') cuts out on the generic fiber F divisors of degree m and the sum S(C)
(resp. S(C')) of points in C (resp. C') under the group operation on the abelian
group F gives a ^-rational point. By our construction, we get S(C)=S(C').
With the aid of Abel's theorem on an elliptic curve, the divisor C | F is linearly
equivalent to C'\F on F. Hence the divisor C — C' is linearly equivalent to a
divisor contained in fibers of / and C can be written in the form :

1=1 j=l

where 0^^i<w for all l^i^r. q. e.
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Now, we continue the proof of Proposition 1.2. Since m=C-F=a+
r 2

S a>i+ .S&/, it follows from Claim 1 and Claim 2 that a, at(l^i<r) and fr/1^

j'^2) are all bounded by constants determined only by S and g. Since C is a
multi-section, we have Q<C-0x,k^iC'Fz = C>F=m<A(S, g) for each X and

x— 1. We have

w (c, e*.P) . x

Since the intersection matrix ((©;,&, ®j i . p ) ) i s f t , p sm^- i is negative definite and
(C, ®jz.p) , a« and ^ are bounded by constants determined only by S and g, it
follows from (*) that d x t k ' § are uniquely determined and bounded by constants

depending on 5 and g. Setting F=a(o}+ ^aisl+ S£/£ ,+S S ^ a®* *> we
.7 = 1

have (r, F)=m and C2=(F+pF)2=F2+2^m, Since (C, Ks) and F2 are
bounded by constants determined by S and g, we infer from the above equality
that /3 is also bounded by constants determined only by S and g. q. e. d.

§2. Proof of Theorem A

In this section, we shall prove Theorem A in the case where S has the
structure of an elliptic surface with multiple fibers. First, we need the follow-
ing lemma.

Lemma 2.1, Let g: S-+C be a relatively minimal algebraic elliptic surface
with multiple fibers. Then there exists a curve s0 with g(sQ)=C such that (s0, F)
divides (D, F) for general fiber F of g and for all curve D with g(D)=C.

Proof. Put mQ=min {D°F\D is a curve on 5 with g(D)=C} and fix a
curve s0 with sQ-F=mQ and g(s0)=C arbitrarily. For any curve D on S with
g(D)=C, we choose integers t, r with D-F=mQtJrr, Q<r<mQ. Then Q<i(D—m0s0,
F)=r<mQ and g*Os(D—m0s0) is a coherent dVmodule of rank r. By Serre's
theorem, we have H\C, g^Os(D—mQsQ)®Oc(np'))^Qf p^C and hence H\S, OS(D
—m0s0+?2Sp))^0, Sp=g~1(p) for a sufficiently positive integer n. A general
member Ae \D—m0sQ+nSp\ can be written in the form : A=H+F, where H and
F are effective divisors with g(supp(H)')=C and supp(F) contained in fibers of
g. Then (Kr=(A, F)=(H, F)<m0 and from the minimality of (s0, F), we have
H— 0 and r=0. q. e.d.

Now, we are ready to prove our main Theorem A.

Proof of Theorem A. Clearly, we may assume that S is algebraic. Since
jc(S)=l, S has the unique structure of an elliptic surface /: S-»C with multiple
fibers miEi of multiplicity m,i at pt^C. (l^/^O- Then by Kodaira [2], S can
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be obtained from the basic member g : B->C by twisting and successive loga-
rithmic transformations, that is, S=LPl ••• LPl(B^, where B* is obtained by
twisting g: B-*C by ij&Hl(C, 0(B0*)).

First, we assume throughout that g : B-+C is not smooth, i. e. there is at least
one singular fiber.

Let r be the rank of the Mordell-Weil group MW(5) of g : 5— »C and take
r generators Si, ••• , sr of MW(B) modulo the torsion group MW(B)tot. MW(B)tol

is generated by at most two elements t1} tz of order e1} ez with e 2 \ e 1 ' ,

By considering B as an one-dimensional abelian variety £ over the function
field K of C, each section st (resp. fy) defines a ^-rational point st (resp. f/).
Since S is isomorphic to B^ outside the multiple fibers, st (resp. ij) induces an
automorphism of S\c\\jPi by locally translating B^ by st (resp. 13\ And from

the definition of logarithmic transformations, we see easily that it can be ex-
tended to an automorphism gt (resp. hj) of S. We fix a multi-section DQ of
/:S->C which enjoys the properties as in Lemma 2.1 and put Di=gl(DQ),
TJ=hj(DQ'). Clearly Dz's and T/s also enjoys the property in Lemma 2.1.
Let {Fx}x^c (resp. F) be the set of all singular fibers of /: S-»C (resp. general
fiber of /). For each non-multiple singular fiber FX (resp. multiple singular
fiber mxEx\ choose an irreducible component 9x,o of FX (resp. EX) of multiplicity
one arbitrarily and fix them. Then we have

^ = e^ 0+S23^. te^i , jM^i>0 (resp. E, = 0LQ+ S^.O,
X isi i^l

where we denote by d^.t ( O ^ z ^ n ^ — 1) the irreducible component of F* (resp.
E I ) , nx being the number of the irreducible components of FX (resp. EX}.

Claim 1. [D0], [F], [Dt] (l^f^r) anrf [0^,,]'s WeC, l^^n^-1) are
fcaszs o/ NS(S)®Q.

z

Pro<9/ <9/ C/afm 1. For an arbitrary divisor D on S, put d=(D, F), dQ=
(DQ, F}. By Lemma 2.1, there exists a positive integer k with d = dQk. Since
(D—kDo, F)=Q, the divisor D—kDQ cuts out on the generic fiber F a divisor d
of degree 0. Since S is isomorphic to B^ outside the multiple fibers, the sum
S(d) of points in d under the group operation on the abelian group F gives a
section of g: B c\yPi-^C\{Jpi. By Kodaira [3], it can be extended to a

holomorphic section s of g: B-+C over C, since B is a basic member. By the
Mordell-Weil theorem, we can write:

r 2
s= SaiSjH- !>}bjtj, where at and 0^6J<eJ- are integers.

i=i j=i

Put D^Sfl^i-^+ijfcKT^-To). Since S^Di-D^-F^d^ (resp. S((T,-



138 YOSHIO FUJIMOTO

DQ)-F)=d0tj\ we see that S(dQ(D-kDQ)-F)=S(Df-F) (resp. S(ej(TJ-DQ}-F)=Q)
for a generic fiber F of /.

By Abel's theorem on an elliptic curve, the divisor dQ(D—kDo)\F (resp.
ej(Tj—Do)\F) is linearly equivalent to D'\F (resp. 0) on F, Hence the divisor
d0(D—kDo)—Df (resp. e^Tj—D^} is linearly equivalent to a divisor contained
in fibers of /. Hence we have :

where m (resp. e) is the least common multiple of mlf ••• , mL (resp. eit ez) and
j8, fit's and fife's are all integers. And it is easy to see that D0, F, D^s and
QX k's are linearly independent in NS(5)®Q. Hence the claim follows, q. e. d.

z

Now, let D be an arbitrary curve on S with the fixed arithmetic genus g,
We may assume that f(D)=C.

Claim 2. d:=(D, F)eZs0 is bounded above by a constant A=A(S, g\ which
is determined only by S and g.

Proof of Claim 2. By the canonical bundle formula of Kodaira [2],

Since ic(S)=l.

By Theorem 1.1, there exists a constant N=N(S, g) depending only on 5 and

g with D-KS<N. If we put A=A(S, g}= ( / f ) , we have d<A. q.e.d.

Claim 3. By translating D by a suitable automorphism p of S, we may
assume that 0^a<<med for all i in (*), Claim 1.

Proof of Claim 3. By the proof of Claim 2, we have :

where ^8, />*, a/, ^?/ and rfJ,A are all integers and Q^pi<mi. We choose integers
cz and 5j with a'i=dc^+^i, Q^8i<d, and define an automorphism p of 5 by
p :=(g^)Cl "• (gr 1)Cr. Put D=p(D). Then we have (5, F)=d.

Next, put Df=dDQ+p'F+j}dl(Dl-DQ)+j}b'j(Tj-TQ'). The divisor D'-^o<=i j=i
(resp. dQ(D—kDo)) cuts out on the generic fiber F a divisor G' (resp. G) of
degree 0 and the sum $(G') (resp. S(G)) of points in G' (resp. G) under the
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group operation gives a section of g: B-*C. Since S(Dl—DQ)=dQsl, we have:

S(G)= ix(dost)- Sct(cWs,)=

Hence the divisor d0D—Df=^(d0D—dD0)—(D/—dD0) is algebraically equivalent
to a linear combination of F, E/s and (9^'s over Z. Since 0^<5;<d, Claim 3
follows immediately by the same argument as in the proof of Claim 1. q. e. d.

Now, we continue the proof of Theorem A. We use the same notation as
before. By Claim 2 and Claim 3, we have

, g) for all l^i<r .

Since DQ and D are multi-sections of /, we have :

,)=(D, F)=d<A(S, g) and

for each ^ and l<k<n^—l. We have:

(**) med0(£, 6t,p)=

since the intersection matrix (0^,*, &2.p)i^k.p^n^-i is negative definite and
(D, Oji.p), (DQ, 0;i.p) and G t 's (l^f^r) are all bounded by constants determined
only by S and g, G^./S are also bounded by constants determined by S and g.

Setting r=medA>+ S^O^-AO+S S d^ fe@^ fc, we have (med0)2D2=(r+/3F)2

< = 1 yl k=l

=JT
2+2^med0. Since (D, /T^) and F2 are all bounded by constants determined

by S and g, we infer from the above equality that /3 is also bounded by con-
stants determined only by S and g. Hence if we express D as a linear com-
bination of D0, F, Dt (l<i^r} and 0* k ( l^&^n^-l) in JVS(S)(g)Q, the number

z
of the possible values for each coefficient is bounded by S and g and Theorem
A has been proved.

Next, we consider the case where f : S->C is a Seifert fiber space, that is,
S is an elliptic surface with constant moduli which has at most multiple singular
fibers. Let D be an arbitrary curve with the fixed arithmetic genus g. We
may assume that /(/))= C. Then by completely the same method as above, we
can show that by translating D by a suitable automorphism p of S, we may
assume that:

, where m is the least common multiple of ?7zt's and a and ̂ 3
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are integers. Hence we can easily show the boundedness of a and /3 by Miya-
oka's Theorem 1.1.

Thus we have finished the proof of Theorem A.
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