Publ, RIMS, Kyoto Univ.
27 (1991), 141-148

The Structure of the Quasi-invariant Set
of a Linear Measure

By

Yoshiaki OKAzZAKI* and Yasuji TAKAHASHI**

Abstract

Let p# be a probability measure on a locally convex Hausdorff space E and A{y) be
the quasi-invariant set of p. If p*(A(x))>0, then there exist a finite-dimensional sub-
space L, a thick subgroup G of L and a countable subgroup {x;} such that A(g)=

Q(G—i—xi). If E is Souslin, then A(y) is a Borel subset. If E is Souslin and if g (A(g))
i=
>0, then A(y):Ul(L—i-xi).

o

§1. Introducticn

Let E be a locally convex Hausdorff space and E’ be the topological dual
of E. Denote by C(E, E’) the cylindrical ¢-algebra on E, the minimal ¢-algebra
which makes each <, x>, x’E’, measurable. Denote by B(E) the Borel g-algebra
on E generated by all open subsets. Then it holds that C(E, E’)CB(E) and
these ¢-algebras are translation invariant, that is, for every x€F and Ae
C(E, E’) (resp. B(E)) it follows that A—x<C(E, E’) (resp. B(E)). Let p be a
probability measure on C(E, E’) or on B(E). For x&E we set p(A)=p(A—x)
and A(g)={x=E: p,~p (equivalent)}. The set A(y) is called the quasi-invariant
set of pg. It is well-known that A(g) is an additive subgroup of E.

Skorohod [9] stated the following assertions concerning the structure of the
quasi-invariant set A(z) (however there are some gaps in the proof).

Let E be a separable Hilbert space. Then
(1) A(p) is a Borel subset of E,
(2) if p(F)=0 for every finite-dimensional subspace FCE, then
(A () =0, and
3) if p(A(p))=1, then there exists a sequence L; of finite-

dimensional subspaces such that ﬂ<gLi>:1’

see [9], §19. On the other hand, Okazaki [7] proved the following results.
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Let G be a complete separable metrizable abelian topological group and
u be a probability measure on G. Then
(1) A(p) is a Borel subset of G, and
(2) if p(A(pw))>0, then A(y) is a locally compact g-compact
topological group with respect to the induced topology from G.

There are similarities between these two results. In fact, each locally compact
locally convex Hausdorff space is finite-dimensional and each locally compact a-
compact subgroup of a locally convex Hausdorff space is of the form R™+
(countable subgroup) (the structure theorem of the locally compact o-compact
abelian topological group).

In this paper, we generalize the above results of Skorohod as follows.
Firstly, suppose that E is a general locally convex Hausdorff space and p*(A(w))
>0, then there exist a finite-dimensional subspace L, a thick subgroup G of L

and a countable subgroup {x,} of E such that A(g)= Q(G—l—xi) (Theorem 1),

where p* denotes the outer measure. Secondly, suppose that E is a Souslin
locally convex Hausdorff space, then A(g) is a Borel subset of E and if p(A(g))

>0, A(y) can be written as A(p)= Ql(L—i—xl), where L is a finite-dimensional

subspace and {x;} is a countable subgroup of E (Theorem 2).

§2. Preliminaries

Let (G, B) be a measurable group, that is, G is a group with a ¢-algebra
B satisfying

(1) x — x7! is B-measurable, and

(2) (x, y)—> xy is BQB—B-measurable,
where BB is the prcduct ¢-algebra on G XG, see Halmos [4], §59 and Yama-
saki [12], Part B, Chapter 1, §1.

Let (G, B) be a measurable group and g be a measure on (G, B). Then
(G, B, p) is called separated if for every g=e (e is the unit of G), there exists
AEB such that p(A4)>0 and p(ANAg)=0, see Halmos [4], §62 and Yamasaki
[12], Part B, Chapter 1, §4.

A subset A of a topological group G is called precompact (or bounded) if
for every neighborhood U of e, there exists a finite sequence g;, gs, -, &» IN

G such that AC \nj(U g.). If a topological group G has a precompact neigh-
1=1
borhood of ¢, then G is called locally precompact. If a topological group G is
written as G= Cj A,, where each A, is precompact, then G is called o¢-pre-
n=1

compact, see Halmos [4], §0 and Yamasaki [12], Part B, Chapter 1, §3.
We shall use the following facts in later.
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Fact 1. A topological group G is locally precompact and a-precompact if and
only if G can be imbedded densely and isomorphically (algebraically and topologi-
cally isomorphic) into a locally compact o-compact topological group G.

The group G is uniquely determined within an isomorphism and G is called
the completion of G, see Bourbaki [1], Chapter 2, §3, Halmos [4], §0 and Ya-
masaki [12], Part B, Chapter 1, §3, Theorem 3.1. As for the Borel structure
of G and G, the following result is known, see Yamasaki [12], Part B, Chapter
1, §3, Theorem 3.2.

Fact 2. Let G be a locally precompact o-precompact topological group and
Bu be the g-algebra on G generated by all uniformly continuous functions on G.
Let Ba be the Baire o-algebra on the completion G, the o-algebra generated by
all continuous functions on G. Then it holds that Bu=BanG. Moreover, (G, Bu)
1s a measurable group.

A topological group G is called a thick group if

(1) G is locally precompact and ¢-precompact, and

(2) for the right Haar measure 2 on (G, Ba), G is thick with respect to 2,

that is, for every BeBa with BNG=¢ it follows that 2(B)=0,
see Halmos [4], §62 and Yamasaki [12], Part B, Chapter 1, §3.

Let G be a thick group. Then there is a right invariant measure 4 on
(G, Bu), that is, A(Ag)=2(A) for every A=Bu and every g=G. In fact, 1 is
the restriction of 1 to G, see Yamasaki [12], Part B, Chapter 1, § 3, Theorem 3.3.
This right invariant measure 2 on (G, Bu) is called the Haar measure of G. It
is known that, in general, a right invariant measure on (G, Bu) is unique up
to a constant factor.

In the sequel, every group which we consider is abelian. Hence we denote
by x-+y the group operation (instead of xy).

§3. Quasi-invariant Set for Cylindrical Measure

Let E be a locally convex Hausdorff space and g be a probability measure
on C(E, E'). Then (E, C(E, E")) is a measurable group and the quasi-invariant
set A(g) is an additive subgroup of E, see Yamasaki [12], Part B, Chapter 1, §5,
Theorem 5.1. Remark also that C(E, E"YRQC(E, E")=C(EXE,(EXE)). The
next lemmea is an easy consequence of this fact.

Lemma 1. (A(p), C(E, E"YNA(y)) is a measurable group.

Proof. We show that ¥': (x, y)—>x—y is f®B—B-measurable, where 8=
C(E, E")NA(y). For every Bef, we can find C sothat B=CNA(p) and Ce
C(E, E'). Then we have ¥ '(B)=U-"Y{C)NA(u)XA(meC(E, EQC(E, EN



144 Yosuiakr OkAazAKl AND YAsUJ1 TAKAHASHI

A X A(p)=BRB.

Suppose that p*(A(p))>0 where p* is the outer measure. Let v be the
restriction of p* to (A(y), C(E, E'YNA(g)). v is defined as follows. Take C&
C(E, E’) such that A(p)CC and p(C)=p*(A(g)). Then for every A=C(E, E’)
NA(p) with A=DNA(y), DEC(E, E’), u(A) is given by v(A)=u(CND).

Lemma 2. Suppose that p*(A(p))>0 and v be the restriction of p* to (A(p),
C(E, EYNA(y)). Then v is a quasi-invariant measure on A(u), that is, v and
v, are equivalent for every x< A(u).

Proof. Let CeC(E, E’) be A(p)cC and p*(A(w)=u(C). For every Ac
C(E, E"YNA(p), we write A=DNA(yp), where DeC(E, E’). Then we have
for each xe A(y), A—x=(D—x)NA(p) and A(p)C(C—x)NCCC. Hence it follows
that u(C—x)=p(C)=p*(A(g)) and v (A)=yv(A—x)=p((D—x)NA(p))=u(CN(D—x))
=u((C—x)ND—x)=p(CND—x)=p(CND) for every x=A(y). Since v(A)=
#(CND), for every x& A(y), v.(A)=0 if and only if »(A)=0.

Lemma 3. Suppose that p*(A(u))>0 and v be the restriction of p* to (A(p),
C(E, E')NA(p)). Then (A(p), C(E, E"YNA(p), v) is separated.

Proof. For every x+0 in A(p), we shall show the existence of A in
C(E, E")NA(p) such that y(A)>0 and that AN(A+x)=¢. Let x’€E’ be <{x, x>
=1 (Hahn-Banach theorem) and set A={ye A(g): 0=y, x’><1}. Then it holds

that AN(A+x)=¢ and A(p)= Q(A-i—nx). By Lemma 2, it must be yv(A4)>>0.

Lemma 4. Suppose that p*(A(p))>0 and v be the restriction of p* to (A(w),
C(E, E"YNA(p)). Then there exists a (o-finite by (1) below) measure A on (A(y),
C(E, E"YNA(y)) such that

(1) 2A~v (equivalent), and

(2) 2;=2R for each x in A(y) (A(p)-invariant).

Proof. The assertions follow by Mackey [6], Lemma 7, Umemura [10],
Proposition 6.2 and Yamasaki [12], Part B, Chapter 1, § 1, Theorems 1.4 and 1.1.

Suppose that p*(A(¢))>0 and v be the restriction of p* to (A(y), C(E, E’)
NA(g)). Let A be a o-finite invariant measure on A(g) equivalent to v (Lemma
4). We remark that (A(y), C(E, E")NA(g), ) is also separated since so is
(A(y), C(E, E"YNA(p), v) and 2 is equivalent to v.

Now let = be the Weil topology of A(y) derived by the invariant measure
(A(p), C(E, E")NA(p), 2), that is, the basis of neighborhoods of 0 in 7 is given
by the family

Us.={x€A(p): (AD(A+x))<e},
where A=C(E, E')NA(g) be 0<A(A)<oo, e>0 and © is the symmetric dif-
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ference, see Halmos [4], § 62, Yamasaki [12], Part B, Chapter 1, §4 and Weil [11],
Appendice 1. Then the following result is known. For the proof, we refer to
Halmos [4], §62 and Yamasaki [12], Part B, Chapter 1, §4, Theorem 4.1.

Lemma 5. (A(w), t) is a Hausdorjf topological group and thick. Moreover,
BuC C(E, E"YN\A(p) and the restriction A|Bu is the Haar measure on (A(y), Bu).

Lemma 6. The Weil topology t is finer than the weak topology o(E, E’)
on A(p). In particular it holds that Bu=C(E, E")NA(g) in Lemma 5.

Proof. We show that each x’ is z-continuous. Let N be A({x€A(p):
[<x, x> EN}>0 and let AC{x=A(p): I<x, >IN} be 0<A(A)<oo. Then
for every x€U 4 cr={x=A(y): A(AS(A+x)<A(A)}, it follows that |<{x, x'>|
<2N since Uy, CA—AC{x<s A(p): I<x, x’>| <2N}. Remark that if
AAS(A+x))<A(A) then AN(A+x)#=¢. Thus the additive functional x’ is z-
continuous.

Theorem 1. Let E be a locally convex Hausdorff space and p be a probability
measure on C(E, E’). Suppose that p*(A(p))>0. Then

(1) there exists a topology = on A(u) such that (A(p),t) is a Hausdorff
topological group and a thick group,

(2) the restriction v of p* to A(y) is equivalent to the Haar measure on the
thick group (A(y), ), and

(3) there exist a finite-dimensional subspace LCE, a thick subgroup G of L
(with respect to the Euclidean topology) and a countable subgroup {x,}C

E such that A(p)= Q(G—l—xz)c Q<L+x1).

Proof. (1) and (2) follow from Lemmas 5 and 6. We shall prove (3). Consider
the natural injection ¢: (A(y), ©)—(E, o(E, E’)). By Lemma 6, ¢ is continuous.
¢ can be extended to the completion (A(g), )~ into (E’)* (the algebraic dual of
E’ which is the completion of (E, ¢(E, E")), see Bourbaki [1], Chapter 2, §3, Theo-
rem 3.1. Let be the extension. Then 7 is a continucus homomorphism on the
locally compact ¢-compact topological group (A(g), )~ into ((E’)%, a((E")%, E’)).
The image ((A(y), 7)7) is algebraically isomorphic with (A(g), ) /keri. We
put the topology T on ((A(g), t)7) induced by the quotient topology of
(A(p), )~ /keri. Then ((((A(y), 7)7), T) is again a locally compact o-compact
abelian topological group and T is finer than the weak topology ¢((E")%, E’).
By the structure theorem of locally compact o-compact abelian topological group,
there exist natural numbers #z, d (possibly 0) and a compact abelian group K
such that (¢((A(g), 7)7), T) is isomorphic (algebraically and topologically) with
the direct sum R"PZPK, where R (resp. Z) denotes the real numbers (resp.
integers), see Hewitt and Ross [5], Theorem (9.8) and Weil [11], §29. Since
K is isomorphic to a compact subgroup of the vector space ((E’)%, ¢((E")%, E")),
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it must be A={0}. Let ¢: R*"PZ¢—({(A(p), T)7), T)C(E’)* be an isomorphism.
Then ¢ is in fact linear on R™, hence L=¢(R") is a finite-dimensional subspace
of (E’)* contained in #((A(g), 7)7). D=¢(Z") is a discrete countable subgroup
of ({((A(p), 7)7), T). We have proved that (2((A(y), ©)°), T)=L@D. Remark
that L is open and closed subgroup of (2((A(g), 7)7), T). Since «(A(p)=A(p) is
dense in (¢((A(g), ©)7), T)=L@D, it follows that A(u)NL is a dense subgroup
of L with respect to the Euclidean topology of L. By A(u)NLCENLCL, we
obtain L=A(p)"NLCENLCE since the finite-dimensional subspace ENL is
complete with respect to ¢((E’)?, E’). We denote {x;}=A(p)ND. Then it
holds that A(p)=A(p)NL+{x;}. We prove that the subgroup G=A(g)"L is
thick in L with respect to the Euclidean topology of L. In fact, for every
Baire subset C in L satisfying GnC=¢, (¢)"%(C) is a Baire subset of (A(g), )"
and (£)"(C)NA(p)=¢. By the thickness of (A(g), 7), it holds that 2(()"((C))=0,
where 7 is the Haar measure on (A(g), r)". Remark that the Haar measure on
(@(Ap), 7)), T)=LDD coincides with the image measure ) up to a constant
factor. Furthermore, the Haar measure on L is the restriction #(Z)| L since L
is an open and closed subgroup in (2((A(g), )7), T). Thus we have proved that
for every Baire subset C in L with G/C=¢, the Haar measure of C is zero,
which shows the thickness of G in L. This completes the proof.

§4. Quasi-invariant Set for Borel Measure

Let E be a Souslin locally convex Hausdorff space and g be a probability
measure on the Borel o-algebra B(E). (E, B(E)) is a measurable group since
the product ¢-algebra B(E)RQB(E) coincides with the Borel o-algebra on the
product space E X E, see Schwartz [8], Part I, Chapter II. Moreover, g is a Radon
measure, that is, for every Borel subset A=B(E), p(A)=sup{p(K): K is com-
pact and KC A}, see Schwartz [8], Part I, Chapter II, §3.

Lemma 7. A(g) is a Borel subset.

Proof. We shall give a sketch of the proof. For details, see Okazaki [7],
Proposition 12. For every Borel subset B B(F), the function p(B—x) in x is
Borel measurable since E is Souslin and g is Radon. Let M(E) be the set of
all probability measures on E. We consider the g-algebra # on M(FE) generated
by v—u(B), BEB(E), that is,  is the minimal ¢-algebra on M(E) which makes
each yv—y(B), BEB(E), measurable. Then the mapping ¥ : (E, B(E))—~(M(E)X
M(E), HQM), U(x)=(gs, ), is measurable, By Dubins and Freedman [2], 2.11,
the set D={(§, n)eM(E)YXM(E): &~n} belongs to HQ M (here we use the
fact that B(E) is countably generated, see Schwartz [8], Part I, Chapter I, §1,
Corollary of Lemma 18). Hence we obtain A(y)=%"'(D) belongs to B(E).

Theorem 2. Let E be a Souslin locally convex Hausdorff space and p be a
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probability measure on (E, B(E)). Suppose that p(A(p))>0. Then
(1) A(p) is a locally compact a-compact topological subgroup of E with
respect to the induced topology from E,
(2) the restriction y=pu| A(p) is equivalent to the Haar measure of A(y), and
(3) there exist a finite-dimensional subspace LCE and a countable subgroup

{x.} of E such that A(p)= Q(L—l—:cz).

Proof. By Lemma 7, A(g) is a Souslin topological group with respect to
the induced topology from E, see Schwartz [8], Part I, Chapter II, §1, Theorem 3.
The restriction yv=p|A(g) is a quasi-invariant Radon measure on A(g) with
respect to the induced topology from E. Furthermore, (A(y), B(A(p)), v) is a
separated measurable group, see Lemma 3. Thus by Mackey [6], Lemma 7,
Umemura [10], Proposition 6.2 and Yamasaki [12], Part B, Chapter 1, § 1, Theorems
1.4 and 1.1, there exists a g-finite invariant Radon measure A which is equivalent
to v, see Lemma 4. Hence by Gowrisankaran [3], A(g) is a locally compact
g-compact topological group with respect to the induced topology from E and
A is the Haar measure of A(g) up to a constant factor. The o¢-compactness
follows by the o¢-finiteness of the Haar measure. By the structure theorem of
a locally compact g-compact abelian topological group, A(g) is isomorphic with
R*®BZ4DK by Hewitt and Ross [5], Theorem (9.8) and Weil [117, §29, see the
proof of Theorem 1. Since K is a compact subgroup of the vector space E, it
follows that K={0}. Let ¢: R*"®Z?—A(y) be an isomorphism. Then ¢ is
linear on R*. We put L=¢(R") and {x.}=¢(Z%). Then L is a finite-dimen-

sional subspace and A(u)= Q(L-{—xl). This completes the proof.
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