The Structure of the Quasi-invariant Set of a Linear Measure

By

Yoshiaki Okazaki* and Yasuji Takahashi**

Abstract

Let μ be a probability measure on a locally convex Hausdorff space E and $A(\mu)$ be the quasi-invariant set of μ . If $\mu^*(A(\mu))>0$, then there exist a finite-dimensional subspace L, a thick subgroup G of L and a countable subgroup $\{x_i\}$ such that $A(\mu)=\bigcup_{i=1}^{\infty}(G+x_i)$. If E is Souslin, then $A(\mu)$ is a Borel subset. If E is Souslin and if μ $(A(\mu))>0$, then $A(\mu)=\bigcup_{i=1}^{\infty}(L+x_i)$.

§1. Introduction

Let E be a locally convex Hausdorff space and E' be the topological dual of E. Denote by C(E, E') the cylindrical σ -algebra on E, the minimal σ -algebra which makes each $\langle \ , x' \rangle$, $x' \in E'$, measurable. Denote by B(E) the Borel σ -algebra on E generated by all open subsets. Then it holds that $C(E, E') \subset B(E)$ and these σ -algebras are translation invariant, that is, for every $x \in E$ and $A \in C(E, E')$ (resp. B(E)) it follows that $A - x \in C(E, E')$ (resp. B(E)). Let μ be a probability measure on C(E, E') or on B(E). For $x \in E$ we set $\mu_x(A) = \mu(A - x)$ and $A(\mu) = \{x \in E : \mu_x \sim \mu \text{ (equivalent)}\}$. The set $A(\mu)$ is called the quasi-invariant set of μ . It is well-known that $A(\mu)$ is an additive subgroup of E.

Skorohod [9] stated the following assertions concerning the structure of the quasi-invariant set $A(\mu)$ (however there are some gaps in the proof).

Let E be a separable Hilbert space. Then

- (1) $A(\mu)$ is a Borel subset of E,
- (2) if $\mu(F)=0$ for every finite-dimensional subspace $F \subseteq E$, then $\mu(A(\mu))=0$, and
- (3) if $\mu(A(\mu))=1$, then there exists a sequence L_i of finite-dimensional subspaces such that $\mu(\overset{\sim}{\bigcup}_{i=1}^{\infty}L_i)=1$,

see [9], § 19. On the other hand, Okazaki [7] proved the following results.

Communicated by S. Matsuura, April 27, 1990.

^{*} Department of Artificial Intelligence, Kyushu Inst. of Technology, Iizuka 820, Japan.

^{**} School of Health Sciences, Okayama University, Okayama 700, Japan.

Let G be a complete separable metrizable abelian topological group and μ be a probability measure on G. Then

- (1) $A(\mu)$ is a Borel subset of G, and
- (2) if $\mu(A(\mu)) > 0$, then $A(\mu)$ is a locally compact σ -compact topological group with respect to the induced topology from G.

There are similarities between these two results. In fact, each locally compact locally convex Hausdorff space is finite-dimensional and each locally compact σ -compact subgroup of a locally convex Hausdorff space is of the form R^n+ (countable subgroup) (the structure theorem of the locally compact σ -compact abelian topological group).

In this paper, we generalize the above results of Skorohod as follows. Firstly, suppose that E is a general locally convex Hausdorff space and $\mu^*(A(\mu)) > 0$, then there exist a finite-dimensional subspace L, a thick subgroup G of L and a countable subgroup $\{x_i\}$ of E such that $A(\mu) = \bigcup_{i=1}^{\infty} (G+x_i)$ (Theorem 1), where μ^* denotes the outer measure. Secondly, suppose that E is a Souslin locally convex Hausdorff space, then $A(\mu)$ is a Borel subset of E and if $\mu(A(\mu)) > 0$, $A(\mu)$ can be written as $A(\mu) = \bigcup_{i=1}^{\infty} (L+x_i)$, where L is a finite-dimensional subspace and $\{x_i\}$ is a countable subgroup of E (Theorem 2).

§ 2. Preliminaries

Let (G, B) be a measurable group, that is, G is a group with a σ -algebra B satisfying

- (1) $x \longrightarrow x^{-1}$ is B-measurable, and
- (2) $(x, y) \longrightarrow xy$ is $B \otimes B B$ -measurable,

where $B \otimes B$ is the product σ -algebra on $G \times G$, see Halmos [4], § 59 and Yamasaki [12], Part B, Chapter 1, § 1.

Let (G, B) be a measurable group and μ be a measure on (G, B). Then (G, B, μ) is called separated if for every $g \neq e$ (e is the unit of G), there exists $A \in B$ such that $\mu(A) > 0$ and $\mu(A \cap Ag) = 0$, see Halmos [4], § 62 and Yamasaki [12], Part B, Chapter 1, § 4.

A subset A of a topological group G is called precompact (or bounded) if for every neighborhood U of e, there exists a finite sequence g_1, g_2, \dots, g_n in G such that $A \subset \bigcup_{i=1}^n (Ug_i)$. If a topological group G has a precompact neighborhood of e, then G is called locally precompact. If a topological group G is written as $G = \bigcup_{n=1}^{\infty} A_n$, where each A_n is precompact, then G is called σ -precompact, see Halmos [4], § 0 and Yamasaki [12], Part B, Chapter 1, § 3.

We shall use the following facts in later.

Fact 1. A topological group G is locally precompact and σ -precompact if and only if G can be imbedded densely and isomorphically (algebraically and topologically isomorphic) into a locally compact σ -compact topological group \overline{G} .

The group \overline{G} is uniquely determined within an isomorphism and \overline{G} is called the completion of G, see Bourbaki [1], Chapter 2, § 3, Halmos [4], § 0 and Yamasaki [12], Part B, Chapter 1, § 3, Theorem 3.1. As for the Borel structure of G and \overline{G} , the following result is known, see Yamasaki [12], Part B, Chapter 1, § 3, Theorem 3.2.

Fact 2. Let G be a locally precompact σ -precompact topological group and Bu be the σ -algebra on G generated by all uniformly continuous functions on G. Let \overline{Ba} be the Baire σ -algebra on the completion \overline{G} , the σ -algebra generated by all continuous functions on \overline{G} . Then it holds that $Bu = \overline{Ba} \cap G$. Moreover, (G, Bu) is a measurable group.

A topological group G is called a thick group if

- (1) G is locally precompact and σ -precompact, and
- (2) for the right Haar measure $\bar{\lambda}$ on (\bar{G}, \bar{Ba}) , G is thick with respect to $\bar{\lambda}$, that is, for every $B \in \bar{Ba}$ with $B \cap G = \phi$ it follows that $\bar{\lambda}(B) = 0$, see Halmos [4], § 62 and Yamasaki [12], Part B, Chapter 1, § 3.

Let G be a thick group. Then there is a right invariant measure λ on (G, Bu), that is, $\lambda(Ag) = \lambda(A)$ for every $A \in Bu$ and every $g \in G$. In fact, λ is the restriction of $\overline{\lambda}$ to G, see Yamasaki [12], Part B, Chapter 1, § 3, Theorem 3.3. This right invariant measure λ on (G, Bu) is called the Haar measure of G. It is known that, in general, a right invariant measure on (G, Bu) is unique up to a constant factor.

In the sequel, every group which we consider is abelian. Hence we denote by x+y the group operation (instead of xy).

§ 3. Quasi-invariant Set for Cylindrical Measure

Let E be a locally convex Hausdorff space and μ be a probability measure on C(E, E'). Then (E, C(E, E')) is a measurable group and the quasi-invariant set $A(\mu)$ is an additive subgroup of E, see Yamasaki [12], Part B, Chapter 1, § 5, Theorem 5.1. Remark also that $C(E, E') \otimes C(E, E') = C(E \times E, (E \times E)')$. The next lemma is an easy consequence of this fact.

Lemma 1. $(A(\mu), C(E, E') \cap A(\mu))$ is a measurable group.

Proof. We show that $\Psi: (x, y) \longrightarrow x - y$ is $\beta \otimes \beta - \beta$ -measurable, where $\beta = C(E, E') \cap A(\mu)$. For every $B \in \beta$, we can find C so that $B = C \cap A(\mu)$ and $C \in C(E, E')$. Then we have $\Psi^{-1}(B) = \Psi^{-1}(C) \cap A(\mu) \times A(\mu) = C(E, E') \otimes C(E, E') \cap A(\mu) = C(E, E') \otimes C(E, E$

 $A(\mu) \times A(\mu) = \beta \otimes \beta$.

Suppose that $\mu^*(A(\mu)) > 0$ where μ^* is the outer measure. Let ν be the restriction of μ^* to $(A(\mu), C(E, E') \cap A(\mu))$. ν is defined as follows. Take $C \in C(E, E')$ such that $A(\mu) \subset C$ and $\mu(C) = \mu^*(A(\mu))$. Then for every $A \in C(E, E') \cap A(\mu)$ with $A = D \cap A(\mu)$, $D \in C(E, E')$, $\nu(A)$ is given by $\nu(A) = \mu(C \cap D)$.

Lemma 2. Suppose that $\mu^*(A(\mu))>0$ and ν be the restriction of μ^* to $(A(\mu), C(E, E') \cap A(\mu))$. Then ν is a quasi-invariant measure on $A(\mu)$, that is, ν and ν_x are equivalent for every $x \in A(\mu)$.

Proof. Let $C \in C(E, E')$ be $A(\mu) \subset C$ and $\mu^*(A(\mu)) = \mu(C)$. For every $A \in C(E, E') \cap A(\mu)$, we write $A = D \cap A(\mu)$, where $D \in C(E, E')$. Then we have for each $x \in A(\mu)$, $A - x = (D - x) \cap A(\mu)$ and $A(\mu) \subset (C - x) \cap C \subset C$. Hence it follows that $\mu(C - x) = \mu(C) = \mu^*(A(\mu))$ and $\nu_x(A) = \nu(A - x) = \nu((D - x) \cap A(\mu)) = \mu(C \cap (D - x)) = \mu((C - x) \cap (D - x)) = \mu(C \cap D - x) = \mu_x(C \cap D)$ for every $x \in A(\mu)$. Since $\nu(A) = \mu(C \cap D)$, for every $x \in A(\mu)$, $\nu_x(A) = 0$ if and only if $\nu(A) = 0$.

Lemma 3. Suppose that $\mu^*(A(\mu))>0$ and ν be the restriction of μ^* to $(A(\mu), C(E, E') \cap A(\mu))$. Then $(A(\mu), C(E, E') \cap A(\mu), \nu)$ is separated.

Proof. For every $x \neq 0$ in $A(\mu)$, we shall show the existence of A in $C(E, E') \cap A(\mu)$ such that $\nu(A) > 0$ and that $A \cap (A+x) = \phi$. Let $x' \in E'$ be $\langle x, x' \rangle = 1$ (Hahn-Banach theorem) and set $A = \{y \in A(\mu) : 0 \leq \langle y, x' \rangle < 1\}$. Then it holds that $A \cap (A+x) = \phi$ and $A(\mu) = \bigcup_{n=1}^{\infty} (A+nx)$. By Lemma 2, it must be $\nu(A) > 0$.

Lemma 4. Suppose that $\mu^*(A(\mu))>0$ and ν be the restriction of μ^* to $(A(\mu), C(E, E') \cap A(\mu))$. Then there exists a $(\sigma$ -finite by (1) below) measure λ on $(A(\mu), C(E, E') \cap A(\mu))$ such that

- (1) $\lambda \sim \nu$ (equivalent), and
- (2) $\lambda_x = \lambda$ for each x in $A(\mu)$ ($A(\mu)$ -invariant).

Proof. The assertions follow by Mackey [6], Lemma 7, Umemura [10], Proposition 6.2 and Yamasaki [12], Part B, Chapter 1, § 1, Theorems 1.4 and 1.1.

Suppose that $\mu^*(A(\mu)) > 0$ and ν be the restriction of μ^* to $(A(\mu), C(E, E') \cap A(\mu))$. Let λ be a σ -finite invariant measure on $A(\mu)$ equivalent to ν (Lemma 4). We remark that $(A(\mu), C(E, E') \cap A(\mu), \lambda)$ is also separated since so is $(A(\mu), C(E, E') \cap A(\mu), \nu)$ and λ is equivalent to ν .

Now let τ be the Weil topology of $A(\mu)$ derived by the invariant measure $(A(\mu), C(E, E') \cap A(\mu), \lambda)$, that is, the basis of neighborhoods of 0 in τ is given by the family

$$U_{A,\varepsilon} = \{x \in A(\mu): \lambda(A \ominus (A+x)) < \varepsilon\},$$

where $A \in C(E, E') \cap A(\mu)$ be $0 < \lambda(A) < \infty$, $\varepsilon > 0$ and \ominus is the symmetric dif-

ference, see Halmos [4], § 62, Yamasaki [12], Part B, Chapter 1, § 4 and Weil [11], Appendice 1. Then the following result is known. For the proof, we refer to Halmos [4], § 62 and Yamasaki [12], Part B, Chapter 1, § 4, Theorem 4.1.

Lemma 5. $(A(\mu), \tau)$ is a Hausdorff topological group and thick. Moreover, $Bu \subset C(E, E') \cap A(\mu)$ and the restriction $\lambda | Bu$ is the Haar measure on $(A(\mu), Bu)$.

Lemma 6. The Weil topology τ is finer than the weak topology $\sigma(E, E')$ on $A(\mu)$. In particular it holds that $Bu = C(E, E') \cap A(\mu)$ in Lemma 5.

Proof. We show that each x' is τ -continuous. Let N be $\lambda(\{x \in A(\mu): |\langle x, x' \rangle | \leq N\}) > 0$ and let $A \subset \{x \in A(\mu): |\langle x, x' \rangle | \leq N\}$ be $0 < \lambda(A) < \infty$. Then for every $x \in U_{A, \lambda(A)} = \{x \in A(\mu): \lambda(A \ominus (A+x)) < \lambda(A)\}$, it follows that $|\langle x, x' \rangle | \leq 2N$ since $U_{A, \lambda(A)} \subset A - A \subset \{x \in A(\mu): |\langle x, x' \rangle | \leq 2N\}$. Remark that if $\lambda(A \ominus (A+x)) < \lambda(A)$ then $A \cap (A+x) \neq \phi$. Thus the additive functional x' is τ -continuous.

Theorem 1. Let E be a locally convex Hausdorff space and μ be a probability measure on C(E, E'). Suppose that $\mu^*(A(\mu)) > 0$. Then

- (1) there exists a topology τ on $A(\mu)$ such that $(A(\mu), \tau)$ is a Hausdorff topological group and a thick group,
- (2) the restriction ν of μ^* to $A(\mu)$ is equivalent to the Haar measure on the thick group $(A(\mu), \tau)$, and
- (3) there exist a finite-dimensional subspace $L \subset E$, a thick subgroup G of L (with respect to the Euclidean topology) and a countable subgroup $\{x_i\}\subset E$ such that $A(\mu) = \bigcup_{i=1}^{\infty} (G+x_i) \subset \bigcup_{i=1}^{\infty} (L+x_i)$.

Proof. (1) and (2) follow from Lemmas 5 and 6. We shall prove (3). Consider the natural injection $\iota: (A(\mu), \tau) \rightarrow (E, \sigma(E, E'))$. By Lemma 6, ι is continuous. ι can be extended to the completion $(A(\mu), \tau)^-$ into $(E')^a$ (the algebraic dual of E' which is the completion of $(E, \sigma(E, E'))$, see Bourbaki [1], Chapter 2, § 3, Theorem 3.1. Let \bar{i} be the extension. Then \bar{i} is a continuous homomorphism on the locally compact σ -compact topological group $(A(\mu), \tau)^-$ into $((E')^a, \sigma((E')^a, E'))$. The image $\bar{\iota}((A(\mu), \tau)^-)$ is algebraically isomorphic with $(A(\mu), \tau)^-/\ker \bar{\iota}$. We put the topology T on $\bar{\iota}((A(\mu), \tau)^{-})$ induced by the quotient topology of $(A(\mu), \tau)^-/\ker i$. Then $(i((A(\mu), \tau)^-), T)$ is again a locally compact σ -compact abelian topological group and T is finer than the weak topology $\sigma((E')^a, E')$. By the structure theorem of locally compact σ -compact abelian topological group, there exist natural numbers n, d (possibly 0) and a compact abelian group Ksuch that $(\bar{\iota}((A(\mu), \tau)^{-}), T)$ is isomorphic (algebraically and topologically) with the direct sum $R^n \oplus Z^d \oplus K$, where R (resp. Z) denotes the real numbers (resp. integers), see Hewitt and Ross [5], Theorem (9.8) and Weil [11], § 29. Since K is isomorphic to a compact subgroup of the vector space $((E')^a, \sigma((E')^a, E'))$, it must be $K = \{0\}$. Let $\phi: R^n \oplus Z^d \to (\bar{\iota}((A(\mu), \tau)^-), T) \subset (E')^a$ be an isomorphism. Then ϕ is in fact linear on \mathbb{R}^n , hence $L = \phi(\mathbb{R}^n)$ is a finite-dimensional subspace of $(E')^a$ contained in $i((A(\mu), \tau)^-)$. $D=\phi(Z^n)$ is a discrete countable subgroup of $(\bar{\iota}((A(\mu), \tau)^-), T)$. We have proved that $(\bar{\iota}((A(\mu), \tau)^-), T) = L \oplus D$. Remark that L is open and closed subgroup of $(i((A(\mu), \tau)^-), T)$. Since $i(A(\mu)) = A(\mu)$ is dense in $(i((A(\mu), \tau)^-), T) = L \oplus D$, it follows that $A(\mu) \cap L$ is a dense subgroup of L with respect to the Euclidean topology of L. By $A(\mu) \cap L \subset E \cap L \subset L$, we obtain $L = A(\mu) \cap L \subset E \cap L \subset E$ since the finite-dimensional subspace $E \cap L$ is complete with respect to $\sigma((E')^a, E')$. We denote $\{x_i\} = A(\mu) \cap D$. holds that $A(\mu)=A(\mu)\cap L+\{x_i\}$. We prove that the subgroup $G=A(\mu)\cap L$ is thick in L with respect to the Euclidean topology of L. In fact, for every Baire subset C in L satisfying $G \cap C = \phi$, $(\bar{\iota})^{-1}(C)$ is a Baire subset of $(A(\mu), \tau)^{-1}(C)$ and $(\bar{\iota})^{-1}(C) \cap A(\mu) = \phi$. By the thickness of $(A(\mu), \tau)$, it holds that $\bar{\lambda}((\bar{\iota})^{-1}(C)) = 0$, where $\bar{\lambda}$ is the Haar measure on $(A(\mu), \tau)^{-}$. Remark that the Haar measure on $(\bar{\iota}((A(\mu), \tau)^{-}), T) = L \oplus D$ coincides with the image measure $\bar{\iota}(\bar{\lambda})$ up to a constant factor. Furthermore, the Haar measure on L is the restriction $\bar{\iota}(\bar{\lambda}) | L$ since L is an open and closed subgroup in $(\bar{\iota}((A(\mu), \tau)^{-}), T)$. Thus we have proved that for every Baire subset C in L with $G \cap C = \phi$, the Haar measure of C is zero, which shows the thickness of G in L. This completes the proof.

§ 4. Quasi-invariant Set for Borel Measure

Let E be a Souslin locally convex Hausdorff space and μ be a probability measure on the Borel σ -algebra B(E). (E,B(E)) is a measurable group since the product σ -algebra $B(E)\otimes B(E)$ coincides with the Borel σ -algebra on the product space $E\times E$, see Schwartz [8], Part I, Chapter II. Moreover, μ is a Radon measure, that is, for every Borel subset $A\in B(E)$, $\mu(A)=\sup\{\mu(K)\colon K \text{ is compact and } K\subset A\}$, see Schwartz [8], Part I, Chapter II, § 3.

Lemma 7. $A(\mu)$ is a Borel subset.

Proof. We shall give a sketch of the proof. For details, see Okazaki [7], Proposition 12. For every Borel subset $B \in B(E)$, the function $\mu(B-x)$ in x is Borel measurable since E is Souslin and μ is Radon. Let M(E) be the set of all probability measures on E. We consider the σ -algebra \mathcal{M} on M(E) generated by $\nu \to \nu(B)$, $B \in B(E)$, that is, \mathcal{M} is the minimal σ -algebra on M(E) which makes each $\nu \to \nu(B)$, $B \in B(E)$, measurable. Then the mapping $\Psi: (E, B(E)) \to (M(E) \times M(E), \mathcal{M} \otimes \mathcal{M})$, $\Psi(x) = (\mu_x, \mu)$, is measurable. By Dubins and Freedman [2], 2.11, the set $D = \{(\xi, \eta) \in M(E) \times M(E) : \xi \sim \eta\}$ belongs to $\mathcal{M} \otimes \mathcal{M}$ (here we use the fact that B(E) is countably generated, see Schwartz [8], Part I, Chapter II, § 1, Corollary of Lemma 18). Hence we obtain $A(\mu) = \Psi^{-1}(D)$ belongs to B(E).

Theorem 2. Let E be a Souslin locally convex Hausdorff space and μ be a

probability measure on (E, B(E)). Suppose that $\mu(A(\mu)) > 0$. Then

- (1) $A(\mu)$ is a locally compact σ -compact topological subgroup of E with respect to the induced topology from E,
- (2) the restriction $\nu = \mu \mid A(\mu)$ is equivalent to the Haar measure of $A(\mu)$, and
- (3) there exist a finite-dimensional subspace $L \subset E$ and a countable subgroup $\{x_i\}$ of E such that $A(\mu) = \bigcup_{i=1}^{\infty} (L + x_i)$.

Proof. By Lemma 7, $A(\mu)$ is a Souslin topological group with respect to the induced topology from E, see Schwartz [8], Part I, Chapter II, §1, Theorem 3. The restriction $\nu = \mu \mid A(\mu)$ is a quasi-invariant Radon measure on $A(\mu)$ with respect to the induced topology from E. Furthermore, $(A(\mu), B(A(\mu)), \nu)$ is a separated measurable group, see Lemma 3. Thus by Mackey [6], Lemma 7, Umemura [10], Proposition 6.2 and Yamasaki [12], Part B, Chapter 1, § 1, Theorems 1.4 and 1.1, there exists a σ -finite invariant Radon measure λ which is equivalent to ν , see Lemma 4. Hence by Gowrisankaran [3], $A(\mu)$ is a locally compact σ -compact topological group with respect to the induced topology from E and λ is the Haar measure of $A(\mu)$ up to a constant factor. The σ -compactness follows by the σ -finiteness of the Haar measure. By the structure theorem of a locally compact σ -compact abelian topological group, $A(\mu)$ is isomorphic with $R^n \oplus Z^d \oplus K$ by Hewitt and Ross [5], Theorem (9.8) and Weil [11], § 29, see the proof of Theorem 1. Since K is a compact subgroup of the vector space E, it follows that $K = \{0\}$. Let $\psi : R^n \oplus Z^d \to A(\mu)$ be an isomorphism. Then ϕ is linear on \mathbb{R}^n . We put $L=\psi(\mathbb{R}^n)$ and $\{x_i\}=\psi(\mathbb{Z}^d)$. Then L is a finite-dimensional subspace and $A(\mu) = \bigcup_{i=1}^{\infty} (L + x_i)$. This completes the proof.

References

- [1] Bourbaki, N., Éléments de Mathematique Topologie Générale Chapitre 1 et 2, Hermann, Paris, 1965.
- [2] Dubins, L. and Freedman, D., Measurable sets of measures, Pacific J, Math., 14 (1964), 1211-1222.
- [3] Gowrisankaran, C., Radon measures on groups, *Proc. of A.M.S.*, **25** (1970), 381-384.
- [4] Halmos, P.R., Measure theory, Van Nostrand Reinhold Comp., New York, 1969.
- [5] Hewitt, E. and Ross, K.A., *Abstract harmonic analysis*, Grundlehren der Math. Wiss. 115, Springer-Verlag, Berlin-Heidelberg-New York, 1963.
- [6] Mackey, G.W., Borel structure in groups and their duals, Trans. Amer. Math. Soc., 85 (1957), 136-165.
- [7] Okazaki, Y., Admissible translates of measures on a topological group, Mem. Fac. Sci. Kyushu Univ., Ser. A, 34 (1980), 79-88.
- [8] Schwartz, L., Radon measure on arbitrary topological spaces and cylindrical measures, Tata Inst. of Fund. Res. and Oxford Univ. Press, 1973.
- [9] Skorohod, A.V., Integration in Hilbert space, Ergebnisse der Math., 79, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- [10] Umemura, Y., Measures on infinite dimensional vector spaces, Publ. R.I.M.S.,

- Kyoto Univ., 1 (1965), 1-47.
- [11] Weil, A., L'integration dans les groupes topologiques et ses applications, Hermann, Paris, 1965.
- [12] Yamasaki, Y., Measures on infinite dimensional spaces, World Scientific, Singapore-Philadelphia, 1985.