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Stochastic Integration on the Full Fock Space
with the Help of a Kernel Calculus

By

Roland SPEICHER*

Abstract

We develop a stochastic integration theory with respect to creation, annihilation and
gauge operators on the full Fock space. This is done by using a kernel representation
for a large class of bounded operators on the full Fock space. It is shown that the
kernels form a Banach algebra. Having established the definition of processes and stochastic
integrals we go on to prove an Ito formula and use this for examining stochastic evolu-
tions and constructing dilations of special completely positive semigroups. Explicit solu-
tions of the corresponding stochastic differential equations are given.

§1. Introduction

In non-commutative probability theory (quantum stochastics) one tries to
develop a stochastic description of quantum systems. One of the first tasks is
to develop a concept of white noise (as a model for a quantum heat bath) and
to develop a stochastic integration with respect to this white noise in order to
couple it via Langevin equations to other quantum systems. (cf. [Kim2, 3,
Maa2])

Replacing the classical concepts of random variables and probability meas-
ures by the functional analytic concepts of operators and states, the characteri-
zation of ‘white noise’ will read in the following way. (cf. e.g. [AFL, Kim3,
Spe2])

Definition. Let ® be the ring generated by all semiclosed intervals [s, t)
CR. An n-dimensional white noise is a quantum stochastic process ((j;)req, A, €, 0)
in the sense of [AFL] with

Jri(h o) — (%, p), pr=p°j1,
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where A is the free =x-algebra with n generators x,, ---, x,, such that:
1) Jrur(x)=7r(x)+71(x.) for i=1, -, n and disjoint I;, [,E R.
ii) the distribution of the white noise is stationary, i.e. p; depends only on
A(I), the Lebesgue measure of I.
i) 77, (A Fr A, -, jr(A) are independent for r& N and disjoint I, Io, -,
I.e.

But whereas the meaning of independence is clear in the classical case, we
have some freedom in the non-commutative case: Let

a,:=jr(a), a.:=j;(a) with a=4 and I,<I;,

where I,< I, means: ,<i, for all /,€1,, i, I,.

Then Kiimmerer [Kiim3] demands in his theory of ‘generalized white noise’
a factorization for time-ordered products, e.g. p(a.a.a.a,)=p(a.a,)p(a,a,), but
no apriori rules for calculating expressions like p(a.a.a.a,) are given. Adding
different rules for these expressions leads to different forms of independence
and thus to different classss of white noises. Until now only two forms of in-
dependence have been used:

i) the bosonic case: Elements from independent algebras commute. Ac-
cording to the work of Schiirmann [Sch] we know that we can realize
the corresponding bosonic white noises with the help of creation, an-
nihilation and gauge operators on a symmetric Fock space.

i) the fermionic case: Elements from independent algebras anticommute
(given a graduation). This leads to white noises which can be realized
with the help of creation, annihilation and gauge operators on an anti-
symmetric Fock space. ([Sch])

The corresponding stochastic calculi were developed by Barnett, Streater,
Wilde [BSW1, 2] and in an extended version (including Ito’s formula) by Hudson
and Parthasarathy [HuPl] and by Applebaum and Hudson [ApH]. It should
be noted that the bosonic and fermionic calculi are essentially equivalent (see
[HuP2]), although the corresponding white noises are of course distinct.

Voiculescu [Voi] introduced another form of independence, called ‘free’
independence. In [Spe2] we examined this free independence from a quantum
stochastic point of view. In particular, we started to show that all free white
noises can be realized with the help of creation, annihilation and gauge operators
on a full Fock space. A complete treatment of this will follow in [GSS].
Thus we are left with the task to develop a stochastic calculus for these
operators in order to couple free white noises as heat baths to other systems,
i.e., to give meaning to Langevin equations with respect to free white noises.

While there is some hope that the bosonic and fermionic white noises may
be of some use for describing physical situations, at least after taking some
(weak coupling or singular coupling) limit (cf. [Dav, Dim, FGo, GaC]), the
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physical significance of free white noises is yet unclear. In this context it may
be interesting to note that the free analogue of the Gaussian distribution gives
the distribution of large random matrices with respect to the trace (see e.g.
[Wig, Arn, Voi2]) and that the latter were used by Wigner [Wig] for model-
ling complex physical systems like heavy nuclei.

The stochastic calculus on the full Fock space was developed in [Spell].
The stochastic calculus for the creation and annihilation processes will be pre-
sented in [KSp]. The inclusion of the gauge process in this treatment presents
some problems. Thus we redeveloped the whole theory in terms of a kernel
representation, which allows the inclusion of the gauge process in a canonical
way. This theory will be presented here. This kernel method is formally
analogous to the corresponding method for the bosonic case, which was de-
veloped by Maassen [Maal]. We want to stress the difference, that we des-
cribe with the kernels bounded operators on the full Fock space instead of un-
bounded operators on the symmetric Fock space. This allows us to consider
the space of the kernels as a Banach algebra of bounded operators. In the
bosonic case we can only deal with an algebra of unbounded operators. Further-
more, in our case the kernel representation is not only a nice reformulation of
the existing theory of [KSp], but it is essential for dealing with the gauge
process.

First we will make some conventions used in the following (see e. g. [DiU]):
For a Banach space X and a finite measure space (I, 2, ) we will denote by
L?(["; X) (1£p<oo) the Banach space of all equivalence classes of X-valued,
Bochner-integrable functions f:/—X, equipped with the norm

1/p

115 = (] ) f@? dpe))

We recall that the simple functions (i.e. the functions with finite range) are
dense in L?(I"; X). For p=o we denote by L=(I"; X) the Banach space of
all equivalence classes of X-valued, Bochner-integrable functions f:/I —X,
equipped with the norm

[ fll :=ess sup{| f()|l lw<T"}.

We recall that functions with countable range are dense in L2("; X).

By Q(R™) we denote the Borel subsets of R™ and by X, the characteristic
function for A€ {(R).

The paper is organized as follows. In Section 2 we recall the definition and
some fundamental facts about the full Fock space and the creation, annihilation
and gauge operators. We also outline the main ideas of the kernel representa-
tion. In Section 3 we define the kernels and their corresponding operators and
show that the set of kernels forms a Banach algebra. We go on to define pro-
cesses (Section 4) and stochastic integrals of adapted processes with respect to
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creation, annihilation and gauge process (Section 5). In Section 6 we establish
an Ito’s formula. Having shown the existence and uniqueness of the solution of
linear stochastic differential equations (Section 7) we use Ito’s formula in Section
8 to derive necessary and sufficient conditions on the coefficients of stochastic
differential equations for the unitarity of the solution. Such unitary solutions
are used in Section 9 for constructing dilations of special completely positive semi-
groups. Our kernel representation allows us to give explicit solutions of the
differential equations.

§2. Some Basic Facts about the Full Fock Space

Let 4, be a Hilbert space. Then the non-symmetrized or full Fock space
of 4, is the Hilbert space
F(S£0):=CRD S AT,

where 2 is a fixed unit vector. Hence the scalar product is given by (f., g.

e9,)
1R Qfar 810 QEn>=0nm{f1, 80+ {fns &u>

2, /1Q - Qfu>=0
2, H=1.
For each f€4, we define the left annihilation operator /(f) and the left crea-
tion operator {*(f) by
INAHQ - Qfa=XS, f[iQ - @fn
PN Q=R 1Q - Qfa.

The operators [(f) and {*(f) are bounded and mutually adjoint. Furthermore

ICON=NEON= 11 1o -

We will also write: [(A):=I(X,) for A=(R).
We will only consider 4 ,=L%R) and denote F(L* R)) by Z.
For I€eQ(R) we define

OD):=C*U(f) | fELXINTB(F)

as the C*-algebra generated by all annihilation operators adapted to I. Then
O(I) is as a C*-algebra isomorphic to the Cuntz algebra O. [Cun, Eva]l. It is
characterized by the relations

fUxg)=<f, g>1  for f, g€LXI).

It is important to note that because of these relations we can write a product
of creation and annihilation operators in the following standard form:
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P(f ) o PX(fa)l(ga) -+ U(gY)

with n, (EN,, fi, g.€L¥I).
Furthermore we define gauge operators analogously to the bosonic case (cf.
[HuP1l). For each TeB(L*R)) we define the operator p(T)=B(F) by :

HTHR=0

TR+ QR n=(Tf)Rf:Q - Qfn-
We have

I 6(T) =Tl sczecm -

If T is compact then p(7T) is an element of O., because T" may be approxi-
mated by operators T, which have finite rank. For such operators we have a
representation of p(T,) by creation and annihilation operators: For example,
for the operator of rank 1 (f,, g, L*R)):

T=|f{g:l: LXR) —> LXR), f —> T [:=Xgy, /> ]:

we can write p(T) as p(T)=I*(f)l(g).
For T, T,, T,=B(L¥R)), feL*R) we have the following additional rela-
tions : :
p(TY*=p(T*)
p(Tl)p(T2>:p(T1Tz)
UNDp(TH=UT*f)
PN F)=IXTf).
We are especially interested in the multiplication operators T, defined by
Thf:hf >
for he L=(R). We have
(Tl Be=1]lzo -

We will also write p(h):=p(T) and especially

PA):=pa)=p(T )

for A={(R). Since subsets of measure zero play no role, we can write p(s,?)
=p(s, tDH=p((s, )= .

Since multiplication operators are not compact, the operators p(A) do not
belong to the Cuntz algebra O, for A(A)=0.

We now want to define a stochastic integration, where the gauge process
is allowed as an integrator too. Thus we want to give meaning to expressions

like SG(t)dZ(t)F (t), where di(t) denotes one of the three integrators di(t), dI*(t)

and of dp(t), and G and F are processes from some time interval K into a
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suitably chosen subspace of the bounded operators on the full Fock space. The
appearence of two processes, one on each side of the differential di(?), is forced
by the absence of any commutation relation between freely independent sub-
algebras. Thus, even if G, F are adapted, we have no chance to reduce the

above general form to the usual one, namely to SH(t)a'l'(t).

We could try developing this theory by copying our stochastic integration
theory [KSp] for creation and annihilation process. Thus we would replace
the C*-algebras O(I) by

O(I):=C*(p(h), (f) | fELAD), he L=(I)).

But then we are at once confronted with the problem that we cannot define all
t
needed integrals in the usual way. To see this consider: F (t)=Sod &)= 7p(0, ?).

Since p(A) is a non vanishing orthogonal projection for all A=Q(R) with A(4)
+0, we have for all ¢+t :|F@¢)—F(#')|=1. Thus we can not approximate F(?)
uniformly by simple functions and the usual definition fails for expressions like

M-——SIF(L‘)dl(t):SI 500, H)dIE).

Of course it is clear how we should try to define M: Let, for each », a parti-
tion of I in » disjoint subintervals It=[#%, t¢*!) (k=1, ---, r) of the same length
be given. Then define

M:= lim ki‘, 20, t(IE) .
T—0 k=1

We have to check in which topology this limit exists and whether it is inde-
pendent of the chosen partition of I. By estimates for the norm it is possible
to show that M can be defined indeed as an element of O(R) in this way, and
we could try to extend the theory of [KSp] in this way. Instead of following
these lines we will present here a kernel calculus which gives a more elegant
representation for a big class of operators on the Fock space and for the de-
finition of stochastic integrals. In this way, it allows a self-contained solution
of the above problem.

Because of the above algebraic relations for the elements of O(R), it is
possible to write a product of creation, annihilation and gauge operators in the
standard form

PEf) = () p(REL) - U(g1)

with n, leN, fi, g.=L*R) and heL*(R) (where this form shall implicitly
include the cases where no [*, p or [ appears). Thus every operator of O(R)
can be approximated by sums of operators of the above form.

The idea of the kernel representation is to describe operators which have
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the above standard form by functions according to

(f1) - O(fa)p(h)UgD) - Ugm) <—> [1=F1Q -+ QfnQhQg1 - Qgm -

In this case the kernel is a function on R*XRXR™. If we now close the space
of this functions in the ‘right’ norm (L®-norm for p, L%*norm for [ and [*),
then each element of BV :=L"(R; L*(R"XR")) corresponds to a bounded
operator on the Fock space. Now consider processes from a time interval
KCR to the space of kernels in 3™, At the first sight we would define
this by L=K, 8™ 1D)=L>(K; L°(R; LXR"XR"Y)). This corresponds to the
usual definition as the closure of the simple functions and would face us with
the problem mentioned at the beginning. But in this representation we can
extend this space in a natural way to the larger space L*(KXR; LY{R"XRY)).
The difference lies mainly in the replacing of the C*-tensor product L*(K)
L*(R) by the Wk*tensor product L (K)RL™(R)=L>*KXR). In this way we
extend the space of the allowed processes crucially—e. g. the above mentioned
F is an element of L*(KX R; LA R°X R")), but not of L>(K; L=(R; L} R*XR"))).
A further advantage of this representation is that the definition of stochastic
integrals is possible in a uniform way for all allowed processes—not only for
simple ones.

In view of our stochastic integration theory there is also another way to
look at the kernels: the kernel f(f;, -+, ts; 2; Sy, -+, ;) Will correspond to the
operator

S e Sf(tl; ey lny @5 S, Sl)dl*(tl) e dl*(tn)dp(Z)dl(Sl) dl(Sl).

Thus our integration theory is a theory of iterated integrals and the definition
of the kernels and their corresponding operators is just an explicit definition of
these iterated integrals. With this in mind the definition of stochastic integrals
in Section 5 might be more reasonable. This point of view may also be useful
for a transfer of [LiP] to the full Fock space.

We also want to point out that one can realize /*(f), {(g) and p(h) with the
help of the bosonic creation, annihilation and gauge operators (see [PSi]), but
that this isomorphism does not imply the equivalence of the corresponding
stochastic calculi, since the notion of adaptedness is not respected.

§3. Definition and Properties of Kernels

We now want to consider kernels corresponding to operators on KX,
where 4 is a separable Hilbert space (‘initial space’). Then a kernel is a
mapping

f: I'xRxI" — B(4%)

(6;2z;v)—> f(a;2; ),
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where R is the (measure theoretic) direct sum of R° and R!, and [ is the
direct sum of all R® (n=0): Let R°:={0}, 2°:=d,. Let 2? be the Borel-o-
algebra of R* (X°:={0, R°}) and A’ the Lebesgue-measure of R® restricted to a
compact subset K;CR? e.g. we could choose K;=K® where K is the time
interval appearing in the definition of processes.

Then define

(B, 5, 1):= ® (R, I, aM=(R°, 3°, I)B(RY, 3, AY)
(r, 2, #):= D (R", 2.

The restriction of the kernel f to R*XR"™XR' (n, leN,; r=0, 1) will be
denoted by f™: 7D,
Thus we can write

f= @ fom,

m, 7,1

where the sum runs over all triples with n, [N, and »=0, 1.

All our essential considerations will be for fixed (n, 7, {), and then we will
lift everything from the single summands f™? to f by taking an ['-direct
sum.

Definition. The space of kernels is the Banach space

% = EB ll%(n,'r, 5]

m, 7,1

={f= & fmno|ferbepmnb; Ilsts:'—‘(ngynllf‘"'r'”lKoo},

(n, 7,1l
where the Banach spaces B ™ ? are defined by
Pem b =LR"; LAR"XR'; B(4))).

The space B™ ™D may be considered as a subspace of the B(4)-valued
functions on B*XR"™ X R*.
Thus the norm on B™ ™V is given by

Lrenrpip= sup (£ m 005 23 0l fund (@) ),

where sup denotes the essential supremum with respect to 17. As a set we
can consider B in a canonical way as a proper subset of L=(R; L¥I'XI"; B(4))).
We write now
F=CRD @ILZ(R)W
nz
=CRD E@ILZ(R”)

= LYI")

and notice
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HRQF=HRQLY)=LXI"; %),

where
L¥[; Jl{)z{S: I'—4 p-measurable; ||5||2:=S|15(w)113,dy(m)< 00}
=0 LYR"; 4).
nz0
We make the following notational conventions: For ¢,=({;, -, t.)ER"
and ¢,=(s;, -+, s;)ER*, we define the connecting

0’102::@1; Tty tn; S1y 7 Sk>ERn+k
and the transpose
g% :=(tp, -, t)ER™.

In particular, we have oc0=@c=c¢. We will also often use the differential
formula
du(a.0,)=dp(a:)dp(as) .

Furthermore, for ¢=(,, -+, t,)ER"™ we define:

max (¢):= max ts (max(0):=0)

beg (¢):=t, (beg (0):=0)
end (g):=t, (end (0):=0),

and ¢CI with JeQ(R) stands for {f;, ---, t,}C1I.
If w=R*® is given, then

wizZwe=w
denotes the sum over all wy, z, w, with w,€R?, w,=R* (0<k, [<s) and z€R"
(r=0, 1) with w,ze,—o.
Now we map a kernel f=3B to an operator F on S QF=L*I"; 4) in the
following way:

(FeXo)=_ 32 [f(@:; 23 00 *z0dp),
w1zwy=w
where the integral is interpreted as the Bochner integral of the mapping
I'— 4

v —> flw:; z; vE(*zm,) .

Note that the sum reduces to one summand if f=7™" for fixed (n, 7, {):

(P8 w00 = 70w, 25 VB 20)d2()

for w,€R™ and zeR".
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Examples.
1) f=fan0esBa00 with f(t;0; 0)=g@)L, where ge L¥R) and L= B(4)
Then
(FeXo)=, 31 g()LEws),

which gives for £=xQf.Q - Qf. with f,eL¥R) and x4 (ie.
E(tb Tty Z‘n>=f1(tl) fn(tn)x):

(FxQf1Q -+ Qfa)E, by, -5 ta)=8(1)[1(1) -+ falta)Lx

=(LxRLRS1Q -+ Qfa)ts b1y -, 1),
i.e. F=LRI*(g).
2) f=fO0beBO0D with £(0; 0; s)=g(s)L, where g€ L(R) and L B(4).
Then we have

(FE)(w)zgf(ﬂ; 0; S)E(sw)dﬂ(S)=S§(S>LE(sw)dl<S),

and thus F=LXI(g).
3) f=fOLOeBOL0 with f(0;z;0)=h(z)L, where he L*(R) and L= B(4).
Then we have

(Fé)(w)Zﬂz 2 f0; z; 0)6(zw.)=h(beg (w)) LE(w) ,

wy=w

and thus F=Lp(h).
4) More generally the kernel f=f™"beB™ ™D with
f(n,T,l):f1® ®fﬂ®h®gl® ®gl-L
(fo 8.€L¥YR), he L°(R), L=B(%)) corresponds to the operator

F=LQUP(f1) -+ (fn)p(h)I(g1) -+ Ug1).

5) The identity on 4 ®3% corresponds to the kernel id=id® B,
given by id®%%(Q; 0; =1z, where lgcy is the identity on 4.

Theorem 1. a) We have |F|Z|f]s.
In particular, FEB(HKTF) for f&B.
b) The mapping
B — B(IRF)

f—F

s injective.

Proof. a) Let F™7™D be the operator corresponding to f¢ ™, Then

f= @l f@® D implies F= 2[ F@rb o Thus it is sufficient to show
(n,r, ) ('il,T, )

[Fe-mBl<] femPy,
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because this gives at once

IFl=1 X Ferbl< 3 [[F»mPls 3 [ f™"P=]f]s.
n, 7,0 n,r,1) (n,7,0)
For proving the inequality let £E9.

[Ferrog|2=\|[(F™ D)) %dpo)

NG

)
1117 rp@ns 25 e0r20dz0)| dr@od @ @)
<[ ps 2 wseodre)
{lleorz0l5dz o} diro)da@dpws)
=[S mo@1s 25 wlpendreidz )
{{Ie0rz01%d 20} 427 @) pwn)
<{sup (i 5005 275 Wl dl @)}

{{{]1e0zwizdreidr@dpen |
<l femrollel,

thus

| D] femmb].
In (x) we have used the Cauchy-Schwarz-inequality for the integration with
respect to .

b) Consider
F= 3 F®m.b=(,

(n, 7,0
We have to show that the corresponding kernel

— (n,r,0)
f mn, 7,10 f

vanishes.
We write F: L¥I; 4)—L¥I"; %) as a matrix

F=(F T, meny: @ LAR"; H) —> D LHB™; I0)

(with Ft™»3: LXR™; 9)—>L*R™; 4)). We have
FrLm.nl— é Fd=(n=m>,0.0>_1 2 Fa-a-m.1b
l=max(0,n-m) l=max(0,n-m)

:F[m—l,n—1]®l+F(m,U,n)+F(m—l,1,n-—l) .
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Here we view FI™ !*-1®1 in a canonical way as the operator according to

L*R"; S)=L*R"; H)QLYR) —> L¥B™; A)QLNR)=L*R™; A).
Thus F can be written in the form

F(O,O,O) F(O,O.l) F(O.O-Z) F(0.0,3)

Frea@l Frenugl Froa®l
F(1.°.0) +F(1‘0.1) _i_F(l,O,Z) +F(1,0.3)
+F(0,1,0) +F(0.1'1) +F(0,1,2)

Frt09Q1 Fr1®1 Frt2Q1
Fe.0.0 + Fe0n +F@0n + F20.9
+F&L0 +F&LD +F@L

Fr=9Q1 Fre1®l FreaRQ1
F(3.0.0) +F(3.0,1) __E_F(?:,O,Z) +F(3.0,3)
+F(2.1,0) +F(2,1.1) +F(2,1,2)

Now F=0 implies Ft™"=( for all m, n, thus F¢©%»=0, F™%"=() and F™.P
+F@rrLoieb =0 for g, [=0. It remains to show that F™ D and Fm+i0.1+D
vanish singly.

We need an additional argument, which consists mainly in recognizing
that F+1.04+D acts on the first component as a compact operator, whereas
Fm1D acts as a multiplication operator. For simplicity, we will only treat
this for the case n=2 and /=3: F=0 implies Ft*»*1=F"?1=(, and thus F®**®
+F&5L0=(0, This implies for almost all ¢, t,

0= (P09 2)e)t, 1)

:gggf(z'o’s)(tu t2; 05 51, Sz, S3)6(Ss, Szs S1)dS1dSad sy

+{[ om0 5, g0 50 t0dsidsy

for all £ L¥(R?; %).
For x, ye 4 we define

f&T (o z;v)=Lx, f*TP(0;2;v)y).

Choosing &(ss, 2, $1)=ry(Sa)7a(s2)ri(s)y With 7y, 74, ;€ L¥(R), we get
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OZS[SSJ(:(&';'”@U ta; 0; 81, Sa Ss>7’1<51)7’2(32)(151(152]7’3(53)5133

+|:SSf§cl,’g}'2)(t1; ta; S1, Sz)rl(sl)rz(sz)dSxdsz}rs(tz)
for almost all ¢,, t,. Let now v, =L%R). Then we have

0=S[Sggf§f;3,3>(tl, ta3 05 S1, Sa s3)r1(sl)rg(sz)vl(z‘l)dsldszdtl]m(sa)dsa

—l—[SSSf;{'y"”(z‘l; t2; Su, sz)rl(sl)rz(sz)vl(z‘l)dsldszdtl]ra(tz)

for almost all ¢,. This is now an equation of the form 0=(F,+ F,)r;, where
F,, F,e B(L¥R)) and F, is a Hilbert-Schmidt-operator, in particular a compact
operator, and F, is a multiplication operator. Since a multiplication operator
F,+0 on L*R) is never compact, we get Fi=F,=0, i.e. both expressions in
the brackets in the above equation are zero for almost all ¢, and s,. Since this
is valid for arbitrary 7., 7., viE L3(R), it follows A2XA%-almost surely that

fﬁ’g's)(tb ta; 05 s1, S, 55)=Xx, f(z,o,a)(tb t2; 05 S1, S S3)y>=0
and AXAXA%almost surely that
FEEB(t 5 ta; 51, Sa)=Lx, fEUD(t; b5 1, S2)Y>=0.

Since % is assumed to be separable, we can choose a countable basis B of 4.
Then we have the above equation for all (x, y)&BXB. This implies:

f(z,o,S)(tb 2} 0, S1, S, 33):0 22X A3-almost surely

FELB(E 5 ty; 8y, S5)=0 AXAX 2%-almost surely,
i.e. f®09=( and fFELO=(, o

Now we want to rewrite multiplication and adjungation for the kernels.

Theorem 2. Let f, g=B be kernels and F, GEB(IKRTF) the corresponding
operators. Then we have:
a) F* is given by a kernel f* with

[¥o; z;v):=f0*; z; a%)*.
b) F-G is given by a kernel fxg with
(fxg)o;z;v)= > Sf(a ;25 nim)g(m* 5 25 vo)d p(m)

v1zgva=v
y%=20

+ = Sf(al; z1; mg(w¥ay; 25 v)d u(r)

012109=0
laéﬁﬂ

+ .3 [fto5 25 mgtat; 25 v)duta)

zy29=2
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Remarks.
1) We also have (fxg)*=g*xf*,
2) The formula for fxg is only a compact notation for the algebraic rela-
tions between p(h), /(g) and /*(f). With
f= f@rr 11 and g= & g(nz,rz,lﬂ

(1, 71,01 (ng, Tg lg)

we have of course
f*g: E f(n1. Tlvll)*g("Z- To.l2)

(n1,71,11)
(nzfr;':lz)

Thus it is sufficient to write down f"vTuivxge T2l for all (n,, 7y, [;) and
(ng, 74, I;). There we have to distinguish different cases, according whether
the p are absorbed by a [ or by a *, or whether two p merge together. This
is a little bit costly, but each case is simple. For completeness we give all
cases. If (ny, 7y, [1) and (n,, 7, [,) are given, then also the triple (n,r, ) of
h=fxg is determined according to the following diagram.

71 7y (n, 7, 1) (fxgXo; z;v)=
L>ny, 00 (1,0, i—netle) \f(o;0;vim)gm*; 0; vo)dpu(m)

L>n, 0 1 (ny, 0, Li—ny+1y) \f(o; 0; vim)g(m*; end(vy) ; va)d u(w)

L>ny 1 0 (ny, 1, i—netl) \f(o;z;mm)g(@m*; 0; vo)du(z)

L>ne 11 (ny, 1, Lhi—netl) \f(o; z; vim)g(n*; end(vy); ve)d u(n)

L<ng 0 0 (ni+n,—0;, 0,0) \f(g.;0; m)gln*as; D; v)du(n)

L<ng 0 1 (mi+n,—I,1,10) \f(o.;0; m)gln*e,; z; v)du(n)

L<ny, 1 1 (mi+n,—1I, 1,1) \f(o.;beg(a,); n)g(n*a,; z; v)du(z)

L=n, 0 0 (ny, 0, 1) flo;0; m)gln*; 0; v)du(n)

L=n, 0 1 (n1, 1, 1) flo;0; m)g(n*; z; v)du(r)

ll=n2 10 (711, 1; 12)

S
S
|
S
S
S
h<ne 10 (nitme—ly, 0,1) [ f(01; beg(aa); me(aros; 05 )dpta)
)
S
S
(#0525 mgtar; 05 )dpm)
|

Li=n, 1 1 (ny, 1, 1s) flo; z; mg(n*; z; v)dpu(n)
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Of course we assume: yw,=y, v;#0 and ¢,0,=0a, d,#0.
The three terms for fxg in Theorem 2 correspond to the three possi-
bilities I,>n,, {;<n, and [,=n, in the above diagram.

Proof of Theorem 2. a) It is sufficient to show the assertion for fixed
(n, 7, I). Let F™ b be the operator corresponding to f.7» and H* ™™ the
operator corresponding to f*™7™»  We have to show: HGTW=F® Dk
Take &, neHdRF=L*I"; %). Then we have

KFMTDE, 15 yog

=§<<F<ﬂ’ r08) @), 7(@)xd @)
S§<<F<“’T-l>s><wlzwz>, (@200 5 d 2™ (,)d A7 (2)d pws)

Mf‘"' (@, ; 23 VEH20)dA), N(@12w5)> £ d A1) d A7 (2)d pws)

)
\

=SSSS<5<”*sz>, FT 0,5 25 101200 1d )R (0)d2T (2)dp(w,)
[[{ccorzan, [rremro0s; 25 0nm@.20)d1@)ad20)AX @dpon)
\

[eorz0), (T Py 720 d20)d2 @) d pws)

=S<s<<»>, (HE ™™ ) @) sed plw)
=&, HE™ ™) yeg.

Since this is valid for all & yp=H@Z, the assertion follows.

b) This proof requires the checking of the formula for f1TuiD*gre. 2.1
for all (ny, 7y, 1)) and (n,, 7,5, {,). We will only treat the case [;>n,. The other
two cases are analogous. Let F, G, H be the operators corresponding to f, g, h,
respectively. The formula for A :=f%g reads in our case as

R (e ziu)= 3 Sf‘”l'”’“’(o 325 mm)g e TR (aE; 2, wa)d A7),

u1zgv%=u
where [=[,—n,+l,. We have

(HOw)= X Sh(n”r’“—“”z’(wl ; 25 V)E(W*zw,)d ATt (y)
W1Z2We=W

= 5 5 |[[reemmves; 2 vmgre @ 2 m

W12We=w vj:fl;z;y

E(vizavtzm;)d A" (m)d A2 (v,)d AT2(v,)
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(%)
= Sf e () 2 ) (GE)(m¥vizw,)d A (vi)
w120=w

=(FGé&)w) .
In (¥) we have integrated over v, and used the definition of G in terms of g.
Thus it follows that H=F-G. &

Theorem 3. We have
I f*ls=1fll»

and
| fxglle=Ilfllsllgls,

i.e. B with the involution f—f* and the multiplication (f, g)—f*g is an involu-
tive Banach algebra.

Proof. The assertion for f* is clear.

For fxg it is sufficient to prove the assertion for f"u7rivxgarzin  We
will only do this for [,>n,. The other cases are analogous. Let h:=fxg. It
follows that

e rtimnesio g

= sup [[1hems r om0 s 250§ dami(@)d AR 00)

I [T

2ERT

g TR (1% 2y w)dz"z(n){};mdzm(a)dzh-"z-w(m)difﬂ(zz)dzlz(»z)

< sup [({[[ {17t s 25 vizmlacn

ZERT

llgeme e t2(n*; 255 vz)HBm;dl"z(ﬁ)]zdlnl(ﬂ)dl“""z“’2(v1)d1’2(22)d2’2(w)

Daap ([[[{[155s 960 25 wizamndaeaco)

zZERT

{f1gemsrstoim®; 20 vl pend s} dam@)das e s e)da (e A2 )

= sup [[{{[1rm 005 25 vzl daramdina}

ZERT

{{{rgne e 203 wllscdarsmdatswl s ra)darsz)
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<{sup ({17 ret0(o; 25 vz eard (@) a2 iz}
ZERT

{sup(flgers et 275 va)lgendaramn)daeen)
2’€ER
ST H St H

In (*) we have used the definition of A= f*g and split the integration with
respect to vy into integrations with respect to v;, z, and y, with y=v,z,p,. In
(*+) we have used the Cauchy-Schwarz-inequality for the inner integration with
respect to 7. O

§4. Definition of Adapted Processes

Now we introduce processes with values in 8. Again, they will be defined
as [*-sums of processes with values in B ", Canonically, we would define
the latter as elements of L=(K; 8™ D), where K is a compact subset of R.
This corresponds to the functions from K to B ™ which can be approxi-
mated in the norm sup.ex|f{®™%| by simple functions. According to the
remarks at the end of Section 2 this set is too small. Using our Kernel repre-
sentation for B™ ™D it is reasonable to replace LK ;B™ D)=
L=(K; L°(R"; LA(R"XR'; B(4)))) by the bigger set

Um0 =L(KXR" ; LYR*XR'; B())).

Of course, this only makes a difference for »=1. This extension is a crucial
step, because e. g. the process F(#)=p(0, ) will correspond to the characteristic
function on the triangle A={(f, z) | 0=z<t}. This characteristic function is an
element of L*(KXR), but not of L¥(K; L*(R)).

Furthermore our processes have to be adapted. This reads in the following
way.

Definition. We call f™"beu™ "D adapted, if we have AXA"XA" X A!-

almost surely :
fmrb(g; z;0)=0  for czvg(—oo, t].

If we introduce the notations
() ={feB™D | flo;z;1)=0
for ozvg I A" X A" X Al-almost surely}
B(I):= S1B™m(I),

m, 7,1

then the adaptedness of f may be expressed as: For almost all ¢ we have
ftE%(_OO, t)
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As usual it does not matter whether I is open or closed. Thus we can
Write %(tl, tg) for %([tl, tz:l)z%((tl, tz))z e

Definition. Adapted processes are elements of

ei= @11 e 1.1
(7.0

={f=m6§ Df‘"”"’ | fmmbeemnb; Ilflle==(n2 1772l n, v, <00},

D
where
gL ={fmr. D [2KXR; LAXR*"XR"; B(4))) | f™ ™V is adapted}.

Thus the norm on ™ 7% is given by
[ £ Pl%n, »,05:= Sup sup Sgllfz‘“"’(a; z; V)| B dA™(a)d A y),
teK zeRT

where sup denotes as usual the essential supremum with respect to A and 27,
respectively. As a set we can interpret ¢ as a subset of

LYKxRB; L' ; BL))).

Examples.
1) The process F(#)=I[(0, ) corresponds to the function [=[""Dge® 0D
given by
1, for 0<s<t
1(0;0; s)=
0, else.
2) The process F()=p(0, ) corresponds to the function p=p =010
given by
1, for 0<z<¢t
p@;2;0)=

0, else.
§5. Stochastic Integrals
Now we can define the stochastic integrals for all f, g=e¢ in a uniform and
simple way.
Definition.

T
a) m:=ST1g,*dlt* f: is defined by: m(¢; z;v) is only different from zero
0

for max(ozv)=max (v)=t with T,<t<T,. In this case we have with
D:DIt)JZ

m(o; 2; vitv)=gu(0; 2; 1) f:(0; 0; vs) .

T
b) m:=STIg,*dl§"* f: is defined by: m(e; z;v) is only different from zero
0
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for max(czyv)=max (¢)=t with T,<t<T,. In this case we have with
0‘=0‘Jo‘2

m(e110,5; 2;v)=g(01;0;0)f (02525 ).
c) mzzgzlgt*d pexf: is defined by: m(c; z;v) is only different from zero
0

for max(czyv)=z+#0 with T,<z<T,. In this case we have
m(o;zw)=80;0;0)f.0;0;v).
Ty .
d) m:=ST f:dt is defined by
0

Ty
m(o; z; u)=ST0ft(a; z;v)dt.

The above definitions are of course to be understood as ‘almost surely’, i.e.
we choose a representative for f and g and then we obtain a representative
for m. On the arguments where m is not defined uniquely—this happens
exactly if ¢ occurs more than once in vy or ¢, i.e. on hyper surfaces in R"+7+l—
we set m=0. The measure of all these cases is zero, so no difficulties arise.

We have

T T *
[ goairsf=(], rredingr).

Now we define analogously to [KSp] for f=(nEB . femrb,

s T,

Fr=@feob  and  Fi=@ fooo,

lz0 nz0

Thus, 7 is that part of f which contains only annihilation operators, and fis
that part of f which contains only creation operators.
Because of the adaptedness of g and f we have

Ty Ty ~
S gn*dlt*fzzg gixdlyxfo
T, T,
and

Ty T Py
S gt*dPt*fz=S Goxdporfs.
Ty Ty

Furthermore the indices of f and g determine the index of m, and we have

T
S lh,(”"'l)dte%m""h
Ty

Ty
ST gé"' T, D*dlz*fc(o'o’ k)E%(n, T,l+1+k)
0

T
ST gén,o,o)*dpz*ft(o,ﬂ, l)e%(n,l,l) .

0
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(That the integrals belong to 8 will be shown in Theorem 4.) More generally,
we have

(Srlh,dt)(n' T'l)=ST1h{”' "o gt

Ty

7y (n,7,0>  l=1(T, )
(I gedtnr) ™" = B gtrem ondiis gt
o -
Ty n,0,1)
(Srogc*dpz*fz) =0

Ty (1,10 (T
(S grdpafl) = S G ODnd paf0D
Ty T,

Remark. 1t is easy to see that, for simple functions, this definition coincides
with the usual definition as given in [KSp]. To see this consider for example

fERLOf  ad  g= 308

with L,=[t;, ti+1), fi, 8:€B(—o0, t;) and f,=f,. Then

m:=SIgt*dl;*ft
is given by (t=max (gzy,tvs))
k
m(e 5 25 vitva)= 2 Xryn1(0g(a; 25 v fil; 05 vs).

‘The corresponding operator M is thus given by

M@=, 2 [m; 2310 z00du0)

® s

3 (([trini®giis 25 99705 05 09)

0120~ 1=

EQEVA2w:)d (1) d A1) d p(va)

-

=3, 2 ez 0,00

i=lo

(Fi&)tvtzw:)d 21 t)d p(v,)

I
M

Il
-

> ggi(wl; Z; 1)
w1z03=w

ULNDFE o tw)dpv)
= 2 (GALNDFOW).

There, F;, G; are the operators corresponding to f;, 8.
In (*) we have used the definition of m and split the integration over v into
integrations over y;, ¢ and v, with y=y,fv;. The conditions in the definition of
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m (t=max (w,2y,lv;)) are automatically satisfied because of the adaptedness of
g; and fi.

Theorem 4. Let f, g, h<e and define
T T T
mlizg hdt, mz;:S gexdlxfo, m33:S gixdpof.
0 0 0
Then m', m?, m*cB(—oo, T), and we have:
[ms<T|R|.

Im®ls=~Tlgl.l /1.

Im®ls=11Zllel 71l -

Proof. a) Adaptedness is clear from the definition of the integrals.
b) We have

mcr-m 0= sup ([ i 7000 5 25 ) 3erd (@) 2)
ZERT

s o
< sup ([[[T1nm 70005 23 Wlcndt] dar(@raz')
< sup ({7 [Fiaim 7000 ; 23 Wlesodt}dir@a26)

=Tsup " sup ({12620 5 23 WlBesodar(@)dzoyat

=T R, 0

In (*) we have used the Cauchy-Schwarz-inequality for X¢, r-h<™ ™D,
Thus it follows that

Imlle= 3 [lm*"8]
n,r,l)

=T X ”hcn’r’””(n,r,n
n, T,l)

=T|Al..
¢) We have

lL-1(T . .
m2(n,r,£): 2 S gt(n, T,z)*dlt*ft(o,o,l-l—l) .

1=0J0

First we consider
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T 2
HS gt(n T’i)*dl,:*ffo’o’ l—l—i)“
0

T ) . 2
Zup 5. Shgemmota; 25 w700 700; 05 wallbes
2€ERT JJO
dA™(0)d 2 (v,)dA(s)d A1 (vy)
T ]
éSo gg}gSXSllgé"'”’(a; z; v B>
F2:01-100; 05 ) Beard (@) G- Ga)dACS)

[ {sun [S1gsm 0 25 wlbendir@dre)}

IA

{f1f01-00; 05 va)lcard 2= -4} da(s)

T i .
[Chggm o feoolrais)
T i .
= sup 1gim -0 gup | f01-0 i)
0 teK t'eK

=TNg™ P ltn. v ool FO P, 0,0-1-05 -

In (*) we have used the definition of the stochastic integral with respect to d/,
and then split v into vy;sv,.
Thus it follows that

Imle= 2 [m* b
n, 7,1l

-1

= X ?\/7—1”g(n'T'i)”(n,r,i)”f(o'o'l-l_i)”(o.o,t—x-z‘)

——(n,'r,l)i 0

=vTlgll 7l .

(n,1 l)_i (n,0,0) i 0,0,0)
mn. gt 10,00 pt*ft 20y

First we consider

r 2
[atousposeos]

=sup SSH(S:gé"-°'°’*dpz*fé°'°' “)(a 323 v)H:( PRGN

ZER
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= sup ({1903 0;0)70000; 0; lssod2(0)d2'w)

2€[0,T]

=lg™ "m0l F " Pl%0,0,1 -

(compare part c)
Thus it follows that

Imille= 33 [m*™tB]
(n,1,1)

= 208" Nen0,0lf " Pllo.0.1
n,l20

=&l 7lle -

e) It remains to show that all stochastic integrals are measurable functions
(Bochner integrability includes measurability). It is sufficient to see this for
fixed indices of f, g and h. To see this, consider first special f, g, h: Let
them be functions with countable range from L*(KXXR™; LA R*XR!; B(4))) and
LYK XR®; LR} R*; B(4))), respectively, i.e.

g‘(n,r.l)(o-; zZ,y)= ;;x'ii(t’ Z)gi(d [
fo0mQ.0; )= 121 XBi(t, 0Ofi0;v)

ht(n,r,l)<o- ;23 y)= éx(’i(t’ Z)hi(O'; )

with A4, C;€KXR"), B,e{(KXR", g h'eLl*R"XR';B(4)) and f,=
L¥R°xR*; B(4)). Then we have

i (g 5 25 0)= 33 S:Xgi(t, 2)dt hi(a ; v),

mAm T (g 25 V)= ,i".-] Xa,(max (v), 2)g%(0 ; v)Az,(max (v), 0)f(0; vs)

Lo, r>(MAX (W)X (—oo, max »2>(MAX (6))X (=0, maz 3>(2)
(with y=y, max(v)y,) and

mi (e s 2 0)= 33 Lz 080 s sz, 0)F40; v)

Xco, 75(2) o0, 5(MAX (6))X ¢, -»(MAX (V)
These three functions (regarded as functions in z) are measurable and are thus
T
elements of B. (For example, for m' this is true, because ZHSO Xe,(t, 2)dt is a

measurable function.)
Since f, g, h of the above form are dense in ¢, the assertion for general
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f, g, h<e follows from the shown norm inequalities. &

§6. Ito’s Formula

In the following we put K=[0, T]. Given processes f, g, hEe we can
define new processes by

m} :=S:hsds

¢
mtz:S gs*dls*fs

0

¢
m%:=50gs*dps*fs .

Theorem 5. If f, g, h<e, then m*, m?, m*ce, and we have
[m* =T hll
lm?.=~vTllglll 1.

Im <1200 71 -

Proof. The inequalities follow directly from Theorem 4.

It remains to show that m!, m?, m® are measurable functions. But this is
clear if we look again at the form of these integrals for f, g, ~ with counta-
ble range (part e) of the proof of Theorem 4, replace T by #): For example,

14
w.1y(2) is a simple function in (4, z) (but not in ¢ alone!), and SO X (s, 2)ds

and X, (max (v)) can be approximated by simple functions. &

The differential equation

) { dm,=gixdpoxfi+gixdlox fi+gixdlf*fi+h.dt
*
My=Mg

(with m,e8(— o0, 0)) is now a formal notation for the validity for almost all
teK of

mo=mat ([ gisdpo fit | giedton fit { gisdizesit [ nuds

Theorem 6. Consider f%, gt, hee (1=1, 2,3). The process mEe is a solu-
tion of (*) if and only if the following conditions are fulfilled for almost all
t;0;2;v):

i) For r=max(gry) with 0=<r=t we have
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mia;r;v)=ma(o;7;v)+8:(a;0;0)/:0;0; v)+5:hs(a; r;v)ds.
i) For r=max(ozyv,ry,) with 0=<r=t we have
m(a; 2; virvs)=ma(0; Z; virve)+87(0; 2; v) 205 05 ve)
+gihs(a 2 vyirve)ds .
ili) For r=max(o,r0.2v) with 0<r<t we have
mi01r0s; 25 V)=ma(0:70,5; 2; v)+83(0:;0; 0) /(025 25 )
-I-Sihs(alro‘z; z;v)ds.
iv) For max(ozv)<0 we have m,(o; z; v)=mq(o; z; v).

Proof. The assertion follows directly from the definition of the stochastic
integrals. &

Theorem 7 (Ito’s Fomula). For e, f, g, hEe consider

t -
mi :=Sogs>x<dl§=l<fs

t -
m%:zs exditeh,
0

where diI} and dI? denote any of the four symbols dps, dls, di¥ and ds. Define
mei=mixmi. Then we have for all t€K

m= goedlin fomit | mivessdipsh,+ | g fore) o Oxdissh,
where dl, is given by the following diagram:

dilNdl?  dp, ary dls ds

dps dps aly¥ 0 0
dl¥ 0 0 0 0
dls dls ds 0 0
ds 0 0 0 0

Proof. Since the definitions of multiplication and stochastic integration are
explicity given, we only have to put the definitions of all expressions into Ito’s
formula and compare the two sides of the equation. Thus the assertion follows
from a straightforward calculation.

On the other hand, these calculations are very tedious because we have to
distinguish many cases. For illustration we will here present only the short
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computation for dil=dp, and di?=dp,. Let z=max(czv) with 0=<z<t¢. Then
we have
(mixmi)a; z; v)

= 3 {milo; 23 vummita®; 25 v)dpia)
5

+ 3 Sm%(ol; z1; mmi(n*os; z; v)dp(r)

012105=0
lazatzﬂ

+Smé(a; z; mmi(z*; 0 ; v)dp(n)
+Sm%(a ;05 mmi(a*; z; v)du(n)
+Sm%(a ;25 mymi(n*; z; v)dpu(n)

= 3 [0050;0)7.0;0; mami(a* s 20 wdp()

v129V9=y
1»%#0

+ Smi(m sz medatay; 03 003 0; v)du(x)

G12109=0
lﬂé¢2ﬂ

+ng(o 3050010505 mmiz*; 0; v)dp(x)
+mi(a 05 meutn®; 0; 080 03 »)dp(a)

+ng(o ;0;0/.0;0; meln*; 0; 0)h.0; 0; v)du(n)

=g.0;0;0)-(fxm2)@; 0; v)+(mixe,)(a;0;0)h,0;0;v)
+g:0;0;0)-(fxe)0;0;0)-h,0;0;v)

=[[.gerdpesfosmict | misessdporh,

+S:gs*(fs*es)(o'0'0)*dps*hs:|(0' ;25 ).

One sees directly the vanishing of the expressions corresponding to Theorem 6
i), iii) and iv). This gives the assertion. &

§7. Stochastic Differential Equations

For constructing stochastic evolutions we have to consider linear stochastic
differential equations of the form
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) { dvi=ver{ghd pox f1+gledlx f1+ gixdlF+fi+h,dt}
*
Vo=V EB(— o0, 0)

The mere transfer of the corresponding existence and uniqueness theorem of
[KSp] is wrecked on the fact that in the estimate for the integral with respect
to dp (Theorem 5) the length of the integration interval does not appear. The
following example shows that this is a serious problem.

Example. Let 4£=C. We are looking for the solution of the stochastic
differential equation

dv;—_—l};*g;*dp;

()
Uo=id.

For g we choose the process g=g* % with

1
g‘(I,U,O)(tI ; 0 ; 0): ﬁx(o’ z)(tl) .

Then g is an element of ¢%%%, The kernel g; corresponds to the operator
(1/4/F)*(0, t) which has, independently of #, the norm 1.
Thus we are looking for vEe with

t
v;:id—l—Sovs*gs‘"“'“)*dps .

Let v,= GEZ vf® 7D, Then it is easy to see that (note »{™*»=0)
m, 7,0

{000 =jd=7d<.%.®

13
1,1,00 — 0,0,0 1,0,0
vpo=[yproegpeocdp,

t
v ={optioegponsdp, (n22).

This can be solved iteratively and we find

vO0; 0; 0)=1

{-i= 0<t,<z<t
VROt 25 0)=4 vz
0 else
{——1—————_—_ 0t < oo Sto<z<t
PO e sz 0)=1 VZlata_y e Lals -
0 else

But now we have
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[0, 0= sup._sup [ - {lom 10, e, 10 23 00101 - dt

tel0,T] zER

= sup supgz---gt”gtz_l__l_ 1 "'—}dtldl‘z"'dtn
2

te[0,T7 zeR Jo 0Jo 2ty tnoy

=1,

t
because Sozdh:tz etc.

Thus, %[ ,1,00=1, and in the same way [[v > ,0,0=1 and [[v" "], 1,0
=1. (By the way, the other v‘™ ™" vanish.) This means

o= 3 o0l =co,

i.e. (#%) has no solution in e.

Luckily, for our dilations we will only need the special case of (%), where
i gh k. (=0, 1,2) are operators in B(%), i.e. where they are elements of
€®%% In this situation we have again an existence and uniqueness theorem,
because in this case the integration with respect to dp can only appear once
in the iteration procedure.

Theorem 8. The stochastic differential equation

{ dvi=vx{gWd px fi+glxdlx fi+ghed ¥+ fi+h.dt}

Vo=Vq E%(_ooy 0)

has a unique solution v<e, if f°, f1, /% g, g% h<e and g°=g°® "V ce®00,
Proof. As usual we try an iteration procedure on [0, ¢,]: vi=v, and

t t
v =vo-+| 7 rghd por i+ | 07 rgiedlin i

t t
—I—Suvg“l*gg*dlf* f§+gov§“*hsds
(r=2). We get
[vT—o" S 0™ g — v gl ] 7).
Flv = 2 A Villg el FH A Vol g2l f2 e+ ol AL}

Since g’=g%®%% we now have
vr—1*go___ > (vr—-l*g0>(n,0,0)= = UT—l(n,0,0)*g0(0,0,0):vr—1*g0
nz0 nx0

We use
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—_— L —_— L
T = vt | T TRgTe Al i | o s
(integration with respect to dp can only appear once) to conclude

o =tegt—v™ gt o= o —v" 2L g0l

Sl —=o Pl A Vil gl e+t Al g0l

Together with the above estimate for ||[v™—v""!|. this guarantees the applica-
bility of Banach’s fixpoint theorem (for double iteration), and thus the assertion
follows. <&

Remarks. 1) We may chooss a cancnical represeatative of v in the fol-
lowing way: Define
t .
Vi=Vq —!—S avs
0

for every i€ K. The right side of this definition does not depend on the choice
of the representative.

2) Contrary to the situation in [KSp], the cancnical representative may be
discontinuous. For example, the solution of

{ dvi=vxdp,
'Uo:id

is given by v,=id+ p,, which corresponds to V{{)=1-+p(0, t). This process hes
no (uniformly) continuous representative.

§ 8. Stochastic Evolutions

Next, we try to find conditions which guarantee unitarity of the solution
of our stochastic differential equation. Again we restrict to a special class of
differential equations, namely

( ) { dut:ut*{gt*d}g);’{"gt*dh—'—dlik*ft—{‘hgdt}
%
uO:id,
where f, g, hEe and e=e® Vg0,

Note for the fellowing calculations that elements of &% commute with
all differentials (e.g. e xdp,=dpxe,=dp.e,).

By the differential equation for wu*

{ duf={d pref+diF=gF+ fF+dl,+hidt}xufF

u¥=id
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and by Ito’s formula, we find as a necessary condition for unitarity of u,
0=d(uf+u,)
=dufru+uFrdu,+duf+du,
=dpx[efte.tefxe, ]+ diFx[gE+ fi+eif*f.]
+[fE+got+ fixedxdl+-[h¥+ho+ fF+f]de .
The next lemma enables us to conclude the vanishing of the coefficients of the

single differentials.

Lemma 1. Consider a, b, c,d, e, f, hEe and
dm, 1= axdpxb,+coxdiFsd 4o pxdl+f -+ h.dt .

a) The following conditions are equivalent :
i) dm;:O.
ii) For almost all (t;0;0.;0s;2;v; v} vs) we have

ai(o;0;000:0;0; v)=0
(0135 05 0)di(oz; 2; v)=0
ei(o; 2; v)f:1(0; 05 v2)=0
h(o; z; v)=0.
b) In particular, dm,=0 implies for almost every t that
amb,=0
Coxd,=0
ex =0
h.=0.
Proof. a) By the definition of the stochastic integrals, the implication ii)=i)

is clear.
For the reverse implication we consider

t t t t
m;:S as*dps*bs—i—g cs*dl;“*ds—i—s es*dls*fs+S hyds.
0 0 0 0

According to the assumption we have m,=0 for all . The following considera-
tions are valid almost surely.
For (¢;z;y) with z=max(¢zv) and z<t{ we have
t
2

O=mu(o; z; )=a.(c; 0; 0)b.0; 0; y)+§ h(o; z;v)ds.
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For t ] z this implies

0=a,(0;0;00b,0;0;),
i.e. the first assertion.

For (¢; z;v) with ¢6=0,70,, y=max(gzy) and <t we have
0=m(a170z; z; v)=cr(0:; 0;0)d(0:; 2; v)+5£h3(o; z;v)ds.

For t ] r this implies
0=c,(0,;0;0d(0:;2;v),
i.e. the second assertion.
The third assertion is proved in the same way.
Furthermore we have

t
(miy—me )05 25 y)=§t2hs(0; z;v)ds=0 for t,>t,=max(gzv).
1
Because of the adaptedness of A we have for all ¢, L,EeK

hy(o; z: u)ds—}—gtz hy(o; z; v)ds =0,

Smax(d;z;u)
max(c;z;v)

ty
S hy(o; z; v)ds=
ty t

i.e. hio; z; v)=0 almost everywhere.
b) This follows from a):

@Exdi)o;2;0)= 3 clo:; 05 0)di(0s; 25 2)=0
G109=0

and in the same way for a,+b, and e, f,. S

This lemma gives us the following three necessary conditions for unitarity :
ef+te+efre,=0
g¥+fitefxf,=0
hf+he+fEfe=0.

Contrary to the case without dp (¢,=0), where these conditions are sufficient,
uxuF=id gives us another condition. Ito’s formula implies

0=d(uxuf)
=ugk{[ete¥-texeflxdp,+diF[fi+gF+exg¥]
+Lget fEtgore]xdl+[h+hE+gorgtldt}ruf .
We use lemma la) (for dp;) to conclude (note ¢, e %)
0=(us(e;+ef+ecxef))(a;0;0) ur®@;0;v)
=u(c;0;0) (e, +ef+exeF)D;0;0)-uk®;0; ).
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Multiplying this on the left by u¥®;0; ¢*) and on tne right by u,(*;@; ),
integrating over ¢ and v and considering

Sui‘(ﬂ; 0; vuw*; 0; 0)dul)=(uf+u,)0; 0; 0)
=id(@; 0; 0)

=lpun

we conclude e;+ef+e,xef=0.
Thus we have the following necessary conditions

e;+eftexeF=0
e,+-ef+efxe,=0
fetgiterf,=0
he+hE+fExf=0.

The first two equations are equivalent to e¢,=w,—id, where w, is unitary.
Then the other two equations give f,=—w,*g¥ and h,=ihi—(1/2)g.*xg¥ with
ni selfadjoint. These conditions are also sufficient.

Theorem 9. Let g, h'se and wse®™®, and let for almost every t the
kernels w, be unitary and hi selfadjoint. Then the solution u; of

3

{ duy=upnf(wi—idind py-t gundli— difsworgt+(ihi— gong?)di)
1o=id
is unitary for every t.

The statement ‘u, is unitary for every #’ means: The canonical representa-
tive of u<e is unitary for every ¢.

Proof. The assumptions imply at once that u,xuf¥=id for every t. (Note
here the validity of Ito’s formula for every t.) For w.:=u¥xu, we deduce the
following differential equation (with f,=—w*g¥, h.:=thi—(1/2)g.*g¥):

dw;={dprre¥+dl¥«g¥+fF*dl+h¥dt}xw,
twpr{eped prt+goxdl,+diF«f,+hodi}
FeFrwi® " Vxexd pyt-efxw O VediFxf,

T [FRw® O Oxeyxdl + fFew V% f o dt

wo=id.
A small extension of the proof of Theorem 8 shows that the solution of this
stochastic differential equation is unique. Since w,=id is a solution, we find



INTEGRATION ON THE FULL Fock SPACE 181
we=ui*u,=id for every ¢. &

Example. For g,=h{=0 and w,=W-.id with unitary W< B(%) we have
the differential equation
{ duczuc*dpt-(W—l)

ue=1d

The solution is given by u,=id+(W—1)p,, which corresponds to U(t)=
1+ —=1)p(0, ).

§9. Dilations

With the help of our extended stochastic calculus we are now able to give
additional dilations of the completely positive semigroup T,=e*® on B(4). The
generator ¢ shall have the form

2: B(%) —> B(X)
X il H, X]— +(L*LX—2L*XL+XL*L),

where H, L= B(4) and H is selfadjoint. By S,: $—F we denote the shift on
- the Fock space. (compare [Lbl, HuP1l, KSp])

Theorem 10. Let u,Se be the solution of the stochastic differential equalion

du,:u:*{(W—l)dp;—L*Wdlri—dli-‘L—}—(z'H—%L*L)dt}
uo=1id
where WeB(4) is um't(iry. Let U(t) be the unitary operator on KQQF corre-
sponding to u. and let T, for t=0 be given by
T:: BUOQB(F) —> BA)QB(F)
Z—U®)S7ZS,U*(t) .

Then T, is a dilation of T, i.e. the following diagram commutes:

T,
B(#) ——> B
il T E,

v N
B(INRB(F) —> B(INRB(F)
where
it Bl —> BH)QB(F)
X —> X®1
and
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Eq: B(4)QB(F) —> B(%)
LRA—>LKQ, AQYL .
Proof. The proof is analogous to the proof of Theorem 7 in [KSp]. <&

Note that we have not demanded that our dilation be stationary, i.e. we
have not addressed the question whether there exists a state which is invariant
under 7. (cf. [FGo, FMa, Kiiml, Maa2])

Finally, we want to give explicit solutions for the differential equations
appearing in Theorem 10. More generally, we consider differential equations of
the form

" { dvi=vx{dp, P+dl,R+dI}¥S+diT}
*
U():id

with P, R, S, TeB(4). The analogous equations on the bosonic Fock space
were treated by Maassen [Maal].

Definition. The n-tuple o=(t,, ts, -, t,) is called time-ordered, if we have
LELS - Sy,

Theorem 11. Let P, R, S, T€B(4). Then the solution vEe of (*) has the
following form:
i) ozv not time-ordered: v.(o; z; v)=0.
i) min(e; z;v)<0: v (g;z; v)=0.
iii) ozyv=(, -, ta) time-ordered and 0<t, < - <¢,<i:

‘I)t(O' 12 v):eLITWIe(tZ—tI)TWZ Wn_1e(tn-¢n_1)TWne(t—tn)T ,

where
P if t,;=z
W1;= R if tiGu
S if Leo

Proof. The equation () is equivalent to

vtzid-l—S:vs*d psP—i—S:vs*dl,R—I—S:vs*dl;"S—i-S:vsdsT .

Since the solution is unique, we only have to check whether the given v is a
solution. We will verify the conditions given in Theorem 6.

If ogzv is not time-ordered or if min(ozy)<0, then it is easy to see that
these conditions are fulfilled.

Consider now czv=(t,, ---, t,) with 0<¢, < --- <¢,<¢t. We only check the
condition ii) of Theorem 6, i.e. we assume f,<v. Then we have to show that
(v=wits)
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005 25 vit)=0e,(0; 73 vl)R+Sz vs(0; z; v)dsT .

This is valid, because the left side is equal to
(05 25 vitn)=0;,(0; 25 v R t0T

and the right side is equal to

t
vi,(0; 2; yl)R—*—Sz vs(0; 2; vitn)dsT

:U:n(()'; z; Ul)R+Utn(0' 323 UI)RSZ eC=tTT g

=v:,(0; 2; v))R[1pcnr+[e T ]
=v,(0; 2; v)R e tnT

The other conditions of Theorem 6 can be verified in the same way. &
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