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On Cohomology Theories
of Infinite CW-complexes, II

By

Zen-ichi YOSIMURA

In the first paper under the same title ([T] in the references at the

end of the paper) we discussed main strong convergence conditions of

spectral sequences associated with an additive cohomology theory h. In

the present paper we discuss mainly conditions when h(X) is Hausdorff.

We understand by a cohomology theory h a general reduced cohomol-

ogy theory defined on the category of based C W-complexes. Let X be a

based C ̂ -complex and Ux = {Xx} the set of all finite subcomplexes of

X. The subgroups Fxh\X} = Kzr{hn(X}-*hn(Xx}} of hn(X} give hn(X}

the structure of a topological abelian group. In general hn(X) is not

Hausdorff.

Under the assumption that each skeleton Xp of X is a finite CW-

complex, Buhstaber and Miscenko £3j and Landweber [JL3] investigated

conditions that h(X) is Hausdorff in case h — K, complex ^-theory, and

h = MU, complex cobordism, respectively. In the present work we try to

drop the above finiteness assumption on X and investigate the conditions

that A(J5T) is Hausdorff for a general h. However, in the present discus-

sions we must restrict our interest to the case that h is additive and of

finite type.

First we give a characterization of the closure of zero in hn(X) de-

noted by Sn(X) (Theorem 2). In £3] the same characterization was

given in case h=K, complex j£-theory, by a different method.

In [_2^\ we introduced classifying spaces of direct systems of based
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C ̂ "-complexes and cellular maps which behave as a generalization of tele-

scope constructions. By using the classifying spaces we construct co -Moore

spaces M and Si of type (Z, 2) and (Z/Z, 2) respectively, and define

cohomology theories h( ; Z) and h( ; Z/Z) following Bold [11]. Then

the long exact sequence

associated with the coefficient sequence 0 -> Z -*Z -> Z/Z -> 0 is obtained.

This exact sequence is closely related to Hausdorff-ness of h(X} (Theorem

3). Consequently we get necessary and sufficient conditions that h(X) is

Hausdorff (Theorems 4 and 5), cf., [3] and [13].

Finally we generalize Dold's Theorem [11] (Theorem 6). This theo-

rem applied to h( ; Z/Z) gives a sufficient condition that h(X) is Haus-

dorff (Theorem 7).

We quote the theorem of [I] in such a form as "Theorem 1.3"

without any more mention.

1. Inverse Limit Functor

1.1. Inverse limit functor may not commute with the functors Ext

and Tor in general. In order to supply this deficiency we need the fol-

lowing results (1.1), (1.2) and (1.3) due to Roos [8, 14].

Fix a (commutative) ring A and a partially ordered set J. Let M be

a ./i-module and s/={Aa} and &={Ba} be inverse and direct systems

of yi-modules over / respectively.

(1.1) Assume that I is directed. There is a strongly convergent spectral

sequence {Er} associated with Ext^Qisi Ba, M) such that

(1.2) There are two strongly convergent spectral sequences {Er} and {Er}

associated with the same graded A-module such that

M, Aa} and Ep
2>

q=
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(1.3) Assume that A is Noetherian and M is finitely generated. There

are two spectral sequences {Er} and {Er} associated with the same graded

A-module such that

E%q=]jmpTor±q(MyAa) and Ep
2'

q=Tor^p(M,lun9Aa).

Remark, i) Instead of assuming that A is Noetherian and M is

finitely generated we may assume that M has a projective resolution by

finitely generated yl-modules.

ii) When the global dimension of A is finite, the spectral sequences of

(1.3) are strongly convergent.

(1.!)-(!.3) are easily proved by standard arguments about the spec-

tral sequences associated with double complexes.

Here we restrict to the case A=Z (the ring of integers). As corol-

laries of (1.1)-(1.3) we have the following (1.4)-(1.6).

Let M be an abelian group and jtf={Aa} and &={Ba} be inverse

and direct systems of abelian groups over L

(1.4) Assume that I is directed. There are isomorphisms

lim Horn (Ba, M) ~ HomQim Ba, M}

and

HmwExt(5a?M)^limM+2Hom(5a3M) for n^l,

and an exact sequence

0 -> Hm1 Hom(£aj M) -> ExtQim Ba, M)

-» lim ExtCe«, M) -» lim2 Hom(.£a, M) -» 0.

(1.5) There are abelian groups {Hn}n^Q such that

0 -> Ext(M, !imw-1Jfl:) -+Hn-» Hom(M, lim"^) -» 0

and

-» Hn+l -> Hmw Ext(M, Aa) -> HmM+2 Hom(M, A*) -> Hn+2 ->
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are exact, and in particular

HQ ^ lim Horn (Af, Aa} ^ Horn (M, lim Aa).

(1.6) Assume that M is finitely generated. There are abelian groups

{Hn}n^-i such that

0 -> M® Hm" Aa-+Hn-» Tor CM, limw+1^«) -> 0

J -+ Hmw+2 Tor(M, ^ J -> Hn+1

are exact, and in particular

Using the functors Tor and Ext various functors of three variable

are obtained by composition. We recall relations held between them.

Let A be a ring and L, M and N be yl-modules.

(1.7) There are two strongly convergent spectral sequences {Er} and {Er}

associated with the same graded A-module such that

)) and £f'*=

(1.8) Assume that A is Noetherian and M is finitely generated. There are

two spectral sequences {Er} and {Er} associated with the same graded A-

module such that

Ep
2>

9=Ext*A(ExW(M, N), L) and Ep
2'

q=Tor±p(M, Ext«A(N, I)).

We remark that the spectral sequences of (1.8) are strongly conver-

gent when the global dimension of A is finite.

When we restrict to the case A=Z, the following results are im-

mediately obtained.

Let L, M and N be abelian groups.

(1.9) There are isomorphisms



COHOMOLOGY THEORIES, II 487

Horn (Af, Horn (TV, L)) ^ Horn (Tkf(g)TV, L)

Ext(M, Ext (TV, L))^Ext(Tor(M, TV), L),

an abelian group H such that in the following diagram

0 0

Ext (M(g)TV, i) Horn (M, Ext (TV, i))

H

Ext (M, Horn (^ £)) Horn (Tor (M, TV), i)

0 0

^/?g diagonals are exact.

(1.10) Assume that M is finitely generated. The natural homomorphism

M(g)Hom (TV, L) -> Horn (Horn (M, TV), L) admits a factorization (in the dia-

gram below}

0 0

Ext (Ext (M, N\ L) Tor (M, Ext (N, L))

H

M(g) Horn CAT, L) - > Horn (Horn (M, TV), L)

0 0

such that the diagonals in the above diagram are exact. Moreover there

are isomorphisms

M(g)Ext(7V, L) ̂  Ext (Horn (M, TV), L)

Tor(M? Horn (TV, £)) S Horn (Ext (M, TV), L).
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1.2. Since the global dimension of Z is 1, the following theorem is

obtained as the special case of Roos C14], Theorems 2 and 3. Nevertheless

we give a simple proof without using the technique of Roos in our special

case A=Z.

Theorem I (Roos), Let jtf={Aa} be an inverse system of finitely

generated abelian groups indexed by a directed set.

i) ]imlAa is injective (as a Z-module), and
*a~

ii) lnnpAa = Q for all pl>2.
OL

Proof, i) Consider the exact sequence

0 -» TorU*, Z,) -»Aa^Aa-» Aa®Z, -> 0

for each integer g>l. Since Corollary 1.5 implies lim1 Tor C^? Zq) =

ql lim Aa -> lim Aa2 ^T ^T

is an epimorphism. Thus lim1^ is divisible by arbitrary non-zero integers
a

and hence injective.

ii) Putting M=Aa and N = L=Z in (1.10) we have a (split) exact

sequence

5 Z\ Z) -> Aa -> Hom(Hom(^a, Z\ Z)->0

and equalities

tt5 Z\ Z)=Ext(Hom(Aa, Z\ Z) = 0.

Replacing Ba and M by Kom(Aa, Z) and Z in (1.4) respectively we get

an exact sequence

0 -> lim1 Hom(Hom(^a, Z), Z) -> ExtQim Rom(Aa, Z\ Z)

-> lim Ext(Hom(^a? Z), Z) -> lim2 Rom(Rom(Aa, Z\ Z) -> 0



COHOMOLOGY THEORIES, II 489

and isomorphisms

Jim* Ext (HomU«, Z\ Z) ~ ljmp+2 Horn (Uom(Aa, Z\ Z) for p ;> 1,

and again replacing them by Ex.t(Aa, Z) and Z we get

Jim* Ext (Ext(^«, Z), Z) ̂  lim^2 Horn (Ext(^«, Z), Z) for p :> 1.

Making use of the above exact sequence and isomorphisms we have

Jim* Hom(HomC4a, Z), Z) = !im* Ext(Ext(Jtt, Z), Z) = 0

for p^>2. From this follow the required results

lim*^a = 0 for all

2. Classifying Spaces of Direct Systems of CJF-complexes

2.1. Let I be a directed set and <£ = {Xa,f%} a direct system of

based C W- complexes and cellular maps over I. In ^2~] we constructed

the classifying space B& of ^ which is a based C ̂ -complex with the

canonical isomorphism

(2.1) \mHn(Xa)^nn(B^
a

for each degree n (see Q2]3 Corollary 3 and Theorem 1).

Let X and Y be based C JF-complexes. The smash product X/\Y is

equipped with the structure of a based C JF- complex, retopologized by the

weak topology in place of the usual topology £15]. In this sense we

understand the smash product as a based GIF-complex. For any based

C JF-complex Y we define a new direct system ^ A Y over / (the smash

product of ^ and F) by

Making use of [15], Theorem 4.4, we see directly that the classifying

space of tf/\Y is the smash product of the classifying space B^ and Y,

i.e.,
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(2.2) B(<$/\Y} = B<#/\Y.

Let V={Xa,f%} and V = {Ya9 g%} be direct systems over / and

h'.<£-*<£r a morphism of direct systems, h is a family of cellular maps

ha,a£l, satisfying g%ha=hpf% for a<J/?. For each ^-simplex ff={a0,

-•,an} we associate Xf and Yv by Xff=Xao and ^=7^, and Aa: JT,,.-*

F, by h(r=hao. As is easily seen, /^A id: -X^A AW '+->F,A Aw '+ induce

a cellular map

(2.3) Bh

Let ^'\JC^ be the mapping cone of h\^-^^r defined by
/?

V'\jCV = {Ytt\jCXtt, g%\jCf%}.
h ha

It is easy to verify that the classifying space of ^f\jC^ is the mapping
h

cone of Bh, i.e.,

(2.4) B(tf'\jC^ = BVf\jC(B^.
h Bh

Let X be a (connected) based C JF-complex. We say a direct system

^={JTa, f%} over / is derived from X if

(2.5) X ^ X f o r a E / and f% = id for a^

and denote it by ^^-. The canonical projection vr: B&X-+X induced by

the projections JT^A AW '+->X0. for re-simplexes (T is a homotopy equiva-

lence (cf., Q2], Proposition 5). Let Ca'.X-^B^x be the injection JT^JTo;

Since vf*ca = id for each a£ I,

(2.6) fa /5 <2 homotopy equivalence with the homotopy inverse tzr.

2.2. Order the set of all positive integers by divisibility and denote

its ordered set by /. Obviously / is directed. Since all positive integers

are divisible by 1,1 is the initial object of /.

Let Mq = S1\JCSl be the co-Moore space of type (Zq, 2) where q is
0

a positive integer and q: S1->S1 denotes the map of degree q given by
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q{t} = {qt} for {t mod 1} 6 S1. Denote by

zVS1-*^ and nq:Mq-*S2

the canonical inclusion and the map collapsing Sl to a point. Let a, 63 q

and r be integers such that ar = bq and <7 3r^>l . We define a cellular

map a : Mq—*Mr as follows

(2.7) a = b\jCa: Mq = Sl\J CSl-+Mr = Sl\J CS\
q r

Consider the following commutative diagram

Sl -^—* Sl — ̂ -> Mq — ̂ -> S2

Sl _ ^ Cl _ ^ Tlyf _ v C2
_-^ ^ fsr

 > -Mflf 7Tgr
 y O .

{S1,/Jr = r} and {Affl,/*r = l} form direct systems of based CIF-com-

plexes and cellular maps over /. We denote by Sf and M the classifying

spaces of them respectively, i.e.,

(2.8) St^B{S\flr = r} and M=

In the next section we will determine the ordinary cohomology groups of
V

Si and M.

The above diagram induces a sequence of direct systems

«v -J— > {s1, /;r=r} — *

where ^5fc3 fc = l and 23 are direct systems over / derived from S*3 (2.5).

By (2.4) we remark

(2'9) =
Bj

Using the maps ^i and t7 of the homotopy equivalences (2.6) we

define cellular maps

(2.10) Z: Sl-+Shl: S, -> M and 7r:M->S2

as follows;



492 ZEN-ICHI YOSIMURA

l = B*d: S1 -

and

-» S2.

A four-term sequence X— — » F— — > Z— — > SX of based C JF-complexes

is said to be a cofibration sequence if we have a homotopy commutative

diagram

X f > F g > Z — * — *> SZ

*J ^2| d U«i
^— !—> 5 - > B\JCA — >5^(

in which the vertical maps are homotopy equivalences.

By means of (2.2), (2.9) and (2.10) we have

Lemma I. 51 l > 5/ — ̂  — > M n > S2 is a cofibration sequence.

3. Topological Abelian Groups h(X)

3.1, Let h be a (general reduced) cohomology theory, X a based

CJF-complex and MX = {XX} be the set of all finite subcomplexes of X

ordered by inclusions, llx is directed.

For each degree n we define subgroups Fxhn(X} of hn(X) by

Fxhn(X) = Ker {hn(X} -> F(ZX)}.

This inverse system {Fxhn(X}} topologizes the abelian group hn(X), the

subgroups Fxhn(X) being taken as neighborhoods of zero. Denote by

Sn(X) the closure of zero in hn(X\ i.e.,

(3.1)
\

In general Sn(X) may contain some elements other than zero, whence
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hn(X) is not necessarily Hausdorff. We say h(X} is Hausdorff when

hn(X) is so for each degree n and further h is Hausdorff when h(X) is

so for any based CJF-complex X.

The completion of hn(X) for this topology is denoted by hn(X)*. In

other words,

is topologized by the inverse limit topology. The projections u^ :

hn(X) -» hn(X)/Fxhn(X) induce a natural homomorphism. We can easily

verify that

(3.2) u is a continuous and open map,

Similarly Km hn(Xx) is topologized by the inverse limit topology and

the natural homomorphism

(3.3) TT-Km if: hn(X) -> Km h>m

is continuous where ix: XXCX are the inclusions. By Q9]3 Theorem 1.8,

we notice that

(3.4) TT : hn(X) -> Jim hn(Xx) is an epimorphism for each n if h is additive.

Consider the following diagram

Km F(

TT admits a factorization TT • ^ where the homomorphism ft: Km hn (X)/

Fxhn(X)-+ljmhn(Xx) is induced by the inclusions ix:X
xC%- Obviously

ft is a monomorphism. (3.4) implies that ft is an epimorphism and hence

it is an isomorphism. Therefore we have
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(3.5) u: hn(X)~>hn(Xy is an epimorphism for each n if h is additive,

By (3.2), (3.4) and (3.5) we have

Proposition 2« Let h be an additive cohomology theory and X a

based CW -complex. Fix a degree n. The following conditions are equiva-

lent'.

ii) h*(X) is Hausdorff,

iii) hn(X) is complete and Hausdorff^ i.e.,

u : hn(X) — > hn(X)^ is a homeomorphism,

iv) 7i : hn(X) -> Km hn(X^) is an isomorphism.

3o20 Suppose that a cohomology theory h is additive. We observe

the spectral sequence {Er} associated with h*(X) such that E\>q =

lim^CX*1), Q2], Theorem 2. The edge homomorphism of the spectral

sequence {Er} is the composite

and clearly coincides with the natural homomorphism 7t. If our spectral

sequence collapses, it is strongly convergent by Q2]], Proposition 9. By

standard arguments about spectral sequences and Proposition 2 we can

show

Proposition 3e Let h be an additive cohomology theory and X a

based CW-complex. If W> hn(X^} = 0 for all n and p^l, then h(X} is
x

Hausdorff.

Putting the above proposition and Proposition 1.6 together we have

Corollary 4. Let h be an additive (F}-cohomology theory. Then h

is Hausdorff.

If h is additive and of finite type, then we have a short exact
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sequence

(3.6) 0 -> Inn1 hn~l(Xx) -> hn(X) -^ Ijm A»(JFX) -> 0

for each degree n (by virtue of Theorem 1, ii)). (Cf., Q2], Corollary 12).

Hence we get an isomorphism

\o. i j »j \-**-) -— lim it \-A- )•

Now we give a characterization of Sn(X).

Theorem 2. Let h be an additive cohomology theory of finite type

and X a based CW-complex. Fix a degree n and take an element x of

i) If x is an element of Sn(X), then x is divisible in Sn(X) by

arbitrary non-zero integers. And conversely ',

ii) if x is divisible in hn(X) by arbitrary non-zero integers, then x

is an element of Sn(X).

(Cf, [3]).

Proof, i) Since Sn(X)^ljml hn~\Xx) by (3.7), Sn(X) is injective

by virtue of Theorem 13 i). Thus in the group Sn(X) the equation x =

my is solvable for any x E Sn(X) and m=^Q.

ii) Suppose that x G hn(X) is divisible by arbitrary integers ^ 0.

We denote by #x the restrictions of x to the finite subcomplexes JTX of

X. For each A #x is also divisible in the group hn(Xx). However hn(Xx}

is finitely generated. Hence we see immediately

for any L

This results that x is an element of Sn(X). Q.E.D.

Theorem 2 means that the subgroup Sn(X) has an infinite number

of generators if hn(X) is not Hausdorff. Hence we have

Corollary 5, Let h be an additive cohomology theory of finite type

and X be a based CW -complex such that hn(X) is finitely generated for
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some degree n. Then hn(X) is Hausdorff for the same degree n.

3.3. Let h be an additive cohomology theory of finite type and ^ =

{Xa, f%} be a direct system of based finite CiF-complexes and cellular

maps. There exists an exact sequence

(3.8) 0 -> lim1 hn-\Xa) -> h\B<$} -> Km hn(Xa}-^ 0
a a

for each degree n (cf., (3.6)) which is implicitly contained in £2], Corol-

lary 12.

(3.8) allows us to compute the ordinary (reduced) cohomology groups

&*(Si) and #*(M) of the spaces 5, and M of (2.8).

X ^

Proposition 6. M and Si are co-Moore spaces of type (Z, 2) and

(Z/Z, 2) respectively where Z is the completion of Z with respect to all

of its subgroups.

Proof. Consider the following commutative diagram

Zq > 0

in which pq, pqr and pq
q
r are the canonical projections. This yields an

exact sequence

+-- 3 q <— 3 q.

and an equality

where the index set / is given in the preceding section. Clearly c is the

canonical inclusion. Therefore we get

]ip(Z, glr=r) = Q and lip1 (Z, g\r=r) =
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v
Applying (3.8) to M and S/ we have exact sequences

0 -> Km1 Hn-l(Mg) -> Hn(M} -> Km Hn(Mq} -> 0

and

0 -> lip1 (H*-\Sl\ g«r=r) -> #»(S,) -> fe (^(S1), «T =r) -> 0

for each degree n. Since lim1 S\MJ = 0, lim H\Mq}= Z, lun1 (Bl(Sl\

glr = r) = Z/Z and Hm^CS1), gjr = r) = 0, M and S/ are the desirable co-

Moore spaces. Q.E.D.

Remark. There is an isomorphism

for any direct system y>={Xa,f%} of based C fF-complexes and cellular

maps (C2]3 Theorem 3). By means of this fact we can show that Si and
V

M are Moore spaces of type (Q, 1) and (Q/Z, 1) respectively where Q is

the field of rational numbers. And we see

Ext (Q, Z) ̂  Z/Z and Ext (£/Z, Z) ̂  Z

because of (1.4).

4. Cohomology Theories with Coefficients Z and Z/Z

4.1. Let A be a (general reduced) cohomology theory and X a based

CJF-complex. Since we have the co-Moore spaces Mg, M and Si of

type (Zg, 2), (Z, 2) and (Z/Z, 2) respectively we can define cohomology

theories with coefficients Z?3 Z and Z/Z as follows (UllH and also

(4.1) &*(X; Z,)-AB+2

AM(Z; Z)-AW+2(ZAM) and

for each degree n.

We remark that
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This implies that

(4.2) /i( ; Zq), h( ; Z) and h( ; Z/Z) are additive if h is so.

Using the maps Z3 I and u given in (2.10) we define maps

c: hn(X)-»hn(X; Z\ K: hn(X; Z)->F(Z; Z/Z)
(4.3)

and S : hn(X; Z/Z} -> hn

by

* and *=(

where (T is the suspension isomorphism.

From the exact sequence of h associated with the cofibration sequence

(Lemma 1) :

X/\Sl 1A/ > X/\Si 1Ar > ZAM-^-> X/\S\

we obtain the following exact sequence

(4.4) - > hn(X} -?—* hn(X; Z) -f-*

corresponding to the coefficients sequence

4.2. From now on until the end of this section we shall under-

stand that h is an additive cohomology theory of finite type. Let X be a

based CfF-complex and U^={XX} the set of all finite subcomplexes of

X ordered by inclusions.

First we study properties of h( ; Zg),

Proposition 7. Let h be an additive cohomology theory of finite type

and X a based CW-complex. hn(X; Zq) is a pro finite abelian group for

each degree n. More precisely the natural map
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is a homeomorphism.

Proof. By the assumptions on A5 h( ; Zg) becomes an additive (F)-

cohomology theory (see I. 2.3.). Hence we see

lim* hn(X^ ; Zfl) = 0 for p :> 1
\

by Corollary 1.5. The natural map

u : hn(X; Zq} -> h*(X\ ZqT =\m hn(X; Zq}/F^hn(X Zq}

is a homeomorphism because of (3.2) and (3.5). Thus hn(X\ Zq) is a

profinite abelian group as hn(X\ Zq)/F^hn(X'y Zg) is finite. Since a pro-

finite abelian group is compact Hausdorff ([3] and also CQ), the continu-

ous map TT is also a homeomorphism. Q.E.D.

By (2.2) we recall

for any based C JF-complex F. Applying (3.8) to Y AM we get an exact

sequence

0 -> Hm1 h*~\Y\ Zq} -> F(F; Z) A Um A"(F; Z,) -> 0
1 Q.

for each n when F is finite. Now, by Corollary 1.5 we obtain an isomor-

phism

(4.5) p : hn( F; Z) -> lim hn( F; Z,)
(i

for any based finite CJF-complex F.

For each n {hn(Xx\ Zq}} forms an inverse system of finite abelian

groups indexed by pairs (/I, q). By £8]]3 Theorem 3 (see also Theorem I.I)

there exist two strongly convergent spectral sequences {Er} and {Er} as-

sociated with ljm*&w(Xx; Zq) such that
*>,q

Ei>s=\jmpl\mshn(XK',Zq} and Ep
2'

s=ljmpljmshn(Xx; ZA
X 0 5 X



500 ZEN-ICHI YOSIMURA

Since Corollary 1.5 implies

E%' = E£* = Q unless 5 =

we see

Xx;Zq) and £f'0 = ££°^H
X, q \,q

And using Corollary 1.5 again we get

EI'Q=EP
2'

Q = Q for allp^l.

On the other hand, it follows from (4.5) and Proposition 7 that

', Z} and E%* ̂ ^m* h*(X; Z,).
\ q

In particular we obtain

(4.6) lunphn(Xx; Z)=lunphn(Xi Zg) = Q for

Proposition 8. Let h be an additive cohomology theory of finite type

and X a based CW -complex. h( ; Z) is Hausdorff and moreover

is an isomorphism for each n.

Proof. The first part follows immediately from (4.6) and Proposition

3. Applying the spectral sequence of £2], Proposition 10 to {X/\Mq,f
q

qr

= idAl}, the second part is also obtained by means of (4.6) and Q2],

Proposition 9.

4.3. Now we study universal coefficient formulas for h( ; Z) and

&( ; z/Z). Let h be an additive cohomology theory of finite type and X

a based C JF-complex. Assume that hn(X) is a finitely generated abelian

group for each n. h(X} is Hausdorff by Corollary 5.

Consider the exact universal coefficient sequence

0 -> hn(X} ®Zq -> h*(X', Zq) -> Tor (hn+l(X\ Zq} -> 0.
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Since hn(X}®Zq and Tor (hn(X\ Zq) are finite we have

Jim* (hn(X) <g> £<,) =\mp Tor (hn(X\ Zfl) = 0 for p ;> 1.
« «

By means of (1.6) we see that the tensor and torsion products, ® and

Tor, commute with the inverse limits in the following cases:

ljm(hn(X)®Zq)^hn(X)®Z and lim Tor(hn+1(X), Zq)^Tor(hn+1(X\ Z\
Q 1

On the other hand Proposition 8 shows

HmF(Z; Zfl)^A"(Z; Z).
q

Then the above universal coefficient sequence yields an exact sequence

0 -> hn(X}<®Z ^ hn(X; Z) -> Tor(hn+l(X), Z) -> 0.

However % is torsion free. Hence we get the first formula

(4.7) hn(X', Z)^h\X}®Z for each n.

Next, in the following commutative diagram

0 - > hn(X) - > hn(X)®Z - >h*(X)®2/Z - > 0

1

the upper row is exact by the fact that Z/Z is torsion free and the lower

one is so by (4.4). Then the right (dotted) vertical map is induced by

the central one c. Using the above formula (4.7) we see that c : hn(X)-^>

hn(X\ Z) is a monomorphism for each n. Thus

(4.8) 0 -> hn(X} A hn(X\ Z} -=» hn(X; Z/Z) -> 0

is an exact sequence for each n. Applying "five lemma" in the above

commutative diagram we get the second formula

(4.9) hn(X; Z/Z)^hn(X)®Z/Z for each n.

Here we summarize results of (4.7) and (4.9).
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Proposition 9. Let h be an additive cohomology theory of finite type

and X be a based CW -complex such that hn(X) is a finitely generated

abelian group for each n. There are isomorphisms

hn(X; Z)^hn(X)®2 and hn(

for all n.

4.4. Let X be a based C SF-complex and X^ run over all finite

subcomplexes of X. (4.8) yields an exact sequence

(4.10) 0 -> Um hn(X^ -> lim hn(Xx ; Z)
x x

-> lim h"(Xx ; Z/Z*) -> lim1 hn(X x) -* 0
X X

and equalities

(4.11) UmUK(Xx;f)^ljm^B(Zx;f/Z)-=0 for all p^l,

by virtue of Theorem 1, ii) and (4.6). By (4.11) and Proposition 3 we

have

Proposition 10. Let h be an additive cohomology theory of finite

type. Then h( ; Z/Z} is Hausdorff.

(4.10) combined with Propositions 8 and 10 shows that there is an

exact sequence (cf.3

(4.12) 0 -» lJmAw(Zx) -> h*(X\ Z) -+ hn(X\ 2/Z} -> lim1 hn(X^}-* 0.
X X

Theorem 3. Let h be an additive cohomology theory of finite type

and X a based CW r -complex. The following sequence

hn~l(X; 2/Z) -4 hn(X) i* lim £*(XX) -> 0
X

is exact for each degree n where Xx runs over all finite subcomplexes of

X.

Proof, Consider the following commutative diagram
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- Z/Z) -A_» hn(X} -i-> hn(X- Z)

Jim hn(Xx) - > Hm hn(Xx', Z)

in which the upper row is exact by (4.4). The left vertical map Tti is

an epimorphism by (3.4) and the right one n^ is an isomorphism by

Proposition 8. Moreover £x: h
n(Xx) — > &M(JTX; Z) is a monomorphism

because of (4.8). Therefore the bottom horizontal map

Hm £X : Urn hn(X^ -> Urn hn(Xx ; Z)

is also so. By chasing the above diagram we get the required exact

sequence. Q. E. D.

As an immediate corollary of the above theorem we have

Corollary II. Let h and X be as in the above theorem. Then

: hn~l(X; Z/Z) -> hn(X}} for each n.

4.5. Here we summarize some criteria for the absence of elements

of Sn(X) for h being an additive cohomology theory of finite type.

Theorem 4. Let h be an additive cohomology theory of finite type

and X a based CW-complex. Fix a degree n and let Xx run over all

finite subcomplexes of X. The following conditions are equivalent'.

i) hn(X) is Hausdorjf,

ii) Jim1 hn-\X^ = Q,

iii) d : hn~l(X; Z/Z) -> hn(X) is trivial.

Theorem 5. Let h be as in the above theorem. Let X be a based

CW-complex with finite skeletons and {Er} be the Atiyah-Hirzebruch spec-

tral sequence of h associated with the skeleton filtration {Xp}p^0. The fol-

lowing conditions iv)-vi) are also equivalent to the conditions i)-iii) of the

above theorem:



504 ZEN-IGHI YOSIMURA

iv) the inverse system {hn~l(Xp}}p^Q satisfies the Mittag-Leffler con-

dition (ML),

v) for each p there exists rQ = rQ(p, ^)<oo such that

EP,n-p-l=EP,n-p-l f()r M r? ro^r<0o,

vi) for each p there exists r0=r0(Jp5 ra)<oo such that

pp,n-p-i __ j?P,n-p-i
ILM ~JLrQ

(Cf., [3] and [13]).

Proof. The equivalence of iv)-vi) is implicit in [2], §3 (combine

Lemmas 6 and 7, i) and ii) with Milnor's short exact sequence). On the

other hand, according to the result of Gray [12] it is equivalent to the

vanishing of lunlhn~l(Xp) that the inverse system {hn~l(Xp)}p^ of finite-
P

ly generated abelian groups satisfies (ML). Thus ii) is equivalent to iv).

5. (Q)-CofaomoIogy Theories

5.1o Let Q be the field of rational numbers. We call a cohomology

theory h is a (Q)-cohomology theory when hn(SQ) is a (^-module for each

degree n. This condition is equivalent to say that Aw(5°; Zq) = Q for all

q > 1 and n. Let h be an additive (@)-cohomology theory, X a based

CJF-complex and U^- = {JTX} be the set of all finite subcomplexes of X.

Obviously hn(X^; Zq} = 0 for the finite subcomplexes Xx. By Proposition

3 it is straightforward to see that

hn(X;Zq) = Q for all q>l and re.

Thus

(5.1) hn(X) is a Q-module for any based CW-complex X if h is an addi-

tive (Q}-cohomology theory.

Let h be a (0-cohomology theory. We define a cohomology theory

hH by
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h'B( )= n B\ ;A'(S'))
k + l=n

where 5"* is the ordinary (reduced) cohomology theory. Since hn
H(S°)^

hn(SQ) for each n, hu becomes a (0 -cohomology theory. Bold QllH

showed that

(5.2) there exists a natural equivalence

T:h-+hH

defined on the category of based finite CW -complexes.

Let X be a based CJF-complex and Xx run over all finite subcom-

plexes of X. Using (5.2) and the universal coefficient theorem for J?J* we

have natural isomorphisms

for all n. We remark that hl(SQ) is injective (as a Z-module). The

natural homomorphisms

H\X^ (g) h\S °) ̂  Ar'(Zx) ® Horn (Z, A'(S °))

-> Horn (Horn (#*(X x)3 Z), A'CS0))

are isomorphisms by (1.10). And replacing J9X and M by Hom(5fe(JTx), Z)

and /z/(S°) in (1.4) respectively, we see immediately that

Jim* Horn (Horn (5*(ZX), Z), ^(5°)) = 0 for all p ̂  1.
x

Consequently we obtain

(5.3) iisi*&"(zx)s n ii
X ^ + /

*+/=» x

for jD^l, when /i is a (^) -cohomology theory.

Using (5.3) and Proposition 3 we have
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Proposition 12. Let h be an additive (ff) -cohomology theory. Then

h is Hausdorff.

Let h be an additive cohomology theory of finite type. By (4.9)

Aw(5°; £/Z)SA"(S°)®£/Z, and hence it is a (^-module. Thus h( ; Z/Z)

is an additive (Q) -cohomology theory. And this means that the above

proposition contains Proposition 10 as a corollary.

The following theorem is a generalization of Dold's Theorem in the

sense that the finiteness restriction on based GIF-complexes is removed.

Theorem 68 Let h be an additive (Q)-cohomology theory and X a

based CW -complex. There exists a natural isomorphism

II H\X',ti(S^ for each degree n.
k + l = n

Proof. By (5.2) there are natural isomorphisms

Tl: hn(X^} ~> hn
H(X^

for all finite subcomplexes Xx of X. These yield a natural isomorphism

Both h and &# are additive (Q) -cohomology theories. Therefore we get a

natural isomorphism

f n : hn(X) -> hn
H(X)= n Hk(X; hl(S°»

k+l=n

by virtue of Proposition 12. Q.E.D.

Remark. Since an additive homology theory commutes with the di-

rect limits (see Q2], Theorem 3)5 the dual case of the above theorem is

also valid.

As a corollary of Theorem 6 we have

Corollary 13. Let h be an additive cohomology theory of finite type

and X a based CW -complex. There exists a natural isomorphism
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for each n.

5.2. Let A be an abelian group and UA={AX} be the family of all

finitely generated subgroups (directed by inclusions) of A. Obviously A~

\mAx and hence A (g) Q ̂  Hm (Ax (g) (?) . Since (1.4) shows Ext(A®Q, Z)

, Z), it follows that Ext (^ (g) <?, Z) = 0 if and only if

= 0 for all /L Therefore we can show that

(5.4)

because Ext «?, Z) ̂  Z/Z.

Making use of the universal coefficient theorem between H* and

and (1.9) we get

(5.5) fi»(X\ Z/Z) ^ Horn (^(Z), Z/Z) S Horn (Hn(X\ Ext(& Z))

for any based CJF-complex JT. Hence we have

Lemma 14, jff l l(Jf)®Q = 0 ?/ «^J o«/y ^y 5W(Z; Z/Z) = 0.

By Corollary 13 and Lemma 14 we have

Proposition 15. Let h be an additive cohomology theory of finite

type. If X is a based CW-complex with H*(X)®Q=Q, then hn(X\ Z/Z)

= 0 for all n.

Finally, combining Proposition 15 with Theorem 4 we obtain a suffi-

cient condition that h(X ) is Hausdorff.

Theorem 7. Let h be an additive cohomology theory of finite type

and X a based CW-complex. In order that h(X) is Hausdorff it is suffi-

cient that
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