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The cluster modular group of the dimer model

Terrence George and Giovanni Inchiostro

Abstract. Associated to a convex integral polygon N is a cluster integrable system X con-
structed from the dimer model. We compute the group G of symmetries of X, called the
(2-2) cluster modular group, showing that it is a certain abelian group conjectured by Fock and
Marshakov. Combinatorially, non-torsion elements of G 5 are ways of shuffling the underlying
bipartite graph, generalizing domino-shuffling. Algebro-geometrically, Gy is a subgroup of the
Picard group of a certain algebraic surface associated to N.

1. Introduction

Domino-shuffling is a technique introduced in [10] to enumerate and generate domino
tilings of the Aztec diamond graph; it was used to give the first proof of the arctic cir-
cle theorem [22]. Domino tilings are dual to the dimer model on the square grid. There
are generalizations of domino-shuffling, called (2-2) cluster modular transformations
for other biperiodic bipartite graphs and they comprise the elements of infinite order
of a group called the (2-2) cluster modular group. This group was studied by Fock
and Marshakov [12, Section 7.3] (under the name group of discrete automorphisms)
and they gave an explicit conjecture for its isomorphism type. The goal of this paper
is to study these generalized shufflings, and in particular, to compute the (2-2) cluster
modular group for any biperiodic bipartite graph.

(2-2) cluster modular transformations give rise to dynamical systems on the space
of weights on bipartite graphs, as we now explain. Let I be a bipartite graph on
atorus T and let £ := H!(T, C*) be the space of weights on I' (cf. Section 2.2).
There are two types of local rearrangements of bipartite graphs called elementary
transformations (see Figure 1). Each elementary transformation has an associated
birational map of weights, characterized by the property that it preserves the dimer
partition function up to a constant scaling factor (see, for example, [17, Theorem 4.7]).
Given a sequence of elementary transformations such that the initial and final graphs
are both I (which we call a (2-2) cluster transformation), composing the induced
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Figure 1. Elementary transformations along with induced birational maps of weight tori; (a) spi-
der move, (b) shrinking/expanding degree 2 white vertices.

birational maps of weights gives a birational automorphism of £r. The cluster trans-
formation is trivial if its induced map on weights is the identity. The (2-2) cluster
modular group is the group of cluster transformations modulo the trivial ones.

Remark 1.1. The word cluster refers to the fact that there is an underlying cluster
algebra structure such that the elementary transformations are mutations (see [17]).
We include the prefix (2-2) because elementary transformations are a special class
of mutations at degree 4 vertices of the underlying quiver and are often called (2-2)
moves. The full cluster modular group is much larger, but other mutations are less
natural from the point of view of statistical mechanics.

A zig-zag path in T is a path that turns maximally left at white vertices and maxi-
mally right at black vertices (see Figure 2). Recall that the homology group H1 (T, Z)
of the torus T is isomorphic to Z?2. Associated to any bipartite graph on a torus T
is a convex integral polygon N in the plane H;(T,Z) ®z R = R? called its New-
ton polygon, whose primitive edge vectors are given by the homology classes of all
zig-zag paths in I". By a primitive edge vector of N, we mean a vector contained in
an edge of N and oriented in such a way that it is contained in the counterclockwise
oriented boundary of N, such that its starting and ending points are lattice points (i.e.,
points in Z?), and such that there are no other lattice points in its interior. We denote
by En the set of edges of N (not primitive, so each edge is the union of the primi-
tive edge vectors contained in it). The (2-2) cluster modular group will be completely
determined by N. We also point out that elementary transformations have an appeal-
ing description in terms of homotopy of zig-zag paths (see Figure 3 and Section 2.1).
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Figure 2. A zig-zag path (solid red) and its representation as a path in the medial graph (dashed
red).

Figure 3. Equivalence of elementary transformations and (2-2) moves.

Fock and Marshakov [12, Section 7.3] constructed a homomorphism from the
group of (2-2) cluster transformations to a certain abelian group that we now describe.
Let T be the planar biperiodic graph whose quotient under the translation action of
H{(T,7Z) is T, that is, the preimage of I" in the universal cover of T. We can lift
a cluster transformation to an H; (T, Z)- perlodlc sequence of elementary transforma-
tions from T to itself. If we superpose I over itself after the cluster transformation,
the lift of each zig-zag path is superposed over a lift of a zig-zag path with the same
homology class. To each cluster transformation, we can associate an integer func-
tion f on the edges En of the Newton polygon N as follows: for any edge E € Ey,
the inverse image in the universal cover of the torus of all zig-zag paths correspond-
ing to E (that is all zig-zag paths whose homology classes are in the direction of E
when E is oriented counterclockwise along the boundary of N) is an infinite collec-
tion of “parallel” zig-zag paths in I'; let us label them by (a!);ez, ordered along the
direction normal to E and pointing out of N. Consider the zig-zag path a®. After the
cluster transformation, if we superpose I over itself, o is superposed over a parallel
zig-zag path o/ . We define f(E) to be —j, which is the number of steps (measured
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Figure 4. The cluster modular transformation called domino-shuffling.

Figure 5. The Newton polygon along with the function f for the cluster modular transformation
in Figure 4. The yellow edge corresponds to the yellow zig-zag path in Figure 4, which is
translated one step to the left during the cluster transformation.

in terms of parallel zig-zag paths) that this zig-zag path (and therefore any zig-zag
path o’ parallel to «?) is translated by the cluster transformation. For example, Fig-
ure 4 shows the relative positions of a zig-zag path corresponding to the yellow edge £
of N in Figure 5 before and after the cluster transformation corresponding to domino-
shuffling from Figure 4. Since the zig-zag path has been translated one step to the left,
we have f(E) = 1. The evaluations of the function f on the other edges of N are
similarly computed (see Figure 5).
The function so defined satisfies (see Section 2.3 for details)

> f(E)=0. (1.1)

EcEyN

Let us denote by Zg: N the group of integer functions on E y satisfying (1.1). Since we
passed to the universal cover of T, there is an ambiguity in superposing T over itself
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because we can translate by Hq (T, Z). Therefore, to make f a well-defined function
of the cluster transformation, we should consider it as an element of the quotient

ZEN JHy(T, 7).

where the embedding of H;(T, Z) used in the quotient is given by the number of
steps that zig-zag paths in I' are translated by when T is translated by elements of
H(T,Z):

H(T,Z) = Z5N, y (E (E,y)1),

where (-, ) is the intersection form in H; (T, Z). The assignment of the function f
to a cluster transformation is a group homomorphism

Y {cluster transformations} — Zf N/H((T,Z).

Remark 1.2. Our terminology differs from that of Fock and Marshakov [12], so we
provide a translation. The (2-2) cluster modular group is their group of discrete auto-
morphisms §a, where they use A to denote the Newton polygon, and (2-2) cluster
modular transformations are called discrete flows.

Our main result is the following conjecture of Fock and Marshakov [12] with
a minor modification when N contains no lattice points in its interior.

Theorem 1.3 (cf. Theorem 4.8). If the Newton polygon N contains at least one inte-
rior lattice point, the homomorphism  gives an isomorphism of the (2-2) cluster

modular group with
ZEN JH (T, 7).

If N contains no interior lattice points, the (2-2) cluster modular group is a smaller
finite group.

In particular, the rank of the (2-2) cluster modular group depends only on the
number of edges of N.

Corollary 1.4. When N contains an interior lattice point, the rank of the (2-2) cluster
modular group is |En| — 3, where |En| is the number of edges of the polygon N.
When N has no interior lattice points, the rank is zero.

Informally, while the collection of all zig-zag paths undergoes a complex sequence
of moves, if we restrict attention to the set of zig-zag paths in a specific homology
direction, no two zig-zag paths in this set can cross during a cluster transformation.
Therefore, this set of zig-zag paths as a whole undergoes a translation. The func-
tion f defined above records these translations, and remarkably, we can essentially
reconstruct the entire cluster transformation from f.
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The proof of Theorem 1.3 has two parts. In Section 3, we show that every ele-
ment of Zf N /H{(T,Z) arises from a cluster transformation. This part of the proof
is purely combinatorial.

Translations by elements of H; (T, Z) clearly give rise to trivial cluster transfor-
mations. The second part of the proof of the theorem shows that these are the only
trivial cluster transformations. It is difficult to directly check if the induced birational
map of weights is the identity. However, the integrability of the space of weights £
means that there is a local reparameterization such that the birational map of weights
induced by cluster transformations is linearized.

Associated to a polygon N is a certain compactification Xy of (C*)? called
a toric surface (see, for example, [7]). Kenyon and Okounkov [24] defined the spec-
tral transform of wt € £ to be a triple (C, S, v), where C C Xy is a curve called
the spectral curve and S is a divisor of degree g equal to the genus of C, that is a for-
mal linear combination of g points in C, and v is a bijection between zig-zag paths
and the points at infinity of C (i.e., the points in C N (Xy \ (C*)?)). The curve C
is the vanishing locus of a Laurent polynomial P(z, w) which is a homology-class-
weighted version of the partition function for dimer covers. Fock [11] proved that the
spectral transform is birational, allowing us to view (C, S, v) as a local reparameteri-
zation of £r. For a fixed curve C, the Jacobi inversion theorem states that the space
of degree g effective divisors in C is birational to a g-dimensional complex torus
called the Jacobian variety of C. In this parameterization, every cluster transforma-
tion leaves C invariant and is a translation of the divisor S in the Jacobian variety
of C. This translation depends only on the function f associated to the cluster trans-
formation and was described explicitly by Fock [11] (see Figure 6 for an illustration
and Proposition 4.3 for a precise statement).

Figure 6. The black point on the left is the divisor S on the amoeba of the spectral curve.
The points at infinity of the curve are in bijection with zig-zag paths and colored according
to Figure 5. The cluster transformation in Figure 4 maps the black point to the pink point.
Fock [11] shows that this map is the translation shown below the figure in the Jacobian variety
of the spectral curve. This translation is determined by the function f shown in Figure 5.
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Therefore, the question of which cluster transformations are non-trivial can be
answered by looking at which translations on the Jacobian variety of C are non-trivial.
Under the standard equivalence between divisors and line bundles in algebraic geom-
etry, a translation in the Jacobian corresponds to tensoring by a certain line bundle, so
we need to understand when certain line bundles on C are non-trivial. The following
theorem provides the answer.

Theorem 1.5 (cf. Theorem 4.7). Suppose N contains an interior lattice point. If L is
a non-trivial line bundle on the toric surface X y associated to N, then for a generic
spectral curve C, we have L|c % Oc.

We can now explain why the absence of an interior lattice point in N makes the
cluster modular group finite. The genus of a generic curve C defined as the vanishing
locus of a Laurent polynomial P(z, w) is equal to the number of interior lattice points
of the Newton polygon N of P(z,w) (see, for example, [7, Proposition 10.5.8]).
Therefore, if N has no interior lattice points, then a generic spectral curve C has
genus 0 and is hence isomorphic to P!. The Jacobian variety of P! is 0, so every
cluster transformation is determined by its action on the finite data v. See Example 4.9
for an example of N with no interior lattice points.

The (2-2) cluster modular group has been studied in the mathematical physics
literature by Eager and Franco [9], where it is called the space of Seiberg duality
cascades. They provide a description that is equivalent to that of Fock and Marshakov.
We comment on this further in Section 6.1.

In the last paragraph of [ 12, Section 7.3], Fock and Marshakov provide an alternate
description of Zf” /H1(T,Z) as the group of divisor classes on the toric surface Xy
that restrict to degree 0 divisors on a generic spectral curve C. However this is only
true as stated for polygons whose sides are all primitive, that is, no side contains a lat-
tice point other than the end points (see Example 6.2). Recently, Treumann, Williams,
and Zaslow [39] gave a different version of the linearization of cluster modular trans-
formations under the spectral transform, replacing the toric variety X by a toric
stack X .

Proposition 1.6 (cf. Proposition 6.4). When the Newton polygon N contains an inte-
rior lattice point, the (2-2) cluster modular group can be identified with certain
subgroup of the Picard group Pic(Zn).

We end the introduction by describing the (2-2) cluster modular groups for some
small Newton polygons.

Triangles. For triangular N, [21, Proposition 11.3] tells us that there is a unique
bipartite graph in T with Newton polygon N and its lift to the plane is the honey-



T. George and G. Inchiostro 154

comb lattice. Since this graph does not admit any elementary transformations, the
only cluster modular transformations are translations.

Quadrilaterals. Corollary 1.4 tells us that the cluster modular group has rank one.
The dimer models that have quadrilateral Newton polygons coincide with those that
arise from Speyer’s “crosses and wrenches” construction [36]. The octahedron recur-
rence studied there is the (essentially unique) non-torsion cluster modular transfor-
mation (on the #4 cluster variety). Other incarnations of cluster modular transforma-
tions for quadrilateral N are Hirota’s bilinear difference equation [30], the domino-
shuffling algorithm [10, 35] (see Example 4.10), the shuffling studied in [4] (see
Example 4.9) for the suspended pinch-point graph and the pentagram map [12, Sec-
tion 8.5]. Another large class of examples with quadrilateral Newton polygons arise
from the Y 79 theories in mathematical physics (see, for example, [13, Section 9.3.1]).

The octahedron recurrence can be used to compute arctic curves [8,33]. We ob-
served in [15] that part of the data needed for this technique of computing arctic
curves is a cluster modular transformation along with edge-weights that are periodic
under the induced birational map. We hope that understanding the cluster modular
group will help generalize this method beyond the quadrilateral Newton polygon case.
Since higher degree polygons have cluster modular groups with rank greater than one
by Corollary 1.4, we expect a family of arctic curves, one for each cluster modular
transformation of infinite order.

Higher degree polygons. Cluster modular transformations for the del Pezzo quiver
dP,, which has a pentagon Newton polygon, were explicitly studied in [14]. The dP3
quiver with a hexagonal Newton polygon has been studied in [25, 26, 28]. The cube
recurrence studied in [5,33] arises as the restriction to the resistor network subvariety
of a cluster modular transformation on the dP3 graph [17, Section 6.3].

2. Background

Some basic notation. Let T be a topological torus, and let T := H,(T,Z)Y ®z C*
be the algebraic torus with group of characters Hi(T, Z). Here H(T,Z)V is the
dual group Homgz (H;(T, Z), Z). Given a convex integral polygon N C H;(T,R),
that is, a convex polygon whose vertices are in H1 (T, Z), we denote by Vy and Ey
the vertices and edges of N respectively.

Let ¥ C H{(T,Z)" ®z R denote the dual fan of N. Let X(r) denote the r-
dimensional faces of X. Let u, be the primitive integral vector along the ray p € X (1).
Let E, denote the edge of N that is dual to p. Let | E,| be its integral length, defined
as the number of primitive integral vectors in E,,.
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2.1. Combinatorial objects
See [17] for further background on the objects described in this section.

Bipartite torus graphs. A bipartite graph is a graph whose vertices are colored black
or white, such that each edge is incident to a black and a white vertex. A bipartite
torus graph is a bipartite graph I' embedded in T such that the faces of T, that is, the
connected components of T — I', are contractible. We denote by B(I") and W(T") the
black and white vertices of I", respectively.

Zig-zag paths and minimality. A zig-zag pathin T is an oriented path in I" that turns
maximally left at white vertices and maximally right at black vertices. We usually
represent a zig-zag path by an oriented path in the medial graph that passes consec-
utively through the edges of the zig-zag path (see Figure 2). I" is said to be minimal
if, in the preimage [ of T in the universal cover H;(T,R) of T, zig-zag paths have
no self-intersections and there are no parallel bigons, that is, pairs of zig-zag paths
oriented the same way intersecting at two points. The unique convex integral polygon
N(T') c H1(T,R) whose primitive integral edges are given by the homology classes
of zig-zag paths in counterclockwise cyclic order is called the Newton polygon of T'.
We usually abbreviate N(I") to N when the graph is clear from context.

We label the edges of N by rays of the dual fan: the edge corresponding to
p € X(1) is denoted by E,. We denote by Z,, the set of zig-zag paths whose homol-
ogy classes are the primitive vectors contained in the edge E,,.

Example 2.1. Figure 7 shows a bipartite graph I" in the torus, and Figure 8 shows its
zig-zag paths and Newton polygon. It is easily checked that I" is minimal.

Elementary transformations. There are two local rearrangements of bipartite torus
graphs called elementary transformations:

(1) spider moves (Figure 1 (a));
(2) shrinking/expanding 2-valent white vertices (Figure 1 (b)).

Figure 7. A fundamental parallelogram for a bipartite torus graph. The generators yz, yy, of
H (T, Z) are as shown.
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Figure 8. The Newton polygon and zig-zag paths for the graph in Figure 7.

We say that two bipartite torus graphs I'; and I’y are topologically equivalent if
there is a sequence of elementary transformations that converts the graph I'; into 5.
Applying either of the elementary transformations twice gives back the original graph,
and therefore this is an equivalence relation on bipartite torus graphs. Elementary
transformations are local and do not change homology classes of zig-zag paths. There-
fore, they leave the Newton polygon invariant and so

{minimal bipartite torus graphs}/topological equivalence

T N(T) . .
—— {convex integral polygons in H;(T,R)} 2.1)

is a well-defined function.

Theorem 2.2 ([17, Theorem 2.5]). The function in (2.1) which associates to a graph
its Newton polygon is a bijection.

In other words, for each convex integral polygon in H; (T, R), there is a family
of minimal bipartite torus graphs associated to N, and any two members of a family
are related by elementary transformations.

Triple point diagrams. A triple point diagram in a disk D is a collection of oriented
curves called strands, defined up to isotopy, such that:

(1) Three strands meet at each intersection point.
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(2) The end points of each strand are distinct boundary points.

(3) The orientations on the strands induce consistent orientations on the comple-
mentary regions.

Each strand starts and ends in dD, so if there are n strands, there are 2n points in D,
whose orientations alternate “in” and “out” around dID. A triple point diagram is min-
imal if strands have no self intersections and parallel bigons.

There is a local move called a (2-2) move on triple point diagrams (see Figure 9).

Figure 9. The (2-2) move.

Theorem 2.3 ([34, 38]). Suppose we have a disk D with 2n points in its boundary
alternately labeled “in” and “out”.

(1) For any of the n! matchings of “in” and “out” points, there is a minimal triple
point diagram that realizes the matching.

(2) Any two minimal triple point diagrams with the same boundary matching of
“in” and “out” points are related by (2-2) moves.

In the course of proving Theorem 2.3, Thurston obtains the following result that
we will require later.

Proposition 2.4 ([38, Section 2]). Let o, B, y be three strands that correspond to
three consecutive points on the boundary of D. Then there is a triple crossing diagram
(called standard in [38]) in which «, B and y meet at a triple point just adjacent to
the boundary (that is, this is the first triple point of each of these strands as we look
along the strand starting at this boundary point).

Triple point diagrams in T. A triple point diagram in T is a collection of oriented
curves called strands in T, determined up to isotopy, such that:

(1) Three strands meet at each intersection point.

(2) No strand is a homologically trivial loop in T.

(3) The orientations on the strands induce consistent orientations on the comple-
mentary regions.



T. George and G. Inchiostro 158

A triple point diagram in T is minimal if the lift of any strand to the plane has no self-
intersections and the lifts of any two strands to the universal cover form no parallel
bigons.

Equivalence of triple point diagrams and bipartite torus graphs in T. We recall
the equivalence between minimal triple point diagrams in T and minimal bipartite
torus graphs from [17]:

(1) To convert a minimal bipartite torus graph to a triple point diagram, we first
expand all black vertices with degree greater than or equal to 4 by moves
inverse to shrinking a degree 2 white vertex to get a graph in which all black
vertices have degree 3. Then we draw all zig-zag paths so that the black
complementary regions are now triangles. Finally, we shrink all these black
triangle regions into points to get a triple point diagram.

(2) To construct a bipartite graph from a triple point diagram, we start by resolv-
ing each triple point into a counterclockwise triangle. Put a black vertex in
each complementary region that is oriented counterclockwise and a white ver-
tex in each complementary region that is oriented clockwise. Edges between
black and white vertices are given by the vertices of the resolved triple point
diagram. The faces of the bipartite graph will be the regions where the orien-
tations alternate.

Under this correspondence, we have:

minimal bipartite torus graphs <> minimal triple point diagrams in T,
zig-zag paths <> strands,

elementary transformations <> (2-2) moves.

2.2. The dimer model

In this section, we introduce the dimer model, mostly following [17].

Weights on bipartite torus graphs. We associate to I" the torus of weights
Er = HY (T, C*).

A 1-cocycle representing wt € H'(I", C*) is called an edge-weight. For L€ H(T',7Z),
we denote the pairing of cohomology and homology by wz(L).

For a face f of I, we denote by df the counterclockwise oriented boundary of f.
We define the face variables

Xy = wt(3f).

They satisfy the unique relation [ | r Xy =1, arising from the relation > f df =0in
H,(T',Z).
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Conjugated surface and the ¢ form. Given a bipartite torus graph I', by puncturing
each face, we obtain a ribbon graph. Alternately, we can think of the ribbon graph as
being obtained from I" by thickening the edges of I". From this ribbon graph, we can
construct a new ribbon graph r cutting each edge in the middle and gluing it back with
a twist. Equivalently, a ribbon structure is the same thing as a cyclic ordering of edges
around each vertex of I', and the new ribbon graph [ is obtained by reversing the
cyclic order at each white vertex. From the description in terms of twisting edges, we
see that the process of constructing the conjugated surface interchanges boundaries
of faces and zig-zag paths. Gluing in the disks along the boundary components of r
(which are in bijection with zig-zag paths of I'), we obtain a surface S of genus g
called the conjugated surface, where g is the number of interior lattice points in N.

Since T is homotopy equivalent to I', we can define a skew-symmetric bilinear
form e: Hi(I', Z) x H1(I', Z) as follows: If Ly, L, € Hy(T', Z), using the homotopy
equivalence of [ with T, we can identify them with homology classes in H; (f‘, 7).
Using theA embedding [ S, they are loops in S. Let (,-) g denote the intersection
form on S. Define (L1, L) := (L1, L2)§.

Mutations. Elementary transformations s: I'y — I', of bipartite torus graphs induce
birational maps of weights ps: £, -—> £, described below. In both cases, there is
a canonical identification, which we also call s, of H(I"y, Z) with H1(I'2, Z).

(1) Spider move at face f: we define us by
. — _ —1
s wi)(L) = wi (T L)1 + we(f)7¥e0e0 T DAN) DA,

See Figure 1 (a) for how the weights of the faces involved transform.

(2) Shrinking/expanding degree two white vertices (see Figure 1 (b)): we define
s by
ps(wr)(L) = wt (s~ (L)).

The dimer cluster variety X . Suppose that N is a convex integral polygon in
H{(T,R). By Theorem 2.2, there is a family of minimal bipartite torus graphs with
Newton polygon N that are related by elementary transformations. Associated with
each graph I' in the family is its torus of weights £. Gluing the £ using the bira-
tional maps induced by the elementary transformations, we obtain a space X called
the dimer cluster variety.

The (2-2) cluster modular group. We say that two bipartite torus graphs I'; and I'»
are isotopic if there is an isotopy in T relating I'; and I'>. A (2-2) cluster transforma-
tiont: Ty — T', is a sequence:

N

S0 s n—1
ITo—T1—--- Iy,
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where each s; is an elementary transformation or an isotopy in T. A (2-2) cluster
transformation ¢ induces a birational map u; of weight tori by the composition:

Mt 1= s, O+ 0 gyt LTy = LT,

A (2-2) cluster transformation I' — T" is called trivial if the induced birational map
of weight tori is the identity. The groupoid ¥y whose objects are minimal bipartite
torus graphs I' with Newton polygon N and morphisms are (2-2) cluster transforma-
tions modulo trivial (2-2) cluster transformations is called the (2-2) cluster modular
groupoid of X . The fundamental group Gy of Gy is called the (2-2) cluster modu-
lar group and its elements are called (2-2) cluster modular transformations. Although
we need a base point I' to define the fundamental group Gy, a different choice of
base point gives an isomorphic group. Elements of Gy are also called discrete flows
in [12].

Dimer covers. A dimer cover or perfect matching of T is a collection of edges of '
such that each vertex of I" is incident to exactly one edge in the collection. By ori-
enting each edge from its black vertex to its white vertex, we can view each dimer as
a 1-chain in I'. Fix a dimer cover My which we call the reference dimer cover. Then
we can associate to each dimer cover M a homology class [M — My] € H(T, Z)
and weight wt ([M — My]). The Newton polygon N has the following description in
terms of dimer covers.

Proposition 2.5 ([17, Theorem 3.12]). Suppose T is a minimal bipartite torus graph
with Newton polygon N. Up to a translation in Hi (T, R), we have

N = Convex-hull{[M — My]: M is a dimer cover of T'}.

Kasteleyn theory. Let R be a fundamental rectangle for T. Let y., y,, be the oriented
sides of R generating H,(T, Z), as shown in Figure 7. To each edge e of I', we
associate a character

p(e) = Z(e’y“’)w(e’_yZ), (2.2)

where we consider the edge e to be oriented from its black vertex to its white vertex
and (-, -) is the local intersection number.
A 1-cohomology class k € H(T", C*) is called a Kasteleyn sign if:

(1) k(L) =xlforall L € H{ ([, Z).
(2) k(df) = (—1)/?*1 if f isa face of I" containing / edges in its boundary.

The Kasteleyn matrix

K(z,w): Cz*", w*BD _ C[z*!, w1 VD
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is defined as

K(z, w)wp = Z wt(e)/c(e)z(e”’w)w(e’_yz),

e€E (') incident to w, b
where k, wt are any 1-cocycles representing their cohomology classes.

Theorem 2.6 ([23]). We have

det K(z, w) Z

wt (Mo)zMovw)yy(Mo.~v=) — sign(M)wt ([M — Mo))(z, w)M—Mol

M dimer cover of T’
where sign(M) € {£1} is a sign that depends on the homology class [M — My] and k.
The Laurent polynomial

det K(z, w)

P(z,w) := wt (Mg)zMosva) gy (Mo, =)

is called the characteristic polynomial, and its vanishing locus
Co := {(z.w) € (C*)*: P(z,w) = 0}

is called the (open) spectral curve. Note that while the Kasteleyn matrix depends on
the choice of 1-cocycles representing the cohomology classes wt, k and the choice
of a reference matching M, the spectral curve is independent on these choices.
By Proposition 2.5, the Newton polygon of P(z, w) coincides with the Newton poly-
gonof I'.

2.3. A construction of Fock and Marshakov

In this section, we describe the construction of a homomorphism from the group of
cluster transformations to an abelian group due to [12, Section 7.3]. Let Z? ™ be
the group of integer valued functions f on X(1) such that }_ 5y f(p) = 0. Let
(-, )r: Hi(T,Z) x H{(T,Z) — Z be the intersection pairing in T. We have an
embedding

ji (T2 > 250y (Y (o))

ex)
weZ, pEX(1)

Let T" be a bipartite torus graph and let T be its triple point diagram. A cluster
transformation I' — T is equivalent to a sequence of triple point diagrams

T=Ty—->T1—--—>T_1—>T, =T, 2.3)
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where T; is obtained from 7; by either performing a (2-2) move or 7T;4; is related
to T; by an isotopy in T. Let {&'} be the set of strands in T'. Sequence (2.3) can be
interpolated by a one-parameter family of curves o’ (¢) in T, where ¢ € [0, 1] such that
o' (0) = o and such that the intersections remain triple at all but (n — 1)-parameter
values where we have a quadruple intersection in the course of a (2-2) move. Using
the isomorphism of triple point diagrams 7' = Ty = T,, we glue the end points of
the parameter interval [0, 1] to get an S'. During the course of sequence (2.3), each
strand « in T traces out a 2-chain Sy := {(u,1):u € a(t),t € S'}in T x S!.

Let Z, = {7
transformation maps each strand o € Z , bijectively to another strand in Z,, and there-
fore d(}_; S o) = 0. Moreover, Y2, o, 1s @ 2-boundary: it is the boundary of the

3-chain in T x S! traced out by the regions of T corresponding to white vertices

be the strands in 7' corresponding to p € 3 (1). The cluster

of I'. Therefore, we have

ZZ[S%] =0 in Hy(T x S',2). (2.4)
o i

Let (y;, yw) be the basis for H; (T, Z) from Figure 7 and suppose y; is a generator
of Hy(S!,Z). By the Kiinneth formula [20, Theorem 3.16 and Example 3.18], we
have Ho(T x S, Z) = A} [yx. vz yw]. If astrand o} € Z, with [o)] = X, . + Y, yw
is translated by a,y; + byyw during sequence (2.3), then

[Sa;')] = (Xpyz + Yoyw) A (@pyz + bpyw + ¥1)
= (bpXp —apYp)vz Ayw + Xpyz Ave + Ypyw Ave. (2.5)
Define a function
g X(1) > Z, pr|Ey(bpXp,—apY,).

Informally, each zig-zag path in I' is translated in the universal cover to a parallel
zig-zag path by the cluster transformation. g(p) is the number of steps in the direction
of p that any zig-zag path in Z, is translated. Writing (2.4) in coordinates using (2.5),
we get

( Z |Ep|(bpX)p _apr))Vz AYw + ( Z Xpyz + Yp)’w) Aye = 0.
peX(1) peX(1)

We have (3 ,ex51) Xp¥z + Ypyw) = 0 because this is the sum of counterclockwise
oriented edges of the Newton polygon. Since Y cx 1) |Epl(bp X, —apY)y) = 0, we
(1)
getg € Zy .
The above construction gives us a group homomorphism 1 defined as the compo-
sition

{cluster transformations I' — I'} — Zg(l) — ZOE(I)/jHl (T,Z). (2.6)
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Fock and Marshakov [12] conjectured that ¥ gives an isomorphism of the (2-2) clus-
ter modular group with Z E ® /jH1(T,7Z). We will prove this by showing in Section 3
that 1 is surjective, and that the kernel of v consists precisely of trivial cluster trans-
formations in Section 4.2.

2.4. Algebraic geometry background

Throughout this paper, the main reference for the algebraic geometry concepts we
will use is Hartshorne’s book [19]. We will be mainly dealing with normal projective
surfaces (see [2] or [19, Chapter V] for a reference): up to removing a finite set of
points (the singular locus), one can think of them as two-dimensional complex man-
ifolds, embedded in IP” (that for us will be P(%). Similarly, a curve will be a purely
one-dimensional projective variety (for example, the locus, where X2Z = Y 3 in P?).
A smooth curve is just a compact Riemann surface. We now introduce some notations
and a definition that will be useful later.

Notation 2.7. If X is a scheme with a sheaf ¥ on X and i € N, we will denote by
W (F) := dimc(H' (X, F)).

Definition 2.8. A surface X C P” is ruled by lines if for every point p € X there is
a line of P” passing through p.

2.4.1. Line bundles and divisors on curves. In this section, we summarize some
results on algebraic curves that we will need in Section 4. For further details, see [,
Chapter I]. By a curve C, we mean a one-dimensional projective variety. Generally,
we will deal with smooth curves, i.e., compact Riemann surfaces. The key to studying
the geometry of C is to understand rational (i.e., meromorphic) functions on it, which
leads to the notions of line bundles and divisors. A (Weil) divisor on C is a formal
linear combination of points in C, that is a sum of the form

D = Znipi, ni € Z, pi € C.

4

The number #n; is called the multiplicity of p; in D. The divisors in C form a group
under addition, graded by the degree homomorphism, defined by

deg(D) = Z n;.

If f is a rational function on C, it defines its divisor of zeroes and poles

divf =) ord,(f)p,

peC
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where ord, (/) is the order of vanishing of f at p. Such divisors are called principal
divisors and are always of degree 0. Two divisors D and D’ are said to be linearly
equivalent if their difference is a principal divisor. The group CI(C) of divisors mod-
ulo linear equivalence is called the divisor class group of C. Note that since principal
divisors have degree 0, the degree homomorphism descends to C1(C). We denote by
Div¥ (C) (resp. C1(C)) the set of degree d divisors (resp. divisor classes).
Associated to the divisor D is the line bundle O¢ (D) on open U C C by

H°U,O¢c(D)) := {rational functions on U such that div f + D}U > 0}.

Here we are making the standard identification of a line bundle with its locally free
sheaf of sections. Define the Picard group Pic(C) as the group of line bundles on C
with the group operation given by tensor product. The map D + O¢ (D) is a group
isomorphism of CI(C) with Pic(C).

Let K¢ denote the canonical divisor class of C, i.e., the divisor class such that
Oc (Kc) is the cotangent line bundle of C. It is a basic fact that h°(C, K¢) = g,
where g = % rank H;(C,Z) is the genus of C. Let wy, . . ., g be a basis for the space
of 1-forms H°(C, K¢). We define the period map
g

7 Hy(C,7) — C¥, o> (/Ow)

i=1

The Jacobian J(C) of C is the complex torus C& /H(C, Z).
Fix a base point pg and define the Abel map
g
wl) . k)
i=1

where the integral is over an arbitrary path from pgy to p. Since we quotient out
H,(C,Z) in J(C), the map u is well-defined. The definition of the Abel map extends
to divisors by linearity. We have:

p

u: C — J(C), pr—)(/p

0

Theorem 2.9 (Abel’s theorem). Two divisors D and D’ are linearly equivalent if and
only ifu(D) = u(D’).

As a consequence of Abel’s theorem, we get that the Abel map u: Div? C) —
J(C) factors through an injective map ¢: C1¢ (C) — J(C) for all d. We call a divisor
effective if it has nonnegative multiplicity at each point of C. We denote by C () the
set of effective divisors of degree d. We have:

Theorem 2.10 (Jacobi inversion theorem). The Abel map u: C & — J(C) is surjec-
tive and birational.
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In other words, given a generic point ¢ in J(C), there is a unique degree g effec-
tive divisor D such that u(D) = ¢g. As a consequence, we also see that the map
o: Cl¢(C) > J(C)isa bijection for each d.

In what follows, we will often use ample and very ample line bundles. These line
bundles provide an intrinsic way to understand projective embeddings. We briefly
introduce them here, and we refer the reader to [19] for a more complete refer-
ence. A very ample line bundle L on X is a line bundle such that there exists an
embedding i: X < P” for a certain n, such that i*Opn (1) =~ L. An ample line
bundle is a line bundle such that a positive tensor power of it is very ample. Given
an embedding i: X — P", a hyperplane section of i is the zero locus of a section
i*H € H(X,i*Opn(1)), where H € H°(X, Opn(1)). Geometrically, the hyper-
plane section i * H is the intersection of X with the hyperplane H. If xq, X1,..., Xy
are homogeneous coordinates on P”, then for example we can take H = xg, so the
locus of points in X that map to points of the form [0,ay,...,a,] € P" is a hyperplane
section.

2.4.2. Toric surfaces. In this subsection, we include some notions that we will use
on toric varieties that we will use later. We redirect the reader to the book [7] for
a complete treatment. A toric surface X is a normal algebraic surface that contains
a torus (C*)? as a dense open subvariety, such that the action of (C*)” by multiplica-
tion on itself extends to an action of (C*)? on X. For example, P2 is a toric variety.
Indeed, the dense torus (C*)? C P2 is the set of points of the form [ag, a;, a»] such
that ag, ay, a, € C*. Another example is P! x P!, whose dense torus is the set of
points of the form ([ag, a1], [bo, b1]) with ag, a1, by, b; € C*.

In what follows, we will only be interested in normal and projective toric surfaces.
We denote by M the group of characters of (C*)?, i.e., the group of homomorphisms
(C*)?2 — C* (forus M will be H{(T,Z)). Then M is isomorphic to Z?2, with the iso-
morphism sending (a1,a2) € Z? to the homomorphism sending (A1, A2) = A7' - 152,

Given a set of characters o, ..., ym of M, we have a morphism (C*)" — P™
sending x +— [xo(x), ..., xn(x)]. In particular, for every convex integral polygon
N € M ® R, we can take the set of characters to be the lattice points contained
in N. This gives a morphism (C*)"* — P™ as above, where m + 1 is the number
of lattice points contained in N. The closure of the image of (C*)? — P™ is a toric
surface (the image of the map (C*)? — P is an open subset of its closure) [7, Pro-
position 2.1.2]. Moreover, since every convex integral polygon is very ample, the
toric surface defined above is normal [7, Corollary 2.2.19]. Therefore, it has isolated
singularities, as normal varieties are smooth in codimension one.

Remark 2.11. We can also understand the previous paragraph as follows. Consider
the action of (C*)? on P™ defined as t * [ag, ....am] := [xo(t) - ao...., xm(t) - am)].
Our toric variety is the closure of the orbit of [1, ..., 1]. With this action of (C*)?
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on P™, the sections x; of H?(P™, Opm(1)) are (C*)?-equivariant (they have char-
acter x;). In particular, if we pull back the sections {X;}7_, € H®(Opm (1)) to the
torus, they correspond to monomials of the form p; = z% wb e C[z*!, w*!]. Then
the set of points {(a;, b;)}!_, are the lattice points of N.

Consequently, a convex integral polygon N gives rise to a projective toric sur-
face X, along with an ample divisor Dy, such that H%(Xy, D) is the vector space
of Laurent polynomials with Newton polygon contained in N. Therefore, the linear
system | D | is identified with curves defined by vanishing of Laurent polynomials
with Newton polygon contained in N. We will require the following two facts:

» A generic curve C = V(P) for P € H°(Xy, Dy) has genus g equal to the num-
ber of interior lattice points in N (see [7, Proposition 10.5.8]).

» The complement of the algebraic torus in X is a union of P's, called lines at
infinity, parameterized by the edges of N, and intersecting according to the com-
binatorics of N [7, Theorem 3.2.6].

In what follows, we will denote the line at infinity corresponding to £, € En
by D,. For C € |Dy|, we have |C N D,| = |E,|, where the points in C N D, are
counted with multiplicity.

Remark 2.12. A subpolygon of a polygon induces a rational map of the associated
toric surfaces. Indeed, given { o, ..., xm} characters of (C*)2, and given 1 < k < m,
we can consider the two maps (C*)2 — P™ and (C*)? — PX, where the first one is
induced by {xo. . .., ym} and the second one by {yo, ..., xx}. There is a rational map

P —-> P* that sends [a, . . ., am] — [ao, . . ., ax], that makes the following diagram
commutative:
]P)m
(C*)?
Pk.

3. Surjectivity of ¥

In this section, we show that the group homomorphism v of Fock and Marshakov

defined in (2.6) is surjective. Given an element of f € ZE (1), we will construct a clus-

ter transformation 7 such that ¥ (t7) = f.
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3.1. A construction of Goncharov and Kenyon

We recall the construction of minimal bipartite torus graphs with Newton polygon N
from [17]. We require that the graph has two additional properties that are not explic-
itly mentioned in [17], but are immediate consequences of the construction. Suppose
the torus T is constructed by gluing opposite sides of a rectangle R. We label the
north, west, south and east sides of R by dRy, dRw, dRs and dREg, respectively.
For each ray p € X(1), let X,y; 4+ Y,y be the primitive edge vector in the direc-

tion of E,, where y;, y,, are the generators of H;(T, Z) that are given by the sides
|Epl

of R oriented as in Figure 7. For each p € X (1), draw loops {oz;}i=1 in T, each with
homology class X,y,; + Y,y so that the total number of intersections of any loop

with the boundary of R is minimal. Isotope the loops in T so that:

(1) The intersections of the loops with each side of R alternate in orientation,
“in” and “out”.
(2) The west-most point on dR is an “out” point.

(3) We do not introduce any new intersection points of loops with dR during the
isotopy.

By Theorem 2.3, we can isotope the loops in R to obtain a minimal triple crossing
diagram in R with the same boundary matching. Using the procedure outlined in
Section 2.1, we convert it to a minimal bipartite torus graph.

Proposition 3.1 ([17]). For a convex integral polygon N, there is a minimal bipartite
torus graph I" with Newton polygon N that satisfies the next conditions:

(1) The west-most intersection point of a strand with R is an “out” point.

(2) The number of intersections of each zig-zag path with the boundary of R is the
smallest possible for a minimal triple point diagram with Newton polygon N.

We require the following lemma that is contained in the proof of [17, Theo-
rem 2.5]. We include the proof of the second statement, because it is short and illus-
trative of the type of arguments we will make later.

Lemma 3.2. Suppose T is a triple point diagram in T. The relative order along
the boundary of R of strands associated to the same ray of X is fixed. The relative
order of two incoming or outgoing strands associated to different edges of N can be
interchanged by (2-2) moves and isotopy.

Proof. Suppose « and y are two consecutive “out” strands in 7 that correspond to
different rays of X. Then by the alternating property, there is an “in” strand § of T
between them. Since o and y belong to different rays of X, they must cross at a triple
point inside R. By Proposition 2.4, there is a triple point diagram 7" in which the three
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Figure 10. Permuting boundary intersections.

strands «, B, y meet at a triple point just adjacent to the boundary. By Theorem 2.3,
we can use (2-2) moves and isotopy to convert 7" into 7. Then we isotope this triple
point across the boundary dR, which permutes boundary intersections of « and y, as
illustrated in Figure 10. =

Change of basis for H1(T', Z). Let X,y,; + Y,y be the homology class of a zig-
zag path in Z, in the basis (y;, yy) of H; (T, Z) from Figure 7. Changing the basis,
or equivalently, changing the fundamental rectangle R of T corresponds to the action
of SL(2,7Z) on H{(T,Z). SL(2, Z) is generated by

0 -1 1 -1
= T:= .
Let g - R denote the fundamental parallelogram with boundary formed by the vectors

g- v, and g - y,,. We describe the action of some elements of SL(2, Z) explicitly.
(1) In the basis (S- ;.S - yy), the vector ay; + by, has coordinates

6)-()

Therefore, the new coordinates are obtained from the old coordinates by rotat-
ing clockwise by 7.

(2) In the basis (T - y;, T - yy), the vector ay, + by, has coordinates

~()-3)

Therefore, T is a shear mapping.

(3) Define
1 0
= -TST = .
Ui TS (_1 1)
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In the basis (U - y;, U - yy), the vector ay, + by, has coordinates

< )=)

Therefore, U is also a shear mapping.

3.2. Proof of surjectivity
The main result of this section is the following theorem.

Theorem 3.3. The group homomorphism
v {cluster transformations ' — '} — Z(?(l)/jHl (T,Z)
defined in (2.6) is surjective.

The rest of this section is devoted to the proof of Theorem 3.3. Let p, 0 € X(1)
be two consecutive rays in counterclockwise cyclic order. Since the functions §, — 64
generate Zg (1), it suffices to show that there is a cluster transformation ¢ such that
V() =68, — 5.

Let (X,,Y,) and (X4, Ys) be the homology classes of strands in Z, and Zg,
respectively, in the basis (), yw ). Changing the basis by repeatedly using T or U, we
may assume that (X, Y,) is neither horizontal nor vertical. Then, rotating if neces-
sary using S, we can assume that X,, Y, > 0. Now making another change of basis
by repeatedly using T or U, we may assume that (X, Y5 ) is not horizontal or verti-
cal either. For example, if (X,,Y,) = (0,—1) and (X, Y5) = (1,0), we can do the
following change of basis:

(0.—1).(1.0) &5 (=1, 1), (1.0) &> (1.1). (—1.0) &> (1.2). (—1.—1).

The strategy of the proof is similar to the proof of Lemma 3.2. We create a simple
configuration of strands near the boundary of R using isotopy and (2-2) moves, and
then push this configuration past dR.

Using Proposition 3.1, we obtain a minimal triple point diagram T in a funda-
mental rectangle R of T such that:

(1) (Xp, Yp) € Z2,,.

2) Xo,Ys #0.

Since in what follows we will have occasion to deal with strands in both T and R,
let us call strands in T zig-zag loops and reserve the term “strand” for strands in R,

to avoid confusing the two notions. The strands in R are the components of the inter-
sections of zig-zag loops with the interior of R. Let U, denote the set of strands whose
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zig-zag loops correspond to the edge £, of N. By minimality of T, two strands in U,
do not intersect and therefore the partition of the boundary intersection points by the
strands in U, is a “parallel crossing”. Therefore, there is a (strict) linear order <,
on U, where strands are ordered from smallest to largest in the direction of the ray p.
Let us denote by « the <,-largest strand in U,. Similarly, let 8 be the <,-smallest
strand in Uy. Since (X,,Y),) € Zio, the strand « is the north-west-most among all
strands corresponding to p.

Lemma 3.4. The strand « has its “in” boundary point on Ry and its “out” bound-
ary point on 0R .

Proof. Since X,,Y, > 0, there is a strand associated to p that intersects dRy and
a strand associated to p that intersects dRy/. By assumption, « is the north-west-most
strand associated to p, and therefore both of its end points are in dRy U dRyy . Its end
points cannot both be on the same side of the boundary of R, because the zig-zag loop
containing « has the smallest possible number of intersections with dR (property (2)
in Proposition 3.1). Since X,, Y, > 0, its “in” boundary point must be on dRw and its
“out” boundary point must be on dRy (again by property (2) in Proposition 3.1). m

Lemma 3.5. Starting from T and using (2-2) moves and isotopy in T, we can obtain
a new triple point diagram & in T, such that:

(1) The strands in U, have been cyclically shifted in the direction of p (so that o
is now <,-smallest).

(2) The strands in Uy have been cyclically shifted in the direction of —o (so that B
is now <q-largest).

(3) The linear orders of strands corresponding to all other rays are unchanged.

Proof. By using Lemma 3.2, we can permute the boundary points to make the inter-
section points of & with dR the north-most “in” point in dRy and the west-most “out”
point in dR . By property (1) in Proposition 3.1, the west-most intersection point of
a strand in T with 0Ry is an “out” point. Therefore, the end points of « are the
north-most intersection point in Ry and the west-most intersection point in Ry,
respectively. Now we have to deal with four cases, depending on which quadrant
(Xg, Yo) lies in.

Case 1. Xy5,Ys > 0. Since N is a closed polygon, there must exist a ray 7 € X (1)
such that if (X, Y;) are the coordinates of a zig-zag path in Z;, we have Y; < 0.
Making a change of basis using T, we can further assume X; < 0 without affecting
the assumptions already in place. Since X4, Y > 0, the strand f is the south-east-most
among all strands associated to o. By an argument similar to the proof of Lemma 3.4,
B has its “out” point on dRy and “in” point on Ry . Permuting boundary points
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Figure 11. Isotoping the local configuration of strands past the northwest corner of R in case 1;

(a) initial configuration, (b) configuration after isotopy.

using Lemma 3.2, we make the intersections of § with dR the south-most “in” point
in JRg and the east-most “out” point in IRy .

Since the total homology of all zig-zag loops is zero, the total intersection number
of the loops with any side of R is zero, that is, we have an equal number of “in” and
“out” points in any side of R, alternating in orientation as we move along the side.
By our assumptions on @ and T, the intersection point of o with ORy is the west-most
point in dR and its orientation is “out”. Therefore, the east-most point in IRy is an
“in” point, which means there is an “in” point to the east of 8 in dRy . For the same
reason, there is an “out” point south of 8 in Ry . Permuting boundary intersections
using Lemma 3.2, we can make the south-east-most strand y corresponding to t,
which (by the argument in Lemma 3.4) has a boundary point on each of these sides,
pass through both these points. Using Theorem 2.3, we can make y and 8 run parallel
to the boundary. Again using Theorem 2.3, we can make the three strands «, S, y
meet just adjacent to the northeast corner of R to obtain the local picture shown in
Figure 11 (a). We isotope the triple point across the corner to obtain the configuration
in Figure 11 (b). This achieves the shift of cyclic orders for p, o without changing the
cyclic orders of strands corresponding to other rays.

Case 2. X4,Ys < 0. The strand 8 is the north-west-most among all strands associated
to 0. By the argument in Lemma 3.4, it has an “in” boundary point on dRy and an
“out” boundary point on dR . Permuting boundary intersections using Lemma 3.2
we can make the strand 8 the west-most “in” strand in dR 5 and the north-most “out”
strand in dRy . Now we use Theorem 2.3 to make «, B run parallel to the boundary
to obtain the local picture shown in Figure 12 (a) near the northwest corner of R.
We then isotope to get the configuration in Figure 12 (b).

Case 3. Xy < 0,Ys > 0. We can use T € SL(2, Z) to make X, > 0, reducing to
case 1.

Case 4. X5 > 0,Y, < 0. This case cannot occur because of convexity of N. [ ]
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Figure 12. Isotoping the strands past the northwest corner of R in case 2; (a) initial configura-
tion, (b) configuration after isotopy.

Proof of Theorem 3.3. We need to find a sequence of (2-2) moves and such isotopy
t: T — T that Y (t) = 8, — §,. Using Lemma 3.5, we obtain a triple point diagram &
in T. Now we use Lemma 3.2 to permute the boundary points so that if a pair of “in”
and “out” points in T is connected by a strand that corresponds to a ray t, then
the corresponding “in” and “out” points of & are also connected by a strand corre-
sponding to t. If t # p, 0, then this is the same strand as in T. When 7 either p
or o, this is a cyclically shifted strand. Let U be the triple point diagram in R thus
obtained from ©. Now we apply Theorem 2.3 to convert U to T using a sequence
of (2-2) moves and isotopy in R. We define ¢ to be the sequence of (2-2) moves and
isotopy T — & — U — T. By construction, ¥ (t) = 8, — &5, and the theorem is
proved. ]

4. Trivial seed cluster transformations

By Theorem 3.3, the homomorphism  is surjective. To complete the proof of Theo-
rem 1.3, we need to find the kernel of .

The spectral transform. Now we follow [17, Section 7]. A spectral data is a triple
(C, S,v), where
(1) Cisacurvein |Dyl|;

(2) S is adegree g effective divisor in C, where g is the number of interior lattice
points of N;

(3) v = {vp}pesq) is a collection of bijections v,: Z, — C N D, (recall that
|Epl = |Zp| = |C N Dpl).

Let S be the moduli space parameterizing the spectral data related to N.
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Fix a minimal bipartite graph I' with Newton polygon N, and a white vertex w

of I'. There is a rational map, called the spectral transform, defined by Kenyon and
Okounkov [24],

krw: XN (C) -—> Sy, wt— (C,S,v),

as follows:

ey

@)

3

C is the closure of Cy in X, and is called the spectral curve. By Theorem 2.6,
C € |Dy|. The points in C \ Co = |J,cx (1) C N D, are called the points at
infinity.

S is a degree g effective divisor in Cy defined as follows: Consider the exact
sequence of sheaves given by the Kasteleyn operator:

K(z,
0— @ Oy Kew), @ O(c*y2 —> coker K(z, w) — 0.
beB(T') weW(T)

When Cy is smooth, which is true when wt is generic, coker K(z, w) is
the pushforward of a line bundle &£ on Cy. The image of the section &, of
Duew(r) O(c+)2 in coker K(z, w) restricts to a section of £. The divisor S
is defined to be the divisor of zeroes of this section. It is a degree g effec-
tive divisor (see [24, Theorem 1] for a proof when X = P2 and [16] for the
general case.)

v is the bijection between zig-zag paths and points at infinity defined by the
following property: v(c) is the point in C N D, where K(z, w)|q is singular
and denotes the Kasteleyn matrix of the zig-zag path o viewed as a bipartite
graph in T. The coordinates of v(«) are determined by w? («).

The following important result was observed by Goncharov and Kenyon in [17]

and proved by Fock.

Theorem 4.1 ([11]). The spectral transform is birational.

The discrete Abel map. Let T" be the preimage of T in the universal cover of T.
Let Diveo (C) denote the divisors at infinity of C, that is Z-linear combinations of the

points at infinity. Following Fock [11], we define the discrete Abel map

do: vertices of I' — Diveo(C),

using the following rules: For a choice of white vertex w of T, we have the normal-
ization do(w) = 0, and for any path y from v; to v,, we have

do(v2) —do(v) = D (@ y)v(@), (4.1)

zig-zag paths o
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where (-, -) is the intersection form on the universal cover of T. The map dy can
be effectively computed by the following procedure: If bw is an edge, with zig-zag
paths ¢, 8 containing bw, then

do(w) = do(b) — v(@) — v(B).
We have an embedding
H{(T,Z) < Diveo(C),
ydivezw)? = ) (@ y)v(@), (4.2)

zig-zag paths o

where (z, w)? denotes the character of T = (C*)? associated to y € H{(T,Z). The
map d is H; (T, Z)-equivariant:

do(v +y) = do(v) +,

so that although dy(v) is not well-defined for a vertex v of I, the divisor class [dg (V)]
is the same for all lifts of v to " and therefore well-defined. So we define

d: V(I') - CI(C), v [de(V)],
where V is any lift of v in T, and CI(C) is the divisor class group of C.

Example 4.2. Consider the bipartite torus graph in Figure 7 with zig-zag paths la-
beled as in Figure 8. The discrete Abel map normalized so that d(w) = 0 is as follows:

d(wy) = [-v(a1) +v(y)].
d(by) = [v(a2) +v(B)].
d(b2) = [v(B) +v(¥)l.

where the zig-zag paths are labeled as in Figure 8.

Elementary transformations and induced discrete Abel maps. We now describe
how v changes under isotopy and elementary transformations and use this to define
induced discrete Abel maps.

(1) Suppose s: I' — T is an automorphism of I" induced by an isotopy in T. The
transformation s induce a bijection of the set of zig-zag paths Z with itself
that preserves Z,. Let

Us: £r — Lr, wt— wt os™ !,
be the induced birational map of weights. If « is a zig-zag path in the graph I'
after the isotopy, the point at infinity vs(c) associated with it is determined by
ws(wt(ar)) = wt(s~!(a)). Therefore, we have vg(a) := v(s™!(@)).
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do—Ot+V\\\d\of':_)/_—":sb'/do—a—ﬂ-i-y-i-t? dy—a+y ° e

Figure 13. Induced discrete Abel maps.

If d is a discrete Abel map on I', we define an induced discrete Abel map dg
on I' by the rule: dg(v) := d(s~1(v)).

(2) Lets:T'y — I'; be an elementary transformation and let Z; and Z, denote the

zig-zag paths of I'; and I'; respectively. Let us: £r; — £Lr, be the induced
map of weights. The transformation s induces a bijection Z; = Z, between
zig-zag paths of I'; and I, such that ug(wt () = wt (s~ (a)) for all zig-zag
paths & € Z,. Therefore, we have vs(a) 1= v(s~(a)).
Suppose d; is a discrete Abel map on a graph I';. An elementary transfor-
mation s: I'y — T’ induces a discrete Abel map d, on I'; as follows: the
elementary transformation only changes I'; in a disk. The induced discrete
Abel map d; is defined to be equal to d; outside the disk, and extended to the
interior of the disk using (4.1) and vy (see Figure 13).

If ¢ is a sequence of graph isomorphisms and elementary transformations, we get
an induced v; and d; by composing.

(2-2) cluster modular transformations and the spectral transform. Let¢:T" — I
be a (2-2) cluster modular transformation and let w; denote the induced birational
automorphism of X . Suppose d is a discrete Abel map on I'. Let v; be the induced
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bijection between zig-zag paths and points at infinity, and d; be the induced discrete
Abel map. Any two discrete Abel maps on I' differ only by their normalization, so
d — d; is a degree zero divisor class of C. The following result of Fock will play a key
role in determining which cluster modular transformations are trivial.

Theorem 4.3 ([11, Proposition 1]). The following diagram commutes:

XN ----=-- > SN
I I
| |
v Kl“.w v
XN ——————— a SN,

where the map on the left is (C, S,v) — (C, St,v;), where S; is the degree g effective
divisor satisfying
S, =8 +d(w)—d,(w) in CI5(C). 4.3)

By the Jacobi inversion theorem (Theorem 2.10), if S is generic, the divisor S; is
uniquely determined by condition (4.3).

Applying the Abel map u: CI8(C) — J(C) to (4.3), we get u(S;) = u(S) +
u(d(w) — d;(w)), which shows that y; becomes a translation by u(d(w) — d;(w))
in J(C) under the spectral transform.

4.1. The homomorphism ¥ and the discrete Abel map
In this section, we prove the following proposition.

Proposition 4.4. The birational automorphism [, of X n induced by a cluster trans-
Sformation t factors through v :

{cluster transformations ' — T'} LA Z(?(l)/jHl (T, 7)

T, |

Bir(Xn),
where Bir(X y) is the group of birational automorphisms of X n.

Proof. We show that the induced discrete Abel map d; and the induced bijection v,
for a cluster transformation ¢ are both determined by ¥ (¢). By Fock’s Theorem 4.3,
the induced birational map u, is determined by d; and v;.
Lett:T'=T¢g—>T1—---—T,_1 —> T, =T, be acluster transformation where
I';4+1 is obtained from I'; by an elementary transformation or I';4; is isomorphic
to I'; by an isotopy in T. Let p € X(1). Let dy be a discrete Abel map on T with
the normalization dg(W) = 0, where W is a chosen lift of w. Let dy|cnp, denote
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restriction of the divisor dy to points at infinity associated to p. The set of all zig-zag
paths in the universal cover of T associated to p subdivides the universal cover into
a collection of strips S(a) indexed by a € Z€"Po:

1

(@).

S(a) = do\CﬁD,,_

An elementary transformation or isotopy s: I'; — I'; lifts to an H; (T, Z)-periodic
collection of elementary transformations or isotopy - [y — T, in the universal cover
of T. Different lifts differ by H;(T, Z), but our construction will be independent of
these choices. Suppose dy is a discrete Abel map on ['y. Fora € Z€MPr Jet S, (a)
denote the corresponding strip. We define an induced discrete Abel map d; ¢ as fol-
lows:

(1) If5: Ty — T, is induced by an isotopy in T, we define dso(v) ;= do(5L(V)).
2) If5- fl — fz is an elementary transformation, we define it as in Figure 13.

These are simply H; (T, Z)-periodic versions of the induced discrete Abel map on T
defined earlier. By construction, we have the following property: if S;(a) is the strip
whose right boundary is a zig-zag path o of I, then S, (a) is the strip whose right
boundary is 5().

Let d; g be the discrete Abel map induced by the cluster transformation 7, obtained
by composing. Suppose during ¢ a strand in Z , is translated by a,y, 4+ b,yy,. Then the
above property implies that the strip S;(a) of T is obtained from S(a) by translating
by a,y; + b,yw. Therefore,

(dro —do)|cpp, = D (@ mp)v(@), 4.4

a€”Z,

where 7, is any path between a vertex in Sy (a) and a vertex in S(a). Choosing a dif-
ferent path does not affect (4.4). Moreover, since (4.4) is unaffected if a,y; + bpyw
modified by a vector in the span of X,y; + Y,yy, it is determined by the projection
on (Y,, —X,) and therefore by ¥ (t)(p) = |Ep|(bp X, — a,Y)).

Summing over all p € ¥ (1) and taking divisor classes, we get

d,-d:[ > Z(a,np)v(oz)i|. (4.5)

peX(1) aeZ,

A different choice of lift f‘i of I'; would modify (4.4) by an element of H;(T,Z), and
therefore leave (4.5) unchanged.

We find v; (o) from ¥ (t)(p) as follows: if « is a zig-zag path in Z,, consider
a lift & of it to the universal cover of T. Suppose @ is the right boundary of a strip S.
Since the effect of # on strips is to translate them by a,y; + byyw, Where ¥ (¢)(p) =
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|Eo|(bp X, —a,Y,), we get that
ve(a) = v(B), (4.6)

where B € Z, is the zig-zag path such that one of its lifts to the universal cover is
the right boundary of the strip S — (a,y: + b,Yw). Now that we have found v, and
d; — d, Fock’s Theorem 4.3 gives us the birational map ;. |

4.2. Triviality of cluster transformations

From Fock’s Theorem 4.3, a cluster transformation ¢ is trivial if and only if v; = v
and d(w) — d,(w) = 0 in Pic®(C) for a generic curve C € |Dy|. As a reality check,
we observe that translation by y € H; (T, Z) is trivial: it induces v, = v and d; (W) =
d(w) — [div(z, w)¥] = d(w). Therefore, by Proposition 4.4, if ¥/(¢) = 0, then ¢ is
a trivial cluster transformation, so we have:

Lemma 4.5. keryr C {trivial cluster transformations}.

We will show that in non-degenerate situations, this inclusion is an equality. We
start with the following simple consequence of Fock’s Theorem 4.3.

Lemma 4.6. Let t be a cluster transformation t such that (t) is a non-zero torsion
element onE(l)/jHl (T, Z). Then w; is non-trivial.

Proof. From (4.6), we see that v; # v. Thus, by Theorem 4.3, u; is non-trivial.  m
We need the following technical result proved in Section 5.

Theorem 4.7. Suppose N has an interior lattice point. If L is a non-trivial line bun-
dle on the toric surface X n associated to N, then for a generic spectral curve C, we
have L|c % Oc.

In other words, if N has an interior lattice point, a generic spectral curve witnesses
the non-triviality of line bundles on Xn. When N has no interior lattice points, this
fails: consider N = Conv{(0, 0), (1, 0), (0, 1), (1, 1)} whose toric surface is Xy =
P! x P!. The line bundles O (n, —n),n € Z, are trivial on every spectral curve C
since they are all isomorphic to P! and O (n, —n)|c has degree 0.

The main theorem of the paper is:

Theorem 4.8. If g # 0, the cluster modular group is
Gy =22V /jH\(T.Z).
When g = 0, we have

Gy =25V f € 2V f(p) is divisible by | E,| for all p € =(1)).
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Proof. When g =0, S = &, so pu, is determined by the action of ¢ on v. Therefore,
t is trivial if an only if v, = v, which happens if and only if ¥ (¢)(p) is divisible by
|E,| forall p € X(1).

When g # 0, if 7 is a cluster transformation such that v (¢) # 0, then either:

(1) ¥ (¢) is a non-zero torsion element: It is non-trivial by Lemma 4.6.

(2) ¥ (¢) is not a torsion element: Consider the cluster transformation ¢” obtained
by iterating ¢, where

n=k [] IE| keZ.
pEX(1)

Then from Theorem 4.3 applied to ¢", we see that the induced map of spectral
data by " is given by (C, S,v) — (C, S’,v), where S’ is the generically
unique degree g effective divisor satisfying

S’ =S+ D], @7)

where

is a divisor at infinity of X . For sufficiently large k, Ox, (D) is a line bun-

pny KO0,
P o

dle on Xy [7, Proposition 4.2.7]. Since v (¢) is not a torsion element, D is
not a torsion element of the divisor class group of Xy either; indeed if /D is
a principal divisor for some [ € Z, then [ D is the divisor of a character (z, w)”
for some y € H, (T, Z). However, this means that ¥ (/") € jH,(T,Z), con-
tradicting the assumption that 1 (¢) is not a torsion element.

Therefore, Ox,, (D) 2 Ox, , and so by Theorem 4.7, we get Ox, (D)|c £ 0Oc¢
for a generic spectral curve C. Then, by (4.7), ¢t" is a not a trivial cluster trans-
formation. Since p;» = W7, ¢ is also not a trivial cluster transformation.

Therefore, ker { = {trivial cluster transformations ' — I"}. By Theorem 3.3, i is
surjective, so by the first isomorphism theorem [27, Chapter I, §3], the cluster modular
group is
~ 7Z1) .
Gy =Zy ' /jH(T,Z). ]

Now we compute two examples of shuffling algorithms to illustrate our general
results.

Example 4.9 (A shuffling algorithm of Borodin and Ferrari). The cluster transforma-
tion ¢ shown in Figure 14 for the graph I' in Figure 7 was studied by Borodin and
Ferrari in [4]. This example has appeared earlier in the physics literature, where it
is known as the suspended pinch point. Suppose wt € £r. Let Cy := wt(«) denote
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S(=1,0) S(0,0) S(0,1) S;(—=1,—1) S;(=1,0) S;(0,0)

t
—

AN AAA
<

A\

e

A\

A

\iJ
Figure 14. A shuffling algorithm of Borodin and Ferrari. In the first step, we do a spider move
at the face immediately on the left of w and in the second step we all contract degree 2 black
vertices and translate. We have drawn one of the white vertices (the vertex w in the original

graph) larger than the others to illustrate the translation. The zig-zag paths associated with p are
translated right by %= during 7. The strips associated with p are labeled at the top.

the monodromy of wt around a zig-zag path . Then {Cy,, Cqo,, Cg, Cy} is a set of
coordinates for £1. A cocycle representing w¢ in this basis is shown in Figure 15.
The Kasteleyn matrix and spectral curve are

b by
K(z,w) = ( Co, +w CaICazCﬁz) W
-1+ Cw Coyy +w ) wy (4.8)
C ={Cq,Ca, + Coyw + Coyw + w? + Cy, Co, Cpz
— Cy, Co, CgCpwz = 0.

From (4.8), we recover the Newton polygon shown in Figure 8. Since the Newton
polygon has no interior lattice points, C is a genus 0 curve and therefore the divisor S
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Cu1Cu,Cp=

Figure 15. A cocycle representing wt, along with Kasteleyn signs and the characters ¢(e) (red).

in the spectral transform is irrelevant. There are two points at infinity of C associated
to the ray p = Rx>o(1,0):

P1ZZ—>0, w=_Ca17

Pz >0, w=—Cq,,

and only one point at infinity of C associated to each of the other rays:

—1
Ps:z > —, w — 0,
3 Cs
1
Py z — o0, w=—,
Gy

Ps: z,w — oo, % = Cy, Ca, C5Cy.
The bijection v is

(a1,002,B.7,8) = (P1, P2, P3, P4, Ps).
The spectral transform is

£r % Sy, (Cayr Cayr Cp. Cy) > (C.v),
and the induced map p;: £r — Lr is
(Cays Cay. Cp. Cy) > (Cay, Cay ., Cp. Cy),

and the induced bijection v; is

(a1,02,B,7,8) = (P2, P1, P3, P4, Ps).

Since t exchanges the weights of the zig-zag paths o and o, and also exchanges the
points at infinity associated with these zig-zag paths, it follows that the diagram in
Theorem 4.3 commutes in this example.
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O)
\/

Figure 16. The bipartite torus graph involved in domino-shuffling showing the labels of the
faces and the loops @ and b.

Let us choose the basis (uq, ug, 1) for Z? (1), where the rays of the dual fan X
are labeled by zig-zag paths (see Figure 8). In the basis (y;, yw) for H1(T, Z), the
embedding j is given by

2 0
0 1
-1 0
The homomorphism

¢: 28V jH\(T.Z) > Z, (a.b.c)— a+2c

is an isomorphism. We compute ¥ (¢) = (1,0, 0) and since ¢(1,0,0) = 1, we see that
¥ (1) generates ZE ® /jH1(T,Z). However, the cluster modular group Gy is smaller.
Since ¢ acts on L1 by interchanging the weights of @ and w5, the cluster transforma-
tion ¢2 is a trivial cluster transformation that is not in ker . Since ¢ o ¥ (%) = 2, we
get Gy =~ 7/27.

Example 4.10 (Domino-shuffling). Consider the graph I' in Figure 16. The letters a
and b are labeling two cycles in Hq (I, Z) whose projections to T generate H, (T, Z).
Let X;:=wt(f;),i =1,2,3andlet A :=wt(a), B:=wt(b). Then (X1, X2, X3,4, B)
gives coordinates on L. A cocycle representing wt is shown in Figure 17. The Kaste-
leyn matrix and the spectral curve are

by b,
_ _ Xi1X3
K(z,w):(l Az 1 Buf ) W
—l+Bw Xi—4x;/ W 4.9)
C (1+X+A2+XX) Bw_ XX Ay
= — -Bw———— — z.
'y, 143 Bw  X»z !
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_XiX3 1
B w Bw
r\w 1 bl — Az
\/ “
1 —1
by X1 wp 11
{ J— —_
N AX> z

Figure 17. A cocycle representing w¢, along with Kasteleyn signs and the characters ¢ (e) (red)
for the graph in Figure 16.

There is only one zig-zag path in each direction, so v is trivial. Let o, 8, v, 8
denote the zig-zag paths in counterclockwise order starting from the blue edge in
Figure 5. The divisor S = (p, ¢) has only one point, which is found by simultaneously
solving adj K(z, w)pw = 0, for all black vertices b of I'. In this case, we get

(P.q4) = (Axllxz’%)'

The spectral transform is given by
KT,w
Lr —> Sy, (X1, X2, X3, 4, B) = (C,(p,q)). (4.10)

Consider the cluster modular transformation ¢ shown in Figure 4. The induced map
we: Ly — Lris

(1 +X1)2 -1
3X, |—>X2—2, Xo—= X7, Xz X1X2Xs,
A > AX1(1+X1X2X3) s BX2 ’
1+ X, 7 (I+ X)(1 + X1 X2X3)

Let S; = (p¢, g¢) be the induced divisor. We can find the induced divisor in two
different ways, verifying Theorem 4.3.

(1) We have d;(w) = [v() — v(B)] = [v(y) — v(8)], where the second equality
comes from dive z = —v(a) + v(B) + v(y) — v(§). The unique point that
satisfies

Sy =8 +d(w) —d;(w),
must be
14+ X1X2X5 14+ X1X2X3

- —rAdeds o T A1A27 4.12
AX>(1+ Xy) a (*-12)

pr ~ BXo(1+ Xy)’
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because the rational function

R( ) Bw(—1+ AX1X532)
Z, W) = ,
—AX1X2X3Z + BU)(—I + A(l + Xl)XzZ)

has zeroes at (p, ¢) and v(§) and poles at (p;,q;) and v(y), as can be checked
using the coordinates of the points at infinity:

w —X1X2X3
: 9 0’ - = —’
v(y): z,w — . 1B
-X
v(8): z = oo, w — 0, w = ——2.
AB

(2) We can find the composition kT, © (4, using (4.10) and (4.11) to get (4.12).
Now we compute Gy (see also [12, Section 8.2]). We choose the basis (uq, ug, 1y)

for Z(? M where the rays in X (1) are labeled by zig-zag paths, and the basis (y;, Yu)
for H1(T, Z). The embedding j is given in these bases by

-1 -1
1 -1
1 1

We can find the cokernel of j, i.e., Zg(l)/jHl (T, Z) by computing its Smith normal

form (see for example [6, Section 2.4.2]). The Smith decomposition of the matrix
of j is

-1 0 0\ /-1 -1 | -1 1 0
-1 -1 0 1—1(0 1)=02,
1 0 1 1 1 0 0
from which we see that we have an isomorphism
¢: 22V jH(T.Z) > 7 & 7.)2Z,
(a,b,c) > (a+c,—a—b+27).

We have ¢ (¢) = (—1, 1, 0) (see Figure 5), so { o ¥ (¢) = (—1,0 + 27Z). Therefore, ¢
is a generator of infinite order. Consider the cluster modular transformation s given
by the translation of I" by %(yz, Yw). We have ¥ (s) = (—1,0, 1, 0), so that

Loy(s) = (0.1+22)

is a generator of order 2. Since s and ¢ are non-trivial cluster transformations, we get
that the cluster modular group Gy = Z & Z/2Z and is generated by s and ¢.
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5. Proof of Theorem 4.7

The goal of this section is to prove Theorem 4.7. The arguments assume some famil-
iarity with algebraic geometry, we refer to Section 2.4 for more details. All polygons
in this section will be convex, integral and embedded in R2,

We define a building block polygon to be a polygon A C R? that contains exactly
one interior lattice point, and at most five lattice points in total. Note that a building
block polygon has either three or four edges, and modulo lattice equivalence, there
are only four (see Figure 18).

> <>\ /A

Figure 18. The four building block polygons modulo lattice equivalence.

Our first goal is to show that given any polygon N that contains an interior lattice
point, one can find a building block polygon A with A € N (Proposition 5.3). We will
find A as the polygon with the least number of lattice points among all polygons
which are both contained in N and have at least one interior lattice point. We begin
with a few preparatory lemmas.

Lemma 5.1. Consider a polygon N that contains an interior lattice point. Then there
exists a polygon Q € N which contains an interior lattice point and at most four
edges.

Proof. Let x be an interior lattice point of N. Choose a polygon Q@ € N which is
minimal among all polygons contained in N that contain x as an interior lattice point,
with the partial order induced by inclusion. We aim to show that Q has either three
or four edges. If not, let ay, ..., a, denote the vertices of O, with n > 4, labeled in
clockwise order. Consider the line segments joining a; with a3, and a3 with as respec-
tively. They divide Q into three smaller polygons, each with fewer lattice points, and
these segments intersect only at a3, since by assumption as is distinct from a3 and a;.

Therefore, x is an interior point of either the polygon with vertices a;, as, aq,...,a,
or the polygon with vertices ay,a»,as,as,as, - . ., dp. This contradicts the minimality
of 0. |

Lemma 5.2. Consider a polygon N with an interior lattice point. Then there is
a polygon Q < N which contains exactly one interior lattice point.
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aj

as

as

Figure 19. Figure for Lemma 5.2.

Proof. Consider a subpolygon Q of N, which has at least two interior lattice points,
x and y. Up to shrinking Q, we can assume, by Lemma 5.1, that either Q is a triangle
or a quadrilateral.

If Q is a triangle, consider the line through x and y. It must meet an edge £ of Q.
Let a and b be the vertices of £. Up to swapping x and y, we can assume that the
distance between x and £ is less than the distance between y and £. Then the triangle
with vertices y, a and b, with an interior point (namely x) has fewer interior lattice
points than Q (y is not an interior point).

If Q is a quadrilateral, consider the two diagonals of Q. They have a single inter-
section point, so there must be a diagonal £ which does not contain both x and y.
Then £ divides Q into two smaller polygons, and one of them must have an interior
point.

Therefore, if we consider a polygon which is minimal with respect to inclusion
and has an interior lattice point, it must have a exactly one interior lattice point. ]

Proposition 5.3. Given any polygon N with an interior lattice point, one can find
a building block polygon A such that A C N.

Proof. Consider a polygon Q € N. From Lemmas 5.2 and 5.1, we can assume, up
to shrinking Q, that Q has at most four edges, and a single interior point x. If Q has

(a) b

Figure 20. Figures for Proposition 5.3: (a) triangle aby, (b) triangle abc.



The cluster modular group of the dimer model 187

four edges and five points, we are done, otherwise there is an edge £ with a point y € £
which is not a vertex. Let a, b be the two vertices of Q not contained in £. Then the
segments ya and y_b intersect only at y, and divide Q into three smaller polygons.
One of them must contain x in its interior. Therefore, if Q is minimal and has four
edges, it must be a building block polygon.

If instead Q is a triangle, assume it has more than five lattice points. Then there are
two lattice points p, g which are on the boundary of Q, but are not vertices. If they
belong to the same edge £, let a be the vertex of Q not contained in £. Then the
segments £, := ap and £, := aq meet only at @, and divide Q into smaller polygons.
Then there must be one among £; and ¢, which does not contain x, and which is
the side of a smaller polygon contained in @ and with an interior point. Similarly,
if p and ¢ do not belong to the same edge, let a be the vertex not contained in the
edge containing p. Then the segments £ := ap and £, := gp intersect only at p and
divide Q into smaller polygons. One of them must have an interior point. |

Lemma 5.4. Consider the projective toric surface X associated to the polygon N,
and let Q € N be a subpolygon of N, with associated projective toric surface X g.
The two polygons give rise to projective embeddings Xy C P" and Xo € P™, where
n:=|NNZ?* —1andm := |0 N Z?*| — 1. There is a linear projection P" --»> P™
which gives a (C*)?-equivariant rational map Xy --> X 0, which restricts to an
isomorphism of the dense tori (C*)2.

Proof. Consider the characters o, ..., y» corresponding to the lattice points in N,
and let yo, ..., xm be those corresponding to the lattice points in . As in Sec-
tion 2.4.2, consider the map ®: (C*)? — P” given by p > [yo(p)..... xn(p)]. The
toric variety Xn is the closure of the image of ®, and similarly X is the closure
of the map ®: (C*)?> — P™ sending p > [xo(p)., ..., xm(p)]. Then the projection
from the n — m coordinates corresponding to the characters in (N \ Q) N Z? gives

the desired rational map. |
a a
a
b q
b
4
y c P q b
(a) (b) (c)

Figure 21. Figures for Lemma 5.4: (a) polygon abcy, (b) triangle abp, (c) polygon abpq.
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Theorem 5.5. Consider the projective toric surface Xa associated to a building
block polygon A, and let yy, ..., yn denote the characters corresponding to the lat-
tice points in A. Then there exists no line £ of P", contained in X A, passing through
the identity of the dense torus (C*)? C X.

Proof. First observe that either n = 3 orn = 4, as n 4 1 is the number of lattice points
of A. Any line in P” is the intersection of n — 1 linearly independent hyperplanes
Hy, ..., H,_i. When we restrict these hyperplanes to the torus (C*)2, they can be
written as

(H)lcry2 = ) _aijz'w’,
J

where (z, w) are the coordinates on (C*)2.

Assume by contradiction that such a line exists. Then when intersected with (C*)?2,
it would give a codimension one subset of (C*)?: it would be the zero locus of a homo-
geneous polynomial f. Then we can factor (H;)|c+2 = fgi for g; € Clz*, w¥].
Consider the Newton polygon P associated to f, defined as follows. If we write
f =Y cijz'w’, then Py is the convex hull of the points (i, j) such that ¢; ; # 0.
Similarly, if we denote by P; the Newton polygon of g;, then from [32, Theorem VI]
we have that the Minkowski sum Py + P; has vertices corresponding to the charac-
ters in fg; = (H;)|(cx)2- Recall (see Section 2.4.2) that these correspond to lattice
points of A. In particular,

Py + P; isasubpolygonof Afori =1,...,n—1.

Now we show that a building block polygon cannot contain n — 1 polygons as above.

First observe that since f vanishes on the identity, there are at least two distinct
pairs (7, j) such that ¢; ; # 0. In particular, Py contains a segment s. Then, since the
hyperplanes H; are linearly independent, the set |_J; P; has at least n — 1 elements, say
X1,...,Xn—1. Hence the n — 1 translates x; + s of s must be contained in A. Checking
the four building block polygons in Figure 18, we see that this is not possible. ]

Corollary 5.6. Any projective toric surface Xy whose polygon N contains an inte-
rior lattice point is not ruled by lines.

Proof. From Proposition 5.3, there is a building block polygon A € N corresponding
to a toric surface Xa. From Lemma 5.4, there is a rational map 7: X --> Xa. This
rational map sends a line not contained in the indeterminacy locus to either a point or
a line. So if X is ruled by lines, there is a line £ passing through the identity of the
torus in X . Then 7 (£) is a line through the identity of the torus in X s, contradicting
Theorem 5.5. |

We now to prove the main technical result of this section.
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Proposition 5.7. Consider a projective toric surface X y associated to the polygon N
that contains at least one interior lattice point. Suppose L is a non-trivial line bundle
on Xy. Then there is a hyperplane section C € |D y| such that C is irreducible and
smooth, and such that L|c is not trivial.

Proof. We prove the desired statement by contradiction. The proof is divided into
several steps.

Step 1. We show that there is a pencil
I~ P!' CcP(HP", Opn(1)))

such that for every x € I1, the corresponding hyperplane section is irreducible, and the
generic member is smooth. It suffices to show that the locus in P(H°(P", Op~x(1)))
corresponding to reducible hyperplane sections has closure of codimension at least 2.
Indeed, otherwise it would contain an (n — 1)-dimensional subset parameterizing
reducible curves. Now we use the following:

Lemma 5.8 ([29, Lemma I1.2.4]). An irreducible non-degenerate surface S C P",
n >3, has an (n — 1)-dimensional family of reducible hyperplane sections if and only
if S is either ruled by lines, or is the Veronese surface, or its general projection in P4,
or its general projection in P3 (the Steiner surface).

The Veronese surface is toric and corresponds to the Newton polygon with vertices
Conv{(0, 0), (2,0), (0,2)},

and so has no interior lattice points. Since the number of interior lattice points in the
Newton polygon is the genus of a generic hyperplane section [7, Proposition 10.5.8],
its general projections have hyperplane sections of genus 0. Since the generic hyper-
plane sections of X have genus at least 1, it is not the Veronese surface or its
projections. Therefore, by Lemma 5.8 and Corollary 5.6, we can find a generic pen-
cil of hyperplane sections in X such that all the members are irreducible. Since
being smooth is an open condition [18, Theorem 12.2.4], we can also assume that the
generic member is smooth.

Such a pencil IT gives a rational map Xy --> P! with the indeterminacy locus
consisting of points where the two hyperplane sections generating the pencil intersect.
We can blow-up the toric surface 7: Y — X to resolve the indeterminacy locus, and
therefore we obtain a morphism f:Y — P! whose fibers are the members of the
pencil IT.

Step 2. We want to show that f.(Qy) = Op1. The morphism f is:

(1) flat since it is dominant with target a smooth curve [19, Proposition I11.9.7],
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(2) proper since the source is proper and the target is separated (see [19, Corol-
lary I1.4.8 (e)]),

(3) generically smooth since the generic member of IT is smooth.

Observe that f,(Oy) is a torsion-free sheaf, since already Oy has no zero divi-
sors. Therefore, since the local rings of @p1 are DVRs and torsion-free modules
over a DVR are free, the sheaf fi(Oy) is locally free: it is a vector bundle. To
check its rank, observe that there is a fiber ¥, of f at a point p which is smooth
and connected (the smooth irreducible member of IT). Therefore, ho((DYp) = 1, and
from [40, Theorem 28.1.1] there is an open subset U € P! such that for x € U
we have h°(Oy,) = 1. Then from [40, Theorem 28.1.5] this is the rank of f,(Oy)
at x. In particular, the latter is a line bundle. But from the definition of push forward,
HO(P!, £.(Oy)) = H°(Y,Oy) = C: we have that f.(OQy) is a line bundle on P!
with a single global section. From the description of the line bundles on P! we have
the desired isomorphism f(Oy) = Op1.

Step 3. We prove that 7*L = f*G for a line bundle G on P!. Recall that by contra-
diction we are assuming that for every member C of I1, L|¢ = O¢. The members of
IT are the fibers of f, thus for every fiber F of f we have 7*(L)|r =~ OF. Then by
[40, Proposition 28.1.11], there is a line bundle G on P! such that 7*(L) = f*(G).

End of the argument. We proceed as in the second paragraph of [37] and report it
below for the convenience of the reader.

Recall that the fibers of f are elements of the linear series of Xy — P”. We first
check that if U is the dense open subset where 7 is an isomorphism, then we have
7*Oxy(1)jv = f*Opi1(1)y. Indeed, we check this equality for divisors, so let H be
a member of the pencil I1. Then 7*Ox, (1)l = 7*Oxy (H)|v = Oy (x ' H)|v:
the line bundle 7*Ox, (1)|y is the line bundle associated to the divisor being the
pullback of a hyperplane section. When we restrict it to U, this agrees with the proper
transform of H restricted to U. Similarly, Op1(1) is the line bundle associated to
the divisor being a point on P!, so f*Op1(1)|y is the line bundle associated to the
divisor being the preimage of a point under f: a fiber of f. The desired equality
follows since the proper transform of H is a fiber of f.

Then n*Ox, (m)|ly = f*Op1(m)|y for every m € Z. But G is a line bundle
onP!, 50 G = Op1(m) foracertainm and 7*L|y = f*Op1(m)|y = 7*Ox,, (m)|v.
Then

Lly = L ® n4(0Oy)|ly = n«(7*L ® Oy)|y = mun* Ly

= e Ox, (m)|y = Oxy (M)|v,

where the first equality follows from [19, Proposition V.3.4], and the second equality
is the projection formula [19, Exercise I1.5.1].
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Now since X is normal, if two line bundles are isomorphic on a subset with com-
plement of codimension at least 2, then they are isomorphic. Therefore, L = Oy, (m).
But then Oy, (m) restricts to the trivial line bundle on every section, so m = 0 and L
is trivial: this is the desired contradiction. Hence there must be a fiber F of f such that
*(L)|F is not trivial. Then from Lemma 5.9, there is an open subset U C P 1 where
for every p € U we have n*(L)|y, is not trivial, and Y}, is smooth (being smooth is
an open condition, see [18, Theorem 12.2.4]). [ ]

The following Lemma is well known, we provide a proof for completeness.

Lemma 5.9. Consider a flat proper morphism X — B with integral fibers, and let L
be a line bundle on X. Then the set {b € B such that L|x, = Ox,} is closed.

Proof. From the upper-semicontinuity theorems [40, Theorem 28.1.1] the set b € B,
where 1°(L|x,) > 0and 2°(L™"|x,) > 0 is closed. It suffices to prove that if one has
a line bundle G on an integral proper (over C) scheme Y, then

h°(G)>0 and H°(G7 1) >0

if and only if G = Oy. This is the first paragraph of the proof of the Seesaw theo-
rem [31]. [

We are now ready to prove Theorem 4.7. The argument is roughly as follows.
First we consider a parameter space for linear subspaces of P”: this is the dual pro-
jective space, namely (P")Y. Then we construct a space € together with a morphism
7:€ — (P")Y whose fiber over the point corresponding to a hyperplane is the curve
H N Xp. We check that 7 is flat and proper. Then we use Lemma 5.9 and the fact
that being smooth is an open condition for flat and proper morphisms to argue that
the set H € (P")Y such that L|gnx, is not trivial and H N Xy is smooth and open
inside (P")V. To conclude the argument we just need to check that this open set is not
empty: this is Proposition 5.7.

Proof of Theorem 4.7. Let (P™)Y be the dual projective space of P”. Consider the
generic hyperplane section

H:= {(x.H) e P" x (P")":x € H}.

The closed embedding X < P” given by the polytope N gives the closed embed-
ding Xy x (P")Y — P" x (IP")¥. We can construct the fibred product

€= XPpnx(pryv XN X (Pn)v

From the universal property of a fiber product, a point of € corresponds to two points
a € J and b € Xy x (P")V which map to the same point in P x (P")Y. We can
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understand the space € via its morphism 7: € — (P")V: a fiber of 7 over the point
of (P™)Y corresponding to the hyperplane H is the intersection H N Xy, i.e., it is
a hyperplane section in X . We now check that 7 is proper and flat.

For properness, observe that € — # is a closed embedding, since being a closed
embedding is stable under base change and Xy x (P")Y — P” x (P")V is a closed
embedding. Moreover, # — (IP")V is proper. So the composition 7: € — (P")V is
proper as it is the composition of a closed embedding and a proper morphism.

We check that the morphism 7 is flat. From [40, Exercise 24.7.A (d)] it suffices
to check that all the fibers have the same Hilbert polynomial. For every hyperplane
section H, we have a morphism

-H: Opn(—1) — Opn

given by multiplication by the polynomial that gives the equation of H. Since we
are embedding X in P” using a basis of sections of Dy, the embedding is non-
degenerate, i.e., not contained in a linear subspace of smaller dimension. In particular,
the polynomial that gives H is not the zero polynomial. Oy, is a domain, so multi-
plication by a non-zero element is injective. Therefore, we have the following exact
sequence:

0 Oxy (—1) 2 Oy, — Oc — 0,

where C := Xy N H. Then by definition of the Hilbert polynomial, we see that the
Hilbert polynomial of C does not depend on H. Therefore, all the fibers of 7 have
the same Hilbert polynomial, so r is flat.

We can take the pullback of L to Xy x (IP")Y and to € to get a line bundle G on €
which along each fiber C = H N Xy of & restricts to L|c. From Proposition 5.7,
there is a smooth fiber F of 7 such that G|r % OF. We can replace (P")Y with the
locus U C (P™)V, where 7 is smooth (which is open from [18, Theorem 12.2.4], and
contains the fiber F'). Then Lemma 5.9 applies, giving the desired result. |

6. Other interpretations of the (2-2) cluster modular group

In this section, we discuss two other ways of describing the (2-2) cluster modular
group. This section is not essential to the rest of the paper, and may be safely skipped.

6.1. Translation of a zonotope

The first alternate description comes from mathematical physics. Eager and Franco [9,
Section 3] consider the group Z "~ /Z of functions on the vertices of N up to an addi-
tive constant and take its quotient by the homology group H;(T, Z). This group is
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isomorphic to the group Z? ) /jH1 (T, Z) considered by Fock and Marshakov [12]
that is defined in Section 2.3. Recall that X (1) is in bijection with E . Given a func-
tion g € Z? (1), we obtain a function g € Z"~ defined as follows: Let E be an edge
of N oriented counterclockwise along the boundary of N, and let V; and V, denote
its head and tail, respectively. Define g(V7) — g(V>) = g(E).

Eager and Franco then associate to each vertex V' € Vi an integral vector Ey
in ZE(I)/]'HI (T, Z) defined as follows: Let p, 0 € X(1) be the two consecutive
rays in counterclockwise cyclic order such that the two-dimensional cone spanned
by them is dual to the vertex V. The vector EV is 6, — 8o, which are the genera-
tors we considered in Section 3.2. Eager and Franco then consider the zonotope Q in

Z(l) /jH1(T,Z) ®z R defined by the vectors Ey and its dual polytope P.

Claim 6.1. For a bipartite graph " with Newton polygon N, the interior lattice points
of some translate of %P are naturally identified with the faces of T (equivalently the
vertices of the underlying quiver).

When the edges of N are primitive, this identification is given by the discrete Abel
map f +— d(f). In [9, Section 8], they provide the following procedure for generat-
ing sequences of spider moves (or Seiberg duality cascades as they are called in the
mathematical physics literature). As the zonotope %ﬁ is translated, each time a lattice
point moves out of it, another lattice point enters it, and the faces corresponding to
these lattice points are related by a spider move. Therefore, translations of the zono-
tope %IA’ induce sequences of spider moves. Translations by the vectors E v are called
basic periodic transformations, and as we mentioned, they coincide with the genera-
tors of the (2-2) cluster modular group that we use in the proof of surjectivity of ¥ in
Section 3.2. Therefore, Eager and Franco’s description agrees with that of Fock and
Marshakov, and if Claim 6.1 is rigorously established, will provide a different proof
of surjectivity of y.

6.2. Picard group of the toric stack

This section uses technical notions from algebraic geometry and we refer the reader
to [39] for further background.

In [12, Section 7.3], Fock and Marshakov provide an alternate description of
Z()): ® /H1 (T, Z) as the group of divisor classes on the toric surface X that restrict to
degree O divisors on a generic spectral curve C. While this is true for polygons whose
sides are all primitive, the following example shows that it needs to be modified in the
general case. The correct general statement is Proposition 6.4 below.

Example 6.2. Consider the polygon N shown in Figure 22. Let
u; = (—1,0), up=(0,-1), uz=1(1,0), u4=1(0,1)
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Figure 22. The polygon in Example 6.2.
denote the primitive vectors generating the rays of the dual fan (1), and let Eq, E>,

E3, E4 denote the corresponding sides of N. In the basis (11, u3, u3) for Zg (1), the
embedding j is given by

-2 0
0 -3
2 0

Computing the Smith normal form, we get
zZW JjH\(T.Z) =~ 7. & 7./6L.

On the other hand, the divisor class group of the toric surface X is the cokernel
of Z2 4> 7= where J is given by the matrix

-1 0
0 -1
1 0
0 1
For a divisor D represented by the element (a,as,...,a4) € ZZ(I), its degree

upon restriction to a generic spectral curve is

4
Z |Eila;i = 2a; + 3a + 2a3 + 3ay.
i=1
RN fZZ is isomorphic to Z?2, where the isomorphism is

(ar,az,a3,a4) = (a1 + as,az + as),

so the group of divisors that have degree O when restricted to a generic spectral curve
is isomorphic to Z. We can identify this group with the subgroup

{(2a1,3a3,2a3,3a4):2a1 + 3as + 2a3 + 3a4 = 0} /jH, (T, 7Z)

of ZZW /jH\| (T, Z).
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The problem is that when we restrict a toric divisor to a curve, we get the same
multiplicity for all points at infinity of the curve intersecting that divisor, so we get
only a subgroup of G . We can fix this by replacing the toric variety X with a toric
stack Zn which has divisors that are fractions of toric divisors as we now explain.
Associated to N is a pair of data ¥ = (X, B), called a stacky fan, defined as fol-
lows:

(1) X is the normal fan of N in H{(T,Z)Y @ R;
() B: =Wl — H{(T,Z)V is the homomorphism defined by Blep) :=|Ep|up.

In other words, the stacky fan is the data of the dual fan along with the lengths of the
edges of N.

Just as the normal fan X of N can be used to construct toric surface Xy, the
stacky fan X gives rise to a stacky toric surface 2. The stacky toric surface 2y
has as coarse moduli space the toric variety Xy ; let us denote by 7: Zny — Xy the
projection. Let O o, (|EljD p) be the unique line bundle on 2y satisfying

1 >®|Ep|

Oy (lE_p| ) ~ 1*Ox, (D,).

Just as the divisor class group of the toric surface Xy is generated by toric divisors, the
Picard group of the toric stack 2 is generated by the line bundles O o, (ﬁ D,).

Theorem 6.3 ([3, Proposition 3.3]). The following is an isomorphism of groups:
Z=W /H(T,Z) — Pic(Zw),
S (Ep)
0oy (Xp: E Dy).

Proposition 6.4. This isomorphism identifies Zéz M /jH1 (T, Z) with the subgroup
of Pic(2n) of line bundles O o (D), where D =3 b, D, satisfying

3" I, = 0.
0
There is a version of Theorem 4.3 which illuminates this correspondence.

Theorem 6.5 ([39, Proposition 1.2]). Let t be a seed cluster transformation. Let € =
C xxy Zn andleti: € — Xy be the embedding. We have

v (E,)
5 Do)

0 (S) = 06(S) ®i* Oy (Y
0



T. George and G. Inchiostro 196

Acknowledgments. The authors are grateful to Dan Abramovich, Melody Chan,
Rick Kenyon, Gregg Musiker, Harold Williams and Xufan Zhang. We also thank the
anonymous referees for many helpful comments and suggestions.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

(12]

[13]

[14]

[15]

[16]

E. Arbarello, M. Cornalba, and P. A. Griffiths, Geometry of algebraic curves. Vol. II (with
a contribution by Joseph Daniel Harris). Grundlehren Math. Wiss. 268, Springer, Heidel-
berg, 2011 Zbl 1235.14002 MR 2807457

A. Beauville, Complex algebraic surfaces. 2nd edn., Lond. Math. Soc. Stud. Texts 34,
Cambridge University Press, Cambridge, 1996 Zbl 0849.14014 MR 1406314

L. Borisov and Z. Hua, On the conjecture of King for smooth toric Deligne-Mumford
stacks. Adv. Math. 221 (2009), no. 1,277-301 Zbl 1210.14006 MR 2509327

A. Borodin and P. Ferrari, Random tilings and Markov chains for interlacing particles.
Markov Process. Related Fields 24 (2018), no. 3, 419-451 Zbl 1401.05061

G. D. Carroll and D. Speyer, The cube recurrence. Electron. J. Combin. 11 (2004), no. 1,
paper no. 73 Zbl 1060.05004 MR 2097339

S. Corry and D. Perkinson, Divisors and sandpiles. An introduction to chip-firing. Ameri-
can Mathematical Society, Providence, RI, 2018 Zbl 1411.05003 MR 3793659

D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties. Grad. Stud. Math. 124, Amer-
ican Mathematical Society, Providence, RI, 2011 Zbl 1223.14001 MR 2810322

P. Di Francesco and R. Soto-Garrido, Arctic curves of the octahedron equation. J. Phys. A
47 (2014), no. 28, paper no. 285204 Zbl 1296.05121 MR 3228361

R. Eager and S. Franco, Colored BPS pyramid partition functions, quivers and cluster
transformations. J. High Energy Phys. 2012 (2012), no. 9, paper no. 038

Zbl 1397.81235 MR 3044961

N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, Alternating-sign matrices and domino
tilings. 1. J. Algebraic Combin. 1 (1992), no. 2, 111-132 Zbl 0779.05009 MR 1226347
V. Fock, Inverse spectral problem for gk integrable system. 2015, arXiv:1503.00289

V. V. Fock and A. Marshakov, Loop groups, clusters, dimers and integrable systems.
In Geometry and quantization of moduli spaces, pp. 1-66, Adv. Courses Math. CRM
Barcelona, Birkhduser, Cham, 2016 Zbl 1417.37248 MR 3675462

S. Franco, A. Hanany, D. Vegh, B. Wecht, and K. D. Kennaway, Brane dimers and quiver
gauge theories. J. High Energy Phys. 2006 (2006), no. 1, paper no. 096 MR 2201227

Y. Gao, Z. Li, T.-D. Vuong, and L. Yang, Toric mutations in the dP» quiver and subgraphs
of the dP5 brane tiling. Electron. J. Combin. 26 (2019), no. 2, paper no. 2.19

7Zbl 1442.13068 MR 3956457

T. George, Grove arctic curves from periodic cluster modular transformations. Int. Math.
Res. Not. IMRN 2021 (2021), no. 20, 15301-15336 Zbl 07456003 MR 4329870

T. George, A. Goncharov, and R. Kenyon, The inverse spectral map for dimers. 2022,
arXiv:2207.10146


https://zbmath.org/?q=an:1235.14002
https://mathscinet.ams.org/mathscinet-getitem?mr=2807457
https://zbmath.org/?q=an:0849.14014
https://mathscinet.ams.org/mathscinet-getitem?mr=1406314
https://zbmath.org/?q=an:1210.14006
https://mathscinet.ams.org/mathscinet-getitem?mr=2509327
https://zbmath.org/?q=an:1401.05061
https://zbmath.org/?q=an:1060.05004
https://mathscinet.ams.org/mathscinet-getitem?mr=2097339
https://zbmath.org/?q=an:1411.05003
https://mathscinet.ams.org/mathscinet-getitem?mr=3793659
https://zbmath.org/?q=an:1223.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=2810322
https://zbmath.org/?q=an:1296.05121
https://mathscinet.ams.org/mathscinet-getitem?mr=3228361
https://zbmath.org/?q=an:1397.81235
https://mathscinet.ams.org/mathscinet-getitem?mr=3044961
https://zbmath.org/?q=an:0779.05009
https://mathscinet.ams.org/mathscinet-getitem?mr=1226347
https://arxiv.org/abs/1503.00289
https://zbmath.org/?q=an:1417.37248
https://mathscinet.ams.org/mathscinet-getitem?mr=3675462
https://mathscinet.ams.org/mathscinet-getitem?mr=2201227
https://zbmath.org/?q=an:1442.13068
https://mathscinet.ams.org/mathscinet-getitem?mr=3956457
https://zbmath.org/?q=an:07456003
https://mathscinet.ams.org/mathscinet-getitem?mr=4329870
https://arxiv.org/abs/2207.10146

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]
(35]

[36]

(37]

The cluster modular group of the dimer model 197

A. B. Goncharov and R. Kenyon, Dimers and cluster integrable systems. Ann. Sci. Ec.
Norm. Supér. (4) 46 (2013), no. 5, 747-813 Zbl 1288.37025 MR 3185352

A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique. IV: Etude locale
des schémas et des morphismes de schémas (troisieme partie). Inst. Hautes Etudes Sci.
Publ. Math. 28 (1966), 5-248 Zbl 0144.19904

R. Hartshorne, Algebraic geometry. Grad. Texts in Math. 52, Springer, New York, 1977
Zbl 0367.14001 MR 0463157

A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge, 2002

Zbl 1044.55001 MR 1867354

A. Ishii and K. Ueda, Dimer models and the special McKay correspondence. Geom. Topol.
19 (2015), no. 6, 3405-3466 Zbl 1338.14019 MR 3447107

W. Jockusch, J. Propp, and P. Shor, Random domino tilings and the arctic circle theorem.
1998, arXiv:math/9801068

P. W. Kasteleyn, Dimer statistics and phase transitions. J. Math. Phys. 4 (1963), no. 2,
287-293 MR 153427

R. Kenyon and A. Okounkov, Planar dimers and Harnack curves. Duke Math. J. 131
(2006), no. 3,499-524 Zbl 1100.14047 MR 2219249

T. Lai and G. Musiker, Beyond Aztec castles: toric cascades in the dP3 quiver. Comm.
Math. Phys. 356 (2017), no. 3, 823-881 Zbl 1401.13066 MR 3719543

T. Lai and G. Musiker, Dungeons and dragons: combinatorics for the dPz quiver. Ann.
Comb. 24 (2020), no. 2, 257-309 Zbl 1454.13034 MR 4110400

S. Lang, Algebra. 3rd edn., Grad. Texts in Math. 211, Springer, New York, 2002

Zbl 0848.13001 MR 1878556

M. Leoni, G. Musiker, S. Neel, and P. Turner, Aztec castles and the dP3 quiver. J. Phys. A
47 (2014), no. 47, paper no. 474011 Zbl 1408.13057 MR 3280002

A. F. Lopez, Noether—Lefschetz theory and the Picard group of projective surfaces. Mem.
Amer. Math. Soc. 89 (1991), no. 438, x+100 pp. Zbl 0736.14012 MR 1043786

T. Miwa, On Hirota’s difference equations. Proc. Japan Acad. Ser. A Math. Sci. 58 (1982),
no. 1,9-12 Zbl 0508.39009 MR 649054

D. Mumford, Abelian varieties. Tata Inst. Fundam. Res. Stud. Math. 5, The Tata Institute
of Fundamental Research, Bombay, 2008 Zbl 1177.14001 MR 2514037

A. M. Ostrowski, On multiplication and factorization of polynomials. I. Lexicographic
orderings and extreme aggregates of terms. Aequationes Math. 13 (1975), no. 3,201-228
Zbl 0319.13004 MR 399060

T. K. Petersen and D. Speyer, An arctic circle theorem for Groves. J. Combin. Theory
Ser. A 111 (2005), no. 1, 137-164 Zbl 1066.05018 MR 2144860

A. Postnikov, Total positivity, Grassmannians, and networks. 2006, arXiv:math/0609764
J. Propp, Generalized domino-shuffling. Theoret. Comput. Sci. 303 (2003), no. 2-3, 267-
301 Zbl 1052.68095 MR 1990768

D. E. Speyer, Perfect matchings and the octahedron recurrence. J. Algebraic Combin. 25
(2007), no. 3,309-348 Zbl 1119.05092 MR 2317336

J. Starr, Restriction of the picard group of a surface to a curve. Version 2016-03-09, avail-
able at https://mathoverflow.net/q/233170


https://zbmath.org/?q=an:1288.37025
https://mathscinet.ams.org/mathscinet-getitem?mr=3185352
https://zbmath.org/?q=an:0144.19904
https://zbmath.org/?q=an:0367.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=0463157
https://zbmath.org/?q=an:1044.55001
https://mathscinet.ams.org/mathscinet-getitem?mr=1867354
https://zbmath.org/?q=an:1338.14019
https://mathscinet.ams.org/mathscinet-getitem?mr=3447107
https://arxiv.org/abs/math/9801068
https://mathscinet.ams.org/mathscinet-getitem?mr=153427
https://zbmath.org/?q=an:1100.14047
https://mathscinet.ams.org/mathscinet-getitem?mr=2219249
https://zbmath.org/?q=an:1401.13066
https://mathscinet.ams.org/mathscinet-getitem?mr=3719543
https://zbmath.org/?q=an:1454.13034
https://mathscinet.ams.org/mathscinet-getitem?mr=4110400
https://zbmath.org/?q=an:0848.13001
https://mathscinet.ams.org/mathscinet-getitem?mr=1878556
https://zbmath.org/?q=an:1408.13057
https://mathscinet.ams.org/mathscinet-getitem?mr=3280002
https://zbmath.org/?q=an:0736.14012
https://mathscinet.ams.org/mathscinet-getitem?mr=1043786
https://zbmath.org/?q=an:0508.39009
https://mathscinet.ams.org/mathscinet-getitem?mr=649054
https://zbmath.org/?q=an:1177.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=2514037
https://zbmath.org/?q=an:0319.13004
https://mathscinet.ams.org/mathscinet-getitem?mr=399060
https://zbmath.org/?q=an:1066.05018
https://mathscinet.ams.org/mathscinet-getitem?mr=2144860
https://arxiv.org/abs/math/0609764
https://zbmath.org/?q=an:1052.68095
https://mathscinet.ams.org/mathscinet-getitem?mr=1990768
https://zbmath.org/?q=an:1119.05092
https://mathscinet.ams.org/mathscinet-getitem?mr=2317336
https://mathoverflow.net/q/233170

T. George and G. Inchiostro 198

[38] D. Thurston, From dominos to hexagons. 2004, arXiv:math/0405482

[39] D. Treumann, H. Williams, and E. Zaslow, Kasteleyn operators from mirror symmetry.
Selecta Math. (N.S.) 25 (2019), no. 4, paper no. 60 Zbl 1436.14077 MR 4016520

[40] R. Vakil, The rising sea: foundations of algebraic geometry. 2017, Available at http://
math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf

Communicated by Adrian Tanasa

Received 21 February 2021; revised 2 October 2021.

Terrence George
Department of Mathematics, University of Michigan, East Hall 4860, Ann Arbor, MI 48109,
USA; georgete@umich.edu

Giovanni Inchiostro
Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195,
USA; ginchios@uw.edu


https://arxiv.org/abs/math/0405482
https://zbmath.org/?q=an:1436.14077
https://mathscinet.ams.org/mathscinet-getitem?mr=4016520
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
mailto:georgete@umich.edu
mailto:ginchios@uw.edu

	1. Introduction
	2. Background
	2.1. Combinatorial objects
	2.2. The dimer model
	2.3. A construction of Fock and Marshakov
	2.4. Algebraic geometry background
	2.4.1 Line bundles and divisors on curves
	2.4.2 Toric surfaces


	3. Surjectivity of \psi
	3.1. A construction of Goncharov and Kenyon
	3.2. Proof of surjectivity

	4. Trivial seed cluster transformations
	4.1. The homomorphism \psi and the discrete Abel map
	4.2. Triviality of cluster transformations

	5. Proof of Theorem 4.7
	6. Other interpretations of the (2-2) cluster modular group
	6.1. Translation of a zonotope
	6.2. Picard group of the toric stack

	References

