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Abstract. In this paper we relate a fundamental parameter of a random graph, its degree sequence,
to a simple model of nearly independent binomial random variables. As a result, many interesting
functions of the joint distribution of graph degrees, such as the distribution of the median degree,
become amenable to estimation. Our result is established by proving an asymptotic formula con-
jectured in 1990 for the number of graphs with given degree sequence. In particular, this gives an
asymptotic formula for the number of d -regular graphs for all d , as n!1. The key to our results
is a new approach to estimating ratios between point probabilities in the space of degree sequences
of the random graph, including analysis of fixed points of the associated operators.
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1. Introduction

We consider the number of graphs with a given degree sequence. In particular, we show
that a formula known to hold in the sparse and dense cases as long as the degrees of ver-
tices are somewhat close to each other, also holds for the remaining cases. The main con-
sequence of this is a very simple and consequently useful model for the degree sequence
of a random graph. The two most popularly studied models of random graphs are con-
sidered here: G .n; p/, in which n vertices have edges included between each pair of
them independently with probability p for each pair, and G .n; m/, in which n vertices
havem edges included, chosen uniformly at random from them-subsets of the unordered
pairs of vertices. Those classical models of random graphs easily satisfy the required
restrictions on degrees with high probability, and it follows that the degree sequence of
G .n; m/ is well approximated by a certain sequence of independent binomial variables
conditioned on summing to 2m. A similar connection is provided between the random
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graph G .n; p/ and a slightly twisted sequence of independent binomial random vari-
ables. This makes a very convenient way of proving results about the degree sequence
of G .n; p/. Enumeration formulae for graphs by degree sequence have also led by other
routes to a large number of results in random graph theory, some of which we mention in
Section 1.2.

The study of the degree sequence of the random graph goes back to the early papers
of Erdős and Rényi [15, 16] and has since attracted the attention of many; see, e.g.,
[1,3,9,22,33,34]. For a historical overview, see for example Bollobás’ seminal book [10],
where the degree sequence is the first major topic. The distribution of the kth largest
element dk of the sequence, for example, was determined quite precisely when k is
small. The book [2] by Barbour, Holst and Janson contained much information on the
distribution of the number Dk of vertices of degree k. On the other hand, enumerating
graphs with given degree sequence has been the interest of various authors over many
years. Read [36] found a recursive formula for the number of 3-regular graphs from
which he also deduced a simple asymptotic formula. After this, formulae for the num-
ber of graphs with given degree sequence d D .d1; : : : ; dn/ were found by Bender and
Canfield [6] and Wormald [39, Theorem 3.3], and for ever-denser ranges of degrees by
Bollobás [8] and McKay [28], culminating in papers giving asymptotic formulae for a
range of degrees provided the average degree d is o.

p
n/ (by McKay and Wormald [31])

or between cn=log n and n=2 for a certain c (by McKay and Wormald [30], also treated
more recently by Barvinok and Hartigan [4] for a wider spread of degrees, but with sim-
ilar density). The complementary ranges of d larger than n=2 are automatically covered.
Also quite recently, Janson [19, 20] obtained formulae for some sparse degree sequences
with maximum degree ‚.

p
n/, and Gao and Wormald [17] for others having slightly

larger maximum degree. A case of special interest, which saw no advance since 1990,
is the problem of finding the asymptotic number of d -regular graphs for d in the range
c
p
n � d D o.n=logn/.
Approximate estimates of the numbers of graphs with given degrees have also been of

interest due to their relevance to statistics of real-world networks in areas such as ecology.
For instance, Blitzstein and Diaconis [7] used sequential importance sampling (SIS) both
to generate such graphs approximately uniformly, and to approximate their numbers. The
use of asymptotic formulae in aiding SIS is explained by Chen, Diaconis, Holmes and
Liu [13], who use it for sampling contingency tables with given row and column sums.
These are equivalent to bipartite graphs with given degrees.

In 1990, McKay and Wormald [30] restated the asymptotic formulae from the sparse
and dense cases in a common form, which they conjectured to be valid additionally for all
densities in between those two cases and hence for all densities except trivial extremely
sparse and dense ones. For a precise statement, see the Binomial Approximation Conjec-
ture (Conjecture 1.2) below. It applies to all the typical degree sequences in either model
of random graphs defined above.

In this paper, we prove the Binomial Approximation Conjecture. In particular, as a
very special case, this implies that the number of d -regular graphs on n vertices is asymp-
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totically equal to �
n�1
d

�n�.n
2/
m

��
n.n�1/
2m

� � e1=4
for all 1 � d � n � 2, where m D dn=2.

A weakened version of the Binomial Approximation Conjecture was given in 1997 by
McKay and Wormald [32] (see Conjecture 1.3) and shown to imply an explicit connection
between the degree sequence of a random graph of a given density and a sequence of inde-
pendent binomial variables. This work opened up a completely new approach to deriving
properties of the degree sequence of a random graph, by considering independent bino-
mials. It permits easy access to all the known properties, and a large number that were
previously inaccessible. Previously, precise results for order statistics were only known
for extreme degrees, but now even the distribution of the median degree can be closely
examined for those densities where the conjecture holds.

To present the connection between the degree sequence of G .n;m/ or G .n; p/, and a
sequence of independent binomials, let us first make some definitions. We assume that a
graph on n vertices has vertex set v1; : : : ; vn and degree sequence .d1; : : : ; dn/, so that
d.vi / D di . If G is any probability space of random graphs, let D.G / be the random
vector distributed as the degree sequence of a random graph G 2 G . Also define Bp.n/

to be the random sequence consisting of n independent binomial variables Bin.n� 1; p/.
Let An and Bn be two sequences of probability spaces with the same underlying set

for each n. Suppose that whenever a sequence of events Hn satisfies P.Hn/ D n�O.1/

in either model, it is true that PAn
.Hn/ � PBn

.Hn/, where by f .n/ � g.n/ we mean
that f .n/=g.n/! 1 as n! 1. We then say that An and Bn are asymptotically quite
equivalent (a.q.e.). Throughout this paper we use ! to be an arbitrary function of n such
that ! !1 as n!1, perhaps different at each occurrence. As we will see later, our
main result, combined with existing results, implies the following. Note for part (i) that
Bp.n/j†D2m is independent of p.

Proposition 1.1. Let n; m be integers and let 0 < p < 1. Let † denote the sum of the
components of the random vector Bp.n/ in (i) and B yp.n/ in (ii).

(i) D.G .n;m// and Bp.n/j†D2m are a.q.e. provided that min ¹m;
�
n
2

�
�mº D ! logn.

(ii) Let yp be randomly chosen according to the normal distribution with mean p and vari-
ance p.1� p/=n.n� 1/, truncated at 0 and 1. Then D.G .n; p// and B yp.n/j† is even

are a.q.e. provided that p.1 � p/ D !n�2 log3 n.

Note that the assumptions on p andmmerely ensure that the graph, or its complement,
has number of edges at least a small power of log n; if this fails, the degree sequence is
almost trivial and the graph is likely to be uninteresting, either a set of independent edges
or its complement.

Proposition 1.1 has significant implications. In particular, it was shown in [32] that a
result very similar to Proposition 1.1 (ii) can be used, for whatever range of p.n/ it is valid
for, to transfer general classes of properties to D.G .n;p// from the independent binomial
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model Bp.n/. We give details later in this section. It was also observed in [32], using the
known asymptotic formulae, that the Binomial Approximation Conjecture holds when
p D o.1=

p
n/ or p.1 � p/ > c= log n. However, the rather large gap, where p.1 � p/ is

between roughly 1=
p
n and 1=logn, was still open, as the appropriate enumeration results

were lacking. This gap has prevented the new approach being fully utilised. Part (i) of the
proposition is also appealing as a direct connection between independent binomials and
D.G .n; m//, but the event † D 2m is fairly “thin”, so some results would require more
finesse to be transferred.

In this article we introduce an approach to enumerating graphs by degree sequence that
differs significantly from what has previously been applied to this or any similar problems.
This new method is versatile enough to be applied to enumeration problems for other
discrete structures, as described in Section 8. For this reason, our theoretical results are
set in a framework slightly wider than is needed for the enumeration results derived in the
present paper. Our method has its origins in some aspects of the enumeration arguments
of McKay [28] and Stein [38]. Instead of trying to directly count quantities indexed by
some parameter, we obtain estimates of ratios of the quantities with adjacent indices, and
then use the ratios combined with our knowledge of the total over all indices to deduce
the desired estimates. This arises naturally in the exchangeable pairs approach of Stein
(see also [37]). Our estimates of ratios can be improved by iterating the basic relations
we derive, so the final estimates can be determined by fixed points of certain operators
defined using those relations.

1.1. Conjectures and results

In 1990 McKay and Wormald [30] unified the existing asymptotic formulae for the sparse
and the dense case into one form and conjectured this form to hold also for the gap in
the range of degrees, as long as the degree sequences are close to regular. Throughout
this paper we use the following notation. Given a sequence d D .d1; : : : ; dn/, let g.d/
denote the number of graphs whose degree sequence is d, let � D �.d/ D d=.n � 1/

where d D 1
n

Pn
iD1 di , and let 
2 D 
2.d/ D .n � 1/�2

Pn
iD1.di � d/

2. We refer to the
following as the Binomial Approximation Conjecture.

Conjecture 1.2 (McKay and Wormald [30]). For some absolute constant " > 0, if d D
d.n/ satisfies maxj jdj � d j D o.n" min ¹d; n� d � 1º1=2/, nmin ¹d; n� d � 1º ! 1,
and

P
i di is even, then

g.d/ �
p
2 exp

�
1

4
�


22
4�2.1 � �/2

�
.��.1 � �/1��/n.n�1/=2

Y�
n � 1

di

�
: (1.1)

Note. The permitted domain of d is compact for each n, so one can consider the “worst”
sequence d.n/ for each n, and arrive at an equivalent way of stating the result: there is a
function ı.n/! 0 such that the relative error in “�” is bounded above in absolute value
by ı.n/ for all d under consideration. This was the manner of stating Conjecture 1.3 below
in [32].
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Recall that Bp.n/ yields a random sequence consisting of n independent binomial
variables Bin.n � 1; p/. Let Bm D Bm.n/ denote Bp.n/ conditioned on the sum of the
sequence being 2m and note that for a given sequence d with

Pn
iD1 di D 2m we have

PBm
.d/ D

�
n.n � 1/

2m

��1 nY
iD1

�
n � 1

di

�
;

which is, we recall, independent of p. Multiplying by jG .n; m/j and using Stirling’s
approximation shows that the formula

PD.G .n;m//.d/ � PBm
.d/ exp

�
1

4
�


22
4�2.1 � �/2

�
(1.2)

is equivalent to the asymptotic formula in (1.1), as long as m and n.n � 1/ � 2m both
tend to infinity.

Proposition 1.1 can be shown to follow from a conjecture made in 1997, which we
present below, that is weaker than Conjecture 1.2. To state it, we define the model Ep to
be Bp.n/, conditioned on even sum, and then construct E 0p from Ep by weighting each d
with a weight depending only on 2m D

P
di , such that the value m has distribution

Bin.n.n � 1/=2; p/.

Definition. A probability p D p.n/ is acceptable if p.1� p/n2 D ! logn and there is a
set-valued function Rp.n/ of integer sequences of length n with even sum, such that both
of the following hold:

(i) For d 2 Rp.n/

PD.G .n;p//.d/ � PE0p
.d/ exp

�
1

4
�


22
4�2.1 � �/2

�
: (1.3)

(ii) In each of the models Ep and D.G .n; p//, we have P.Rp.n// � 1 � n�! .

The conjecture in [32] is as follows.

Conjecture 1.3 (McKay and Wormald [32]). If p.1 � p/n2 D ! log n then p.n/ is
acceptable.

The fact that the exponential factor in (1.3) is sharply concentrated near 1 was used
to prove [32, Theorem 2.6 (b)] (see Section 3 of that paper), which we do not state
here. The first part of [32, Theorem 2.6 (b)] gives bounds on the differences between
the expected values of random variables in D.G .n; p// and the model B yp.n/j† is even

of Proposition 1.1 (ii) for any acceptable p. The second part of that theorem similarly
bounds the difference between expectations in D.G .n; m// and Bm.n/, for any m such
that 2m=n.n � 1/ is acceptable. In particular, Conjecture 1.3 implies Proposition 1.1
via [32, Theorem 2.6 (b)] with Xn defined as the indicator of the event Hn that appears
in the definition of a.q.e. We omit further details of this, since for applications of our
main result, one can look at all the consequences of Conjecture 1.3 in [32], of which
Proposition 1.1 is just an example. In particular, further results in [32, Section 4] show
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that for many properties in G .n; p/, the conditioning on parity in Proposition 1.1 (ii) has
negligible effect, so one can consider purely independent binomials. Sometimes the integ-
ration required to deal with the distribution of yp also has negligible effect, and in any
case, [32, Theorems 3.7 and 3.8] give some general results on carrying out the integra-
tion. To our knowledge, there are so far no detailed applications of the consequence for
G .n;m/ given in Proposition 1.1 (i).

It was shown in [32, Theorem 2.5] that p is acceptable if either !.log n/=n2 �
p.1� p/D o.n�1=2/ or p.1� p/ � c=logn for some c > 2=3, using the known enumer-
ation results in the respective range. The essence of the proof of [32, Theorem 2.5] shows
that if (1.1) of Conjecture 1.2 holds for all d near some d0, then by known concentration
results, p D d0=.n� 1/ is acceptable. The same considerations prove that Conjecture 1.3
follows from Conjecture 1.2.

The main result of this paper verifies Conjecture 1.2, and hence Conjecture 1.3 and
Proposition 1.1, in the remaining gap range.

Theorem 1.4. Let �0 > 0 be a sufficiently small constant, and let 1=2 < ˛ < 3=5. Let
n and m be integers, and assume that d D 2m=n satisfies .log n/! � d � �0n: Let D

be the set of sequences d of length n satisfying
P
i di D 2m and jdi � d j � d˛ for all

i 2 Œn�. Then uniformly for all d 2D we have

PD.G .n;m//.d/ D PBm
.d/ exp

�
1

4
�


22
4�2.1 � �/2

��
1CO

�
.logn/2
p
n
C d5˛�3

��
;

where � D �.d/ D d=.n � 1/ and 
2 D 
2.d/:

Corollary 1.5. Conjectures 1.2 and 1.3 and Proposition 1.1 are all true.

In Section 6 we provide a hand-checkable proof of Theorem 1.4 under the restriction
that max jdi � d j D O.

p
d logn/ and

P
i .di � d/

2 � 2dn (see Theorem 6.3). As a
corollary of this and known results, we obtain Conjecture 1.3. Extending the expansions
of functions involved to more terms using computer algebra lets us obtain a proof of
Conjecture 1.2.

Our method is markedly different from those previously used for this problem, the
most successful of which used either the “configuration model” with “switchings”, or
the estimation of integrals representing coefficients of appropriate generating functions.
Instead, we derive a set of three equations relating the numbers of graphs with almost the
same degree sequence, and the probability that they contain a given edge or a given pair
of incident edges. The equations are derived by examining the operation of moving one
end of an edge from one vertex to another, and the operation of deleting an edge. These
equations are analysed from the perspective of fixed points of a contraction mapping.

Note that if we build up a random graph by inserting m edges using the method of
choosing each endpoint of each edge independently at random, the resulting multigraph
has exactly the multinomial degree distribution, that is, Bm.n/ (see for example Cain and
Wormald [12]). The only difficulty is that the result can contain loops and multiple edges.
For Proposition 1.1, one would need to show that conditioning on the absence of loops
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and multiple edges does not significantly affect the degree distribution. This is difficult
since the probability of no loop or multiple edges occurring is extremely small even for
moderate densities. We believe that our approach to this enumeration problem gives an
intuitive explanation of why the distribution of degrees in a random graph is so close to
the binomial model, since it shows directly that the distribution of graph counts behaves
“locally” in the appropriate way. Such an explanation is absent from the main methods
used previously, in [30, 31].

As a by-product of our proof, we obtain asymptotic formulae for the edge probabilities
in a random graph with a given degree sequence. For a sequence d of length n, let G .d/
be a graph chosen uniformly at random from all graphs that have degree sequence d, and
let Pab.d/ be the probability that the edge vavb is present in G .d/.

Theorem 1.6. Let D be as in Theorem 1.4 and let a; b 2 Œn�, a ¤ b. Then for all d 2D,

Pab.d/ D
dadb

d.n � 1/

�
1 �

.da � d/.db � d/

d.n � 1 � d/

�
CO

�p
d logn
n2

C
.
p
d logn/3

n3

�
:

We also give a more accurate but more complicated formula for Pab.d/ in Lem-
ma 7.1 (ii), and an approximation for sparser degree sequences in (4.4). Our results also
provide formulae for the probability that a given path of length 2 occurs in the same
graphs.

In Section 2 we provide the notation we use in this paper and some preliminary res-
ults. In Section 3 we derive certain recursive formulae that are the core of our method. In
Section 4 we re-prove enumeration results for the sparse case to illustrate how the recurs-
ive formulae from Section 3 are to be used to obtain explicit formulae. We also take this
opportunity to provide a general template on how our proofs in the later parts are struc-
tured. In Section 5 the recursive formulae are turned into operators. Section 6 contains the
proof of Theorem 1.4 under stricter assumptions on the degree spreads, and gives the proof
of Conjecture 1.3, all using easily hand-checkable calculations. As explained above, this
is enough to deduce our first major goal, Proposition 1.1. In Section 7 we provide the full
proof for Theorem 1.4. We finish the paper with some concluding remarks in Section 8,
and the Appendix gives details of some routine calculations.

1.2. Further comments

Studying the degree sequence of a random graph is not the only significant potential use
of enumeration formulae for graphs with given degrees. A large number of properties of
random regular graphs have been shown using them, in particular, results on subgraphs of
random regular graphs or random graphs with given degrees. (McKay [29] refers to many
examples.) The asymptotic distribution of the number of edges in the giant component of
the random graph, and the size of its 2-core, were first obtained by Pittel and Wormald [35]
with heavy use of these formulae. Additionally, Kim and Vu [23, (3.1)] heavily used the
asymptotic formula for the number of d -regular graphs, in the known range, to give strong
relations between random graphs and random regular graphs. The lack of a formula in the
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denser case restricted their work to the sparse case. The results in the present paper could
have helped here, and would presumably have simplified the extension of Kim and Vu’s
work to denser cases, given recently by Dudek, Frieze, Ruciński and Šileikis [14].

Various results on random d -regular graphs [5, 25] use the configuration model and
a sophisticated analysis of switchings, which are methods developed for asymptotic enu-
meration of graphs by degree sequence when the degrees are relatively small. The meth-
ods from this paper may well have similar applications, even in cases where the enumer-
ation formulae themselves do not apply.

We note that Isaev and McKay [18] have given a major further development of the
methods in [4, 30] to obtain further results useful in the case of very dense graphs. They
have also (unpublished) announced progress in pushing this method towards sparser cases.
Also after our project was under way, Burstein and Rubin [11] presented an idea of com-
paring numbers of graphs with given degree sequences that is somewhat related to the
techniques in the present paper, but differs in several significant ways. Their approach
would give a formula that is valid up to maximum degree n1�ı for any fixed ı > 0, using
a finite amount of computation. However, their general result is not explicit enough to
enable the derivation of results as simple as formula (1.1). In particular, we are not aware
of any claims of extending the range of validity of the Binomial Approximation Conjec-
ture, apart from the present paper.

2. Preliminaries and notation

For the reader’s convenience, we solidify some notation here. Our graphs are simple, that
is, they have no loops or multiple edges. We write a� b to mean that a=b! 1, f DO.g/
if jf j �Cg for some constant C , and f D o.g/ if f=g! 0. We use ! to mean a function
going to infinity, possibly different in all instances. We use 1˙ � to denote a quantity in
the interval Œ1� �;1C ��. Also

�
Œn�
2

�
denotes the set of 2-subsets of the set Œn�D¹1; : : : ;nº.

We often consider a vector dD .d1; : : : ; dn/, and use� or�.d/ to denote maxi di , in line
with the notation for maximum degree of a graph. Recall also from the introduction that
g.d/ denotes the number of graphs whose degree sequence is d, � D �.d/ D d=.n � 1/
where d D d.d/ D 1

n

Pn
iD1 di , and 
2 D .n � 1/�2

Pn
iD1.di � d/

2. We write M1 D

M1.d/ D
Pn
iD1 di . If d is the degree sequence of a graph, this is the total degree, or

twice the number of edges. Parity is an important issue, so we say a vector d is even if
M1.d/ is even, and odd otherwise. Finally, in this paper multiplication by juxtaposition
has precedence over “=”, so for example j=�n2 D j=.�n2/.

We first state a simple result by which we leverage an enumeration result from com-
parisons of related numbers.

Lemma 2.1. Let � and � 0 be probability spaces with the same underlying set�. LetG be
a graph with vertex set W � � such that P� .v/;P� 0.v/ > 0 for all v 2W. Suppose that
"0; ı > 0 are such that min ¹P� .W/; P� 0.W/º > 1 � "0 > 1=2, and such that for every
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edge uv of G,
P� 0.u/

P� 0.v/
D eO.ı/

P� .u/

P� .v/
;

where the constant implicit in O.�/ is absolute. Let r be an upper bound on the diameter
of G and assume r <1. Then for each v 2W we have

P� 0.v/ D e
O.rıC"0/P� .v/;

with again a bound uniform for all v.

Proof. For any u, v 2W we may take a telescoping product of ratios along a path joining
u to v of length at most r . This gives P� 0.u/=P� 0.v/ D eO.rı/P� .u/=P� .v/. Summing
over all u 2W gives

P� 0.W/

P� 0.v/
D
eO.rı/P� .W/

P� .v/
;

and the claim follows using the lower bound 1 � "0 on P� .W/ and P� 0.W/.

Using the lemma calls for evaluating the ratios of probabilities in an “ideal” prob-
ability space, the one by which we are approximating the “true” space. This leads to
computing ratios in the conjectured formulae. One we need several times is the following.
Let H.d/ denote the conjectured formula in the right hand side of (1.2), apart from the
error term, that is,

H.d/ D PBm
.d/ exp

�
1

4
�


22
4�2.1 � �/2

�
:

We use ea to denote the elementary unit vector with 1 in its ath coordinate. Noting that
� D d=.n� 1/ where d DM1=n (a function of the degree sequence) has the same value
for both cases d� ea and d� eb , and recalling 
2 D 
2.d/D .n� 1/�2

P
i .di � d/

2, we
have (for all odd d with � D max di � n=2 and � > 0)

H.d � ea/
H.d � eb/

D
da.n � db/

db.n � da/
exp

�
.da � db/.
2 CO.�=n

2//

.n � 1/2.�0/2.1 � �0/2

�
D
da.n � db/

db.n � da/
exp

�
.da � db/
2

d2.1 � �0/2
CO.�2=.dn/2/

�
; (2.1)

where �0 D �.d � ea/ D �.d � eb/, and of course 
2, d , and � are defined with respect
to d.

Next we turn to some issues involving existence of graphs with a given degree
sequence. For counting purposes we will be considering graphs with vertex set V D Œn�.
Let A D A.n/ �

�
Œn�
2

�
be a set which we call allowable pairs. Note that as usual we

regard the edge joining vertices u and v as the unordered pair ¹u; vº, and denote this
edge by uv following standard graph-theoretic notation. A sequence d WD .d1; : : : ; dn/

is called A-realisable if there is a graph G on vertex set V such that vertex a 2 V has
degree da and all edges ofG are allowable pairs. In this case, we sayG realises d over A.
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In standard terminology, if d is
�
V
2

�
-realisable, it is graphical. Let GA.d/ be the set of all

graphs that realise d over A. In this paper, we are particularly interested in the case that
A D Agr D

�
V
2

�
. Then GA.d/ is the set of all graphs G on vertex set Œn� that have degree

sequence d. By using different definitions of A, it is also possible to model other enumer-
ation problems. Throughout this paper, all graphs are finite and simple (i.e. have no loops
or multiple edges).

Let E � A, i.e. a subset of the allowable edges. We write NE .d/ and N �E .d/ for the
number of graphs G 2 GA.d/ that contain, or do not contain, the edge set E, respectively.
We abbreviate NE .d/ to Nab.d/ if E D ¹abº (i.e. contains the single edge ab), and put
N .d/ D jGA.d/j. (When N and similar notation is used, the set A should be clear by
context.)

We pause for a notational comment. In this paper, a subscript ab is always interpreted
as an ordered pair .a; b/ rather than an edge (and similar for triples). This is irrelevant for
Nab.d/ D Nba.d/ since the two ordered pairs signify the same edge, but the distinction
is important with other notation.

Let

PE .d/ D
NE .d/
N .d/

;

which is the probability that the edges in E are present in a graph G that is drawn uni-
formly at random from GA.d/. Of particular interest are the probability of a single edge
av and a path avb, for which we simplify the notation to

Pav.d/ D P¹avº.d/; Yavb.d/ D P¹av;bvº.d/;

where a, b and v are all distinct. We will use the following trick several times to switch
between degree sequences of differing total degree.

Lemma 2.2. Let av 2 A and let d be a sequence of length N . Then

Nav.d/ D N .d � ea � ev/ �Nav.d � ea � ev/

D

´
N .d � ea � ev/.1 � Pav.d � ea � ev// if N .d � ea � ev/ ¤ 0;
0 otherwise.

Proof. Removing an edge av from a graph in GA.d/ shows that the number of graphs
with that edge is the same as the number of graphs in GA.d � ea � ev/ and no edge
between a and v. (The general form does not apply when N .d � ea � ev/ D 0 only
because Pav.d � ea � ev/ is then technically undefined.)

For vertices a; b 2 V , if d is a sequence such that d � eb is A-realisable, we define

Rab.d/ D
N .d � ea/
N .d � eb/

:

With A understood we write �D �.d/D 1
2
M1=jAj, which is the relative edge density of

an A-realisable graph with degree sequence d. When A is undefined, as in the introduc-
tion, then the default assumption is that A D

�
Œn�
2

�
(so that this definition of � extends the
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one given in the introduction). Finally, for a vertex a 2V , we set A.a/D¹v 2V W av 2Aº,
the “projection” of A onto the edges incident with vertex a, and, with d understood, we
use A�.a/ for the set of v 2 A.a/ such that Nav.d/ > 0.

We can bound the probability of an edge in a simple way using the following switching
argument.

Lemma 2.3. Let d be a graphical sequence of length n with
P
di D dn such that � D

�.d/ satisfies 2�.�C 1/ < dn: Then for any a and v in Œn� we have

Pav.d/ �
�2

dn.1 ��.�C 2/=dn/
:

Proof. For each graph G with degree sequence d and an edge joining a and v, we can
perform a switching (of the type used previously in graphical enumeration) by removing
both av and another randomly chosen edge a0v0, and inserting the edges aa0 and vv0,
provided that no loops or multiple edges are so formed. The number of such switchings
that can be applied to G with the vertices of each edge ordered is at least

dn � 2.�C 1/�

since there are dn ways to choose a0 and v0 as the ordered ends of any edge, whereas the
number of such choices that are ineligible is at most the number of choices with a0 being
a or a neighbour of a (which automatically rules out a0 D v), or similarly for v0. On the
other hand, for each graph G0 in which av is not an edge, the number of ways that it is
created by performing such a switching backwards is at most �2. Counting the set of all
possible switchings over all such graphs G and G0 two different ways shows that the ratio
of the number of graphs with av to the number without av is at most

ˇ WD
�2

dn � 2�.�C 1/
:

Hence Pav.d/ � ˇ=.1C ˇ/, and the lemma follows.

We finish the section with some simple sufficient conditions for a sequence to be
graphical. We need this since our degree switching arguments require that N .d0/ > 0 for
several sequences d0 that are related to a root sequence d.

Lemma 2.4. For " > 0, the following holds for n sufficiently large. Let di � 0 be integers
for all 1 � i � n, with

P
1�i�n di even. Then there exists a graph with degrees d1; : : : ; dn

provided that either of the following hold:

(a) There exists 0 < � < 1 � " with max j� � di=nj < "�.

(b) We have 1 � di � 2
p
n � 2 for 1 � i � n.

Proof. Koren [24, Section 1] observed that the classical Erdős–Gallai conditions for the
existence of a graph with degrees d1; : : : ; dn are equivalent to the following:

P
di is even,
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and whenever S \ T D ; ¤ S [ T � Œn� we haveX
i2S

di �
X
j2T

dj � s.n � 1 � t /;

where s D jS j and t D jT j.
For (a), it suffices to have

s.n � 1 � t / � s�n.1C "/C t�n.1 � "/ � 0:

We only need to check the extreme values of t , i.e. t D 0 and t D n � s. In both cases,
the function is easily seen to be non-negative for all appropriate s and n sufficiently large,
noting that � � 1 � ".

For (b), we only need s� � t � s.n � 1 � t / (recall that 1 � di � �). Again taking
the extreme values of t , only the larger one gives a restriction, being s.�C 2 � s/ � n,
which is satisfied because � � 2

p
n � 2.

3. Recursive relations

In this section, we derive certain recursive formulae for the probability and ratio functions
Pav.d/ andRab.d/. These identities will serve as a motivation for operators that we define
in the next section. With a view to further applications of this work elsewhere, we consider
an arbitrary set A of allowable pairs.

Our first result expresses the edge probability Pav , the ratio Rab , and the path prob-
ability Yivj in terms of each other.

Proposition 3.1. Let d be a sequence of length n and let A �
�
Œn�
2

�
.

(a) Let a; v 2 V . If Nav.d/ > 0 then

Pav.d/ D dv
� X
b2A�.v/

Rba.d � ev/
1 � Pbv.d � eb � ev/
1 � Pav.d � ea � ev/

��1
:

(b) Let a; b 2 V . If d � ea and d � eb are A-realisable then

Rab.d/ D
da

db
�
1 � B.a; b;d � eb/
1 � B.b; a;d � ea/

; (3.1)

where

B.i; j;d0/ D
1

di

� X
v2A.i/nA.j /

Piv.d0/C
X

v2A.i/\A.j /

Yivj .d0/
�

(3.2)

provided that B.b; a;d � ea/ ¤ 1.

(c) Let a; v; b be distinct elements of V . If d � ea � ev is A-realisable then

Yavb.d/ D
Pav.d/.Pbv.d � ea � ev/ � Yavb.d � ea � ev//

1 � Pav.d � ea � ev/
:
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Remarks. (1) In (a), the summation over all b in A�.v/, instead of A.v/, is merely for
the technicality that Pbv.d � eb � ev/ is otherwise undefined.

(2) The condition Nav > 0 in part (a) does not reduce the practical usefulness of the
proposition since the degree sequences where this condition fails for allowable edges av
with da; dv > 0 are pathological enough that our method fails on those for other reasons.

(3) For the range of the summations in B.i; j; d0/, when A D
�
Œn�
2

�
(as in the applica-

tions in this paper) we have A.i/ nA.j / D ¹j º and A.i/ \A.j / D Œn� n ¹i; j º.

Proof of Proposition 3.1. To prove part (a) of the proposition, let d be an A-realisable
sequence. Then every graph G 2 GA.d/ contributes exactly dv to

P
b2A�.v/ Nbv.d/:

Hence, since Nav.d/ > 0 we may write

dv D
X

b2A�.v/

Nbv.d/
N .d/

D Pav.d/
X

b2A�.v/

Nbv.d/
Nav.d/

D Pav.d/
X

b2A�.v/

N .d � eb � ev/.1 � Pbv.d � eb � ev//
N .d � ea � ev/.1 � Pav.d � ea � ev//

;

by Observation 2.2, noting that N .d � eb � ev/ � Nbv.d/ > 0 by defnition of A�.v/.
Part (a) follows since by definition

N .d � eb � ev/
N .d � ea � ev/

D Rba.d � ev/;

and also noting that the summation is non-zero because a 2 A�.v/.
To prove part (b), assume that d � eb is A-realisable. First note that if a D b then by

definition Rab.d/ D 1 and so the formula is correct. We can therefore assume henceforth
that a ¤ b. Let J1 be the set of graphs in GA.d � eb/ with a distinguished edge incident
to a, and J2 the set of graphs in GA.d� ea/ with a distinguished edge incident to b. Then
jJ1j D daN .d � eb/ and jJ2j D dbN .d � ea/. Applying a degree switching to G 2 J1
consists in deleting the distinguished edge av and adding a new distinguished edge bv, to
produce a graph G0 2 J2. The degree switching cannot be performed, i.e. is not valid, if
bv …A, which includes the case that vD b, or bv is an edge ofG. Now letG 2GA.d� eb/
be picked uniformly at random and let v be a random neighbour of a in G. Let E be the
eventEA [ED whereEA is the event that bv 62A andED is the event that bv is an edge
of G, and define B.a; b; d � eb/ D P.E/ (which we show further below to satisfy (3.2)).
Then the number of valid degree switchings is

daN .d � eb/.1 � B.a; b;d � eb//:

We may count the same switchings from the other direction, i.e. starting with an element
of J2, using the same argument, and in this case N .d � ea/ D 0 is permissible. Equating
the two counts gives

N .d � ea/
N .d � eb/

D
da

db
�
1 � B.a; b;d � eb/
1 � B.b; a;d � ea/

;
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where the denominator is non-zero by the hypotheses of (b), noting that db > 0 because
d � eb is A-realisable. This gives (3.1).

The event ED can only happen if the vertex v is a neighbour both of a and of b, and
hence (as we still assume a ¤ b)

P.ED/ D
1

da

X
v2A.a/\A.b/

Yavb.d � eb/:

On the other hand, the vertex v is always a neighbour of a in a graphG 2 GA.d/, and thus

P.EA/ D P.¹v … A.b/º/ D P.¹v 2 A.a/ nA.b/º/ D
1

da

X
v2A.a/nA.b/

Pav.d � eb/:

Noting that EA \ ED D ;, so P.E/ D P.EA/C P.ED/, we obtain the stated formula
for B.a; b;d � eb/. For B.b; a;d � ea/ we can just swap a and b.

For (c), the assumptions imply that Nav.d/ > 0, and hence by definition,

Yavb.d/ D
N¹av;bvº.d/

N .d/
D Pav.d/ �

N¹av;bvº.d/
Nav.d/

: (3.3)

Now Lemma 2.2 says that

Nav.d/ D N .d � ea � ev/ �Nav.d � ea � ev/
D N .d � ea � ev/.1 � Pav.d � ea � ev//

and similarly (cf. the proof of Lemma 2.2) we have

N¹av;bvº.d/ D Nbv.d � ea � ev/ �N¹av;bvº.d � ea � ev/
D N .d � ea � ev/

�
Pbv.d � ea � ev/ � Pabv.d � ea � ev/

�
:

Part (c) follows upon substituting these expressions into (3.3).

4. The general method and the sparse case for graphs

In this section we present a simple application of the recursive relations found in Section 3.
This is a completely new derivation of a known formula for the number of sparse graphs
with a given degree sequence. We first give a template of the method, since it is used again
in the other proofs in this paper and can be used elsewhere.

Template of the method

Step 1. Obtain an estimate of the ratio between the numbers of graphs of related degree
sequences, using Proposition 3.1. This step is the crux of the whole argument.

Step 2. By making suitable definitions, we cause this ratio to appear as the expression
P� 0.u/=P� 0.v/ for some probability space � 0 on an underlying set � in an application of
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Lemma 2.1. Thus, � is the set of degree sequences, with probabilities in � 0 determined
by the random graph under consideration, and the graph G in the lemma has a suitable
vertex set W of such sequences. Each edge of G is in general a pair of degree sequences
d � ea and d � eb of the form occurring in the definition of Rab.d/. Having defined G,
we may call any two such degree sequences adjacent.

Step 3. Another probability space � is defined on �, by taking a probability space B

directly from a joint binomial distribution, together with a function zH.d/ that varies quite
slowly, and defining probabilities in � by the equation P� .d/ D PB.d/ zH.d/=EB

zH .

Step 4. Using sharp concentration results, show that P.W/� 1 in both of the probability
spaces � and � 0 (where, by�, we mean approximately equal to, with some specific error
bound in each case). As part of this, we show that EB

zH � 1. At this point, we may
specify "0 for the application of Lemma 2.1.

Step 5. Apply Lemma 2.1 and the conclusions of the previous steps to deduce P� 0.d/ �
P� .d/ � PB.d/ zH.d/. Upon estimating the errors in the approximations, which includes
bounding the diameter of the graph G, we obtain an estimate for the probability P� 0.d/
of the random graph having degree sequence d in terms of a known quantity.

Recall that given a sequence d we write �.d/ D maxi di , M1.d/ D
P
i di , d D

d.d/ D M1=n, and � D �.d/ D d=.n � 1/. Note that in the following result the con-
dition �.d/6 C n" D o.nd2/ implies in particular that m=

p
n!1. This restriction is

imposed just for simplicity; the technique can still apply in the (less interesting) extremely
sparse case. Also recall the probability spaces of random sequences, G .n;m/ and Bm.n/,
from Section 1.

Theorem 4.1. Let " > 0, and let n and m be integers. Let D be any set of sequences of
length n with

P
i di D 2m for all d 2 D such that �.d/6 C n" D o.nd2/ uniformly for

all d 2D. Then uniformly for d� 2D we have

PG .n;m/.d�/ D PBm
.d�/ exp

�
1

4
�


22
4�2.1 � �/2

��
1CO

�
�.d�/6 C n"

nd2
C n"�1=2

��
:

Proof. We can clearly assume that D is non-empty and we fix d� 2 D. We first estim-
ate ratios of probabilities for adjacent sequences that are typical in the binomial model
Bm, and sequences close to d� 2 D (as per Step 1 in the template above). We make the
following definitions. Let

�1 D 2�.d�/C n"=6

and define DC to be the set of all sequences d 2 Zn�0 with�.d/ � �1 andM1.d/D 2m.
For an integer r � 0, denote by Q0

r (or Q1
r ) the set of all even (or odd, respectively)

sequences in Zn�0 that have L1 distance at most r from some sequence in DC. (Recall
that we defined the parity of d to be the parity of M1.d/.) We will estimate the ratio
of the probabilities of adjacent degree sequences in the random graph model using the
following. Define Rab as in Section 2 with A D

�
V
2

�
.
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Claim 4.2. Uniformly for all sequences d 2 Q1
1 and for all a; b 2 Œn�,

Rab.d/ D
da

db

�
1C

.da � db/.M1 CM2/

M 2
1

��
1CO

�
�61
d3n2

��
; (4.1)

where M1 DM1.d/ and M2 DM2.d/ D
P
v2Œn� dv.dv � 1/.

Proof. First, let d 2 DC, and let n1 be the number of non-zero coordinates in d. By
summing vertex degrees we find dn D M1.d/ � n1�.d/. By assumption we therefore
have

�.d/ � �1 � d1=3n1=6 D
.dn/1=3

n1=6
�
.�.d/n1/1=3

n1=6
; (4.2)

which readily implies that �.d/ D o.n1=21 =n1=4/. Lemma 2.4 (b) applied to the sequence
formed by the non-zero coordinates of d now implies that N .d/ > 0 for n sufficiently
large. We can deduce the same conclusion for all d 2 Q0

8, since �.d/ and n1.d/ can
only change by bounded factors when moving from such d to the closest member of DC.
Similarly, M1.d/ D

P
di D dnC O.1/ for all d 2 Q0

8. It is now clear by Lemma 2.3
and (4.2) that

Pav.d/ D O.�21=dn/ D o.1/ for all d 2 Q0
8 and all a ¤ v: (4.3)

Next consider any distinct a; v; b 2 Œn� and d 2 Q0
6, with da > 0 and dv > 0. Then d �

ea � ev 2 Q0
8 and hence N .d � ea � ev/ > 0 from above, and also Pav.d � ea � ev/ D

O.�21=dn/ < 1 using (4.3). Thus, for n sufficiently large, Nav.d/ > 0 by Lemma 2.2,
and we have Nav.d/ < N .d/ since Pav.d/ < 1 for similar reasons. This establishes the
hypotheses for Nav.d/ and N .d/ in Proposition 3.1 whenever they are needed below.

It now follows that Yavb.d/ D O.�41=d
2n2/ for d 2 Q0

6; if da or dv is 0 then this is
immediate, and otherwise it follows from Proposition 3.1 (c) in view of (4.3), and noting
that the numerator is non-negative by definition. Next, definition (3.2) yields B.a; b;d/D
O.�41=d

2n/ for all distinct a; b 2 Œn� and all d 2 Q0
6 with da > 0. (In the current setting

A.i/ n A.j /j D ¹j º when i ¤ j , and d � �1.) Consequently, (3.1) gives Rab.d/ D
.da=db/.1C O.�

4
1=d

2n// for all d 2 Q1
5 and all distinct a; b such that da; db > 0. If

now d 2Q0
4 and dv > 0, we have Nbv.d/ > 0 as noted above. Therefore

P
b2A�.v/ db D

M1.d/ � dv for such d. Thus, Proposition 3.1 (a) gives

Pav.d/ D
dadv

M1.d/

�
1CO

�
�41
d2n

��
(4.4)

for all d 2 Q0
4 and a ¤ v. (If da and dv are both non-zero, the proposition applies as

mentioned above, and if either is 0, the claim holds trivially.) Using a similar argument,
Proposition 3.1 (c) gives

Yavb.d/ D
daŒdv�2db

M1.d/2

�
1CO

�
�41
d2n

��
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for all d 2 Q0
2 and all distinct a; v; b 2 Œn�. Applying these results to the definition (3.2)

of B for d 2 Q0
2 and distinct a; b 2 Œn�, and recalling that d � �.d/C 2, now gives the

sharper estimate

B.a; b;d/ D
�

db

M1.d/
C
dbM2.d/
M1.d/2

��
1CO

�
�41
d2n

��
;

which we note is O.�21=dn/ as M2.d/ � M1.d/�1: Thus, for all d 2 Q1
1 and all a; b,

and noting that M1 and M2 change by a negligible additive term O.�1/ under bounded
perturbations of the elements of the sequence d,

Rab.d/ D
da

db
�
1 � .db � 1/=M1 � .db � 1/M2=M

2
1

1 � .da � 1/=M1 � .da � 1/M2=M
2
1

�
1CO

�
�61
d3n2

��
; (4.5)

which implies the claim.

We next make the definitions of probability spaces necessary to apply Lemma 2.1
(see Steps 2 and 3 in the template). Let � be the underlying set of Bm.n/, W DDC and
� 0 D D.G .n;m//. Let H.d/ D PBm

.d/ zH.d/, where

zH.d/ D exp
�
1

4
�


22
4�2.1 � �/2

�
;

and define the probability function in � by

P� .d/ D H.d/=
X
d02�

H.d0/ D
H.d/

EBm
zH
: (4.6)

Let G be the graph with vertex set W and with two vertices (sequences) adjacent if they
are of the form d � ea, d � eb for some a; b 2 Œn� and odd d.

We need to estimate the probability of W in the two probability spaces (see Step 4
in the template). In G .n; m/ each vertex degree is distributed hypergeometrically with
expected value d D 2m=n. Also note that, letting �� D �.d�/, we have by definition
�1 � �

� C n"=12
p
�� � d C n"=12

p
��. Thus, for d 2 �,

P� 0.di > �1/ � P� 0
�
di > d C n

"=12
p
��
�
D o.n�!/

by [21, Theorems 2.10 and 2.1] for example (and noting �� !1). The union bound,
applied to each i , now gives P� 0.W/ D 1 � o.n�!/.

For similar reasons PBm
.W/D 1� o.n�!/. To deal with the exponential factor zH.d/,

we claim that if d is chosen according to Bm.n/ then 
2.d/ D �.1 � �/.1CO.�// with
probability 1 � o.n�!/, where � D O.n"�1=2/. Indeed, this follows from the forthcom-
ing Lemma 6.2 (ii) in which we may take ˛ D .1 C 1=

p
d/.log n/2=

p
n and note that

.logn/3 D o.dn/ is implied bym=
p
n!1. Thus, for such d 2 Bm.n/, the exponential

factor zH.d/ is 1CO.�/ with probability 1 � o.n�!/, and it is always at most e1=4. We
deduce that EBm

zH D 1CO.�/, and additionally P� .W/ D 1 � o.n�!/. Thus, we may
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set "0 D O.1=n/ in Lemma 2.1 (with apologies to the function n�! , ending its life in this
proof dominated by 1=n).

To apply Lemma 2.1 (see Step 5 in the template above), the final condition we need
to show is that the ratios of probabilities satisfy

P� 0.d � ea/
P� 0.d � eb/

D eO.ı/
P� .d � ea/
P� .d � eb/

(4.7)

whenever d� ea and d� eb are elements of DC, for a particular ı D ı.�1/ independent
of d and specified below, where the constant implicit in O./ is independent of d and d�.

To evaluate the right hand side of (4.7) we observe that

P� .d � ea/
P� .d � eb/

D
H.d � ea/
H.d � eb/

D
da.n � db/

db.n � da/
exp

�
.da � db/
2

d2.1 � �0/2
CO

�
�2

.dn/2

��
(4.8)

for all d 2 Q1
1 by (2.1), where d , 
2 and � are defined with respect to d, and �0 D

�.d� ea/. Note that �0 D d.1CO.1=nd//=.n� 1/ and d ��C 1, since d 2Q1
1. Thus,

we also have 
2 D .M2 CM1 � dM1/=.n � 1/
2 D O.d�=n/. Hence, the argument of

the exponential factor in (4.8) is

.da � db/
2

d2
CO.�2=n2/ D

.da � db/.M2 CM1 � dM1/

M 2
1

CO.�2=n2/:

Combining this with (4.8) and Claim 4.2 it follows that for all d 2 Q1
1,

Rab.d/ D
H.d � ea/
H.d � eb/

�
1CO

�
�61
d3n2

��
; (4.9)

where we use .n� db/=.n� da/D exp..da � db/=nCO.�2=n2//,M2 DO.�M1/ and
�4=M 2

1 ��
6=d3n2,���1, and the most significant error term derives from Claim 4.2.

Equation (4.9) now implies that

P� 0.d � ea/
P� 0.d � eb/

D Rab.d/ D eO.ı/
P� .d � ea/
P� .d � eb/

whenever d� ea and d� eb are elements of WDDC, where we may take ıD�61=d
3n2:

It is clear that the diameter of G is at most r WD m D nd=2. Lemma 2.1 then implies
that P� 0.d/ D eO.rıC"0/P� .d/ for d 2 DC. To proceed from here, since we found that
EBm

zH D 1 C O.�/, equation (4.6) implies P� .d/ D H.d/.1 C O.�// for d 2 DC.
Hence,

P� 0.d�/ D eO.rıC"0C�/H.d�/: (4.10)

Note that � D O.n"�1=2/, and rı C "0 D O.�61=d
2n/ D O..�.d�/6 C n"/=d2n/. The

theorem follows since � 0 D D.G .n;m//.

The result in Conjecture 1.2 or (1.2) follows from this in the sparse case, with different
error terms, as long as d is appreciably above 1=

p
n. For smaller d , the analysis could

be adjusted to obtain results, but the random graph is quite uninteresting here, typically
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having most vertices of degree 0, and the rest of degree 1 except for perhaps a few vertices
of degree 2.

We note that the above result applies in the case of d -regular graphs only for d D
o.n1=4/, far short of o.

p
n/ as reached in [31]. It is also quite straightforward to reach

past
p
n using our method, by carrying the calculations a little further, iterating several

more the recursive equations that are only used twice in the proof above. In fact, this is
how we first obtained the formulae for P and R in later sections. Having derived those
“limiting” formulae, our proofs can completely avoid considering the iterated versions of
the formulae, as shown in the next section.

5. Function operators and fixed points

In the previous section we used two iterations of the recursive equations from Proposi-
tion 3.1, each time applying them to all degree sequences at a certain distance from a root
sequence d. This allowed us to determine the ratio N .d � ea/=N .d � eb/ up to negli-
gible error terms. For denser graphs we would need an unbounded number of iterations
to obtain the desired precision of about O.1=n

p
d/ since the improvement is O.�=n/

each time. Instead of doing this, we define operators based on the recursive identities from
Proposition 3.1 and study their behaviour on input functions that are close to the desired
functions.

Let Zn�0 denote the set of non-negative integer sequences of length n. For a given

integer n and a set A �
�
Œn�
2

�
we define EA to be the set of ordered pairs .u; v/ with

¹u; vº 2 A. Ordered pairs are needed here because, although the functions of interest
are symmetric in the sense that the probability of an edge uv is the same as vu, our
approximations to the probability do not obey this symmetry. Similarly, let EA2 denote the
set of ordered triples .u; v; w/ with u, v and w all distinct and ¹u; vº; ¹v;wº 2 A.

Suppose that we are given p W EA � Zn�0 ! R�0, y W EA2 � Zn�0 ! R�0 and r W
Œn�2 � Zn�0 ! R�0. We write pav.d/ for p.a; v; d/ (where d 2 Zn�0), and remind the
reader that in this paper, a subscript av always denotes an ordered pair rather than an
edge. Similarly, we write yavb.d/ for y.a; v; b;d/ and rab.d/ for r.a; b;d/. We also define
an associated function bad.p; y/ as follows. For d 2 Zn�0 and a; b 2 Œn� with a ¤ b, set
bad.p; y/.a; a;d/ D 0 and

bad.p; y/.a; b;d/ D
1

da

� X
v2A.a/nA.b/

pav.d/C
X

v2A.a/\A.b/

yavb.d/
�
: (5.1)

We define operators P .p; r/, Y.p; y/ and R.p; y/, acting on p, y and r as above, as
follows. For d 2 Zn�0 and a; v; b 2 Œn�, we set

P .p; r/.a; v;d/ D dv
� X
b2A.v/

rba.d � ev/
1 � pbv.d � eb � ev/
1 � pav.d � ea � ev/

��1
for .a; v/ 2 EA;

(5.2)
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Y.p; y/.a; v; b; d/ D
pav.d/ � .pbv.d � ea � ev/ � yavb.d � ea � ev//

1 � pav.d � ea � ev/

for .a; v; b/ 2 EA2; (5.3)

R.p; y/.a; b;d/ D
da

db
�
1 � bad.p; y/.a; b;d � eb/
1 � bad.p; y/.b; a;d � ea/

: (5.4)

Proposition 3.1 says that in a certain sense, the probability and ratio functions Pav
Yavb and Rab are fixed points of the operators P , Y and R. It is very useful for us that
these operators are “contractive”, in a certain sense, in a neighbourhood of this fixed point.
Unfortunately, the concept of contraction which we have here uses a slightly different
metric before and after applying the operators, stemming from the fact that the value of
R.p; y/ at a point .a; b; d/ depends on the values of p and y at the points .c; w; d0/ and
.c;w; h;d0/ for several d0 in a neighbourhood of d. This makes it difficult to define a true
and useful contraction mapping. Nevertheless, we can exploit the useful features of the
situation using the following lemma.

Definition 5.1. Let D0 � Zn�0 and let � 2 R. We use …�.D0/ to denote the set of pairs

of functions .p; y/ with p W EA � Zn�0 ! R�0 and y W EA2 � Zn�0 ! R such that for all
even d 2D0, we have

(…a) 0 � pav.d/ � � for all .a; v/ 2 EA,

(…b)
P
v2A.a/\A.b/ yavb.d/ � �da for all a ¤ b 2 Œn�,

(…c) 0 � yavb.d/ � �pbv.d/ for all .a; v; b/ 2 EA2.

We denote by Q0
s .d/; Q1

s .d/ � Zn the set of even and odd, respectively, vectors of
arbitrary integers that have L1 distance at most s from d. Recall that we use 1 ˙ � to
denote a quantity in the interval Œ1 � �; 1C ��.

Lemma 5.2. There is a constant C > 0 such that the following holds. Let n be an integer
and A �

�
Œn�
2

�
. Let d D d.n/ 2 Zn�0 satisfy jA.a/ nA.b/j < da whenever A.a/ \A.b/

¤ ;. Let 0 < � � 1 and 0 < �0 D �0.n/ < C . Let .p; y/; .p0; y0/ 2…�0
.Q0

2.d//, and let
r; r0 W Œn�2 � Zn�0 ! R. Let a; v; b 2 Œn�.

(a) If d is odd, and A.a/ \ A.b/ ¤ ;, pcw.d0/ D p0cw.d0/.1 ˙ �/ for all .c; w/ 2 EA
and all d0 2 Q0

1.d/, and ycwh.d0/ D y0
cwh

.d0/.1˙ �/ for all .c; w; h/ 2 EA2 and all
d0 2 Q0

1.d/, then

R.p; y/ab.d/ D R.p0; y0/ab.d/.1CO.�0�//:

(b) If d is even, and .a; v/ 2 EA, pcv.d0/ D p0cv.d0/.1 ˙ �/ for all c 2 A.v/ and all
d0 2 Q0

2.d/, and rca.d0/ D r0ca.d0/.1˙ �0�/ for all c 2 A.v/ and all d0 2 Q1
1.d/,

then
P .p; r/av.d/ D P .p0; r0/av.d/.1CO.�0�//:

(c) If d is even, and .a; v; b/ 2 EA2, pcv.d0/ D p0cv.d0/.1˙ �0�/ for all c 2 A.v/ and
all d0 2 Q0

2.d/, and ycwh.d0/ D y0
cwh

.d0/.1 ˙ �/ for all .c; w; h/ 2 EA2 and all
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d0 2 Q0
2.d/, then

Y.p; y/avb.d/ D Y.p0; y0/avb.d/.1CO.�0�//:

The constants implicit in O.�/ are absolute.

Lemma 5.2 indicates that applying the operators once (one after the other) to two
functions that are close in terms of relative error yields functions that are closer by a
factor of �0, where in our applications of the lemma, �0 will be a (very) loose upper
bound on the density of the graphs of interest. We define suitable distance functions below
to make this idea precise. We also remark that in (a) we restrict to A.a/ \ A.b/ ¤ ;

since otherwise no vertex v satisfies avb 2 EA2. This will be useful for an application to
bipartite graphs in a later paper. Note that when A D

�
Œn�
2

�
we have A.a/\A.b/ ¤ ; for

all a; b 2 Œn�.

Proof of Lemma 5.2. For (a), since pcw.d0/ D p0cw.d0/.1 ˙ �/ and ycwh.d0/ D
y0
cwh

.d0/.1˙ �/, from (5.1) and the non-negativity of the functions in …�0
we obtain

bad.p; y/.a; b;d0/ D bad.p0; y0/.a; b;d0/.1CO.�//

for all d0 2 Q0
1.d/. Additionally, for such d0, the assumption that .p0; y0/ 2 …�0

.Q0
2.d//,

together with the assumption that jA.a/ nA.b/j < da for A.a/\A.b/¤ ;, implies that
bad.p0;y0/.a; b;d0/D O.�0/. Thus bad.p;y/.a; b;d0/D bad.p0;y0/.a; b;d0/CO.��0/
for all d0 2 Q0

1.d/. Hence, with �0 sufficiently small to ensure bad.p; y/.b; a; d � ea/
< 1=2 say, part (a) follows from (5.4).

The equation for P .p; r/ in (b) follows similarly from (5.2) since both pbv and pav
are bounded by �0, so in particular the denominator in (5.2) is bounded away from 0.
Finally, (c) follows easily via (5.3) and noting the bound of �0pbv.d0/ on yavb.d0/.

Fix �.0/ � Zn�0 for the following definitions. Let �.s/ denote the set of all d 2 �.0/

for which Q0
s .d/; Q1

s .d/ � �.0/. We will make use of these sets as restricted domains
for functions of d that refer to slightly altered sequences d0. Define a set of distance
functions, indexed by s, on the set of all .p; y/ for which p W EA � Zn�0 ! R�0 and y W
EA2 � Zn�0 ! R�0 by

�.s/..p; y/; .p0; y0// D max ¹�.s/1 .p;p
0/; �

.s/
2 .y; y

0/º; where (5.5)

�
.s/
1 .p;p

0/ D sup ¹jlog.pcw.d/=p0cw.d//j W .c; w/ 2 EA; d 2 �.s/º; (5.6)

�
.s/
2 .y; y

0/ D sup ¹jlog.ycwh.d/=y0cwh.d//j W .c; w; h/ 2 EA2; d 2 �.s/º: (5.7)

If any denominator is 0 we define �.s/i , i D 1; 2, to be 1 at that point, so these are
extended metrics. Clearly �.s/ is non-increasing in s unless �.s/ is empty, in which case
we set �.s/ D 0. Also, define the compositional operator

C.p; y/ D .yp;Y.yp; y//

where yp D P .p;R.p; y//.
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Lemma 5.3. There is a constant C > 0 such that the following holds. Let n and A be
as in Lemma 5.2, and let �.0/ � Zn�0. Let � � 1=2 and 0 < �0 D �0.n/ < C . Assume
that s � 0 is such that .p; y/; .p0; y0/ 2 …�0

.�.s//, and �.s/..p; y/; .p0; y0// � � . Then
�.sC4/.C.p; y/;C.p0; y0// D O.�0�/.

Proof. Let d 2 �.sC1/ be odd. Then Q0
2.d/ D Q0

1.d/ � �
.s/, and so .p; y/, .p0; y0/ 2

…�0
.Q0

2.d//, as required for the lemma. Since �.s/..p; y/; .p0; y0// � � � 1=2, we have
pcw.d0/ D p0cw.d0/.1˙ 2�/ for all .c; w/ 2 EA and d0 2 Q0

1.d/, and a similar statement
holds for y, y0. We can thus apply Lemma 5.2 (a), and defining r D R.p; y/ and r0 D
R.p0; y0/ deduce that rab.d/ D r0

ab
.d/.1 C O.�0�// for all such d and for a; b as in

that lemma. Preparing for the next step, note that the error term O.�0�/ is ˙� for C
sufficiently small.

Now let d 2 �.sC2/ be even and define yp D P .p; r/ and yp0 D P .p0; r0/. Apply-
ing Lemma 5.2 (b) in a similar way gives

ypcw.d/ D yp0cw.d/.1CO.�0�//

for .c; w/ 2 EA, and again we may assume the error term is˙�.
Finally, we may repeat the process with d 2�.sC4/, and use Lemma 5.2 (c) to deduce

that
Y.yp; y/avb.d/ D Y.yp0; r0/avb.d/.1CO.�0�//

for all .a; v; b/ 2 EA2 for such d. Since the error terms �0� < C=2 in the last two con-
clusions can be made arbitrarily small by taking C small, we have log.1C O.�0�// D
O.�0�/ as required to deduce the lemma.

6. Proof of the binomial model in the graph case

In this section we prove Conjecture 1.3 for p in the “gap range” which we can describe as
o.n�1=2/ < p < c=log n. Before doing so we need concentration results for some func-
tions f .d/ when d either has independent binomial entries, or is the degree sequence
of G .n; m/. In [32, Theorem 3.4] it was essentially shown that, when d has independ-
ent binomial entries, �2 D �2.d/ D

Pn
iD1.di � d/

2=n is concentrated. We give a more
efficient proof of the crucial part of this, using the following result, which we will also
apply to the degree sequence of G .n;m/. This is a direct corollary of Theorem (7.4) and
Example (7.3) of McDiarmid [27]. However, since the constants there are not explicit and
the framework makes the proof not so easily accessible, we give a proof here.

Lemma 6.1 (McDiarmid). Let c > 0 and let f be a function defined on the set of subsets
of some set U such that jf .S/ � f .T /j � c whenever jS j D jT j D m and jS \ T j D
m � 1. Let S be a randomly chosen m-subset of U . Then for all ˛ > 0 we have

P.jf .S/ � Ef .S/j � ˛c
p
m/ � 2 exp.�2˛2/:
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Proof. Consider a process in which the random subset S is generated by inserting m dis-
tinct elements one after another, each randomly chosen from the remaining available ones.
Let Sk denote the kth subset formed in this process, 0� k�m. Consider the Doob martin-
gale process determined by Yk D E.f .Sm/ j S0; : : : ; Sk/D E.f .Sm/ j Sk/. Given Sk�1,
let X D Xk ; : : : ; Xm denote the remaining elements added in the process. Let X0 be the
random sequence X conditioned on Xk D xk 2 U , and X1 the random sequence X con-
ditioned on Xk D x0k 2 U . Then X0 can be coupled with X1 by interchanging xk and x0

k

wherever they occur in X0. The values of f .Sm/ in the two elements of a couple pair
differ by at most c by assumption. Since each possible realisation of Xk ; : : : ; Xm has the
same probability, it follows thatˇ̌

E.f .Sm/ j Sk�1 ^Xk D xk
�
� E.f .Sm/ j Sk�1 ^Xk D x0k/j � c;

and hence jYk�1 � Ykj � c. Azuma’s inequality (see, e.g., [21]), or alternatively [27,
Corollary (6.10)], now completes the proof.

Recall that by ! we denote a function that tends to1 arbitrarily slowly with n, and
that Bm.n/ is a sequence of n i.i.d. random variables each distributed as Bin.n � 1; p/
conditioned on

P
di D 2m.

Lemma 6.2. Define dD .d1; : : : ;dn/ as either (a) the degree sequence of a random graph
in G .n;m/, or (b) a sequence in Bm.n/. Let d D 2m=n. Then

(i) for 1 � i � n and all ˛ > 0 we have

P.jdi � d j � ˛/ � 2 exp
�
�

˛2

2.d C ˛=3/

�
I

(ii) if .logn/3 D o.dn/ and ˛ satisfies .logn/=
p
nC .logn/3=2=

p
dn D o.˛/ then

P.j�2 � Var d1j � ˛d C 1=n/ D o.n�!/:

Moreover, Var d1 D d.n � d/=nCO.d=n/.

Proof. We deal with the graph case (a) first. Each vertex degree di is distributed hyper-
geometrically with parameters

�
n
2

�
; m; n � 1 and expected value d , and hence (i) holds

by [21, Theorems 2.10 and 2.1]. For a graph G with degrees d1; : : : ; dn define

f D f .G/ D

nX
iD1

min ¹.di � d/2; xº;

where x > 1 is specified below. Then increasing or decreasing the value of a single dj
by 1 whilst holding d fixed can only change f by at most .

p
x/2 � .

p
x � 1/2 < 2

p
x.

Since G is determined by a random m-subset of all possible edges, Lemma 6.1 applies
with c D 8

p
x (as each edge in the symmetric difference of S and T affects two vertex

degrees). Replacing ˛ appropriately gives

P
�
jf .G/ � Ef .G/j � ˛dn

�
� 2 exp.�˛2dn=32x/ D o.n�!/
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provided that ˛2dn=x log n ! 1. On the other hand, let A denote the event that
maxi jdi � d j �

p
x. By (i) and the union bound applied over all n values of i , we have

P.A/ D o.n�!/ as long as we choose x D !.d log n C .log n/2/. By the bound on ˛,
there exists x satisfying both conditions, and at this point we set x as such. Provided that
A does not hold, we have f .G/ D

P
.di � d/

2 D n�2. We thus conclude

P
�ˇ̌
�2 � Ef .G/=n

ˇ̌
� ˛d

�
D o.n�!/CO.1/P.f .G/ ¤ n�2/ D o.n�!/:

Now evidently

jEf .G/ � nE�2j D O.n3/P.f .G/ ¤ n�2/ D o.n�!/

and thus
P.j�2 � E�2j � ˛d C 1=2n/ D o.n�!/:

Noting that E.di � d/2 D Var d1, we obtain part (ii) for (a). The estimate for Var d1
follows from the standard formula for variance of this hypergeometric random variable.

For the binomial random variable case (b), essentially the same argument applies for
both (i) and (ii), by regarding d1; : : : ; dn each as a sum of n � 1 independent indicator
variables. Conditioning on the sum being 2m is equivalent to a uniformly random selec-
tion of a 2m-subset of the n.n � 1/ indicator variables.

We shall see that the following establishes Conjecture 1.3 in the gap range with
explicit error terms. Recall that given a sequence d we write M1 D M1.d/ D

P
i di ,

d D d.d/ DM1=n, � D �.d/ D d=.n � 1/, and �2.d/ D 1
n

Pn
iD1.d � di /

2 where n is
the length of the sequence d.

Theorem 6.3. Let n and m be integers, and assume that �1 D 2m=n.n � 1/ satisfies
.logn/!=n��1 D o.1=.logn/3=4/: Let D be the set of sequences d of length n satisfying
the following for some constant C � 2:

(i) M1.d/ D 2m .and thus � D �.d/ D �1 and d D d.d/ D 2m=n/,
(ii) jdi � d j � C

p
d logn for all i 2 Œn�,

(iii) �2.d/ � 2d .

Then

(a) in each of the models Bm.n/ and D.G .n; m// we have P.D/ � 1 � n�h.C/, where
h.x/!1 as x !1,

(b) for d D d.n/ 2D we have

PD.G .n;m//.d/ D PBm
.d/ exp

�
1

4
�


22
4�2.1 � �/2

�
�

�
1CO

�
1
p
d
C
d
p

logn
n

C
d2.logn/3=2

n2

��
;

where 
2 D 
2.d/ D 1
.n�1/2

P
i .di � d/

2.
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We note that the constant implicit in O.�/ in (b) of course can, and in fact does, depend
on C .

Proof. Let � be the underlying set of Bm.n/ and let d 2 �. We will consider d chosen
either according to D.G .n; m// or Bm.n/. By definition, M1.d/ D 2m for all d 2 �.
Apply Lemma 6.2 (i) with ˛ D C

p
d logn and the union bound to see that in both

D.G .n; m// and Bm.n/, with probability at least 1 � n�f .C/, for all i 2 Œn� we have
jdi � d j �C

p
d lognwhere we may take f .C /DC 2=3� 1. Now, apply Lemma 6.2 (ii)

with ˛ D 1=2 and note that d D �1.n� 1/ > .logn/2 by the theorem’s hypothesis to find
that �2.d/ � 2d with probability at least 1 � n�! . Therefore, d satisfies (ii) and (iii)
with probability at least 1 � n�h.C/, for some function h.C /!1 as C !1, and d
satisfies (i) always. Hence (a) follows.

For (b) we first consider the ratio for adjacent degree sequences (see Step 1 in the
template given at the start of Section 4). LetQ1

1 be the set of sequences d 2 Zn�0 such that
d� ea 2D for some a 2 Œn�. Recall that Pav.d/ denotes the probability that the edge av
is present in a graph G 2 G .d/ and that

Rab.d/ D
P� 0.d � ea/
P� 0.d � eb/

;

where � 0 D D.G .n; m//. We now present functions P gr, Rgr and Y gr that approximate
the probability and ratio functions P , R and Y sufficiently well. For a; v; b 2 Œn� set

P gr
av.d/ D

dadv

d.n � 1/

�
1 �

.da � d/.dv � d/

d.n � 1 � d/

�
; (6.1)

R
gr
ab
.d/ D

da.n � db/

db.n � da/

�
1C

da � db

d2n
�2.d/

�
; (6.2)

Y
gr
avb
.d/ D P gr

av.d/P
gr
bv
.d � ea � ev/.1C 1=n/: (6.3)

Claim 6.4. Uniformly for d D d.n/ 2D and a ¤ v 2 Œn�,

Pav.d/ D P gr
av.d/.1CO.�1 C �2//; (6.4)

and uniformly for all d 2 Q1
1 and for all a; b 2 Œn�,

Rab.d/ D R
gr
ab
.d/.1CO.�1 C �1�2//; (6.5)

where �1 D 1=mC "�1=n and �2 D "=nC "3�21, with " D C
p
.logn/=d , where d D

2m=n.

The proof will show that an analogous statement also holds for Yavb . Note that " is
simply the upper bound on the relative degree spread of a sequence d in D implied by (ii).

Proof of Claim 6.4. To show that P and P gr (and R and Rgr) are .�1 C �2/-close in the
sense of (6.4) and (6.5), we consider the operator C as defined for Lemma 5.3. We first
observe that C fixes .P; Y /, where in this context we regard P to be the function p
with pav D Pav for all appropriate a and v, and similarly Y to be y with yavb D Yavb , by
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Proposition 3.1. We will next use the contraction property of C as expressed in Lemma 5.3
to show that for any integer k > 0, Ck.P gr; Y gr/ and Ck.P; Y / areO.�/k-close. We will
also show that P gr and Ck.P gr/ are .�1 C �2/-close. These observations will then be
shown to imply Claim 6.4.

Fix k0 D 4 log n and r D 4k0 C 4 D O.log n/. Let �.0/ be the set of sequences
d 2 Zn�0 that are at L1 distance at most r from a sequence in D. Let �0 D 5�1, and
define �.s/ as in Lemma 5.3 to be the set of sequences d 2 �.0/ at L1 distance at least
s C 1 from all sequences outside �.0/.

Towards applying Lemma 5.3 we first establish that .P; Y / and .P gr; Y gr/ are ele-
ments of …�0

.�.2// (see Definition 5.1). Note that for d 2 �.0/, the values of d.d/ and
�.d/ are asymptotically equal to 2m=n and �1, respectively, since M1.d/ D M1.d0/C
O.log n/ for some sequence d0 2D. Furthermore, we note that condition (ii) of the the-
orem, together with the lower bound on �1 in the theorem statement, implies that for all
even d 2 �.0/, di � �n uniformly for all i . To bound Pav.d/, we first observe, using
� � .logn/3=n and assumption (ii) of the theorem, that Lemma 2.4 (a) implies N .d/ > 0
for all even d 2 �.0/. After this, for n sufficiently large, Lemma 2.3, together with the
fact that di � �n uniformly for all i , implies that for all distinct a; v 2 Œn�,

Pav.d/ �
�

1 � �
.1C o.1// <

5�

4
for all even d 2 �.0/; (6.6)

where for the last inequality we use � � �1 < 1=6, say. Since �.2/ � �.0/ and 5�=4 <
�0 this establishes requirement (…a) for P in the definition of …�0

.�.2//. Now restrict
slightly to d 2 �.2/. By definition Yavb.d/ is the probability that both edges av and bv
are present. Hence Proposition 3.1 (c) implies (with the above bounds on Pav.d/ applying
for all d 2 �.0/) that 0 � Yavb.d/ D Ybva.d/ � 3�1Pbv.d/=2 (easily) assuming, as we
may, that �1 is sufficiently small. Thus .P; Y / satisfies condition (…c) for membership
of …�0

.�.2//, and alsoX
v2Œn�n¹a;bº

Yavb.d/ �
X

v2Œn�n¹a;bº

3Pbv.d/�1

2
� 3�1da.1C o.1//

using Pbv.d/ � 2�1 � 2da=n, which follows from (6.6) and � � �1. As 4�1 < �0, this
shows Y satisfies condition (…b) for membership of …�0

.�.2// when n is sufficiently
large. To see that .P gr;Y gr/ is also in…�0

.�.2//we recall that di ��n uniformly for all i
for all d2�.0/. Thus, by definition (6.1) we haveP gr

av.d/�� for all distinct a;v 2 Œn� and
all d 2 �.0/. Properties (…a)–(…c) follow directly from this fact and the definition (6.3)
since � � �1 D �0=5.

Now for large n and distinct a; v 2 Œn� we have Pav.d/ D P
gr
av.d/.1˙ 1/ for all even

d 2 �.0/ since P gr
av.d/ � � and by (6.6). Also, 0 � Yavb.d/ � 3�1Pbv.d/=2 implies

Yavb.d/ D Y
gr
avb
.d/.1˙ 1/ for all even d 2 �.2/. We may now apply Lemma 5.2 (a) with

� D 1 for any odd d 2 �.3/ to deduce that

R.P; Y /ab.d/ D R.P gr; Y gr/ab.d/.1CO.�0//
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for all a; b 2 Œn�. Writing r for R.P; Y / and r0 for R.P gr; Y gr/ we see from this and
Lemma 5.2 (b) that

P .P; r/av.d/ D P .P gr; r0/av.d/.1CO.�0//

for all even d 2�.4/, all distinct a; v 2 Œn�. Next applying Lemma 5.2 (c) in the same way
to even d 2 �.6/ gives

Y.yp; Y /avb.d/ D Y.yp0; Y gr/avb.d/.1CO.�0//

for all even d 2�.6/ and all distinct a;v; b 2 Œn�, where ypDP .P;r/ and yp0 DP .P gr;r0/.
Recalling the definition of the distance functions �.s/ and the definition of the operator
C we see that this is equivalent to the statement �.6/.C.P; Y /;C.P gr; Y gr// D O.�0/.
Making k � 1 iterated applications of Lemma 5.3 with ever-decreasing � produces

�.4kC2/.Ck0.P; Y /;Ck0.P gr; Y gr// D O.�0/
k :

Finally, C.P gr; Y gr/.d/ can be estimated by straightforward expansions using the follow-
ing: uniformly for all d 2 �.0/,
(a) R.P gr; Y gr/ab.d/ D R

gr
ab
.d/.1CO.�1// for all a; b 2 Œn�;

(b) P .P gr; Rgr/av.d/ D P
gr
av.d/.1CO.�2// for all distinct a; v 2 Œn�;

(c) Y.P gr; Y gr/avb.d/ D Y
gr
avb
.d/.1CO.�2// for all distinct a; v; b 2 Œn�.

This is justified by Lemma A.1 in Appendix A, after making two observations. One is
that the error term "4d2=n2 can be dropped because "3d D o.1/. The second is that the
error terms �1 and �2 are now defined with reference to sequences which are at distance
O.logn/ from the sequences in D and are thus asymptotically the same as the stated val-
ues. (In fact, a better approximation is proved in Lemma 7.1 using computer assistance.)
Applying (a), (b) and (c) in turn, recalling Lemma 5.2 to handle the small error terms,
shows that �.6/.C.P gr; Y gr/; .P gr; Y gr// D O.�1 C �2/. Using Lemma 5.3 repeatedly,
and bounding the total distance moved during the iterations as for a contraction mapping
(as the sum of a geometric series), this gives

�.r�2/..P gr; Y gr/;Ck0.P gr; Y gr// D O.�1 C �2/:

Combining this with the above bound on �.4kC2/ when k D k0, and with C.P; Y / D

.P; Y / and the triangle inequality, gives �.r�2/..P; Y /; .P gr; Y gr// D O.�1 C �2/ C

O.�0/
k0 :This implies (6.4) for all even d 2 �.r�2/ since k0 D 4 log n, and we may

assume O.�0/ < 1=e say since �0 D 5�1 ! 0. Note that D � �.r/ � �.r�2/ by defin-
ition. For (6.5), we now use the fact that (6.4) holds for all even d 2 �.r�2/ to deduce
from Lemma 5.2 (a) that

R.P; Y /ab.d/ D R.P gr; Y gr/ab.d/.1CO.�0�1 C �0�2//

for all odd d 2 �.r�1/. This, together with (a) above and the facts that R.P; Y / D R and
�0 D 5�1, implies (6.5) for all d 2 Q1

1 � �
.r�1/.
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Since " D C
p
.logn/=d and d < n=

p
logn, the claim gives

P� 0.d � ea/
P� 0.d � eb/

D Rab.d/D R
gr
ab
.d/
�
1CO

�
1

dn
C
.
p
d logn/3

n3
C

p
d logn
n2

��
(6.7)

uniformly for all d 2 Q1
1.

We now move to Steps 2 and 3 in the template in Section 4. LetH.d/D PBm
.d/ zH.d/

be the conjectured formula in the right hand side of (b) (without error terms), where

zH.d/ D exp
�
1

4
�


22
4�2.1 � �/2

�
:

Define the probability spaces � and � 0 exactly as in the proof of Theorem 4.1 with the
same underlying set �. That is,

P� .d/ D H.d/=
X
d02�

H.d0/ D
H.d/

EBm
zH

and � 0 D D.G .n;m//. Also define the graph G as before, with vertex set W WD D, and
with an edge joining each pair of sequences in D of the form d� ea and d� eb for some
a ¤ b. The L1 distance from a sequence d 2 G to the constant sequence .d; : : : ; d / isP
i jdi � d j, which is at most n

p
2d by (iii) and Cauchy’s inequality. Some vertex of G

has L1 distance at most n from this constant sequence. It follows that the diameter of G
is r D O.n

p
d/.

We claim (see Step 4 of the template) that W has probability at least 1 � "0 for some
suitably chosen "0 in both � and � 0. Note that P� 0.W/ � 1 � n�h.C/ and PBm

.W/ �

1� n�h.C/ by (a) proved above. Furthermore, if d 2Bm.n/ then 
2.d/D n
.n�1/2

�2.d/D
�.1 � �/.1 C O.�// with probability 1 � o.n�!/, where � D .log n/2=

p
n (this is the

more precise implication of Lemma 6.2 (ii) applied with ˛ D .log n/2=
p
n). Thus, for

such d in Bm.n/, the exponential factor zH.d/ is 1CO.�/ with probability 1 � o.n�!/.
Therefore,

EBm
zH D 1CO.�/ (6.8)

and thus P� .W/ � 1 � n�h.C/. It follows that, as in the proof of Theorem 4.1, we may
use "0 D n�1 in Lemma 2.1.

We now move to Step 5 in the template. For d 2 Q1
1,

P� .d � ea/
P� .d � eb/

D
H.d � ea/
H.d � eb/

D
da.n � db/

db.n � da/
exp

�
.da � db/
2

d2.1 � �0/2
CO

�
�2

.dn/2

��
(6.9)

by (2.1), where �0 D �.d� ea/ and 
2, d and � are defined with respect to d as in (2.1).
Note that the first term in the exponential in (6.9) is O.

p
.logn/=dn2/ for d 2Q1

1 by (ii)
and (iii) and since �0 D �.1C 1=2m/. Thus,

.da � db/
2

d2.1 � �0/2
D
da � db

.dn/2

X
i

.di � d/
2
CO

�p
d logn
n2

�
;
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and the second term, �2=.dn/2, is O.1=n2/ by assumption (ii). We can now infer from
the definition of Rgr that (6.9) is equivalent to

P� .d � ea/
P� .d � eb/

D R
gr
ab
.d/
�
1CO

�p
d logn
n2

��
: (6.10)

This together with (6.7) gives

P� 0.d � ea/
P� 0.d � eb/

D eO.ı/
P� .d � ea/
P� .d � eb/

with

ı D
1

dn
C
.
p
d logn/3

n3
C

p
d logn
n2

for d 2 Q1
1. Therefore, by Lemma 2.1 and (6.8),

P� 0.d/ D P� .d/eO.rıC"0/ D H.d/.1CO.� C rı C "0//

for all d 2D, which proves (b) since � D .logn/2/=
p
n,

rı D O.d�1=2 C d
p

logn=nC d2.logn/3=2=n2/

and "0 D 1=n.

It is a simple exercise in analysis to see that the theorem implies Conjecture 1.3 in the
gap range: the truth of the theorem itself implies a slightly altered version of the theorem’s
statement (b), in which C is a function of n that tends (“slowly”) to1. (The same can be
done with the constant in the O.�/ if desired.) The fact that h.C /!1 then shows that
the asymptotic approximation (1.2) holds for the sequences d in a suitable set Rp.n/. All
that remains is to note that the distribution of m in D.G .n; p// is identical to that in E 0p ,
and that the latter restricted by

P
di D 2m is identical to Bm.n/.

Corollary 6.5. Conjecture 1.3 holds.

We remark that one can avoid the sharp concentration results that we used, instead
employing only variance via Chebyshev’s inequality, at the expense of relaxing the
o.n�!/ error in the conjecture to o.1/. The result would still be interesting; we leave
the details to the reader.

7. A wider range of degrees: proof of Theorem 1.4

In this section we prove Theorem 1.4. Compared with Theorem 6.3, some crucial dif-
ferences that affect the argument include � being permitted to have constant size, the
allowable degree spread being d˛ for ˛ > 1=2, and the transfer of �2 from explicit bounds
to a term in the ratio formula.

The proof has the same structure as for Theorem 6.3. The crucial change required is to
redefine the approximations, P gr, Rgr and Y gr, of the probability and the ratio functions
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so that the error functions corresponding to �1 and �2 in Claim 6.4 satisfy �1 C ��2 D
o.1=nd˛/. This error bound is necessary to obtain a final formula with 1C o.1/ error,
since with the range of degrees under consideration, the diameter of the graphG of degree
sequences (see the proof of Theorem 6.3) is up to r D O.nd˛/.

To define the approximations, we write P gr, Rgr and Y gr parametrised to facilitate
identifying negligible terms. We define the expressions

� D �.1C "a/.1C "v/

�
1C
��"a"v C ."a C "v/�

2=dn

1 � �
C
"a C "v

n � 1

�
;

� D
1C "a

1C "b
�
1 � �.1C "b/C 1=n

1 � �.1C "a/C 1=n

�
1C

."a � "b/�
2

.1 � �/2dn

�
:

When referring to � , we list only an initial segment of parameters "a; "v; �; �2; d that are
different from the ones in the definitions above. So for instance �.x; y/ stands for � with
"a; "v replaced by x; y. Similarly for � and the parameters "a; "b; �; �2; d . Recall that we
consider sequences d of length n and � D d=.n � 1/.

For this section, we define P gr and Rgr by

P gr
av D �; R

gr
ab
D �

for all a; v; b 2 Œn�, where "i D .di � d/=d and �2 D �2.d/ D
P
.di � d/

2=n, so that
P

gr
av etc. are functions of degree sequences. Furthermore, for all a; v; b 2 Œn� we define

Y
gr
avb
.d/ D �."a; "v/�."b; "v � ı/ �

�
1C

1C "a � �.1C "a C "b/

.n � 1/.1 � �/

�
:

Note also that d and �were specified in the theorem statement (determined bym), but
with a slight notational abuse, for the following lemma, given any sequence d of length n
we define �D �.d/D 1

2
M1.d/=

�
n
2

�
so that the average is d D �.n� 1/. In the following

lemma, the parity of d is immaterial, though it will only be applied for odd d in (a) and
even d in (b) and (c).

Lemma 7.1. Let n be an integer and let 1=2 � ˛ < 3=5. Let A D
�
Œn�
2

�
and let d D d.n/

be a sequence of length n with average xd such that �1 D �.d/ D xd=.n � 1/ < 1=4, and
assume that for all 1 � i � n we have jdi � xd j � " xd , where " D xd ˛�1 > 0. Then

(a) R.P gr; Y gr/ab.d/ D R
gr
ab
.d/.1CO.�1"4// for all a; b 2 Œn�,

(b) P .P gr; Rgr/av.d/ D P
gr
av.d/.1CO.�1"4// for all distinct a; v 2 Œn�,

(c) Y.P gr; Y gr/avb.d/ D Y
gr
avb
.d/.1CO.�1"4// for all distinct a; v; b 2 Œn�.

We have used a computer algebra system to assist with the calculations in the proof
of this lemma; the corresponding Maple worksheet can be accessed by following this
article’s DOI.

Proof of Lemma 7.1. In the calculations below, the following approximations of P gr

and � , respectively, will often be convenient. Let d0 be a sequence of length n that is
at L1 distance O.1/ from d, and with d 0a D da � ja and d 0v D dv � jv . Here and in

https://doi.org/10.4171/JEMS/1355


Asymptotic enumeration of graphs by degree sequence 31

the following, the bare symbols �, d , "a and so on are defined with respect to the ori-
ginal sequence d, whilst �0, d 0, "0a, etc., are defined with respect to the average degree
of d0. For such a sequence d0 we find that �.d0/ is �0 D �1 C O.1=n2/ since the aver-
age d 0 of d0 is xd CO.1=n/. Therefore, the variable "0a defined as .d 0a � d

0/=d 0 is equal to
"a � jaı CO.�ı

2/, where ı D 1= xd , and the analogous formula holds for "v . Similarly,
� 0 D �2.d0/ D �2.d/CO."�1/: Thus

P gr
av.d

0/ D �."0a; "
0
v; �

0; � 0; d 0/ D �."a � jaı; "v � jvı/.1CO.�//; (7.1)

where here and below � D �1"
4 (note that " � xd�1=2 by assumption so that 1= xdn D

O.�1"
4/). In other words, the changes from �1, xd , and �2 to �0, d 0, and � 0 are negligible

in the formula for P gr.
For (a), we note first that R.P gr; Y gr/aa.d/ D 1 D R

gr
aa.d/ by definition of � and R

in (5.4). Assume now that a ¤ b. Using (5.4) to evaluate R.P gr; Y gr/ab.d/, we estimate
the expression bad.a; b; d � eb/ D bad.P gr; Y gr/.a; b; d � eb/, for which, in turn, we
need to estimate

P
Y

gr
avb
.d� eb/, where the sum is over all v 2 Œn� such that both av and

bv are allowable (see (5.1)). By definition and (7.1),

Y
gr
avb
.d� eb/D �."a; "v/�."b � ı; "v � ı/ �

�
1C

1C "a � �1.1C "a C "b/

.n � 1/.1 � �1/
CO.�/

�
;

where we use "a, "b and �1 in the third factor (rather than the altered versions "0a etc.)
using the same reasoning as in the lead-up to (7.1). Consider expanding this expression
for Y gr

avb
.d � eb/ ignoring terms of order "4, and hence also ignoring ı2 and "2ı, since

"2 � 1= xd . A convenient way to do this is to make substitutions "v D y1"v , ı D y21ı, �1 D
y2�1, 1=n D y21y2=n, and so on (for instance, �2=dn is O."2�1/), where y1 represents
a parameter of size O."/ and y2 of size O.�1/, and then expand about y1 D 0. We note
by inspection that Y gr

avb
.d � eb/ has �2 as a factor since �."a; "v/ and �."b � ı; "v � ı/

each have � as a factor. So the terms in its expansion have the corresponding upper bound
O.�2"i / on their absolute sizes. We also note that in expanding a rational function about a
non-singular point, the error in the Taylor expansion is bounded by a multiple of the least
significant terms omitted. This avoids any need to bound higher derivatives explicitly. In
this way, expanding after these ¹y1; y2º substitutions, and noting that 1=n D O.�1"2/,
we obtain

Y
gr
avb
.d � eb/ D J CO.�21"

4/;

where J is a polynomial of degree 3 in y1. (Unfortunately J is too large to write here.)
Next, removing the “sizing” variables yi from J by setting them equal to 1, and then
expanding the result about "v D 0 and retaining all terms of total degree at most 3 in "v ,
we get

Y
gr
avb
.d � eb/ D c0 C c1"v C c2"2v CO.�

2
1"
4/;

where the functions c0, c1, and c2 are independent of "v . (By calculation, the third order
term turns out to be absorbed by the error term.) Then considering the definition of
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bad.a; b; d � eb/ in (5.1) we find that the second summation in that definition can be
written as

†bad WD
X

v2A.a/\A.b/

Y
gr
avb
.d � eb/

D

X
v2A.a/\A.b/

.c0 C c1"v C c2"
2
v CO.�

2
1"
4//

D nc0 C n�
2ı2c2 � 2c0 � c1."a C "b/ � c2."

2
a C "

2
b/CO.n�

2
1"
4/;

where in the last inequality we use
P
v2Œn� "v D 0 and

P
v2Œn� "

2
v D n�

2ı2 (and we recall
that the "v’s are defined with respect to d). Noting that A.a/ nA.b/ D ¹bº, we can write
bad.a; b;d � eb/ in (5.4), by using (5.1) and (7.1), as

bad.a; b;d � eb/ D
1

da

�
†bad C �."a; "b � ı/CO.�1�/

�
;

where da D .1 C "a/ xd . Note that the error term from †bad produces an absolute error
term of size O.�1"4/ D O.�/ in bad.a; b; d � eb/ since n=da � 1=�1. Substituting the
above expression, stripped of its error terms, into

R.P gr/ab.d/
�

� 1 D
1

�
�
.1C "a/.1 � bad.a; b;d � eb//
.1C "b/.1 � bad.b; a;d � ea//

� 1

and simplifying gives a rational function yF . That is, R.P gr/ab.d/=� � 1 D yF C O.�/.
After inserting the size variables y1 and y2 into yF as specified above, and simplifying,
we find it has y2 as a factor (of multiplicity 1), and its denominator is non-zero at y1 D 0.
Then expanding the expression in powers of y1 shows that yF D O.y41/. Along with the
extra factor y2, this implies yF D O.�/. Thus, part (a) follows.

To prove part (b) note that, analogous to (7.1), if d0 D d� ev we also have, for b ¤ v,

R
gr
ab
.d0/ D �."0a; "

0
b; �

0; .�2/0; d 0/ D � � .1CO.�1"
4//;

where we also use the fact that a ¤ v. Therefore, by definition (5.2) and (7.1),

P .P gr; Rgr/av.d/ D dv
� X
b2A.v/

R
gr
ba
.d � ev/

1 � P
gr
bv
.d � eb � ev/

1 � P
gr
av.d � ea � ev/

��1
D dv

� X
b2A.v/

�."b; "a/ �
1 � �."b � ı; "v � ı/

1 � �."a � ı; "v � ı/
.1CO.�1"

4//

��1
:

(7.2)

By expanding in "b we obtain

�."b; "a/ �
1 � �."b � ı; "v � ı/

1 � �."a � ı; "v � ı/
D K CO."4/;

where K is a polynomial in "b of degree at most 3. Calculations using the size variables
y1 and y2 as above show that K D k0 C k1"b C k2"2b CO."

4/ for some ki independent
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of "b . Also, recall that we have A.v/ D Œn� n ¹vº. So the main summation over b in (7.2)
can be evaluated (noting again that

P
b "
2
b
D n�2ı2) as

nk0 C n�
2ı2k2 � k0 � k1"v � k2"

2
v

with relative error O."4/, noting that K has constant order, where we use
P
b2Œn� "b D 0.

Using the size variables y1 and y2 as described above, we find that P .P gr; Rgr/av.d/ D
�.1CO.�1"

4// for a ¤ v, with the extra factor �1 arising in the error term in the same
way as for R in part (a). Part (b) follows.

For part (c) consider Z D Y.P gr; Y gr/avb.d/=Y
gr
avb
.d/ � 1: By definition of Y, P gr,

and Y gr we can write Z as

Z D
P

gr
av.d/.P

gr
bv
.d � ea � ev/ � Y

gr
avb
.d � ea � eb//

Y
gr
avb
.d/.1 � P gr

av.d � ea � ev//
� 1: (7.3)

Then, using (7.1), replace P gr
av.d/ by �."a; "v/, P

gr
bv
.d � ea � ev/ by �."b; "v � ı/.1C

O.�//; P
gr
av.d � ea � ev/ by �."a � ı; "v � ı/.1CO.�//; and, using the same argument

as leading to (7.1), replace Y gr
avb
.d � j ea � j eb/ by

�."a � jı; "v � jı/�."b; "v � .j C 1/ı/

�

�
1C

1C "a � jı � �1.1C "a � jı C "b/

.n � 1/.1 � �1/
CO.�/

�
for j 2 ¹0; 1º: Now, as for parts (a) and (b), use the sizing variables y1 and y2 and expand
about y1 D 0 (note that both the denominator and numerator of the fraction in Z are
asymptotically equal to �21). We then find thatZ is of sizeO.�1"4/, which proves (c).

To prove Theorem 1.4, we set W D D and then follow the proof of Theorem 6.3,
referring to the set D within it as D0. Since D0 � D, Theorem 6.3 (a) implies P.W/ D

1 � o.1/ in both models Bm.n/ and D.G .n; m//. Actually, in the current setting we
permit higher values of �, which is now only bounded above by a small constant, but the
earlier proof applies equally well for this extended range.

Next define Q1
1 as in the proof Theorem 6.3 to be the set of sequences d 2 Zn�0 such

that d � ea 2D for some a 2 Œn�. Then the proof of Claim 6.4 (which assumed only the
upper bound 1=4 on �) applies, with adjustment to the error terms �i using Lemma 7.1 in
place of Lemma A.1, to show that

Pav.d/ D P gr
av.d/.1CO.�1"

4//; (7.4)

Rab.d/ D R
gr
ab
.d/.1CO.�1"4//; (7.5)

uniformly for all d2D (or d2Q1
1, respectively), and all appropriate a, v and b. Using the

latter together with the definition of �, we find in place of (6.7) (with the same definitions
of � and � 0) that

P� 0.d � ea/
P� 0.d � eb/

D R
gr
ab
.d/.1CO.�1"4 C 1=n2//: (7.6)
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Then for the independent binomial probability space � , (6.9) is only altered by the 
2
term cancelling with the �2 term in the definition of � . Thus we obtain (6.10) with error
term reduced to O.1=n2/.

In this application of Lemma 2.1, the diameter of the auxiliary graphG is r DO.nd˛/
and ı D �1"4 C 1=n2 from (7.6). We may again use "0 D 1=n. The result is

P� 0.d/ D P� .d/eO.rıC"0/ D H.d/.1CO.� C rı C "0//;

with � D .logn/2=
p
n entering as before. The theorem follows, since d5˛�3 � d˛=n.

8. Concluding remarks

In the main result, Theorem 1.4, the upper bound �0 on the density � can probably be
set equal to any constant less than 1=2, at the expense of only slight changes to the proof.
Since other results cover this range of density, we do not follow this line any further. On
the other hand, various aspects of the proofs can be improved with some straightforward
work, to obtain a wider range of degrees and smaller error terms, and we plan to pursue
this elsewhere.

The approach of Sections 3 and 5 can be applied to other problems. We plan to apply
the method in order to prove related binomial-based models for the degree sequences of
random bipartite graphs, loopless directed graphs, and hypergraphs. The approach can
also be used to make a major advance in asymptotic enumeration of Latin rectangles.

Appendix A. Approximating the operator fixed points

Here we prove the estimates (a)–(c) inside the proof of Claim 6.4. Recall the definitions
of P gr, Y gr and Rgr in (6.1)–(6.3), and of �2.d/. Recall also that D is a set of sequences
of length n satisfying jdi � d j � C

p
d logn for all i 2 Œn� (for some constant C ) and

that �2.d/ � 2d by the assumptions of Theorem 6.3. Furthermore, recall that we set
k0 D 4 logn and that �.0/ is the set of sequences d 2 Zn�0 that are at L1 distance at most
r D 4k0 C 4 from a sequence in D. Therefore, (a)–(c) follow from the following lemma
with " D .C C o.1//

p
.logn/=d .

Lemma A.1. Let n be an integer and let A D
�
Œn�
2

�
. Let d be a sequence of length n

with average d such that d=.n � 1/ < 1=4 and �2.d/ D O.d/, and assume that for all
1 � i � n we have jdi � d j � "d , where " D ".n/ > 0 is bounded above by a sufficiently
small constant. Then

(a) R.P gr; Y gr/ab.d/ D R
gr
ab
.d/.1CO.�1// for all a; b 2 Œn�,

(b) P .P gr; Rgr/av.d/ D P
gr
av.d/.1CO.�2// for all distinct a; v 2 Œn�,

(c) Y.P gr; Y gr/avb.d/ D Y
gr
avb
.d/.1CO.�2// for all distinct a; v; b 2 Œn�,

where �1 D 1=dnC "d=n2 C "4d2=n2 and �2 D 1=dnC "=nC "3d2=n2.
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Proof. For completeness, this proof duplicates some steps in the proof of Lemma 7.1.
We first reparametrise P gr, Rgr and Y gr to facilitate identifying negligible terms. Write
� D �.d/ for the “density” d=.n � 1/ of a graph with degree sequence d, and note that,
by assumption, � � 1=4. Define the sequence ."1; : : : ; "n/ of relative deviations from the
average degree, that is,

"a D .da � d/=d for 1 � a � n.

Note that j"aj � " for each a. Set �2 D �2.d/ and

�."a; "v; �/ D �.1C "a/.1C "v/ �

�
1 �

"a"v�

1 � �

�
;

�."a; "b; �; �
2; d; n/ D

1C "a

1C "b
�
1 � �.1C "b/

1 � �.1C "a/
�

�
1C ."a � "b/

�2

dn

�
;

Note that with this definition of � we have P gr
av.d/ D � for all distinct a; v 2 Œn�. As

in Section 7, when referring to � and �, we list only an initial segment of parameters
containing all those that are different from the ones in the definitions above.

In the calculations below the following approximations of � will often be convenient.
Let d0 be a sequence that is at L1 distance O.1/ from d, and with d 0a D da � ja and
d 0v D dv � jv . For such a sequence, � becomes

�0 D �CO.1=n2/

since d changes by O.1=n/. Therefore, the variable "a changes to "a � jaı C O.�ı2/,
where ı D 1=d , and the analogous equation holds for "v . (Here and in the following, the
bare symbols �, d , "a and so on are defined with respect to the original sequence d, whilst
�0, d 0, "0a etc. are defined with respect to the average degree of d0.) Thus

P gr
av.d

0/ D �."0a; "
0
v; �

0/

D �."a � jaı; "v � jvı/.1CO.�ı
2//; (A.1)

from which we see that the small changes in "b for b ¤ a; v have negligible effect.
For (a), if a D b then

R.P gr; Y gr/aa.d/ D 1 D R
gr
ab
.d/

by definition; see (5.4) and (6.2). So assume a ¤ b. Using (5.4) to evaluate
R.P gr; Y gr/ab.d/, we estimate the expression

bad.P gr; Y gr/.a; b;d � eb/ D bad.a; b;d � eb/;

for which, in turn, we need to estimate
P
Y

gr
avb
.d� eb/, where the sum is over all v 2 Œn�

such that both av and bv are allowable (see (5.1)). By definition (6.3),

Y
gr
avb
.d � eb/ D P gr

av.d � eb/P
gr
bv
.d � eb � ea � ev/.1C 1=n/

D � � �."b � ı; "v � ı/.1C �ı CO.�ı
2//; (A.2)
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by (A.1) and as �ıD 1=.n� 1/. As A.a/\A.b/D Œn� n ¹a;bº, defining � D�ı2C�"ı
this gives

1

da

X
v2A.a/\A.b/

Y
gr
avb
.d � eb/ D

1

da

X
1�v�n
v¤a;b

� � �."b � ı; "v � ı/.1C �ı CO.�ı
2//

D
�.1C "b � ı/

n � 1
.1C �ı CO.�//

�

X
1�v�n
v¤a;b

.1C "v/.1C "v � ı/

�
1 �

"a"v�

1 � �

��
1 �

"b"v�

1 � �

�

D
�.1C "b � ı/

n � 1
.1C �ı CO.�//

�

X
1�v�n
v¤a;b

�
1 � ı C c1"v C .1CO."�//"

2
v CO."

4�/
�
; (A.3)

where c1 D c1.ı; "a; �/ is some suitable function independent of "v that satisfies
c1 D O.1/. Note that

Pn
vD1 "v D

Pn
vD1.d � dv/=d D 0 and

Pn
vD1 "

2
v D n�

2=d2, by
definition of �2. Hence

.1C �ı CO.�//
X
1�v�n
v¤a;b

�
1 � ı C c1"v C .1CO."�//"

2
v CO."

4�/
�

D .1C �ı/
�
.n � 2/.1 � ı/ � c1."a C "b/C .1CO."�//.n�

2=d2 � "2a � "
2
b/
�

CO.n"4�C n�/:

On the other hand, noting that for (5.1) in this case A.a/ n A.b/ D ¹bº (so the first
summation only has one term) and pab D P

gr
ab

, we compute, using (A.1), that

pab.d � eb/
da

D
�."a; "b � ı/

�.n � 1/.1C "a/
.1CO.�ı2// D

1C "b

n � 1
.1CO."2�C �ı2//:

Thus, from (5.1),

bad.a; b;d � eb/

D
1C "b

n � 1
C
�.1C "b � ı/

n � 1
.1C �ı/

�
.n � 1/.1 � ı/ � 1C n�2=d2

�
CO

�
�ı2 C

"�

n
C "4�2

�
D �.1C "b/C

�2

dn
.1C "b/ �

1

n
CO

�
�ı2 C

"�

n
C "4�2

�
; (A.4)

where we use �2 D O.d/ and ı D 1=d D 1=�.n � 1/ and note some non-trivial can-
cellations. The analogous formula is obtained for bad.b; a; d � ea/ by swapping indices.
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Hence

R.P gr; Y gr/ab.d/ D
da

db
�
1 � bad.a; b;d � eb/

1 � bad.b; a;d � ea/

D
1C "a

1C "b
�
1 � �.1C "b/

1 � �.1C "a/
�

�
1C ."a � "b/

�2

dn
CO

�
�ı2 C

"�

n
C "4�2

��
D R

gr
ab
.d/CO

�
�ı2 C

"�

n
C "4�2

�
:

This proves part (a) of the lemma.
To prove part (b) note that, analogous to (A.1) we also have, for a; b ¤ v,

R
gr
ab
.d � ev/ D �."0a; "

0
b; �

0; .�2/0; d 0/ D � � .1CO.�ı2//:

(In particular, .�2/0 � �2 D O.max jdi � d j=n/ D O."d=n/.) Therefore, by definition
(5.2),

P .P gr; Rgr/av.d/ D dv
� X
b2Œn�n¹vº

R
gr
ba
.d � ev/

1 � P
gr
bv
.d � eb � ev/

1 � P
gr
av.d � ea � ev/

��1
D dv

� X
b2Œn�n¹vº

� �
1 � �."b � ı; "v � ı/

1 � �."a � ı; "v � ı/
.1CO.�ı2//

��1
D dv.1C "a/

1 � �."a � ı; "v � ı/

1 � �.1C "a/

�
1CO

�
"

n
C �ı2

��
�

� X
b2Œn�n¹vº

.1C "b/
1 � �."b � ı; "v � ı/

1 � �.1C "b/

��1
; (A.5)

where we have used �2 D O.d/ and �.�; �/ D O.�/. Straightforward calculations show
that for c 2 ¹a; bº,

1 � �."c � ı; "v � ı/

1 � �.1C "c/
D 1C

�

1 � �
.2ı � "v � "v"c/CO

�
"

n
C "3�2 C �ı2

�
D

�
1 �

�"v"c

1 � �

��
1 �

�."v � 2ı/

1 � �
CO

�
"

n
C "3�2 C �ı2

��
: (A.6)

Therefore, (A.5) is equivalent to

P .P gr; Rgr/av.d/

D dv.1C "a/

�
1�

"a"v�

1��

��
1CO

�
"

n
C�ı2C "3�2

�� X
1�b�n
b¤v

.1C "b/

�
1�

"b"v�

1��

�

D �.1C "v/.1C "a/

�
1�

"a"v�

1��

��
1CO

�
"

n
C�ı2C "3�2

��
D � �

�
1CO

�
"

n
C�ı2C "3�2

��
;

where in the second equality we use
P
b "b D 0 and

P
b "
2
b
D O.1=�/.



A. Liebenau, N. Wormald 38

For part (c) we have, by definition of Y in (5.3),

Y.P gr; Y gr/avb.d/ D
P

gr
av.d/.P

gr
bv
.d � ea � ev/ � Y

gr
avb
.d � ea � ev//

1 � P
gr
av.d � ea � ev/

(A.7)

for distinct a; v; b 2 Œn�. By definition of Y gr in (6.3), and (A.1), we obtain as in (A.2)

Y
gr
avb
.d � ea � ev/ D P gr

av.d � ea � ev/P
gr
bv
.d � 2ea � 2ev/.1C 1=n/

D �."a � ı; "v � ı/ � �."b; "v � 2ı/.1C �ı CO.�//

D �."b; "v � ı/ � �."a � ı; "v � 2ı/.1C �ı CO.�//

D P
gr
bv
.d � ea � ev/P gr

av.d � ea � 2ev/.1C �ı CO.�//:

Plugging this into (A.7) we obtain

Y.P gr; Y gr/avb.d/

D P gr
av.d/P

gr
bv
.d � ea � ev/

1 � P
gr
av.d � ea � 2ev/.1C �ı CO.�//

1 � P
gr
av.d � ea � ev/

:

Now straightforward calculations show that

1 � P
gr
av.d � ea � 2ev/.1C �ı CO.�//

1 � P
gr
av.d � ea � ev/

D
1 � �.1C "a � ı/.1C "v � 2ı/

�
1C "a"v�

1��
C �ı CO.�/

�
1 � �.1C "a � ı/.1C "v � ı/

�
1C "a"v�

1��
CO.�/

�
D
1 � B C ı� � �=nCO.�/

1 � B

D 1C �ı CO.�/;

where

B D �.1C "a � ı/.1C "v � ı/

�
1C

"a"v�

1 � �

�
D �CO.�"/:

Thus it follows that Y.P gr; Y gr/avb.d/ D Y
gr
avb
.d/.1CO.�// and we are done.
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