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Abstract. Introduced by Erdős in 1950, a covering system of the integers is a finite collection
of arithmetic progressions whose union is the set Z. Many beautiful questions and conjectures
about covering systems have been posed over the past several decades, but until recently little was
known about their properties. Most famously, the so-called minimum modulus problem of Erdős
was resolved in 2015 by Hough, who proved that in every covering system with distinct moduli, the
minimum modulus is at most 1016.

In this paper we answer another question of Erdős, asked in 1952, on the number of minimal
covering systems. More precisely, we show that the number of minimal covering systems with
exactly n elements is
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En route to this counting result, we obtain a structural description of all covering systems that are
close to optimal in an appropriate sense.

Keywords. Covering systems, arithmetic progressions, inverse theorems

1. Introduction

A covering system is a finite collection of arithmetic progressions that covers the integers.
Erdős [5] initiated the study of covering systems in 1950, and since then numerous beau-
tiful questions have been asked about their properties (see, for example, [5–13, 20, 21]).
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Until recently little progress had been made on these problems, but following ground-
breaking work of Filaseta, Ford, Konyagin, Pomerance and Yu [13] in 2007, a fundamen-
tal result was obtained by Hough [16], who resolved a problem from the original paper
of Erdős [5] by proving that there do not exist covering systems with distinct moduli and
arbitrarily large minimum modulus. Building on his work, the authors of this paper [1, 2]
recently made further progress on several related open problems.

In this paper we will study another problem on covering systems, whose study was
initiated by Erdős [6] in 1952:

How many minimal covering systems of size n are there?

Erdős [6] gave a simple proof that there are only finitely many minimal1 covering sys-
tems of size n, but the bound he obtained on their number was doubly exponential.
A more reasonable upper bound follows from a result of Simpson [22], who proved in
1985 (see Section 2) that the largest modulus in a minimal covering system of size n is at
most 2n�1. Note that this bound is best possible, since AD ¹2i�1 .mod 2i / W i 2 Œn� 1�º [
¹0 .mod 2n�1/º is a minimal covering system, and that it easily implies that there are at
most 2O.n

2/ minimal covering systems of size n. We will show that there are in fact rather
fewer such systems, and we will moreover determine asymptotically the logarithm of their
number. The main aim of this paper is to prove the following theorem.

Theorem 1.1. The number of minimal covering systems of Z of size n is
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We remark that proving a weaker upper bound, with a different constant in the expo-
nent, is significantly easier, and we will give a short proof of such a bound in Section 6.
Let us also note here that we will prove the lower bound under the additional restriction
that the moduli are distinct, and so the conclusion of Theorem 1.1 also holds for such
systems.

In order to motivate formula (1), let us begin by describing a simple construction
that gives a slightly weaker lower bound. Let p1 < � � � < pk be the first k primes, and
for each i 2 Œk�, choose pi � 1 arithmetic progressions A.i/1 ; : : : ; A

.i/
pi�1

with the follow-

ing properties: for each j 2 Œpi � 1�, the modulus of A.i/j is divisible by pi and divides

1A covering system A is minimal if no proper subset of it covers Z. Without this restriction there
are infinitely many covering systems of size 2, since we can take A D ¹Z; Aº for any arithmetic
progression A. Note that we do not require the progressions to be disjoint. For related work on
covering systems with this additional property (sometimes called exactly covering systems), see for
example [14, 15, 19, 23].
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Qi WD p1 � � �pi , and A.i/j contains j �Qi�1. It is not difficult to show that, for each such
choice, by adding the progression ¹0 .mod Qk/º we obtain a distinct minimal covering
system of size n D

Pk
iD1.pi � 1/C 1 � k2 log k. Since we have 2i�1 choices for the

progression A.i/j for each i 2 Œk� and j 2 Œpi � 1�, this implies that there are at least

kY
iD1

2.i�1/.pi�1/ D exp.�.k3 log k// D exp
�
�.n3=2/

.logn/1=2

�
minimal covering systems of Z of size n. In Section 5 we will describe a somewhat more
complicated construction that proves the lower bound in Theorem 1.1.

We will refer to collections of progressions as in the construction above as “frames”
(see Section 2 for a precise definition). The second main result of this paper, and the key
step in the proof of Theorem 1.1, will be a structural description of all “efficient” covering
systems; roughly speaking, we will show that every such covering system contains a large
“approximate frame”. The purpose of the next section is to state this structural theorem.

2. The structure of efficient coverings

In this section we will state our main structural theorem. In order to do so, it will be con-
venient to shift our attention to the following (slightly more general) geometric setting.
Let S1; : : : ; Sk be finite sets with at least two elements and set SI WD

Q
i2I Si for each

I � Œk�. IfH DH1 � � � � �Hk � SŒk� with eachHi either equal to Si or a singleton ele-
ment of Si , then we say that H is a hyperplane. We write F.H/ WD ¹i 2 Œk� W jHi j D 1º
for the fixed coordinates of H , and F.A/ WD

S
H2A F.H/ if A is a collection of hyper-

planes. We will also write H D Œx1; : : : ; xk �, where xi 2 Si [ ¹�º for each i 2 Œk�, and �
indicates that Hi D Si .

Definition 2.1. A simple frame centred at an element .s1; : : : ; sk/ 2 SŒk� (which we call
the axis) is a sequence .F1; : : : ;Fk/, where Fi is a collection of jSi j � 1 hyperplanes of
the form

Œx1; : : : ; xi�1; a;�; � � � ;��; (2)

one for each a 2 Si n ¹siº, with xj 2 ¹sj ;�º for each j 2 Œi � 1�.
A frame is obtained from a simple frame by permuting the order of the sets S1; : : : ;Sk .

Observe that if .F1; : : : ;Fk/ is a frame centred at .s1; : : : ; sk/, then the collection

A WD F1 [ � � � [ Fk [ ¹Œs1; : : : ; sk �º

is a minimal cover of SŒk�. Indeed, if we remove the hyperplane Œx1; : : : ; xi�1; a;�; � � � ;��
from A, then the element .s1; : : : ; si�1; a; siC1; : : : ; sk/ will be uncovered by the remain-
ing hyperplanes. Note that if we set Si D ¹0; : : : ; pi � 1º for each i 2 Œk�, then the
construction given in the introduction is equivalent to a frame centred at .0; : : : ; 0/. When
we (for now informally, but later on precisely) discuss frames in Z, we will always mean
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that each set Si D ¹0; : : : ;p � 1º for some prime p (these primes will not generally be dis-
tinct), and we will map S1 � � � � � Sk into ZN , where N D

Qk
iD1 jSi j, using the Chinese

Remainder Theorem to identify ZN with the product of groups Zp
 , and then expanding
base p.2 Note that every arithmetic progression in Z corresponds to a hyperplane, but
not every hyperplane corresponds to an arithmetic progression if primes are repeated (see
Sections 5 and 7).

The key idea behind the proof of Theorem 1.1 is the following (imprecise) conjecture:

“Almost every minimal covering system of Z of size n is close to a frame.”

We will not prove a result of this form; instead, we will use a slightly weaker notion,
which we call a ı-generalized frame. These objects differ from frames in two key ways:
the fixed elements “to the left” of i in a hyperplane H 2 Fi are allowed to vary with i ,
and instead of insisting that “all coordinates to the right are free” (as in (2)), we allow a
few “small” coordinates to be fixed (with the product of their sizes bounded by 1=ı).

The next definition is both important and somewhat technical, and we will need some
additional notation. Given a hyperplaneH , we writeHi for its i th coordinate, and for any
I � Œk� we will write HI D

Q
i2I Hi for the hyperplane in SI obtained by restricting H

to the coordinates of I , and define �I .H/ WD jHI j � jSI j�1 when I ¤;, and �;.H/ WD 1.

Definition 2.2 (ı-generalized frames). Let ı > 0, and let S1; : : : ; Sk be finite sets with
at least two elements. A simple ı-generalized frame in SŒk� is a sequence .F1; : : : ;Fk/,
where Fi is a collection of at most jSi j � 1 hyperplanes, satisfying the following condi-
tions. For each i 2 Œk�, there exists a set I.i/� ¹i C 1; : : : ; kº, and for each j 62 I.i/[ ¹iº,
there exists an element sj .i/ 2 Sj , such that, for each H 2 Fi ,

i 2 F.H/; �I.i/.H/ > ı and Hj 2 ¹sj .i/; Sj º:

Moreover, if min¹jSi j; jSj jº � ı�1 and i ¤ j , then Fi and Fj are disjoint. A ı-generalized
frame is obtained from a simple ı-generalized frame by permuting the sets S1; : : : ; Sk .

We are now ready to state our main structural theorem for covering systems that con-
tain roughly (up to a constant factor) the same number of elements as a frame.

Theorem 2.3. For everyC;"> 0 there exists ıD ı.C;"/> 0 such that for every collection
of finite sets S1; : : : ; Sk with at least two elements each, the following holds. If A is a
minimal cover of SŒk� with hyperplanes such that F.A/ D Œk� and

jAj � C

kX
iD1

.jSi j � 1/; (3)

then A contains a ı-generalized frame .F1; : : : ;Fk/ with
kX
iD1

jFi j � .1 � "/

kX
iD1

.jSi j � 1/: (4)

2For example, .a0; a1; : : : ; a
�1/ 2 Zp � � � � � Zp corresponds to the element
P
�1
iD0 aip

i

2 Zp
 .
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The theorem above can be thought of as an inverse theorem for the following extremal
result of Simpson [22]. If A is a collection of arithmetic progressions, then we write
lcm.A/ for the least common multiple of the moduli of the progressions in A.

Theorem 2.4 (Simpson’s theorem). If A is a minimal cover of SŒk� with hyperplanes
such that F.A/ D Œk�, then

jAj �

kX
iD1

.jSi j � 1/C 1:

In particular, if A is a minimal covering system of Z with lcm.A/ D p
11 � � �p

m
m , then

jAj �

mX
iD1


i .pi � 1/C 1:

In the appendix, we will provide (for the reader’s convenience) a proof of Simpson’s
theorem. Let us also remark here that, while the form of the function ı.C; "/ will not
matter for our purposes, we will prove that Theorem 2.3 holds with ı D ."=C /O.log.1="//.

In order to deduce Theorem 1.1 from Theorem 2.3, we will need to count ı-gen-
eralized frames quite precisely, and show that there are relatively few choices for the
remaining elements; we will also need to show that there are few minimal covering sys-
tems that fail to satisfy (3). These calculations are carried out in Sections 6 and 7.

2.1. An outline of the proof of the structural theorem

The proof of Theorem 2.3 requires a few somewhat technical definitions, and to prepare
the reader for these we will begin by giving an outline of the argument. The idea is to
construct a tree that encodes the structure of the covering system by “exploring” it coor-
dinate by coordinate. To be more precise, given a minimal cover A of SŒk�, let us choose
a coordinate i 2 Œk� to explore, and observe (see Section 3.2 for the details) that for each
s 2 Si we obtain a covering system of

S1 � � � � � Si�1 � ¹sº � SiC1 � � � � � Sk ;

which we identify with SŒk�n¹iº. (Here the hyperplanes H 2 A with Hi D Si appear in
each of the jSi j covering systems corresponding to coordinate i .) These covering systems
may not be minimal, but for each s 2 Si we can take a minimal subcovering As .

Now, some of the systems As may be trivial (i.e., may consist of a single hyperplane),
and when this occurs we are happy, because such hyperplanes can be used in the frame
that we are trying to construct. For the remaining elements s 2 Si , we consider the set
of fixed coordinates F.As/ of As , and observe (see Lemma 3.7) that every coordinate
(except i ) is in F.As/ for some s 2 Si . We may now choose, for each s such that F.As/

is non-empty, a coordinate j 2 F.As/, and repeat the above construction, exploring the
minimal covering system As , starting with the coordinate j . Iterating this process pro-
duces a rooted tree (which we call an “index tree”, see Definition 3.1), each of whose
vertices is labelled with a set I � Œk� and a coordinate i 2 I , which are the fixed coor-
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dinates of the corresponding minimal covering system, and the coordinate “explored” at
that vertex, respectively.

So far, we have not said anything about how to construct the sets Fi , or how to choose
the coordinate i that we explore in a given step. For simplicity, let us explain this only for
the first step (the choice for later steps is similar). First, if there exists i 2 Œk� such that there
are at least .1 � "/.jSi j � 1/ hyperplanes H 2 A with i 2 F.H/ and �Œk�n¹iº.H/ > ı,
then we choose such a coordinate i to explore, and associate this collection of “frame-
like” hyperplanes with the current vertex (in this case, the root of the tree). One of the key
ideas of the paper is that, if such a collection of hyperplanes does not exist for any i 2 Œk�,
then we may use the Lovász Local Lemma to deduce (see Lemma 3.5) that there exists a
coordinate j (which we will choose to explore), and a “large” collection G of hyperplanes
in the current collection, such that j is a fixed coordinate of each. This collection of
“garbage” hyperplanes will later be used, together with (3), to show that this case does
not occur too often.

The plan described above is carried out in Section 3, the main result being Lemma 3.3,
which states that if ı is sufficiently small, then there exists a suitable “exploration tree” T
of A (see Definition 3.2). This exploration tree can be very large, however, and to extract
our ı-generalized frame from it we will need to choose a suitable subtree T . To do so, we
choose k “special” vertices of T , one for each coordinate, and take the union of the paths
from these vertices to the root. If almost all of these special vertices are “good” (that is, we
found a large collection of frame-like hyperplanes when exploring them), then we obtain
a sufficiently large ı-generalized frame. On the other hand, if a positive proportion of
them are “bad”, then we use the “garbage” hyperplanes to show that inequality (3) cannot
hold. In order to carry out this argument, we need to choose the special vertices carefully;
it turns out that it is sufficient to choose them via a depth-first search, see Section 4 for
the details.

3. Exploring the cover

In this section we will take the first step towards Theorem 2.3 by describing a much larger
object that is somewhat easier to construct, the exploration tree. To define these, we first
need to introduce the following simpler objects, which we call index trees. Let us fix, for
the rest of the proof of Theorem 2.3, a collection of finite sets S1; : : : ; Sk with at least two
elements, and let us write N.u/ for the set of out-neighbours of u in a rooted tree, where
we orient the edges away from the root.

Definition 3.1. An index tree T of Œk� is a rooted tree, equipped with a labelling of its
vertices u 7! .Iu; iu/, where Iu � Œk� and iu 2 Iu, that satisfies the following conditions:

(i) the root of T has label .Œk�; i/ for some i 2 Œk�;

(ii) for each vertex v 2 V.T /, [
u2N.v/

Iu D Iv n ¹ivº: (5)
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We can now define the exploration tree of a collection of hyperplanes in SŒk�. Given a
rooted tree T and vertices u; v 2 V.T /, let us write u �T v to indicate that u lies on the
path from v to the root (so, in particular, v �T v).

Definition 3.2. Let �;";ı > 0, and let A be a collection of hyperplanes in SŒk�. A .�;"; ı/-
exploration tree of A is an index tree T of Œk� such that, for each vertex u 2 V.T /,

(a) there exists a collection Au �A such that A0u WD ¹HIu WH 2Auº is a minimal cover
of SIu with F.A0u/ D Iu, and if u 2 N.v/, then

(i) Au � Av;

(ii) F.Au/ � ¹iw W w �T vº [ Iu;

(iii) there exists an element su 2 Siv such that Hiv 2 ¹su; Siv º for each H 2 Au.

Moreover, for each vertex u 2 V.T /, one of the following holds:

(b) u is good, which means that there exists a collection Fu � Au of hyperplanes, with

jFuj � .1 � "/.jSiu j � 1/; (6)

such that iu 2 F.H/ and �Iun¹iuº.H/ > ı for each H 2 Fu.

(c) u is bad, which means that there exists a collection Gu � Au of hyperplanes, withX
H2Gu

2�jF.H/\Iuj=4 � jSiu j=�; (7)

such that iu 2 F.H/ and jF.H/ \ Iuj � 2 for each H 2 Gu.

We think of the elements of Fu (when u is good) and Gu (when u is bad) as hyper-
planes that (respectively) do and do not look like parts of a frame from the perspective of
the vertex u. We will show (see Lemma 3.3 below) that exploration trees always exist, as
long as we choose ı to be sufficiently small, depending on � and ". We will then, in Sec-
tion 4, carefully choose a subtree T of our exploration tree T , and one “special” vertex for
each coordinate i 2 Œk�, with the following three properties: the frames corresponding to
good special vertices are disjoint (unless one of the corresponding sets Si is very small);
if “many” special vertices of T are bad, then A fails to satisfy (3); and if “almost all”
of the special vertices of T are good, then there exists a sufficiently large ı-generalized
frame in A.

The main aim of this section is to prove the following lemma.

Lemma 3.3. Let �; " 2 .0; 1/, and let A be a minimal cover of SŒk� with hyperplanes
such that F.A/ D Œk�. If

0 < ı < 2�9�2"2 log2.1=�"/C11; (8)

then there exists a .�; "; ı/-exploration tree of A.

Let us fix, for the rest of this section, constants 0 < �; " < 1 and ı > 0 satisfying (8).
We will prove Lemma 3.3 by iteratively extending a “partial” exploration tree by applying
the following lemma to a leaf of the current tree.
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Lemma 3.4. Let ; ¤ I � Œk�, and let A be a minimal cover of SI with F.A/ D I .

(a) For each i 2 I , there exists a map J WSi ! P .I n ¹iº/ with[
s2Si

J.s/ D I n ¹iº (9)

and for each s 2 Si there exists As � A such that A0s WD ¹HJ.s/ W H 2 Asº is a
minimal cover of SJ.s/, F.As/ n ¹iº D J.s/, and Hi 2 ¹s; Siº for each H 2 As .

Moreover, there exists i 2 I such that one of the following holds:

(b) There exists a collection F � A with

jF j � .1 � "/.jSi j � 1/

such that i 2 F.H/ and �In¹iº.H/ > ı for each H 2 F .

(c) There exists a collection G � A withX
H2G

2�jF.H/j=4 � jSi j=� (10)

such that i 2 F.H/ and jF.H/j � 2 for each H 2 G .

Let us fix a set ; ¤ I � Œk� until the end of the proof of Lemma 3.4. This section
is organised as follows: in Section 3.1, we will prove two (straightforward) technical
lemmas; in Section 3.2, we will introduce the operation that we will use to construct the
map J and the families As; and in Section 3.3, we will prove Lemma 3.4, and deduce
Lemma 3.3.

3.1. Two technical lemmas

Our first technical lemma (Lemma 3.5) follows from a straightforward application of the
Lovász Local Lemma. We will apply it, in the case that there does not exist a collection
F � A as in Lemma 3.4 (b) for any i 2 I , to a certain subset

Q
i2I Ri � SI , in order to

find an index such that (c) holds. Our second technical lemma (Lemma 3.6) will allow us
to deduce the bound (10) from the condition given by the local lemma. Let us say that a
hyperplane H in RI is non-trivial if H ¤ RI .

Lemma 3.5. Let 0 < � < 1=5 and let ¹Ri W i 2 I º be a collection of finite sets, each with
at least two elements. Let A be a collection of non-trivial hyperplanes in RI , and let Q�
denote the uniform measure on RI . IfX

H2AW i2F.H/

e�jF.H/j Q�.H/ < �=2 (11)

for every i 2 Œk�, then RI is not covered by the hyperplanes in A.

Proof. We choose a point y 2 RI uniformly at random and apply the local lemma. For
each hyperplane H 2 A we define EH to be the (“bad”) event that y 2 H . Observe
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that P .EH / D Q�.H/, and define a dependency graph G on the events ¹EH ºH2A by
setting EH � EH 0 if F.H/ \ F.H 0/ ¤ ;. Observe that if F.H/ \ .F.H .1// [ � � � [

F.H .t/// D ;, then EH is independent of the collection ¹EH .1/ ; : : : ; EH .t/º, so G is a
valid dependency graph.

Next, we define weights

x.H/ D e�jF.H/j Q�.H/

for each H 2 A. To apply the local lemma we need to show that

P .EH / � x.H/
Y

EH�EH 0

.1 � x.H 0//:

To do so, we first claim that 1 � x.H/ � e�2x.H/ for every H 2 A. This holds because

x.H/ D e�jF.H/j Q�.H/ � .e�=2/jF.H/j � .1 � e�1/jF.H/j � 1 � e�1;

where the first inequality is Q�.H/ � 2�jF.H/j, which holds because each set Si has at
least two elements, the second follows since � < 1=5, and the third since the hyperplanes
in A are non-trivial, so jF.H/j � 1. Therefore, for each H 2 A, we haveY

EH�EH 0

.1 � x.H 0//

� exp
�
�2

X
EH�EH 0

x.H 0/
�
� exp

�
�2

X
i2F.H/

X
H 02AW i2F.H 0/

x.H 0/
�

D exp.�2
X

i2F.H/

X
H 02AW i2F.H 0/

e�jF.H
0/j
Q�.H 0// � exp.��jF.H/j/;

where the last inequality follows from (11). This implies that

x.H/
Y

EH�EH 0

.1 � x.H 0// � x.H/e��jF.H/j D Q�.H/ D P .EH /;

as required. By the local lemma, it follows that the probability that none of the events EH
holds is non-zero, and hence there exists a point y 2 RI that is not covered by A.

The second technical lemma is even more straightforward. Recall that S1; : : : ; Sk
are fixed finite sets with at least two elements, and that the (non-empty) set I � Œk� and
positive constants � and " were fixed above.

Lemma 3.6. For each j 2 I , let Rj � Sj be such that jRj j � ".jSj j � 1/C 1, and let Q�
denote the uniform measure on RI . Let H be a hyperplane in SI , and let i 2 F.H/. If

�In¹iº.H/ � 2
�9�2"2 log2.1=�"/C11;

then

Q�.H \RI / �
�

2jF.H/j=2C4jSi j
: (12)
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Proof. Set ` WD jF.H/j and ı0 WD 2�9�2"2 log2.1=�"/C11, and observe that

Q�.H \RI / � jRi j � �In¹iº.H/
Y

j2F.H/; i¤j

jSj j

jRj j
� ı0"

�.`�1/:

Now, note that jRj j � 2 for every j 2 I , and suppose that (12) does not hold. Then

2�.`�1/ �
Y

j2F.H/; j¤i

1

jRj j
D Q�.H \RI / � jRi j �

�

2`=2C4
�
jRi j

jSi j
�

�"

2`=2C4
;

and hence ` � 2 log2.1=�"/C 10. It follows that

2`=2C4 � Q�.H \RI / �
29=2ı0

jRi j

�p
2

"

�`�1
�
29=2ı0

jRi j

�p
2

"

�2 log2.1=�"/C9

D
�"

jRi j
�

�

jSi j
;

as required.

3.2. An operation on a covering system

We next introduce a simple operation that, given a minimal cover of SI , produces a map
J and a collection ¹As W s 2 Siº as required by Lemma 3.4 (a). This operation is the basic
tool we will use in the construction of our exploration trees. Recall that the (non-empty)
set I � Œk� was fixed above, and let A be a minimal cover of SI with F.A/D I . For each
i 2 I and s 2 Si , set

H .i; s/ WD
®
H 2 A W Hi 2 ¹s; Siº

¯
;

and observe that the collection H 0.i; s/ WD ¹HIn¹iº W H 2 H .i; s/º is a cover of SIn¹iº.
Note that moreover, since A is minimal, there is a bijection between H .i; s/ and H 0.i; s/.
Let A�s � H 0.i; s/ be an arbitrary minimal subcover of SIn¹iº, and define

J.s/ WD F.A�s / and As WD ¹H 2 H .i; s/ W HIn¹iº 2 A�s º:

Note that A0s D ¹HJ.s/ W H 2 Asº is a minimal cover of SJ.s/, that F.As/ n ¹iº D J.s/,
and that Hi 2 ¹s; Siº for each H 2 As . To verify that J and ¹As W s 2 Siº satisfy
Lemma 3.4 (a), it therefore only remains to check that (9) holds.

Lemma 3.7. Let A be a minimal cover of SI with hyperplanes. If F.A/ D I , then[
s2Si

J.s/ D I n ¹iº for each i 2 I .

Proof. We will in fact show that for every H 2 A, there exists s 2 Si with HIn¹iº 2 A�s .
Since J.s/ D F.A�s / � I n ¹iº and F.A/ D I , this will be enough to prove the lemma.

To prove the claim, let x 2 SI be an element that is only covered by H (recall that
A is minimal), and set s WD xi . We claim that HIn¹iº 2 A�s . Indeed, since A�s is a cover
of SIn¹iº, it must cover the vector x0 obtained from x by ignoring the i th coordinate, and
HIn¹iº is the only potential element of A�s that can do so.
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3.3. Construction of the exploration tree

Having completed our preparations, we are now ready to prove Lemma 3.4, and deduce
Lemma 3.3.

Proof of Lemma 3.4. Let ; ¤ I � Œk�, and let A be a minimal cover of SI such that
F.A/ D I . To prove part (a), for each i 2 I we apply the construction defined in Sec-
tion 3.2 to obtain a map J W Si ! P .I n ¹iº/ and a collection ¹As W s 2 Siº, where
As � A, as required. In particular, A0s D ¹HJ.s/ W H 2 Asº is a minimal cover of SJ.s/,
F.As/ n ¹iº D J.s/, Hi 2 ¹s; Siº for each H 2 As , and the map J satisfies (9) by
Lemma 3.7.

To prove that there exists i 2 I such that either (b) or (c) holds, let us define an element
s 2 Si to be special for i if there exists a hyperplane H 2 A such that

Hi D s and �In¹iº.H/ > ı:

If this holds, then we say that the hyperplane H is a witness for the pair .s; i/. Now,
for each i 2 I define S�i to be the set of elements s 2 Si that are special for i , and
set Ri WD Si n S

�
i . We consider two cases, corresponding to conditions (b) and (c) of

Definition 3.2, respectively.

Case 1: There exists i 2 I with jRi j < ".jSi j � 1/C 1. In this case we define

F WD
[
s2S�

i

¹H 2 A W H is a witness for .s; i/º:

Since a hyperplane H cannot witness .s; i/ for more than one element s 2 S�i , we have

jF j � jS�i j � jSi j � ".jSi j � 1/ � 1 D .1 � "/.jSi j � 1/;

and by definition i 2 F.H/ and �In¹iº.H/ > ı for each H 2 F .

Case 2: jRi j � ".jSi j � 1/C 1 for every i 2 I . In this case we shall apply Lemma 3.5
to the set RI WD

Q
i2I Ri with � D 1=6. Define A0 � A by removing all hyperplanes

that are witnesses for .s; i/ for some i 2 I and s 2 Si . Observe that none of the witness
hyperplanes intersects RI , so A00 WD ¹H \RI W H 2 A0º is a cover of RI . We claim that
there exists a coordinate i 2 I such thatX

H2A0W i2F.H/

e�jF.H/j Q�.H \RI / � �=2; (13)

where Q� denotes the uniform measure on RI . Since A00 is a cover of RI , and noting
that jRi j � 2 for every i 2 I (by assumption, and since jSi j � 2), this will follow from
Lemma 3.5 if we show that A00 is a collection of non-trivial hyperplanes in RI . To do so,
suppose for a contradiction that RI � H for some H 2 A0, and observe that therefore
F.H/ \ I D ;, and hence also SI � H . However, since A is a minimal cover of SI ,
this implies that A D ¹H º, and hence F.A/ D ;. This contradicts our assumption that
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F.A/ D I , and thus each hyperplane in A00 is indeed non-trivial. As observed above, it
follows by Lemma 3.5 that (13) holds for some i 2 I , as claimed.

Fix such an i 2 I , and define G WD G .1/ [ � � � [ G .k/, where

G .`/ WD ¹H 2 A0 W i 2 F.H/ and jF.H/j D `º

for each ` 2 Œk�. Observe that G .1/ D ;, since ifH 2A and F.H/D ¹iº, then �In¹iº.H/
D 1, and soH would have been removed when we formed A0. Similarly, for eachH 2A0

with i 2 F.H/ we have

�In¹iº.H/ � ı < 2
�9�2"2 log2.1=�"/C11;

since otherwiseH would witness .s; i/ for some s 2 Si , and so would have been removed
when we formed A0. It follows, by Lemma 3.6, that

Q�.H \RI / �
�

2jF.H/j=2C4jSi j

for every H 2 A0 with i 2 F.H/. Finally, combining this with (13) givesX
`�2

jG .`/j
e�`

2`=2
D

X
H2A0W i2F.H/

e�jF.H/j

2jF.H/j=2
�

X
H2A0W i2F.H/

e�jF.H/j Q�.H \RI /
16jSi j

�

�
8�jSi j

�
;

and hence X
H2G

2�jF.H/j=4 D
X
`�2

jG .`/j

2`=4
D

X
`�2

jG .`/j
e�`

2`=2
�
8�jSi j

�
�
jSi j

�
;

as required by (10).

The deduction of Lemma 3.3 is now straightforward. Let @.T / denote the set of ver-
tices of a rooted tree T with no out-neighbours, and call @.T / the boundary of T .

Proof of Lemma 3.3. We construct T , our exploration tree, inductively, with Lemma 3.4
providing the induction step. We begin our induction by defining T0 to be a single vertex v,
and setting Iv WD Œk�, and Av WD A. For the induction step, suppose that we have con-
structed a rooted tree Tt (with root v), a set ;¤ Iu � Œk� and a collection Au �A for each
vertex u 2 V.Tt /, and an index iu 2 Iu for each non-boundary vertex u 2 V.Tt / n @.Tt /,
such that condition (a) of Definition 3.2 holds for every vertex u 2 V.Tt /, and condi-
tion (ii) of Definition 3.1, and either condition (b) or (c) of Definition 3.2, hold for every
non-boundary vertex u 2 V.Tt / n @.Tt /. Observe that, since A is a minimal cover of SŒk�
with hyperplanes such that F.A/ D Œk�, these conditions are satisfied in the base case
t D 0.

To construct TtC1, choose a vertex u 2 @.T / such that jIuj � 2, if one exists (we will
deal with the other case below), and apply Lemma 3.4 to the set Iu and minimal cover
A0u D ¹HIu W H 2 Auº of SIu (noting that F.A0u/ D Iu, by the induction hypothesis).
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We obtain an index i 2 Iu, a map J WSi ! P .I n ¹iº/ and a collection ¹As W s 2 Siº as
in part (a) of the lemma, and either a collection F � A0u as in part (b), or a collection
G � A0u as in part (c). In either case, we set iu WD i , add an out-neighbour of u for each
element s 2 Si such that J.s/ ¤ ;, and to the new vertex w.s/ corresponding to s we
assign the set Iw.s/ D J.s/, the element sw.s/ WD s, and the collection of hyperplanes

Aw.s/ WD ¹H 2 Au W HIu 2 Asº:

Observe first that condition (a) of Definition 3.2 holds for each vertex w.s/. Indeed,
we have Aw.s/ � Au � A, and it follows from Lemma 3.4 (a) that the family

A0w.s/ D ¹HJ.s/ W H 2 Aw.s/º D ¹HJ.s/ W H 2 Asº

is a minimal cover of SJ.s/ with F.A0
w.s/

/D F.As/ n ¹iº D J.s/, thatHiu 2 ¹s; Siuº for
each H 2 Aw.s/, and that

F.Aw.s// � .F.Au/ n Iu/ [ F.As/ � ¹iw W w �T uº [ J.s/:

Note also that, by (9), u satisfies condition (ii) of Definition 3.1.
To complete the induction step, it remains to observe that u is either good or bad, i.e.,

satisfies either condition (b) or (c) of Definition 3.2. Indeed, if Lemma 3.4 (b) holds then
set

Fu WD ¹H 2 Au W HIu 2 F º;

and if Lemma 3.4 (c) holds then set

Gu WD ¹H 2 Au W HIu 2 G º:

In each case, the properties guaranteed by the lemma are exactly those that we require.
Since the properties required of all vertices of TtC1 other than u and its out-neighbours
continue to hold, it follows that TtC1 satisfies the same properties that we assumed for Tt .

Finally, observe that in passing from Tt to TtC1 we replace a vertex of the boundary
by a finite number of boundary elements, each associated with strictly smaller sets. This
process must therefore eventually end, and when it does, it follows that jIuj D 1 for every
boundary vertex u 2 @.Tt /. When this happens, we simply set iu equal to the unique
member of Iu for each u 2 @.Tt /, and claim that u is good. Indeed, by the induction
hypothesis, the collection A0u forms a minimal cover of Siu with iu 2 F.A0u/. It follows
that A0u consists of exactly jSiu j singleton hyperplanes, and so (6) holds with Fu WD Au.
Since condition (ii) of Definition 3.1 holds automatically (with both sides equal to the
empty set), it follows that the tree T that we have constructed is a .�; "; ı/-exploration
tree of A, as required.

4. Extraction of the frame, and the proof of Theorem 2.3

In order to prove Theorem 2.3, we will use the exploration tree T constructed in the pre-
vious section, together with the bound (3), to find a ı-generalized frame for A. Roughly
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speaking, we would like to do this by choosing k vertices ˇ.1/; : : : ; ˇ.k/ such that the
label of ˇ.i/ in T is i , define a tree T to be the union of the paths (in T ) from ˇ.i/ to the
root, and define the elements sj .i/ using the elements su. For each good vertex ˇ.i/ we
have a collection Fi of hyperplanes more or less as required, and for each bad vertex we
obtain a large collection of “garbage” hyperplanes. We might therefore hope to use (3) to
show that there are few bad vertices, and thus to deduce the bound (4).

There are two main problems with the strategy described above: the frame elements
obtained for good vertices might not be disjoint, and each hyperplane might be included
in the garbage set Gu for a very large number of bad vertices. We overcome both obstacles
in the same way: by choosing the vertices ˇ.i/ via a depth-first search algorithm. We do
not expect the reader to be able to immediately see why this choice should help in either
case, but it turns out that proving that it does is (in both cases) surprisingly simple.

In Section 4.1, we will state precisely the object we will construct, and show that its
existence implies the existence of a ı-generalized frame. In Section 4.2, we will describe
how we choose the subtree T � T , the frame elements .F1; : : : ;Fk/, and the “garbage”
sets .G1; : : : ; Gk/; in Section 4.3, we will prove two lemmas on the disjointness of the
frame elements and garbage sets; and in Section 4.4, we will complete the proof of The-
orem 2.3.

4.1. Tree-frames

The purpose of this section is to introduce the following somewhat complicated objects,
which also provide significantly more information (though we will not need this) about
the covering system. We will use these objects to construct our frames.

Definition 4.1. Let T be a rooted tree equipped with maps

˛WV.T /! Œk�; ˇW Œk�! V.T / and 
 WE.T /! S1 [ � � � [ Sk

such that

(a) ˛.u/ ¤ ˛.v/ if u �T v and u ¤ v;

(b) ˛.ˇ.i// D i for each i 2 Œk�;

(c) if e 2 E.T / and v is the endpoint of e that is closer to the root, then 
.e/ 2 S˛.v/;

(d) there exists a permutation � of Œk� such that, if for each i 2 Œk� we set

J.i/ WD ¹˛.u/ W u �T ˇ.i/º and I.i/ WD Œk� n J.i/;

then J.�.i// � ¹�.1/; : : : ; �.i/º for each i 2 Œk�.

Now, for each ı > 0, a ı-generalized tree-frame centred at T is a sequence .F1; : : : ;Fk/,
where Fi is a collection of at most jSi j � 1 hyperplanes, satisfying

(i) i 2 F.H/ for each H 2 Fi ;

(ii) �I.i/.H/ > ı for each H 2 Fi ;
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(iii) Hj 2 ¹
.e/; Sj º for each H 2 Fi and each j 2 J.i/ n ¹iº, where e 2 E.T / is the
edge leaving the unique vertex v �T ˇ.i/ with ˛.v/ D j in the direction of ˇ.i/;

(iv) if min ¹jSi j; jSj jº � ı�1 and i ¤ j , then Fi and Fj are disjoint.

In Sections 4.2–4.4 we will construct, for any A satisfying (3), a ı-generalized tree-
frame satisfying (4). The next lemma shows that this will be sufficient to prove Theo-
rem 2.3.

Lemma 4.2. If .F1; : : : ;Fk/ is a ı-generalized tree-frame centred at a rooted tree T ,
then .F1; : : : ;Fk/ is a ı-generalized frame.

Proof. Let T be a rooted tree equipped with maps ˛, ˇ and 
 satisfying conditions (a)–(d)
of Definition 4.1. In particular, let � be the permutation given by condition (d), and (to
simplify the notation) let us permute the sets S1; : : : ; Sk so that � is the identity, and
therefore J.i/ � ¹1; : : : ; iº (and hence I.i/ � ¹i C 1; : : : ; kº) for each i 2 Œk�. Now, for
each i 2 Œk� and j 2 J.i/ n ¹iº, set sj .i/ WD 
.e/ 2 Sj , where e 2E.T / is the edge leaving
the unique vertex v �T ˇ.i/ with ˛.v/ D j in the direction of ˇ.i/.

We claim that, for each H 2 Fi ,

i 2 F.H/; �I.i/.H/ > ı and Hj 2 ¹sj .i/; Sj º:

Indeed, these follow directly from properties (i)–(iii) of Definition 4.1. Finally, observe
that if min ¹jSi j; jSj jº � ı�1 then Fi and Fj are disjoint, by property (iv).

4.2. Constructing the frame

In this section we will construct the ı-generalized tree-frame .F1; : : : ;Fk/, along with
the rooted tree T , and a collection .G1; : : : ; Gk/ of “garbage” sets. Let C > 0 and " > 0
be arbitrary, as in the statement of Theorem 2.3, and set

� WD
"

24C
and ı WD 2�23�4"2 log2.1=�"/C15: (14)

Recall that the sets S1; : : : ; Sk were fixed earlier, and let us fix, for the rest of this section,
a minimal cover A of SŒk� with hyperplanes such that F.A/ D Œk�. By Lemma 3.3, there
exists a .�; "=2; ı/-exploration tree of A; let us also fix such a tree T .

The first step is to observe that every i 2 Œk� occurs as the label iu of some vertex
u 2 V.T /. This is an immediate consequence of the following simple observation about
index trees.

Observation 4.3. Let T be an index tree, let u 2 V.T /, and let j 2 Iu. Then there exists
v 2 V.T / with u �T v such that iv D j .

Proof. This follows easily from (5): if j 2 Iv and iv ¤ j , then j 2 Iw for somew 2N.u/,
and if j 2 Iv and v 2 @.T / then Iv D ¹j º, so iv D j .
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To extract our ı-generalized tree-frame from the exploration tree T , we will also need
the notion of a depth-first search ordering � on the vertices of a rooted tree T . This is
defined by placing an arbitrary linear order on the out-neighbours of each vertex of T ,
and then setting u � v if either u �T v, or the branch leading to u precedes the branch
leading to v in the ordering of the neighbours of the last common ancestor of u and v.

Definition 4.4. Let � be a depth-first search ordering on the vertices of T . We define a
rooted tree T and a ı-generalized tree-frame centred at T as follows:

(1) For each i 2 Œk�, define ˇ.i/ to be the �-minimal vertex u of T such that iu D i .

(2) Define T to be the union of the paths in T from ˇ.1/; : : : ; ˇ.k/ to the root.

(3) For each u 2 V.T /, define ˛.u/ WD iu.

(4) For each edge uv 2 E.T /, where u 2 N.v/, define 
.uv/ WD su 2 Siv .

(5) (a) Set Fi WD Fˇ.i/ and Gi WD ; for each i 2 Œk� such that ˇ.i/ is a good vertex of T .

(b) Set Gi WD Gˇ.i/ and Fi WD ; for each i 2 Œk� such that ˇ.i/ is a bad vertex of T .

Properties (a)–(d) of Definition 4.1 follow easily from this construction. Indeed, we
have ˛.ˇ.i// D i for each i 2 Œk� by our choice of ˛ and ˇ, and 
.uv/ 2 Siv D S˛.v/
for all uv 2 E.T / with u 2 N.v/. To see that ˛.u/ ¤ ˛.v/ if u �T v and u ¤ v, recall
T is an index tree, and therefore satisfies (5), so ˛.u/ D iu is not included in any of the
sets associated with the descendants of u. For .d/, let � be the permutation of Œk� given
by the ordering � restricted to ¹ˇ.1/; : : : ; ˇ.k/º, and observe that if u �T ˇ.�.i// then
u � ˇ.�.i//, and hence ˇ.˛.u// � ˇ.�.i//, by our choice of ˇ. It follows that ˛.u/ 2
¹�.1/; : : : ; �.i/º, and therefore J.�.i//D ¹˛.u/ W u�T ˇ.�.i//º � ¹�.1/; : : : ; �.i/º for
each i 2 Œk�, as required.

The following lemma shows that properties (i)–(iii) of Definition 4.1 also hold.

Lemma 4.5. Let i 2 Œk� and H 2 Fi , let j 2 J.i/ n ¹iº, and let ej 2 E.T / be the edge
leaving the unique vertex v �T ˇ.i/ with ˛.v/ D j in the direction of the vertex ˇ.i/.
Then

i 2 F.H/; �I.i/.H/ > ı and Hj 2 ¹
.ej /; Sj º:

Proof. Note that Fi ¤ ; implies that the vertex ˇ.i/ is good. By Definition 3.2 (b), it
follows that i 2 F.H/, and also that �Iˇ.i/n¹iº.H/ > ı. Moreover Fi D Fˇ.i/ � Aˇ.i/

and F.Aˇ.i// � J.i/ [ Iˇ.i/, by Definition 3.2, and therefore Hj D Sj for every j 2
I.i/ n Iˇ.i/. Since i 2 J.i/, and therefore i 62 I.i/, it follows that �I.i/.H/ > ı.

Now suppose that ej D uv, with u 2 N.v/, and observe that, by Definition 3.2 (a),
we have H 0j 2 ¹su; Sj º D ¹
.ej /; Sj º for every hyperplane H 0 2 Au. Noting that Fi �

Aˇ.i/ � Au (by Definition 3.2, and since u �T ˇ.i/), it follows that Hj 2 ¹
.ej /; Sj º,
as claimed.

It therefore only remains to show that property (iv) of Definition 4.1 and the inequal-
ity (4) hold. Both of these properties will follow from our choice of ˇ.1/; : : : ; ˇ.k/.
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4.3. Lemmas on disjointness

In this section we will prove two straightforward but crucial lemmas; the first verifies
condition (iv) of the definition of a ı-generalized tree-frame.

Lemma 4.6. If min ¹jSi j; jSj jº � ı�1 and i ¤ j , then Fi and Fj are disjoint.

Proof. Suppose that H 2 Fˇ.i/ \ Fˇ.j /, and suppose that ˇ.i/ � ˇ.j / in the depth-first
search ordering. Recall that i; j 2 F.H/, by Definition 3.2 (b), and �I.i/.H/ > ı, by
Lemma 4.5. Since jSj j � ı�1, it follows that j 62 I.i/, and hence j 2 J.i/, i.e., there
exists u �T ˇ.i/ with ˛.u/D j . However, this is a contradiction, since u � ˇ.i/ � ˇ.j /
in the depth-first search ordering, and ˇ.j /was chosen to be the�-minimal vertex u of T
such that ˛.u/ D j .

The final lemma we need shows that each garbage set only appears on a single
path through T . Since the number of fixed coordinates of HIu decreases along the
path (and decreases strictly whenever ˛.u/ 2 F.H/), this will imply that each hyper-
plane contributes only O.1/ to the sum of the left-hand side of (7) over vertices u 2
¹ˇ.1/; : : : ; ˇ.k/º.

Lemma 4.7. Let H 2 Gi \ Gj . Then either ˇ.i/ �T ˇ.j /, or ˇ.j / �T ˇ.i/.

Proof. Suppose (without loss of generality) that ˇ.i/ � ˇ.j / in the depth-first search
ordering, and suppose that ˇ.i/ 6�T ˇ.j /, which implies that u�ˇ.j / for every u2 V.T /
with ˇ.i/ �T u. Note that j 2 F.H/ � Iˇ.i/ [ J.i/, since H 2 Gi \ Gj and by Defini-
tion 3.2.

If j 2J.i/, then ivDj for some v2V.T /with v�T ˇ.i/, and hence v�ˇ.i/�ˇ.j /.
On the other hand, if j 2 Iˇ.i/, then by Observation 4.3 we have iv D j for some v 2 V.T /
with ˇ.i/ �T v, and hence (by the observation above) v � ˇ.j /. In either case, this
contradicts our choice of ˇ.j / as the �-minimal vertex v of T such that iv D j .

Let us record here the following simple consequence of Lemma 4.7.

Lemma 4.8. If H 2 Gi \ Gj and i ¤ j , then jF.H/ \ Iˇ.i/j ¤ jF.H/ \ Iˇ.j /j.

Proof. By Lemma 4.7, we have (without loss of generality) ˇ.i/�T ˇ.j /, which implies,
by (5) and since ˇ.i/¤ ˇ.j /, that Iˇ.j / � Iˇ.i/ n ¹iº. Since i 2 F.H/\ Iˇ.i/, it follows
that F.H/ \ Iˇ.j / ¨ F.H/ \ Iˇ.i/, as required.

4.4. The proof of Theorem 2.3

We are now ready to prove our main structural result, Theorem 2.3. It only remains to
show that inequality (4) follows from (3). We will use the following easy consequence of
Lemma 4.8. Set B WD ¹i 2 Œk� W ˇ.i/ is badº.

Lemma 4.9. ˇ̌̌[
i2B

Gi

ˇ̌̌
�

1

5�

X
i2B

jSi j:
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Proof. Summing (7) over i 2 B , we obtainX
i2B

X
H2Gi

2�jF.H/\Iˇ.i/j=4 �
1

�

X
i2B

jSi j:

Now, by Lemma 4.8, for each H and ` � 2 there is at most one value of i 2 B such that
H 2 Gi and jF.H/ \ Iˇ.i/j D `, so for each H 2

S
i2B Gi we haveX

i2BWH2Gi

2�jF.H/\Iˇ.i/j=4 �

1X
`D2

2�`=4 D .21=2 � 21=4/�1 < 5;

as required.

Theorem 2.3 now follows easily from the lemmas above.

Proof of Theorem 2.3. We claim that the sequence .F1; : : : ;Fk/ constructed in Defini-
tion 4.4 is a ı-generalized tree-frame centred at T , and satisfies (4). By Lemma 4.2, it
will follow that .F1; : : : ;Fk/ is also a ı-generalized frame, so this will be sufficient to
prove the theorem. Note that properties (a)–(d) and (i)–(iv) of Definition 4.1 follow from
the comments after Definition 4.4, and by Lemmas 4.5 and 4.6. Moreover, by discarding
excess hyperplanes if necessary, we may assume that jFi j � jSi j � 1 for each i 2 Œk�. It
therefore only remains to show that (4) holds.

To do so, recall that T is a .�; "=2; ı/-exploration tree of A, and hence

jFi j > .1 � "=2/.jSi j � 1/

for each i such that ˇ.i/ is a good vertex, i.e., for each i 2 Œk� n B . Now, by Lemma 4.9
and condition (3), we have

1

5�

X
i2B

jSi j � jAj � C

kX
iD1

.jSi j � 1/;

and hence, recalling from (14) that � D 2�4"=C , we obtain

kX
iD1

jFi j �
X

i2Œk�nB

.1 � "=2/.jSi j � 1/ � .1 � "=2/

kX
iD1

.jSi j � 1/ �
X
i2B

jSi j

� .1 � "=2 � 5C�/

kX
iD1

.jSi j � 1/ � .1 � "/

kX
iD1

.jSi j � 1/;

as required.

5. Arithmetic frames and the proof of the lower bound

In order to deduce Theorem 1.1 from Theorem 2.3, we will need to bound the number of
ı-generalized frames in the integers. In this section we will warm up for the calculation
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ahead by counting a simpler set of objects, which we call “arithmetic frames”, and thereby
deducing a lower bound on the number of minimal covering systems of Z. Recall that3

� D

1X
tD1

�
log

t C 1

t

�2
� 0:977:

The following proposition provides the lower bound in Theorem 1.1.

Proposition 5.1. The number of minimal covering systems of Z of size n is at least

exp
��

4
p
�

3
C o.1/

�
n3=2

.logn/1=2

�
as n!1.

We shall first prove Proposition 5.1 for an infinite sequence of values of n (see (18));
since this sequence will be sufficiently dense, it will then be easy to deduce the bound for
the remaining values of n. For each n in our sequence, we will choose a single value ofN ,
and count only covering systems A of size n with lcm.A/ D N . We will moreover count
only covering systems that correspond to simple frames of a certain family of sets (see
below), with a specific (carefully chosen) order; see Definition 5.4. We remark that when
N is not square-free, this is not quite as straightforward as counting the simple frames,
since there will exist hyperplanes that do not correspond to arithmetic progressions in ZN .
In order to characterise the hyperplanes that do, we need to introduce a little notation.

Given N D p
11 � � �p

m
m > 1, we define

hN i WD

m[
iD1

¹.pi ; j / W j 2 Œ
i �º; (15)

and set S.p;e/ D ¹0; : : : ; p � 1º for each .p; e/ 2 hN i. Now define a map

'N WZN ! ShN i D
Y

.p;e/2hN i

S.p;e/

as follows: if x2ZN , then yD'N .x/2ShN i is the vector such that, for each .p; e/2hN i,
y.p;e/ 2 S.p;e/ is the coefficient of pe�1 in the p-ary expansion of x modulo pe . Observe
that 'N is a bijection, by the Chinese Remainder Theorem.

We say that a hyperplane H in ShN i is arithmetic if '�1N .H/ is an arithmetic progres-
sion in ZN . The following observation provides a simple characterization of arithmetic
hyperplanes.

Observation 5.2. A hyperplane H in ShN i is arithmetic if and only if, for each prime p,
the set

¹.p; e/ 2 hN i W .p; e/ 2 F.H/º

forms a .possibly empty/ initial segment of the sequence .p; 1/; .p; 2/; : : : :

3We remark that the constant � also appears in the study of the iterated divisor function;
see [3, 4].
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Proof. Suppose first that H is arithmetic, so A WD '�1N .H/ is an arithmetic progression
in ZN . Let d be the modulus of A, and observe that .p; e/ 2 F.H/ if and only if pe

divides d , by the definition of 'N . On the other hand, if ¹.p; 1/; : : : ; .p; e.p//º � F.H/
and .p; e0/ 62 F.H/ for all e0 > e.p/, then every pair of points of '�1N .H/ differs by a
multiple of pe.p/, and therefore '�1N .H/ is contained in an arithmetic progression with
modulus d D

Q
p p

e.p/. Since jH j D N=d , it follows that '�1N .H/ is in fact the entire
arithmetic progression, as claimed.

Let us now say that a total ordering � on the elements of hN i is arithmetic if

.pi ; 1/ � .pi ; 2/ � � � � � .pi ; 
i / (16)

for all i 2 Œm�. Note that (16) does not impose any constraint on � for different primes,
and in particular we may have .p; i/ � .q; j / � .p; i C 1/. We say that a simple frame
of ShN i is “arithmetic” if the order of the sets is arithmetic, and if moreover each of the
hyperplanes of the frame is arithmetic. We can now prove the following lower bound on
the number of minimal covering systems of Z of size n.

Lemma 5.3. LetN D p
11 � � �p

m
m > 1, and let� be an arithmetic ordering of hN i. There

are at least

exp
� X
.p;e/2hN i

.p � 1/
X

.q;f /�.p;e/
q¤p

log
�
f C 1

f

��

minimal covering systems of Z of size n WD
Pm
iD1 
i .pi � 1/C 1.

Proof. To prove the lemma we count arithmetic frames of ShN i centred at .0; : : : ; 0/,
where the sets S.p;e/ are listed in the order �. Recall from Definition 2.1 that, for each
.p; e/ 2 hN i and each a 2 ¹1; : : : ; p � 1º, we need to choose an arithmetic hyperplane of
the form

Œx1; : : : ; xi�1; a;�; � � � ;��;

with xj 2 ¹0;�º for each j 2 Œi � 1�, where .p; e/ is the i th element in the ordering �. To
do so, we will choose, for each prime q ¤ p, an initial segment (in the order �) of the set

Jq.p; e/ WD ¹.q; f / 2 hN i W .q; f / � .p; e/º

set xj D 0 for the corresponding coordinates, and set xj D � for all other elements of
Jq.p; e/. If we also set xj D 0 for every j 2 Jp.p; e/ then, by Observation 5.2, every
hyperplane obtained in this way will be arithmetic, and therefore the frame we construct
will be arithmetic. We claim that each such choice gives a different minimal covering
system of Z of size n.

To see this, note that the frame consists of n � 1 arithmetic hyperplanes, each of
which corresponds (via the bijection '�1N ) to an arithmetic progression in ZN . Moreover,
the only element of ZN not covered by these arithmetic progressions is 0, so adding
this progression gives a covering system of Z of size n, and (as observed after Defini-
tion 2.1) if we remove the hyperplane H D Œx1; : : : ; xi�1; a; �; � � � ; ��, then the element
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.0; : : : ; 0; a; 0; : : : ; 0/ will be uncovered by the remaining hyperplanes, so the covering
system we have constructed is minimal. Finally, each hyperplane in the frame has a unique
entry a 62 ¹0;�º, and therefore each choice leads to a distinct covering system, as claimed.

Finally, since we have exactlyY
q¤p

.jJq.p; e/j C 1/ D exp
� X
.q;f /�.p;e/

q¤p

log
f C 1

f

�

choices for each hyperplane corresponding to .p; e/, the lemma follows.

Now, for each arithmetic ordering � of hN i, let us define

Q.N;�/ WD
X

.p;e/2hN i

.p � 1/
X

.q;f /�.p;e/
q¤p

log
f C 1

f
: (17)

We will use the following particular arithmetic ordering < to prove Proposition 5.1.

Definition 5.4. For each prime p and e 2 N, set

yp;e WD .p � 1/

�
log

e C 1

e

��1
:

Now, given primes p and q, and e; f 2 N, define

.q; f / < .p; e/ ” yq;f < yp;e:

Moreover, if x 2 R then we write .p; e/ < x if and only if yp;e < x, and define

n.x/ WD 1C
X

.p;e/<x

.p � 1/ and N.x/ WD
Y

.p;e/<x

p: (18)

Note that n.x/;N.x/ <1 for every x 2R, and for anyN 2N, the ordering< on hN i
is arithmetic. Our next lemma, combined with Lemma 5.3, implies Proposition 5.1.

Lemma 5.5. Let x > 0, and set N D N.x/ and n D n.x/. Then

Q.N;</ D

�
4
p
�

3
C o.1/

�
n3=2

.logn/1=2
as x !1.

Proof. Recalling the definition of Q.N;</, observe first that, for each .p; e/ 2 hN i,X
.q;f /<.p;e/

q¤p

log
f C 1

f
D

X
f�1

ˇ̌̌̌²
q ¤ p W q � 1 < yp;e log

f C 1

f

³ˇ̌̌̌
� log

f C 1

f
: (19)

Now, by the prime number theorem, for each fixed f 2 N and as yp;e !1,ˇ̌̌̌²
q ¤ p W q � 1 < yp;e log

f C 1

f

³ˇ̌̌̌
D .1C o.1//

yp;e log fC1
f

log
�
yp;e log fC1

f

� :
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Moreover, the sum in (19) of the terms with f � f0 is o.yp;e=logyp;e/ as f0 !1, soX
.q;f /<.p;e/

q¤p

log
f C 1

f
D
.1C o.1//yp;e

logyp;e

X
f�1

�
log

f C 1

f

�2
D .� C o.1//

yp;e

logyp;e

as yp;e !1. We next fix e 2 N, and sum over primes p. We obtainX
pWyp;e<x

.p � 1/
X

.q;f /<.p;e/
q¤p

log
f C 1

f
D

X
p�1<x log eC1e

.� C o.1//
.p � 1/2�

log eC1
e

�
� logyp;e

D .� C o.1//
x3
�
log eC1

e

�2
3.log x/2

(20)

as x !1, again using the prime number theorem.4 Thus, summing over e, and noting
that the left-hand side of (20) is uniformly bounded from above by an absolute constant
times the right-hand side (without the o.1/ term), we obtain

Q.N;</ D .� C o.1//
x3

3.log x/2
X
e�1

�
log

e C 1

e

�2
D .�2 C o.1//

x3

3.log x/2

as x !1. Finally, using the prime number theorem a third time, we obtain

n.x/ D 1C
X
e�1

X
p�1<x log eC1e

.p � 1/ D .1C o.1//
X
e�1

�
x log eC1

e

�2
2 log

�
x log eC1

e

�
D .1C o.1//

x2

2 log x

X
e�1

�
log

e C 1

e

�2
D .� C o.1//

x2

2 log x
; (21)

and hence Q.N; </ � n�3=2
p

logn !
p
2 .�2=3/.�=2/�3=2 D 4

p
�=3 as x ! 1, as

claimed.

We can now easily deduce the lower bound in Theorem 1.1, the only remaining diffi-
culty being to deal with those n 2 N that are not of the form n D n.x/ for some x 2 R.

Proof of Proposition 5.1. It follows immediately from Lemmas 5.3 and 5.5 that the num-
ber of minimal covering systems of Z of size n.x/ is at least

eQ.N.x/;</ D exp
��

4
p
�

3
C o.1/

�
n.x/3=2

.logn.x//1=2

�
as x !1. Let x > 0 be maximal such that n.x/ � n, and set t WD n � n.x/. Observe
that t < x D o.n/, by (21), and that, by removing the hyperplane Œ0; : : : ; 0� (i.e., the

4Indeed, the prime number theorem implies that
P
p<z p

2 D .1=3C o.1//z3=log z as z!1.
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progression ¹0 .mod N/º) from the construction given in the proof of Lemma 5.3, we
obtain a family of minimal covers of ZN n ¹0º of size n.x/ � 1. We complete each to a
minimal cover of Z of size n by adding the progressions ¹2`�1N .mod 2`N/º, for each
` 2 Œt �, and ¹0 .mod 2tN/º. We obtain a family of

exp
��

4
p
�

3
C o.1/

�
n3=2

.logn/1=2

�
minimal covering systems of Z of size n.x/C t D n, as required.

6. Counting coverings that are far from frames

In this section we will begin the deduction of Theorem 1.1 from Theorem 2.3 by bounding
the number of minimal covers that fail to satisfy (3). In the process, we will obtain a short
proof of a weaker version of Theorem 1.1, bounding the number of minimal covering
systems of Z of size n up to a constant factor in the exponent.

Proposition 6.1. Let C > 0 be a constant, and let n 2 N and N D p
11 � � �p

m
m satisfy

n > C

mX
iD1


i .pi � 1/:

Then the number of minimal covering systems A of Z of size n with lcm.A/ D N is at
most

exp
��

2
p
�

p
C
C o.1/

�
n3=2

.logn/1=2

�
as n!1.

In order to bound the number of covering systems, we will need to bound the number
of choices for the modulus d and shift a of each arithmetic progression in A. The fol-
lowing simple but important lemma, which we will use again later, shows that, given the
moduli, we have relatively few choices for the shifts.

Lemma 6.2. Let d1; : : : ; dn 2N. There are at most .nŠ/2 minimal covering systems AD

¹A1; : : : ; Anº of Z of size n such that, for each i 2 Œn�, the modulus of Ai is di .

Proof. Let A D ¹A1; : : : ; Anº be a minimal covering system of Z, and observe that we
may reorder the elements of A so that, for each i 2 Œn�, the arithmetic progression Ai
covers at least a 1=i proportion of the set

Ri WD Z n
[
j>i

Aj :

Indeed, to see that this is possible we simply choose the sets one by one (in reverse order),
lettingAi be the (remaining) progression in A whose intersection withRi has largest den-
sity, observing that Ri is non-empty (since A is minimal) and recalling that A covers Z.
The total number of choices for A is therefore at most the sum over permutations of
.d1; : : : ; dn/ of the number of sequences .A1; : : : ; An/ with this additional property.
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Now let i2 Œn�, and suppose that we have already chosen progressions .AiC1; : : : ;An/.
We claim that we have at most i choices for the arithmetic progression Ai . Indeed, since
the progressions ¹a .mod di /º (for a 2 ¹0; : : : ; di � 1º) are disjoint, there are at most i
progressions with modulus di that cover at least a 1=i proportion of Ri . It follows that
the number of choices for A is at most .nŠ/2, as claimed.

It therefore only remains to bound the number of choices for the moduli. Note that if
lcm.A/ D p
11 � � �p


m
m then we have at most

Q
i .
i C 1/ choices for each modulus. The

following lemma, which we will use again later, provides a sharp bound on this product.

Lemma 6.3. Let .p1; : : : ; pm/ be a sequence of distinct primes, let .
1; : : : ; 
m/ be a
sequence of positive integers, and let M �

Pm
iD1 
i .pi � 1/. Then

mX
iD1

log.
i C 1/ � .2
p
� C o.1//

�
M

logM

�1=2
as M !1. (22)

Proof. We may assume that p1 < � � � < pm, and reorder the 
i so that 
1 � � � � � 
m,
noting that this does not change the left-hand side of (22), and that the inequality M �Pm
iD1 
i .pi � 1/ still holds under the new ordering. Set xt WDmax¹i W 
i � tº, and observe

that maximizing the left-hand side of (22) is equivalent to maximizing

X WD
X
t�1

xt � log
t C 1

t

subject to the constraint

M �
X
i�1


i .pi � 1/ D
X
t�1

xtX
iD1

.pi � 1/ �
X
t�1

x2t
2

max ¹log xt � 3; 1º; (23)

where in the final step we have used the following bound of Massias and Robin [18]:

xX
iD1

pi �
x2

2

�
log x C log log x �

3

2
�
3:568

log x

�
�
x2

2
.log x � 2/;

which holds for every x � e3. Note that X is increasing in xt for each t � 1, and so (by
allowing 0 � xt 2 R) we may assume that M is equal to the right-hand side of (23).

Applying the method of Lagrange multipliers, it follows that there exists � 2 R such
that, for each t � 1, either

� log
t C 1

t
D xt

�
log xt �

5

2

�
; (24)

or xt � e4. We will first show that the contribution to X of those values of t such that
xt D O.1/ is small. To do so, note that xt D 0 for all t > M , by (23), and observe that
therefore X

t�1

xt � log
�
t C 1

t

�
1Œxt � logM� � .log.M C 1//2: (25)
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We may therefore restrict our attention to those values of t for which xt > logM > e4, so
that, in particular, (24) holds. Let T Dmax¹t W xt > logM º and observe that, by (23)–(25),
we have

X � �

TX
tD1

�
log tC1

t

�2
log xt � 5=2

CO..logM/2/ and M �
�2

2

TX
tD1

�
log tC1

t

�2
log xt

:

To bound these sums, observe that �!1 as M !1 (by (24) and since x1 > logM ),
and therefore, uniformly in 1 � t � log�, we have

log xt D log�C log log
t C 1

t
� log.log xt � 5=2/ D .1C o.1// log�

as M !1. Moreover, if log� � t � T , then log tC1
t
� 1=t and log xt � log logM . It

follows that, for each fixed c 2 R, we have

TX
tD1

�
log tC1

t

�2
log xt � c

D
1C o.1/

log�

X
t�1

�
log

t C 1

t

�2
D
� C o.1/

log�

as M !1, and hence M � .�=2C o.1//�2=log�. Finally, we deduce that

X � .� C o.1//
�

log�
� .2
p
� C o.1//

�
M

logM

�1=2
as M !1, as required.

We can now easily deduce Proposition 6.1.

Proof of Proposition 6.1. We first choose the moduli of the progressions in A D

¹A1; : : : ; Anº, and then the shifts. Since lcm.A/ D N D p

1
1 � � � p


m
m , for each j 2 Œn�

we have at most
mY
iD1

.
i C 1/ � exp
�
.2
p
� C o.1//

�
n

C log.n=C /

�1=2�
choices for the modulus of the arithmetic progression Aj , where the inequality follows
by applying Lemma 6.3 with M D n=C , and using our bound on n. By Lemma 6.2, it
follows that the number of choices for A is at most

.nŠ/2 � exp
��

2
p
�

p
C
C o.1/

�
n3=2

.log.n=C //1=2

�
D exp

��
2
p
�

p
C
C o.1/

�
n3=2

.logn/1=2

�
as n!1, as required.

Using Simpson’s theorem (Theorem 2.4), we can now easily deduce an upper bound
on the number of minimal covering systems that is sharp up to a constant factor in the
exponent.
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Corollary 6.4. The number of minimal covering systems of Z of size n is

exp
�
‚.n3=2/

.logn/1=2

�
:

Proof. The lower bound follows by Proposition 5.1 (or by the simpler construction in the
introduction). For the upper bound, recall that, by Simpson’s theorem, we have

jAj �

mX
iD1


i .pi � 1/C 1 �

mX
iD1


i log2 pi

for any minimal covering system A of Z with lcm.A/ D N D p

1
1 � � � p


m
m , and hence

N � 2n. Thus, applying Proposition 6.1 with C D 1 (and summing over N � 2n), there
are at most

exp
�
.2
p
� C o.1//

n3=2

.logn/1=2

�
minimal covering systems of Z of size n, as required.

7. Proof of Theorem 1.1

In this section we will complete the proof of Theorem 1.1; we begin by giving an overview
of the remaining part of the argument. Let A be a minimal covering system of Z of size n,
let N D lcm.A/ and, recalling (15), set S.p;e/ D ¹0; : : : ; p � 1º for each .p; e/ 2 hN i.
We map ZN into ShN i D

Q
.p;e/2hN i S.p;e/ as described in Section 5; that is, we associate

x 2 ZN with the vector y D 'N .x/ 2 ShN i, where y.p;e/ is the coefficient of pe�1 in the
p-ary expansion of x modulo pe . Note that the image of each progression in A 2 A is a
hyperplane in ShN i. Moreover, by Observation 5.2, ifH D 'N .A/ then, for each prime p,
the set

¹.p; e/ 2 hN i W .p; e/ 2 F.H/º

forms a (possibly empty) initial segment of the sequence .p; 1/; .p; 2/; : : : . Recall that we
call hyperplanes that satisfy this condition “arithmetic”.

We will apply Theorem 2.3 to A (with C D 4 and " > 0 an arbitrarily small constant),
and deduce that either (3) fails to hold, or A contains an almost optimal ı-generalized
frame .F.p;e/ W .p; e/ 2 hN i/. In the former case we are done by Proposition 6.1, so let
us assume the latter. We will carefully count the number of choices for the fixed sets of
the frame elements F.p;e/ such that p > ı�1. The bound we obtain will be sufficiently
strong unlessN is primarily composed of primes smaller than ı�1; however, for suchN it
turns out that the simpler argument used in Section 6 suffices to give a sufficiently strong
bound.

Next, we bound the number of choices for the fixed sets of the remaining hyperplanes:
those in frame sets F.p;e/ for some prime p � ı�1, and those not used in the frame. Sur-
prisingly, it turns out that we can again obtain a sufficiently strong bound using the method
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of Section 6. Roughly speaking, these “extra” hyperplanes are being used inefficiently,
and would be better off (in terms of increasing the number of choices) by contributing to
the construction of a larger frame (and thus a different value of N ).

Finally, noting that the fixed sets of the hyperplanes in A correspond to the moduli
of the original arithmetic progressions, we will use Lemma 6.2 to bound the number of
minimal covering systems of Z of size n with given moduli.

7.1. Choosing the fixed sets of ı-generalized frames

Let N 2 N and ı > 0, and suppose that .F.p;e/ W .p; e/ 2 hN i/ is a ı-generalized frame
in ShN i consisting of arithmetic hyperplanes.5 Recall that F.p;e/ is a collection of at most
p � 1 hyperplanes, and there exists an ordering � on hN i, and for each .p; e/ 2 hN i a set

I.p; e/ � ¹.q; f / 2 hN i W .p; e/ � .q; f / and .q; f / ¤ .p; e/º; (26)

such that �I.p;e/.H/ > ı for each .p; e/ 2 hN i and H 2 F.p;e/. Recall also that .p; e/ 2
F.H/, and the sets F.p;e/ with p > ı�1 are disjoint. We remark that the ordering�might
not be arithmetic, but the hyperplanes are arithmetic, and this will turn out to be sufficient.

In this subsection we will bound the number of choices for the fixed sets of the hyper-
planes in .F.p;e/ W .p; e/ 2 hN i/ corresponding to primes larger than ı�1. While doing
so, it will be convenient to write hN iı WD ¹.p; e/ 2 hN i W p > ı�1º, and to define

�.N/ WD
X

.p;e/2hN i

.p � 1/ and �ı.N / WD
X

.p;e/2hN iı

.p � 1/:

Note that, by Simpson’s theorem, if lcm.A/D N then jAj � �.N/. Given an ordering �
on hN i, for each .p; e/ 2 hN i set

M�.p; e/ WD
Y

.q;f /�.p;e/

q;

and given a collection A of hyperplanes, let us write D.A/ WD .F.H/ W H 2 A/ for the
corresponding collection of fixed sets. We begin by observing the following upper bound
(cf. Lemma 5.3) on the number of choices for the sequence .D.F.p;e// W .p; e/ 2 hN iı/.

Lemma 7.1. Let N 2 N and ı > 0, and let � be an ordering on hN i. There are at most

exp
� X
.p;e/2hN iı

.p � 1/

� X
.q;f /2hM�.p;e/i

log
f C 1

f
C
1

ı2

��
sequences .D.F.p;e// W .p; e/ 2 hN iı/ such that .F.p;e/ W .p; e/ 2 hN i/ is a simple ı-
generalized frame in ShN i with ordering� and consisting only of arithmetic hyperplanes.

5By Definition 2.2, we may suppose that ı is sufficiently small; in particular, we will assume
that ı < 1=2.
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Proof. Let .p; e/ 2 hN iı , let H 2 F.p;e/, and let q be a prime. Recall that, since H is an
arithmetic hyperplane, it follows by Observation 5.2 that the set F.H/ induces a (possibly
empty) initial segment of the set .q; 1/; .q; 2/; : : : :

Suppose first that q > ı�1. We claim in this case that there are at most

j¹f W .q; f / 2 hM�.p; e/iºj C 1 D exp
� X
f W .q;f /2hM�.p;e/i

log
f C 1

f

�
choices for this initial segment. To see this, recall that �I.p;e/.H/ > ı, and therefore
.q; f / 62 F.H/ for every .q; f / 2 I.p; e/. By (26), it follows that F.H/ does not contain
any element .q; f / with .p; e/ � .q; f / and .p; e/ ¤ .q; f /, and therefore the elements
.q;f / inF.H/ form an initial segment (in increasing order of f ) of the set ¹.q;f /2 hN i W
.q; f / � .p; e/º. Since this set has the same size as the set ¹f W .q; f / 2 hM�.p; e/iº
(which is an initial segment of the positive integers), the claimed bound on the number of
choices follows.

Now suppose instead that q � ı�1. In this case the condition �I.p;e/.H/ > ı only
implies that F.H/ contains at most log2.ı

�1/ elements of I.p; e/, and hence, by (26), at
most log2.ı

�1/ elements .q; f / such that .q; f / 6� .p; e/. Repeating the argument from
the case q > ı�1, it follows that we have at most

j¹f W .q; f / 2 hM�.p; e/iºj C 1C log2.ı
�1/ � exp

� X
f W .q;f /2hM�.p;e/i

log
f C 1

f
C
1

ı

�
choices for the initial segment of the set .q; 1/; .q; 2/; : : : :

Finally, recall that there are at most p� 1 hyperplanes in F.p;e/ for each .p;e/2 hN iı ,
and note that there are at most ı�1 primes q � ı�1. Hence, multiplying the number of
choices for all .p; e/ 2 hN iı , all H 2 F.p;e/, and all primes q that divide N , it follows
that we have at most

exp
� X
.p;e/2hN iı

.p � 1/

� X
.q;f /2hM�.p;e/i

log
f C 1

f
C
1

ı2

��
choices for the sequence .D.F.p;e// W .p; e/ 2 hN iı/, as claimed.

For each N 2 N and ı > 0, and each ordering � on hN i, let us define

Qı.N;�/ WD
X

.p;e/2hN iı

.p � 1/
X

.q;f /2hM�.p;e/i

log
f C 1

f
:

The following lemma provides a sufficiently strong upper bound on Qı.N;�/.

Lemma 7.2. Let N 2 N and ı > 0, and let � be an ordering on hN i. If �ı.N / >
ı � �.N/, then

Qı.N;�/ �

�
4
p
�

3
C o.1/

�
�ı.N /

3=2

.log�ı.N //1=2
as N !1. (27)
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We first use Lemma 6.3 to obtain the following bound when �ı.M/ is large.

Lemma 7.3. Let M 2 N and ı > 0. ThenX
.q;f /2hM i

log
f C 1

f
� .2
p
� C o.1//

�
�ı.M/

log�ı.M/

�1=2
C
2

ı
log�.M/

as �ı.M/!1.

Proof. Let M D p
11 � � �p

m
m , and observe that

X
.q;f /2hM i

log
f C 1

f
D

mX
iD1

log.
i C 1/ D
X

i Wpi>ı
�1

log.
i C 1/C
X

i Wpi�ı
�1

log.
i C 1/

� .2
p
� C o.1//

�
�ı.M/

log�ı.M/

�1=2
C
2

ı
log�.M/

as �ı.M/!1, as required, by Lemma 6.3 applied to the sequence 
i � 1Œpi > ı�1�, and
by the bound 
i � �.M/, which holds for every i 2 Œm�.

When �ı.M/ is bounded and �.M/!1, we will instead use the boundX
.q;f /2hM i

log
f C 1

f
�
3

ı
log�.M/; (28)

which follows from the proof above by using the trivial bound log.
i C 1/ � �ı.M/ for
the (bounded number of) large primes pi , instead of applying Lemma 6.3.

We will also need the following easy lemma.

Lemma 7.4. Let 2 � m0 < m1 < � � � < m` � m. Then

`�1X
iD0

�
mi

logmi

�1=2
.miC1 �mi / �

�
2

3
C o.1/

�
m3=2

.logm/1=2
as m!1.

We can now prove Lemma 7.2.

Proof of Lemma 7.2. Observe first that, by Lemma 7.3 applied with M DM�.p; e/, we
have X

.q;f /2hM�.p;e/i

log
f C 1

f

� .2
p
� C o.1//

�
�ı.M�.p; e//

log�ı.M�.p; e//

�1=2
C
2

ı
log�.M�.p; e//

as �ı.M�.p; e//!1, and when �ı.M�.p; e// is bounded, by (28) we haveX
.q;f /2hM�.p;e/i

log
f C 1

f
�
3

ı
log�.N/
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as �.N/!1, since �.M�.p;e//��.N/. Thus, summing over .p;e/2 hN iı , it follows
that

Qı.N;�/� .2
p
�Co.1//

X
.p;e/2hN iı

.p�1/

�
�ı.M�.p; e//

log�ı.M�.p; e//

�1=2
C
3

ı
�.N / log�.N/

as N !1 (which, in particular, implies that �.N/!1).
Next, we apply Lemma 7.4 with .m0; : : : ; m`/ D .�ı.M�.p; e///.p;e/2hN iı and

m D �ı.N /. Note that if .p0; e0/ immediately follows .p; e/ in the ordering � restricted
to hN iı , then

�ı.M�.p
0; e0// � �ı.M�.p; e// D p � 1;

since �ı only counts the large primes. It follows that

Qı.N;�/ �

�
4
p
�

3
C o.1/

�
�ı.N /

3=2

.log�ı.N //1=2
C
3

ı
�.N / log�.N/

as N !1. Since �ı.N / > ı � �.N/ by assumption, we obtain (27), as required.

Before continuing, let us observe that the condition �ı.N / > ı � �.N/ in the state-
ment of Lemma 7.2 (which in any case could be weakened considerably) is not a serious
restriction, since we can easily obtain, using the method of Section 6, a suitable bound on
the number of minimal covering systems whose least common multiple has mostly small
prime factors.

Lemma 7.5. Let ˇ; ı > 0 be constants and let n 2N andN 2N with �ı.N /� ˇ ��.N/.
The number of minimal covering systems A of Z of size n with lcm.A/ D N is at most

exp
�
.2
p
ˇ� C o.1//

n3=2

.logn/1=2

�
as n!1.

Proof. The proof is essentially the same as that of Proposition 6.1, but we use Lemma 7.3
in place of Lemma 6.3 to count the choices of the moduli. To be more precise, in order to
count the minimal covering systems AD ¹A1; : : : ;Anº of Z of size n with lcm.A/D N ,
we will first choose the moduli, and then the shifts. Observe first that, for each j 2 Œn�,
we have at mostY

.p;e/2hN i

e C 1

e
� exp

�
.2
p
� C o.1//

�
�ı.N /

log�ı.N /

�1=2
C
2

ı
log�.N/

�
choices for the modulus of the arithmetic progression Aj . Indeed, the left-hand side is
simply the number of divisors of N , and the inequality follows from Lemma 7.3.

Now, since (by assumption and by Simpson’s theorem) we have �ı.N / � ˇ � �.N/
� ˇn, it follows by Lemma 6.2 that the number of choices for A is at most

.nŠ/2 �exp
�
.2
p
ˇ�Co.1//

n3=2

.logˇn/1=2
C
2n logn
ı

�
D exp

�
.2
p
ˇ�Co.1//

n3=2

.logn/1=2

�
as n!1, as claimed.
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7.2. Proof of Theorem 1.1

We are finally ready to put together the pieces and deduce our main counting result. We
will need the following easy bound.

Lemma 7.6. For every m 2 N and x � 0, we have

.mC x/3=2

.log.mC x//1=2
�

m3=2

.logm/1=2
C

�
3

2
C o.1/

��
m

logm

�1=2
x as m!1.

We can now deduce Theorem 1.1 from Theorem 2.3, Propositions 5.1 and 6.1, Lem-
ma 6.2, Simpson’s theorem, and the results of this section.

Proof of Theorem 1.1. The lower bound follows immediately from Proposition 5.1, so we
will prove the upper bound. Observe first (cf. Section 6) that, by Simpson’s theorem, if
A is a minimal covering system of Z of size n, then lcm.A/ � 2n. We may therefore
fix N � 2n, and consider only covering systems A such that lcm.A/ D N . We associate
each progression A 2 A with an arithmetic hyperplane in ShN i using the bijection 'N , as
described above.

Let " > 0 be an arbitrarily small constant, set C D 4, and let ı D ı.C; "/ > 0 be the
constant given by Theorem 2.3. Suppose first that either n > 4�.N / or �.N/ > 4�ı.N /.
Then, by Proposition 6.1 and Lemma 7.5, there are at most

exp
�
.
p
� C o.1//

n3=2

.logn/1=2

�
minimal covering systems A of Z of size n with lcm.A/D N , as required. By Simpson’s
theorem, let us therefore assume from now on that �.N/ � n � 4�.N / � 24�ı.N /.

By Theorem 2.3 (and our choice of ı), every minimal covering system A of Z of size
n � 4�.N / with lcm.A/ D N contains a ı-generalized frame .F.p;e/ W .p; e/ 2 hN i/,
with X

.p;e/2hN i

jF.p;e/j � .1 � "/�.N /: (29)

Since �.N/ � 4�ı.N /, it follows by Lemmas 7.1 and 7.2 that the number of sequences
.D.F.p;e// W .p; e/ 2 hN iı/ such that .F.p;e/ W .p; e/ 2 hN i/ is a ı-generalized frame
in ShN i consisting only of arithmetic hyperplanes is at most

�.N/Š � exp
��

4
p
�

3
C o.1/

�
�ı.N /

3=2

.log�ı.N //1=2
C
�ı.N /

ı2

�
; (30)

where the factor of �.N/Š bounds (noting that �.N/ � jhN ij) the number of choices for
the ordering � on hN i associated with the ı-generalized frame.

We next need to count the choices of the moduli for the remaining arithmetic progres-
sions in A, that is, those corresponding to hyperplanes that are not included in F.p;e/ for
any .p; e/ 2 hN iı . Recall (from Definition 2.2) that the sets F.p;e/ with .p; e/ 2 hN iı are
pairwise disjoint, so there are exactly

x WD n �
X

.p;e/2hN iı

jF.p;e/j
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such arithmetic progressions in A. We bound the number of choices for the fixed sets of
these remaining hyperplanes in A using Lemma 7.3, which implies that we have at mostY

.p;e/2hN i

e C 1

e
� exp

�
.2
p
� C o.1//

�
�ı.N /

log�ı.N /

�1=2
C
2

ı
log�.N/

�
choices for each. Combining this bound with (30), and recalling that �.N/�n�24�ı.N /,
it follows that we have at most

exp
��

4
p
�

3
C o.1/

�
�ı.N /

3=2

.log�ı.N //1=2
C .2
p
� C o.1//

�
�ı.N /

log�ı.N /

�1=2
x

�
(31)

choices for the moduli of the arithmetic progressions in A, given N and x.
In order to bound (31), we apply Lemma 7.6 with m D �ı.N /. Since 0 � x � n and

2�4n � m � n, we obtain

�ı.N /
3=2

.log�ı.N //1=2
C
3

2

�
�ı.N /

log�ı.N /

�1=2
x �

.�ı.N /C x/
3=2

.log.�ı.N /C x//1=2
C

o.n3=2/

.logn/1=2
(32)

as n!1. Now, since jF.p;e/j � p � 1 for each .p; e/ 2 hN i, it follows from (29) that

n � x D
X

.p;e/2hN iı

jF.p;e/j � �ı.N / � "�.N / � �ı.N / � "n;

so �ı.N /C x � .1C "/n, and hence

.�ı.N /C x/
3=2

.log.�ı.N /C x//1=2
� .1C "/3=2

n3=2

.logn/1=2
:

Combining this with (31) and (32), it follows that we have at most

exp
��

4
p
�

3
C o.1/

�
.1C "/3=2

n3=2

.logn/1=2

�
choices for the moduli of the progressions in A.

Finally, by Lemma 6.2, it follows that there are at most

exp
��

4
p
�

3
CO."/

�
n3=2

.logn/1=2

�
minimal covering systems of Z of size n with lcm.A/ D N . Since " > 0 was arbitrarily
small, this completes the proof of Theorem 1.1.

Appendix A. Proof of the geometric Simpson’s theorem

In this appendix we will provide, for the reader’s convenience, a proof of the following
slight generalization of Simpson’s theorem [22].
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Theorem A.1 (Simpson’s theorem). Let A be a minimal cover of SŒk� with hyperplanes,
and let I ¨ F.A/. Then

j¹H 2 A W F.H/ 6� I ºj �
X

i2F.A/nI

.jSi j � 1/C 1:

Note that Theorem 2.4 follows from Theorem A.1 by setting I D ;.

Proof. The proof is by induction on jF.A/j. Set

L.i/s WD S1 � � � � � Si�1 � ¹sº � SiC1 � � � � � Sk

for each i 2 Œk� and s 2 Si , and note that if F.A/ D ¹iº, then A (being minimal) must
consist precisely of the jSi j hyperplanesL.i/s , one for each s 2 Si . Moreover, if I ¨ F.A/

then I D ;, and hence

j¹H 2 A W F.H/ 6� I ºj D jAj D jSi j;

as required. So suppose that jF.A/j � 2, and (recalling that I ¨F.A/) choose an element
i 2 F.A/ n I . For each s 2 Si , let As � A be a minimal cover of L.i/s , and observe that

A D
[
s2Si

As;

since A is minimal. For convenience, let us assume (without loss) that Si D ¹1; : : : ; pº.
Now, set Fi .H/ WD F.H/ n ¹iº for eachH 2As (and similarly for a family of hyper-

planes), and define a sequence of sets .R0; : : : ; Rp/ by setting R0 WD I , and

Rs WD Rs�1 [ Fi .As/

for each s 2 Si , so in particular Rp D F.A/ n ¹iº. Now set Is WD Rs�1 \ Fi .As/, and
define

Qs WD ¹H 2 As W Fi .H/ 6� Isº:

We claim that, applying the induction hypothesis to the minimal cover As of L.i/s (which
we naturally identify with S1 � � � � � Si�1 � SiC1 � � � � � Sk), we have eitherRs�1 DRs ,
or

jQsj �

X
j2RsnRs�1

.jSj j � 1/C 1 (33)

for each s 2 Si . To see this, simply note that Rs nRs�1 D Fi .As/ n Is , so if Rs�1 ¤ Rs
then Is ¨ Fi .As/, and that Fi .As/ � F.A/ n ¹iº, so (since i 2 F.A/) we have jFi .As/j

< jF.A/j.
Set J WD ¹s 2 Si W Rs�1 ¤ Rsº, and recall that (33) holds for each s 2 J . We claim

that ˇ̌̌[
s2J

Qs

ˇ̌̌
D

X
s2J

jQsj � jJ j � .jSi j � 1/C
X

j2F.A/nI

.jSj j � 1/:
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The inequality follows from summing (33) over s 2 J , and recalling that i 2 F.A/ n I ,
so it remains to show that the sets Qs are disjoint. To see this, observe that, if H 2 As ,
then

Fi .H/ 6� Is ” Fi .H/ � Rs and Fi .H/ 6� Rs�1;

and so H 2 As for at most one element s 2 Si .
Finally, we claim that for each s 2 Si n J , there exists a hyperplane H 2 A such that

H � L
.i/
s and F.H/ 6� I . To see this, observe first that L.i/s is not covered by

®
H 2 A W

i 62 F.H/
¯
, as otherwise SŒk� would be covered by

®
H 2 A W i 62 F.H/

¯
, contradicting

the minimality of A and the fact that i 2 F.A/. It follows that there exists H 2 A with
H � L

.i/
s , and we have F.H/ 6� I because i 2 F.H/ n I . Moreover, none of these

jSi j � jJ j distinct hyperplanes is included in Qs for any s 2 J , since they do not intersect
the set

S
s2J L

.i/
s .

Hence, noting that F.H/ 6� I for eachH 2Qs (since I � Rs�1 and F.H/ 6� Rs�1),
we obtain

j¹H 2 A W F.H/ 6� I ºj �
ˇ̌̌[
s2J

Qs

ˇ̌̌
C jSi j � jJ j �

X
j2F.A/nI

.jSj j � 1/C 1;

as required.

Acknowledgments. This research was partly carried out during a one-month visit by the authors to
IMT Lucca, and partly during visits by various subsets of the authors to IMPA and to the University
of Memphis. We are grateful to each of these institutions for their hospitality, and for providing
a wonderful working environment. We are also grateful to Christian Elsholtz for pointing out the
appearance of the constant � in the iterated divisor function.

Funding. The first two authors were partially supported by NSF grant DMS 1600742,
the third author was partially supported by FAPERJ (Proc. E-26/202.993/2017) and CNPq
(Proc. 304237/2016-7), and the fifth author was supported by a Trinity Hall Research Studentship.

References

[1] Balister, P., Bollobás, B., Morris, R., Sahasrabudhe, J., Tiba, M.: The Erdős–Selfridge problem
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