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Abstract. We evaluate the triple correlation of eigenvalues of the Laplacian on generic flat tori in
an averaged sense. As two consequences we show that (a) the limit inferior (resp. limit superior)
of the triple correlation is almost surely at most (resp. at least) Poissonian, and that (b) almost all
flat tori contain infinitely many gaps in their spectrum that are at least 2:006 times longer than the
average gap.

The significance of the constant 2:006 lies in the fact that there exist sequences with Poissonian
pair correlation and with consecutive spacings bounded uniformly from above by 2, as we also
prove in this paper. Thus our result goes beyond what can be deduced solely from the Poissonian
behavior of the pair correlation.

Keywords. Billiard, flat torus, long gaps, spectrum, Berry–Tabor conjecture, Poisson statistics,
pair correlation, triple correlation, Diophantine inequalities

1. Introduction

1.1. The Berry–Tabor conjecture for tori

A central objective in quantum chaos is the classification of quantum systems according to
universal statistical properties. We consider the energy spectrum �1 � �2 � � � � of a bound
Hamiltonian system, such as the geodesic flow on a compact Riemannian manifold, where
the energy levels are the eigenvalues of the associated Laplace–Beltrami operator. Accord-
ing to central conjectures [2,4], one expects a fundamental dichotomy between integrable
and chaotic systems. In particular, the local statistics of the sequence, normalized to have
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mean spacing 1, should imitate those of certain random matrix ensembles. In the former
case, the local statistical properties are expected to coincide with those of a sequence of
points coming from a Poisson process, at least in generic cases. In particular, the proba-
bility that a randomly chosen interval ŒX; X C r� of fixed length r contains exactly k of
the numbers ƒj is conjectured to be .kŠ/�1rke�r : From a rigorous mathematical stand-
point these conjectures are completely out of reach, and we content ourselves here with
the simple, yet fundamental example of the following class of integrable Hamiltonian
systems.

Let ƒ � R2 be a lattice of rank 2. Then R2=ƒ endowed with the Euclidean metric
is a flat torus and � D � @2

@x2
�

@2

@y2
is the Laplace–Beltrami operator on R2=ƒ. The

eigenvalues of the Laplacian � on R2=ƒ are given by 4�2k!k22 with ! belonging to the
dual lattice ƒ?. Thus the eigenvalues are integral values of quadratic forms,

q˛.m; n/ D ˛1m
2
C ˛2mnC ˛3n

2; ˛ D .˛1; ˛2; ˛3/; (1.1)

where ˛ is always constrained by 4˛1˛3 > ˛22 since q˛ is necessarily positive-definite,
and ˛ is determined by the lattice ƒ up to GL2.Z/-invariance. A standard fundamental
domain (up to boundary) is

D WD ¹.˛1; ˛2; ˛3/ 2 R3 j 0 � ˛2 � ˛1 � ˛3º;

and for convenience we will restrict ˛ to this set. Each quadratic form q˛ has the automor-
phism .m;n/ 7! .�m;�n/, so each positive eigenvalue occurs with multiplicity at least 2.
It is therefore natural to desymmetrize the spectrum and consider only the values q˛.m;n/

withm> 0 ormD 0 and n� 0. This does not catch all multiplicities (e.g. if ˛D .1;0;1/),
but for typical ˛ one may expect that desymmetrized spectrum is multiplicity-free.

Given ˛ D .˛1; ˛2; ˛3/ we denote by 0 < ƒ1 � ƒ2 � � � � the ordered set of values

�q
4˛1˛3 � ˛

2
2

� q˛.m; n/ (1.2)

where m > 0 or m D 0 and n � 0. Asymptotically the average spacing between the ƒi
is 1, thus we think ofƒi as the properly re-scaled multi-set of eigenvalues of the Laplacian
on R2=ƒ (desymmetrized after removing the obvious double multiplicity of eigenvalues).

1.2. Triple correlation

In this setting, a consequence of the Berry–Tabor conjecture is that for “generic” tori
the distribution of the gaps ƒiC1 � ƒi should coincide with the distribution of nearest
neighbor spacings of the Poisson process.1 Precisely, the number of i � N for which

1As an aside, the parallelogram rule implies that there are linear relations in the sequence ofƒi ,
but they do not seem to influence the fine-scale statistical properties.
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ƒiC1 �ƒi 2 Œ0; r� should be asymptoticallyN
R r
0
e�u du. The word “generic” implicitly

assumes a measure, and in this case the natural measure on D is the hyperbolic measure

d�hyp.˛1; ˛2; ˛3/ D
d˛1 d˛2 d˛3

.4˛1˛3 � ˛
2
2/
3=2
:

While the Berry–Tabor conjecture for generic flat tori remains wide open, some results
have been obtained for n-correlations

Tn.˛I I2; : : : ; InIN/

WD
1

N
j¹.i1; : : : ; in/ 2 Jn.N / j ƒij .˛/ �ƒi1.˛/ 2 Ij for 2 � j � nºj;

where Jn.N / � Œ1; N �
n is the subset of tuples all of whose entries are pairwise distinct

and I2; : : : ; In are intervals in R. When I2 D � � � D In D I we write Tn.˛I I IN/. We
expect that the n-correlations coincide for all n � 1 with those of a sequence generated
by a Poisson process, i.e. for almost all ˛ with respect to the measure �hyp and for any
fixed intervals I2; : : : ; In we expect to have

Tn.˛I I2; : : : ; InIN/! �.I2/ � : : : � �.In/ .N !1/; (1.3)

where � denotes Lebesgue measure.
Sarnak [14] established (1.3) for n D 2 for almost all ˛ with respect to the hyperbolic

measure �hyp (equivalently for almost all ˛ with Lebesgue measure on ˛1; ˛2; ˛3). This
was generalized in [16] to four-dimensional tori. Eskin, Margulis and Mozes [7] gave
explicit Diophantine conditions on ˛ under which (1.3) holds when n D 2.

In contrast nothing is known about correlations of higher order, that is, for n > 2.
(For higher-dimensional tori, VanderKam [17] has results for higher order correlations,
which are based on the fact that more Diophantine variables are available.) While the
pair correlation is associated to an orthogonal group of signature .2; 2/, no useful group
structure seems to be available in the case of higher correlations. In particular, the methods
of [7] are not available. Our main result sheds some light on the case n > 2 by establishing
(1.3) for n D 3 in an averaged sense.

Theorem 1. Let R � D be a three-dimensional rectangle of finite hyperbolic measure
�hyp.R/, and let J � R be a finite interval. Then

lim
N!1

Z
R

T3.˛I I1; I2IN/ d�hyp.˛/ D �.I1/�.I2/�hyp.R/; (1.4)

uniformly for all intervals I1; I2 � J .

A consequence of Theorem 1 is a sharp upper bound for lim inf T3.˛II IN/ for almost
all ˛ 2 D with respect to �hyp.

Corollary 2. Let I � R be a finite interval. For almost all ˛ 2 D with respect to the
measure �hyp.˛/ we have

lim inf
N!1

T3.˛I I IN/ � �.I /
2 and lim sup

N!1

T3.˛I I IN/ � �.I /
2:
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Although the statistical investigation of the spectrum of a Riemann surface is a prob-
lem of mathematical physics, the main input of the proof of Theorem 1 is of Diophantine
nature and consists in an involved lattice point count in a certain 6-dimensional region;
see Section 3. It uses to some extent ideas of [14], but since Sarnak studies an L2-mean
of the pair correlation, he has 8 variables at his disposal, while we have only 6. Con-
sequently, the Diophantine analysis becomes more delicate and depends, among other
things, on non-trivial bounds for Kloosterman sums. In fact, our result can be viewed as
a “thin subset” version of Sarnak’s result. These remarks are explained in more detail in
Section 1.4.

1.3. Long gaps in Poissonian sequences

Theorem 1 was originally motivated by the problem of establishing the existence of large
gaps between consecutive ƒi . This problem stands in sharp contrast with the problem
of establishing small gaps between consecutive ƒi . In the case of rectangular tori (i.e.
˛2 D 0) it is possible to obtain nearly optimal results for almost all ˛, that is, gaps of
size N�1C" among the first N eigenvalues (birthday paradox); see [3]. As long gaps
in a Poisson process typically grow at a logarithmic scale, their investigation is a more
delicate endeavour. In addition, long gaps are harder to detect from a technical point of
view. While a difference of any two eigenvalues is in particular an upper bound for the
smallest gap, no such approximation is available for a lower bound of long gaps.

It is therefore not surprising that comparatively little is known about large gaps
between consecutive ƒi . Using a variant of Corollary 2 (see Lemma 2) we obtain the
following partial progress on this question.

Corollary 3. Let G be the unique positive solution to the equation

35 � 18G � 9G2 C .12G � 10/
p
6G � 5 D 0:

Then for almost all ˛ with respect to the measure �hyp we have

lim sup
i!1

.ƒiC1.˛/ �ƒi .˛// � G D 2:00636193892510 : : : :

Remark 1. In fact we prove a slightly stronger result: Given " > 0, for almost all ˛ there
exists a subsequence N1 < N2 < � � � along which we have ƒiC1 � ƒi > G � " for a
positive proportion of i � Nj as Nj !1.

As mentioned above, the Berry–Tabor conjecture predicts that the gaps ƒiC1.˛/ �
ƒi .˛/ are exponentially distributed (for generic ˛), which clearly would imply that the
maximal gap size is unbounded. However, proving this seems to be far out of reach. As a
remark pointing to this direction, note that by inclusion-exclusion it is not hard to see that
if we could show (1.3) for all n� 2k (k 2N; k � k0) and some ˛, then the corresponding
torus has infinitely many gaps in its spectrum that are of length at least k=2. In particular,
if (1.3) is known for all n, one obtains unbounded gaps.



Triple correlation and long gaps in the spectrum of flat tori 45

The particular significance of Corollary 3 lies in the fact that the spacings that we
obtain are strictly greater than 2. As we show in the following theorem, there exist
sequences with gaps uniformly bounded by 2 and whose pair correlation is Poissonian. In
other words, Theorem 1 shows that the gap structure of almost all flat tori has properties
that cannot be derived from the pair correlation result alone.

It is an interesting problem in its own right to determine the minimal possible value of
the largest gap of a sequence whose pair correlation is assumed to be Poissonian. To fix
notation, let us denote by S the set of all increasing sequences .i / of non-negative real
numbers with mean spacing 1 and Poissonian pair correlation, i.e.

1

N
N ! 1 and

1

N

X
i1�i22I

i1;i2�N; i1¤i2

1! �.I / (N !1) (1.5)

for all finite intervals I � R.

Theorem 4. Let
� WD inf

.i /2S
lim sup

i

.iC1 � i /:

Then � 2 Œ3=2; 2�:

The lower bound � � 3=2 shows that every sequence with Poissonian pair correlation
contains infinitely many gaps that are 1.5 times larger than the average gap.2 By [7], this
applies for instance to the ordered sequence of values x2 C

p
2 y2, x; y 2 N. The lower

bound is obtained using a reasoning similar to the one which leads from Corollary 2 to
Corollary 3.

The problem of determining � precisely is interesting in its own right since it touches
upon the questions of how one can construct a sequence having a preassigned pair cor-
relation distribution, and for which pair correlation distributions such a construction can
exist at all and for which it cannot. We will discuss this problem a bit further in the closing
remarks of the introduction (Section 1.6).

Finally, there are interesting sequences whose pair correlation is Poissonian, but
whose level spacing is not, for instance the (suitably normalized) sequence of fractional
parts of

p
n (cf. [5, 6]), which has in fact gaps of unbounded length.

1.4. Outline of the proof of Theorem 1

Roughly speaking, establishing Theorem 1 amounts to evaluating asymptotically

1

N

Z
.˛;ˇ/2R

Z 2N

N

� X
ju�˛m2�mn�ˇn2j��

M�m;n�2M

1
�3

du d˛ dˇ

2During the course of the refereeing process, the number 3=2 was improved to 3=2 C 10�9

in [1]. We also take the opportunity to mention related correlation results for fractional parts [12,15]
that were established during the refereeing process.
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as N !1, with � > 0 fixed, M 2 D N and R a fixed rectangle. Note that for ˛2 6D 0
we have ƒi ..˛1; ˛2; ˛3// D ƒi ..˛1=˛2; 1; ˛3=˛2//, so without loss of generality we can
assume ˛2 D 1. Expanding the third power gives rise to three conditions ju � ˛m2i �
mini � ˇn

2
i j � � with i D 1; 2; 3 and mi ; ni 2 ŒM; 2M� say. We detect each of them

using a Fourier integral. Subsequently we execute the integrations in u;˛;ˇ and make the
following change of variables

a1 D n1 � n2; a2 D n1 C n2; a3 D m1 �m3; a4 D m1 Cm3;

b1 D m1 �m2; b2 D m1 Cm2; b3 D n1 � n3; b4 D n1 C n3:

Here the new variables are constrained by a1 C a2 D b3 C b4 and b1 C b2 D a3 C a4.
After this change of variables and repeated integration by parts in the resulting Fourier
integral, we are led to the problem of understanding asymptotically an expression that
roughly looks like X

M�ai ;bi�2M

j�1j;j�2j��CM
2

a1Ca2Db3Cb4
b1Cb2Da3Ca4

1

�CM 2
; (1.6)

where

� D a1a2a3a4 � b1b2b3b4;

�1 D a1a2b3a4 C a1a2a3b4 � a1b2b3b4 � b1a2b3b4;

�2 D a1b2a3a4 C b1a2a3a4 � b1b2a3b4 � b1b2b3a4:

The expected main term for (1.6) is of size M 2. It is important to note that we are over-
simplifying the situation here by assuming that ai ; bi are of sizeM . In practice this is not
necessarily the case, but we assume it here for the sake of simplicity.

In [14], Sarnak obtains the same expression as (1.6) but without the constraints a1Ca2
D b3C b4 and b1C b2D a3C a4. As a result his expression is asymptotically of sizeM 4

and the counting problem is easier since there are fewer constraints. This explains our
earlier remark on our work being a “thin subset” version of Sarnak’s work.

When j�j > M 4�ı we can estimate (1.6) asymptotically by applying the Lipschitz
principle (that is, the Euler–Maclaurin approximation), getting a main term of sizeM 2. It
therefore remains to show that the contribution to (1.6) of the terms with j�j �M 4�ı is
negligible, that is,�M 2�" for some " > 0.

For j�j 2 ŒD; 2D� with D < M 4�ı we use a substitution trick of Sarnak to see that
the condition j�1j � D CM 2 implies that jkl j � D CM 2 where

k WD a2a4 � b2b4; l WD b2b3 � a2a3: (1.7)

In Sarnak’s case this alone is enough to conclude via an elementary argument. In our case
his elementary argument is slightly insufficient, and we need to non-trivially exploit the
new condition that a1 C a2 D b3 C b4 and a3 C a4 D b1 C b2.
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We proceed by

(1) solving for a4 in terms of a2; a3; b2; k; l using the conditions a1 C a2 D b3 C b4 and
a3C a4 D b1C b2, definition (1.7), and the condition j�j 2 ŒD; 2D�; we refer to this
as the “geometric restriction” on a4;

(2) expressing b3 in terms of the variables a2; a3; b2; l by requiring that a3 � �a2l
.mod b2/ and

.b3 D/
a3a2 C l

b2
�M I

(3) expressing b4 in terms of the variables a2; a4; b2; k by requiring that a4 � a2k

.mod b2/ and

.b4 D/
a2a4 � k

b2
�M:

This leads to an upper bound for (1.6) that is roughly of the form

1

D CM 2

X
a2;b2�M

X
k;l�M2

X
a3��a2l .mod b2/
.a3a2Cl/=b2�M

X
a4�a2k .mod b2/
.a2a4�k/=b2�M

ˆa2;a3;b2;k;l .a4/; (1.8)

where ˆ is a smooth function capturing the “geometric restriction” on a4 in terms of the
variables a2; a3; b2; k; l that we mentioned in .1/ of the preceding list. The function ˆ
only needs to capture a barely non-trivial piece of this “geometric restriction”. It is not
necessary for ˆ to be as precise as to allow one to exactly reconstruct a4 in terms of the
other variables a2; a3; b2; k; l .

We now apply Poisson summation on the variables a2; a4. The diagonal term gives a
negligible contribution thanks to the presence of ˆ (if ˆ were replaced by 1 we would
have obtained a diagonal of size matching the main term M 2 and this would not allow
us to win). The off-diagonal terms give rise to sums of Kloosterman sums and we win
by applying the Weil bound. It is, however, important to design ˆ very carefully so as to
capture only a barely non-trivial piece of our condition (1), otherwise we encounter again
a counting problem with highly cuspidal regions which is hard to analyze.

We close by recalling that this discussion assumed that the variables ai ; bi are in
generic position, that is, all of size about M . However, ranges in which ai are smaller
require different treatment. For instance in some ranges we continue after (1.8) by also
applying Poisson summation in k (and even l). Moreover, in the non-generic ranges the
diagonal gives an acceptable contribution and we do not need to introduce the functionˆ.
This is welcome, since the behavior of ˆ is complicated so we are happy to avoid it
whenever possible.

1.5. Outline of the proof of Theorem 4

The lower bound in Theorem 4 comes from noticing that if the gaps iC1 � i are uni-
formly bounded by, say 3=2 � ", then the distribution function of the gaps iC1 � i can
grow at most linearly between 1=2 � " and 3=2 � " because the pair correlation function
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is Poissonian. However, integrating by parts we see that there can be no such distribution
function unless " D 0, since the average spacing of the sequence is 1 by assumption.

The construction of the upper bound is more involved and proceeds as follows. In each
interval Œi; i C 1� we first select a point i uniformly at random. The resulting sequence is
such that almost surely

1

N

X
i�j�b
i>j

1!

´
b2=2 if b 2 Œ0; 1�;

b � 1=2 if b � 1:
(1.9)

and the mean spacing of i is 1 by construction.
We then make a deterministic correction to the above random construction by intro-

ducing a small amount of clusters of points. Since there are few clusters and they are far
apart, they will not interact with our random construction. Specifically, for eachm<

p
N

we insert into each interval Œm2; m2 C 1� a sequence of d
p
2me equally spaced points.

For b � 1 each such interval contribute an additional 1
2
� d
p
2me2 to (1.9), and therefore

a total of 1
2

when summed over all m <
p
N . On the other hand, for b � 1 each interval

Œm2; m2 C 1� contributes an additional

1

N
�

�
d
p
2me.1 � b/ � d

p
2meb C

X
k<bd

p
2me

k
�
�
2m

N
�

�
b �

b2

2

�
;

and summing over m <
p
N adds exactly the missing b � b2=2 to (1.9) when b � 1.

1.6. Closing remarks

We have not been able to construct a sequence with bounded gaps whose pair correla-
tion and triple correlation are both Poissonian; it would be interesting to know if such a
sequence exists, and which bound for the maximal gap size can be achieved. More gen-
erally, it is an interesting question to ask which distribution functions can occur for the
distribution function of the spacings iC1 � i given that the pair correlation function
of i is Poissonian. Concerning the general problem of generating a sequence having
preassigned pair correlation behavior, there exist several results in this direction when
the sequence is given by a so-called random point process; see for example [10, 11] and
the references given there. However, these results only cover the purely random case. As
far as we know, the question which asymptotic distributions of the pair correlation can
be realized by a deterministic sequence .i / has never been studied. We hope that our
investigations initiate further research in this direction.

On a somewhat unrelated theme, we note that if we attempt to compute the 4-correla-
tions, then the first problem we face is that we have to estimate the number of solutions
in M � x1; x2; x3; x4; y1; y2; y3; y4 � 2M to

�M 4
� det

ˇ̌̌̌
ˇ̌ x21 � x

2
2 x21 � x

2
3 x21 � x

2
4

y21 � y
2
2 y21 � y

2
3 y21 � y

2
4

x1y1 � x2y2 x1y1 � x3y3 x1y1 � x4y4

ˇ̌̌̌
ˇ̌ �M 4; (1.10)
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asymptotically asM !1. At present we do not know how to accomplish this, since this
corresponds to a very thin region. What complicates matters is that the variety in (1.10) is
highly singular. If it were smooth then the methods of [9] might offer some hope.

Any attempt to estimate the 3-correlations in an L2 sense runs into a similar problem.
More precisely, we would have to asymptotically estimate as M ! 1 the number of
solutions in M � m1; m2; m3; m01; m

0
2; m

0
3; n1; n2; n3; n

0
1; n
0
2; n
0
3 � 2M to

�D � det

ˇ̌̌̌
ˇ̌̌̌ m21 �m

2
2 m21 �m

2
3 m022 �m

02
1 m023 �m

02
1

n21 � n
2
2 n21 � n

2
3 n023 � n

02
1 n023 � n

02
1

m1n1 �m2n2 m1n1 �m3n3 0 0

0 0 m02n
0
2 �m

0
1n
0
1 m03n

0
3 �m

0
1n
0
1

ˇ̌̌̌
ˇ̌̌̌ � D

uniformly inM 6 �D �M 8 and the caseDDM 6 appears to be of comparable difficulty
to (1.10).

1.7. Notational conventions

For the rest of the paper, we will apply the following notational conventions. Boldface
letters like a or A denote vectors with components .a1; : : : ; an/ resp. .A1; : : : ;An/ whose
dimension n will always be clear from the context. Given a vector v D .v1; : : : ; vn/ and a
realM � 0, the notation v�M means that there exists an absolute constant C > 0 such
that jvi j � CM for all i D 1; : : : ; n. In Section 3 we will make use of the notation X 4 Y

to mean X �" YM
" for " > 0 where the meaning of " can change from line to line.

Given a Schwartz function h we define its Fourier transform as

Oh.�1; : : : ; �n/ WD

Z
Rn
h.x1; : : : ; xn/e.�x1�1 � � � � � xn�n/ d�1 : : : d�n;

where e.x/ WD e2�ix . For two vectors vD .v1; : : : ; vn/ and wD .w1; : : : ;wn/ we denote
by  .v;w/ the function  .v1; : : : ; vn; w1; : : : ; wm/. Moreover for v D .v1; : : : ; vn/ we
writeX

v

 .v/ WD
X

v1;:::;vn2Z

 .v1; : : : ; vn/ ;

Z
Rn
 .x/ dx WD

Z
Rn
 .x1; : : : ; xn/ dx1 : : : dxn;

and we will also sometimes write d.x1; : : : ; xn/ in place of dx1 : : : dxn.

2. Proof of Theorem 1: Reduction to Diophantine problems

Since T3.�˛I I1; I2I N/ D T3.˛I I1; I2I N/ by (1.2) for all � > 0, we find for ˛ D
.˛1; ˛2; ˛3/ and R D I � J �K � D with intervals I; J;K � R�0 thatZ
R

T3.˛I I1; I2IN/ d�hyp.˛/

D

Z
J

Z
I=˛2

Z
K=˛2

T3..˛1; 1; ˛3/I I1; I2IN/ dhyp.˛1; 1; ˛3/
d˛2
˛2

(2.1)
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where
dhyp.˛1; 1; ˛3/ D

d˛1 d˛3
.4˛1˛3 � 1/3=2

(2.2)

and I=˛2, K=˛2 are the corresponding re-scaled intervals with the interpretation
I=˛2 D R�0 for ˛2 D 0. Since ¹˛ � D j ˛2 D 0º is a null set, to prove Theorem 1
it is enough to obtain an asymptotic formula forZ

R

T3.˛I I1; I2IN/ dhyp˛

with R � D0 WD ¹.˛1; ˛3/ 2 .0;1/
2 j 1 � ˛1 � ˛3º a rectangle, ˛ D .˛1; 1; ˛3/ and

dhyp.˛/ defined as in (2.2). This is the purpose of Proposition 5 below. As before we write
q˛.m; n/ D ˛1m

2 CmnC ˛3n
2 for ˛ D .˛1; 1; ˛3/. We also define

D.˛/ D
1

�

p
4˛1˛3 � 1;

so that ¹q˛.m; n/=D.˛/ j m > 0 or m D 0; n � 0º is the sequence of ƒj .˛/.

Proposition 5. Let F , Wi .i D 1; 2/, and V be fixed smooth functions with compact
support in D0, .�1;1/ and .0;1/ respectively. For M � 1 let

T .M/ WD
1

8

Z
D0

F.˛/
X�

x;y

W1

�
q˛.x1; y1/ � q˛.x2; y2/

D.˛/

�
�W2

�
q˛.x1; y1/ � q˛.x3; y3/

D.˛/

�
V

�
q˛.x1; y1/

M 2D.˛/

�
dhyp˛;

where ˛ D .˛1; 1; ˛3/, x D .x1; x2; x3/ 2 Z3, y D .y1; y2; y3/ 2 Z3 and
P� indicates

summation with the conditions

.x1; y1/ 6D ˙.x2; y2/; .x1; y1/ 6D ˙.x3; y3/; .x2; y2/ 6D ˙.x3; y3/: (2.3)

Then
T .M/ D vol.F / OW1.0/ OW2.0/ OV .0/M 2

CO.M 2�1=258/;

where
vol.F / D

Z
D0

F.˛/ dhyp.˛/; ˛ D .˛1; 1; ˛3/:

The factor 1
8

is included to compensate for the fact that we are summing over x and y
of arbitrary signs, and it therefore takes care of the desymmetrization of the spectrum
mentioned in the introduction. Theorem 1 is an immediate consequence of Proposition 5:
choosing M 2 D N and choosing F , Wi and V to be smooth approximations to the char-
acteristic functions of R, Ii (i D 1; 2) and Œ2�k�1; 2�k � (k D 0; 1; : : : ; K D 1=", say)
respectively, we obtainZ

R

1

N

ˇ̌̌̌²
.i; j; k/

ˇ̌̌̌
ƒj .˛/ �ƒi .˛/ 2 I1; ƒk.˛/ �ƒi .˛/ 2 I2

j¹i; j; kºj D 3; 1 � ƒi .˛/ � N

³ˇ̌̌̌
dhyp˛

� �hyp.R/�.I1/�.I2/:



Triple correlation and long gaps in the spectrum of flat tori 51

as N ! 1. Plugging this into (2.1) we obtain (1.4), noting that the condition N �
ƒi .˛/ � 2N can be replaced by N � i < 2N , since the cardinality of the symmetric
difference of ¹i j N � ƒi .˛/ � 2N º and ŒN; 2N / is o.N / as N !1. The rate of con-
vergence is continuous in the endpoints of I , and hence uniform as long as I varies within
a fixed finite interval J .

We start the proof of Proposition 5 by Fourier-inverting the weight functions W1; W2
and V . The support of V; W1; W2 implies automatically x; y � M . We remember this
by inserting a smooth redundant weight function  .x=M; y=M/, where  is a suitable
smooth function that is constantly 1 on some sufficiently large fixed box in R6 and con-
stantly zero outside some slightly larger box. We obtain

T .M/ D
1

8

Z
D0

F.˛/
X�

x;y

 

�
x
M
;

y
M

�
�

Z
R3
OV .z/ OW1.u/ OW2.v/e

�
u
q˛.x1; y1/ � q˛.x2; y2/

D.˛/

�
� e

�
v
q˛.x1; y1/ � q˛.x3; y3/

D.˛/

�
e

�
zq˛.x1; y1/

M 2D.˛/

�
d.u; v; z/

d˛
�3D.˛/3

: (2.4)

We change variables z  z=D.˛/, u u=D.˛/, v  v=D.˛/ and integrate over ˛ D
.˛1; 1; ˛3/ 2 D0 � R2. This gives

T .M/ D
1

8

X�

x;y

 

�
x
M
;

y
M

�Z
R3
e

�
u.x1y1 � x2y2/C v.x1y1 � x3y3/C

z

M 2
x1y1

�
� yG

�
u.x21 � x

2
2/C v.x

2
1 � x

2
3/C

zx21
M 2

; u.y21 � y
2
2/C v.y

2
1 � y

2
3/C

zy21
M 2
I z; u; v

�
� d.u; v; z/ (2.5)

where
G.˛1; ˛3I z; u; v/ D �

�3F.˛/ OV .zD.˛// OW1.uD.˛// OW2.vD.˛//

and the Fourier transform yG of G is taken with respect to the first two variables ˛1; ˛3.
Note that G is a Schwartz-class function in all variables. Therefore so is yG, i.e.

D yG.U; V I z; u; v/�A;D

�
.1C jU j/.1C jV j/.1C jzj/.1C juj/.1C jvj/

��A (2.6)

for all A > 0 and any differential operator D .
Next we make an invertible change of integer variables as follows: each 6-

tuple .x1; y1; x2; y2; x3; y3/ satisfying (2.3) is mapped bijectively to an 8-tuple
.a1; : : : ; a4; b1; : : : ; b4/ satisfying

a1 � a2 .mod 2/; b1 � b2 .mod 2/ (2.7)

as well as

.a1; a2; a3; a4/ 6D .b3; b4; b1; b2/; .a1; a2; a3; a4/ 6D .b4; b3; b2; b1/;

.a1; b1/ 6D .0; 0/; .a2; b2/ 6D .0; 0/; .a3; b3/ 6D .0; 0/; .a4; b4/ 6D .0; 0/
(2.8)
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and
a1 C a2 D b3 C b4; a3 C a4 D b1 C b2 (2.9)

via
a1 D y1 � y2; a2 D y1 C y2; a3 D x1 � x3; a4 D x1 C x3;

b1 D x1 � x2; b2 D x1 C x2; b3 D y1 � y3; b4 D y1 C y3:
(2.10)

Note that the conditions a3 � a4 (mod 2) and b3 � b4 (mod 2) follow automatically from
(2.7) and (2.9). This gives

T .M/ D
1

8

X0

a;b

Q 

�
a
M
;

b
M

�
H .a;b/; (2.11)

where
P0 indicates conditions (2.7)–(2.9), Q is a smooth function such that

Q .a;b/ D  
�
b1 C b2

2
;
b2 � b1

2
;
a4 � a3

2
;
a1 C a2

2
;
a2 � a1

2
;
b4 � b3

2

�
D  .x; y/

and

H .a;b/ WD
Z

R3
e

�
u

2
.a1b2 C a2b1/C

v

2
.a3b4 C a4b3/C

z

4M 2
.a1 C a2/.b1 C b2/

�
� yG

�
ub1b2 C va3a4 C

z

4M 2
.b1 C b2/

2; ua1a2 C vb3b4 C
z

4M 2
.a1 C a2/

2
I z; u; v

�
� d.u; v; z/:

For notational convenience we introduce the following functions in the variables
a1; : : : ; a4; b1; : : : ; b4. Put

P D max.ja1a2j; ja3a4j; jb1b2j; jb3b4j/; � D a1a2a3a4 � b1b2b3b4;

�1 D a1a2b3a4 C a1a2a3b4 � a1b2b3b4 � b1a2b3b4;

�2 D a1b2a3a4 C b1a2a3a4 � b1b2a3b4 � b1b2b3a4:

Note that (2.8) and (2.9) imply P 6D 0.
If � 6D 0, we can change variables

u D
a3a4V � b3b4U

�
; v D

a1a2U � b1b2V

�

to see that H .a;b/ equals

1

j�j

Z
R3
yG

�
U C

z.b1Cb2/
2

4M 2
; V C

z.a1Ca2/
2

4M 2
I z;

a3a4V �b3b4U

�
;
a1a2U �b1b2V

�

�
� e

�
U�1

2�
C
V�2

2�
C

z

4M 2
.a1 C a2/.b1 C b2/

�
d.U; V; z/: (2.12)
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By repeated partial integration in U and V we conclude from (2.6) that

H .a;b/�A

1

j�j
min

�
1;
j�j

P

���
1C

j�1j

j�j C P

��
1C

j�2j

j�j C P

���A
�

1

j�j C P

��
1C

j�1j

j�j C P

��
1C

j�2j

j�j C P

���A
(2.13)

for any A � 0 and all a;b�M . The final bound remains true for�D 0, which we show
now. Suppose without loss of generality that P D ja1a2j 6D 0 (the other cases are similar).
We observe that � D 0 implies b1b2�1 D �a1a2�2, in particular j�2j � j�1j. In this
case we change variables simply by

ub1b2 C va3a4 D
b1b2

a1a2
U; ua1a2 C vb3b4 D U

and recast H .a;b/ as

1

ja1a2j

Z
R3
yG

�
b1b2

a1a2
U C

z.b1 C b2/
2

4M 2
; U C

z.a1 C a2/
2

4M 2
I z;

U � b3b4v

a1a2
; v

�
� e

�
U.b1a2 C b2a1/

2a1a2
C

v�1

2a1a2
C

z

4M 2
.a1 C a2/.b1 C b2/

�
d.U; v; z/:

Now integration by parts with respect to v confirms (2.13) again.
In order to evaluate asymptotically (2.11), we would like to apply a kind of Lip-

schitz principle and replace the sum over a;b by an integral. This is not directly possible,
because H .a;b/ is quite oscillatory if � is small. Using Diophantine techniques, we will
establish in the next section the following crucial result, which basically tells us that the
contribution of small values of � can be absorbed in an error term.

Proposition 6. Let 0 < ı � 1=2. For any " > 0 there exists "0 > 0 such thatX0

a;b�M
j�j�M4�ı

�1;�2�.j�jCP/
1C"0

1

j�j C P
�M 2�ı=128C":

Let � be a smooth function with support on Œ1=2;1� that is 1 on Œ1;1�, and write

ˆ.a;b/ WD Q 
�

a
M
;

b
M

�
�

�
j�j

M 4�ı

�
: (2.14)

From (2.11), (2.13) and Proposition 6 we obtain

T .M/ D
1

8

X0

a;b

ˆ.a;b/H .a;b/CO.M 2�ı=129/: (2.15)
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Note that condition (2.8) is now automatic since it is only violated in the case � D 0

(which is not in the support of ˆ). On the support of ˆ we deduce from (2.6) and (2.12)
that

kr.ˆ.a;b/H .a;b//k �
1

j�j
�
M 3

j�j
�M�5C2ı : (2.16)

Using (2.9), we interpret the main term in (2.15) as a sum over a1;a2;a3; b1; b2; b3 subject
only to (2.7), and in the following we apply the same interpretation for all functions in
a; b, such as ˆ, H , P , �, �1 and �2. By a standard application of the Euler–Maclaurin
summation formula, using (2.16), we see that

1

8

X0

a;b

ˆ.a;b/H .a;b/ D
1

32

Z
R3

Z
R3
ˆ.a;b/H .a;b/ d.a1; a2; a3/ d.b1; b2; b3/

CO.M 6�5C2ı/:

The following continuous analogue of Proposition 6 allows us to remove the cut-off func-
tion � in the definition (2.14).

Lemma 1. Let ı � 1=2. For any " > 0 there exists "0 > 0 such thatZ
� � �

Z
a;b�M
j�j�M4�ı

�1;�2�.j�jCP/
1C"0

1

j�j C P
d.a1; a2; a3/ d.b1; b2; b3/�M 2�ı=4:

We will prove this in the final section. Choosing ı D 1=2, we have now arrived at

T .M/ D
1

32

Z
R3

Z
R3
Q 

�
a
M
;

b
M

�
H .a;b/ d.a1; a2; a3/ d.b1; b2; b3/CO.M 2�1=258/:

(2.17)

At this point we invert the change of variables .x; y/ 7! .a;b/ in (2.10), undo the integra-
tion (2.5) over ˛1; ˛3 and revert the Fourier inversions (2.4). This shows that

1

32

Z
R3

Z
R3
Q 

�
a
M
;

b
M

�
H .a;b/ d.a1; a2; a3/ d.b1; b2; b3/ D I.M/; (2.18)

where

I.M/ WD
1

8

Z
D

F.˛/

Z
R3

Z
R3
 

�
x
M
;

y
M

�
W1

�
q˛.x1; y1/ � q˛.x2; y2/

D.˛/

�
�W2

�
q˛.x1; y1/ � q˛.x3; y3/

D.˛/

�
V

�
q˛.x1; y1/

M 2D.˛/

�
dx dy dhyp˛

is the continuous analogue of T .M/. Here we can drop the function  .x=M; y=M/

because it is redundant. By a change of variables

xj  

�
xj C

yj

2˛1

�
˛
1=2
1

.4˛1˛2 � 1/1=4
; yj  yj

.4˛1˛2 � 1/
1=4

.4˛1/1=2
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the arguments of V;W1; W2 become independent of ˛, and we obtain

I.M/ D vol.F /
Z

R3

Z
R3
V

�
.x21 C y

2
1/�

M 2

�
W1..x

2
1 C y

2
1 � x

2
2 � y

2
2/�/

�W2..x
2
1 C y

2
1 � x

2
3 � y

2
3/�/ dx dy:

Changing to polar coordinates, we get

I.M/ D .2�/3vol.F /
Z
Œ0;1/3

V

�
r21�

M 2

�
W1..r

2
1 � r

2
2 /�/W2..r

2
1 � r

2
3 /�/r1r2r3 dr:

Next changing rj  r2j � , this simplifies to

I.M/ D vol.F /
Z
Œ0;1/3

V

�
r1

M 2

�
W1.r1 � r2/W2.r1 � r3/ dr

D vol.F /M 2

Z 1
0

V.r1/

Z Mr1

�1

Z Mr1

�1

W1.r2/W2.r3/ dr;

and forM sufficiently large this equals vol.F / OV .0/ OW1.0/ OW2.0/M 2. Combining this with
(2.17) and (2.18), we complete the proof of Proposition 5.

3. Proof of Theorem 1: Diophantine analysis

In this section we prove Proposition 6. For notational convenience we introduce the nota-
tion X 4 Y to mean X �" YM

" for " > 0, where the meaning of " can change from
line to line. Next we observe that conditions (2.7)–(2.9) as well as j�j, P and the set
¹j�1j; j�2jº are invariant under the following symmetries:

� interchanging indices 1 and 2;

� interchanging indices 3 and 4;

� interchanging indices 1, 2 with 3, 4;

� interchanging a with b.

These four involutions generate a 2-subgroup of S8 of order 16. In particular, without loss
of generality we can and will assume that

min.ja3j; ja4j; jb3j; jb4j/ � min.ja1j; ja2j; jb1j; jb2j/;

max.ja1j; ja2j; jb1j; jb2j/ D ja1j;

jb2b3 � a2a3j � ja2a4 � b2b4j:

(3.1)

Now we put all variables into dyadic intervals and suppose that A1 � ja1j � 2A1; : : : ;
A4 � ja4j � 2A4, B1 � jb1j � 2B1; : : : ; B4 � jb4j � 2B4 with 0 � A1; : : : ; B4 � M .
By (3.1) we have

min.A3; A4; B3; B4/� min.A1; A2; B1; B2/; max.A1; A2; B1; B2/ D A1: (3.2)
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We write P0 WD max.A1A2; B1B2; A3A4; B3B4/�M 2: In addition we assume that

D � j�j � 2D; 0 � D �M 4�ı : (3.3)

Let N .A;B; D/ denote the number of 8-tuples .a1; : : : ; a4; b1; : : : ; b4/ subject to these
size constraints and

�1; �2 4 D C P0 (3.4)

as well as conditions (2.7)–(2.9).
Using (2.9) and a standard divisor bound, we have the trivial bound

N .A;B;D/ 4 P 20 min.A3; A4/min.B3; B4/ � P 30 : (3.5)

First we dispose of two easy degenerate cases.

3.1. Degenerate case I: a1a2a3a4b1b2b3b4 D 0

Let us first assume that one of the variables, say a1, equals 0, but none of the b-variables
vanishes. By a divisor argument we can choose the b-variables in 4 D ways, and then by
(2.9) we have A3 (say) choices for a2; a3; a4. This gives a total number of

4 DA3 � .D C P0/M (3.6)

choices.
Next, if any three of the variables a1; : : : ; a4; b1; : : : ; b4 vanish, then by (2.9) it is easy

to see that we have at most

� P
1=2
0 M 2

� .D C P0/
1=2M 2 (3.7)

choices for the remaining ones.
Up to symmetry, the only remaining case is that a1 and exactly one of b2; b3; b4 vanish

(recall (2.8)). If b2 D 0, then (3.4) gives a3a4a2b1 4 P0 C D in non-zero variables.
There are 4 P0 CD choices by the usual divisor argument, and after choosing b3, b4 is
determined by (2.9), which matches the contribution in (3.6). If b3 D 0 (the case b4 D 0
is similar), then (3.4) and the first equations in (2.9) give

P0 CD < a2a3a4b1 � a3b1b2b4 D a2a3b1.a4 � b2/:

If a4 6D b2, then we fix a2; a3; b1; a4 � b2 in 4 D C P0 ways as well as a4 in�M

ways, then the rest is determined by (2.9), so that we end up with a contribution as in (3.6).
On the other hand, if a4D b2, then everything is determined from a2;a3;a4, and we obtain
P
1=2
0 M 2 � .D C P0/

1=2M 2 solutions as in (3.7).
We summarize that the number N0.A; B; D/ of tuples where one of the variables

vanishes is at most

N0.A;B;D/ 4 .D C P0/M C .D C P0/
1=2M 2: (3.8)

From now on we focus on N�.A;B;D/ where a1a2a3a4b1b2b3b4 6D 0.
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3.2. Degenerate case II: a2a4 D b2b4

In this subsection we treat another degenerate case, namely the case

a2a4 D b2b4:

We call this contribution N�;0.A;B; D/. Fixing b2; b4 (non-zero), the values for a2; a4
are prescribed up to a divisor function. Moreover, using (2.9) we have

D

b2b4
� d WD a1a3 � b1b3 D a1.b2 � a4/C a3.b4 � a2/ � .a4 � b2/.a2 � b4/:

Fix a value for d and suppose initially d 6D 0. Then automatically .b2 � a4; b4 � a2/ 6D
.0; 0/. Choosing a suitable one of a1 or a3, the other one is determined, and then also
b1; b3 from (2.9). So the total number of choices is

4 B2B4
D

B2B4
.A1 C A3/� DM � .D C P0/M:

Now suppose that d D 0, so that a1a3 D b1b3. Put r D .a1; b1/ and t D a1=r , s D
b1=r . Then .s; t/ D 1 and a1 D rt , b1 D rs. Since .s; t/ D 1, we must have s j a3, say
a3 D su. Then b3 D tu. Similarly, we can parametrize the equation b2b4 D a2a4 as
b2 D xy, b4 D zw, a2 D xz, a4 D yw with .y; z/ D 1. Then (2.9) becomes

rt C xz D tuC zw; suC yw D rs C xy;

in other words
t .r � u/ D z.w � x/; s.r � u/ D y.w � x/:

We have r D u if and only if w D x, which is equivalent to the opposite of (2.8), so that
this case is excluded. On the other hand, if r � u 6D 0 6D w � x, then by coprimality s D t ,
z D y, so that

a1 D b1; a2 D b2; a3 D b3; a4 D b4:

Invoking also (2.9), we find in this case at most

� A1A2A3 � P0A3 � .D C P0/M

solutions. We conclude that

N�;0.A;B;D/ 4 .D C P0/M: (3.9)

From now on we assume a2a4 6D b2b4.

3.3. Substituting

Solving the first inequality in (3.3) for b1 and substituting into the bound for �1 in (3.4),
we obtain

.a2a4 � b2b4/.b2b3 � a2a3/ 4
ˇ̌̌̌
b2

a1

ˇ̌̌̌
.D C P0/CD

ˇ̌̌̌
a2

a1

ˇ̌̌̌
� D C P0
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by (3.2). We write
k D a2a4 � b2b4; l D b2b3 � a2a3: (3.10)

By (3.1) we have jkj � jl j, and by the assumption from the previous subsection we have
kl 6D 0. We assume K � jkj � 2K, L � jl j � 2L with

L � K � 1; KL 4 D C P0: (3.11)

Note that a1; b1 are determined from the other variables by (2.9). We call the correspond-
ing contribution N�.A;B;D;K;L/.

Let d D .a2; b2/ and a2 D da02, b2 D db02. Then we must have k D dk0, l D dl 0 and
a4 � a

0
2k
0 (mod jb02j), a3 � �a

0
2l
0 (mod jb02j).

For the remaining part of the argument, � is a parameter such that

0 < � < ı=4 (3.12)

with ı as in Proposition 6, and � is a parameter with

0 < � < 1=6:

For later purposes we take the opportunity to dispose of another somewhat degenerate
case at this point. Suppose that

B4 �M
�; K � A2A4 or B3 �M

�; L � A2A3: (3.13)

The second set of conditions is analogous, so we focus on the first. In this case we fix
d;a02; b

0
2; a4; b4; l

0; a3, which then determines k and b3. Thus we see by elementary means
that

N�.A;B;D;K;L/

4
X
d

X
a0
2
;b0
2

X
a4;b4

X
l 0

X
a3��a

0
2
l 0 .mod jb0

2
j/

1� A2B2A4B4
D C P0

K

�
A3

B2
C 1

�
� .A3 C B2/B4.D C P0/� .D C P0/M

1C�: (3.14)

under condition (3.13). This is sufficient for our purposes, and from now we therefore
assume that (3.13) does not hold.

Let W be a smooth non-negative function with support in Œ1=2; 3� that is 1 on Œ1; 2�.
We now fix d; a02; a

0
3; k
0; l 0; a3; a4;then b3; b4 are determined, and we obtain

N�.A;B;D;K;L/

�

X
d

X
B2�jb2j�2B2

X
.a0
2
;b0
2
/D1

W

�
a02
A2=d

�X
k0;l 0

W

�
k0

K=d

�
W

�
l 0

L=d

�
�

X
a3��a

0
2
l 0 .mod jb0

2
j/

ˆa0
2
;b0
2
;�l 0IA3;B3

.a3/
X

a4�a
0
2
k0 .mod jb0

2
j/

ˆa0
2
;b0
2
;k0IA4;B4

.a4/; (3.15)

where

ˆa0
2
;b0
2
;nIA;B.x/ D W

�
jxj

A

�
W

�
ja02x � nj

Bjb02j

�
: (3.16)
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We have

@j1x @
j2
a @

j3
n ˆa;b02;nIA;B

.x/ �j1;j2;j3 min
�
A;
BB2

A2

��j1�Bjb02j
A

��j2
.Bjb02j/

�j3 (3.17)

for j1; j2; j3 � 0, which we apply with .n; A;B/ D .k0; A3; B3/ or .�l 0; A4; B4/:
In this analysis we could have interchanged the roles of a2; a3; a4 and b2; b3; b4 (leav-

ing jkj and jl j invariant), so that without loss of generality we may and do assume

A2 � B2: (3.18)

We now distinguish two principal cases which require different treatment of the right
hand side of (3.15).

3.4. Case 1

Let us assume that

min.A1; : : : ; A4; B1; : : : ; B4/ �M 1�� or KL � .D C P0/
1��: (3.19)

3.4.1. Application of Poisson summation. Here we start with an application of Poisson
summation in (3.15) with respect to the a3; a4-sum, getting

X
d

X
.a0
2
;b0
2
/D1

W

�
a02
A2=d

�X
k0;l 0

W

�
k0

K=d

�
W

�
l 0

L=d

� X
h4;h32Z

e

�
a02k
0h4 � a

0
2l
0h3

jb02j

�
�

1

jb02j
2

Z
R2
ˆa0

2
;b0
2
;k0IA4;B4

.x/ˆa0
2
;b0
2
;�l 0IA3;B3

.y/e

�
�xh4 � yh3

jb02j

�
d.x; y/: (3.20)

By partial integration and (3.17) we can truncate the hj -sum (j D 3; 4) at

hj 4
B2=d

min.Aj ; BjB2=A2/
D
1

d

�
B2

Aj
C
A2

Bj

�
DW

1

d
Hj ;

say, at the cost of a negligible error. For future reference we note that the double integral
in (3.20) is trivially bounded by

min
�
A4;

B4B2

A2

�
min

�
A3;

B3B2

A2

�
:

3.4.2. The diagonal terms. The total contribution of the h3 D h4 D 0 term, say
N�;diag.A;B;D;K;L/, is

�

X
d

X
.a0
2
;b0
2
/D1

X
k0;l 0

1

jb02j
2

Z
R2
ˆa0

2
;b0
2
;k0IA4;B4

.x/ˆa0
2
;b0
2
;l 0IA3;B3

.y/ d.x; y/

4 A2B2KLmin
�
A4

B2
;
B4

A2

�
min

�
A3

B2
;
B3

A2

�
� min.A4B3; A3B4/KL
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so that
N�;diag.A;B;D;K;L/� KLM min.A1; : : : ; A4; B1; : : : ; B4/

by the first inequality in (3.2). By our current assumption (3.19) we obtain

N�;diag.A;B;D;K;L/� .D C P0/
1��M 2

C .D C P0/M
2��: (3.21)

3.4.3. The off-diagonal terms. Let us now assume .h3; h4/ 6D .0; 0/ in (3.20) and call this
term N�;off.A;B;D;K;L/. We now apply Poisson summation also to a02. This gives

X
d

X
b0
2

X
k0;l 0

1

jb02j
3
W

�
k0

K=d

�
W

�
l 0

L=d

� X
h34H3; h44H4
.h3;h4/ 6D0

X
r2

S.k0h4 � l
0h3; r2; jb

0
2j/

�

Z
R3
W

�
zd

A2

�
ˆz;b0

2
;k0IA4;B4

.x/ˆz;b0
2
;�l 0IA3;B3

.y/e

�
�yh3 � xh4 � zr2

jb02j

�
d.x; y; z/:

(3.22)

Here S denotes the usual Kloosterman sum

S.a; b; c/ D
X

d .mod c/
.d;c/D1

e

�
ad C b Nd

c

�
;

which satisfies the Weil bound jS.a; b; c/j � c1=2.a; b; c/1=2�.c/ [13, 18] where � is the
divisor function.

By partial integration with respect to z and (3.17) we can truncate the r2-sum at

r2 4 R WD
B2

A2
C
A4

B4
C
A3

B3

at the cost of a negligible error. Again we distinguish several cases.

3.4.4. Off-diagonal case 1. Suppose that

B2B4 � A2A4M
�� and B2B3 � A2A3M

��: (3.23)

In this case we apply the Weil bound in (3.22). We first treat the degenerate case where
r2D k

0h4 � l
0h3D 0 in which the Kloosterman sum is large (and in which case h3h4 6D 0).

This contributes at most

4
X
d

d

B2
min

�
KH4

d2
;
LH3

d2

�
A2

d
min

�
A4;

B4B2

A2

�
min

�
A3;

B3B2

A2

�
4

1

B2

��
B2

A4
C
A2

B4

��
B2

A3
C
A2

B3

�
KL

�1=2
A2 min

�
A4;

B4B2

A2

�
min

�
A3;

B3B2

A2

�
� .KL/1=2.B2.B3B4/

1=2
C .A2A3B2B4/

1=2
C .A2A4B2B3/

1=2
C A2.A3A4/

1=2/

4 .D C P0/
1=2M 2:
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The remaining terms contribute, by Weil’s bound,

4
X
d

d3=2

B
3=2
2

KL

d2

�
H3

d
C
H4

d
C
H3H4

d2

�
.1CR/

A2

d
min

�
A4;

B4B2

A2

�
min

�
A3;

B3B2

A2

�
�

KLA2

B
3=2
2

�
B2

A4
C
A2

B4
C
B2

A3
C
A2

B3
C

�
B2

A4
C
A2

B4

��
B2

A3
C
A2

B3

��
�

�
1C

B2

A2
C
A4

B4
C
A3

B3

�
min

�
A4;

B4B2

A2

�
min

�
A3;

B3B2

A2

�
� KLB

1=2
2

�
A4 C A3 C A2 C B4 C B3 C B2 C

B4A3

B3
C
A2A3

B3
C
A4B3

B4
C
A2A4

B4

�
4 .D C P0/

�
M 3=2

C B
1=2
2

�
B4A3

B3
C
A2A3

B3
C
A4B3

B4
C
A2A4

B4

��
: (3.24)

So far we have not used our assumption (3.18), but we use it now. Combining (3.18)
with our current assumption (3.23), we must have B4 � A4M�� and B3 � A3M�� , so
that (3.24) is bounded by

4 .D C P0/M
3=2C�.1C B2=A2/� .D C P0/M

3=2C�;

which gives in total

N�;off.A;B;D;K;L/ 4 .D C P0/M
3=2C�

C .D C P0/
1=2M 2 (3.25)

in our present case.

3.4.5. Off-diagonal case 2. Suppose now that

B2B4 � A2A4M
��; but B2B3 � A2A3M

��:

Then necessarily A2A4 � K, otherwise k D a2a4 � b2b4 has no solution. Since we are
assuming that (3.13) does not hold, we have B4 � M � . We claim now that the present
assumptions imply that only the terms h4 D 0, h3 6D 0 contribute non-negligibly to (3.22).
Indeed, applying Poisson summation to (3.22) with respect to k0, we see that up to a
negligible error the dual sum has length 4 B�14 C B2=K � M�� , in other words, only
the central Poisson term survives. SinceX

k .mod jb0
2
j/

S.k0h4 � l
0h3; r2; jb

0
2j/ D 0 (3.26)

unless h4 D 0, we conclude that this forces h4 D 0, so that h3 6D 0.
Having established our claim, we apply Weil’s bound for S.�h3l 0; r2; jb02j/ and bound

N�;off.A;B;D;K;L/ in (3.22) as above by

4
X
d

KL=d2

B
3=2
2 =d3=2

H3

d
.1CR/

A2

d
min

�
A4;

B4B2

A2

�
min

�
A3;

B3B2

A2

�
4 .D C P0/

�
M 3=2

C B
1=2
2

B4A3

B3

�
� .D C P0/M

3=2C�.1C B2=A2/� .D C P0/M
3=2C�: (3.27)
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3.4.6. Off-diagonal case 3. Of course, the dual situation B2B3 � A2A3M�� , but B2B4
� A2A4M

�� is handled similarly to the previous case.

3.4.7. Off-diagonal case 4. Finally, we treat the case

B2B4 � A2A4M
�� and B2B3 � A2A3M

��:

Here we can apply Poisson in both k; l in (3.22). By the same argument as in (3.26) this
forces h3 D h4 D 0, up to a negligible error, but this case is excluded in the off-diagonal
contribution.

3.4.8. The final bound. Collecting (3.25) and (3.27) we have shown that

N�;off.A;B;D;K;L/ 4 .D C P0/M
3=2C�

C .D C P0/
1=2M 2:

Combining this with (3.21), we see that altogether

N�.A;B;D;K;L/ 4 .D C P0/
1��M 2

C .D C P0/M
2�� (3.28)

in the present case (3.19).

3.5. Case 2

We now turn to the second case

min.A1; : : : ; A4; B1; : : : ; B4/ �M 1��; and KL � .D C P0/
1��: (3.29)

We could proceed in this case as in Case 1, but we will find that the diagonal term is too
large. Therefore we need to introduce an additional constraint into our upper bound for
N�.A;B;D;K;L/. In this case we will obtain additional constraints for the variable a4.

3.5.1. Creating an additional constraint on a4. Solving (3.10) for b3; b4 and substituting
this as well as (2.9) into the definition of �, one finds by brute force algebraic manipula-
tion �

a4 �
1

2

�
b2 C

k

a2

��2
D H.a2; b2; a3; k; l/ �

b2

a2l
�; (3.30)

where

H.a2; b2; a3; k; l/ D �
a3b2k

l
C
a23k

l
C
b2

4
C
a3k

a2
�
b2k

2a2
C

k2

4a22
:

Solving instead (3.10) for a3; a4, we may exchange the roles of a2; a3; a4 and b2; b3; b4,
so that again without loss of generality we may assume (3.18). Using the coarse bound
p
x C y D

p
x CO.

p
jyj/, this implies

a4 D G˙.a2; b2; a3; k; l/CO.E
1=2/; E WD D=L; (3.31)
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where G˙.a2; b2; a3; k; l/ D 1
2
.b2 C k=a2/˙

p
H.a2; b2; a3; k; l/. For future reference

we note that

@ja2H.a2; b2; a3; k; l/�j M
2A
�j
2 ; @ja3H.a2; b2; a3; k; l/�j M

2�j (3.32)

for j � 0, where we have used the fact that (3.18) implies K=A2 �M .
Notice that because of (3.30) and the bound jb2�

a2`
j � E D D=L, if we have

H.a2; b2; a3; k; l/ < �CD=L for a sufficiently large absolute constant C > 0 then there
are no solutions for a4. Hence we can attach a factorW..a4 �G˙.a2; b2; a3; k; l//=E1=2/
to the a4-sum in (3.15). Unfortunately, G˙ may be highly oscillatory in a2; a3, which is
problematic for the application of the Poisson summation formula in a moment. How-
ever, since we are facing a counting problem where all terms are positive we are free to
“enlarge” E and G˙. By (3.29), (3.11), (3.3) and (3.12) we have

D

L
�

D

.D C P0/.1��/=2
� D1=2C�=2

�M .4�ı/.1C�/=2
�M 2:

We choose a parameter 0 < ˛ < 1=6 and write

E0 WD

�
D C 1

L

�˛
M 2.1�˛/

� E (3.33)

and obtain
a4 D QG˙.a2; b2; a3; k; l/CO.E

1=2
0 /

with
QG˙.a2; b2; a3; k; l/ D

1

2

�
b2 C

k

a2

�
˙
p
H.a2; b2; a3; k; l/CE0:

This gives

N�.A;B;D;K;L/ �
X
d

X
.a0
2
;b0
2
/D1

W

�
a02
A2=d

�X
k0;l 0

W

�
k0

K=d

�
W

�
l 0

L=d

�
�

X
a3��a

0
2
l 0 .mod jb0

2
j/

ˆa0
2
;b0
2
;�l 0IA3;B3

.a3/
X

a4�a
0
2
k0 .mod jb0

2
j/

Q̂
d;a0

2
;b0
2
;a3;k0;l 0

.a4/ (3.34)

with ˆ as in (3.16) and

Q̂
d;a0

2
;b0
2
;a3;k0;l 0

.x/ D W

�
x

A4

�
W

�
a02x � k

0

B4b
0
2

�
QW

�
x � QG˙.a

0
2d; b

0
2d; a3; k

0d; l 0d/

E
1=2
0

�
for a suitable smooth weight function QW . From (3.32) we obtain

@ja2
QG˙.a2; b2; a3; k; l/�j

M 2

A
j
2E

1=2
0

C
M 2j

A
j
2E

.2j�1/=2
0

;

@ja3
QG˙.a2; b2; a3; k; l/�j

M 2�j

E
1=2
0

C
M j

E
.2j�1/=2
0

(3.35)

for j � 1: We see now why it is useful to have E0 not too small.
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3.5.2. Application of Poisson summation. We now apply Poisson summation in a3; a4 to
(3.34). This gives an expression very similar to (3.20) except that ˆa0

2
;b0
2
;k0IA4;B4

.x/ is
replaced with Q̂ d;a0

2
;b0
2
;y;k0;l 0.x/. More precisely, we get

X
d

X
.a0
2
;b0
2
/D1

W

�
a02
A2=d

�X
k0;l 0

W

�
k0

K=d

�
W

�
l 0

L=d

� X
h4;h32Z

e

�
a02k
0h4 � a

0
2l
0h3

jb02j

�
�

1

jb02j
2

Z
R2
Q̂
d;a0

2
;b0
2
;y;k0;l 0.x/ˆa0

2
;b0
2
;�l 0IA3;B3

.y/e

�
�xh4 � yh3

jb02j

�
d.x; y/: (3.36)

In this case, it follows from (3.35) and (3.17) and integration by parts with respect to x
and y in Z

R2
Q̂
d;a0

2
;b0
2
;y;k0;l 0.x/ˆa0

2
;b0
2
;�l 0IA3;B3

.y/e

�
�xh4 � yh3

jb02j

�
d.x; y/

that we can truncate the hj -sum (j D 3; 4) at

h3 4
B2=d

min.A3; B3B2=A2; E0=M/
D
1

d

�
B2

A3
C
A2

B3
C
B2M

E0

�
DW

1

d
QH3;

h4 4
B2=d

min.A4; B4B2=A2; E
1=2
0 /
D
1

d

�
B2

A4
C
A2

B4
C

B2

E
1=2
0

�
DW

1

d
QH4:

(3.37)

As before, we denote by N�;diag.A;B;D;K;L/ the contribution of the diagonal terms
.h3; h4/ D .0; 0/ and by N�;off.A;B; D;K;L/ the contribution of the off-diagonal terms
.h3; h4/ ¤ .0; 0/.

3.5.3. The diagonal terms. The introduction of Q̂ shortens the a4-sum a bit and by the
same argument as in the treatment of diagonal terms in the previous Case 1 together with
(3.33) and (3.11), the central term h3 D h4 D 0 in (3.36) is bounded by

N�;diag.A;B;D;K;L/� A2B2 min
�p

E0

B2
;
A4

B2
;
B4

A2

�
min

�
A3

B2
;
B3

A2

�
KL

�M 1�˛.D C 1/˛=2B3KL
1�˛=2 4 M 2�˛.D C 1/˛=2.D C P0/

1�˛=4

�M 2�˛.D C 1/˛=4.D C P0/: (3.38)

3.5.4. The off-diagonal terms. It remains to obtain an acceptable bound for the contribu-
tion of .h3; h4/ ¤ .0; 0/.

Because of condition (3.29) all variables have roughly the same size, so this case is
much less delicate. As in (3.22) of Case 1 we apply in (3.36) Poisson summation in the
a02-variable. By (3.35) the dual variable can be truncated at

r2 4 QR WD
B2

A2
C
A4

B4
C
A3

B3
C
B2M

2

A2E0
:
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We now run the same computation as already done in Case 1. The terms with r2 D kh4 �
lh3 D 0 contribute

�

X
d

d

B2
min

�
K QH4

d2
;
L QH3

d2

�
A2

d
min

�
A4;

B4B2

A2

�
min

�
A3;

B3B2

A2

�
4M 2.KL/1=2.H3H4/

1=2
�M 2.D C P0/

1=2

�
M �
C
M 2

E0

�
by (3.18) and (3.29). Similarly, the remaining terms contribute

4
X
d

d3=2

B
3=2
2

KL

d2

�
QH3

d
C
QH4

d
C
QH3 QH4

d2

�
.1C QR/

A2

d
min

�
A4;

B4B2

A2

�
min

�
A3;

B3B2

A2

�
4 .D C P0/M

3=2. QH3 C QH4 C QH3 QH4/.1C QR/ 4 .D C P0/M
3=2

�
M �
C
M 2

E0

�3
:

We have shown

N�;off.A;B;D;K;L/ 4M 2.DCP0/
1=2

�
M �
C
M 2

E0

�
C.DCP0/M

3=2

�
M �
C
M 2

E0

�3
:

By (3.33) we have
M 2=E0 � L

˛M 2�2.1�˛/
�M 4˛

and we recall M � P
1=.2�2�/
0 � .D C P0/

1=.2�2�/. Hence in total we obtain

N�;off.A;B;D;K;L/

4 .D C P0/M
3=2Cmax.3�;12˛/

C .D C P0/
1
2C

max.�;4˛/
2�2� M 2: (3.39)

3.5.5. The final bound. Combining (3.38) and (3.39), we conclude under the present
assumption (3.29) that

N�.A;B;D;K;L/ 4 M 2�˛.D C 1/˛=4.D C P0/

C.DCP0/M
3=2Cmax.3�;12˛/

C.DCP0/
1
2C

max.�;4˛/
2�2� M 2 (3.40)

for a parameter 0 < ˛ < 1=6 that is at our disposal.

3.6. The endgame

We summarize our findings. Suppose that

max.3�; 12˛/ �
1

2
� �;

max.�; 4˛/
2 � 2�

�
1

2
� �: (3.41)

Combining (3.5), (3.8), (3.9), (3.14), (3.28) and (3.40) and summing over .logM/2 values
of K;L, we obtain

N .A;B;D/ 4 .D C P0/min
�
P 20 ;M

2��
C .D C P0/

��M 2
CM 2�˛.D C 1/˛=4

�
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in all cases, where 0 < �; ˛ � 1=6 are subject to (3.12) and (3.41), but otherwise at our
disposal. By (3.3), we can simplify

N .A;B;D/ 4 .D C P0/M
2 min

�
.P0=M/2;M�� C P

��
0 CM

�˛ı=4
�
:

Since min..P0=M/2; P
��
0 / �M�2�=.2C�/, we obtain finally

N .A;B;D/ 4 .D C P0/M
2.M�2�=.2C�/ CM�˛ı=4/:

Choosing � D ı=4 � 1=8, ˛ D 1=32, both conditions (3.12) and (3.41) are satisfied, and
Proposition 6 follows.

4. Conclusion of the proof of Theorem 1: The continuous case

It is now a simple matter to prove Lemma 1, which follows the strategy of the previous
section, but without any arithmetic input. We symmetrize the 6-dimensional integration
region and consider all 8 variables a1; : : : ; a4, b1; : : : ; b4 subject to (2.9). We put all
variables into dyadic intervals Aj � jaj j � 2Aj , Bj � jbj j � 2Bj , D � j�j � 2D,
�1; �2 4 �C P0 where the meaning of P0 is the same as in the previous section. The
numbers Aj ; Bj ; D run through logarithmically many positive and negative powers of 2
and are bounded by M�100 � Aj ; Bj � M , M�100 � D � M 4�ı . (If one of these is
�M�100, the coarsest trivial estimates suffice.) The same substitution as in Section 3.3
yields

kl WD .a2a4 � b2b4/.b2b3 � a2a3/ 4 D C P0:

We also put k; l into logarithmically many dyadic intervalsK � jkj � 2K, L � jl j � 2L,
KL4DCP0, and assumeK �L. We also have relation (3.31), so that the region of inte-
gration for a4 is of length E1=2 D .D=L/1=2: The total volume of this region can be com-
puted, of course, just as the central Poisson term. We integrate over a4; b4; b3; a3; b2; a2
in this order and see that it is bounded by

4 A2B2
L

A2
B3

K

B2

p
E D KL1=2D1=2B3

� .D C P0/
3=4D1=2M � .D C P0/D

1=4M � .D C P0/M
2�ı=4:

Lemma 1 follows.

5. Proof of Corollary 2

The main purpose of this section is to deduce Corollary 2 from Theorem 1. The following
general lemma implies Corollary 2, but it is stated in such generality that it can also be
used in the proof of Corollary 3 in Section 6. We prove only the lim inf part of the claim
since the proof for the lim sup is identical (up to reversing inequalities).
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Lemma 2. Let � be a measure with bounded support in R and let  be a real number.
Then for almost all ˛ with respect to �hyp we have

lim inf
N!1

Z 1


T3.˛I Œ; x�IN/ d�.x/ �
Z 1


.x � /2 d�.x/:

Remark 2. The lemma implies a bound for T3.˛I I IN/ as in the conclusion of Corol-
lary 2, by writing I D Œa; b�, picking  D a, and setting � D ıb with ıb denoting the Dirac
measure centered on b. Then the right-hand side of Lemma 2 becomes .b � a/2 D �.I /2,
and thus Corollary 2 follows from the lemma.

Proof of Lemma 2. Let " > 0 be arbitrary. Let B D B."; ; �/ denote the set of ˛ such
that for all N � N0."; ; �/ we haveZ 1



T3.˛I Œ; x�IN/ d�.x/ >
Z 1


.x � /2 d�.x/C ": (5.1)

We need to show that �hyp.B/D 0. Suppose the contrary, i.e. �hyp.B/ > 0 for some " > 0.
For some small 0 < "1 < 1=2 to be determined later we choose a (finite) rectangle R with
�hyp.R/ > 0 and �hyp.B \ R/ � .1 � "1/�hyp.R/. Such an R exists by the Lebesgue
density theorem. By Theorem 1 we haveZ

R

�Z 1


T3.˛I Œ; x�IN/ d�.x/
�

dhyp˛ D

Z 1


Z
R

T3.˛I Œ; x�IN/ dhyp˛ d�.x/

�

Z 1


.x � /2 d�.x/�hyp.R/C "1

for N � N1 D N1."1; ; �;R/, so that for all such N there exists a set SN � R such that
�hyp.SN / � 2"1�hyp.R/ andZ 1



T3.˛I Œ; x�IN/ d�.x/ �
1

1 � 2"1

�Z 1


.x � /2 d�.x/C "1

�
(5.2)

for all ˛ 2 SN and N � N1. Let

S WD lim supSN D
\
K�1

[
N�K

SN � R:

The set S is the subset of those ˛ 2 R which belong to infinitely many SN . It follows
from Lebesgue’s dominated convergence theorem that �hyp.S/ � 2"1�hyp.R/, so that
�hyp.S \B/ � �hyp.S/��hyp.R n .B \R// � "1�hyp.R/ and in particular S \B 6D ;.
On the other hand, ifZ 1



.x � /2 d�.x/C " �
1

1 � 2"1

�Z x



.x � /2d�.x/C "1

�
then S \B D ; by (5.1), and this can be achieved by choosing "1 sufficiently small. This
contradiction shows �hyp.B/ D 0.
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6. Proof of Corollary 3

In this section, we show how Corollary 3 can be deduced from Corollary 2. We assume
that Theorem 1 holds, and that consequently we may apply Lemma 2. For b � 0 let

fN;˛.b/ WD
1

N
j¹1 � i � N � 1 j ƒiC1.˛/ �ƒi .˛/ � bºj:

This is a piecewise constant non-decreasing function. Let " > 0 be given. We will show
that there is an infinite sequence of indices N for which fN;˛.G � "/ < 1, with G as
in the statement of Corollary 3, thus establishing the existence of infinitely many pairs
of consecutive elements of the sequence which are more than G � " apart. Suppose to
the contrary that fN;˛.G � "/ D 1 for all large enough N > N0.˛; "/. Then, by partial
summation,

ƒNC1.˛/�ƒ1.˛/D

N�1X
iD1

.ƒiC1.˛/�ƒi .˛//D .N �1/

�
.G�"/�

Z G�"

0

fN;˛.x/dx
�
:

The left hand side is .1C o˛.1//N since the ƒi .˛/ are normalized so that the average
gap between them is 1C o.1/. In other words,

G � 1C .1 � 10�6/"C

Z G�"

0

fN;˛.x/ dx (6.1)

for every N � N0 D N0.˛; "/. We now record three elementary inequalities:

� For all indices i we have

1ƒiC1�ƒi�b �
X
j>i

ƒj�ƒi�b

1 �
X
k>j>i

ƒj�ƒi�b

ƒk�ƒi�b

1: (6.2)

� For all indices i we have

1ƒiC1�ƒi�b �
2

3

X
j>i

ƒj�ƒi�b

1 �
1

3

X
k>j>i

ƒj�ƒi�b

ƒk�ƒi�b

1: (6.3)

� For all i > N0.˛; "/,

1ƒiC1�ƒi�b D 1 � 1ƒiC1�ƒi2.b;G�"� � 1 �
X
j>i

ƒj�ƒi2.b;G�"�

1: (6.4)

To prove the first two inequalities notice that if there are exactly ` � 1 values ƒj in the
interval .ƒi ; ƒi C c� then inequalities (6.2) and (6.3) amount to, respectively,

1 � ` �

�
`

2

�
and 1 �

2

3
` �

1

3

�
`

2

�
;
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which are easily seen to hold. Since moreover (6.2) and (6.3) are trivially true when there
are no ƒj ’s in .ƒi ; ƒi C c�, we conclude that (6.2) and (6.3) always hold. The final
inequality (6.4) follows from our assumption thatƒiC1�ƒi �G � " for allN >N0.˛; "/

and from the trivial upper bound

1ƒiC1�ƒi2I �
X
j>i

ƒj�ƒi2I

1;

which holds for all intervals I � R.
Summing each of (6.2), (6.3) and (6.4) over i gives, respectively,

fN;˛.b/ � T2.˛I Œ0; b�IN/ �
1
2
T3.˛I Œ0; b�IN/;

fN;˛.b/ �
2
3
� T2.˛I Œ0; b�IN/ �

1
6
T3.˛I Œ0; b�IN/;

fN;˛.b/ � 1 � T2.˛I Œb; G � "�IN/;

where each of these inequalities holds for all possible values of b. Let C D
p
6G � 5 �

1 .� 1:65/. Using the above inequalities we see thatZ G�"

0

fN;˛.b/ db �
Z 1

0

�
T2.˛I Œ0; b�IN/ �

1
2
T3.˛I Œ0; b�IN/

�
db

C

Z C

1

�
2
3
T2.˛I Œ0; b�IN/ �

1
6
T3.˛I Œ0; b�IN/

�
db

C

Z G�"

C

�
1 � T2.˛I Œb; G � "�IN/

�
db: (6.5)

We evaluate the integrals using Sarnak’s pair correlation result [14] (where it is easy to
see that the convergence is uniform in intervals Œ0; b� for b � 1, say), and using Lemma 2
with  D 0 and � a measure equal to 1

2
dx on 0 � x � 1 resp. 1

6
dx on 1 � x � C and

vanishing otherwise. In this way we find that for almost all ˛ there exists a subsequence
N1 < N2 < � � � along which the right hand side of (6.5) is at leastZ 1

0

.b � b2=2/ db C
Z C

1

�
2
3
b � 1

6
b2
�

db C
Z G�"

C

.1 � .G � " � b// db � 10�6":

Inserting this lower bound into (6.1) gives

G � 1C .1 � 10�6/"C 1
3
C
�
3G � 1

9

p
6G � 5 � .3G C 5/ � 43

18

�
C
�
G" �G2=2 � "2=2C

p
6G � 5 � .G � "/ � 3G C 3

�
� 10�6":

Using the definition of G this simplifies to

0 �
�
1 � 2 � 10�6 CG �

p
6G � 5

�
" � "2=2:

Since 2 � G � 2:1, this is a contradiction for all " sufficiently small. This proves Corol-
lary 3.
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7. Proof of Theorem 4

7.1. The lower bound

Let

fN .x/ WD
1

N
j¹i � N � 1 j iC1 � i � xºj and T2.xIN/ WD

1

N

X
i�j2Œ0;x�
1�j<i�N

1:

Suppose without loss of generality that the gaps iC1 � i are uniformly bounded by
some G > 0 for all sufficiently large i . Then by integration by parts (as in the previous
section), we obtain

G � 1C

Z G

0

fN .x/ dx C o.1/ (7.1)

as N !1. Notice now that for all i large enough,

1iC1�i�x D 1 � 1iC1�i2.x;G� � 1 �
X

i�j2.x;G�
1�j<i�N

1:

Therefore, summing over i < N and dividing by N we get

fN .x/ � 1 � .T2.GIN/ � T2.xIN//C o.1/ (7.2)

uniformly in 0 � x � G as N !1. Given " > 0 there exists an N0."/ such that for all
N > N0."/,

T2.GIN/ � T2.xIN/ � .G � x/C " (7.3)

for all 0 � x � G.3 In particular, fixing " > 0, combining fN .x/ � 0 and (7.1)–(7.3) and
taking N to infinity, we conclude that

G � 1C

Z G

G�1

.1 �G C x/ dx C ":

Squeezing " to zero this implies that G � 3=2.

7.2. The upper bound

We define a semi-random sequence .i /i�1 D .i .!//i�1 in the following way. Let
X1;X2; : : : be a sequence of independent random variables defined on a probability space
.�; †; P / such that Xi has uniform distribution on the interval Œi; i C 1� for i � 1. We
may assume that none of the Xi has an integer value. Furthermore, for every m � 1 we
define numbers

y
.m/
i D m2 C

i

d
p
2me

; 0 � i � d
p
2me:

Note that the numbers y.m/i , 0� i �d
p
2me, are all contained in the interval Œm2;m2C 1�.

3To see this, it is enough to split Œ0; G� into a disjoint union of intervals I1; I2; : : : of length "2

and find an N0 large enough so that T2;N .Ik/ is less than �.Ik/C "2 for all k.
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Thus these point sets do not intersect or overlap for different values of m. Our sequence
will consist of the random numbers .Xi /i from above, as well as of the deterministic num-
bers .y.m/i /i;m. To prevent the random components of the sequence from mixing with the
deterministic ones (which would make it unnecessarily complicated to sort the sequence
in increasing order), we discard those random numbers whose index is a perfect square,
since their values lie in the same range as the values of some of the deterministic numbers.
More precisely, we define .i /i�1 D .i .!//i�1 as the sequence which contains

� all numbers Xi , i � 1; for which i is not a perfect square, as well as

� all numbers y.m/i for m � 1 and 0 � i <
˙p
2m
�

,

sorted in increasing order. Note that the gaps between consecutive elements of .i / are
uniformly bounded by 2.

We split the index set N into two classes N1 and N2. The first class N1 contains all
those indices i for which the value of i comes from one of the random numbers .Xj /j�1.
Furthermore, we set N2 DNnN1, that is, N2 contains those indices i for which i comes
from one of the clusters of deterministic points. The set N2 decomposes into classes Cm,
m � 1, such that Cm contains those indices i 2 N2 for which i 2 Œm2; m2 C 1�. It is
easily seen that

j¹i 2 N2 j i � N ºj �
X
m2�N

.
p
2mC 1/� N 3=4:

Consequently,
j¹i 2 N j i � N ºj D N CO.N

3=4/;

which implies
i=i ! 1 as i !1:

In other words, the average spacing of .i / is 1, as required. We claim that the pair corre-
lation of this sequence is Poissonian, P -almost surely.

Assume that b > 0 is fixed. We split T2.bIN/ into different parts in the following
way. We write

T2.bIN/ D
1

N
j¹.i1; i2/ j 1 � i1 < i2 � N; i2 � i1 � bºj

DW
1

N

�X
1
C

X
2
C

X
3
C

1X
mD1

X
4;m

�
;

where all sums are taken over indices 1 � i1 < i2 � N such that i2 � i1 � b, subject to
the following additional restrictions:X

1
W i1; i2 are both in N1IX

2
W exactly one of i1; i2 is in N1IX

3
W i1 and i2 are both in N2, but not in the same set Cm for some mIX

4;m
W i1 and i2 are both in N2 and both in the same set Cm:
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Recall that for i 2 N1 we have i D Xi D i C Yi where the Yi are independent and
uniformly distributed on Œ0; 1�. Therefore,

1

N

X
1
D

X
`�1

�
1

N

X
kC`<N

kC`�k�b

1

�
D

X
`�1

�
1

N

X
kC`<N

YkC`�Yk�b�`

1

�
!

X
`�bC1

P .X �Y � b� `/

P -almost surely asN !1 by the strong law of large numbers, whereX;Y are uniformly
distributed on Œ0; 1�. Since X; Y are independent, we have

P .X � Y � x/ D

Z x

�1

hX�Y .v/ dv; hX�Y .v/ WD

Z
R

1�1�y�0 � 10�v�y<1 dy:

Therefore, X
`�1

P .X � Y � b � `/ D

Z b

�1

X
`�1

hX�Y .x � `/ dx:

We now notice thatX
`�1

hX�Y .x � `/ D

Z
R

1�1�y�0
�X
`�1

10�x�`�y<1
�

dy

D

Z
R

1�1�y�0 � 1x�y�1 dy D

8̂̂<̂
:̂
1 if x � 1;

x if 0 � x � 1;

0 if x � 0:

Combining the above two equations we conclude that

X
`�1

P .X � Y � b � `/ D

8̂̂<̂
:̂
0; b � 0;

b2=2; b 2 Œ0; 1�;

b � 1=2; b � 1:

(7.4)

Furthermore, we have

1

N

X
2
�
j¹i 2 N2 j i � N ºj

N
�

N 3=4

N
! 0; (7.5)

since for each i 2 N2 there are at most 2dbe indices j 2 N1 such that ji � j j � b.
Finally, we have

1

N

X
3
! 0 as N !1; (7.6)

since b is assumed to be fixed and the gaps between Cm and CmC1 grow to infinity as
m! 1. Thus it remains to calculate the contribution of the sums

P
4;m. So let m be

given, and assume that Cm � ¹1; : : : ; N º. ConsiderX
4;m
D j¹.i1; i2/ 2 C

2
m j i1 < i2; i2 � i1 � bºj:
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If b � 1 then by construction all such pairs of indices are within distance b of each other,
and thus for b � 1 we haveX

4;m
D j¹.i1; i2/ 2 C

2
m j i1 < i2ºj � jCmj

2=2 � m:

The maximal m for which Cm � ¹1; : : : ; N º is of order
p
N.1C o.1//. There may also

be one set Cm which is only partially contained in ¹1; : : : ; N º, but its contribution is of
order at most jCmj2 � m�

p
N and thus negligible. So overall in the case b � 1 we

have
1X
mD1

X
4;m
�

X
1�m�

p
N

m �
N

2
:

Thus, together with (7.4)–(7.6), for b � 1 we obtain

T2.bIN/! b �
1

2
C
1

2
D b as N !1, P -almost surely;

which coincides with Poissonian behavior.
It remains to consider the case b 2 Œ0; 1�. So fix b in this range. Let a set Cm be given,

and assume again that it is contained in ¹1; : : : ;N º. The points i ; i 2 Cm; are positioned
at the values

m2; m2 C
1

d
p
2me

; m2 C
2

d
p
2me

; : : : ; m2 C 1:

We could give an explicit formula for the number of pairs of indices i1 < i2 for which
i2 � i1 � b, but it is sufficient to know that the cardinality of this set of pairs is of order

� jCmj
2

�
.1 � b/b C

Z b

0

y dy
�
� 2m.b � b2=2/;

which is easily verified (for example, by looking at the problem in terms of counting
lattice points of a square lattice contained in a certain polygon). Thus for b 2 Œ0; 1� we
have

1X
mD1

X
4;m
�

X
1�m�

p
N

2m.b � b2=2/ � N.b � b2=2/:

As a consequence, again in combination with (7.4), (7.5) and (7.6), we obtain

T2.bIN/! b2=2C b � b2=2 D b as N !1, P -almost surely:

This gives the desired result for b 2 Œ0;1�. Finally, we note that by continuity it is sufficient
to consider all b contained in a countable dense subset of Œ0;1/, such as Q\ Œ0;1/. For
each individual b there is an exceptional set of P -measure zero, and since the union of
countably many sets of measure zero also has measure zero, we conclude that there is an
element ! 2 � for which T2.bIN/! b holds for all b � 0. This completes the proof of
Theorem 4.
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