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Abstract. For fixed s � 3, we prove that if optimal Ks-free pseudorandom graphs exist, then the
Ramsey number r.s; t/ is ts�1Co.1/ as t !1. Our method also improves the best lower bounds
for r.C`; t / obtained by Bohman and Keevash from the random C`-free process by polylogarithmic
factors for all odd ` � 5 and ` 2 ¹6; 10º. For ` D 4 it matches their lower bound from the C4-free
process.

We also prove, via a different approach, that r.C5; t / > .1 C o.1//t11=8 and r.C7; t / >

.1 C o.1//t11=9. These improve the exponent of t in the previous best results and appear to be
the first examples of graphs F with cycles for which such an improvement of the exponent for
r.F; t/ is shown over the bounds given by the random F -free process and random graphs.
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1. Introduction

The Ramsey number r.F; t/ is the minimumN such that everyF -free graph onN vertices
has an independent set of size t . When F DKs we simply write r.s; t/ instead of r.F; t/.
Improving on earlier results of Spencer [33] and the classical Erdős–Szekeres [15] theo-
rem on Ramsey numbers, Ajtai, Komlós and Szemerédi [1] proved the following upper
bound on r.s; t/, and Bohman and Keevash [7] proved the lower bound by considering
the random Ks-free process: for s � 3, there exist constants c1.s/; c2.s/ > 0 such that

c1.s/
t

sC1
2

.log t /
sC1

2 �
1

s�2

� r.s; t/ � c2.s/
t s�1

.log t /s�2
: (1)

For s D 3, the lower bound was proved in a celebrated paper of Kim [22] and the upper
bound was proved by Shearer [32] with c2.3/ D 1C o.1/. In particular, recent results of
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Bohman and Keevash [31] and Fiz Pontiveros, Griffiths and Morris [16] together with the
bound of Shearer show�

1
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� o.1/

�
�
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log t
� r.3; t/ � .1C o.1// �

t2

log t
(2)

as t !1. There have been no improvements in the exponents in (1) for any s � 4 for
many decades.

In this note, we show that if certain density-optimal Ks-free pseudorandom graphs
exist, then r.s; t/D t s�1Co.1/. This approach suggests that pseudorandom graphs may be
the central tool required to determine classical graph Ramsey numbers.

An .n; d; �/ graph is an n-vertex d -regular graph such that the absolute value of
every eigenvalue of its adjacency matrix, besides the largest one, is at most �. Con-
structions of .n; d; �/-graphs arise from a number of sources, including Cayley graphs,
projective geometry and strongly regular graphs – we refer the reader to Krivelevich and
Sudakov [25] for a survey of .n; d; �/-graphs. Sudakov, Szabó and Vu [35] show that a
Ks-free .n; d; �/-graph satisfies

� D �.d s�1=ns�2/ (3)

as n!1. For s D 3, if G is any triangle-free .n; d; �/-graph with adjacency matrix A,
then

0 D tr.A3/ � d3 � �3.n � 1/: (4)

If � D O.
p
d/, then this gives d D O.n2=3/, matching (3). Alon [2] constructed a tri-

angle-free pseudorandom graph attaining this bound, and Conlon [10] more recently
analyzed a randomized construction with the same average degree. A similar argument
to (4) shows that a Ks-free .n; d; �/-graph with � D O.

p
d/ has d D O.n1�

1
2s�3 /. The

Alon–Boppana bound [29,30] shows that �D�.
p
d/ for every .n; d; �/-graph provided

d=n is bounded away from 1. Sudakov, Szabó and Vu [35] raised the question of the
existence of optimal pseudorandom Ks-free graphs for s � 4, namely .n; d; �/-graphs
achieving the bound in (3) with � D O.

p
d/ and d D �.n1�

1
2s�3 /. We show that a posi-

tive answer to this question gives the exponent of the Ramsey numbers r.s; t/ via a short
proof of the following general theorem, based on ideas of Alon and Rödl [5]:

Theorem 1. Let F be a graph, n; d; � be positive integers with d � 1 and � > log2 n,
and let t D d2n log2n=de. If there exists an F -free .n; d; �/-graph, then

r.F; t/ >
n

20�
log2 n: (5)

Theorem 1 provides good bounds whenever we have an F -free .n; d; �/-graph with
many edges and good pseudorandom properties (meaning that d is large and � is small).
For example, we immediately obtain the following consequence.

Corollary 2. If Ks-free .n; d; �/-graphs exist with d D �.n1�
1

2s�3 / and log2 n < � D
O.
p
d/, then as t !1,

r.s; t/ D �

�
t s�1

log2s�4 t

�
: (6)
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Corollary 2 follows from (5) using F DKs . To see this, from t D d2n.log2 n/=de we
obtain d D ‚.t2s�4=log2.2s�4/ t /. Inserting this in (5) with � D O.

p
d/ gives (6).

Alon and Krivelevich [4] gave a construction of Ks-free .n; d; �/-graphs with d D
�.n1�1=.s�2// and � D O.

p
d/ for all s � 3, and this was slightly improved by Bishnoi,

Ihringer and Pepe [6] to obtain d D �.n1�1=.s�1//. This is the current record for the
degree of a Ks-free .n; d; �/-graph with � D O.

p
d/. The problem of obtaining optimal

Ks-free pseudorandom constructions in the sense of (3) with �DO.
p
d/ for s � 4 seems

difficult and is considered to be a central open problem in pseudorandom graph theory.
The problem of determining the growth rate of r.s; t/ is classical and much older, and
it was not completely clear whether the upper or lower bound in (1) was closer to the
truth. Based on Theorem 1, it seems reasonable to conjecture that if s � 4 is fixed, then
r.s; t/ D t s�1Co.1/ as t !1.

We next consider cycle-complete Ramsey numbers. The cycle complete Ramsey num-
bers r.C`; t / appear to be very difficult to determine – the best upper bounds are provided
by Sudakov [34] for odd cycles and Caro, Li, Rousseau and Zhang [9] for even cycles.
The best lower bound for fixed ` � 4 is

r.C`; t / D �

�
t .`�1/=.`�2/

log t

�
; (7)

due to Bohman and Keevash [7] by analyzing the C`-free process. A generalization of the
optimal triangle-free .n; d; �/-graphs constructed by Alon [2] to optimal pseudorandom
C`-free graphs for odd ` � 5 was given by Alon and Kahale [3], and gives an .n; d; �/-
graph with d D ‚.n2=`/ and � D O.

p
d/. Using this construction, Theorem 1 gives

the following on odd-cycle complete Ramsey numbers, which gives a polylogarithmic
improvement over (7):

Corollary 3. Let ` � 3 be an odd integer. Then as t !1,

r.C`; t / D �

�
t .`�1/=.`�2/

log2=.`�2/ t

�
: (8)

Note when `D 3, this matches the lower bound of Spencer [33] from the local lemma.
Applying Theorem 1 when F is bipartite can give lower bounds on r.F; t/ that are better
than those obtained from theF -free process. We can see this whenF DC` and `2 ¹6;10º.
To apply Theorem 1 when F D C4, we may consider polarity graphs of projective planes
to be .n;d;�/-graphs with nD q2C qC 1, d D qC 1 and �D

p
q (see [28] for a detailed

study of independent sets in such graphs). Theorem 1 then gives r.C4; t /D�.t3=2=log t /,
which matches (7). It is a wide open conjecture of Erdős that r.C4; t / � t2�" for some
" > 0.

For `2 ¹6;10º Theorem 1 provides results that exceed the previous best known bounds
of (7) from the random C`-free process.

Corollary 4. As t !1,

r.C6; t / D �

�
t5=4

log1=2 t

�
and r.C10; t / D �

�
t9=8

log1=4 t

�
:
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These results are obtained by considering polarity graphs of generalized quadrangles
and generalized hexagons. For certain prime powers q, generalized quadrangles are
.n; d; �/-graphs with n D q3 C q2 C q C 1, d D q C 1 and � D

p
2q, and general-

ized hexagons are .n; d; �/-graphs with nD q5 C q4 C q3 C q2 C qC 1, d D qC 1 and
� D
p
3q. For the existence of such graphs, we refer the reader to Brouwer, Cohen and

Neumaier [8] and Lazebnik, Ustimenko and Woldar [26]. We can then apply Theorem 1
to obtain the desired result by (5).

Our next result uses a completely different construction than that in Theorem 1 for
F D C5 and F D C7. For these two cases, we are able to improve the exponents in
the lower bounds given by Corollary 3. Our approach here is to use a random block
construction. This idea was used in [14,23] and also recently in [10] to construct triangle-
free pseudorandom graphs.

Theorem 5. As t !1,

r.C5; t / � .1C o.1//t
11=8; r.C7; t / � .1C o.1//t

11=9:

This appears to be the first instance of a graph F containing cycles for which random
graphs do not supply the right exponent for r.F; t/.

2. Proof of Theorem 1

The proof of Theorem 1 uses the following property of independent sets in .n; d; �/-
graphs, due to Alon and Rödl [5] (we give a slightly stronger statement below):

Theorem 6 (Alon–Rödl [5]). Let G be an .n; d; �/-graph with d � 1, � > 1=2, and let
t � 2n.log2 n/=d be an integer. Then the number of independent sets of size t in G is at
most .2e2�=log2 n/t .

Proof. Alon and Rödl [5, Theorem 2.1] proved that the number Z of independent sets of
size t in G is at most

1

tŠ

�
t

`

�
n`
�
2�n

d

�t�`
where ` D t=logn. Using

�
t
`

�
� 2t and t Š � .t=e/t , we get

Z �

�
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D

�
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�
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2�

�t=logn

:

Since � > 1=2, we obtain d=.2�/ � d � n and therefore .d=.2�//t=logn � nt=logn � et .
Using t � 2n.log2 n/=d yields

Z �

�
4e2�n

dt

�t
�

�
2e2�

log2 n

�t
and the proof is complete.
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Proof of Theorem 1. Let G be an F -free .n; d; �/-graph and let U be a random
set of vertices of G where each vertex is chosen independently with probability p D
.log2 n/=.2e2�/. Let Z be the number of independent sets of size t D d2n.log2 n/=de in
the induced subgraph GŒU �. Then by Theorem 6 and the choice of p,

E.jU j � jZj/ � pn � pt
�
2e2�

log2 n

�t
D pn � 1:

Therefore there is a set U � V.G/ such that if we remove one vertex from every indepen-
dent set in U , the remaining set T has jT j � pn � 1 and GŒT � has no independent set of
size t . It follows that

r.F; t/ � pn >
n

20�
log2 n:

This completes the proof.

3. Proof of Theorem 5

A key ingredient in the proof of Theorem 5 is the existence of dense bipartite graphs G
of high girth. For the first statement in the theorem, we let G be a bipartite graph of girth
at least 12 with parts U and V of sizes

m D .q C 1/.q8 C q4 C 1/ and n D .q3 C 1/.q8 C q4 C 1/

such that every vertex of V has degree q C 1 and every vertex of U has degree q3 C 1
– these are the incidence graphs of generalized hexagons of order .q; q3/ (see [17, 36]
or [13, p. 115, Corollary 5.38] for details about these constructions).

For each u 2 U , let .Au; Bu/ be a random partition of NG.u/, independently for
u 2 U . Let H be the random graph with V.H/ D V obtained by placing a complete
bipartite graph with parts Au and Bu inside NG.u/ for each u 2 U . It is evident thatH is
C5-free since G has girth 12.

Now we show every independent set in H has size at most .1 C o.1//q8; this is
sufficient to show r.C5; t / > n D .1C o.1//t

11=8. Let I be a set of t vertices in H . If
jI \NG.u/j D tu for u 2 U , then

P.e.I \NG.u// D 0/ D 2
1�tu : (9)

Since the partitions .Au; Bu/ are independent over different u 2 U and the sum of tu is
.q C 1/t ,

P.e.I / D 0/ D
Y
u2U

P.e.I \NG.u// D 0/ D
Y
u2U

21�tu D 2m�.qC1/t : (10)

There are
�
n
t

�
choices of I , so the expected number of independent sets of size t in H is�

n

t

�
2m�.qC1/t � 2t log2 nCm�.qC1/t D 2m�.qCo.q//t : (11)
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Since m D .1C o.1//q9, we make take

t D .1C o.1//q8

so that the above expression decays to zero. Consequently, with high probability, every
independent set in H has size less than t .

For the second statement of Theorem 5, the Ree–Tits octagons [17, 36] supply requi-
site bipartite graphs of girth at least 16 – these graphs have parts of sizes

m D .q C 1/.q9 C q6 C q3 C 1/ and n D .q2 C 1/.q9 C q6 C q3 C 1/

with all vertices in the larger part of degree qC 1. We omit the details for this case, which
are almost identical to the above.

4. Random block constructions

Theorem 5 may be generalized as follows. Let F be a graph and let P D .P1; : : : ; Pk/ be
a partition ofE.F / into bipartite graphs with at least one edge each. LetX D ¹x1; : : : ; xkº
be new vertices, and let FP be the graph with V.FP / D V.F / [X and edge set

E.FP / D

k[
iD1

®
¹xi ; yº W y 2 V.Pi /

¯
: (12)

Let L.F / be the family of all graphs FP taken over partitions P of E.F / into paths with
at least one edge each. For instance, when F is a triangle, then L.F / consists of C4 plus a
pendant edge and C6. If F is a pentagon then every member of L.F / is a cycle of length
at most 10 plus a set of pendant edges. Let G be a bipartite graph with parts U and V
containing no member of L.F / and such that every vertex of V has degree d . We form a
new graphH with V.H/D V by taking for each u 2 U independently a random partition
.Au; Bu/ of NG.u/ and then adding a complete bipartite graph with parts Au and Bu. By
definition,H does not contain F . Then the proof of the following is the same as the proof
of Theorem 5:

Theorem 7. Let F be a graph and let G be an L.F /-free bipartite graph with parts U
and V such that jU j D m and jV j D n and every vertex of V has degree at least d . If
dt > mC t logn, then

r.F; t/ > n: (13)

If F DK4, then a C4-free graph containing no 1-subdivision ofK4 is L.F /-free. It is
possible to show that any graph not containing a 1-subdivision of K4 has O.n7=5/ edges
(see Conlon and Lee [11], and Janzer [21]). If there is a d -regular graph containing no
1-subdivision of K4 with n vertices and with d D �.n2=5/ even, then one can produce a
random graph H as above that is d2-regular, and has a chance to be an .n; d; �/-graph
with � D d1=2Co.1/ as in the work of Conlon [10]. Via Theorem 1, this would then show
r.4; t/D t3�o.1/. However, the best construction of an n-vertex graph with no subdivision
of K4 has only O.n4=3/ edges.
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5. Concluding remarks

�Although the construction in Theorem 1 starting with Alon’s [2] pseudorandom triangle-
free graph provides slightly worse bounds than the known random constructions for
r.3; t/, the number of random bits used is less than the known random construc-
tions [31,33], which use roughly t4Co.1/ bits. The same observation applies to the case of
r.C`; t / for ` 2 ¹4;6; 10ºwhere we match or exceed the best known construction obtained
via the C`-free process using fewer random bits.

� It would be interesting to see if the choice of the random subset U in the proof of
Theorem 1 can be made explicit; for instance, the best explicit construction [24] of a K4-
free graph without independent sets of size t only gives r.4; t/ D �.t8=5/, as compared
to random graphs which give r.4; t/ D ��.t5=2/.

� If we apply the proof of Theorem 1 to Paley graphs of order q, which are .n;d;�/-graphs
with d D .q � 1/=2 and �D 1

2
.
p
q˙ 1/ where q is a prime power congruent to 1 mod 4,

we find that almost all subsets of�.
p
q log2 q/ vertices have no independent set or clique

of size more than 2 log2 q. In fact, Noga Alon (personal communication) had already
observed a stronger statement in 1991, that one can randomly take q˛ vertices for suitable
˛ and the resulting induced subgraph has clique and independence number O.log q/.
It would be interesting to know if this can be done without randomness. It is a major
open question (see Croot and Lev [12]) to determine, when q is prime, the maximum
size of independent sets and cliques in the Paley graph. These were shown to be at least
�.log q log log q/ by Montgomery [27] under GRH and at least �.log q log log log q/
unconditionally by Graham and Ringrose [18]. The current best upper bound is

p
q=2C 1

by Hanson and Petridis [19].

� In order to improve the exponent in the lower bound (1) using Theorem 1, one could try
to find aKs-free .n; d;�/-graph with n=� � .n=d/.qC1/=2 for some q > s, so as to obtain
r.s; t/ D �.t .qC1/=2/. In the case � D O.

p
d/, it is sufficient that d D �.n1�1=q/.
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