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Abstract. The classification of reflective modular forms is an important problem in the theory
of automorphic forms on orthogonal groups. In this paper, we develop an approach based on the
theory of Jacobi forms to give a full classification of 2-reflective modular forms. We prove that
there are only three lattices of signature (2, n) having 2-reflective modular forms when n > 14.
We show that there are exactly 51 lattices of type 2U & L(—1) which admit 2-reflective modular
forms and are such that L has 2-roots. We further determine all 2-reflective modular forms giving
arithmetic hyperbolic 2-reflection groups. This is the first attempt to classify reflective modular
forms on lattices of arbitrary level.
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lattices, hyperbolic reflection groups

1. Introduction

A reflective modular form is a holomorphic modular form on an orthogonal group of sig-
nature (2, n) whose divisor is a union of rational quadratic divisors associated to some
roots of the lattice. The 2-reflective modular forms are the simplest reflective modular
forms whose divisors are determined by vectors of norm —2, and they have the geomet-
ric interpretation as automorphic discriminants of moduli of K3 surfaces (see [8,28,41]).
Reflective modular forms are usually Borcherds products of some vector-valued modu-
lar forms (see [10, 11]). The Igusa form Ao, namely the first cusp form for the Siegel
modular group of genus 2, is the first reflective modular form (see [24]). The Borcherds
form @, for Il 56, i.e. the even unimodular lattice of signature (2, 26), is the last reflec-
tive modular form (see [5]).

Reflective modular forms are of great importance. They play a vital role in classifying
interesting Lorentzian Kac—Moody algebras, as their denominator identities are usually
reflective modular forms (see [1,25-27,29,43,44]). Such modular forms also has appli-
cations in algebraic geometry, since the existence of a particular reflective modular form
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determines the Kodaira dimension of the corresponding modular variety (see [21,22,36]).
In addition, reflective modular forms are beneficial to the research of hyperbolic reflection
groups and hyperbolic reflective lattices (see [1,7]), because the existence of a reflective
modular form with a Weyl vector of positive norm implies that the hyperbolic lattice is
reflective (see [6]). This means that the subgroup generated by reflections has finite index
in the integral orthogonal group of the lattice. Recently, in joint work with Gritsenko, we
use the pull-backs of certain reflective modular forms of singular weight to build infi-
nite families of remarkable Siegel paramodular forms of weights 2 and 3 (see [31-33]).
Moreover, the first Fourier—Jacobi coefficients of reflective modular forms give interesting
holomorphic Jacobi forms as theta-blocks (see [20, 30]).

The classification of reflective modular forms is an open problem since 1998 when
Gritsenko and Nikulin [25] first conjectured that the number of lattices having reflective
modular forms is finite up to scaling. In the past two decades, some progress has been
made on this problem. Borcherds [7] constructed many interesting reflective modular
forms related to extraordinary hyperbolic groups as Borcherds products of weakly holo-
morphic modular forms on congruence subgroups. Gritsenko and Nikulin [27] classified
reflective modular forms of signature (2, 3) by means of the classification of hyper-
bolic reflective lattices. Scheithauer classified some special reflective modular forms with
norm zero Weyl vectors. More precisely, based on the theory of vector-valued modu-
lar forms, he found a necessary condition for the existence of a reflective form in [44].
Using this condition, the classification of strongly reflective modular forms of singular
weight (i.e. minimal weight n/2 — 1) on lattices of squarefree level has been almost
completed (see [14, 44, 45]). Using an algebraic geometry approach, Ma derived the
finiteness of lattices admitting 2-reflective modular forms and reflective modular forms
of bounded vanishing order, which partly proved the conjecture of Gritsenko and Nikulin
(see [35,36]).

Scheithauer’s condition is hard to use when the lattice is not of squarefree level
because in this case the Fourier coefficients of vector-valued Eisenstein series are compli-
cated and it is difficult to characterize the discriminant form of the lattice. Ma’s approach
is ineffective to give the list of reflective lattices because his estimate is rather rough.
There is no effective way to classify reflective modular forms on general lattices. The
purpose of this paper is to give a novel way to classify 2-reflective modular forms on
lattices of arbitrary level.

Our method is based on the theory of Jacobi forms of lattice index (see [12, 17]). We
know from [11] that every reflective modular form on a lattice of type U & U(m) & L
is a Borcherds product of a suitable vector-valued modular form. Thus the existence of a
reflective modular form is determined by the existence of a certain vector-valued modular
form. In view of the isomorphism between vector-valued modular forms and Jacobi forms,
we can use Jacobi forms to study reflective modular forms. In some sense, Jacobi forms
are more powerful than vector-valued modular forms. We can take the product and tensor
product of different Jacobi forms. We can also consider pull-backs of Jacobi forms from
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a certain lattice to its sublattices. There are Hecke type operators to raise the index of
Jacobi forms and differential operators to raise the weight of Jacobi forms. The structure
of the space of Jacobi forms for some familiar lattices is known (see [50] for the case of
root systems). Moreover, we usually focus on the genus of a lattice when we use vector-
valued modular forms. But we will see all the faces of a reflective modular form when we
work with Jacobi forms, because there are different Jacobi forms in the expansions of an
orthogonal modular form at different one-dimensional cusps. For example, the Borcherds
form ®;,, which defines the denominator function of the fake monster algebra (see [4]),
is constructed as the Borcherds product of A~!, where A is the Ramanujan Delta function

o0
A =q[Ja-gm*. ¢=e"" reH. (1.1)

n=1

But in the context of Jacobi forms, there are 24 different constructions of this modular
form corresponding to 24 classes of positive-definite even unimodular lattices of rank 24
(see [20]).

In our previous work [48], we proved the non-existence of 2-reflective and reflec-
tive modular forms on lattices of large rank by constructing certain holomorphic Jacobi
forms of small weights using differential operators. In particular, we showed that the only
2-reflective lattices of signature (2, n) satisfying n > 15 and n # 19 are II, 15 and I, »6.
Here, a lattice having a 2-reflective modular form is called 2-reflective. In this paper, we
prove the following stronger result.

Theorem 1.1. Let M be a 2-reflective lattice of signature (2,n) withn > 14. Then M is
isomorphic to 1l 18, 2U @ 2Es(—1) @ A1(—1), or Il5 2.

We have mentioned that there is a relation between hyperbolic 2-reflective lattices
and 2-reflective modular forms. The full classification of hyperbolic 2-reflective lattices
is known due to the work of Nikulin and Vinberg [39,40,47]. Vinberg [46] proved that
if U @ L(—1) is a hyperbolic 2-reflective lattice then the set of 2-roots of each lattice
in the genus of L generates the whole space L ® R. In this paper, we prove an ana-
logue of Vinberg’s result (see Theorem 6.2) and use it to give a complete classification of
2-reflective lattices.

Theorem 1.2. There are only three types of 2-reflective lattices containing two hyper-
bolic planes:

(@) Iz 26.
(b) 2U & L(—1) where no lattice in the genus of L has 2-roots. In this case, every

2-reflective modular form has a Weyl vector of norm zero and has weight 12, where
Bo is the multiplicity of the principal Heegner divisor #y defined by (6.1).

(¢c) 2U & L(—1) where every lattice in the genus of L has 2-roots and the 2-roots gen-
erate a sublattice of the same rank as L. In this case, L is in the genus of one of the
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following 50 lattices:

n | L

3 Aq

4 241, A

5 341, A1 @ Ay, A3z
6

7

8

4A1, 2A1 @ Az, A1 & A3z, Aa, Dy, 242

541, 2A1 @ A3, A1 ® 243, A1 ® A4, A1 & Dy, As, Ds
6A1, 2A1 ® D4, A1 ® A5, A1 ® Ds, Eg, 345, 243, Ag, Dg
9 | 741, 341 ® D4, A1 @ D6, A1 ® E¢, E7, A7, D7

10 | 841, 441 @ D4, 2A1 ® D¢, A1 ® E7, Eg, 2Dy4, Dg, Ng

11 | 541 ® D4, A1 ®2Dy4, A1 ® Dg, A1 @ Eg

12 | 24; @ Eg
18 | 2Eg
19 | 2Eg @ A3

Note that the pairs 5A1 & D4 and A1 & Ng, A1 ® 2D4 and 341 & D¢, A1 & Dg
and 2A1 @ E7, and 2A, & Eg and Dy are each in the same genus. Here, Ng is
the Nikulin lattice defined in (5.3). Moreover, every lattice has a 2-reflective modular
Sform with a positive norm Weyl vector. Thus, every associated Lorentzian lattice U &
L(—1) is hyperbolic 2-reflective.

Above, (c) characterizes the 2-reflective lattices giving arithmetic hyperbolic 2-reflec-
tion groups. By this characterization, we further prove that there are exactly 18 hyperbolic
2-reflective lattices of rank larger than 5 not associated to 2-reflective modular forms
(see Theorem 7.2), which gives a negative answer to [6, Problem 16.1]; for example
S =U & Eg & E7 is hyperbolic 2-reflective, but U @ S is not 2-reflective. It now remains
to classify 2-reflective lattices of type (b). We conjecture that such lattices might come
from sublattices of the Leech lattice. It seems difficult to classify such lattices, since they
correspond to hyperbolic parabolically 2-reflective lattices (see [7,29]) whose full classi-
fication is unknown.

As a corollary of the above theorems, we produce the classification of 2-reflective
modular forms of singular weight.

Corollary 1.3. If M = 2U & L(—1) has a 2-reflective modular form of singular weight,
then L is in the genus of 3Eg or 4A;.

We now explain the proof of Theorems 1.1 and 1.2. Our proof is based on manip-
ulation of Jacobi forms and independent of the work of Nikulin and Vinberg on the
classification of hyperbolic 2-reflective lattices. Suppose that M = 2U @ L(—1) and F is
a 2-reflective modular form on M. The existence of F' implies that there exists a weakly
holomorphic Jacobi form ¢y, ;. of weight 0 and index L. The divisor of F determines the
singular Fourier coefficients of ¢, 7. The singular Fourier coefficients are its Fourier coef-
ficients of type f(n,£) with hyperbolic norm 2n — (£, £) < 0. The Jacobi form ¢y, z, has
two types of singular Fourier coefficients, with hyperbolic norms —2 and —1/2 respec-
tively. We observe that all Fourier coefficients of ¢~!- and ¢°-terms of ¢ ;. are singular
except the constant term f(0, 0) giving the weight of F'. Most remarkably, the coefficients
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of g"-terms (n < 0) of any Jacobi form of weight 0 satisfy the following relations (see
Lemma 4.3):

1 1
Ci= 52 Y fO.0=Y 3 fn.0o1(=n) = kD) D FO.0,0),

LeLY n<0/{eLVv teLY

> f0.0(€.3)?%=2CG.3). V3eL®C.
LelLVv

From the first identity, we deduce a formula to express the weight of F in terms of the
multiplicities of the irreducible components of the divisor of F'. From the second identity,
we infer that if L has 2-roots then the set of all 2-roots spans the whole space L ® R.
Moreover, all irreducible root components not of type A; have the same Coxeter number
(see Theorem 6.2). By virtue of these results, we only need to consider a finite number of
lattices. Furthermore, the ¢°-term of F also defines a holomorphic Jacobi form as a theta-
block (see (4.6)). From its holomorphicity, we also deduce a necessary condition. The
2-reflective modular forms on lattices listed in assertion (c) can be constructed as quasi
pull-backs of the Borcherds form @1, (see §5). For other lattices, the quasi pull-backs
of @, are not exactly 2-reflective modular forms and usually have additional divisors.
But it is not bad. By considering the difference between the pull-back and the assumed
2-reflective modular form, we construct some Jacobi forms whose non-existence can be
deduced from the structure of the space of Jacobi forms. Combining these arguments, the
theorems can be proved.

Remark 1.4. The approach to prove Theorem 1.2 was later extensively used in our sub-
sequent papers to classify arithmetic groups acting on symmetric domains of type IV for
which the ring of modular forms is freely generated (see [Compos. Math. 157, 20262045
(2021)]), and to classify reflective lattices of prime level (see [Trans. Amer. Math. Soc.
375, 3451-3468 (2022)]).

The paper is organized as follows. In §2 we recall the necessary material on lattices
and discriminant forms. In §3 we give the definitions of reflective modular forms. In
§4 we introduce the theory of Jacobi forms of lattice index. In §5 we show how to use
quasi pull-backs of the Borcherds form ®;, to construct reflective modular forms. §6 is
the heart of this paper; here we prove the main theorems and some other classification
results. In §7 we consider the automorphic corrections of hyperbolic 2-reflective lattices.
In §8 we prove that the lattice related to the moduli space of polarized K3 surfaces, 2U &
2Eg(—1) & (—2n), is reflective if and only if n = 1, 2 (see Theorem 8.1). This generalizes
aresult in [34]. In §9 we give some remarks and formulate five open questions related to
this paper.

2. Lattices and discriminant forms

In this section we recall some basic results on lattices and discriminant forms. The main
references for this material are [9, 13, 16, 38].
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Let M be a lattice equipped with a non-degenerate integer-valued symmetric bilinear
form (-, -) with even-valued norm. Such an M is called an even lattice. The associated
quadratic form is defined as Q(x) = (x, x)/2. We denote by M" the dual lattice of M
and by rank(M ) the rank of M. For every a € Z \ {0}, the lattice obtained by rescaling M
with a is denoted by M(a). It is endowed with the quadratic form « - Q instead of Q.

The level of M is the smallest positive integer N such that NQ(x) € Z forallx e MV.
If M is of level N then NMY C M.If x € M satisfies Qx N M = Zx, then it is called
primitive. For any non-zero x € M the divisor of x is the natural number div(x) defined
by (x, M) = div(x)Z. Note that x/div(x) is a primitive element in M. An embedding
M, — M, of even lattices is called primitive if M,/ M is a free Z-module. If M < M,
is an embedding of even lattices for which M{/M is a finite abelian group, then M; is
called an even overlattice of M .

A finite abelian group D equipped with a non-degenerate quadratic form Q : D —
Q/Z is called a discriminant form. The residue class sign(D) € Z/8Z defined by Mil-
gram’s formula

> exp@niQ(y)) = v/|D|exp(2xi sign(D)/8)

yeD

is called the signature of D. Obviously, the discriminant group D(M) = MY /M with
the induced quadratic form Q is a discriminant form. A subgroup G of D(M) is called
isotropic if Q(y) = 0 for any y € G. There is a one-to-one correspondence between even
overlattices of M and isotropic subgroups of D(M). On the one hand, if M; is an even
overlattice of M, then M;/M is an isotropic subgroup of D(M). On the other hand, if
G is an isotropic subgroup of D(M), then the lattice generated by G over M is an even
overlattice of M.

A convenient notion to classify even lattices is that of genus. The genus of a lattice M
is the set of lattices M’ of the same signature as M such that M ® Z, =~ M’ ® Z, for
every prime number p. By [38], two even lattices of the same signature are in the same
genus if and only if their discriminant forms are isomorphic. Therefore we here use the
following equivalent definition of genus. Let M be an even lattice of signature (r, s) with
discriminant form D. The genus of M, denoted by II, (D), is the set of all even lattices
of signature (7, s) whose discriminant form is isomorphic to D. A discriminant form can
decompose into a sum of indecomposable Jordan components (see [3, 13,44] for details).
We denote the even unimodular lattice of signature (2, n) by I, ,. We state the following
theorems proved in [38], which tell us when a genus is non-empty and when a given genus
contains only one lattice up to isomorphism.

Theorem 2.1 ([38, Corollary 1.10.2]). Let D be a discriminant form and r,s € Z. If
r,s >0,r —s =sign(D)mod8 and r + s > I(D), then there is an even lattice of signature
(r,s) having discriminant form D. Here, [(D) is the minimum number of generators of
the group D.

Theorem 2.2 ([38, Corollary 1.13.3]). Let D be a discriminant form and r,s € Z. If
r,s > landr +s > 2+ (D), then all even lattices of genus 11, s(D) are isomorphic.
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Let U be a hyperbolic plane, ie. U = Ze + Z f with (e,e) = (f, f) = 0 and
(e, f) = 1. The lattice U is an even unimodular lattice of signature (1, 1). As a con-
sequence of Theorems 2.1 and 2.2, we prove the following criterion.

Lemma 2.3. Let M be an even lattice of signature (2,n) with n > 3. If the minimum
number of generators of D(M) satisfies n — 2 > [(D(M)), then there exists a negative-
definite even lattice L such that M = 2U & L.

Proof. By Theorem 2.1, there exists a negative-definite even lattice L of rank n — 2 whose
discriminant form is isomorphic to D(M). By Theorem 2.2, 2U @ L is isomorphic to M .
(]

To end this section, we recall some basic facts on root lattices following [16]. Let L
be an even lattice in RY. An element r € L is called a 2-root if (r,r) = 2. The set of all
2-roots is denoted by Ry . The lattice L is called a root lattice if L is generated by Ry .
Every root lattice can be written as an orthogonal direct sum of irreducible root lattices of
types A, (n > 1), D, (n > 4), Eg, E7, and Eg. For aroot lattice L of rank n, the number
h = |Rp|/n is called the Coxeter number of L. The Coxeter numbers of irreducible root
lattices are listed in Table 1.

L| 4, D, E¢ E; Es
hln+1l 2m—1) 12 18 30

Tab. 1. Coxeter numbers of irreducible root lattices.

By [16, Proposition 1.6], we have the following identity.

Proposition 2.4. Let L & R” be an irreducible root lattice. Then for any x € R" we have

> (rx)? = 2h(x. x).

reRy

Let RZ’ be the set of positive roots of L. The Weyl vector of L is defined as p =
% Zr ert T We know from [16, Lemma 1.16] that the norm of the Weyl vector of an
L

irreducible root lattice is given by p? = %h(h + 1) rank(L).

3. Reflective modular forms

In this section we introduce the definition and some basic properties of reflective modular
forms.

Let M be an even lattice of signature (2, n) with n > 3. Its associated Hermitian
symmetric domain of type IV has two connected components and we fix one of them:

DM)=1{[Z] e P(M ®C):(Z.2) =0, (Z,Z) > 0}
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Let OT(M) C O(M) denote the index 2 subgroup preserving D(M). The stable
orthogonal group 6+ (M) is a subgroup of O (M) acting trivially on the discriminant
form D(M). Let T' be a finite index subgroup of O" (M) and k € Z. A modular form

of weight k and character y : I' — C* with respect to I" is a holomorphic function
F : D(M)* — C on the affine cone D (M )* satisfying

F(tZ)=t*F(Z), VieC*,
F(gZ) = x(§)F(Z), Vgel.

A modular form is called a cusp form if it vanishes at every cusp (i.e. a boundary compo-
nent of the Baily—Borel compactification of the modular variety '\ (M)).

The non-zero modular form F either has weight O in which case it is constant, or
has weight at least n/2 — 1. The minimal possible positive weight n/2 — 1 is called the
singular weight.

For any v € MV of negative norm, the rational quadratic divisor associated to v is
defined as

Dy(M) = v NDM) ={[Z] € D(M) : (Z.v) = 0}. 3.1

The reflection with respect to the hyperplane defined by an anisotropic vector r is
2(r, x)
(r.r)

A primitive vector /| € M of negative norm is called reflective if the reflection oy is
in OT(M). The divisor D, (M) is called reflective if o, € OT(M). For A € D(M) and
m € Q, we define

or(x) =x— r, xeM. (3.2)

HAmy= | ) Du(M) (3.3)

veM+A
(v,v)=2m

and call it the Heegner divisor of discriminant (A, m).

Note that a primitive vector [ € M with (I,]) = —2d is reflective if and only
if div(l) = 2d or d. We set A = [I/div(/)] € D(M). Then D;(M) is contained in
H(A,—1/(4d)) if div(l) = 2d, and is contained in

HA.=1/d)— D H(v.—1/(4d))

2v=A7A

if div(l) = d. In particular, when M is of prime level p, a primitive vector [ € M is
reflective if and only if (/,]) = —2 and div(/) = 1, or (/,/) = —2p and div(/) = p.

Definition 3.1. Let F' be a non-constant holomorphic modular form on D(M) with
respect to a finite index subgroup I' < O* (M) and a character y. The function F is
called reflective if the support of its zero divisor is contained in the union of reflective
divisors. A lattice M is called reflective if it admits a reflective modular form.
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Definition 3.2. A non-constant holomorphic modular form on (M) is called 2-reflec-
tive if the support of its zero divisor is contained in the Heegner divisor generated by
(—=2)-vectors in M, i.e. in

H=x0.-)= (] Du(M). (3.4)
veM
(v,v)=—2
A 2-reflective modular form F is called a modular form with complete 2-divisor if div(F)
= H. A lattice M is called 2-reflective if it admits a 2-reflective modular form.

All (—2)-vectors are reflective because the reflections associated to (—2)-vectors are
inO* (M). Therefore, 2-reflective modular forms are special reflective modular forms.

As in [35, Lemma 2.2], we can show that if M admits a reflective (resp. 2-reflective)
modular form with respect to some I' < O" (M) then M also has a reflective (resp. 2-
reflective) modular form with respect to any other finite index subgroup I'" < 0" (M).
Therefore, throughout this paper, we only consider reflective (resp. 2-reflective) modular
forms with respect to o+ (M).

The following lemma is useful to classify 2-reflective lattices.

Lemma 3.3 ([35, Lemma 2.3]). If M is 2-reflective, then so is any even overlattice M’
of M. If M is not 2-reflective, neither is any finite-index sublattice of M.

Observe that Lemma 3.3 does not hold for reflective modular forms because O (M)
is not contained in O™ (M’) in general and a reflective divisor D, in D (M) is usually not
a reflective divisor in D(M').

4. Jacobi forms of lattice index

In this section, we briefly introduce the theory of Jacobi forms of lattice index. We refer
to [12] for more details. Let L be an even positive-definite lattice with bilinear form (-, -)
and dual lattice LY. Let M = U @& Uy @ L(—1), where U = Ze @ Z f and Uy = Ze; &
Z f1 are two hyperbolic planes. We fix a basis of M of the form (e, ey, ..., f1, f), where
... denotes a basis of L(—1). The homogeneous domain (M) has a tube realization at
the 1-dimensional cusp determined by the isotropic plane (e, e1):

H(L)={Z =(1,3,0) e HXx(LQ®XXC)xH : (ImZ,ImZ)y > 0},

where (Im Z,Im Z)ps = 2Imt Imw — (Im 3, Im 3). A Jacobi form can be regarded as a
modular form with respect to the Jacobi group T'/ (L) which is the parabolic subgroup
preserving the isotropic plane (e, e;) and acting trivially on L. The Jacobi group is the
semidirect product of SL;(Z) with the Heisenberg group H(L) of L. The analytic defi-
nition of Jacobi forms is as follows:
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Definition 4.1. Let ¢ : H x (L ® C) — C be a holomorphic function and k € Z. If ¢
satisfies the functional equations

ar+b 5 \_ ko (G2 a b
(p(cr—i—d’cr—i—d) =(ct+d) eXp(lncr+d (t,3), e d € SL,(Z),

@(t.3+xt +y) =exp(—im((x,x)r +2(x,3)) ¢(r.3), x,y €L,

and if ¢ admits a Fourier expansion of the form

p(r.3) =Y Y. fln,0)q"t, (4.1)

nzno felLV

where n¢ is a constant, ¢ = €277 and ¢ = 2713 then g is called a weakly holomorphic
Jacobi form of weight k and index L. If ¢ further satisfies the condition ( f(n,£) # 0 =
n > 0) then it is called a weak Jacobi form. If ¢ further satisfies the stronger condition
(f(n,f) #0 = 2n— (£,£) > 0) then it is called a holomorphic Jacobi form. We denote
by

e DT D e

the vector spaces of weakly holomorphic, weak, and holomorphic Jacobi forms of
weight k and index L.

Note that the Jacobi forms for the lattice A; are actually the classical Jacobi forms
due to Eichler and Zagier [17]. In the literature, Jacobi forms of weight k and index L(%),
where 7 is a positive integer, are also called Jacobi forms of weight k and index ¢ for the
lattice L.

The Fourier coefficient f(n,£) depends only on the number 2n — (€, £) and the class
of £ modulo L. Moreover, f(n,£) = (—1)* f(n,—£). If ¢ is a weak Jacobi form, then its
Fourier coefficients satisfy

F(n,0)#0 = 2n—(€,0) > —min{(v,v):vel+L}

If ¢ is a weakly holomorphic Jacobi form and ny < 0, then A™"9¢ will be a weak Jacobi
form, where A is defined in (1.1). Thus the above relation implies that for any n the
number of non-zero terms of the £ sum in (4.1) is finite. The number 2n — (€, £) is called
the hyperbolic norm of the Fourier coefficient f(n, £). The Fourier coefficients f(n, {)
with negative hyperbolic norm are called singular Fourier coefficients; they determine the
divisor of Borcherds products. It is clear from the definition that a weakly holomorphic
Jacobi form without singular Fourier coefficients is a holomorphic Jacobi form.

We next explain the relation between modular forms for the Weil representation and
Jacobi forms. We denote by {e, : y € D(L)} the formal basis of the group ring C[D(L)].
Let Mp,(Z) be the metaplectic group, which is a double cover of SL,(Z). The Weil
representation of Mp,(Z) on C[D(L)] is denoted by pp(r) (see [10, Section 1.1]). Let
F be a vector-valued, weakly holomorphic (i.e. holomorphic except at infinity) modular
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form for pp(r) of weight k with Fourier expansion
Foy= Y Y cnge= Y Floe,.
ye€D(L) neZ—(y,y)/2 yeD(L)

The Fourier coefficients ¢ (y, n) with negative n are called singular.
Recall that the theta-functions for the lattice L are defined as

OL(r.3) = > exp(mi(t.0)t +2mi(L.3)). y € D(L). 4.2)
ley+L
Then the map
F(t)»> ®(F)(1,3) = Y F(1)0L(r.3) (4.3)
yeD(L)

defines an isomorphism between the space of weakly holomorphic modular forms of
weight k for pp(z) and the space of weakly holomorphic Jacobi form of weight k +
rank(L)/2 and index L. This map sends singular Fourier coefficients of vector-valued
modular forms to singular Fourier coefficients of Jacobi forms. Therefore, it induces
an isomorphism between the subspaces of holomorphic vector-valued modular forms of
weight k& and holomorphic Jacobi forms of weight k + rank(L)/2. From this, we deduce
that J,; = {0} if k < rank(L)/2. The minimum possible weight k = rank(L)/2 is
called the singular weight. For a holomorphic Jacobi form of singular weight, its non-
zero Fourier coefficients f(n, £) satisfy 2n — (€, £) = 0. Note that these results hold for
holomorphic Jacobi forms with a character.

The following differential operators are very useful. We refer to [48, Lemma 2.2] for
a proof.

Lemma 4.2. Let ¥/(t,3) = Y. f(n,£)q"t" be a weakly holomorphic Jacobi form of
weight k and index L. Define

Hi(y) :
HO@) =5 Y Y Bn— (€01 fn. 04"

neZ lelLv

H() + (2k —rank(L))G, vy,

where G,(1) = —i + X ons101(1)q" and o1(m) = 34, d. Then Hy () is a weakly
holomorphic Jacobi form of weight k + 2 and index L.

The next lemma gives useful identities related to singular Fourier coefficients of
Jacobi forms of weight 0, which plays a crucial role in this paper. We refer to [20, Propo-
sition 2.6] for a proof. Its variant in the context of vector-valued modular forms was first
proved in [6, Theorem 10.5].

Lemma 4.3. Let ¢ be a weakly holomorphic Jacobi form of weight O and index L with
Fourier expansion

pr.3) =Y Y fn.0)q"¢

neZ telLY
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Then we have the identity

1 1
C:i=r, DT LO.0=Y" > f(n.0)o1(—n) = rank(L) D fO.0E0. 44

LeLY n<0{eLVv LeLY
Moreover,
> f0.0(.3)* =2CGE.3). V3eL®C. (4.5)
ltelLY

Remark 4.4. Let A be an even positive-definite unimodular lattice of rank 24. Assume

that the set R of 2-roots of A is non-empty. Let R(A) denote the root lattice generated

by Ra. The theta-function for A is a holomorphic Jacobi form of weight 12 and index A.

Thus, we have

Oa(z.3) -1 r |

— = 24+ 0(q) € Jy >
A + ) 424+ 0() € g,

reRA

Vo.a(7,3) =

where ©® = ®(‘)\ (see (4.2)). By Lemma 4.3, we get ZreRA (r,3)%? = 2h(3, 3). It follows
that the lattice R(A) has rank 24 and all its irreducible components have the same Coxeter
number. In this paper, we shall use a similar idea to classify 2-reflective modular forms.

Using Lemma 4.3, we give a simple proof of [6, Theorem 11.2] in the context of
Jacobi forms.

Corollary 4.5. Let ¢ be a weakly holomorphic Jacobi form of weight 0 and index L with
Fourier expansion

p(r.3) =Y. > fln.0q"t"

nezZ Lelv
Assume that f(n,f) € Z for all n < 0 and £ € LY. Let (n(L)) denote the ideal of 7.
generated by (x,y), x,y € L. Then
n(L)
24

> fo.pez.

LeLY

Proof. By (4.5), we get

> 0.0 x)(.y) =2C(x.y), Vx.y€L.

LeLv
Since f(0,€) = f(0,—¢) € Z, we get C(x, y) € Z for all x, y € L, which yields
n(L)C € Z. This completes the proof by (4.4). |

We next introduce the Borcherds products. The input data of original Borcherds lift-
ing are modular forms for the Weil representation. The constructed orthogonal modular
forms have nice infinite product expansions at rational 0-dimensional cusps. By means of
the isomorphism between modular forms for the Weil representation and Jacobi forms,
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Gritsenko and Nikulin [26] proposed a variant of Borcherds products, which lifts weakly
holomorphic Jacobi forms of weight O to modular forms on orthogonal groups. In this
case, any modular form constructed has a nice infinite product expansion at each rational
1-dimensional cusp and can be expressed as a product of a general theta-block with the
exponential of the additive Jacobi lifting.

Theorem 4.6 ([20, Theorem 4.2]). Let

oty =Y. Y f.0q"t elJ;,.

nezZ LelLY
Assume that f(n,£) € Z forall 2n — (£,£) < 0. Set

1

- 2rank(L) Z F0.H¢. .

leLY

1 L1
AzﬂZf(O,Z), B:EZf(O,K)K, C

leLY {>0

Then the product

Borch(p)(Z) = ¢*¢P6¢ [ (1 —q"¢tem/mo,
n.mezZ,LelLY
(n,£,m)>0
where Z = (1,3, w) € #H(L), q = expQrit), t* = expmi(L,3)), £ = expQriw),
defines a meromorphic modular form of weight f(0,0)/2 for ot QU & L(-1)) with a
character y induced by

X|SL2(Z)= U72]4A, X|H(L)([/LMJ’]) — enic((l,A)+(M9M)—(/\,M)+27)’ X(V) — (_1)D’

where V : (1,3, w) — (0,3, 7) and D = )", _, 00(—n) f(n,0). The poles and zeros
of Borch(g) lie on the rational quadratic divisors D,(2QU & L(—1)), where v € 2U &
LY (=1) is a primitive vector with (v, v) < 0. The multiplicity of this divisor is

multD,(2U & L(-1)) = Y f(d*n.dY).

deZ,d>0

wheren € Z and £ € L are such that (v,v) = 2n — ({,£) and v = £ mod 2U & L(-1).
Moreover,

Borch(¢) = y1,c (7, 3)E€ exp(— Grit(p)),

where Grit(p) is the additive Jacobi lifting of ¢ and the first Fourier—Jacobi coeffi-
cient Y1, c of Borch(gp) is given by

9z, (£,3)) /Y
Vi.c(t,3) = n(r)/ 0 H(T) : (4.6)

The Weyl vector of the Borcherds product is (A, B,C ).
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We explain some notations in the above theorem. The odd Jacobi theta series ¥ is
defined as

Uz, z) = q1/8(§1/2 _ ;71/2) l_[(l —¢"0)(1 _qné-fl)(l —q"), = eZniz’

n>1

which is a holomorphic Jacobi form of weight 1/2 and index 1/2 with a multiplier system
of order 8 in the sense of Eichler—Zagier (see [26, Example 1.5]). The form 7 is the
Dedekind eta-function

n@ =q">* ] —q".

n>1

By (4.5), the finite multiset X = {¢ : f(0, £)} from Theorem 4.6 forms a vector system
defined in [5, §6]. We define its Weyl chamber as a connected component of

LR\ [J (veL®R:(x.v) =0}
xeX\{0}

Let W be a fixed Weyl chamber. For £ € LY, we define an ordering on L" by
{>0 <= FJweW:{, w)>0.

The notation (n, £, m) > 0 in Theorem 4.6 means that either m > 0,orm = 0 and n > 0,
orm=n=0and¥{ < 0.

We emphasize that if Borch(g) is holomorphic then its first Fourier—Jacobi coefficient
Yr.c (see (4.6)) is a holomorphic Jacobi form of weight f(0,0)/2 and index L(C).

5. Quasi pull-backs of modular forms

In this section we introduce the quasi pull-backs of modular forms and employ this tech-
nique to construct many reflective modular forms.
Borcherds [5] constructed a modular form of singular weight and character det on
0" (I12,26),
Pz € M12(0" (12 26), det),

where 115 56 is the unique even unimodular lattice of signature (2, 26). The function @1,
is constructed as the Borcherds product of the inverse of A defined by (1.1),

1/A(r) = 7' + 24 + 324¢ + 3200¢% + --- ,
and it is a modular form with complete 2-divisor, i.e.

dv@) == ) Dy(lle).
vellz 26 /{:l:l}
(v,v)=—2
By the Eichler criterion (see [20, Proposition 4.1]), all (—2)-vectors in Il 2¢ form only
one orbit with respect to O (Il 26). We next introduce quasi pull-backs of ®5.
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First we give a general property of rational quadratic divisors. Let M be an even lattice
of signature (2,7) and let T be a primitive sublattice of signature (2, m) with m < n. Then
the orthogonal complement Tﬁ is negative-definite and we have the usual inclusions

TO®Tip <M <MY <TY & (Ti)".
For v € M with v2 < 0 we write
v=a+pB, acT" Be(Ty).
Then we have
Do (T) ifa? <0,
DT)YND,(M)=10 ifa? >0, a#0,
D(T) ifa=0,ieveTy.
The next theorem was proved in [8, Theorem 1.2] and [23, Theorems 8.3 and 8.18].

Theorem 5.1. Let T — I, ¢ be a primitive non-degenerate sublattice of signature (2,n)
withn > 3, and let D(T) — D(1lz,26) be the corresponding embedding of the Hermitian
symmetric domains. The set of (—2)-roots in the orthogonal complement,

Ro(TH) ={r €llppe : r* = =2, (nT) =0},
is finite. Put N(T+) = %|R,2(TJ-)|. Then
®12(Z)

reR,z(TL)/il(Z’r) D(T)®

Oio|r = (0 € My niry(OF(T),det), (5.1
where in the product over r we fix a finite system of representatives in R_,(T+)/=+1.
The modular form ®1,|7 vanishes only on rational quadratic divisors of type Dy(T),
where v € TV is the orthogonal projection of a (—2)-root r € 15 26 on TV satisfying
—2 < v? < 0. If the set R_»(T) is non-empty then the quasi pull-back ® 1|7 is a cusp
form.

In general, the quasi pull-back ®;,|7 is not a reflective modular form. Determining
its divisor requires explicit calculations (see [19]). We next introduce several arguments
which can be used to seek reflective modular forms without complicated calculations.

In [20] Gritsenko proposed 24 Jacobi type constructions of ®;, based on 24 one-
dimensional cusps of the modular variety ot (I12,26)\D (111,26). These components cor-
respond exactly to the classes of positive-definite even unimodular lattices of rank 24.
They are the 23 Niemeier lattices N(R) uniquely determined by their root sublattices R
of rank 24:

3Eg, Es ® D1s, D2a, 2D12, 3Dg, 4Ds,
6Dy, Asa, 2412, 3As, 44s, 6A4,
843, 124, 244, E;® A7, 2E;® Dy, 4Es,

Es¢® D7 ® A1, Ais® Do, 249 @ De, 247 ®2Ds5, 4A5 D Dy,
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and the Leech lattice A4 without 2-roots which we will also denote by N(9) (see [13,
Chapter 18]). We next construct a lot of reflective modular forms by quasi pull-backs of
®,, at different 1-dimensional cusps, some already known, some new.

For convenience, we fix the discriminant groups of irreducible root lattices. Let
e1,...,ey, be the standard basis of R”.

(1) For A; = Z with the bilinear form 2x2, we fix A} /A; = {0,1/2}.

(2) For D, ={x € Z" : y_}_, xi € 2Z} withn > 4, we fix D,/ /D, = {[0], [1], [2], [3]}.
where [1] = 33°7_ ei, 2] =1, [3] = 37—, ei — en. Then [1]* = [3]> = n/4 and
2]? = 1.

(3) For A, = {x e Z"*+1: Y"1y, =0} withn > 2, we fix Ay /A, = {[i]:0<i <n},

i=

where [i] = (A0 55 wig -+ 0 niy) With j components equal to nil and
i + j = n + 1. The norm of [i] is n’il.

(4) The lattice E¢ is of level 3. Its discriminant group is of order 3 and is generated by
one element [1] of norm 4/3.

(5) The lattice E7 is of level 4. Its discriminant group is of order 2 and is generated by
one element [1] of norm 3/2.

We consider the special case T = 2U @ K(—1), where K is a primitive sublattice
of some N(R). The theta-function © y(g) is a holomorphic Jacobi form of weight 12
and index N(R). The input of ®;, as a Jacobi form at the 1-dimensional cusp related to
2U & N(R) is defined by

Onw)(T,3) _

A(r) gt +24+ Y MY+ 0() € Ty yepy

reR,r2=2

o, n(R)(T.3) =

We write 3 = 31 + 32 with3; € K® C and 3, € KIJ\;(R) ® C and define the pull-back of
®o,N(R) to the lattice K < N(R) as

00,5 (7,31) = 0o,NR)(T:3)|30=0 € Jé,K-

By expanding ®1, on the tube domain # (N(R)) and using its expression described in
Theorem 4.6, we see that @1, |7 equals Borch(gg,x) up to a constant multiple (the vector
r in Theorem 5.1 is a (—2)-root of Kﬁ(R), (Z, r) reduces to (32, r) and it is canceled
by the term 1 — ¢” in the product expansion of ®;5). This also follows from the general
result of [37, Remark 3.5].

5.1. The first argument

This argument is due to Gritsenko and Nikulin. In [29], they constructed modular forms
with complete 2-divisor by quasi pull-backs of ®;,. We recall their main ideas so that the
readers can better understand the other arguments.

For an even positive-definite lattice L, we define the Norm, condition as

Normy: VéeLY/L,3h.€c:0<h?<2. (5.2)
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The reason why we formulated the Norm, condition is the following claim: If L satisfies
the Norm, condition and ¢ is a weakly holomorphic Jacobi form of index L, then its
singular Fourier coefficients are totally determined by the ¢"-terms with non-positive 7.

Proof of the claim. 1t is known that f(n,{) depends only on the number 2n — (¢, £) and
the class £ mod L. Suppose that f(n, £) is singular, i.e. 2n — (£, {) < 0. There exists
a vector £1 € LV such that (£1,£1) <2 and £ — £; € L because L satisfies the Norm,
condition. It is clear that (€, £) — (€1, £1) is an even integer. If —2 < 2n — (€,£) < 0, it
follows that 2n — (€,£) = —(€1,4£1) and f(n,€) = f(0,€1). If 2n — (£, £) < =2, then
there exists a negative integer n; satisfying 2n — (£,£) = 2n1 — (€1, £1). Thus there exists
a Fourier coefficient f(ny,£;) with negative ny such that f(ny,£1) = f(n,¥£). [

Let K be a primitive sublattice of N(R) containing a direct summand of R which has
the same rank as K, or let K be a primitive sublattice of the Leech lattice Ao4 = N(9).
We assume that K satisfies the Norm, condition. Recall T = 2U & K(—1). In this case,

0o,k (1,31) = q_l +24 +ng + Z e2mi(r3n) 4 0(q) € J(i,K’

rek,r2=2

where ng is the number of 2-roots in R orthogonal to K. Since K satisfies the Norm, con-
dition, the singular Fourier coefficients of ¢o g are represented by its ¢ ~!- and ¢°-terms.
We then see that Borch(gg, ) vanishes precisely on the divisor # defined in (3.4). There-
fore, @1, |7 is a modular form with complete 2-divisor. In this way, Gritsenko and Nikulin
[29, Theorems 4.3, 4.4] constructed the following modular forms with complete 2-divisor.

Lattice | Ay 241 341 447 Ng A, 24, 34, A3 243 Ag As
Weight | 35 34 33 32 28 45 42 39 54 48 62 69
Lattice | A6 A7 Da 2Dy Ds D¢ D7 Ds E¢ E; Eg 2Eg
Weight | 75 80 72 60 88 102 114 124 120 165 252 132

Tab. 2. Reflective cusp forms with complete 2-divisor.

Here, Ng is the Nikulin lattice defined as (see [29, Example 4.3])
Ng = (841.h = (a1 + -+~ + ag)/2) = Dg (2). (5.3)

where (a;,aj) = 28;;, (h, h) = 4. The root sublattice generated by the 2-roots of Ng
is 8A1.
When K is one of the following 10 sublattices of the Leech lattice Ay4:

A1(2), A1(3), Ai1(4), 241(2), Ax(2), A>(3). A3(2), D4(2), Es(2). A4)(5),

there exists a (non-cusp) modular form of weight 12 with complete 2-divisor for
2U & K(—1). The fact that A} (5) satisfies the Norm, condition was proved in [31,33].
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5.2. The second argument

This argument was formulated in [20]. We here describe it in a more understandable
way and use it to construct much more 2-reflective and reflective modular forms. This
argument is based on the following observation.

Observation. Ler L = A1,2A1, A2, Dq or A1(2). For any 0 # y € LV /L, the minimal
norm vector viny + L, i.e. v satisfying

(v,v) < (u,u) foralluey+ L,

is reflective, namely o, € O(L). When L = A4, 0y, € 6(L) = O(L).

Let K = Ko ® K; & K> be a primitive sublattice of N(R). We assume:
(i) The lattice K¢ contains a direct summand of R which has the same rank as K.
(ii) The lattices K, K5 are A1,2A1, A2, D4 or A1(2), and they are contained in different
direct summands of R. The second lattice K> is allowed to be empty.
(>iii) The lattice K satisfies the Norm, condition.

Recall T = 2U @ K(—1). Again, we consider the pull-back of ¢y n(r) to K — N(R).
The above assumptions guarantee that the singular Fourier coefficients of ¢ g are totally
determined by its ¢ ~!- and ¢°-terms and correspond to reflective divisors. Therefore, the
quasi pull-back @157, i.e. Borch(¢g, k), is a reflective modular form.

We first use this argument to construct 2-reflective modular forms. To do this, we can
only take K7, K, = @ or Ay. Let R = 3Es, Ko = 2Eg and Ky = A; contained in the
third copy of Eg. Then the quasi pull-back ®1,|7 gives a 2-reflective modular form for
2U @ 2Eg(—1) & A1(—1). Similarly, when K equals one of the following 16 lattices:

2Es®A;, Egs®Ay, Es®24,, Ds®A1, Dis®A1, Ds®24;, AsD A, AzPA,,
A3P2A41 A DA, Ay D2A:1, 24P A1, Ds® A, As®A;, E;DA|, E¢cDA,
the quasi pull-back ®;,|7 gives a 2-reflective modular form on 7.

We then use this argument to construct reflective modular forms. For instance, let
R =3FEsg, Ky = Eg and Ky = K, = D4 contained in the second and third copies of Eg
respectively. Then @1, |7 gives a reflective modular form for 2U @ Eg(—1) @& 2D4(—1).

When K is equal to one of the following 33 lattices, ®12|7 is a reflective modular form
onT.

(1) When R = 3Es, the lattice K is equal to

{Eg,2Es} © {241, A2, Dy, A1(2)}, Es @ A1 @ {241, A2, D4, A1(2)},
Es @241 ® {241, 42, D4, A1(2)}, Es® A» ® {A2, D4, A1(2)},
Es ® D4y @ {D4, A1(2)}, Es ®2A4:(2).

(2) When R = 6D,, the lattice K is equal to D4 @ {A>, D4, A1(2)}.
(3) When R = 6Ay, the lattice K is equal to A4 & A,.
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(4) When R = 843, the lattice K is equal to A3 @ {43, 41(2)}.
(5) When R = 1245, the lattice K is equal to A, & A1(2).

(6) When R = 24 A4, the lattice K is equal to {41,241} & A1(2).
(7) When R = 4FEg, the lattice K is equal to E¢ @ As.

(8) When R = 247 @ 2Ds, the lattice K is equal to D5 @ A.

For (5) and (6), the constructions are a bit different. We take A (2) in (5) as a sublattice
of 24, and take A;(2) in (6) as a sublattice of 24;. They can also be constructed in
another way. For example, to construct a reflective modular form for 2U & A, & A1(2),
we can use the pull-back A, @ A1(2) < N(6D4). Note that for some lattice we may
construct more than one reflective modular forms. In the above, we focus on reflective
lattices and only construct one reflective modular form for each lattice.

5.3. The third argument

We now consider the general case, i.e. the lattice K does not satisfy the Norm, condition.
Assume that K satisfies conditions (i) and (ii) of the second argument. We further assume
that the minimum norm of vectors in any non-trivial class of the discriminant group of K
is less than 4 and all vectors (denoted by v) of minimum norm larger than 2 satisfy the
condition: the vector (0, 1, v, 1, 0) is reflective. In this case, the singular Fourier coeffi-
cients of ¢g g are determined by its ¢~ !-, ¢°- and ¢'-terms and correspond to reflective
divisors. Therefore, the quasi pull-back @1, |7, i.e. Borch(¢g k), is a reflective modular
form.

(1) When K is one of the following eight lattices, we get 2-reflective lattices:
541, Do, Ng @ A1, Dg® Ay,
De @241, 2D4® A1, E7 @241, Ds®3A;.

For the last lattice, we use R = 6D4 and take 34 from three different copies of Dy.

(2) When K is one of the following 12 lattices, we get reflective lattices:
445, 3D4, 2Es, 2E7, Ag, Ao, Do, As®D4, D1z, 244, 2Ds, 2Ds.

There are a lot of reflective lattices of this type. In the above, we only consider the
simplest case K = Ky. By [43, §9], the lattice 2A4,(2) is a primitive sublattice of the
Leech lattice and it satisfies our condition. Thus the quasi pull-back gives a reflective
modular form of weight 12 for 2U & 2A4,(—2).

5.4. The fourth argument

We can also consider quasi pull-backs of some other reflective modular forms. It is known
that 2U @ 2Es & Dy is reflective. It is easy to check that

2U @2Es ® Dy =2U & Es ® D12
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because they have the same discriminant form. For 4 < n < 10, we have D, & D
< Dj3. In a similar way, we show that the quasi pull-back of 2U & Eg & D, to
2U & Eg & D, will give a reflective modular form on 2U @ Eg & D, with 4 <n < 10.

5.5. The fifth argument

This argument relies on the construction of the Niemeier lattice N(R) from some root
lattice R. We will explain the main idea by considering several interesting examples.

(1) Let R = 6 D4. We consider its sublattice K = D4 @ 5A4;, where every A is contained
in a different copy of D4. The singular Fourier coefficients of ¢o g are determined by its
g~ !- q°- and g'-terms. It is clear that the ¢!~ and ¢°-terms correspond to 2-reflective
divisors. We next consider the ql-term, which is the pull-back of vectors of norm 4
in N(6Dy). Since the pull-backs of vectors of norm 4 in 6 D4 give either non-singular
Fourier coefficients or singular Fourier coefficients equivalent to those of the ¢°-term, we
only need to consider the pull-backs of vectors of norm 4 in N(6D4) and not in 6 D 4. Such
vectors have the form [i1] @ [i2] D [i3] D [ia] D [i5] @ [is], where four of the six indices
are non- zero Their pull-backs to D4 @ 54 only give singular Fourier coefficients of type
nEXe > 2, 2, 0, 0), which correspond to 2-reflective divisors. Therefore, Borch(go, k) is
a 2-reflective modular form for 2U & D4 & 5A4;.

Similarly, the quasi pull-back to 64, < N(6D4) gives a reflective modular form for
2U @ 645.

(2) Let R = 8A43. We consider its sublattice K = 8A4;, where every A; is contained
in a different copy of As. The singular Fourier coefficients of ¢o x are determined by
its g71- ¢°- and ¢!-terms. It is obvious that the ¢~'- and ¢°-terms correspond to 2-
reflective divisors. We next consider the ¢!-term. It is the pull-back of vectors of norm 4
in N(8A3). For a similar reason, we only need to consider the pull-back of vectors of
norm 4 in N(8A43) and not in 8 A3. Such vectors have the form [2] & [2] @ [2] ® [2] ® 0% or
Rle ][] o [1] @ [1] EB 03. Their pull-backs to 8 4; only give singular Fourier coeffi-
cients of type (4,1, 1 11 0,0, 0), which correspond to 2-reflective divisors. Therefore,

2 2 2 2 2’
Borch(go,x) is a 2-reflective modular form for 2U @ 8A4;.

(3) Let R = 12A4,. We consider its sublattice K = 124, where every A; is contained
in a different copy of A,. The singular Fourier coefficients of ¢o x are determined by
its g7 !-, ¢°-, ¢'- and g2-terms. Firstly, the ¢! and ¢°-terms correspond to 2-reflective
divisors. We next consider the ¢'- and g2-terms. To find singular Fourier coefficients in
the ¢ '-term, we only need to consider the pull-backs of vectors of norm 4 in N(124,) and
not in 12A4,. Such vectors have the form [ ] €B 06 Their pull- backs to 12A1 only give
singular Fourier coefficients of type (3. 1. 5 1.2.00) or (4.4, 3.4, 4,1,0°), which
all correspond to reflective divisors. The ¢2-term is the pull-back of vectors of norm 6
in N(12A453). Such vectors have the form [1]9 ® 03. Their pull backs to 124 only give
11111

singular Fourier coefficients of type (5, 315575551 51 5 E» 5, 03) which correspond to

2-reflective divisors. Therefore, Borch(go, k) is a reflective modular form for 2U @ 124;.
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Using the idea of pull-backs, it is easy to prove the following result.

Lemma 5.2. Let M be an even lattice of signature (2,n) and L be an even negative-
definite lattice. If M @ L is reflective (resp. 2-reflective), then M is reflective (resp.
2-reflective) too.

As an application of this lemma, we construct more reflective modular forms. We
check that
UEBU(Z)EBD4<U69U(2)69D4EBD4§2U€BN8,

which implies that U @ U(2) @ Dy is 2-reflective. Similarly, we claim that U @ U(3) @ A,
is reflective because

For any reflective modular form constructed in this section, it is possible to work out
the weight and the multiplicities of zero divisors by the methods used in the next section.

6. Classification of 2-reflective modular forms

In this section we use the approach based on Jacobi forms to classify 2-reflective modular
forms on lattices containing two hyperbolic planes.

6.1. Known results

We first review some results proved in [48]. Let M = 2U & L(—1) be an even lattice of
signature (2, rank(L) + 2). Let rpy C D(M) be the subset of elements of order 2 and
norm —1/2. For each . € mps we abbreviate J (u, —1/4) by J¢,,. We also set

Ho = J ¢tnowm. 6.1)
leM, (L L)=—2

div(h)=1
Then we have the decomposition
H=Ho+ > Hy. 6.2)
WET M
Assume that F is a 2-reflective modular form of weight k for M. Then

div(F) = Boo + Y BuHy

HEmM

=Bod + Y (Bu—Bo)Hu, (6.3)

MWET M

where f. are non-negative integers. By [10, Theorem 5.12] or [11, Theorem 1.2], the
modular form F should be a Borcherds product. In view of the isomorphism between
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vector-valued modular forms and Jacobi forms, there exists a weakly holomorphic Jacobi
form ¢y, of weight 0 and index L with singular Fourier coefficients of the form

sing(pr) = Bo Y g "2+ D (Bu—Bo) Y gV (64)

relL MWET M sEL+p

where ¢! = ¢27(:3) We thus obtain

$L(t.3)=Pog " +Bo D T +2k+ D (Bu—PBo) Y. +0@@): (65)

reR; UET N SER, (L)

here Ry, is the set of 2-roots of L and
Ry(Ly={seL:2s€ Ry, s €L+ pu}. (6.6)

In [48, Theorem 3.2], we proved that the weight of F' is given by

k= ol 21 (s =3 |

3 1
- (rank(L) - 5) > (Bu— Bl Ru(L)]. (6.7)

WET M

6.2. Non-existence of 2-reflective lattices of signature (2,14)
We refine the proof of [48, Theorem 3.6] to demonstrate the following result.
Theorem 6.1. There is no 2-reflective lattice of signature (2, 14).

Proof. Suppose that M is a 2-reflective lattice of signature (2, 14). Without loss of gener-
ality, we can assume that M is maximal, that is, M has no proper even overlattice. As in
[35, proof of Proposition 3.1], we can show that M contains two hyperbolic planes. This
means that M can be written as M = 2U & L(—1). Therefore, there exists a weakly holo-
morphic Jacobi form of weight 0 and index L, denoted by ¢. As in [48, proof of Theorem
3.6], applying differential operators defined in Lemma 4.2 to ¢, we construct weakly holo-
morphic Jacobi forms of weights 2 and 6 as ¢, := Hy(¢) and ¢ := HsHr Ho(p). We
see from its construction that Hy preserves the singular Fourier coefficients of ¢. There
are two types of singular Fourier coefficients (with hyperbolic norms —2 and —1/2) of
these ¢;. Let E4 and E¢ denote the Eisenstein series of weights 4 and 6 on SL,(Z). By
taking a suitable C-linear combination of Eg¢g, E4¢, and ¢¢ to cancel the two types
of singular Fourier coefficients, we construct a holomorphic Jacobi form of weight 6 and
index L, denoted by ¢e. By direct calculation, the constant term of ¢¢ is not zero and we
assume it is 1. The function @¢ has singular weight 6. Thus, it is a C-linear combination
of theta-functions for L defined in (4.2). Since L is maximal, there is no y € LY such that
y € L and (y, y) = 2. Thus the ¢!-term in the Fourier expansion of s comes only from
the theta-function ®%. But

¢6(7,0) = Eg(v) = 1—-504q +---,

a contradiction. [
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6.3. More refined results
In this subsection, we prove the following main result.

Theorem 6.2. Let M = 2U & L(—1) and F be a 2-reflective modular form of weight k
with divisor of the form (6.3) for M. Let R(L) be the root sublattice generated by the
2-roots of L. If R(L) is empty, then k = 12¢. If R(L) is non-empty, then R(L) and L
have the same rank, denoted by n. Furthermore, the root lattice R(L) satisfies one of the
following conditions:

(@) R(L) = nAy. In this case, all B, satisfying R,,(L) # @ are the same.

(b) The lattice Ay is not an irreducible component of R(L). In this case, all the irre-
ducible components of R(L) have the same Coxeter number, denoted by h. In addi-
tion, the sets R, (L) are all empty and the weight k is given by

k = Bo(12 4 12h — 3nh).

(¢) R(L) =mA; ® R, where 1 <m < n — 2 and the lattice Ay is not an irreducible
component of R. In this case, all the irreducible components of R have the same
Coxeter number, denoted by h. In addition, all B,, satisfying R, (L) # @ are equal
and denoted by 1. Moreover,

B1 = (2h —3)Bo,
k= ,30|:(12— ! +23m)h F124 3m:|.

Furthermore, L can be represented as mA, @ Lg, where Ly is an even overlattice
of R.

Proof. First, if R(L) = @ then we derive from (6.7) that k = 128,.

We next assume that R(L) # @. Let R(L) = € R; be the decomposition into irre-
ducible components, i.e. R; are irreducible root lattices. We write 3 = ) ;3 € L ® C,
where 3; € R; ® C. For irreducible root lattices, only the lattice A; has the property that
there is a root v such that v/2 is in the dual lattice. By (4.5) and (6.5), we conclude that
R(L) and L have the same rank. Otherwise, there exists a vector in L ® C orthogonal to
R(L) ® C, which contradicts (4.5) because C is not 0. In a similar way, we can prove
statement (a).

We next prove statement (b). Since no R; is equal to A, the sets R, (L) are all empty.
By Lemma 4.3 and (6.5), we have

2
Z Yo Bo(rz)? = - Zﬁohi rank(R;) Z(szvai),
I reR;,r?2=2 i i
where £; is the Coxeter numbers of R;. On the other hand, by Proposition 2.4,
> (3 = 2hiGissi)-
reR;,r2=2

Thus, all the Coxeter numbers /; are the same. The weight formula follows from (6.7).
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We now prove statement (c). Firstly, all non-empty R, (L) are contained in the com-
ponents mA;. We write R = P R i» where R; are irreducible root lattices. For 1 <7 < m,
if the dual lattice of the 7-th copy of A is contained in LV, then the corresponding
R, (L) is non-empty and has two elements. In this case, we denote the associated
by B;. Otherwise, the corresponding R, (L) is empty, so we have B; := B, = Bo. We
also denote the elliptic parameter associated to the ¢-th copy of A; by 3;. By Lemma 4.3
and (6.5),

>3 Bolra? + 30 2B — Bo) +4Bo)s? =2C 3" (i) + 3 22
t j t

J TER;
r2=2
In the above identity, we use the standard model Ay = Zo with a2 =2 Leth ; denote
the Coxeter number of R;. Then

C = Bohj = 1B+ 3Bo. VYh; . V1<t=<m.

Hence, all /; are the same (denoted by /), and all B; are also the same (denoted by 1),
which implies that the dual lattice of each copy of A; is contained in LY. It follows that
B1 = (2h — 3)Bp. Combining the formulas 81 = (2h — 3)Bo and (6.7), we deduce the
weight formula. We set Lo = {v € L : (v,x) =0,Vx € mA;}. Then

mAL ® Lo <L < LY <mA] & Ly.

For any / € L, we can write [ = [; + [, with /; € mAY and [, € L. Since mAY <
LY, we have (I, mAY) € Z. Thus (I;,mAY) € Z, which yields [; € mA;. Therefore,
Ipb=1-1y € Landsol, € Lydue to ([;,mA;) = 0. We have thus proved that L. =
mA1 b Lo. |

Inspired by the classification of even positive-definite unimodular lattices, we define
the following classes of 2-reflective lattices.

Definition 6.3. A 2-reflective lattice M = 2U @ L(—1) is said to be of Leech type if
R(L) = @. The lattice M is of Niemeier type if it satisfies the condition in statement (b),
and of quasi-Niemeier type if it satisfies the condition in statement (c).

In a similar way, we can prove the following necessary condition for a lattice to be
reflective. This condition will be useful to classify reflective lattices.

Proposition 6.4. Let R be the root system of L,
Ry = {r € L :r is primitive, o, € O(L)}.

Ifthe lattice 2U @ L(—1) is reflective, then either Ry, is empty, or R, generates the space
L®R.

Note that the above result is an analogue of a result in [46] which states that if
U @ L(—1) is hyperbolic reflective then iy always generates L @ R.
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In [48, Theorem 3.6], we have shown that if 2U & L(—1) is a 2-reflective lattice of
signature (2, 19) then the weight of the corresponding 2-reflective modular form is 75 8.
We next use Theorem 6.2 to prove the following refined classification, which answers a
question formulated in [48, Questions 4.13 (3)].

Theorem 6.5. If M is a 2-reflective lattice of signature (2, 19), then it is isomorphic to
the lattice 2U @ 2Eg(—1) & A1(-1).

Proof. We first prove the assertion under the assumption that M contains 2U, i.e. M =
2U & L(—1).Itis clear that R(L) is non-empty because the weight is 758. In addition,
we have R(L) # 17A;, as otherwise the weight of the associated 2-reflective modular

form is
12 1 3 1
k < 124217\ — — = —-2-17 — — — | = 308,.
—ﬁ"( + (17 2)) ﬂ°(17 2) Po

If M is of quasi-Niemeier type, then

17+3
k = ,30[(12 - #)h + 124 3m] = 75B0,

from which it follows that 4(7 — 3m)/2 + 3m = 63. Since 1 < m < 15, the only solution
ism = 1land h = 30. By Table 1, R(L) = 2Eg & Ay or D1g @ A;. But the lattices D¢
and Eg @ Dg are in the same genus. Thus, 2U @ D1 @ A; = 2U @ Es @ Dg @ A;. If
L = D1 @ Ay, then the lattice 2U @ Eg @ Dg @ A; is 2-reflective, which contradicts
Theorem 6.2 (c) because Eg and Dg have distinct Coxeter numbers. The only non-trivial
even overlattice of D¢ is the unimodular lattice DI’%. Since 2U & DI”'G DA =2U &
2Eg & A,, we have proved the theorem in this case.
If M is of Niemeier type, then

k = Bo(12 + 12h — 17h/2) = 75B,.

which implies 7 = 18. By Table 1, we have R(L) = Aj70or R(L) = D1 ® E;. If L =
Dio ® E7,then 2U & Eg @ E7 @ 2A; is 2-reflective, as D19 and Eg @ 2A4; are in the
same genus. This leads to a contradiction by Theorem 6.2 (¢). If L = A7, the 2-reflective
vector v with div(v) = 2 is represented as (0, 2, [9], 1, 0) which appears in the g2-term
of the corresponding Jacobi form ¢ 4,, of weight 0. In addition, the ¢'-term of ¢ 4,,
has no singular Fourier coefficients of hyperbolic norm —1/2. On the other hand, the
Niemeier lattice N(A17 & E7) is generated over A7 @ E7 by the isotropic subgroup

G =0l [0, 3] [1]. [6] @ [0], [9] & [1], [12] & [0], [15] @ [1]}.

Thus, the pull-back of ¢y n(4,,@E,) to A17 will give a weakly holomorphic Jacobi form
Vo,4,, of weight O which has the same ¢!
Fourier coefficients in the ¢!-term are represented by [3] and [6]. The reason why these
two Jacobi forms have the same ¢~!- and ¢°-terms is that they have the same type of
2-reflective divisors and the corresponding coefficients are determined by the formulas in

- and ¢°-terms as ¢, A;; and its singular
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Lemma 4.3. We will often use this argument later. Thus, ¢ := (¢o,4,; — Yo0,4,,)/Ais a
weak Jacobi form of weight —12 and index 1 for A;7. We can assume that it is invari-
ant under the orthogonal group O(A4;7) by considering its symmetrization. The ¢°-term
of ¢ contains five O(A17)-orbits: [0], [1], [2], [3], [6]- By [50, Theorem 3.6] or [49, Theo-
rem 3.1], the space of weak Jacobi forms of index 1 for A;7 invariant under O(A;7) is a
free module generated by ten Jacobi forms of weights 0, —2, —4, ..., —18 over the ring
of SL,(Z) modular forms (Jacobi forms of odd weight and index A7 are anti-invariant
under O(A17).). The ten generators were constructed in [3]. Note that there are ten inde-
pendent O(A7)-orbits appearing in ¢°-terms of these generators, namely [i] for 0 <i <9.
Therefore, the ¢°-terms of the ten generators are linearly independent over C. There are
only three independent weak Jacobi forms of weight —12 and index A;7. We can work
out their ¢°-terms and find that the ¢°-term of any weak Jacobi form of weight —12 con-
tains at least eight orbits. But the ¢°-term of ¢ has only five orbits, which leads to a
contradiction.

We complete the proof of the particular case by using the fact that if L is a non-
trivial even overlattice of R(L) = A7 or D19 & E7 then 2U & L is of determinant 2
and isomorphic to 2U & 2Eg & A;.

We now consider the remaining case that M does not contain 2U. By [36,
Lemma 1.7], there exists an even overlattice M’ of M containing 2U. By Lemma 3.3,
M’ is also 2-reflective and hence isomorphic to 2U @ 2Eg(—1) @ A;(—1). We claim that
the order of the group M’/M is not a prime, as otherwise | D(M)| would be 2p? and M
would contain 2U by Lemma 2.3. Thus, there exists an even lattice M; such that M C
M; C M’ and M’/M; is a non-trivial cyclic group. Then M; contains 2U by Lemma
2.3. It follows that M; is 2-reflective but not isomorphic to 2U & 2Eg(—1) & A1(—1),
which contradicts the previous case. This completes the proof. ]

6.4. Classification of 2-reflective lattices of Niemeier type

In this subsection we classify 2-reflective lattices of Niemeier type. We first consider the
case of L = R(L) and then consider their overlattices. We discuss case by case. Let
M =2U & L(—1). By [48, Theorem 3.6], Theorems 6.1 and 6.5, if M is 2-reflective,
then either M is isomorphic to one of the lattices II, 15, Il 26, 2U @ 2Es(—1) @ A1 (—1),
or we have rank(L) < 11. Therefore, we only need to consider the case of rank(L) < 11.

(1) h = 3: The unique irreducible root lattice of Coxeter number 3 is A,. By §5, M is 2-
reflective if L = A,,2A45, 3A4,. The lattice M is not 2-reflective for L = m A, withm > 4.
Indeed, otherwise, since 44, < Eg @ Ay, 2U @ E¢ ® A would also be 2-reflective,
which is impossible because E¢ and A, have different Coxeter numbers. Thus we get the
claim by Lemma 5.2.

(2) h = 4: The unique irreducible root lattice of Coxeter number 4 is A3. By §5, M is
2-reflective if L = Az, 2A3. The lattice M is not 2-reflective for L. = 343 because we
observe from their extended Coxeter—Dynkin diagrams that 343 < Dg @ A3.
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(3) h = 5: The unique irreducible root lattice of Coxeter number 5 is A4. By §5, M is
2-reflective if L = A4. We claim that M is not 2-reflective for L = 2A44. Indeed, other-
wise, the lattice 2U(5) @ 24y (5) = U @ U(5) & Eg(5) would have a reflective modular
form with 10-reflective divisors because (2U @ 244)(5) = 2U(5) & 24} (5) and the
2-reflective modular form for 2U @ 2A44 can be viewed as a 10-reflective modular form
for 2U(5) @ 24}/ (5). By [11], this 10-reflective modular form is a Borcherds product.
This contradicts [45, Proposition 6.1] because 10 > 2 + 24 /(5 + 1).

(4) h = 6: The irreducible root lattices of Coxeter number 6 are As and D4. By §5,
M is 2-reflective if L = As, D4, 2D4. We claim that M is not 2-reflective for L = 2A5
and L = As @ Dy.

Firstly, there is no 2-reflective vector of norm 1/2 (mod 2) (such vectors should have
order 2) in the discriminant group of 2A4s5. If there exists a 2-reflective modular form
for 2U @ 2As, then it is a modular form with complete 2-divisor. But we have proved in
[48, Theorem 3.4] that if M has a modular form with complete 2-divisor then rank(L) < 8.
This gives a contradiction.

Secondly, we have seen in §5 that the quasi pull-back of A5 & D4 < N(445 & Dy)
gives a reflective modular form. As in the proof of Theorem 6.5, we can check that
this modular form has the additional reflective divisor J ([2] & [2], —1/6) given by the
pull-backs of vectors of norm 4 and type [5] & [2] & [1] & [0] & [2]. We denote the cor-
responding Jacobi form of weight O by ¢;. Suppose that 2U & As & D4 is 2-reflective
and denote the corresponding Jacobi form of weight O by ¢». Then ¢; and ¢, have the
same ¢~ !- and ¢°-terms. Moreover, ¢ := ¢; — ¢, is a weakly holomorphic Jacobi form
of weight 0 whose singular Fourier coefficients in the ¢ !-term are represented by [3] & [2]
and [2] @ [2]. Thus the minimum hyperbolic norm of singular Fourier coefficients of ¢ is
—1/2. Therefore, n°¢ is a holomorphic Jacobi form of weight 3 with a character. In view
of the singular weight, this leads to a contradiction.

(5) h = 7: The unique irreducible root lattice of Coxeter number 7 is Ag. The lattice M
is 2-reflective if L = Ag.

(6) h = 8: The irreducible root lattices of Coxeter number 8 are A7 and Ds. By §5,
M is 2-reflective if L = A7, Ds. We claim that M is not 2-reflective for L = 2D5. This
can be proved as for 2A45.

(7) h = 9: The unique irreducible root lattice of Coxeter number 9 is Ag. The lattice M
is not 2-reflective if L = Ag. We can prove this in a similar way to the case of As @ Dg4.

(8) h = 10: The irreducible root lattices of Coxeter number 10 are Ag and Dg¢. By §5, the
lattice M is 2-reflective if L = Dg. We can prove that M is not 2-reflective for L = Ag
in a similar way to the cases of Ag and A5 @ Dg.

(9) 1 = 11: The unique irreducible root lattice of Coxeter number 11 is Aq9. The lat-
tice M is not 2-reflective if L = Aj¢. Since Aqg is of prime level 11, if 2U & A1o(—1)
is 2-reflective then the corresponding 2-reflective modular form is a modular form with
complete 2-divisor. This leads to a contradiction.
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(10) 2 = 12: The irreducible root lattices of Coxeter number 12 are A1, E¢ and D7. The
lattice M is 2-reflective if L = D5, E¢. The lattice M is not 2-reflective for L = A4,
which can be proved as for 2A45.

(11) & > 12: In view of rank(L) < 11, the remaining cases are L. = D,, with8 <m <11,
E-, Eg. The lattice M is 2-reflective if L = Dg, D19, E7, Eg. The lattice M is not
2-reflective for L = Do, D11, which can be proved as in the case of 2A45.

(12) The case of overlattices: Let Ly be a non-trivial even overlattice of R(L) whose
root sublattice generated by 2-roots is R(L). In this case, the minimum norm of vectors
in any non-trivial class of L;/R(L) is an even integer larger than 2. It is easy to show that
there is no such R(L).

By the discussions above, we have thus proved the following theorem.

Theorem 6.6. Let M = 2U @ L(—1) be a 2-reflective lattice of Niemeier type. Then L
can only be one of the following 21 lattices up to genus:

3Eg, 2Eg, Eg, E;, E¢, Az, 243, 34, As, 243, Aa,
As, As, A7, Da, 2D4, Ds, Ds, Dy, Dg, Dip.

6.5. Classification of 2-reflective lattices of quasi-Niemeier type

In this subsection we classify 2-reflective lattices of quasi-Niemeier type. We use the
notations of Theorem 6.2. Let R(L) = mA; ® R and L = mA; & Ly. We assume
rank(L) < 11. Let M = 2U & L(—1). By Lemma 5.2, if M is 2-reflective then M =
2U @ Lo(—1) & (m — 1) A1 (—1) is also 2-reflective. Therefore, we only need to consider
the root lattices given in Theorem 6.6 for Ly. We shall prove the following theorem.

Theorem 6.7. Let M = 2U @ L(—1) be a 2-reflective lattice of quasi-Niemeier type.
Then L is in the genus of one of the following 21 lattices:

Ay ®{Eg, E7, Es, A2, 245, A3, As, As, D4,2Dy, Ds, D¢, Dg},
241 @ {Es, Az, A3, Dy, D¢},
D4 @ {341,44,,54,).

Note that the pair 3A1 @ D¢ and A1 & 2D4 and the pair 2A; & E7 and A1 & Dg each
have isomorphic discriminant forms.

Proof. By §5, when L is one of the above lattices, the lattice M is 2-reflective. We next
prove that M is not 2-reflective for other lattices.

(1) Since 441 < D4 and 6A4; < D¢, we have m < 5. In addition, if m = 4 or 5, then
Lo= Dg4or As.Butif Ly = As,then4A4; & As < A5 ® D4, which is impossible because
2U @ As @ Dy is not 2-reflective. Thus when m > 4, the lattice Lo can only be Dy4.
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2)L #2D4 d mA, form > 2 because 2D4 B 241 < Dy & Ds.

(3) The lattice L is not equal to Eg @ 3A4;. If 2U & Eg @ 34, is 2-reflective, then by
Theorem 6.2 we have B; = 578y and k = 818y. By Theorem 4.6, the ¢°-term of the
corresponding weakly holomorphic Jacobi form of weight O would define a holomorphic
Jacobi form for Eg @ 3A; as a theta-block (see (4.6)). Thus the function corresponding

to each copy of A,
(16283 (19(7, 22)) (19(,, 2) )567
n(7) n(z)
is a holomorphic Jacobi form of index 30 for 4;. We calculate the hyperbolic norm of its
first Fourier coefficient:

1 (154 5
4x —[ —+57%x2)x30—-29" =—-14.333... <0,
24\ 3
which contradicts the definition of holomorphic Jacobi forms.
Since D¢ and Eg®2A are in the same genus, M is not 2-reflective if L = D1o® A4;.

@) L # Dg ®mA, form > 2 because Dg @ 2A4; and D4 @ D¢ are in the same genus.
Furthermore, L # E7 @ 3A; because U @ E7 & 341 = U & Dg & 2A4;.

(5) L # A & 3A,. Otherwise, suppose there exists a 2-reflective modular form for 2U &
A1 @ 34, and denote the corresponding Jacobi form of weight 0 by ¢. On the other hand,
the pull-back of o n(r) to A1 & 342 < N(124,) will also give a Jacobi form of weight 0,
denoted by ¢;. Using the idea in this section, we conclude that ¢ and ¢; have the same
q°-term and the difference ¥ := ¢ — ¢; would give a Jacobi form of weight 0 and index
A1 ® 34, without g~ !- or ¢°-terms. This function is not zero and its singular Fourier
coefficients are represented by (%) @ [1]3, which has hyperbolic norm —1/2 and does not
correspond to 2-reflective divisors. Thus %y is a holomorphic Jacobi form of weight 3
with a character for A; @ 345, which contradicts the singular weight.

We have L # 341 @ As. Indeed, suppose that 2U & 3A4; & Az is 2-reflective and
denote the corresponding Jacobi form of weight O by ¢. The pull-back of @g y(r) to
3A; @ A3 < N(8A43) gives a Jacobi form of weight 0 (denoted by ¢). The functions ¢
and ¢; have the same ¢°-term and their difference f := ¢ — ¢; = O(q) is a Jacobi form
of weight O for 341 & Aj3. This function is not zero and its singular Fourier coefficients
are represented by vy := (3. 3. 3) @ [1] (with hyperbolic norm —1/4) and v := (1,1, 1)
@ [2] (with hyperbolic norm —1/2). Hence 7% f is a holomorphic Jacobi form of singular
weight 3 with a character for 34; & As. This contradicts the singular weight because
there is a non-zero Fourier coefficient with non-zero hyperbolic norm: ¢'/#¢®1-3) has
hyperbolic norm 1/4.

All other cases can be proved in a similar way. Since the pull-back of ¢g_y(g) has addi-
tional singular Fourier coefficients in its g'-term which do not correspond to 2-reflective
divisors, we can construct a holomorphic Jacobi form of low weight with a character,
which would contradict the singular weight. This completes the proof. ]
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6.6. Classification of other 2-reflective lattices

In this subsection, we discuss the final case: R(L) = nA;. Firstly, if 8o = 0, the only
possible case is L = nA;. In this case, the weight k is equal to (6 — n) 1. In view of the
singular weight, we have k > nf/2 since 2%/ (9 (z, z)/n)P! is a holomorphic Jacobi
form. Therefore we get 1 < n < 4. The corresponding 2-reflective modular forms can be
constructed as the quasi pull-backs of the 2-reflective modular form of singular weight 2
for 2U @ 4A; (see [20, §5.1]). In view of Theorem 6.2, we thus get the following.

Theorem 6.8. If M = 2U & L(—1) has a 2-reflective modular form with By = 0 in its
zero divisor, then L = nAy with1 <n < 4.

By §5, when L = nA; with 1 <n < 8§, the lattice M is 2-reflective. For the overlat-
tices, 2U @ Ng and 2U @ Ng @ A; are 2-reflective. The lattice 2U @ Ng @ 24 is not
2-reflective because

241 ® Ng <241 ®2D4 < Dy & Dg.

To complete the classification, we show that 2U & 9A4; is not 2-reflective. Indeed,
suppose that there exists a 2-reflective modular form for 2U @ 9A4;. By §5, the lattice
2U @ 8A; is 2-reflective and the 2-reflective modular form is constructed as the quasi
pull-back to 847 < N(8A3). For this 2-reflective modular form, we have 8; = 5. We
claim that this function is the unique 2-reflective modular form for 2U & 8A4; up to a con-
stant. Otherwise, by considering the difference between the two independent 2-reflective
modular forms, we would get a weak Jacobi form of weight 0 for 84; whose mini-
mal hyperbolic norm of singular Fourier coefficients is —1/2. Thus its product with n°
would give a holomorphic Jacobi form of weight 3 for 8 41, which contradicts the singular
weight.

The quasi pull-back of the 2-reflective modular form for 2U & 94, is the 2-reflective
modular form for 2U & 8A;. Therefore, we have 81 = 58 in the case of 94;. Thus the
weight is given by

k = ,30(12+ 18(% - %)) + (% - %) x 18 x 489 = 15p,.

The ¢°-term of the corresponding Jacobi form of weight 0 defines a holomorphic Jacobi
form for 94, as a theta-block. Then the part related to each copy of 4;,

3000, (@ 22)\ (9 (r.2)\*
(1) :
n(z) n(z)
is a holomorphic Jacobi form of index 4 for A;. But the hyperbolic norm of its first Fourier
coefficient is

1 (30 1
dx —| =4+2x5)x4-3%2=—- <0,
24\ 9 9

which gives a contradiction.
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6.7. Final classification

Proof of Theorem 1.1. Combining [48, Theorem 3.8], Theorem 6.1, and Theorem 6.5
completes the proof. ]

Proof of Theorem 1.2. By Theorems 6.2, 6.5, 6.6, 6.7 and §6.6, we can conclude the
proof. The only thing that we need to explain is the following. Every lattice listed in (c)
has a 2-reflective modular form constructed as a quasi pull-back of ®1,. For every such
quasi pull-back, we have 8¢ = 1 and the weight is k > 12. Thus every lattice in the genus
of L has 2-roots. Moreover, the quasi pull-back is a cusp form and so its Weyl vector has
positive norm. [ ]

Proof of Corollary 1.3. Tt is a direct consequence of Theorem 1.2 and the weight for-
mula (6.7). ]

As an application, we give a classification of modular forms with complete 2-divisor.

Theorem 6.9. Suppose M = 2U @& L(—1) has a modular form with complete 2-divisor
and the set of 2-roots of L is non-empty. Then L is in the genus of 3Eg or of one of the
lattices in Table 2.

Proof. Firstly, from the formula 8; = (2h — 3)8¢ in Theorem 6.2, we see that there is
no modular form with complete 2-divisor for 2-reflective lattices of quasi-Niemeier type.
We next consider lattices of type m A,. We first construct a 2-reflective modular form for
2U & 5A; whose 2-reflective divisor of type (0, 1, %, %, %, % Ly, 0) has multiplicity 9.
Let 84; = @le Zo; with aiz = 2. The Nikulin lattice is Ng = (841, h), where h =
% Z?:l «;. It is known that there is a modular form with complete 2-divisor for 2U @ Ng
(see §5). Thus there is a weakly holomorphic Jacobi form ¢y, of weight O for Ng with

singular Fourier coefficients

sing(gong) =¢ ' +56+ Y Y ¢"e @,

neN reNg
r2=2n+2

We consider the pull-back to 54; < Ng,

5
bo.54,(T.35) =q ' +62+ Y _F 4+ 0(q).

i=1

where 35 = Zf=1 z;o; and &; = e2™'%, We need to determine the singular Fourier coef-
ficients in the ¢'-term. Such coefficients are of the form >7_, @ and come from
the pull-back of vectors of norm 4 in Ng of type % Zle o %a6 + %a7 + %Olg.
Thus the coefficient of ¢¢1{2{3{4¢5 is 8. The Borcherds product of ¢ 54, gives the
desired 2-reflective modular form. Suppose that 2U @ 5A4; has a modular form with
complete 2-divisor and denote the corresponding Jacobi form of weight 0 by ¥ 54, .
Then g := ¢o,54, — Vo,54, is a non-zero weak Jacobi form of weight O without q°-term.
It follows that g/ A is a weak Jacobi form of weight —12, which is impossible because the
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minimal weight of weak Jacobi forms of index 1 for 547 is —10 (see [50, Theorem 3.6]
or [49, Theorem 3.1]). Thus, 2U & 5A; has no modular form with complete 2-divisor. In
view of the pull-back, we conclude that 2U @& m A, has no modular form with complete
2-divisor when m > 6. The proof is complete. |

Note that there are in fact two independent 2-reflective modular forms for 2U @ 54;.
The second one can be constructed as the quasi pull-back of ®;; to 54; < N(843)
(see §5).

Note that there are lattices not of type 2U @& L which have a modular form with
complete 2-divisor, such as U(2) @ (—2) @ (k + 1)(2) with 1 <k < 7 (see [29, Theorem
6.1]).

Proposition 6.10. If M is a maximal even lattice of signature (2, 10) having a modular
Sform with complete 2-divisor, then it is isomorphic to 11, 1.

Proof. The proof is a refinement of the proof of [48, Theorem 3.4]. Firstly, the lattice M
can be written as M = 2U @ L(—1). There exists a weakly holomorphic Jacobi form of
weight 0 and index L. As in [48, proof of Theorem 3.4], we can construct a holomorphic
Jacobi form of weight 4 and index L, denoted by g. It is easy to check that the constant
term of g is not zero and we assume it is 1. The function g has singular weight 4. Thus, it
is a C-linear combination of theta-functions for L defined as (4.2). Since L is maximal,
there is no y € LY such that y ¢ L and (y, y) = 2. Hence, the g'-term of the Fourier
expansion of g comes only from the theta-function ®0L. In view of g(7,0) = E4(r) =
1 4+ 240g + -- - , the number of 2-roots in L is 240. By Theorem 6.2, the Coxeter number
of L is 30, which forces L to be isomorphic to Eg. The proof is complete. ]

7. Application: automorphic correction of hyperbolic 2-reflective lattices

An even lattice S of signature (1, n) is called hyperbolic 2-reflective if the subgroup
generated by 2-reflections is of finite index in the orthogonal group of S, i.e.

WP = (o, :res, r?=-2)<0(S)

is of finite index. The lattice S is called hyperbolic reflective if the subgroup generated by
all reflections has finite index in O(S). Hyperbolic reflective lattices are closely related to
reflective modular forms. In [6, Theorem 12.1], Borcherds proved that if the lattice U & S
has a reflective (resp. 2-reflective) modular form with a Weyl vector of positive norm then
S is hyperbolic reflective (resp. 2-reflective).

Hyperbolic 2-reflective lattices are of special interest because of their close connection
with the theory of K3 surfaces. The classification of such lattices is now available thanks
to the work of Nikulin and Vinberg (see [39] for n > 4, [40] for n = 2, [47] for n = 3, and
a survey [2]). Table 3 gives the number of hyperbolic 2-reflective lattices of fixed rank.
The models of all these lattices can be found in [29, §3.2]. For rank(S) = 10, we need to
add the lattice U @ D4 @ 4A; to the table in [29, §3.2].
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rank(S) | 3 4 5 6 7 8 9 10 11 12 13 14 15,...,19 >20
Number |26 14 9 10 9 12 10 9 4 4 3 3 1

Tab. 3. The number of hyperbolic 2-reflective lattices.

In [7], Borcherds suggested that interesting hyperbolic reflective lattices should be
associated to reflective modular forms. In view of this suggestion, Gritsenko and Nikulin
[29] considered the following automorphic correction of hyperbolic 2-reflective lattices.

Definition 7.1. Let S be a hyperbolic 2-reflective lattice. If there exists a positive inte-
ger m such that U(m) & S has a 2-reflective modular form, then we say that S has an
automorphic correction.

By means of the classification results in the previous section, we prove the following
theorem.

Theorem 7.2. Let S be a hyperbolic 2-reflective lattice of signature (1,n) withn > 5. If
S is one of the following 18 lattices:

U Es® Ey, USEs®Ds, UBEgDDs® A1, UBEs®Dy, UDDg®d Dy,
UBEs®441, USEs®341, UdDs®34,, UBEs®As, UdDg®2A4,,
UD2D4®241, UBEsDA2, UBEsD A, UdDs®A;, UDDs® A,
U Dy A, UdAs04:, UDA3;D A,

then it has no automorphic correction. If S is one of the other 51 lattices, it has at least
one automorphic correction.

Proof. If U(m) & S is 2-reflective, then so is U @ S. Thus the result follows by Theorem
6.2 (b, c). The automorphic corrections of S’ can be found in §5 and [29]. [

For 2 < n <4, there are a lot of hyperbolic 2-reflective lattices not of type U & L(—1).
Our argument does not work well in this case.

Remark 7.3. It is possible to use the classification of hyperbolic 2-reflective lattices to
prove Theorem 1.2. The Weyl vector of a Borcherds product is given by (A, é, C) in
Theorem 4.6. For a 2-reflective modular form with respect to the lattice of type 2U &
mA; @ Lo withm > 0 and Lo # 0 (see notations in Theorem 6.2), we have

- h—1
(A4,B,C) = (h—i—l,Zpi +TZaj,h),

where p; is the Weyl vector of the irreducible components of the root sublattice of L and
a; are the positive roots of mA;. We thus calculate the norm of the Weyl vector as

h(h1—2|- 1) (24_n gy SO 1)).

24C — (B,B) = WD)
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If the Weyl vector has positive norm, then the lattice U @& mA; @ Lo is hyperbolic
2-reflective. We can show that for almost all lattices determined by Theorem 6.2 the norms
of Weyl vectors are positive. For example, when m = 0 and n < 24, we have 2AC —
(l} , l§) = %(24 —n) > 0. Thus they are all hyperbolic 2-reflective and we may use
the classification of hyperbolic 2-reflective lattices to determine 2-reflective lattices.

Remark 7.4. Let L be a primitive sublattice of a Niemeier lattice N (R). If the orthogonal
complement of L on N(R) has 2-roots, then every reflective modular form for 2U &
L(—1) constructed as the quasi pull-back of ®;, is a cusp form (see Theorem 5.1) and
so has a Weyl vector of positive norm, which implies that the corresponding Lorentzian
lattice is hyperbolic reflective.

Note that the sublattices 64, < N(6D4) and 124; < N(12A43) do not satisfy the
above assumption: by direct calculations, the Weyl vectors of the corresponding reflective
modular forms have zero norm.

It is now easy to see that the lattices U @ L(—1) are hyperbolic reflective for some L
in §5, suchas L = 2E8 D D4, 2E8 (&) 2A1, 2E8 (&) A1(2), Eg (&) Dg, Eg (&%) 2D4, Eg (o) D7,
2E7, Eg (o) D4 (&) A1(2), 11A1, 5A2, A5 D D4, D5 (&) A2, and so on.

8. Application: automorphic discriminants of moduli spaces of K3 surfaces

The moduli space of polarized K3 surfaces of degree 2n can be realized as the modular
variety O1 (T,,)\D(T;), where

T,=U@®U® Eg(—1) ® Eg(—1) & (—2n) (8.1)

is an even lattice of signature (2, 19). The discriminant of this moduli space is equal to
the (—2)-Heegner divisor #. Nikulin [41] asked whether the discriminant can be given
by the set of zeros of some automorphic form. This is equivalent to asking whether 7, is
2-reflective. Looijenga [34] established that T}, is not 2-reflective if n > 2. Now, this
result is immediately derived from Theorem 6.2 because the set of 2-roots of 2Eg @ (2n)
does not span the whole space R!7 when n > 2. Moreover, Theorem 6.5 gives a gen-
eralization of this result. Nikulin [41] also asked the similar question for more general
lattice-polarized K3 surfaces. Theorem 1.1 implies the non-existence of such good auto-
morphic forms for other large rank lattices. Many 2-reflective modular forms for small
rank lattices related to lattice-polarized K3 surfaces were constructed in [28].
As another application of our approach, we prove the following result.

Theorem 8.1. The lattice T, is reflective if and only ifn = 1, 2.

Proof. We have seen in §5 that 77 and T, are reflective. We next suppose that n > 3
and T, is reflective. Then there exists a weakly holomorphic Jacobi form of weight 0 and
index 1 for 2Fg @ (2n) with first Fourier coefficients of the form

. 1 1
P(r.3) =coq ' +co Y €MD 4o 4 ertF o 42k + 0(g).

re2Eg
r2=2
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where cg,c; € N and ¢, € Z satisfy ¢ + ¢ > 0, {‘i% = exp(27i (3, :l:%oe)), Ciﬁ =
exp(2mi(3, :I:%oc)), and « is the basis of the lattice (2n) with o> = 2n. The reason we
1

have c; + ¢ > 0 is that it is the multiplicity of the Heegner divisor # (%a, —a:)- By

Lemma 4.3, we get
60nco = 4c1 + ¢, k 4+ c1+ ¢ = 132¢.

We can assume co = 1. The ¢°-term of ¢ defines a holomorphic Jacobi form for
2FEg @ (2n) as a generalized theta-block. In particular, the part related to (2n),

ok—16 ¥z, 22))c1 (z‘;‘(r, Z))C2
! (”( ) i )

is a holomorphic Jacobi form of index 30n for A;. Thus, the hyperbolic norm of its first
Fourier coefficient should be non-negative. We calculate it as

2%k —16+2 2 2 2
4 x tia+ 62x30n_ o )
24 2

6 3
12401 — 10012,

4 2
1240n—( cite, +62)

IA

which implies that 1240n > 100n2,i.e. n < 12. The last inequality follows from c; + ¢,
> 0.

If ¢ has no singular Fourier coefficients of hyperbolic norm —1, then as in [48], by
using the differential operators to kill the term ¢ ~!- (consider a linear combination of E4¢
and H,(Hy(¢))), we can construct a non-zero weak Jacobi form ¢4 of weight 4 whose
hyperbolic norms of singular Fourier coefficients are > —1, more precisely > —2/3 (see
the description of reflective vectors in §3). Then 78¢4 is a holomorphic Jacobi form of
weight 8 with a character for 2Es @ (2n), which contradicts the singular weight.

Thus ¢ must have singular Fourier coefficients of hyperbolic norm —1. Whenn < 12,
the singular Fourier coefficients of ¢ are determined by its ¢~ '-, ¢°-, ¢'- and ¢>-terms.
Since the singular Fourier coefficients of ¢ should correspond to reflective divisors, the
singular Fourier coefficients of hyperbolic norm —1 are represented by %a with a2/4 =
1 (mod 2) because the order must be 2. The only possible case is 7 = 6 or 10.

In the case n = 6, the possible singular Fourier coefficients of ¢ are g
¢F1/12 and g¢*'/2 with hyperbolic norms —2, —1/3, —1/12, and —1, respectively. Sim-
ilarly, by using differential operators to kill the terms ¢~ and ¢¢*'/? (consider a linear
combination of E¢¢, E4Ho(¢p) and H4(H,(Hy(¢)))), we can construct a non-zero weak
Jacobi form ¢ of weight 6 with only singular Fourier coefficients of types {*!/¢ and
¢*1/12_ Then n*¢pe gives a holomorphic Jacobi form of weight 8 for 2Eg @ (12), which
contradicts the singular weight. Therefore, T¢ is not reflective. We can prove the case
n = 10 in a similar way. The proof is complete. ]

-1 é-:i:l/6
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9. Further remarks and open questions

We first give some remarks about the main results.

Remark 9.1. Similar to Theorem 1.2, replacing 2-roots with root system Ny, (see Propo-
sition 6.4), we find that there are also exactly three types of reflective lattices contain-
ing 2U. But II, »6 is not the unique reflective lattice of type (a). In fact,

U & Coxeter—Todd lattice ~ U @ 64, ~ U @ E¢ ® E¢ (3)

is also a reflective lattice of type (a). Moreover, the reflective lattice of type (c) may have
no reflective modular form with a positive-norm Weyl vector, for example, 2U @ A (7)
has a unique reflective modular form and this modular form has singular weight 3
(see [32]). Thus, the case of reflective is different from the case of 2-reflective. We
remark that every lattice having a reflective modular form of singular weight is of type (c)
except Il »6.

Remark 9.2. Our Jacobi forms approach is also useful to study the genus of a certain
lattice because one has different Jacobi forms for different lattices in some genus. From
Theorem 1.2 and its proof, we conclude:

(1) The genus of 2Eg @ A; contains exactly four lattices: itself, the unique non-trivial
even overlattices of D¢ @ A1, A17, and Do & E7.

(2) For L =2FEg,5A1 @ D4, A1 ®&2Dy4, A1 & Dg,or Eg @ 2A1, the genus of L contains
exactly two lattices.

(3) Let L take one of the remaining 44 lattices in the table of Theorem 1.2. The genus of
L contains only one lattice.

Remark 9.3. Theorem 1.1 holds for meromorphic 2-reflective modular forms. Firstly,
from its proof, we see that Theorem 6.2 is still true for meromorphic 2-reflective modular
forms. Secondly, in the proofs of [48, Theorem 3.6] and Theorem 6.1, we only need to
make a minor correction for the cases rank(L) = 12, 13, 14. In these cases, we need to
show that the constant u (determined by the weight) of the holomorphic Jacobi form ¢¢
is not zero. This can be done using Theorem 6.2.

Remark 9.4. For any 2-reflective lattice of type 2U @ L(—1) with rank(L) > 6, the
corresponding 2-reflective modular form is unique up to a constant multiple. Indeed, if
there exist two independent 2-reflective modular forms, then there would exist a weakly
holomorphic Jacobi form ¥ of weight 0 and index L without ¢ ~!-term. Then 7%y would
be a holomorphic Jacobi form of weight 3 with a character, which contradicts the singular
weight.

Similarly, for any reflective lattice of type 2U & L(—1) with rank(L) > 12, the cor-
responding reflective modular form is unique up to a constant multiple.

Remark 9.5. By §5.4,2U @& Eg(—1) & D7(—1) is reflective. Thus there exist reflective
lattices of signature (2, 17). This answers part of [48, Questions 4.13 (2)].
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In [48, Theorem 4.11], we proved that II, »¢ is the unique reflective lattice of signature
(2,n) with n > 23 up to scaling. In fact, we can also prove that reflective lattices of
signature (2, 22) satisfy a restrictive condition.

Proposition 9.6. If M = 2U & L(—1) is a reflective lattice of signature (2,22) and F is
a reflective modular form for o+ (M), then the weight of F is 24P and the divisor of F
is given by
div(F) = Bodt + Y _ BuH (v.—1/2). 9.1)
v

where the sum is taken over all elements of norm —1 mod 2 and order 2 in the discriminant
group of M, and By and B, are natural numbers.

Proof. The proof is an improvement to the proof of [48, Theorem 4.11]. Let ¢ be the
associated weakly holomorphic Jacobi form of weight 0. Applying differential operators
to ¢, we construct a weak Jacobi form g of weight 4 by canceling the singular Fourier
coefficients of hyperbolic norm —2. If F' has divisors of another type, then the Jacobi
form g of weight 4 will have singular Fourier coefficients of hyperbolic norm > —1. But
n'2g is a holomorphic Jacobi form of singular weight 10 with a character. This contradicts
the fact that the hyperbolic norm of non-zero Fourier coefficients of any holomorphic
Jacobi form of singular weight is always zero. This also forces that the constant term of g
is zero, which yields k = 248. L]

Corollary 9.7. Assume that 2U @ L(—1) is a reflective lattice of signature (2,22). Let
R}, denote the set of 2-roots in L. Set

Ri(Ly={velY:(v,v)=1,2velL}.
Then |Rp| > 120 and the set Ry U Ry (L) generates the vector space R?°.

Proof. Suppose that F is a reflective modular form for the lattice. Then F has
weight 248, and its divisor is of the form (9.1). We denote the associated weakly
holomorphic Jacobi form of weight 0 and index L by ¢. We define R = |Ry| and

Ry = ZUGRI 105) Bv- By (4.4), we have

1 1
— R + 48 Ry)— Bo = —Q2BoR + Ry),
24(.30( +48) + R1) — Bo 40( BoR + Ry)
which yields
2
R =120+ —R;.
Bo
Thus R > 120. The second assertion follows from (4.5). [

Finally, we pose some questions related to our work. Questions (1) and (2) have been
formulated in [48], but here we further make conjectures and provide some evidence to
support them.

(1) Are there 2-reflective lattices of signature (2, 13)?
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By Theorem 1.2, there is no 2-reflective lattice of signature (2, 13) which can be rep-

resented as 2U @ L(—1) with L having 2-roots. If M = 2U & L(—1) is a 2-reflective

lattice of signature (2, 13), then no lattice in the genus of L has 2-roots. It is plausible

that such an L does not exist. This suggests that there might be no 2-reflective lattice of

signature (2, 13).

(2) Are there reflective lattices of signature (2,21)?

By [18], there is no hyperbolic reflective lattice of signature (1, 20). In view of the relation

between reflective modular forms and hyperbolic reflective lattices, we conjecture that the

above question has a negative answer.

(3) Let 2U @& L(—1) be a reflective lattice of signature (2, 22). Is L in the genus of
2Es & D4?

By [18], U & 2Eg & D, is the unique maximal hyperbolic reflective lattice of signature

(1,21). This result and Proposition 9.6 indicate that the answer may be affirmative.

(4) Classify all 2-reflective lattices of type 2U @ L(—1) such that no lattice in the genus
of L has 2-roots.

Corresponding to Theorem 6.9, we conjecture that if the lattice 2U & L(—1) has a mod-
ular form with complete 2-divisor and L has no 2-root then L is a primitive sublattice of
the Leech lattice satisfying the Norm, condition.

(5) Are Borcherds products of singular weight reflective?

This question was mentioned in the introduction of [45]. At present, all known Borcherds
products of singular weight are reflective except some pull-backs. For example, the
Borcherds modular form ®;, for II; 26 = 2U @ 3Ej is a Borcherds product of

@ 9 '
% =q7' + 244 Y TV L 0(g) € g
(T) ve3Eg
v2=2

It is reflective and of singular weight. We consider the pull-back of ®3£, /A to the lattice
3Dg < 3Es, which gives a Borcherds product of singular weight. By [48, Theorem 4.7],
it is not reflective. Therefore, we suggest formulating the following conjecture.

Conjecture 9.8. Let F be a Borcherds product of singular weight for a lattice M of
signature (2, n) with n > 3. Then there exists an even lattice M' such that M’ @ Q =
M ® Q and F can be viewed as a reflective modular form for M’ .

The first step towards this conjecture is due to Scheithauer. It is known that @, is the
unique reflective modular form of singular weight for unimodular lattices. In [45, Theo-
rem 4.5], Scheithauer proved that @1, is the unique Borcherds product of singular weight
for unimodular lattices. This means that the above conjecture is true for unimodular lat-
tices. Moreover, in [15, 42] the authors gave a classification of Borcherds products of
singular weight on simple lattices. All Borcherds products of singular weight in their
papers are reflective, which also supports the conjecture.
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