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Abstract. We prove that the realization space of the d -dimensional cube is contractible. For this we
first show that any two realizations are connected by a finite sequence of projective transformations
and normal transformations. As an application we use this fact to define an analog of the connected
sum construction for cubical d -polytopes, and apply this construction to certain cubical d -polytopes
to conclude that the rays spanned by f -vectors of cubical d -polytopes are dense in Adin’s cone.
The connectivity result on cubes extends to any product of simplices, and further it shows that the
respective realization spaces are contractible.
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1. Introduction

Perhaps the most natural transformations of polytopes that preserve the combinatorial
type, namely the facial structure, are projective transformations and normal transforma-
tions. Loosely speaking, the former are given by perspective transformation from one
hyperplane where the polytope lies to another hyperplane, while the latter are given by
scaling the outer normal vectors to facets so that facets do not degenerate. While the
former are connected to the projective linear group acting on vector spaces, the latter is
connected to the Chow cohomology of toric varieties, and in particular inherits an algebra
structure via the Minkowski sum [5]. (By polytope we always mean a convex polytope.)

The simplex, of any fixed dimension, is projectively unique, namely, any simplex can
be continuously transformed to any other simplex of the same dimension by a homo-
topy of projective transformations. Thus, any two simplicial polytopes, after applying an
appropriate projective transformation to one of them, can be glued along a common facet
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whose hyperplane separates them, to produce again a convex polytope. This realizes the
connected sum operation geometrically.

However, the d -cube is not projectively unique for d � 3; this can be seen even by
dimension count: the realization space of the (combinatorial) d -cube has dimension larger
than the dimension of the space of projective transformations. Indeed, the group of pro-
jective transformations on Rd is of dimension d.d C 2/, while the realization space of the
d -cube has dimension 2d2. In particular, we cannot realize the connected sum operation
geometrically for cubical d -polytopes, d � 4.

We enlarge the set of transformations by adding normal transformations to the gen-
erating set. While the first author mentioned this theorem in passing, assuming it had to
be known, it was to our surprise that the following results appear to be new, even the
qualitative assertion in (a).

Theorem 1 (Cubes are normal-projectively unique). Fix a dimension d .

(a) For any two realizations of the d -cube, one can be obtained from the other by a
composition of finitely many transformations, each either projective or normal. In
fact, 8d transformations suffice.

(b) The constructed algorithm transforms cubes continuously to the standard cube. In
particular, we obtain a deformation retraction to a point. Thus, the realization space
of cubes is contractible.

Let us stress that we stay entirely inside the space of cubes. Every transformation
takes us from one cube to another; none of the projective transformations results in an
unbounded polytope.

As a corollary of the quantitative assertion in (a), we obtain a cubical analog of the
connected sum construction, at a small price.

Theorem 2. (a) (Bounded towers) For any two realizations C1 and C2 of the .d � 1/-
cube, there exists a cubical d -polytope C made up of m .m � 4d/ d -cubes stacked
one on top of the other, such that C1 and C2 are projectively equivalent to its bottom
and top facets, resp. Call C a d -tower of m cubes.

(b) (Cubical connected sum) For any two cubical d -polytopes P1 and P2, and facets
Fi of Pi , i D 1; 2, there exists a projective transformation � and a d -tower T of at
most 4d cubes such that P WD P1 [ T [ �.P2/ is convex, and P1 \ T D F1 and
�.P2/ \ T D �.F2/ are the top and bottom facets of T respectively.

We apply this cubical connected sum operation to the cubical polytopes constructed
recently in [2]; the f -vectors of the latter approach the extremal rays of Adin’s cone,
which is conjectured to contain all f -vectors of d -polytopes [1]. The following density
result for f -vectors of cubical polytopes then follows: Let �d denote the d -cube and
f .P / denote the f -vector of a polytope P . Let Ad be the Adin cone (its apex is f .�d /
and its dimension is bd=2c by the cubical Dehn–Sommerville relations [1]).
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Theorem 3 (Ray density in Adin’s cone). For any " > 0 and any x 2 Ad there exists a
cubical d -polytope P such that the angle ]xf .�d /f .P / is smaller than ".

Lastly, we note that our cubical connected sum construction endows the set of f -
vectors of cubical d -polytopes with the structure of an affine semigroup (see [9]).

Outline. In Section 2 we give preliminaries; we prove Theorem 1 in Section 3, Theorem 2
in Section 4 and Theorem 3 in Section 5. We conclude with generalizations and related
open questions in Section 6.

2. Preliminaries

For further background on polytopes see e.g. [8].

2.1. Two notions of equivalence of d -polytopes

Let P D ¹x 2 Rd j Ax � bº be a d -polytope, with the origin in its interior P ı. Denote
by r1; : : : ; rm the rows of A. By scaling we may assume these are the facet outer normals.
The polar polytope

P4 D ¹y 2 Rd j hy; xi � 1 for all x 2 P º D conv.p1; : : : ; pm/

is the d -polytope with vertices p1 D 1
b1
r1; : : : ; pm D

1
bm
rm.

A projective transformation is a map

' W Rd ! Rd defined by x 7!
Ax C b

cT x C ˛
;

where .�/T denotes the transpose, for some A 2 Md�d .R/, b; c 2 Rd , and ˛ 2 R that
satisfy

det
�
A b

cT ˛

�
¤ 0:

These transformations form a group under composition.

Definition 4. Two d -polytopesP andQ are projectively equivalent if there is a projective
transformation ' such that Q D '.P /.

We will need another notion of equivalence:

Definition 5. Two combinatorially equivalent d -polytopes P and Q are normally equiv-
alent if additionally their unit facet normals of corresponding facets coincide.1

1In the literature sometimes a weaker notion of normal equivalence occurs, when the combina-
torial isomorphism condition is dropped, and one requires only that the set of unit outer normals
of P coincides with that of Q. We however need the stronger notion in the definition, which is
commonly used.
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In this case we say Q D  .P / for a normal transformation  . Thus, given a poly-
tope P , any two polytopes normally equivalent to it differ by a normal transformation.
On the dual polytopes P4, Q4 we say Q4 D  4.P4/ for a ray transformation  4

(it scales the vertices along the rays from the origin while preserving the combinatorial
type).

2.2. Connected sums of d -polytopes

Suppose P and Q are d -polytopes whose intersection is a common facet F D P \Q of
both. IfRD P [Q is convex then its proper faces are precisely the proper faces of either
P or Q, excluding F :

faces.R/ D .faces.P / [ faces.Q// n ¹F º:

The following lemma, a proof of which can be found in [7, Lemma 3.2.4], tells us
when and how the connected sum of two polytopes can be formed.

Lemma 6. Let P and Q be d -polytopes that have projectively equivalent facets F1
and F2 respectively. Then there exists a projective transformation ' such that P \ '.Q/
D F1 D '.F2/ and R D P [ '.Q/ is convex.

The combinatorial type of R in Lemma 6 is called the connected sum of P and Q
along F1 and F2, denoted P #F1�F2

Q, or simply P #F Q when the faces F1; F2 com-
binatorially isomorphic to F are understood.

2.3. Cubical polytopes

We give just a brief reminder of the definitions of a cubical d -polytope and its hc-vector
and gc-vector. For more details, in particular, for the construction used in Section 5,
see [2].

A d -polytope Q is cubical if each of its proper faces is combinatorially a cube. Its
f -polynomial is defined by (note the shift of index!)

f .Q; t/ D

d�1X
iD0

fi t
i

where fi D fi .Q/ is the number of i -dimensional faces of Q.
We then define the short cubical h-polynomial

hsc.Q; t/ D .1 � t /d�1f

�
Q;

2t

1 � t

�
;

and the cubical h-polynomial

hc.Q; t/ D

dX
iD0

hc
i t
i
D
t .1 � t /d�1

1C t
f

�
Q;

2t

1 � t

�
C 2d�1

1 � .�t /dC1

1C t
:
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Adin [1] has shown that hc.Q; t/ is symmetric, that is,

hc
i D h

c
d�i .0 � i � d/:

These dd=2e equations are the cubical Dehn–Sommerville relations. We thus define
the cubical g-vector gc.Q/ D .gc

0; : : : ; g
c
bd=2c

/ by

gc
0 D h

c
0 D 2

d�1; gc
i D h

c
i � h

c
i�1 for 1 � i � bd=2c:

Adin conjectured

Conjecture 7 ([1, Question 2]). For a cubical d -polytope we have

gc
i � 0 .1 � i � bd=2c/: (2.1)

The cone (2.1) is the nonnegative orthant in Rbd=2c, and its image under the map
transforming gc-vectors back into f -vectors yields the Adin cone Ad in Rd .

In [2], for each 1 � i � bd=2c, the authors exhibit a sequence of cubical d -polytopes
whose corresponding sequence of gc-vectors approaches the ray spanned by ei . This
translates into sequences of f -vectors approaching the extremal rays of Ad .

3. Any two combinatorial d-cubes are related by normal and projective
transformations

We will use the following lemma, which describes the effect of a projective transformation
on the polar polytope.

Lemma 8. Let P be a d -polytope with 0 2 P ı, and P4 D conv.p1; : : : ; pm/. Then
for any v 2 P ı there exists a d -polytope Q which is projectively equivalent to P , and
Q4 D conv.p1 C v; : : : ; pm C v/.

Proof. Consider the effect of a projective transformation ' W Rd ! Rd that takes P toQ
(with 0 2 Qı) on the polar polytopes P4 and Q4. It is easy check that the map

'4 W Rd ! Rd defined by x 7!
AT x � c

�bT x C ˛

is a projective transformation that satisfies

'4.Q4/ D P4:

Denote '�4 D .'4/�1, so that

Q4 D '�4.P4/:

Taking A D Id�d , b D 0, c D v, and ˛ D 1 produces a projective transformation ' for
which

'�4.x/ D x C v

and the claim follows.
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LetQ D ¹x 2 Rd j Ax � bº be a combinatorial d -cube, with the origin in its interior,
and r1; : : : ; r2d the rows of A, that is, the facet outer normals. We may assume that they
are ordered by pairs of combinatorially opposite facets, that is, ri is normal to a facet
opposite to the facet normal to riC1, for i D 1; 3; : : : ; 2d � 1. The polar polytope Q4

is the combinatorial d -crosspolytope with vertices p1 D 1
b1
r1; : : : ; p2d D

1
b2d

r2d , and
we denote by li D Œp2i�1; p2i �, for 1 � i � d , the line segments connecting the pairs of
opposite vertices. The following proposition proves Theorem 1 (a).

Proposition 9. Let Q and Q0 be two combinatorial d -cubes. Then there is a sequence
�1; : : : ; �s .s � 8d � 1/ of projective and normal transformations such that

Q0 D .�s ı � � � ı �1/.Q/:

Proof. We present the sequence in terms of the polar d -crosspolytopes. For each pair of
antipodal vertices ofP WDQ4 we perform a sequence of four transformations, alternating
between projective and ray transformations, arriving at a d -crosspolytope which is ray
equivalent to the standard d -crosspolytope, namely the convex hull of the standard basis
elements and their minuses. We refer to the sequence of four transformations for the i -th
pair of antipodal vertices as the i -th iteration. We denote the crosspolytope obtained after
the i -th iteration by P .i/, its vertices by p.i/1 ; : : : ; p

.i/

2d
and the line segments connecting

its pairs of opposite vertices p.i/2j�1; p
.i/
2j by l .i/j for j D 1; : : : ; d .

(1) Use Lemma 8 to translate the crosspolytope P .i�1/ so that the origin lies in the
interior of the line segment l .i�1/i D Œp

.i�1/
2i�1 ; p

.i�1/
2i �, say in its midpoint to make

a canonical choice; this projective transformation produces a polytope P 0.

(2) For P 0 D ¹x j Ax � bº with vertex notation as in P .i�1/, choose c2i�1 � 1=b2i�1
so that there exists an affine hyperplane Hi orthogonal to li , which strictly separates
q2i�1 WD c2i�1r2i�1 from Vert.P 0/ n ¹p2i�1º. To make a canonical choice, let c be
the infimum of the possible values for such c2i�1’s, fix c2i�1 D c C 1 and fix the Hi
as above that intersects the ray spanned by q2i�1 at .c C 0:5/r2i�1.

Set P 00 D conv.q2i�1 [ P 0/. Then P 00 is ray equivalent to P 0.

(3) Again denote the vertices of P 00 by pi , in correspondence with the vertices of P .i�1/,
so p2i�1 D q2i�1. Use again Lemma 8 to move the origin close enough to p2i�1
along the segment li , that is, so that the origin and p2i�1 are on the same side of
the hyperplane Hi of step (2). To make a canonical choice, move the origin to .c C
0:7/r2i�1. Then

Hi \ P
00
Š conv.Hi \ Span.pj / j j 2 Œ2d � n ¹2i � 1; 2iº/:

(Here Š means combinatorially equivalent). The resulting polytope P 000 is projec-
tively equivalent to P 00.

(4) Set qj WD Hi \ Span.pj / for j 2 Œ2d � n ¹2i � 1; 2iº. Then

P .i/ D conv.q1; : : : ; q2i�2; p2i�1; p2i ; q2iC1; : : : ; q2d /

is ray equivalent to P 000.
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The resulting crosspolytope P .i/ has the property that all line segments except l .i/i
lie on the hyperplane Hi which is orthogonal to l .i/i . Furthermore, for all previous line
segments l .i/1 ; : : : ; l

.i/
i�1, the same property, achieved at the previous iterations, i.e., all other

line segments lie on the respective hyperplanesH1; : : : ;Hi�1, still holds, because (i) these
hyperplanes are spanned by rays, and the new points we choose at the i -th iteration are on
the rays, and further (ii) the first up to .i � 1/-th segments are just translated in the i -th
iteration.

After performing this process for every pair of antipodal vertices we obtain a combina-
torial d -crosspolytope with segments l1; : : : ; ld such that, for each 1 � i � d , there exists
an affine hyperplane Hi which is orthogonal to li and contains all other segments lj ,
j ¤ i . It follows that the segments l1; : : : ; ld all intersect in a point, and are pairwise
orthogonal.

To see that the line segments are pairwise orthogonal, note that if the line segment li
was orthogonal to the line segment lj before performing the i -th iteration, then the new
line segment l .i/i is orthogonal to the new line segment l .i/j .

To see that all line segments intersect in a point, consider the affine space spanned
by the line segments, constructed sequentially. We start with some line segment (it spans
an affine space of dimension 1), then add a second line segment, which can raise the
dimension by 0, 1 or 2, and so on. Note that at each step the dimension cannot grow by 0
(because each line segment is orthogonal to the space spanned by all other segments), and
since we have d line segments in Rd the total dimension is at most d , so at each step the
dimension cannot grow by 2 either, thus, at each step, the dimension grows by 1. Note that
this argument is valid for any ordering of the line segments, so any two of the segments
intersect in a point. In view of their pairwise orthogonality, this is the same point for all
pairs of segments.

We perform the same procedure for Q04 to get a combinatorial d -crosspolytope
which is normally equivalent to the standard d -crosspolytope. To finish, we do a final nor-
mal transformation to concatenate the two sequences of transformations performed on Q
and on Q0. In fact, the resulting three normal transformations in a row can be replaced by
a single one. This algorithm gives s D 8d � 1.

In the following figure we give an illustration of a single iteration for an octahedron.
The line segment l D vv0 is colored black. The red lines represent the rays from the origin
(the red point) on which the vertices lie.

Perform �1: the origin now lies on l .

Perform �2: the vertex v is moved along its ray so that a hyperplane as in the next step
exists.

Perform �3: the hyperplane Hl is orthogonal to l , and separates v and the origin from the
other vertices.

Perform �4: the resulting octahedron has the property that all diagonals, besides l , lie on
a hyperplane which is orthogonal to l .
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v0

v

projective
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v0

v

ray

�2

v0

v

v0

v

ray

�4

Hl

v0

v

projective�3

We now deduce Theorem 1 (b), that is, we show that the realization space R is con-
tractible. Consider the point p in R corresponding to the standard cube. Consider the
sequence of 4d C 2 transformations that take the point x 2 R to the point p: after per-
forming the duals of the first 4d transformations in the above proof, of the last two
transformations, the first is normal that changes a box to a unit cube, and the second
is projective, in fact an isometry to the standard cube (axis parallel, unit, with center of
mass at the origin). This sequence can be seen as a continuous path in R from x to p,
where we take the dual of each translation and each ray scaling done linearly in unit time;
likewise for the last two transformations. The resulting map

f W R � Œ0; 4d C 2�! R

is a homotopy from the identity map on R to the constant map with value p: it is indeed
continuous by the canonical choices in steps (1)–(4) for each iteration of the algorithm in
the proof of Proposition 9. (If y is a cube nearby x, then for any vertex in x its unique
nearby vertex in y gets the same combinatorial labeling. Given the algorithm for x, this
determines the algorithm for y, and hence the path from y to p in R.)
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4. A cubical connector d-polytope and the C -connected sum

Definition 10. A d -tower of s cubes is a cubical stacked d -polytope T obtained by stack-
ing on the facet opposite to the facet stacked on in the previous step.

Explicitly, for s D 1 it is just a d -cube. Mark some two opposite facets as bottom
and top. For s > 1, a d -tower of s cubes is obtained from a d -tower of s � 1 cubes with
bottom facet F and top facet F 0 by stacking a d -cube onto F 0. Then the polytope T has
a unique bottom facet and a unique top facet.

Given two combinatorial .d � 1/-cubesQ1 andQ2, we use Proposition 9 to construct
a d -tower having bottom facet Q01 and top facet Q02, with Q0i projectively equivalent
toQi , i D 1; 2. The following lemma shows how to translate each normal transformation
from Proposition 9 into a d -tower of one cube.

Lemma 11. Let Q1 and Q2 be two combinatorial .d � 1/-cubes which are normally
equivalent. Then there exists a d -cube Q in which Q1 and Q2 .both realized in Rd / are
opposite facets.

Proof. Assume that bothQ1 andQ2 are realized in Rd on the last coordinateD 0 hyper-
plane. Lift the vertices of Q2 (say to height 1), and take the convex hull, denoted by Q.

Here is an explicit description ofQ: Let A1;A2 2 R.2d�2/�.d�1/ and b1; b2 2 R2d�2

be such that

Q1 D ¹x 2 Rd�1 j A1x � b1º; Q2 D ¹x 2 Rd�1 j A2x � b2º:

The fact that Q1 and Q2 are normally equivalent means that A1 D A2. We define

A D

0BBBBB@
j

A1 b1 � b2
j

0 � � � 0 1

0 � � � 0 �1

1CCCCCA ; b D

0BBBBB@
j

b1
j

1

0

1CCCCCA ; (4.1)

and
Q D ¹x 2 Rd j Ax � bº:

Applying Lemma 11 to each of the normal transformations in Proposition 9, and
Lemma 6 to glue each such new d -cube to the previously constructed polytope so that the
result is again a convex polytope, we deduce Theorem 2 (here s is as in Proposition 9):

Corollary 12. LetQ andQ0 be two combinatorial .d � 1/-cubes. Then there is a d -tower
of 4d cubes with bottom facet projectively equivalent to Q and top facet projectively
equivalent to Q0. We call this tower a cubical connector and denote it C.Q;Q0/.

Definition 13. Let Q1 and Q2 be cubical d -polytopes. Let F1 be a facet of Q1, F2 a
facet of Q2, and C D C.F1; F2/ an appropriate cubical connector (a tower of 4d cubes).
The C-connected sum Q D Q1 # Q2 is the cubical d -polytope obtained by taking the
connected sum Q1 #F1

C #F2
Q2.
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5. Filling the gc-cone

We apply the connected sum construction to appropriate AKN-polytopes (see [2]), thus
obtaining sequences of cubical d -polytopes with corresponding gc-vector sequences
approaching any ray in the nonnegative orthant of Rbd=2c.

Lemma 14. Let Q1 #Q2 be a C -connected sum. Then

gc
1.Q1 #Q2/ D gc

1.Q1/C g
c
1.Q2/C .4d C 1/2

d�1;

gc
i .Q1 #Q2/ D gc

i .Q1/C g
c
i .Q2/ .2 � i � bd=2c/:

(5.1)

Proof. Let us first observe that for the (usual) connected sum Q #F Q0, when Q and Q0

are cubical d -polytopes we have

f .Q #F Q0; t / D f .Q; t/C f .Q0; t / � f .�d�1; t / � td�1

and

hsc.Q #F Q0; t / D .1 � t /df
�
Q #F Q0;

2t

1 � t

�
:

It follows that

hsc.Q #F Q0; t / D hsc.Q; t/C hsc.Q0; t /C .t � 1/.hsc.�d�1; t /C 2d�1td�1/;

and so, for 1 � i � d � 2, we have

hsc
i .Q #F Q0/ D hsc

i .Q/C h
sc
i .Q

0/C hsc
i�1.�

d�1/ � hsc
i .�

d�1/

D hsc
i .Q/C h

sc
i .Q

0/:

It immediately follows that

hc
i .Q #F Q0/ D hc

i .Q/C h
c
i .Q

0/ .1 � i � d � 1/;

gc
i .Q #F Q0/ D gc

i .Q/C g
c
i .Q

0/ .2 � i � bd=2c/:

We can now analyze the C -connected sum Q1 #Q2. Since

Q1 #Q2 D Q1 #F1
C #F2

Q2;

we have

gc
i .Q1 #Q2/ D gc

i .Q1/C g
c
i .C /C g

c
i .Q2/ .2 � i � bd=2c/;

and since C is cubical stacked we have gc
i .C / D 0 for 2 � i � bd=2c, so we obtain (5.1)

as required for 2 � i � bd=2c. For i D 1 one computes directly, using gc
1 D f0 � 2

d .

The following proves Theorem 3:

Proposition 15. Let r be any ray in the nonnegative orthant in Rbd=2c. Then there exists
a sequence ¹Qnº1nD1 of cubical d -polytopes with the sequence ¹gc.Qn/º

1
nD1 approach-

ing r .
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Proof. To construct the sequence Qn approaching r , the ray spanned by .s1; : : : ; sbd=2c/,
we start by constructing a sequence having the correct ratio between the bd=2c-th coor-
dinate and the .bd=2c � 1/-th coordinate: Take

Qm D Q.bd=2c; d;m/; m!1; and Q0l D Q.bd=2c � 1; d; l/; l !1;

and recall from [2] that

gc
bd=2c.Qm/ D 2

mmbd=2c�1 C o.2mmbd=2c�1/; gc
bd=2c�1.Qm/ D o.2

mmbd=2c�1/;

gc
bd=2c.Q

0
l / D 0; gc

bd=2c�1.Q
0
l / D 2

l lbd=2c�2 C o.2l lbd=2c�2/:

Let c D sbd=2c�1=sbd=2c. For each m � d , let l D dlog c CmC logme, and take the
corresponding subsequence of Q0

l
’s (we abuse notation and denote it again by Q0

l
). We

have

gc
bd=2c�1.Q

0
l / D 2

l lbd=2c�2 C o.2l lbd=2c�2/

D 2dlog cCmClogme.dmC logmC log ce/bd=2c�2 C o.2l lbd=2c�2/

D c2mmbd=2c�1 C o.2mmbd=2c�1/

and so taking
Qn D Qm #Q0l ; n!1;

using Lemma 14 we obtain

lim
n!1

gc
bd=2c�1

.Qn/

gc
bd=2c

.Qn/
D
sbd=2c�1

sbd=2c
:

Do the same with the new sequence and an AKN-sequence approaching the
.bd=2c � 2/-th ray, etc. Note that proceeding in this way (from the last coordinate back-
wards) does not influence the ratios already taken care of, because the gc-entries are 0
after the dominating coordinate in the AKN construction.

Since the formula for gc
1 in Lemma 14 is different, we use c D s1

s2
C 2d�m.1� 1

m
/ in

the last step.

6. Concluding remarks: Generalizations and open questions

Let us start off by remarking that the bound on the number of iterated projections and nor-
mal transformations may not be optimal, and the reason for this may lie in the fact that we
are not allowing the full action by projective transformations and normal transformations,
as we want to stay in the world of polytopes. Indeed, purely from a naive dimension count
for the realization space of the d -cube .2d2/ compared to the projective linear group
.d.d C 2// it might be possible that only a constant number of these operations suffice
(namely three, projective followed by normal followed by projective). We leave this as an
open problem.
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Problem 16. How many normal and projective transformations are needed to transform
any combinatorial cube into the standard one?

Second, there is the natural question of more classes of combinatorial types of poly-
topes that are connected by normal and projective transformations. Let us call those
polytopes PN-unique. Dually, let us call polytopes weakly-PR-unique if they are related by
projective transformation, and a movement of vertices along the rays they generate within
the same combinatorial type. But in the dual, this permits moving some facet hyperplanes
to infinity. If we want the dual to PN-uniqueness, then we add the condition that the origin
has to be in the interior of the polytope at all times; we call such polytopes PR-unique.
Then the PR-unique polytopes are precisely dual to the PN-unique polytopes.

We note the following simple fact about simplicial stacking (connected sum with a
simplex S ) on PR-unique polytopes:

Proposition 17. If P is PR-unique and F a simplex facet of P , then P #F S is PR-
unique.

Proof. Do PR-transformations so that the P part has the correct shape, then get the new
vertex v to its desired position u with transformations that do not affect the P part: this
can always be done with a sequence of three PR-transformations. For example, scale v by
" so that "v is close enough to F , namely so that the line through u and "v intersects the
interior of F , say at w. Then move the origin to w, then scale "v to u.

We immediately conclude:

Corollary 18. Every polygon, and more generally every stacked polytope, is PR-unique.
In particular, in every dimension d � 2, there are infinitely many combinatorial types of
PR-unique polytopes.

This is in contrast to projectively unique polytopes, which are only finitely many in
dimension 2 and 3. (However, in sufficiently large fixed dimension d there exist projec-
tively unique d -polytopes with arbitrarily many vertices – this was proved for d � 69 by
Adiprasito and Ziegler [3], answering a question of Perles and Shephard [6].)

We use the notation of [4] about free joins and subdirect sums, and note the following:

Proposition 19. The free join of two polytopes P andQ is weakly-PR-unique if and only
if both components are.

This follows easily, as we may act on each component separately. The same is not true
for PR-uniqueness, and therefore PN-uniqueness. A counterexample is the cone over the
crosspolytope. Indeed, this follows from the following observation, which is straightfor-
ward from the definitions:

Lemma 20. If P is PR-unique then every facet of P is projectively unique.

The next result holds by following the proof of Proposition 9 for the cube case.
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Theorem 21. The subdirect sum of a PR-unique polytope with a simplex is PR-unique,
and vice versa. Dually, the subdirect product with a simplex is PN-unique if and only if
the original polytope is.

This is especially interesting if one considers only those polytopes that are obtained
as products of simplices. These are PN-unique by the above theorem (and include the
cube). Moreover, the algorithm described in Proposition 9 goes through verbatim, and
is continuously dependent on the starting geometry. Hence, we find once again that the
realization space of such polytopes is contractible (a fact not known for general PN-unique
or PR-unique polytopes). We end with a question:

Problem 22. Is the dodecahedron PN-unique?
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