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Received February 28, 2020; revised May 23, 2022

Abstract. The following Ramsey-type question is one of the central problems in combinatorial
geometry. Given a collection of certain geometric objects in the plane (e.g. segments, rectangles,
convex sets, arcwise connected sets) of size n, what is the size of the largest subcollection in which
either any two elements have a nonempty intersection, or any two elements are disjoint? We prove
that there exists an absolute constant c > 0 such that if C is a collection of n curves in the plane,
then C contains at least nc elements that are pairwise intersecting, or nc elements that are pairwise
disjoint. This resolves a problem raised by Alon, Pach, Pinchasi, Radoičić and Sharir, and Fox and
Pach. Furthermore, as any geometric object can be arbitrarily closely approximated by a curve, this
shows that the answer to the aforementioned question is at least nc for any collection of n geometric
objects.
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1. Introduction

Erdős–Hajnal property

One of the starting points of Ramsey theory is the classical result of Erdős and Szekeres [7]
that if G is a graph on n vertices, then G contains either a clique or an independent set
of size at least 1

2
log2 n. This bound is optimal up to a constant factor: using probabilistic

techniques, Erdős [5] proved the existence of graphs with no clique or independent set
of size larger than 2 log2 n. However, Erdős and Hajnal [5] noticed that the lower bound
can be significantly improved if we restrict our attention to a nontrivial hereditary family
of graphs. Here, a family of graphs is hereditary if it is closed under taking induced
subgraphs, and it is nontrivial if it is not the family of all graphs. Indeed, they proved that
if G is such a family, then there exists a constant c D c.G / > 0 such that eachG 2 G with
n vertices contains a clique or an independent set of size at least ec

p
logn. The celebrated

Erdős–Hajnal conjecture asks whether this bound can be improved to nc . This motivates
the following definitions.
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Definition 1. A family G of graphs has the Erdős–Hajnal property if there exists c D
c.G / > 0 such that every G 2 G contains a clique or an independent set of size at
least jV.G/jc .

Also, a family G of graphs has the strong Erdős–Hajnal property if there exists b D
b.G / > 0 such that the following holds for every G 2 G . There exist two disjoint sets
A; B � V.G/ such that jAj D jBj � bjV.G/j, and either there are no edges between
A and B , or every a 2 A is joined to every b 2 B by an edge.

It was shown in [1] that the strong Erdős–Hajnal property implies the Erdős–Hajnal
property in hereditary families. However, not every nontrivial hereditary family has the
strong Erdős–Hajnal property. Despite the considerable attention the Erdős–Hajnal con-
jecture received, it is mostly wide open; see the survey of Chudnovsky [3] for a general
reference.

Erdős–Hajnal type questions are also extensively studied in geometric settings. The
intersection graph of a family C of geometric objects is the graph whose vertices corre-
spond to the elements of C , and two vertices are joined by an edge if the corresponding
sets have a nonempty intersection.

Classical intersection graphs

Perhaps one of the first geometric Erdős–Hajnal type results is the classical folklore result
that if G is the intersection graph of a family of n intervals, then G is perfect, so G
contains either a clique or an independent set of size at least n1=2. Larman et al. [20]
proved that if G is the intersection graph of axis-parallel rectangles, then G contains a
clique or an independent set of size �.

p
n=logn/, and it is open whether this bound

can be improved to �.
p
n/. In the same paper, they also proved that if C is a collection

of n convex sets, then C contains a subcollection of size n1=5 such that either any two
elements have a nonempty intersection, or any two elements are disjoint. On the other
hand, Kynčl [19] constructed a collection of n segments whose intersection graph has no
clique or independent set of size larger than nlog8= log169 � n0:405. Kostochka [17] proved
that the intersection graph of n chords of a cycle contains either a clique or an independent
set of size at least �.

p
n=logn/, and he also showed that this bound is best possible up

to a constant factor. Pach and Solymosi [24] proved that the family of intersection graphs
of line segments has the strong Erdős–Hajnal property.

Modern geometric graphs

While intersection graphs of intervals, segments, convex sets, etc. were the subjects of
study in the mid and late 20th century, in the past two decades the focus shifted to
more general geometric graphs. One such generalization is semi-algebraic graphs, that
is, graphs whose vertices correspond to points in Rd , and the edges are defined by poly-
nomial relations (for precise definitions, see [1]). Indeed, intersection graphs of intervals,
segments, and rectangles are special instances of semi-algebraic graphs. However, inter-
section graphs of convex sets are not. In general, it was proved by Alon et al. [1] that
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if G is a family of semi-algebraic graphs of bounded complexity, then G has the strong
Erdős–Hajnal property.

Another generalization, which is the main interest of our paper, is string graphs.
A curve (or a string) is the image of a continuous function � W Œ0; 1� ! R2. A string
graph is the intersection graph of a family of curves. String graphs were introduced by
Benzer [2] in 1959 to study topological properties of genetic structures, and later Sin-
den [26] considered such graphs to model printed circuits. Since then, combinatorial and
computational properties of string graphs have been extensively studied. Note that, in a
certain sense, curves are the most general geometric objects on the plane one can consider:
indeed, when talking about geometric objects, one of the weakest geometric properties
one should require is arcwise connectedness, and any arcwise connected set on the plane
can be approximated arbitrarily closely by curves. In particular, all of the aforementioned
intersection graphs are string graphs as well.

The question whether the family of string graphs has the Erdős–Hajnal property
became one of the central problems in the area, and was settled in a number of interesting
special cases. This question first appeared in the paper of Alon et al. [1], and later in papers
of Fox and Pach [9] and Fox, Pach, and Tóth [14]. In particular, [9] is a nice survey on
the topic. In the aforementioned paper of Larman et al. [20] it is also established that if G
is the intersection graph of n x-monotone curves (a curve is x-monotone if every vertical
line intersects it in at most one point), then G contains a clique or an independent set of
size at least n1=5. Also, it was proved by Fox, Pach and Tóth [14] that for every fixed k, the
family of intersection graphs of curves, where any two curves intersect in at most k points,
has the strong Erdős–Hajnal property. Here, let us remark that a surprising construction
of Kratochvíl and Matoušek [18] shows the existence of string graphs on n vertices such
that in any realization of these graphs with curves there are two curves that intersect in at
least 2�.n/ points. In general, Fox and Pach [13] proved that if G is a string graph on n
vertices, then G contains either a clique or an independent set of size n�.1= log logn/.

Our results

The main result of our paper is that the family of string graphs has the Erdős–Hajnal
property, which implies the Erdős–Hajnal property of all of the aforementioned families
of intersection graphs.

Theorem 1. There exists an absolute constant c > 0 such that for every positive integer n,
if G is a string graph on n vertices, then G contains either a clique or an independent set
of size at least nc .

Let us remark that Theorem 1 has no analogue in higher dimensions. Indeed,
Tietze [27] proved that any graph can be realized as the intersection graph of convex
sets in R3.

Our proof of Theorem 1 closely follows the path laid out by the works of Fox and Pach
[11–13]. In the next subsection, we discuss their ideas and outline our proof strategy. We
also introduce our notation, which is mostly conventional.
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2. Overview of the proof

Given a graph G and two subsets A and B of V.G/, say that A is complete to B if every
a 2A and is joined by an edge to every b 2B . A spanning subgraph ofG is a subgraphG0

with V.G/ D V.G0/.
A graph G is a comparability graph if there exists a partial ordering � on V.G/ such

that for any v; w 2 V.G/, we have v � w or w � v if and only if vw is an edge of G.
Also, G is an incomparability graph if it is the complement of a comparability graph.

Previous approach

It turns out that string graphs and incomparability graphs are closely related. Indeed, it
was proved by Lovász [22] and re-proved in [15, 25] that every incomparability graph is
a string graph. On the other hand, Fox and Pach [12] proved that every dense string graph
contains a dense incomparability graph as a spanning subgraph. (Here, by a dense graph
we refer to a sequence of graphsGi with jV.Gi /j!1 and lim inf jE.Gi /j=jV.Gi /j2>0.)
This result is going to be one of the main ingredients of our proof of Theorem 1; see
Section 5 for more details.

One approach to proving Theorem 1 would be to show that the family of string graphs
has the strong Erdős–Hajnal property. Indeed, with the exception of intersection graphs of
x-monotone curves, every family of intersection graphs where the Erdős–Hajnal property
is known also has the strong Erdős–Hajnal property.

Unfortunately, the family of string graphs does not have the strong Erdős–Hajnal prop-
erty, but it has something close to it. Let G be a string graph on n vertices. A separator
theorem of Lee [21] shows that if G is sufficiently sparse (meaning that jE.G/j � �n2

for some small constant �), then V.G/ contains two linear sized subsets with no edges
between them. This result is going to be another important ingredient in our proof; see
Section 5 for more details. On the other hand, by a result of Fox [8], every dense incom-
parability graph on n vertices contains two disjoint sets A and B of size �.n=logn/ such
that A is complete to B , and this bound is the best possible up to a constant factor. But
then remembering that every dense string graph contains a dense incomparability graph,
we find that if G is dense, then G contains two disjoint sets A and B of size �.n=logn/
such that A is complete to B . Therefore, one can conclude the following “almost-strong
Erdős–Hajnal property”:

Theorem 2 ([12, 21]). If G is a string graph on n vertices, then V.G/ contains two
disjoint sets A and B such that either

(1) jAj D jBj D �.n/ and there are no edges between A and B , or

(2) jAj D jBj D �.n=logn/ and A is complete to B .

Again, these bounds are the best possible up to a constant factor. Then, by a recursive
argument this theorem implies that if G is a string graph on n vertices, then G contains a
clique or an independent set of size n�.1= log logn/ (see [13]).
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New ideas

In order to improve this bound, we do the following. Instead of proving the strong Erdős–
Hajnal property, we prove something slightly weaker which we call the quasi-Erdős–
Hajnal property. Roughly, a family of graphs G has this property if for every G 2 G there
exist some t � 2 and t disjoint subsets X1; : : : ; Xt of V.G/ such that jX1j; : : : ; jXt j are
“large” with respect to t and jV.G/j, and either there are no edges between Xi and Xj for
1 � i < j � t , or Xi is complete to Xj for 1 � i < j � t . It turns out that in hereditary
families, the quasi-Erdős–Hajnal property is equivalent to the Erdős–Hajnal property; see
Section 4 for more details. Then, our main contribution to the proof of Theorem 1 is that in
every dense incomparability graph G, there exist t � 2 and t disjoint subsets X1; : : : ; Xt
such that jX1j; : : : ; jXt j are “large” with respect to t and jV.G/j, and Xi is complete
to Xj for 1 � i < j � t . This can be found in Section 3. But then, together with the
aforementioned results of Lee [21] and Fox and Pach [12], this implies that the family of
string graphs has the quasi-Erdős–Hajnal property.

Notation

In the rest of our paper, we use the following standard graph-theoretic notations. If G
is a graph, �.G/ denotes the maximum degree of G, and if v 2 V.G/, then N.v/ D
¹w 2 V.G/ W vw 2 E.G/º is the neighborhood of v. If U is a subset of the vertex set,
then GŒU � is the subgraph of G induced on U . Given a poset P with partial ordering �,
a total ordering <l is a linear extension of � if x � y implies x <l y for all x; y 2 P .
It is well known that every partial ordering has a linear extension (which might not be
unique). Also, if A;B � P , then we write A <l B if a <l b for all a 2 A and b 2 B . We
omit floors and ceilings whenever they are not crucial.

3. Incomparability graphs

Our main contribution to the proof of Theorem 1 is the following result about partial
orders, which might be of independent interest.

Theorem 3. For every ˛ > 0 there exists c > 0 such that the following holds. LetG be an
incomparability graph with n vertices and at least ˛

�
n
2

�
edges. Then there exist t � 2 and

t disjoint subsets X1; : : : ; Xt of V.G/ such that Xi is complete to Xj for 1 � i < j � t ,
and .n=jXi j/c < t for i D 1; : : : ; t .

We would like to emphasize that t depends on the incomparability graph G. In order
to prove this theorem, it is slightly more convenient to work with comparability graphs
instead of incomparability graphs, so we prove the following equivalent statement instead.

Theorem 4. For every ˛ > 0 there exists c > 0 such that the following holds. Let P be a
comparability graph with n vertices and at most .1 � ˛/

�
n
2

�
edges. Then there exist t � 2

and t disjoint subsetsX1; : : : ;Xt of V.P / such that there are no edges betweenXi andXj
for 1 � i < j � t , and .n=jXi j/c < t for i D 1; : : : ; t .
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Let us prove this theorem. Instead of working with very dense comparability graphs,
we would like to work with sparse ones. With the help of a technical lemma, we show
that if P satisfies the conditions of the previous theorem, then P contains two linear sized
subsets A and B such that the bipartite graph induced between A and B is sufficiently
sparse. In order to show this, we make use of the following simple result.

Lemma 5. For every 0 < ˛ < 1 there exists ˛1 > 0 such that the following holds. If G
is a graph with n � 2 vertices and at most .1 � ˛/

�
n
2

�
edges, then G contains an induced

subgraph G0 such that jV.G0/j � ˛1n and �.G0/ � .1 � ˛1/jV.G0/j.

Proof. We show that ˛1 D ˛=8 suffices. Let H be the complement of G. Then H has
at least ˛

�
n
2

�
edges. Keep removing vertices of H as long as H has a vertex of degree

less than ˛
8
n, and let H 0 be the resulting induced subgraph of H . In total, we remove at

most ˛
8
n2 edges, so jE.H 0/j � ˛

2

�
n
2

�
. Let n0 D jV.H 0/j. Then H 0 is nonempty and has

minimum degree at least ˛
8
n � ˛1n

0. Also, as
�
n0

2

�
� jE.H 0/j, we get n0 �

p
˛

4
n > ˛1n.

Setting G0 to be the complement of H 0 gives the desired induced subgraph of G.

Lemma 6. For every ˛; " > 0 there exists ˇ > 0 such that the following holds. Let P be a
comparability graph with n vertices and at most .1 � ˛/

�
n
2

�
edges, and let <l be a linear

extension of the underlying partial order. Then there exist two disjoint subsets A and B
of V.P / such that A <l B , jAj D jBj � ˇn, jN.v/ \ Bj � "jBj for every v 2 A, and
jN.w/ \ Aj � "jAj for every w 2 B .

Proof. By Lemma 5, there exists ˛1 > 0 (depending only on ˛) such that P contains an
induced subgraph P 0 with n0 D jV.P 0/j � ˛1n and �.P 0/ � .1 � ˛1/n0. We show that
ˇ D ˛21 min ¹˛1; "º=36 suffices. Suppose that there exists no pair .A; B/ satisfying the
desired conditions.

Let � be the partial ordering of the underlying poset of P . Let T be the ˛1

6
n0 largest

elements of P 0 with respect to the linear extension <l , let S D P 0 n T , and cut T into

two equal sized parts, X and Y , with X <l Y . Note that jX j D jY j D ˛1

12
n0 �

˛2
1

12
n.

Say that a vertex v 2 S is heavy if jN.v/ \ X j � ˇn. Observe that for every v 2 S ,
setting A0 D N.v/ \ X and B0 D Y n N.v/, there are no edges between A0 and B0.
Indeed, otherwise, if x 2 A0 and y 2 B0 are joined by an edge, then x <l y implies
x � y, and as v � x, we find that v � y, contradicting y 62 N.v/. But if v is heavy,
then jA0j � ˇn, so we must have jB0j < ˇn � ˛1

3
jY j. Otherwise, taking A and B to

be arbitrary ˇn-element subsets of A0 and B0, respectively, the pair .A; B/ satisfies the
required conditions. Thus, jN.v/ \ Y j > .1 � ˛1=3/jY j for every heavy vertex v.

If H � S is the set of heavy vertices, then the number of edges between H and Y
is at least .1 � ˛1=3/jY j jH j, which implies that there exists a vertex in Y of degree
at least .1 � ˛1=3/jH j. Therefore, by the maximum degree condition, we can write
.1 � ˛1=3/jH j � .1 � ˛1/n

0, which gives

jH j �
1 � ˛1

1 � ˛1=3
n0 <

�
1 �

˛1

3

�
n0:
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But then jS n H j D n0 � jT j � jH j > ˛1

6
n0, or in other words, there are at least ˛1

6
n0

vertices v 2 S such that jN.v/\X j< ˇn. Let A be an arbitrary set of ˛1

24
n0 such vertices,

where we remark that jAj > ˇn is satisfied. The number of edges between A and X is
at most ˇnjAj, so the number of vertices v 2 X such that jN.v/ \ Aj � "jAj is at most
ˇ
"
n < jX j=2. Delete all such vertices from X , and perhaps some more, to get a set B of

size jAj D jX j=2 D ˛1

24
n0. Then we have jAj D jBj > ˇn, jN.v/ \ Bj � ˇn < "jBj for

every v 2 A, and jN.v/ \ Aj � "jAj for every v 2 B . Therefore, the pair .A;B/ satisfies
the desired conditions, a contradiction.

Most of the work needed to prove Theorem 4 is put into the following lemma.

Lemma 7. There exist positive real numbers " and ı such that the following holds. Let P
be a comparability graph on 2n vertices, and let<l be a linear extension of the underlying
poset. Let A be the n smallest elements of P with respect to <l , let B D P n A, and
suppose that jN.v/ \ Bj � "n for every v 2 A and jN.w/ \ Aj � "n for every w 2 B .
Then there exist t � 2 and t disjoint sets X1; : : : ;Xt � V.P / such that there are no edges
between Xi and Xj for 1 � i < j � t , and ı.n=jXi j/1=2 < t for i D 1; : : : ; t .

Proof. We prove that we can choose " D 1
500

and ı D 1
100

. Let � be the partial ordering
of the underlying poset of P .

Let J D J0 D blog2 "nc C 1. For j D 1; : : : ; J0, let tj D n1=22j=2. Then

J0X
iD1

ti D

J0X
iD1

n1=22i=2 � 2n"1=2
1

1 � 2�1=2
<
n

4
: (1)

Also, let A0 D ; and B 0 D ;. In what follows, we define an algorithm, which we shall
refer to as the main algorithm, which will find and output the desired t and the t sets
X1; : : : ; Xt . During each step of the algorithm, we will make the following changes:
we will move certain elements of A into A0, move certain elements of B into B 0, and
decrease J . We think of the elements of A0 and B 0 as “leftovers”. We will make sure that
at the end of each step of the algorithm, the following properties are satisfied:

(a) jAj C jA0j D jBj C jB 0j D n,

(b) jA0j; jB 0j � 2
PJ0

iDJC1 ti ;

(c) for every v 2 B , jN.v/ \ Aj < 2J .

Note that by (1) and properties (a) and (b), we have jAj; jBj � n=2. Also, these properties
are certainly satisfied at the beginning of the algorithm. Now let us describe a general step
of our main algorithm.

Main algorithm. If J D 0, then stop the main algorithm, and output t D 2 and X1 D
A;X2 D B . Note that in this case there is no edge between A and B by property (c), and
jAj; jBj � n=2. By the choice of ı, this output has the desired properties.

Suppose that J � 1. For i D 1; : : : ; J , let Vi be the set of vertices v 2 B such that
2i�1 � jN.v/\Aj < 2i , and let V0 be the set of vertices v 2 B such that N.v/\A D ;.
Then by property (c), B D

SJ
iD0 Vi .
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Let 1 � k � J be maximal such that tk < jVkj. First, consider the case where there
exists no such k. Then

n � 2

J0X
iDJC1

ti � jV0j � n � jB
0
j � jV0j D jBj � jV0j D

JX
iD1

jVi j �

JX
iD1

ti ;

where the first inequality follows from property (b), and the first equality is a conse-
quence of property (a). Comparing the left and right hand sides, and using (1), we get
jV0j � n=2. In this case, stop the algorithm and output t D 2, X1 D V0 and X2 D A. Note
that ı.n=jXi j/1=2 < t is satisfied for i D 1; 2.

Now suppose that there exists such a k. Remove the elements of Vi for i > k from B ,
and add them to B 0. Thus we add at most

PJ
iDkC1 ti elements to B 0. Set J WD k. Then

properties (a)–(c) are still satisfied (we note that J may not have decreased yet).
Now we shall run a subalgorithm. Let W0 D Vk . Then with the help of the subalgo-

rithm we construct a sequenceW0 � � � � �Wr satisfying the following properties. During
each step of the subalgorithm, we either find our desired t and t sets X1; : : : ;Xt , or move
certain elements of A to A0. At the end of the l-th step of the subalgorithm, Wl be the set
of vertices in B that still have at least 2k�1 neighbors in A. We stop the algorithm if Wl
is too small.

Subalgorithm. Suppose thatWl is already defined. If jWl j < 2tk , then let r D l , stop the
subalgorithm, remove the elements ofWl fromB and add them toB 0. Update J WD k � 1,
and move to the next step of the main algorithm. Note that B 0 has property (b). Later, we
will see that all the other properties are satisfied.

On the other hand, if jWl j � 2tk , we define WlC1 as follows. Let xl D jWl j=tk . Say
that a vertex v 2 A is heavy if

jN.v/ \Wl j �
xl2

k

tk
jWl j D

�
jWl j

tk

�2
2k D

jWl j
2

n
DW �l ;

and let Hl be the set of heavy vertices. Counting the number f of edges between Hl and
Wl in two ways, we can write

jHl j�l � f < jWl j2
k ;

which gives jHl j< tk=xl . Remove the elements ofHl from A and add them to A0. Exam-
ine how the degrees of the vertices in Wl have changed, and consider the following two
cases:

Case 1: At least jWl j=2 vertices in Wl have at least 2k�1 neighbors in A. Let T be the
set of vertices in Wl that have at least 2k�1 neighbors in A, so jT j � jWl j=2. Pick each
element of A with probability p D 2�k , and let S be the set of selected vertices. Say that
v 2 T is good if jN.v/ \ S j D 1, and let Y be the set of good vertices. Then

P .v is good/ D jN.v/ \ Ajp.1 � p/jN.v/\Aj�1 � 1
2
.1 � 2�k/2

k

�
1
6
;
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so E.jY j/ � jT j=6 � jWl j=12. Therefore, there exists a choice for S such that jY j �
jWl j=12; let us fix such an S . For each v 2 S , let Yv be the set of elements w 2 Y such
that N.w/ \ S D ¹vº. An important observation is that if v; v0 2 S and v ¤ v0, then
there is no edge between Yv and Yv0 . Indeed, otherwise, if w 2 Yv and w0 2 Yv0 are such
that w � w0, then v � w � w0, which means that ¹v; v0º 2 N.w0/ \ S , contradicting the
assumption that w0 is good. Also, note that

jYvj � jN.v/ \Wl j � min ¹"n;�lº DW �0l :

In other words, the sets Yv for v 2 S partition Y into sets of size at most �0
l
. Here, we

have
jY j

�0
l

�
jWl j

12�0
l

� max
²

n

12jWl j
;
jWl j

"n

³
:

By the choice of ", the right hand side is always at least 6. But then we can partition S
into t � jY j

3�0
l

� 2 parts S1; : : : ; St such that the sets Xi D
S
v2Si

Yv have size at least �0
l

for i D 1; : : : ; t . The resulting sets X1; : : : ; Xt are such that there are no edges between
Xi and Xj for 1 � i < j � t and

t �
jY j

3�0
l

�
n

36jWl j
�
1

36

�
n

�l

�1=2
�
1

36

�
n

jXi j

�1=2
:

Stop the main algorithm, and output t and X1; : : : ; Xt . By the choice of ı, this output has
the desired properties.

Case 2: At most jWl j=2 vertices in Wl have at least 2k�1 neighbors in A. In this case,
define WlC1 as the set of elements of Wl with at least 2k�1 neighbors in A (then WlC1 is
the set of all elements in B with at least 2k�1 neighbors in A as well). Also, move to the
next step of the subalgorithm.

Let us check that if the main algorithm is not terminated, then at the end of the sub-
algorithm, properties (a)–(c) are still satisfied. Indeed, (a) and (c) are clearly true, and (b)
holds forB 0. It remains to show that (b) holds forA0 as well. Note that as jWlC1j � jWl j=2
for l D 0; : : : ; r � 1, and jWr�1j � 2tk , we have jWl j � 2r�l tk and xl � 2r�l . Compared
to the first step of the subalgorithm, jA0j increased by

r�1X
lD0

jHl j �

r�1X
lD0

tk

xl
�

r�1X
lD0

tk

2r�l
< tk :

Therefore, property (b) also holds.

Note that in every step of the main algorithm, J decreases by at least 1, so the main
algorithm will stop in a finite number of steps, and it will output the desired t and t sets
X1; : : : ; Xt . This finishes the proof.

Now we are ready to prove the main theorem of this section.
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Proof of Theorem 4. Let "; ı > 0 be the constants given by Lemma 7. By Lemma 6, there
exists ˇ > 0 such that the following holds. Let <l be a linear extension of the underlying
partial order of P . Then there exist two disjoint subsets A and B of P such that A <l B ,
jAj D jBj � ˇn, jN.v/ \ Bj � "jBj for every v 2 A, and jN.w/ \ Aj � "jAj for every
w 2 B .

Apply Lemma 7 to the comparability graph P 0 D P ŒA [ B�. We conclude that there
exist t � 2 and t disjoint subsetsX1; : : : ;Xt of P 0 such that there are no edges betweenXi
andXj for 1� i < j � t , and ı.jAj=jXi j/1=2 < t for i D 1; : : : ; t . Here, ı.jAj=jXi j/1=2 �
ıˇ1=2.n=jXi j/

1=2: Choose c > 0 small enough such that 2 > . 4
ı2ˇ

/c . This choice guaran-

tees that if ıˇ1=2.n=jXi j/1=2 � 2, then .n=jXi j/c < ıˇ1=2.n=jXi j/1=2 < t: On the other
hand, if ıˇ1=2.n=jXi j/1=2 < 2, then n=jXi j � 4

ı2ˇ
, so .n=jXi j/c < 2 � t . Therefore, c

suffices.

4. The quasi-Erdős–Hajnal property

Say that a family G of graphs has the quasi-Erdős–Hajnal property if there exists a con-
stant cD c.G / > 0 such that the following holds for everyG 2 G with at least two vertices:
there exist t � 2 and t disjoint subsets X1; : : : ; Xt of V.G/ such that t � .jV.G/j=jXi j/c

for i D 1; : : : ; t , and either

(i) Xi is complete to Xj for 1 � i < j � t , or

(ii) there is no edge between Xi and Xj for 1 � i < j � t .

We show that for hereditary graph families, the Erdős–Hajnal property is actually
equivalent to the quasi-Erdős–Hajnal property.

Lemma 8. If G is a hereditary family of graphs, then G has the Erdős–Hajnal property
if and only if it has the quasi-Erdős–Hajnal property.

Proof. If G has the Erdős–Hajnal property, then there exists c > 0 such that every G 2 G

contains a clique or an independent set of size at least jV.G/jc . But then setting t D
jV.G/jc and defining X1; : : : ; Xt to be the single element sets formed by the vertices of
such a clique or independent set shows that G also has the quasi-Erdős–Hajnal property.
It remains to show the other direction.

Suppose that G has the quasi-Erdős–Hajnal property with a constant c > 0. LetG 2 G

be a graph on n vertices. Let X D ¹V.G/º and letH be the graph with vertex set X (that
is, H has exactly one vertex, namely V.G/). We repeat the following procedure until
every element of X has only one vertex. If X contains a set of size at least 2, say X 2X,
then consider the induced subgraphGŒX�2 G . Then there exist t � 2 and t disjoint subsets
X1; : : : ; Xt of X such that t � .jX j=jXi j/c for i D 1; : : : ; t , and either

(i) Xi is complete to Xj for 1 � i < j � t , or

(ii) there is no edge between Xi and Xj for 1 � i < j � t .

Remove the set X from X and add the sets X1; : : : ; Xt . Also, if (i) happens, replace
the vertex X in H with a clique on ¹X1; : : : ; Xtº, otherwise, replace X in H with an
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independent set on ¹X1; : : : ; Xtº. More precisely, Xi has the same neighborhood as X
had outside of ¹X1; : : : ; Xtº, and ¹X1; : : : ; Xtº induces either a clique or an independent
set depending on whether (i) or (ii) holds, respectively.

Note that
Pt
iD1 jXi j

c � jX jc , therefore the sum
P
Y2X jY j

c did not decrease after
the change. Thus, we have

P
Y2X jY j

c � nc in each step of the procedure. This implies
that at the end of the procedure, that is, when every element of X is a single vertex set,
we have jXj � nc .

Moreover, at each step of the procedure, the graph H is a cograph. It is well known
that cographs are perfect, therefore, at the end of the procedure, either H or its comple-
ment contains a clique of size at least nc=2. This clique corresponds to a clique or an
independent set of size at least nc=2 in G. As this is true for every G 2 G , G has the
Erdős–Hajnal property with constant c=2.

5. String graphs

In this section, we put all the ingredients together to prove Theorem 1.
A separator in a graph G is a subset S of the vertices such that after the removal

of S , every connected component of G has size at most 2jV.G/j=3. It was proved by
Fox and Pach [10] that if G is the intersection graph of a family of n curves and g is the
total number of crossings between the curves, thenG contains a separator of sizeO.

p
g/.

Later, Fox and Pach [11] showed that ifG is a string graph withm edges, then it contains a
separator of size O.m3=4

p
logm/, and proposed the conjecture that one can also find

a separator of size O.
p
m/, which is then optimal up to a constant factor. In [11, 13],

Fox and Pach also provide a number of applications of the existence of small separators.
The size of the smallest separator was improved to O.

p
m logm/ by Matoušek [23],

and recently Lee [21] completely settled the aforementioned conjecture of Fox and Pach.
The result of Lee immediately implies the following lemma, which will be the first key
ingredient in our proof.

Lemma 9. There exists a constant � > 0 such that the following holds. If G is a string
graph with n vertices and at most �n2 edges, then there exist two disjoint subsets X1
and X2 of vertices such that there are no edges between X1 and X2, and

jX1j D jX2j � �n:

Let us remark that this lemma also follows from a recent graph-theoretic result of
Chudnovsky et al. [4]. Also, the present author [28] proved the following sharpening of
Lemma 9: If the edge density of a string graph is below 1=4, then one can find two linear
sized sets of vertices with no edges between them. However, there are string graphs with
edge density arbitrarily close to 1=4 which contain only logarithmic sized such sets.

The final ingredient we need for our proof is the following result of Fox and Pach [12],
which tells us that every dense string graph contains a dense incomparability graph as a
spanning subgraph.
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Lemma 10. For every �> 0 there exist " > 0 such that the following holds. IfG is a string
graph with n vertices and at least �n2 edges, then G contains a spanning subgraph G0

such that G0 is an incomparability graph with at least "n2 edges.

By Lemma 8, in order to prove Theorem 1, it is enough to show that the family of
string graphs has the quasi-Erdős–Hajnal property. This almost immediately follows from
a combination of the results discussed in this paper.

Theorem 11. The family of string graphs has the quasi-Erdős–Hajnal property.

Proof. Let � be the constant given by Lemma 9, and let " be the constant given by
Lemma 10 (with respect to �). Also, let c0 be the constant c given by Theorem 3 with
respect to ˛ D 2". We show that the family of string graphs has the quasi-Erdős–Hajnal
property with exponent

c D min
²
c0;

1

log2.1=�/

³
:

Let G be a string graph with n vertices. If G has at most �n2 edges, then G contains
two disjoint subsets X1 and X2 with no edges between them such that jX1j D jX2j � �n.
Setting t D 2, we have t � .1=�/c � .n=jXi j/c for i D 1; 2.

Now suppose that G has more than �n2 edges. Then G contains an incomparability
graphG0 with at least "n2 edges. Then, by Theorem 3, there exist t � 2 and t disjoint sub-
setsX1; : : : ;Xt ofG0 such thatXi is complete toXj for 1� i < j � t , and .n=jXi j/c < t
for i D 1; : : : ; t . This finishes the proof.

Acknowledgments. We would like to thank the anonymous referee for useful comments and sug-
gestions, and Jacob Fox and János Pach for their valuable remarks on the presentation of this paper.
Also, we would like to thank Adam Zsolt Wagner for valuable discussions.

Funding. Most of this manuscript was prepared while the author was employed at ETH Zurich,
where the research was supported by the SNSF grant 200021-175573.

References
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