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Abstract. We consider the stochastic Navier–Stokes equations in three dimensions and prove that
the law of analytically weak solutions is not unique. In particular, we focus on three examples of a
stochastic perturbation: an additive, a linear multiplicative and a nonlinear noise of cylindrical type,
all driven by a Wiener process. In these settings, we develop a stochastic counterpart of the con-
vex integration method introduced recently by Buckmaster and Vicol. This permits us to construct
probabilistically strong and analytically weak solutions defined up to a suitable stopping time. In
addition, these solutions fail to satisfy the corresponding energy inequality at a prescribed time with
a prescribed probability. Then we introduce a general probabilistic construction used to extend the
convex integration solutions beyond the stopping time and in particular to the whole time interval
Œ0;1/. Finally, we show that their law is distinct from the law of solutions obtained by Galerkin
approximation. In particular, nonuniqueness in law holds on an arbitrary time interval Œ0; T �, T > 0.
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1. Introduction

The fundamental problems in fluid dynamics remain largely open. On the theoretical side,
existence and smoothness of solutions to the three-dimensional incompressible Navier–
Stokes system is one of the Millennium Prize Problems. An intimately related question is
that of uniqueness of solutions. Intuitively, smooth solutions are unique whereas unique-
ness for less regular solutions, such as weak solutions, is very challenging and not true for
a number of models.

A revolutionary step was made through the method of convex integration by De Lellis
and Székelyhidi Jr. [15–17]. They were able to construct infinitely many weak solutions
to the incompressible Euler system which dissipate energy and even satisfy various addi-
tional criteria such as a global or local energy inequality. After this breakthrough, an
avalanche of excitement and intriguing results followed, proving existence of solutions
with often rather pathological behavior. In particular, it is nowadays well understood
that the compressible counterpart of the Euler system is desperately ill-posed: even cer-
tain smooth initial data give rise to infinitely many weak solutions satisfying an energy
inequality; see Chiodaroli et al. [11]. Very recently, the nonuniqueness of weak solu-
tions to the incompressible Navier–Stokes equations was obtained by Buckmaster and
Vicol [8]; see also Buckmaster, Colombo and Vicol [5].

In view of these substantial theoretical difficulties, it is natural to believe that a cer-
tain probabilistic description is indispensable and may eventually help with the non-
uniqueness issue. In particular, it is essential to develop a suitable probabilistic under-
standing of the deterministic systems, in order to capture their chaotic and intrinsically
random nature after the blow-up and loss of uniqueness. Moreover, there is evidence that
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a suitable stochastic perturbation may provide a regularizing effect on deterministically
ill-posed problems, in particular those involving transport, as shown, e.g., by Flandoli,
Gubinelli and Priola [20] and Flandoli and Luo [21]. Also a linear multiplicative noise
as treated in the present paper has a certain stabilizing effect on the three-dimensional
Navier–Stokes system; see Röckner, Zhu and Zhu [40].

On the other hand, an external stochastic forcing is often included in the system of
governing equations, taking additional model uncertainties into account. Mathematically,
this introduces new phenomena and raises basic questions of solvability of the system, i.e.
existence and uniqueness of solutions, as well as their long time behavior. In particular,
the question of uniqueness of the probability measures induced by solutions, the so-called
uniqueness in law, has been a longstanding open problem.

In the present paper, we prove that nonuniqueness in law holds for the stochastic three-
dimensional Navier–Stokes system posed on a periodic domain in a class of analytically
weak solutions. This system governs the time evolution of the velocity u of a viscous
incompressible fluid under stochastic perturbations. It reads

du � ��udt C div.u˝ u/dt CrPdt D G.u/dB;

divu D 0;
(1.1)

whereG.u/dB represents a stochastic force acting on the fluid and � > 0 is the kinematic
viscosity.

We particularly focus on three examples of stochastic forcing, namely, an additive
noise driven by a cylindrical Wiener process B of trace class, i.e.,

G.u/dB D GdB D

1X
iD1

GidBi ; Gi D Gi .x/; Tr.GG�/ <1; (1.2)

and a linear multiplicative noise driven by a real-valued Wiener process B1, i.e.,

G.u/dB D udB1; (1.3)

and finally a nonlinear noise of cylindrical type

G.u/dB D
� mX
jD1

gij .hu; '1i; : : : ; hu; 'kij i/dBj

�
i
;

gij 2 C
3
b .T

3
�Rkij IR/; 'i 2 C

1.T3/;

(1.4)

where B D .Bj / is an m-dimensional Wiener process and g�j is divergence-free with
respect to the spatial variable in T3.

In these three settings, we develop a stochastic counterpart of the convex integration
method introduced by Buckmaster and Vicol [7] and construct analytically weak solutions
with unexpected behavior defined up to suitable stopping times. The striking feature of
these solutions is that they are probabilistically strong, i.e., adapted to the given Wiener
process. This severely contradicts the general belief present within the SPDE community,
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namely, that probabilistically strong solutions and uniqueness in law could help with the
uniqueness problem for the Navier–Stokes system.

We say that uniqueness in law holds for a system of SPDEs if the probability law
induced by the solutions is uniquely determined. On the other hand, we say that path-
wise uniqueness holds true if any two solutions coincide almost surely. There are explicit
examples of stochastic differential equations (SDEs) where pathwise uniqueness does not
hold but uniqueness in law is valid. Pathwise uniqueness for the stochastic Navier–Stokes
system essentially poses the same difficulties as uniqueness in the deterministic setting.
As a consequence, there has been a clear hope that showing uniqueness in law for the
Navier–Stokes system might be easier than proving pathwise uniqueness. Furthermore,
Yamada–Watanabe–Engelbert’s theorem states that, for a certain class of SDEs, pathwise
uniqueness is equivalent to uniqueness in law and existence of a probabilistically strong
solution; see Kurtz [35] and Cherny [9]. This suggests another possible way towards path-
wise uniqueness, provided one could prove uniqueness in law.

Our main result proves the above hopes wrong, at least for a certain class of analyti-
cally weak solutions. However, the question of uniqueness of the so-called Leray solutions
remains an outstanding open problem. In particular, we show that nonuniqueness in law
for analytically weak solutions holds true on an arbitrary time interval Œ0; T �, T > 0.
This trivially implies pathwise nonuniqueness. More precisely, we construct a determin-
istic divergence-free initial condition u.0/ 2 L2 which gives rise to two solutions to the
Navier–Stokes system (1.1) with distinct laws. One of the solutions is constructed by
means of the convex integration method whereas the other one is a solution obtained by a
classical compactness argument via Galerkin approximation; see e.g. [19].

We note that the solutions obtained by Galerkin approximation are clearly more physi-
cal as they correspond to Leray solutions in the deterministic setting and satisfy the energy
inequality. However, these solutions are not probabilistically strong as the adaptedness
with respect to the given noise is lost within the stochastic compactness method. On the
other hand, convex integration permits one to construct adapted solutions up to a stopping
time but they behave in an unphysical way with respect to the energy inequality. More-
over, spatial regularity is worse as we can only prove that they belong to H  for a certain
 > 0 small.

1.1. Main results

Even though the main result, i.e., nonuniqueness in law, is the same in the three settings
(1.2), (1.3) and (1.4), the proofs are different. The additive noise case is easier and we
present a direct construction of two solutions with different laws. This is not possible
in the case of a linear multiplicative noise where the proof becomes more involved. The
nonlinear case is even more challenging and requires tools from the theory of rough paths.
For notational simplicity, we suppose from now on that � D 1.
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1.1.1. Additive noise. Consider the stochastic Navier–Stokes system driven by an addi-
tive noise on T3, which reads

du ��udt C div.u˝ u/dt CrPdt D dB;

divu D 0;
(1.5)

where B is a GG�-Wiener process on a probability space .�;F ;P/ and G is a Hilbert–
Schmidt operator fromL2 toL2. Let .Ft /t�0 denote the normal filtration generated byB ,
that is, the canonical right continuous filtration augmented by all the P-negligible events.

Our first result in this setting is the existence of a probabilistically strong solution
which is defined up to a stopping time and which violates the corresponding energy
inequality.

Theorem 1.1. Suppose that Tr.GG�/ <1. Let T > 0, K > 1 and � 2 .0; 1/ be given.
Then there exist  2 .0;1/ and a P-a.s. strictly positive stopping time t satisfying P.t� T /
> � such that the following holds true: There exists an .Ft /t�0-adapted process u which
belongs to C.Œ0; t�IH  / P-a.s. and is an analytically weak solution to (1.5) with u.0/
deterministic. In addition,

ess sup
!2�

sup
t2Œ0;t�

ku.t/kH <1; (1.6)

and
ku.T /kL2 > Kku.0/kL2 CK.T Tr.GG�//1=2 on the set ¹t � T º. (1.7)

The proof of this result relies on the convex integration method, and the stopping time
is employed in the construction in order to control the noise in various bounds. While
this result readily implies nonuniqueness in law for solutions defined on the random time
interval Œ0; t�, our main result is more general: we prove nonuniqueness in law on an
arbitrary time interval or more generally up to an arbitrary stopping time.

Theorem 1.2. Suppose that Tr.GG�/ < 1. Then nonuniqueness in law holds for the
Navier–Stokes system (1.5) on Œ0;1/. Furthermore, for every given T > 0, nonuniqueness
in law holds for the Navier–Stokes system (1.5) on Œ0; T �.

In order to derive the result of Theorem 1.2 from Theorem 1.1, it is necessary to extend
the convex integration solutions to the whole time interval Œ0;1/. To this end, we present
a general probabilistic construction which connects the law of solutions defined up to
a stopping time to a law of a solution obtained by the classical compactness argument.
The principal difficulty is to allow for the concatenation of solutions at a random time.
Since the stopping time t is defined in terms of the solution u, we work with the notion
of martingale solution which is defined as the law of a solution u. Consequently, we are
able to obtain nonuniqueness in law, i.e., nonuniqueness of martingale solutions directly,
as opposed to the case of a linear multiplicative noise.
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1.1.2. Linear multiplicative noise. Consider the stochastic Navier–Stokes equation
driven by a linear multiplicative noise on T3, which reads

du ��udt C div.u˝ u/dt CrPdt D udB;

divu D 0;
(1.8)

where B is a real-valued Wiener process on a probability space .�;F ;P/. As above, we
denote by .Ft /t�0 the normal filtration generated by B . The main results in this case are
as follows.

Theorem 1.3. Let T > 0, K > 1 and � 2 .0; 1/ be given. Then there exist  2 .0; 1/ and
a P-a.s. strictly positive stopping time t satisfying P.t � T / > � such that the following
holds true: There exists an .Ft /t�0-adapted process u which belongs to C.Œ0; t�IH  /

P-a.s. and is an analytically weak solution to (1.8) with u.0/ deterministic. In addition,

ess sup
!2�

sup
t2Œ0;t�

ku.t/kH <1;

and
ku.T /kL2 > Ke

T=2
ku.0/kL2 on the set ¹t � T º.

Theorem 1.4. Nonuniqueness in law holds for the Navier–Stokes system (1.8) on Œ0;1/.
Furthermore, for every given T > 0, nonuniqueness in law holds for the Navier–Stokes
system (1.8) on Œ0; T �.

In contrast to the additive noise setting, the stopping time t in the case of the linear
multiplicative noise is a function of B and not a function of the solution u. As a conse-
quence, we are forced to work with the notion of a probabilistically weak solution which
governs the joint law of .u;B/. We extend our method of concatenation of two solutions to
connect the probabilistically weak solution obtained through Theorem 1.3 to a probabilis-
tically weak solution obtained by compactness. Accordingly, we first only deduce joint
nonuniqueness in law, i.e., nonuniqueness of probabilistically weak solutions. Finally, we
prove that joint nonuniqueness in law implies nonuniqueness in law, concluding the proof
of Theorem 1.4. This relies on a generalization of the result of Cherny [9] to the infinite-
dimensional setting, which is interesting in its own right; see Appendix C.

1.1.3. Nonlinear noise. We consider the Navier–Stokes equations

du ��udt C div.u˝ u/dt CrPdt D G.u/dB;

divu D 0;
(1.9)

withG.u/ defined via (1.4) and B anm-dimensional Brownian motion defined on a prob-
ability space .�;F ;P/ and we denote by .Ft /t�0 its normal filtration. In this setting, we
apply convex integration in order to establish the following results.

Theorem 1.5. Let T > 0, K > 1 and � 2 .0; 1/ be given. Then there exist  2 .0; 1/ and
a P-a.s. strictly positive stopping time t satisfying P.t � T / > � such that the following
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holds true: There exists an .Ft /t�0-adapted process u which belongs to C.Œ0; t�IL2/ \
L2.Œ0; t�IH  / P-a.s. and is an analytically weak solution to (1.9) with u.0/ deterministic.
In addition, for q 2 N,

E
�

sup
r2Œ0;t^t�

ku.r/k
2q

L2
C

ˆ t^t

0

ku.r/k2H dr

�
� Ct;q (1.10)

for some constant Ct;q , and

EŒ1t�T ku.T /k
2
L2
� > Kku.0/k2

L2
CKTCG (1.11)

with

CG D .2�/
3

3X
iD1

mX
jD1

kgij k
2
C0
:

Theorem 1.6. Nonuniqueness in law holds for the Navier–Stokes system (1.9) on Œ0;1/.
Furthermore, for every given T > 0, nonuniqueness in law holds for the Navier–Stokes
system (1.9) on Œ0; T �.

This nonlinear case presents further challenges which do not appear in the previous
settings of additive and linear multiplicative noise. First of all, there is no obvious transfor-
mation of the SPDEs into a PDE with random coefficients. Consequently, it is necessary
to employ rough path theory in order to obtain pathwise control of the stochastic integral
in the convex integration scheme. This is the reason why we restricted ourselves to the
cylindrical noise of the form (1.4). Nevertheless, a more general noise could be considered
provided the corresponding rough path estimate is valid.

Using rough path theory to control the stochastic integral requires the so-called iter-
ated integral of B against B to be included in the path space. Accordingly, the stopping
time t is a function of .B;

´
B ˝ dB/. Since we have to define the corresponding stopping

time on the canonical path space, the difficulty lies in how to define the iterated stochastic
integral on the path space without the use of any probability measure. Indeed, due to the
low time regularity of the Wiener process, the stochastic integral cannot be defined by
purely analytical means and probability theory is required in a nontrivial way. We over-
come this by introducing a notion of generalized probabilistically weak solution which
takes this issue into account.

We note that in order to apply rough path theory it is essential that the intermittent jets
possess sufficient time regularity, namely, we require complementary Young regularity to
the Brownian motion, i.e. ˛0 D 2=3C � for � > 0 small. To this end, it is necessary to
lower spatial regularity and we derive new bounds for the intermittent jets in Lemma B.2.
They lead to the convergence of vq in C ˛0.Œ0; t�IB�5�ı1;1 /; see (8.5). This is the reason
for restricting to the case of a cylindrical noise, i.e. one which smoothens in the spatial
variable. Other cases of spatially smoothing noise can be treated similarly.

Remark 1.7. Let us emphasize that if we directly tried to apply convex integration with-
out using stopping time, we would have to take expectation to control the stochastic
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integral. As convex integration is an iteration procedure, we would have to include Lp-
moment estimates for arbitrary p, which is typically achieved by the Burkholder–Davis–
Gundy inequality. However, as the implicit constant here depends on p, the estimates
would blow up during the iteration scheme.

Remark 1.8. Our convex integration schemes in the case of additive and nonlinear noise
could be understood as follows. In addition to the principal part of the perturbation w.p/qC1,

the incompressibility corrector w.c/qC1 and the temporal corrector w.t/qC1 as appearing in

the deterministic literature, we introduce a stochastic corrector w.s/qC1. Its role is to add
noise scale by scale as one proceeds through the iteration. More precisely, for the original
equation for u, we construct iterations uq given by

uqC1 D vqC1 C zqC1 D v` C w
.p/
qC1 C w

.c/
qC1 C w

.t/
qC1 C zqC1

D .v` C z`/C w
.p/
qC1 C w

.c/
qC1 C w

.t/
qC1 C .zqC1 � z`/

D u` C w
.p/
qC1 C w

.c/
qC1 C w

.t/
qC1 C w

.s/
qC1;

where w.s/qC1 D zqC1 � z` is the stochastic corrector. In the case of additive noise, we set
zqC1 D P�f .qC1/z (i.e. a suitable truncation in Fourier space) with

dz ��zdt D GdB;

whereas in the case of nonlinear noise we define

dzqC1 ��zqC1dt D G.vq C zqC1/dB:

Due to the dependence on vq�1, zq diverges in C 1 but converges in L2. When we need
to control the C 1-norm of zq in the estimates of the Reynolds stress, we can always use a
small constant from vq to absorb the blow-up of this norm.

Finally, we note that due to its particular structure, the linear multiplicative noise case
is different in this respect. Here, the perturbations are additionally randomized multiplica-
tively by eB in the following way:

uqC1 D e
Bv` C e

Bw
.p/
qC1 C e

Bw
.c/
qC1 C e

Bw
.t/
qC1:

1.2. Further relevant literature

Stochastic Navier–Stokes equations driven by a trace-class noise have been the subject
of a large number of works. The reader is referred e.g. to [18, 19, 29] and the refer-
ences therein. In the two-dimensional case, existence and uniqueness of strong solutions
was obtained if the noisy forcing term is white in time and colored in space. In the
three-dimensional case, existence of martingale solutions was proved in [13, 22, 26]. Fur-
thermore, ergodicity was proved if the system is driven by a nondegenerate trace-class
noise [13,22,42]. Navier–Stokes equations driven by space-time white noise are also con-
sidered in [12,50], and the system is studied in the context of rough path theory in [31,32].
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The linear multiplicative noise (1.3) can be seen as a damping term: it is shown in [40] that
it prevents the system from exploding with large probability. In a more recent work, Flan-
doli and Luo [21] proved that one kind of transport noise improves the vorticity blow-up in
3D Navier–Stokes equations with large probability. In [2], a global solution starting from
small initial data was constructed for 3D Navier–Stokes equations in vorticity formulation
driven by a linear multiplicative noise. However, the solutions are not adapted to the fil-
tration generated by the noise and the stochastic integral should be understood in a rough
path sense (see [37, 41] for more general noise). By the methods in [2, 37], adapted solu-
tions up to a stopping time can also be obtained. However, existence of globally defined
probabilistically strong solutions to the stochastic Navier–Stokes system without any stop-
ping time remains a challenging open problem. Finally, we note that convex integration
has already been applied in a stochastic setting, namely, to the isentropic Euler system in
[4] and to the full Euler system in [10].

1.3. Relevant literature update

In the first version of the present paper uploaded to arXiv we established nonuniqueness
in law only for a spatially regular additive noise (namely, Tr..��/3=2C2�GG�/ < 1)
and a linear multiplicative noise. Our method was then applied to several other fluid
models driven by these noises [33, 34, 39, 44–48]. In particular, in [33] we studied the
question of well-posedness for stochastic Euler equations from various perspectives. In
[34] we proved existence and nonuniqueness of global-in-time probabilistically strong
and Markov solutions to the stochastic Navier–Stokes system. In the present version of
the manuscript we are for the first time able to prove nonuniqueness in law for the Navier–
Stokes system with a nonlinear stochastic perturbation.

1.4. Organization of the paper

In Section 2, we collect the notations used throughout. Sections 3 and 4 are devoted to
the proof of our first main result, Theorem 1.2, nonuniqueness in law for the case of
an additive noise. First, in Section 3 we introduce the notion of martingale solution and
present a general method of extending martingale solutions defined up to a stopping time
to the whole time interval Œ0;1/. This is then applied to solutions obtained through the
convex integration technique, and nonuniqueness in law is shown in Section 3.3. Convex
integration solutions are constructed in Section 4, which proves Theorem 1.1. A similar
structure can be found in Sections 5 and 6 devoted to the setting of a linear multiplicative
noise. This relies on the notion of probabilistically weak solution and a general concate-
nation procedure presented in Section 5.2. Application to convex integration solutions
together with the proof of Theorem 1.4 can be found in Section 5.3. Convex integration
in this setting is applied in Section 6, where Theorem 1.3 is established. In Sections 7
and 8, we prove the results for the nonlinear noise. In Appendix A, we collect several
auxiliary results concerning stability of martingale, probabilistically weak as well as gen-
eralized probabilistically weak solutions. In Appendix B, the construction of intermittent
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jets needed for convex integration is recalled. In Appendix C, we show that nonuniqueness
in law implies joint nonuniqueness in law in a general infinite-dimensional SPDE setting.
Finally, Appendix D is devoted to the rough path analysis required in the nonlinear setting.

2. Notations

2.1. Function spaces

Throughout, we write a . b if there exists a constant c > 0 such that a � cb, and a ' b
if a . b and b . a. Given a Banach space E with a norm k � kE and T > 0, we write
CTEDC.Œ0;T �IE/ for the space of continuous functions from Œ0;T � toE, equipped with
the supremum norm kf kCTE D supt2Œ0;T � kf .t/kE . We also use CE or C.Œ0;1/IE/
to denote the space of continuous functions from Œ0;1/ to E. For ˛ 2 .0; 1/ we define
C ˛TE as the space of ˛-Hölder continuous functions from Œ0; T � to E, endowed with the
seminorm kf kC˛

T
E D sups;t2Œ0;T �; s¤t

kf .s/�f .t/kE
jt�sj˛

:When E D R we write C ˛T . We also
use C ˛locE for the space of functions from Œ0;1/ to E satisfying f jŒ0;T � 2 C ˛TE for all
T > 0. For p 2 Œ1;1�we writeLpTE DL

p.Œ0;T �IE/ for the space ofLp-integrable func-
tions from Œ0; T � to E, equipped with the usual Lp-norm. We also use Lploc.Œ0;1/IE/

to denote the space of functions f from Œ0;1/ to E satisfying f jŒ0;T � 2 L
p
TE for

all T > 0. We use Lp to denote the set of standard Lp-integrable functions from T3

to R3. For s > 0, p > 1 we set W s;p WD ¹f 2 Lp W k.I � �/s=2f kLp < 1º with
the norm kf kW s;p D k.I � �/s=2f kLp . Set L2� D ¹u 2 L

2 W div u D 0º. For s > 0,
H s WD W s;2 \ L2� . For s < 0 define H s to be the dual space of H�s . We also use the
Besov space Bˇp;q , ˇ 2 R; defined as the closure of smooth functions with respect to the
B
ˇ
p;q-norm

kf k
B
ˇ
p;q
WD

�X
j��1

2ˇjqk�jf k
q
Lp

�1=q
;

with �j ; j 2 N0 [ ¹�1º, being the usual Littlewood–Paley blocks.
We set kf kCNt;x D

P
0�nCj˛j�N k@

n
tD

˛f kL1t L1 . For a Polish space H we also use
B.H/ to denote the � -algebra of Borel sets in H .

2.2. Probabilistic elements

Let�0 WD C.Œ0;1/IH�3/\L2loc.Œ0;1/IL
2
� / and let P.�0/ denote the set of all prob-

ability measures on .�0;B/ with B being the Borel � -algebra coming from the topology
of locally uniform convergence on �0. Let x W �0 ! H�3 denote the canonical process
on �0 given by

xt .!/ D !.t/:

Similarly, for t � 0we define�t WD C.Œt;1/IH�3/\L2loc.Œt;1/IL
2
� / equipped with its

Borel � -algebra Bt which coincides with �¹x.s/ W s � tº. Finally, we define the canonical
filtration B0

t WD �¹x.s/ W s � tº, t � 0, as well as its right continuous version Bt WD
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T
s>t B0

s , t � 0. For a given probability measure P we use EP to denote the expectation
under P .

For a Hilbert space U , let L2.U I L2� / be the space all Hilbert–Schmidt oper-
ators from U to L2� with the norm k � kL2.U IL2� /. Let G W L2� ! L2.U I L

2
� / be

B.L2� /=B.L2.U IL
2
� //-measurable. In the following, we assume

kG.x/kL2.U IL2� / � C.1C kxkL2/

for every x 2 C1.T3/ \ L2� and if in addition yn ! y in L2 then

lim
n!1

kG.yn/
�x �G.y/�xkU D 0;

where the asterisk denotes the adjoint operator.
Suppose there is another Hilbert spaceU1 such that the embeddingU �U1 is Hilbert–

Schmidt. Let N� WD C.Œ0;1/IH�3 � U1/\L2loc.Œ0;1/IL
2
� � U1/ and let P. N�/ denote

the set of all probability measures on . N�; NB/ with NB being the Borel � -algebra coming
from the topology of locally uniform convergence on N�. Let .x; y/ W N� ! H�3 � U1
denote the canonical process on N� given by

.xt .!/; yt .!// D !.t/:

For t � 0 we define the � -algebra NBt D �¹.x.s/; y.s// W s � tº. Finally, we define the
canonical filtration NB0

t WD �¹.x.s/; y.s// W s � tº, t � 0, as well as its right continuous
version NBt WD

T
s>t
NB0
s , t � 0.

3. Nonuniqueness in law I: the case of an additive noise

3.1. Martingale solutions

Let us begin with a definition of martingale solution on Œ0;1/. In what follows, we fix
 2 .0; 1/.

Definition 3.1. Let s� 0 and x0 2L2� . A probability measureP 2P.�0/ is a martingale
solution to the Navier–Stokes system (1.1) with initial value x0 at time s provided

(M1) P.x.t/ D x0; 0 � t � s/ D 1, and for any n 2 N,

P

²
x 2 �0 W

ˆ n

0

kG.x.r//k2
L2.U IL

2
� /
dr <1

³
D 1:

(M2) For every ei 2 C1.T3/ \ L2� and all t � s the process

M i
t;s WD hx.t/ � x.s/; ei i C

ˆ t

s

hdiv.x.r/˝ x.r// ��x.r/; ei i dr

is a continuous square integrable .Bt /t�s-martingale under P with quadratic vari-
ation process given by

´ t
s
kG.x.r//�eik

2
U dr .
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(M3) For any q 2 N there exists a positive real function t 7! Ct;q such that for all t � s,

EP
�

sup
r2Œ0;t�

kx.r/k
2q

L2
C

ˆ t

s

kx.r/k2H dr

�
� Ct;q.kx0k

2q

L2
C 1/;

where EP denotes the expectation under P .

In particular, we observe that in the context of Definition 3.1 for the additive noise
case, i.e. for G independent of x, if ¹eiºi2N is an orthonormal basis of L2� consisting of
eigenvectors of GG� then Mt;s WD

P
i2N M

i
t;sei is a GG�-Wiener process starting from

s with respect to the filtration .Bt /t�s under P .
Similarly, we may define martingale solutions up to a stopping time � W �0! Œ0;1�.

To this end, we define the space of trajectories stopped at � by

�0;� WD ¹!.� ^ �.!// W ! 2 �0º:

We note that due to the Borel measurability of � , the set �0;� D ¹! 2 �0 W x.t; !/ D
x.t ^ �.!/; !/;8t � 0º is a Borel subset of �0, hence P.�0;� / �P.�0/.

Definition 3.2. Let s � 0 and x0 2 L2� . Let � � s be a .Bt /t�s-stopping time. A prob-
ability measure P 2P.�0;� / is a martingale solution to the Navier–Stokes system (1.1)
on Œs; � � with initial value x0 at time s provided

(M1) P.x.t/ D x0; 0 � t � s/ D 1 and for any n 2 N,

P

²
x 2 �0 W

ˆ n^�

0

kG.x.r//k2L2.U IL�2 /
dr <1

³
D 1:

(M2) For every ei 2 C1.T3/ \ L2� and all t � s the process

M i
t^�;s WD hx.t ^ �/ � x0; ei i C

ˆ t^�

s

hdiv.x.r/˝ x.r// ��x.r/; ei i dr

is a continuous square integrable .Bt /t�s-martingale under P with quadratic vari-
ation process given by

´ t^�
s
kG.x.r//�eik

2
U dr:

(M3) For any q 2 N there exists a positive real function t 7! Ct;q such that for all t � s,

EP
�

sup
r2Œ0;t^��

kx.r/k
2q

L2
C

ˆ t^�

s

kx.r/k2H dr

�
� Ct;q.kx0k

2q

L2
C 1/;

where EP denotes the expectation under P .

The following result provides the existence of martingale solutions as well as stabil-
ity of the set of all martingale solutions. A similar result can be found in [22, 26] but
in the present paper we require in addition stability with respect to the initial time. For
completeness, we include the proof in Appendix A.
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Theorem 3.1. For every .s; x0/ 2 Œ0;1/ � L2� , there exists P 2 P.�0/ which is a
martingale solution to the Navier–Stokes system (1.1) starting at time s from the initial
condition x0 in the sense of Definition 3.1. The set of all such martingale solutions with
the same Ct;q in (M3) of Definition 3.1 is denoted by C .s; x0; Ct;q/.

Let .sn; xn/! .s; x0/ in Œ0;1/ � L2� as n!1 and let Pn 2 C .sn; xn; Ct;q/. Then
there exists a subsequence nk such that the sequence ¹Pnk ºk2N converges weakly to some
P 2 C .s; x0; Ct;q/.

For completeness, let us recall the definition of uniqueness in law.

Definition 3.3. We say that uniqueness in law holds for (1.1) if martingale solutions
starting from the same initial distribution are unique.

Now, we have all in hand to proceed with the proof of our first main result, Theo-
rem 1.2. On the one hand, by classical arguments as in Theorem 3.1 we obtain existence
of a martingale solution to (1.1) which satisfies the corresponding energy inequality. On
the other hand, for the case of an additive noise, Theorem 1.1 provides a stopping time
t such that there exists an .Ft /t�0-adapted analytically weak solution u 2 C.Œ0; t�IH  /

to (1.5) which violates the energy inequality. The main idea is to construct a martingale
solution which is defined on the full interval Œ0;1/ and preserves the properties of the
adapted solution on Œ0; t�, that is, the energy inequality is not satisfied in this random time
interval. To this end, the essential point is to make use of adaptedness of solutions obtained
through Theorem 1.1 and connect them to ordinary martingale solutions obtained by The-
orem 3.1. The difficulty is that the connection has to happen at a random time, which only
turns out to be a stopping time with respect the right continuous filtration .Bt /t�0. Con-
sequently, the classical martingale theory of Stroock and Varadhan [43] does not apply
and we are facing a number of measurability issues which have to be carefully treated.

3.2. General construction for martingale solutions

First, we present an auxiliary result which is then used to extend martingale solutions
defined up to a stopping time � to the whole interval Œ0;1/. To this end, we denote by B�

the � -field associated to the stopping time � . The results of this section apply to a general
form of noise in (1.1); the restriction to an additive noise is only required in Section 3.3
below in order to apply the result of Theorem 1.1.

Proposition 3.2. Let � be a bounded .Bt /t�0-stopping time. Then for every ! 2�0 there
exists Q! 2P.�0/ such that for ! 2 ¹x.�/ 2 L2�º,

Q!
�
!0 2 �0 W x.t; !

0/ D !.t/ for 0 � t � �.!/
�
D 1; (3.1)

Q!.A/ D R�.!/;x.�.!/;!/.A/ for all A 2 B�.!/; (3.2)

whereR�.!/;x.�.!/;!/ 2P.�0/ is a martingale solution to the Navier–Stokes system (1.1)
starting at time �.!/ from the initial condition x.�.!/;!/. Furthermore, for every B 2B

the mapping ! 7! Q!.B/ is B� -measurable.
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Proof. We have to be able to select from the set of all martingale solutions in a mea-
surable way. To this end, we observe that as a consequence of stability with respect to
the initial time and the initial condition in Theorem 3.1, for every .s; x0/ 2 Œ0;1/ � L2�
the set C .s; x0; Ct;q/ of all martingale solutions to (1.1) with the same Ct;q is compact
with respect to weak convergence of probability measures. Let Comp.P.�0// denote the
space of all compact subsets of P.�0/ equipped with the Hausdorff metric. Using the
stability from Theorem 3.1 together with [43, Lemma 12.1.8] we find that the map

Œ0;1/ � L2� ! Comp.P.�0//; .s; x0/ 7! C .s; x0; Ct;q/;

is Borel measurable. Accordingly, [43, Theorem 12.1.10] gives the existence of a measur-
able selection. More precisely, there exists a Borel measurable map

Œ0;1/ � L2� !P.�0/; .s; x0/ 7! Rs;x0 ;

such that Rs;x0 2 C .s; x0; Ct;q/ for all .s; x0/ 2 Œ0;1/ � L2� .
As the next step, we recall that the canonical process x on �0 is continuous in H�3,

hence x W Œ0;1/ ��0 ! H�3 is progressively measurable with respect to the canonical
filtration .B0

t /t�0, and consequently also with respect to the right continuous filtration
.Bt /t�0. In addition, � is a stopping time with respect to .Bt /t�0. Therefore, it fol-
lows from [43, Lemma 1.2.4] that both � and x.�.�/; �/ are B� -measurable. Furthermore,
L2� � H

�3 continuously and densely, and by Kuratowski’s measurability theorem we
know L2� 2 B.H�3/ and B.L2� /D B.H�3/\L2� , which implies that 1

¹x.�/2L2� º
2 B� .

Therefore, x.�.�/; �/1
¹x.�/2L2� º

W �0 ! L2� is B� -measurable, where B� is the � -algebra
associated to � . Combining this with the measurability of the selection .s; x0/ 7! Rs;x0
constructed above, we deduce that

�0 !P.�0/; ! 7! R�.!/;x.�.!/;!/1
¹x.�.!/;!/2L2� º

; (3.3)

is B� -measurable as a composition of B� -measurable mappings. Recall that for every ! 2
�0 \ ¹x.�/ 2 L

2
�º this mapping gives a martingale solution starting at the deterministic

time �.!/ from the deterministic initial condition x.�.!/;!/. Hence, for !2¹x.�/2L2�º,

R�.!/;x.�.!/;!/
�
!0 2 �0 W x.�.!/; !

0/ D x.�.!/; !/
�
D 1:

Now, we apply [43, Lemma 6.1.1] to deduce that for every ! 2 �0 \ ¹x.�/ 2 L2�º
there is a unique probability measure

ı! ˝�.!/ R�.!/;x.�.!/;!/ 2P.�0/ (3.4)

such that for every ! 2 �0 \ ¹x.�/ 2 L2�º, (3.1) and (3.2) hold. This permits us to con-
catenate, at the deterministic time �.!/, the Dirac mass ı! with the martingale solution
R�.!/;x.�.!/;!/. Define

Q! D

´
ı! ˝�.!/ R�.!/;x.�.!/;!/ if ! 2 ¹x.�/ 2 L2�º;

ıx.�^�.!// otherwise:
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In order to show that the mapping ! 7! Q!.B/ is B� -measurable for every B 2 B,
it is enough to consider sets of the form A D ¹x.t1/ 2 �1; : : : ; x.tn/ 2 �nº where n 2 N,
0 � t1 < � � � < tn, and �1; : : : ; �n 2 B.H�3/. Then by the definition of Q! , we have

ı! ˝�.!/ R�.!/;x.�.!/;!/.A/ D 1Œ0;t1/.�.!//R�.!/;x.�.!/;!/.A/

C

n�1X
kD1

1Œtk ;tkC1/.�.!// 1�1.x.t1; !// � � � 1�k .x.tk ; !//

�R�.!/;x.�.!/;!/
�
x.tkC1/ 2 �kC1; : : : ; x.tn/ 2 �n

�
C 1Œtn;1/.�.!// 1�1.x.t1; !// � � � 1�n.x.tn; !//:

Here the right hand side multiplied by 1
¹x.�/2L2� º

is B� -measurable as a consequence of
the B� -measurability of (3.3) and � . Moreover, ıx.�^�.!// is B� -measurable as a conse-
quence of the B� -measurability of x.� ^ �/. Thus the final result follows from ¹x.�/2L2�º
being B� -measurable.

Remark 3.3. If P is a martingale solution up to a stopping time � , our ultimate goal is to
make use of Proposition 3.2 in order to define a probability measure

P ˝� R.�/ WD

ˆ
�0

Q!.�/ P.d!/

and show that it is a martingale solution on Œ0;1/ in the sense of Definition 3.1 which
coincides with P up to time � . However, due to the fact that � is only a stopping time
with respect to the right continuous filtration .Bt /t�0, (3.1) does not suffice to show that
.Q!/!2�0 is a conditional probability distribution of P ˝� R given B� . More precisely,
we cannot prove that for every A 2 B� and B 2 B,

P ˝� R.A \ B/ D

ˆ
A

Q!.B/P.d!/:

This is the reason why the corresponding results of [43], namely Theorem 6.1.2 and in
particular Theorem 1.2.10 leading to the desired martingale property (M2), cannot be
applied. It will be seen below in Proposition 3.4 that an additional condition on Q! ,
i.e., (3.5), is necessary in order to guarantee (M1)–(M3). To conclude this remark, we
note that measurability of the mapping ! 7! Q!.B/ in a certain sense is only needed
to define the integral in (3.6). Since we do not show that .Q!/!2�0 is a conditional
probability distribution, the B� -measurability from Proposition 3.2 is actually not used in
the following.

Proposition 3.4. Let x0 2 L2� . Let P be a martingale solution to the Navier–Stokes sys-
tem (1.1) on Œ0; �� starting at time 0 from the initial condition x0. In addition to the
assumptions of Proposition 3.2, suppose that there exists a Borel set N � �0;� such that
P.N / D 0 and for every ! 2 N c ,

Q!
�
!0 2 �0 W �.!

0/ D �.!/
�
D 1: (3.5)
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Then the probability measure P ˝� R 2P.�0/ defined by

P ˝� R.�/ WD

ˆ
�0

Q!.�/ P.d!/ (3.6)

satisfies P ˝� RD P on the � -algebra �.x.t ^ �/ W t � 0/ and it is a martingale solution
to the Navier–Stokes system (1.1) on Œ0;1/ with initial condition x0.

Proof. First, we observe that due to (3.5) and (3.1), we have P ˝� R.A/ D P.A/ for
every Borel set A 2 �.x.t ^ �/ W t � 0/. It remains to verify that the measure P ˝� R
satisfies (M1)–(M3) in Definition 3.1 with s D 0. The first condition in (M1) follows
easily since by construction P ˝� R.x.0/ D x0/ D P.x.0/ D x0/ D 1; the second one
follows from (M3) and the assumption on G. In order to show (M3), we write

EP˝�R
�

sup
r2Œ0;t�

kx.r/k
2q

L2
C

ˆ t

0

kx.r/k2H dr

�
� EP˝�R

�
sup

r2Œ0;t^��

kx.r/k
2q

L2
C

ˆ t^�

0

kx.r/k2H dr

�
CEP˝�R

�
sup

r2Œt^�;t�

kx.r/k
2q

L2
C

ˆ t

t^�

kx.r/k2H dr

�
:

Here, the first term on the right hand side can be estimated due to the bound (M3) for P ,
whereas the second term can be bounded based on (M3) for R. Then by (3.5),

EP˝�R
�

sup
r2Œ0;t�

kx.r/k
2q

L2
C

ˆ t

0

kx.r/k2H dr

�
� C.kx0k

2q

L2
C 1/C C.EP kx.�/k

2q

L2
C 1/ � C.kx0k

2q

L2
C 1/:

In the last step, we have used the fact that � is bounded together with (M3) for P .
Finally, we shall verify (M2). To this end, we recall that since P is a martingale solu-

tion on Œ0; ��, the process M i
t^�;0 is a continuous square integrable .Bt /t�0-martingale

under P with quadratic variation process given by
´ t^�
0
kG.x.r//�eik

2
U dr: On the other

hand, since for every ! 2�0, the probability measureR�.!/;x.�.!/;!/ is a martingale solu-
tion starting at time �.!/ from the initial condition x.�.!/;!/, the processM i

t;t^�.!/
is a

continuous square integrable .Bt /t��.!/-martingale under R�.!/;x.�.!/;!/ with quadratic
variation process given by

´ t
t^�.!/

kG.x.r//�eik
2
U dr , t � �.!/. In other words, the

process M i
t;0 �M

i
t^�.!/;0

is a continuous square integrable .Bt /t�0-martingale under

R�.!/;x.�.!/;!/ with quadratic variation process given by
´ t
t^�.!/

kG.x.r//�eik
2
U dr .

Next, we will show that M i
t;0 is a continuous square integrable .Bt /t�0-martingale

under P ˝� R with quadratic variation process given by
´ t
0
kG.x.r//�eik

2
U dr: To this

end, let s � t and A 2 Bs . We first prove that

EQ! ŒM i
t;01A� D EQ! ŒM i

.t^�.!//_s;01A�: (3.7)

In fact, it is enough to consider sets of the form A D ¹x.t1/ 2 �1; : : : ; x.tn/ 2 �nº where
n 2 N, 0 � t1 < � � � < tn � s, and �1; : : : ; �n 2 B.H�3/. For more general A 2 Bs we
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could use approximation and the continuity of M i
�;0. Then by the definition of Q! and

using the martingale property with respect to R�.!/;x.�.!/;!/, which is valid for t � �.!/,
we have

EQ! Œ.M i
t;0 �M

i
.t^�.!//_s;0/ 1A�

D 1Œ0;t1/.�.!//E
R�.!/;x.�.!/;!/ Œ.M i

t;0 �M
i
s;0/ 1A�

C

n�1X
kD1

1Œtk ;tkC1/.�.!// 1�1.x.t1; !// � � � 1�k .x.tk ; !//

�ER�.!/;x.�.!/;!/..M i
t;0 �M

i
s;0/ 1x.tkC1/2�kC1;:::;x.tn/2�n/

C 1Œtn;1/.�.!//1�1.x.t1;!// � � �1�n.x.tn;!//�E
R�.!/;x.�.!/;!/.M i

t;0 �M
i
.t^�.!//_s;0/

D 0:

Now (3.7) follows.
Then it follows from (3.6) and (3.4) that

EP˝�RŒM i
t;01A� D

ˆ
�0

EQ! ŒM i
t;01A� P.d!/

D

ˆ
�0

Eı!˝�.!/R�.!/;x.�.!/;!/ ŒM i
t;01A� P.d!/:

According to (3.7) and then using the key assumption (3.5) we further deduce that

EP˝�RŒM i
t;01A� D

ˆ
�0

Eı!˝�.!/R�.!/;x.�.!/;!/ ŒM i
.t^�.!//_s;01A�P.d!/

D EP˝�RŒM i
.t^�/_s;01A�

D EP˝�RŒM i
t^�;01A\¹�>sº�CEP˝�RŒM i

s;01A\¹��sº�:

Finally, using the martingale property up to � with respect to P , we get

EP˝�RŒM i
t;01A� D EP˝�RŒM i

s;01A\¹�>sº�CEP˝�RŒM i
s;01A\¹��sº�

D EP˝�RŒM i
s;01A�:

Hence M i is a .Bt /t�0-martingale with respect to P ˝� R. In order to identify its
quadratic variation, we proceed similarly and write

EP˝�R
��
.M i

t;0/
2
�

ˆ t

0

kG.x.r//�eik
2
U dr

�
1A
�

D

ˆ
�0

EQ!
��
.M i

t;0 �M
i
t^�.!/;0/

2
�

ˆ t

t^�.!/

kG.x.r//�eik
2
U dr

�
1A
�
P.d!/

C

ˆ
�0

EQ!
��
.M i

t^�.!/;0/
2
�

ˆ t^�.!/

0

kG.x.r//�eik
2
U

�
1A
�
P.d!/

C 2

ˆ
�0

EQ! Œ.M i
t^�.!/;0.M

i
t;0 �M

i
t^�.!/;0// 1A� P.d!/

DW J1 C J2 C J3:
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Here, due to the martingale property with respect to R and P similar to (3.7), we obtain

J1 D

ˆ
�0

EQ!
��
.M i

t^�.!/_s;0 �M
i
t^�.!/;0/

2

�

ˆ t^�.!/_s

t^�.!/

kG.x.r//�eik
2
U dr

�
1A
�
P.d!/;

J2 D

ˆ
�0

EQ!
��
.M i

s^�.!/;0/
2
�

ˆ s^�.!/

0

kG.x.r//�eik
2
U dr

�
1A
�
P.d!/;

J3 D 2

ˆ
�0

EQ! ŒM i
t^�.!/;0.M

i
t^�.!/_s;0 �M

i
t^�.!/;0/ 1A� P.d!/:

Combining these calculations and using (3.5) as above we finally deduce that

EP˝�R
��
.M i

t;0/
2
�

ˆ t

0

kG.x.r//�eik
2
U dr

�
1A
�

D EP˝�R
��
.M i

s^�;0/
2
�

ˆ s^�

0

kG.x.r//�eik
2
U dr

�
1A
�

CEP˝�R
��
.M i

s;0 �M
i
�;0/

2
�

ˆ s

�

kG.x.r//�eik
2
U dr

�
1A\¹��sº

�
C 2EP˝�RŒM i

�;0.M
i
s;0 �M

i
�;0/ 1A\¹��sº�

D EP˝�R
��
.M i

s;0/
2
�

ˆ s

0

kG.x.r//�eik
2
U dr

�
1A
�
;

which completes the proof of (M2).

As the next step, we present an auxiliary result which allows us to show that for weakly
continuous stochastic processes, hitting times of open sets are stopping times with respect
to the corresponding right continuous filtration. Here we want to emphasize that the fil-
tration .Bt /t�0 used below is not the augmented one since we have to consider different
probabilities. As a consequence, we have to be careful about making any conclusions
about stopping times.

Lemma 3.5. Let .�; F ; .Ft /t�0; P / be a stochastic basis. Let H1; H2 be separable
Hilbert spaces such that the embeddingH1 �H2 is continuous. Suppose that there exists
¹hkºk2N � H

�
2 � H

�
1 such that for all f 2 H1,

kf kH1 D sup
k2N

hk.f /:

Suppose X is an .Ft /t�0-adapted stochastic process with trajectories in C.Œ0;1/IH2/.
Let L > 0 and ˛ 2 .0; 1/. Then

�1 WD inf ¹t � 0 W kX.t/kH1 > Lº and �2 WD inf ¹t � 0 W kXkC˛t H1 > Lº

are .FtC/t�0-stopping times where FtC D
T
">0 FtC".
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We note that in the above result, the process X a priori need not take values in H1.
In other words, without additional regularity of the trajectories of X , we simply have
�1 D �2 D 0. However, in the application of Lemma 3.5 in the proof of Theorem 1.2
below, additional regularity will be known a.s. under a suitable probability measure.

Proof of Lemma 3.5. In the proof we use X!.s/ to denote X.s; !/. First, we observe that
the trajectories of X are lower semicontinuous in H1 in the following sense:

kX.t/kH1 D sup
k2N

hk.X.t// D sup
k2N

lim
s!t

hk.X.s// � lim inf
s!t

sup
k2N

hk.X.s//

� lim inf
s!t

kX.s/kH1 ; (3.8)

where t � 0. Note that since by assumption we only know thatX takes values inH2�H1,
the H1-norms appearing in (3.8) may be infinite. Next, for t > 0 we have

¹�1 � tº D
\
s2Œ0;t�

¹kX.s/kH1 � Lº D
\

s2Œ0;t�\Q

¹kX.s/kH1 � Lº 2 Ft :

Indeed, to show the first equality, we observe that the right hand side is a subset of the left
one. For the converse inclusion, we know that ¹�1 > tº is a subset of the right hand side.
Now, we consider ! 2 ¹�1 D tº. In this case, kX!.s/kH1 � L for every s 2 Œ0; t/. Thus,
there exists a sequence tk " t such that kX!.tk/kH1 � L and by the lower semicontinuity
of X it follows that kX!.t/kH1 � L. The second equality is also a consequence of lower
semicontinuity. Indeed, if ! belongs to the right hand side, then for s 2 Œ0; t �, s … Q,
there is a sequence .sk/k2N � Œ0; t � \ Q, sk ! s, such that kX!.sk/kH1 � L. Hence
kX!.s/kH1 � L and ! belongs to the left hand side as well. Therefore, we deduce that

¹�1 � tº D
\
">0

¹�1 < t C "º 2 FtC;

which proves that �1 is an .FtC/t�0-stopping time.
We proceed similarly for �2. By the same argument as in (3.8) we find that also the

time increments of X are lower semicontinuous in H1. More precisely, for t1; t2 � 0,

kX.t1/ �X.t2/kH1 � lim inf
s1!t1; s2!t2

kX.s1/ �X.s2/kH1 ;

and as a consequence if t1 ¤ t2 then

kX.t1/ �X.t2/kH1
jt1 � t2j˛

� lim inf
s1!t1; s2!t2

s1¤s2

kX.s1/ �X.s2/kH1
js1 � s2j˛

:

This implies for t > 0 that

¹�2 � tº D¹kXkC˛t H1 � Lº D
\

s1¤s22Œ0;t�\Q

²
kX.s1/ �X.s2/kH1
js1 � s2j˛

� L

³
2 Ft ;

(3.9)
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Indeed, for the first equality, the inclusion � is immediate, because the process t 7!
kXkC˛t H1 is nondecreasing. For the converse inclusion, we know that ¹�2 > tº is a sub-
set of the right hand side. Let ! 2 ¹�2 D tº. Then there is a sequence tk " t such that
kX!kC˛tkH

� L and we have

sup
s1¤s22Œ0;t�

kX!.s1/ �X
!.s2/kH1

js1 � s2j˛
� sup
s1¤s22Œ0;t�

lim inf
k!1

kX!.s1 ^ tk/ �X
!.s2 ^ tk/kH1

js1 ^ tk � s2 ^ tkj˛

� sup
k2N

sup
s1¤s22Œ0;tk �

kX!.s1/ �X
!.s2/kH1

js1 � s2j˛
� L:

We deduce that kX!kC˛t H1 � L, hence ! also belongs to the set on the right hand side
of the first equality in (3.9). The second equality in (3.9) follows by a similar argument.
Therefore, we conclude that �2 is an .FtC/t�0-stopping time.

3.3. Application to solutions obtained through Theorem 1.1

As the first step, we decompose the Navier–Stokes system (1.5) into two parts, one of
which is linear and contains the stochastic integral, whereas the other one is a nonlinear
but random PDE. More precisely, we consider

dz ��z CrP1dt D dB;

div z D 0;

z.0/ D 0;

(3.10)

and
@tv ��v C div..v C z/˝ .v C z//CrP2 D 0;

div v D 0;
(3.11)

whereP1 andP2 denote the associated pressure terms. Note that the initial value for v was
not given in advance but it was part of the construction in Theorem 1.1. This decompo-
sition allows us to separate the difficulties coming from the stochastic perturbation from
those originating in the nonlinearity.

Now, we fix a GG�-Wiener process B defined on a probability space .�;F ;P/ and
we denote by .Ft /t�0 its normal filtration, i.e. the canonical filtration of B augmented
by all the P-negligible sets. This filtration is right continuous. We recall that using the
factorization method it is standard to derive regularity of the stochastic convolution z
which solves the linear equation (3.10) on .�;F ; .Ft /t�0;P/. In particular, the following
result follows from [14, Theorems 5.14, 5.16] together with the Kolmogorov continuity
criterion.

Proposition 3.6. Suppose that Tr.GG�/ <1. Then for all ı 2 .0; 1=2/ and T > 0,

EPŒkzkCTH1�ı C kzkC1=2�ı
T

L2
� <1:
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As the next step, for every ! 2 �0 we define a process M!
t;0 similarly to Definition

3.1, that is,

M!
t;0 WD !.t/ � !.0/C

ˆ t

0

ŒP div.!.r/˝ !.r// ��!.r/� dr (3.12)

and for every ! 2 �0 we let

Z!.t/ WDM!
t;0 C

ˆ t

0

P�e.t�r/�M!
r;0 dr: (3.13)

The idea behind these definitions is as follows. The process M is defined in terms of the
canonical process x and hence its definition makes sense for every ! 2�0, i.e. without the
reference to any probability measure. Consequently, the same applies to Z. In addition, if
P is a martingale solution to the Navier–Stokes system (1.5), the process M is a GG�-
Wiener process under P . Hence we may apply integration by parts to show that Z solves
(3.10) with B replaced by M . In other words, under P , Z is almost surely equal to a
stochastic convolution, i.e., we have

Z.t/ D

ˆ t

0

Pe.t�r/� dMr;0 P -a.s:

In addition, by definition of Z and M together with the regularity of trajectories in
�0, it follows that for every ! 2 �0, Z! 2 C.Œ0;1/IH�3/. For n 2 N; L > 0 and for
ı 2 .0; 1=12/ to be determined below we define

�nL.!/ D inf
²
t � 0 W kZ!.t/kH1�ı >

.L � 1=n/1=4

CS

³
^ inf

²
t > 0 W kZ!k

C
1=2�2ı
t L2

>
.L � 1=n/1=2

CS

³
^ L;

where CS is the Sobolev constant for kf kL1 � CSkf kH .3C�/=2 with � > 0. We observe
that the sequence .�nL/n2N is nondecreasing and define

�L WD lim
n!1

�nL: (3.14)

Note that without additional regularity of the trajectory !, we have �nL.!/ D 0. How-
ever, under P we may use the regularity assumption on G to deduce that Z 2
CH 1�ı \ C

1=2�ı
loc L2 P -a.s. By Lemma 3.5 we find that �nL is a .Bt /t�0-stopping time

and consequently also �L is a .Bt /t�0-stopping time as an increasing limit of stopping
times. We emphasize that we need to introduce the stopping time on the path space with-
out using any probability. The introduction of �nL is to approximate �L which coincides
with the stopping time TL introduced in (4.2) below under the law of the convex inte-
gration solution. Moreover, �nL is defined on the path space and is a stopping time by
Lemma 3.5. We cannot directly prove that TL is a stopping time on the path space without
using the continuity property of the Brownian motion.
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As the next step, we apply Theorem 1.1 on the stochastic basis .�;F ; .Ft /t�0; P/.
We note that the stopping time t from the statement of Theorem 1.1 is given by TL for
a sufficiently large L > 1, defined in (4.2) below. We recall that u is adapted to .Ft /t�0
which is an essential property employed in what follows. We denote by P the law of u
and prove the following result.

Proposition 3.7. The probability measure P is a martingale solution to the Navier–
Stokes system (1.5) on Œ0; �L� in the sense of Definition 3.2, where �L was defined in (3.14).

Proof. Recall that the stopping time TL was defined in (4.2) in terms of the process z, the
solution to the linear equation (3.10). Theorem 1.1 yields the existence of a solution u to
the Navier–Stokes system (1.5) on Œ0; TL� such that u.� ^ TL/ 2 �0 P-a.s. We will now
prove that

�L.u/ D TL P-a.s: (3.15)

To this end, we observe that due to the definition of M in (3.12) and Z in (3.13) together
with the fact that u solves the Navier–Stokes system (1.5) on Œ0; TL�, we have

Zu.t/ D z.t/ for t 2 Œ0; TL� P-a.s. (3.16)

Since z 2 CH 1�ı \ C
1=2�ı
loc L2 P-a.s. according to Proposition 3.6, the trajectories of the

processes
t 7! kz.t/kH1�ı and t 7! kzk

C
1=2�2ı
t L2

are P-a.s. continuous. It follows from the definition of TL that one of the following three
statements holds P-a.s.:

either TL D L or kz.TL/kH1�ı � L
1=4=CS or kzk

C
1=2�2ı
TL

L2
� L1=2=CS :

Therefore, as a consequence of (3.16), we deduce that �L.u/ � TL P-a.s. Suppose now
that �L.u/ < TL on a set of positive probability P. Then on this set, either

kz.�L.u//kH1�ı D kZ
u.�L.u//kH1�ı � L

1=4=CS ; or

kZuk
C
1=2�2ı

�L.u/
L2
D kzk

C
1=2�2ı

�L.u/
L2
� L1=2=CS ;

which however contradicts the definition of TL. Hence we have proved (3.15).
Recall that �L is a .Bt /t�0-stopping time. We intend to show that P is a martingale

solution to the Navier–Stokes system (1.5) on Œ0; �L� in the sense of Definition 3.2. First,
we observe that it can be seen from the construction in Theorem 1.1 that the initial value
u.0/D v.0/C z.0/D v.0/ is indeed deterministic. Hence condition (M1) follows. How-
ever, we note that the initial value v.0/ cannot be prescribed in advance. In other words,
Theorem 1.1 does not yield a solution to the Cauchy problem, it only provides the exis-
tence of an initial condition for which a solution violating the energy inequality exists.
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For an appropriate choice of the constant Ct;q in Definition 3.2, which has to depend on
the constant CL in (1.6) in Theorem 1.1, condition (M3) also follows.

Let us now verify (M2). To this end, let s � t and let g be a bounded, real-valued,
Bs-measurable and continuous function on �0. Since u.� ^ TL/ is an .Ft /t�0-adapted
process and (3.15) holds, we deduce that u.� ^ �L.u// is also .Ft /t�0-adapted. Conse-
quently, the composition g.u.� ^ �L.u/// is Fs-measurable. On the other hand, we know
that under P,M u;i

t^�L.u/;0
D hBt^�L.u/; ei i is an .Ft /t�0-martingale. Its quadratic variation

process is given by kGeik2L2.t ^ �L.u//. Therefore, we have

EP ŒM i
t^�L;0

g� D EPŒM
u;i
t^�L.u/;0

g.u/� D EPŒM
u;i
s^�L.u/;0

g.u/� D EP ŒM i
s^�L;0

g�

and by similar arguments we also find that

EP
��
.M i

t^�L;0
/2 � .t ^ �L/kGeik

2
L2

�
g
�
D EP

��
.M i

s^�L;0
/2 � .s ^ �L/kGeik

2
L2

�
g
�
:

Accordingly, the process M i
t^�L;0

is a continuous square integrable .Bt /t�0-martingale
under P with quadratic variation process given by kGeik2L2.t ^ �L/, and (M2) in Defini-
tion 3.2 follows.

At this point, we are already able to deduce that martingale solutions on Œ0; �L� in
the sense of Definition 3.2 are not unique. However, we aim at a stronger result, namely
that globally defined martingale solutions on Œ0;1/ in the sense of Definition 3.1 are not
unique. Moreover, we will prove that for an arbitrary time interval Œ0; T �, the martingale
solutions on Œ0; T � are not unique. To this end, we will extend P to a martingale solution
on Œ0;1/ through the procedure developed in Section 3.2. More precisely, as an immedi-
ate corollary of Proposition 3.7 and the fact that �L is a .Bt /t�0-stopping time, we may
apply Proposition 3.2. In particular, we construct Q! for all ! 2 �0. In view of Proposi-
tion 3.4, (M1)–(M3) follow once we verify condition (3.5) for Q! . This will be achieved
in the following result.

Proposition 3.8. The probability measure P ˝�L R is a martingale solution to the
Navier–Stokes system (1.5) on Œ0;1/ in the sense of Definition 3.1.

Proof. In light of Propositions 3.2 and 3.4, it only remains to establish (3.5). Due to (3.15)
and (3.16), we know that

P
�
! W Z!.� ^ �L.!// 2 CH

1�ı
\ C

1=2�ı
loc L2

�
D P

�
Zu.� ^ �L.u// 2 CH

1�ı
\ C

1=2�ı
loc L2

�
D P

�
z.� ^ TL/ 2 CH

1�ı
\ C

1=2�ı
loc L2

�
D 1:

This means that there exists a P -measurable set N � �0;�L such that P.N / D 0 and for
! 2 N c ,

Z!
�^�L.!/

2 CH 1�ı
\ C

1=2�ı
loc L2: (3.17)
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On the other hand, it follows from (3.13) that for every !0 2 �0,

Z!
0

.t/ �Z!
0

.t ^ �L.!//

DM!0

t;0 � e
.t�t^�L.!//�M!0

t^�L.!/;0
C

ˆ t

t^�L.!/

P�e.t�s/�M!0

s;0 ds

C .e.t�t^�L.!//� � I /

�
M!0

t^�L.!/;0
C

ˆ t^�L.!/

0

P�e.t^�L.!/�s/�M!0

s;0 ds

�
D Z!

0

�L.!/
.t/C .e.t�t^�L.!//� � I /Z!

0

.t ^ �L.!//

with

Z!
0

�L.!/
.t/ DM!0

t;0 � e
.t�t^�L.!//�M!0

t^�L.!/;0
C

ˆ t

t^�L.!/

P�e.t�s/�M!0

s;0 ds

DM!0

t;0 �M
!0

t^�L.!/;0
C

ˆ t

t^�L.!/

P�e.t�s/�.M!0

s;0 �M
!0

s^�L.!/;0
/ ds:

Since M�;0 �M�^�L.!/;0 is B�L.!/-measurable, we know that Z!
0

�L.!/
is B�L.!/-measur-

able.
Using (3.1) and (3.2) we find that for all ! 2 �0,

Q!.!
0
2 �0 W Z

!0

� 2 CH
1�ı
\ C

1=2�ı
loc L2/

D Q!.!
0
2 �0 W Z

!0

�^�L.!/
2 CH 1�ı

\ C
1=2�ı
loc L2; Z!

0

�L.!/
2 CH 1�ı

\ C
1=2�ı
loc L2/

D ı!.!
0
2 �0 W Z

!0

�^�L.!/
2 CH 1�ı

\ C
1=2�ı
loc L2/

�R�L.!/;x.�L.!/;!/.!
0
2 �0 W Z

!0

�L.!/
2 CH 1�ı

\ C
1=2�ı
loc L2/:

Here the first factor on the right hand side equals 1 for all ! 2 N c due to (3.17). Since
for ! 2 ¹x.�/ 2 L2�º, R�L.!/;x.�L.!/;!/ is a martingale solution to the Navier–Stokes
system (1.5) starting at the deterministic time �L.!/ from the deterministic initial condi-
tion x.�L.!/; !/, the process !0 7!M!0

�;0 �M
!0

�^�L.!/;0
is a GG�-Wiener process starting

from �L.!/ with respect to .Bt /t�0 under the measure R�L.!/;x.�L.!/;!/. Due to the
regularity of its covariance we deduce that also the second factor equals 1. Indeed, for
R�L.!/;x.�L.!/;!/-a.e. !0 we have

Z!
0

�L.!/
.t/ D

ˆ t

0

Pe.t�s/� d.M!0

s;0 �M
!0

s^�L.!/;0
/;

and the regularity of this stochastic convolution follows again from Proposition 3.6. In
particular, for R�L.!/;x.�L.!/;!/-a.e. !0,

Z!
0

�L.!/
2 CH 1�ı

\ C
1=2�ı
loc L2:

To summarize, we have proved that for all ! 2 N c \ ¹x.�/ 2 L2�º,

Q!.!
0
2 �0 W Z

!0

� 2 CH
1�ı
\ C

1=2�ı
loc L2/ D 1:
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As a consequence, for all ! 2 N c \ ¹x.�/ 2 L2�º there exists a measurable set N!
such thatQ!.N!/D 0 and for all !0 2N c

! the trajectory t 7!Z!
0

.t/ belongs toCH 1�ı \

C
1=2�ı
loc L2. Therefore, by (3.14) we deduce that �L.!0/ D N�L.!0/ for all !0 2 N c

! where

N�L.!
0/ WD inf ¹t � 0 W kZ!

0

.t/kH1�ı � L
1=4=CSº

^ inf ¹t � 0 W kZ!
0

k
C
1=2�2ı
t L2

� L1=2=CSº ^ L:

This implies that for t < L,

¹!0 2 N c
! W �L.!

0/ � tº

D

°
!0 2 N c

! W sup
s2Q; s�t

kZ!
0

.s/kH1�ı � L
1=4=CS

±
[

²
!0 2 N c

! W sup
s1¤s22Q\Œ0;t�

kZ!
0

.s1/ �Z
!0.s2/kL2

js1 � s2j1=2�2ı
� L1=2=CS

³
DW N c

! \ At : (3.18)

Finally, we deduce that for all ! 2 N c \ ¹x.�/ 2 L2�º with P.x.�/ 2 L2� / D 1,

Q!.!
0
2 �0 W �L.!

0/ D �L.!// D Q!.!
0
2 N c

! W �L.!
0/ D �L.!//

D Q!
�
!0 2 N c

! W !
0.s/ D !.s/; 0 � s � �L.!/; �L.!

0/ D �L.!/
�
D 1; (3.19)

where we have used (3.1) and the fact that (3.18) implies

¹!0 2 N c
! W N�L.!

0/ D �L.!/º D N
c
! \

�
A�L.!/n

1[
nD1

A�L.!/�1=n

�
2 N c

! \B0
�L.!/

;

and Q!.A�L.!/n
S1
nD1 A�L.!/�1=n/ D 1. This verifies condition (3.5) in Proposition 3.4

and as a consequence P ˝�L R is a martingale solution to the Navier–Stokes system (1.5)
on Œ0;1/ in the sense of Definition 3.1.

Remark 3.9. The property (3.19) is essential for showing that the concatenated proba-
bility measure satisfies (M1)–(M3). This is the reason why we had to introduce N�L and
make use of the continuity of Z under the law of a martingale solution, which is different
from the original regularity ofZ following merely from its definition (3.13) together with
the regularity of trajectories in �0. Without the improved regularity, we could only prove
that �L is a stopping time with respect to the right continuous filtration .Bt /t�0, and the
dependence on the right limit does not allow one to establish (3.19).

Finally, we have all in hand to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Let T > 0 be arbitrary, let � D 1=2 and K D 2. Based on The-
orem 1.1 and Proposition 3.8 there exists L > 1 and a measure P ˝�L R which is a
martingale solution to the Navier–Stokes system (1.5) on Œ0;1/ and it coincides on the
random interval Œ0; �L� with the law of the solution constructed through Theorem 1.1.
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The martingale solution P ˝�L R starts from a certain deterministic initial value x0 D
v.0/ 2 L2� dictated by the construction in Theorem 1.1. The key result is the failure of
the energy inequality at time T formulated in (1.7) on the set ¹TL � T º � �. In view of
(3.6), (3.19) and (3.15) we obtain, by (1.7) and the choice of K D 2,

EP˝�LRŒkx.T /k2
L2
� D EP˝�LRŒ1¹�L�T ºkx.T /k

2
L2
�CEP˝�LRŒ1¹�L<T ºkx.T /k

2
L2
�

�

ˆ
�0

EQ! Œ1¹�L�T ºkx.T /k
2
L2
� P.d!/ > 2.kx0k

2
L2
C T Tr.GG�//:

On the other hand, by a classical compactness argument based on Galerkin approx-
imation we may construct another martingale solution QP which starts from the same
deterministic initial condition x0 and which satisfies the energy inequality

E
QP Œkx.T /k2

L2
� � kx0k

2
L2
C T Tr.GG�/:

Therefore, the two martingale solutions P ˝�L R and QP are distinct and nonunique-
ness in law holds for the Navier–Stokes system (1.5).

4. Proof of Theorem 1.1

In this section we fix a probability space .�;F ;P/ and letB be aGG�-Wiener process on
.�;F ;P/. We let .Ft /t�0 be the normal filtration generated by B , that is, the canonical
right continuous filtration augmented by all the P-negligible sets. In order to verify that the
solution constructed in this section is a martingale solution before a suitable stopping time,
it is essential that the solution is adapted to the filtration .Ft /t�0, which corresponds to a
probabilistically strong solution. In the following, we construct a probabilistically strong
solution before a stopping time. Furthermore, the solution does not satisfy the energy
inequality.

We intend to develop an iteration procedure leading to the proof of Theorem 1.1.
More precisely, we apply the convex integration method to the nonlinear equation (3.11).
The iteration is indexed by a parameter q 2 N0. We consider an increasing sequence
¹�qºq2N �N which diverges to1, and a sequence ¹ıqºq2N � .0; 1/ which is decreasing
to 0. We choose a; b 2 N and ˇ 2 .0; 1/ and let

�q D a
bq ; ıq D �

�2ˇ
q ;

where ˇ will be chosen sufficiently small and a as well as b will be chosen sufficiently
large. At each step q, a pair .vq; VRq/ is constructed solving the system

@tvq ��vq C div..vq C zq/˝ .vq C zq//Crpq D div VRq;

div vq D 0;
(4.1)

with zq D P�f .q/z for f .q/ D �˛=8qC1 and P�f .q/ being the Fourier multiplier operator,
which projects a function onto its Fourier frequencies� f .q/ in absolute value. Hence, in
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addition to the conditions below, we need b˛=8 2 N such that f .q/ 2 N. By the Sobolev
embedding we know kf kL1 � CSkf kH .3C�/=2 for � > 0, where we choose CS � 1. For
L > 1 and 0 < ı < 1=12 define

TL WD inf ¹t � 0 W kz.t/kH1�ı �L
1=4=CSº ^ inf ¹t � 0 W kzk

C
1=2�2ı
t L2

�L1=2=CSº ^L:

(4.2)

According to Proposition 3.6, the stopping time TL is P-a.s. strictly positive and TL " 1
as L!1 P-a.s. Moreover, for t 2 Œ0; TL�,

kz.t/kH1�ı � L
1=4=CS ; kzkC1=2�2ıt L2

� L1=2=CS ; kzqkC1=2�2ıt L2
� L1=2=CS ;

kzq.t/kL1 � L
1=4�

˛=8
qC1; krzq.t/kL1 � L

1=4�
˛=4
qC1; kzqkC1=2�2ıt L1

� �
˛=4
qC1L

1=2:

(4.3)
LetM0.t/DL

4e4Lt . By induction on q we assume the following bounds for the iterations
.vq; VRq/: if t 2 Œ0; TL� then

kvqkCtL2 �M0.t/
1=2
�
1C

X
1�r�q

ı1=2r

�
� 2M0.t/

1=2;

kvqkC1t;x
�M0.t/

1=2�4q;

k VRqkCtL1 �M0.t/cRıqC1:

(4.4)

Here we define
P
1�r�0 WD 0, and cR >0 is a sufficiently small universal constant given in

(4.28) and (4.37) below. In addition, we use
P
r�1 ı

1=2
r �

P
r�1 a

�rbˇ D
a�ˇb

1�a�ˇb
< 1=2,

which boils down to the requirement

aˇb > 3; (4.5)

which we assume from now on. The iteration will be initiated through the following result
which also establishes compatibility conditions between the parameters L; a; ˇ; b essen-
tial for what follows.

Lemma 4.1. For L > 1 define

v0.t; x/ D
L2e2Lt

.2�/3=2
.sin.x3/; 0; 0/:

Then the associated Reynolds stress is given by1

VR0.t; x/ D
.2LC 1/L2e2Lt

.2�/3=2

0@ 0 0 � cos.x3/
0 0 0

� cos.x3/ 0 0

1A
C v0 V̋ z0 C z0 V̋ v0 C z0 V̋ z0: (4.6)

1We denote by V̋ the trace-free part of the tensor product.
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Moreover, all the estimates in (4.4) on level q D 0 for .v0; VR0/, as well as (4.5), are valid
provided

45 � .2�/3=2 < 5 � .2�/3=2a2ˇb � cRL � cR

�
.2�/3=2a4

2
� 1

�
: (4.7)

In particular, we require
cRL > 45 � .2�/

3=2: (4.8)

Furthermore, the initial values v0.0; x/ and VR0.0; x/ are deterministic.

Proof. The first bound in (4.4) follows immediately since

kv0.t/kL2 D
L2e2Lt
p
2
�M0.t/

1=2:

For the second bound, we have

kv0kC1t;x
�M0.t/

1=2 2.1C L/

.2�/3=2
�M0.t/

1=2�40 DM0.t/
1=2a4

provided
2.1C L/

.2�/3=2
� a4: (4.9)

A direct computation implies that the corresponding Reynolds stress is given by (4.6) and
we obtain

k VR0.t/kL1 � .2�/
3=2M0.t/

1=22.2LC 1/C 2M0.t/
1=2L1=4 C L1=2:

Therefore, the desired third bound in (4.4) holds provided

k VR0.t/kL1 � 5 � .2�/
3=2M0.t/=L �M0.t/cRı1 DM0.t/cRa

�2ˇb;

which requires 5 � .2�/3=2L�1 � cRa�2ˇb . Here we have used (4.8) in the first inequality.
Combining this condition with (4.9), we obtain the requirement

5 � .2�/3=2a2ˇb � cRL � cR

�
.2�/3=2a4

2
� 1

�
: (4.10)

In particular, we require that
cRL > 5 � .2�/

3=2; (4.11)

otherwise the left inequality in (4.10) cannot be fulfilled. Under these conditions, all the
estimates in (4.4) are valid on level q D 0. Taking into account (4.5), conditions (4.10)
and (4.11) are strengthened to (4.7) and (4.8) from the statement of the lemma, and the
proof is complete.
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The key result of this section which is used to prove Theorem 1.1 is the following.

Proposition 4.2 (Main iteration). Let L > 1 satisfying (4.8) be given and let .vq; VRq/
be an .Ft /t�0-adapted solution to (4.1) satisfying (4.4). Then there exists a choice of
parameters a; b; ˇ such that (4.7) is fulfilled and there exist .Ft /t�0-adapted processes
.vqC1; VRqC1/ which solve (4.1), obey (4.4) at level q C 1 and for t 2 Œ0; TL� we have

kvqC1.t/ � vq.t/kL2 �M0.t/
1=2ı

1=2
qC1: (4.12)

Furthermore, if vq.0/ and VRq.0/ are deterministic, so are vqC1.0/ and VRqC1.0/.

The proof of Proposition 4.2 is presented in Section 4.1. At this point, we take Propo-
sition 4.2 for granted and apply it in order to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof relies on the above described iteration procedure. More
precisely, our goal is to prove that for L > 1 satisfying (4.8), Lemma 4.1 and Proposi-
tion 4.2 give rise to an .Ft /t�0-adapted analytically weak solution v to the transformed
problem (3.11). By possibly increasing the value of L, the corresponding solution v fails
to satisfy a suitable energy inequality at the given time T . Finally, again by possibly mak-
ing L bigger, we verify that u WD v C z and t WD TL fulfill all the requirements in the
statement of the theorem.

Starting from .v0; VR0/ given in Lemma 4.1, the iteration of Proposition 4.2 yields a
sequence .vq; VRq/ satisfying (4.4) and (4.12). By interpolation we deduce that the follow-
ing series is summable for  2 .0; ˇ

4Cˇ
/ and t 2 Œ0; TL�:X

q�0

kvqC1.t/ � vq.t/kH .
X
q�0

kvqC1.t/ � vq.t/k
1�

L2
kvqC1.t/ � vq.t/k



H1

. M0.t/
X
q�0

ı
1�
2

qC1�
4
qC1 . M0.t/:

Thus we obtain a limiting solution vD limq!1 vq , which lies inC.Œ0;TL�IH  /. Since vq
is .Ft /t�0-adapted for every q � 0, the limit v is .Ft /t�0-adapted as well. Furthermore,
v is an analytically weak solution to (3.11) since limq!1

VRq D 0 in C.Œ0; TL�IL1/ and
limq!1 zq D z in C.Œ0; TL�IL2/. In addition, there exists a deterministic constant CL
such that

kv.t/kH � CL for all t 2 Œ0; TL�. (4.13)

Let us now show that the constructed solution v fails to satisfy the corresponding
energy inequality at time T . Namely, we will show

kv.T /kL2 > .kv.0/kL2 C L/e
LT : (4.14)
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According to (4.12), in view of bqC1 � b.q C 1/ which holds if b � 2 and then applying
(4.5), for all t 2 Œ0; TL� we obtain

kv.t/ � v0.t/kL2 �
X
q�0

kvqC1.t/ � vq.t/kL2 �M0.t/
1=2

X
q�0

ı
1=2
qC1

�M0.t/
1=2

X
q�0

.a�ˇb/qC1 DM0.t/
1=2 a�ˇb

1 � a�ˇb
<
1

2
M0.t/

1=2:

Consequently,

.kv.0/kL2 C L/e
LT
� .kv0.0/kL2 C kv.0/ � v0.0/kL2 C L/e

LT

�

�
3

2
M0.0/

1=2
C L

�
eLT ;

which we want to estimate (strictly) by�
1
p
2
�
1

2

�
M0.T /

1=2
� kv0.T /kL2 � kv.T / � v0.T /kL2 � kv.T /kL2

on the set ¹TL � T º � �. In view of the definition of M0.t/, this is indeed possible
provided

3

2
C
1

L
<

�
1
p
2
�
1

2

�
eLT : (4.15)

In other words, given T > 0 and the universal constant cR > 0, we can choose L D
L.T; cR/ > 1 large enough so that (4.8) as well as (4.15) hold and consequently (4.14)
is satisfied. Moreover, in view of Proposition 3.6 and the definition of the stopping times
(4.2), we observe that for a given T > 0 we may possibly increase L so that the set
¹TL � T º satisfies P.TL � T / > �.

Let us now define u WD v C z. Then u is .Ft /t�0-adapted, solves the Navier–Stokes
system (1.5) and we deduce from (4.13) together with (4.3) that (1.6) holds true. To verify
(1.7), we use (4.3) and apply (4.14) on ¹TL � T º to obtain

ku.T /kL2 � kv.T /kL2 � kz.T /kL2 > .kv.0/kL2 C L/e
LT
� L1=2=CS :

Thus, since u.0/ D v.0/ we may possibly increase the value of L depending on K and
Tr.GG�/ to deduce the desired lower bound (1.7). The initial value v.0/ is deterministic
by our construction. Finally, we set t WD TL, which finishes the proof.

To summarize the above discussion, first we fix the parameter L large enough in
dependence on T; cR; �;K and Tr.GG�/. Then we apply Proposition 4.2 and deduce the
result of Theorem 1.1. It remains to prove Proposition 4.2 and to verify that the parameters
a; b; ˇ can be appropriately chosen.

4.1. The main iteration – proof of Proposition 4.2

The proof of Proposition 4.2 proceeds along the lines of [7, Section 7]. We have to track
the proof carefully to make the construction in each step .Ft /t�0-adapted and the initial
value v.0/ deterministic. In the course of the proof we will need to adjust the value of the
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parameters a; b; ˇ as further conditions on these parameters will appear. The parameter L
is given and will be kept fixed. In addition, we have to make sure that the condition (4.7),
which is essential for the failure of the energy inequality in Theorem 1.1, is not violated.
However, we observe that the right inequality in (4.7) remains valid if we increase a.
In other words, given L we find the minimal value of a for which this inequality holds
and from now on we may increase a as we wish. On the other hand, increasing a or b
can in principle cause problems in the left inequality in (4.7), but here we may make the
parameter ˇ smaller so that the inequality remains true. To summarize, we may freely
increase a or b at the cost of making ˇ smaller.

4.1.1. Choice of parameters. In the following, additional parameters will be indispens-
able and their value has to be carefully chosen in order to respect all the compatibility
conditions appearing in the estimations below. First, for a sufficiently small ˛ 2 .0; 1/ to
be chosen below, we let ` 2 .0; 1/ be a small parameter satisfying

`�4q � �
�˛
qC1; `�1 � �2˛qC1; 4L � `�1: (4.16)

In particular, we define
` WD �

�3˛=2
qC1 ��2q : (4.17)

The last condition in (4.16) together with (4.7) leads to

45 � .2�/3=2 < 5 � .2�/3=2a2ˇb � cRL � cR
a4 � .2�/3=2 � 1

2
:

We remark that the reasoning from the beginning of Section 4.1 remains valid for this
new condition: we may freely increase a provided we make ˇ smaller at the same time.
In addition, we will require ˛b > 16 and ˛ > 18ˇb.

In order to verify the inductive estimates (4.4) in Sections 4.1.4 and 4.1.6, it will also
be necessary to absorb various expressions including M0.t/

1=2 for all t 2 Œ0; TL�. Since
the stopping time TL is bounded by L, this reduces to absorbingM0.L/

1=2, and it will be
seen that the strongest such requirement is

M0.L/
1=2�

13˛�1=7
qC1 � cRıqC2=10; (4.18)

needed in Section 4.1.6. In other words,

L2e2L
2

ab.13˛�1=7C2bˇ/ � 1

and choosing b D 8 � 142L2, L 2N, (this choice comes from the fact that with our choice
of ˛ below we want to guarantee that ˛b > 16, as well as the fact that b is a multiple of 7
needed for the choice of parameters needed for the intermittent jets below, cf. Appendix B)
and e2 � a leads to

bab=14ab.13˛�1=7C2bˇ/ � 1:

In view of ˛ > 18ˇb, this can be achieved by choosing a large enough and ˛D 14�2. This
choice also satisfies ˛b > 16 required above, and the condition ˛ > 18ˇb can be achieved
by choosing ˇ small. It is also compatible with all the other requirements needed below.
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From now on, the parameters ˛ and b remain fixed and the free parameters are a and ˇ
for which we already have a lower, respectively upper, bound. Below, we will possibly
increase a and decrease ˇ at the same time in order to preserve all the above conditions
and to fulfil further conditions appearing below.

4.1.2. Mollification. We intend to replace vq by a mollified velocity field v`. To this end,
we extend zq.t/D zq.0/, vq.t/D vq.0/ for t < 0 and let ¹�"º">0 be a family of standard
mollifiers on R3, and let ¹'"º">0 be a family of standard mollifiers with support on RC.
We define a mollification of vq , VRq and zq in space and time by convolution as follows:

v` D .vq �x �`/ �t '`; VR` D . VRq �x �`/ �t '`; z` D .zq �x �`/ �t '`;

where �` D 1
`3
�. �

`
/ and '` D 1

`
'. �
`
/. Since the mollifier '` is supported on RC, it is

easy to see that z` is .Ft /t�0-adapted and so are v` and VR`. Since '` is supported on RC,
if the initial values vq.0/ and VRq.0/ are deterministic, so are v`.0/ and VR`.0/; @t VR`.0/.
Moreover, zq.0/D 0 implies that z`.0/ andRcom.0/ given below are deterministic as well.
Then using (4.1) we find that .v`; VR`/ satisfies

@tv` ��v` C div..v` C z`/˝ .v` C z`//Crp` D div. VR` CRcom/;

div v` D 0;
(4.19)

where

Rcom D .v` C z`/ V̋ .v` C z`/ � ..vq C zq/ V̋ .vq C zq// �x �` �t '`;

p` D .pq �x �`/ �t '` �
1
3
.jv` C z`j

2
� .jvq C zqj

2
�x �`/ �t '`/:

By using (4.4) and (4.16) we find, for t 2 Œ0; TL�,

kvq � v`kCtL2 . kvq � v`kC0t;x . `kvqkC1t;x
� `�4qM0.t/

1=2
�M0.t/

1=2��˛qC1

�
1
4
M0.t/

1=2ı
1=2
qC1; (4.20)

where we use the fact that ˛ > ˇ and we choose a large enough in order to absorb the
implicit constant. In addition, for t 2 Œ0; TL�,

kv`kCtL2 � kvqkCtL2 �M0.t/
1=2
�
1C

X
1�r�q

ı1=2r

�
; (4.21)

and for N � 1,

kv`kCNt;x
. `�NC1kvqkC1t;x

� `�NC1�4qM0.t/
1=2
�M0.t/

1=2`�N��˛qC1; (4.22)

where we have chosen a large enough to absorb the implicit constant.

4.1.3. Construction of vqC1. Let us now proceed with the construction of the perturba-
tion wqC1 which then defines the next iteration by vqC1 WD v` C wqC1. To this end, we
make use of the construction of the intermittent jets [7, Section 7.4], which we recall in
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Appendix B. In particular, the building blocks W.�/ D W�;r?;rk;�;� for � 2 ƒ are defined
in (B.3) and the set ƒ is introduced in Lemma B.1. The necessary estimates are collected
in (B.7). For the intermittent jets we choose the following parameters:

� D �qC1; rk D �
�4=7
qC1 ; r? D r

�1=4

k
��1qC1 D �

�6=7
qC1 ; � D �qC1rkr

�1
? D �

9=7
qC1:

(4.23)
It is required that b is a multiple of 7 to ensure that �qC1r? D ab

qC1=7 2 N.
In order to define the amplitude functions, let � be a smooth function such that

�.z/ D

´
1 if 0 � z � 1;

z if z � 2;

and z � 2�.z/ � 4z for z 2 .1; 2/. We then define, for t 2 Œ0; TL� and ! 2 �,

�.!; t; x/ D 4cRıqC1M0.t/�
�
.cRıqC1M0.t//

�1
j VR`.!; t; x/j

�
;

which is .Ft /t�0-adapted and we haveˇ̌̌̌
VR`.!; t; x/

�.!; t; x/

ˇ̌̌̌
D
1

4

.cRıqC1M0.t//
�1j VR`.!; t; x/j

�..cRıqC1M0.t//�1j VR`.!; t; x/j/
�
1

2
:

Note that if VR`.0; x/ and @t VR`.0; x/ are deterministic, so are �.0;x/ and @t�.0;x/. More-
over, for any p 2 Œ1;1� and t 2 Œ0; TL� we have

k�kCtLp � 16
�
.8�3/1=pcRıqC1M0.t/C k VR`kCtLp

�
: (4.24)

Furthermore, by mollification estimates, the embeddingW 4;1 � L1 and (4.4) we obtain,
for N � 0 and t 2 Œ0; TL�,

k VR`kCNt;x
. `�4�N cRıqC1M0.t/;

and by repeated application of the chain rule (see [6, Proposition C.1]) we obtain

k�kCNt;x
. `�4�N cRıqC1M0.t/C .cRıqC1M0.t//

�NC1`�5N .cRıqC1M0.t//
N

. `�4�5N cRıqC1M0.t/; (4.25)

where we have used the fact that d
dt
M0.t/ D 4LM0.t/ with 4L � `�1 and the implicit

constants are independent of !.
As the next step, we define the amplitude functions

a.�/.!; t;x/ WD a�;qC1.!; t;x/ WD �.!; t;x/
1=2�

�
Id�

VR`.!; t; x/

�.!; t; x/

�
.2�/�3=4; (4.26)

where � is introduced in Lemma B.1. Since � and VR` are .Ft /t�0-adapted, we know that
also a.�/ is .Ft /t�0-adapted. If VR`.0;x/ and @t VR`.0;x/ are deterministic, so are a.�/.0;x/
and @ta.�/.0; x/. By (B.5) we have

.2�/3=2
X
�2ƒ

a2.�/

 
T3
W.�/ ˝W.�/ dx D � Id � VR`; (4.27)
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and using (4.24) for t 2 Œ0; TL�,

ka.�/kCtL2 � k�k
1=2

CtL1
k�kC0.B1=2.Id// �

4c
1=2
R .8�3 C 1/1=2M

8jƒj.8�3 C 1/1=2
M0.t/

1=2ı
1=2
qC1

�
c
1=4
R M0.t/

1=2ı
1=2
qC1

2jƒj
; (4.28)

where we choose cR to be a small universal constant to absorbM and we useM to denote
the universal constant as in Lemma B.1. Furthermore, by using the fact that � is bounded
from below by 4cRıqC1M0.t/, we deduce by similar arguments to those in (4.25) that for
t 2 Œ0; TL� and N � 0,

ka.�/kCNt;x
� `�2�5N c

1=4
R ı

1=2
qC1M0.t/

1=2: (4.29)

With these preparations in hand, we define the principal part w.p/qC1 of the perturbation
wqC1 as

w
.p/
qC1 WD

X
�2ƒ

a.�/W.�/: (4.30)

If VR`.0; x/ and @t VR`.0; x/ are deterministic, so are w.p/qC1.0; x/ and @tw
.p/
qC1.0; x/. Since

the coefficients a.�/ are .Ft /t�0-adapted and W.�/ is a deterministic function we deduce
thatw.p/qC1 is also .Ft /t�0-adapted. Moreover, according to (4.27) and (B.4) it follows that

w
.p/
qC1 ˝ w

.p/
qC1 C

VR` D
X
�2ƒ

a2.�/P¤0.W.�/ ˝W.�//C � Id; (4.31)

where P¤0f WD f � F f .0/ D f � .2�/3=2
ffl

T3 f .
We also define an incompressibility corrector by

w
.c/
qC1 WD

X
�2ƒ

curl.ra.�/ � V.�//Cra.�/ � curlV.�/ C a.�/W
.c/

.�/
; (4.32)

withW .c/

.�/
and V.�/ being given in (B.6). Since a.�/ is .Ft /t�0-adapted andW.�/;W

.c/

.�/
and

V.�/ are deterministic functions we know that w.c/qC1 is also .Ft /t�0-adapted. If VR`.0; x/

and @t VR`.0; x/ are deterministic, so are w.c/qC1.0; x/ and @tw
.c/
qC1.0; x/. By a direct com-

putation we deduce that

w
.p/
qC1 C w

.c/
qC1 D

X
�2ƒ

curl curl.a.�/V.�//;

hence
div.w.p/qC1 C w

.c/
qC1/ D 0:

We also introduce a temporal corrector

w
.t/
qC1 WD �

1

�

X
�2ƒ

PP¤0.a
2
.�/�

2
.�/ 

2
.�/�/; (4.33)
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where P is the Helmholtz projection. If VR`.0; x/ and @t VR`.0; x/ are deterministic, so is
w
.t/
qC1.0; x/. As above, w.t/qC1 is .Ft /t�0-adapted and by a direct computation we obtain

@tw
.t/
qC1 C

X
�2ƒ

P¤0.a
2
.�/ div.W.�/ ˝W.�///

D �
1

�

X
�2ƒ

PP¤0@t .a
2
.�/�

2
.�/ 

2
.�/�/C

1

�

X
�2ƒ

P¤0.a
2
.�/@t .�

2
.�/ 

2
.�/�//

D .Id � P /
1

�

X
�2ƒ

P¤0@t .a
2
.�/�

2
.�/ 

2
.�/�/ �

1

�

X
�2ƒ

P¤0.@ta
2
.�/.�

2
.�/ 

2
.�/�//: (4.34)

Note that the first term on the right hand side can be viewed as a pressure term rp1.
Finally, the total perturbation wqC1 is defined by

wqC1 WD w
.p/
qC1 C w

.c/
qC1 C w

.t/
qC1; (4.35)

which is mean zero, divergence-free and .Ft /t�0-adapted. If VR`.0; x/ and @t VR`.0; x/ are
deterministic, so is wqC1.0; x/. The new velocity vqC1 is defined as

vqC1 WD v` C wqC1: (4.36)

Thus, it is also .Ft /t�0-adapted. If VRq.0; x/ and vq.0; x/ are deterministic, so is
vqC1.0; x/.

4.1.4. Verification of the inductive estimates for vqC1. Next, we verify the inductive esti-
mates (4.4) on level q C 1 for v and we prove (4.12). First, we recall the following result
from [7, Lemma 7.4].

Lemma 4.3. Fix integers N; � � 1 and let � > 1 be such that

2�
p
3 �

�
�
1

3
and �4

.2�
p
3 �/N

�N
� 1:

Let p 2 ¹1;2º and let f be a T3-periodic function such that there exists a constant Cf > 0
such that

kDjf kLp � Cf �
j

for all 0 � j � N C 4. In addition, let g be a .T=�/3-periodic function. Then

kfgkLp . Cf kgkLp ;

where the implicit constant is universal.

This result will be used to bound w.p/qC1 in L2, whereas for the other Lp-norms we
apply a different approach. By (4.28) and (4.29) we obtain, for t 2 Œ0; TL�,

kDja.�/kCtL2 .
c
1=4
R M0.t/

1=2

2jƒj
ı
1=2
qC1`

�8j ;
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which combined with Lemma 4.3 for � D `�8 yields, for t 2 Œ0; TL�,

kw
.p/
qC1kCtL2 �

X
�2ƒ

1

2jƒj
c
1=4
R M0.t/

1=2ı
1=2
qC1kW.�/kCtL2 �

1

2
M0.t/

1=2ı
1=2
qC1; (4.37)

where we use c1=4R to absorb the universal constant and the fact that due to (B.3) together
with the normalizations (B.1), (B.2) we have kW.�/kL2 ' 1 uniformly in all the parameters
involved.

For a general Lp norm we apply (B.7) and (4.29) to deduce that for t 2 Œ0; TL� and
p 2 .1;1/,

kw
.p/
qC1kCtLp .

X
�2ƒ

ka.�/kC0t;x
kW.�/kCtLp

. M0.t/
1=2ı

1=2
qC1`

�2r
2=p�1
?

r
1=p�1=2

k
; (4.38)

kw
.c/
qC1kCtLp .

X
�2ƒ

.ka.�/kC0t;x
kW

.c/

.�/
kCtLp C ka.�/kC2t;x

kV.�/kCtW 1;p /

. M0.t/
1=2ı

1=2
qC1`

�12r
2=p�1
?

r
1=p�1=2

k
.r?r

�1
k
C ��1qC1/

. M0.t/
1=2ı

1=2
qC1`

�12r
2=p
?

r
1=p�3=2

k
; (4.39)

and
kw

.t/
qC1kCtLp . ��1

X
�2ƒ

ka.�/k
2

C0t;x
k�.�/k

2
L2p
k .�/k

2
CtL2p

. ıqC1M0.t/`
�4r

2=p�1
?

r
1=p�2

k
.��1r�1? rk/

DM0.t/ıqC1`
�4r

2=p�1
?

r
1=p�2

k
��1qC1: (4.40)

We note that for p D 2, (4.38) provides a worse bound than (4.37) which was based on
Lemma 4.3. Since by (4.18), M0.L/

1=2�
4˛�1=7
qC1 < 1, we see that for t 2 Œ0; TL�,

kw
.c/
qC1kCtLp C kw

.t/
qC1kCtLp

. M0.t/
1=2ı

1=2
qC1`

�2r
2=p�1
?

r
1=p�1=2

k
.`�10r?r

�1
k
CM0.t/

1=2ı
1=2
qC1`

�2r
�3=2

k
��1qC1/

. M0.t/
1=2ı

1=2
qC1`

�2r
2=p�1
?

r
1=p�1=2

k
; (4.41)

where we use (4.16) and the fact that �20˛�2=7qC1 < 1 by our choice of ˛. The bound (4.41)
will be used below in the estimation of the Reynolds stress.

Combining (4.37), (4.39) and (4.40) we obtain, for t 2 Œ0; TL�,

kwqC1kCtL2 �M0.t/
1=2ı

1=2
qC1.1=2C C`

�12r?r
�1
k
C CM0.t/

1=2ı
1=2
qC1`

�4r
�3=2

k
��1qC1/

�M0.t/
1=2ı

1=2
qC1.1=2C C�

24˛�2=7
qC1 C CM0.t/

1=2ı
1=2
qC1�

8˛�1=7
qC1 /

�
3
4
M0.t/

1=2ı
1=2
qC1; (4.42)
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where by (4.18) we choose ˇ small enough and a large enough such that

C�
24˛�2=7
qC1 � 1=8; CM0.L/

1=2ı
1=2
qC1�

8˛�1=7
qC1 � 1=8:

The bound (4.42) can be directly combined with (4.21) and the definition (4.36) of the
velocity vqC1 to deduce the first bound in (4.4) on level q C 1. Indeed, for t 2 Œ0; TL�,

kvqC1kCtL2 � kv`kCtL2 C kwqC1kCtL2 �M0.t/
1=2
�
1C

X
1�r�qC1

ı1=2r

�
:

In addition, (4.42) together with (4.20) yields, for t 2 Œ0; TL�,

kvqC1 � vqkCtL2 � kwqC1kCtL2 C kv` � vqkCtL2 �M0.t/
1=2ı

1=2
qC1;

hence (4.12) holds.
As the next step, we shall verify the second bound in (4.4). Using (4.29) and (B.7) we

get, for t 2 Œ0; TL�,

kw
.p/
qC1kC1t;x

�

X
�2ƒ

ka.�/kC1t;x
kW.�/kC1t;x

. M0.t/
1=2`�7r�1? r

�1=2

k
�qC1

�
1C

r?�

rk

�
. M0.t/

1=2`�7r�1? r
�1=2

k
�2qC1; (4.43)

kw
.c/
qC1kC1t;x

.
X
�2ƒ

�
ka.�/kC1t;x

kW
.c/

.�/
kC1t;x

C ka.�/kC3t;x
.kV.�/kC1t C

1
x
C kV.�/kCtC2x /

�
. M0.t/

1=2`�17r
�3=2

k

�
�C

r?��qC1

rk

�
. M0.t/

1=2`�17r
�3=2

k
�2qC1; (4.44)

and

kw
.t/
qC1kC1t;x

�
1

�

X
�2ƒ

Œka2.�/�
2
.�/ 

2
.�/kCtW 1C˛;p C ka2.�/�

2
.�/ 

2
.�/kC1t W

˛;p �

�
1

�

X
�2ƒ

�
ka.�/kC0t;x

ka.�/kC1C˛t;x
k�.�/k

2
L1k .�/k

2
CtL1

C ka.�/kC1t;x
ka.�/kC0t;x

k�.�/kL1.k�.�/kW 1C˛;1k .�/k
2
CtL1

C k�.�/kW ˛;1k .�/kCtL1k .�/kC1t L1
/

C ka.�/kC1t;x
ka.�/kC0t;x

k�.�/k
2
L1.k .�/kCtL1k .�/kCtW 1C˛;p

C k .�/kC1t L1
k .�/kCtW ˛;p C k .�/kCtL1k .�/kC1t W ˛;p /

�
.
1

�
M0.t/`

�9r�2? r�1
k
�1C˛qC1

�
1C

r?�

rk

�
. M0.t/`

�9r�1? r�2
k
�1C˛qC1 ; (4.45)
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where we have chosen p large enough and applied the Sobolev embedding in the first
inequality in (4.45) needed because PP¤0 is not a bounded operator on C 0; in the last
inequality we have used interpolation and an extra �˛qC1 appeared. Combining (4.22) and
(4.43)–(4.45) with (4.16) we obtain, for t 2 Œ0; TL�,

kvqC1kC1t;x
� kv`kC1t;x

C kwqC1kC1t;x

�M0.t/
1=2
�
�˛qC1 C C�

14˛C22=7
qC1 C C�

34˛C20=7
qC1 C CM0.t/

1=2�19˛C3qC1

�
�M0.t/

1=2�4qC1;

where we use (4.18) to have

CM0.L/
1=2
�

1
2
�1�19˛qC1 :

Thus, the second estimate in (4.4) holds true on level q C 1.
We conclude this part with further estimates of the perturbations w.p/qC1, w.c/qC1 and

w
.t/
qC1, which will be used below in order to bound the Reynolds stress VRqC1 and to

establish the final estimate in (4.4) on level qC 1. By a similar approach to (4.38), (4.39),
(4.40), we derive the following estimates: for t 2 Œ0; TL� by using (4.16), (4.29) and (B.7),

kw
.p/
qC1 C w

.c/
qC1kCtW 1;p

�

X
�2ƒ

kcurl curl.a.�/V.�//kCtW 1;p

.
X
�2ƒ

�
ka.�/kC3t;x

kV.�/kCtLp C ka.�/kC2t;x
kV.�/kCtW 1;p

C ka.�/kC1t;x
kV.�/kCtW 2;p C ka.�/kC0t;x

kV.�/kCtW 3;p

�
. M0.t/

1=2r
2=p�1
?

r
1=p�1=2

k
.`�17��2qC1 C `

�12��1qC1 C `
�7
C `�2�qC1/

. M0.t/
1=2r

2=p�1
?

r
1=p�1=2

k
`�2�qC1; (4.46)

and

kw
.t/
qC1kCtW 1;p �

1

�

X
�2ƒ

�
ka.�/kC0t;x

ka.�/kC1t;x
k�.�/k

2
L2p
k .�/k

2
CtL2p

C ka.�/k
2

C0t;x
k�.�/kL2pkr�.�/kL2pk .�/k

2
CtL2p

C ka.�/k
2

C0t;x
k�.�/k

2
L2p
kr .�/kCtL2pk .�/kCtL2p

�
.
M0.t/

�
r
2=p�2
?

r
1=p�1

k
.`�9 C `�4�qC1/

. M0.t/r
2=p�2
?

r
1=p�1

k
`�4�

�2=7
qC1 : (4.47)
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4.1.5. Definition of the Reynolds stress VRqC1. Subtracting system (4.19) from (4.1) at
level q C 1, we obtain

div VRqC1 � rpqC1

D ��wqC1 C @t .w
.p/
qC1 C w

.c/
qC1/C div..v` C z`/˝ wqC1 C wqC1 ˝ .v` C z`//„ ƒ‚ …

div.Rlin/Crplin

C div
�
.w

.c/
qC1 C w

.t/
qC1/˝ wqC1 C w

.p/
qC1 ˝ .w

.c/
qC1 C w

.t/
qC1/

�„ ƒ‚ …
div.Rcor/Crpcor

C div.w.p/qC1 ˝ w
.p/
qC1 C

VR`/C @tw
.t/
qC1„ ƒ‚ …

div.Rosc/Crposc

C div.vqC1˝zqC1 � vqC1˝z` C zqC1˝vqC1 � z`˝vqC1 C zqC1˝zqC1 � z`˝z`/„ ƒ‚ …
div.Rcom1/Crpcom1

C div.Rcom/ � rp`: (4.48)

We recall the inverse divergence operator R of [7, Section 5.6], which acts on vector
fields v with

´
T3 v dx D 0 as

.Rv/kl D .@k�
�1vl C @l�

�1vk/ � 1
2
.ıkl C @k@l�

�1/ div��1v

for k; l 2 ¹1; 2; 3º. Then Rv.x/ is a symmetric trace-free matrix for each x 2 T3, and R

is a right inverse of the div operator, i.e. div.Rv/ D v. By using R we define

Rlin WD �R�wqC1CR@t .w
.p/
qC1Cw

.c/
qC1/C .v`C z`/ V̋ wqC1CwqC1 V̋ .v`C z`/;

Rcor WD .w
.c/
qC1 C w

.t/
qC1/ V̋ wqC1 C w

.p/
qC1
V̋ .w

.c/
qC1 C w

.t/
qC1/;

Rcom1 WD vqC1 V̋ zqC1 � vqC1 V̋ z` C zqC1 V̋ vqC1 � z` V̋ vqC1 C zqC1 V̋ zqC1

� z` V̋ z`:

We observe that if VRq.0; x/ and vq.0; x/ are deterministic, the same is valid for the above
defined error terms Rlin.0; x/, Rcor.0; x/ and Rcom1.0; x/.

In order to define the remaining oscillation error from the third line in (4.48), we apply
(4.31) and (4.34) to obtain

div.w.p/qC1 ˝ w
.p/
qC1 C

VR`/C @tw
.t/
qC1

D

X
�2ƒ

div
�
a2.�/P¤0.W.�/˝W.�//

�
Cr�C@tw

.t/
qC1

D

X
�2ƒ

P¤0
�
ra2.�/P¤0.W.�/˝W.�//

�
Cr�C

X
�2ƒ

P¤0
�
a2.�/ div.W.�/˝W.�//

�
C@tw

.t/
qC1

D

X
�2ƒ

P¤0
�
ra2.�/P¤0.W.�/˝W.�//

�
Cr�Crp1�

1

�

X
�2ƒ

P¤0
�
@ta

2
.�/.�

2
.�/ 

2
.�/�/

�
:
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Therefore,

Rosc WD
X
�2ƒ

R
�
ra2.�/P¤0.W.�/˝W.�//

�
�
1

�

X
�2ƒ

R
�
@ta

2
.�/.�

2
.�/ 

2
.�/�/

�
DW R.x/osc CR

.t/
osc;

which is also deterministic at time 0. Finally, we define the Reynolds stress on level qC 1
by

VRqC1 WD Rlin CRcor CRosc CRcom CRcom1:

We note that by construction, VRqC1.0; x/ is deterministic.

4.1.6. Verification of the inductive estimate (4.4) for VRqC1. To conclude the proof of
Proposition 4.2, we shall verify the third estimate in (4.4). To this end, we estimate each
term in the definition of VRqC1 separately.

In the following we choose pD 32
32�7˛

> 1 so that in particular r2=p�2
?

r
1=p�1

k
� �˛qC1.

For the linear error we apply (4.4) to obtain, for t 2 Œ0; TL�,

kRlinkCtLp . kR�wqC1kCtLp C kR@t .w
.p/
qC1 C w

.c/
qC1/kCtLp

C k.v` C z`/ V̋ wqC1 C wqC1 V̋ .v` C z`/kCtLp

. kwqC1kCtW 1;p C

X
�2ƒ

k@t curl.a.�/V.�//kCtLp

CM0.t/
1=2.�4q C �

˛=8
qC1/kwqC1kCtLp ;

where by (B.7) and (4.29),X
�2ƒ

k@t curl.a.�/V.�//kCtLp

�

X
�2ƒ

�
ka.�/kCtC1x k@tV.�/kCtW 1;p C k@ta.�/kCtC1x kV.�/kCtW 1;p

�
. M0.t/

1=2`�7r
2=p
?

r
1=p�3=2

k
�CM0.t/

1=2`�12r
2=p�1
?

r
1=p�1=2

k
��1qC1:

In view of (4.46), (4.47) as well as (4.38), (4.41), we deduce that for t 2 Œ0; TL�,

kRlinkCtLp . M0.t/
1=2`�2r

2=p�1
?

r
1=p�1=2

k
�qC1 CM0.t/`

�4r
2=p�2
?

r
1=p�1

k
�
�2=7
qC1

CM0.t/
1=2`�7r

2=p
?

r
1=p�3=2

k
�CM0.t/

1=2`�12r
2=p�1
?

r
1=p�1=2

k
��1qC1

CM0.t/`
�2r

2=p�1
?

r
1=p�1=2

k
.�4q C �

˛=8
qC1/

. M0.t/
1=2�

5˛�1=7
qC1 CM0.t/�

9˛�2=7
qC1

CM0.t/
1=2�

15˛�1=7
qC1 CM0.t/

1=2�
25˛�15=7
qC1

�M0.t/cRıqC2=5:

Here, we have taken a sufficiently large and ˇ sufficiently small.
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The corrector error is estimated using (4.38)–(4.41), for t 2 Œ0; TL�, as

kRcorkCtLp

� kw
.c/
qC1 C w

.t/
qC1kCtL2pkwqC1kCtL2p C kw

.c/
qC1 C w

.t/
qC1kCtL2pkw

.p/
qC1kCtL2p

. M0.t/
�
`�12r

1=p
?

r
1=.2p/�3=2

k
C `�4M0.t/

1=2r
1=p�1
?

r
1=.2p/�2

k
��1qC1

�
� `�2r

1=p�1
?

r
1=.2p/�1=2

k

. M0.t/
�
`�14r

2=p�1
?

r
1=p�2

k
C `�6M0.t/

1=2r
2=p�2
?

r
1=p�5=2

k
��1qC1

�
. M0.t/

�
�
29˛�2=7
qC1 CM0.t/

1=2�
13˛�1=7
qC1

�
�M0.t/cRıqC2=5:

Here we use (4.18) to have M0.L/
1=2�

13˛�1=7
qC1 � cRıqC2=10.

Finally, we proceed with the oscillation error Rosc and we focus on R.x/osc first. Since
W.�/ is .T=.r?�qC1//3-periodic, we deduce that

P¤0.W.�/ ˝W.�// D P�r?�qC1=2.W.�/ ˝W.�//;

where P�r D Id � P<r and P<r denotes the Fourier multiplier operator which projects a
function onto its Fourier frequencies < r in absolute value. We also recall the following
results from [7, Lemma 7.5].

Lemma 4.4. Fix parameters 1 � � < �; p 2 .1; 2�, and assume there exists N 2 N such
that �N � �N�2. Let a 2 CN .T3/ be such that there exists Ca > 0 with

kDjakC0 � Ca�
j

for all 0 � j � N . Assume that f 2 Lp.T3/ with
´

T3 a.x/P��f .x/ dx D 0. Thenjrj�1.aP��f /

Lp

. Ca
kf kLp

�
;

where the implicit constant depends only on p and N .

Using Lemma 4.4 with a D ra2
.�/

for Ca D M0.t/`
�9, � D `�5, � D r?�qC1 and

any N � 3, we have

kR.x/osc kCtLp �
X
�2ƒ

R
�
ra2.�/P�r?�qC1=2.W.�/ ˝W.�//

�
CtLp

. M0.t/`
�9 kW.�/ ˝W.�/kCtLp

r?�qC1
. M0.t/`

�9
kW.�/k

2
CtL2p

r?�qC1

. M0.t/`
�9r

2=p�2
?

r
1=p�1

k
.r�1? ��1qC1/

. M0.t/`
�9�˛qC1.r

�1
? ��1qC1/

. M0.t/�
19˛�1=7
qC1 �M0.t/cRıqC2=10:
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For the second term R
.t/
osc we use Fubini’s theorem to integrate along the orthogonal direc-

tions of �.�/ and  .�/ and use (B.7) to deduce

kR.t/osckCtLp � �
�1
X
�2ƒ

k@ta
2
.�/kC0t;x

k�.�/k
2
CtL2p

k .�/k
2
CtL2p

. M0.t/�
�1`�9r

2=p�2
?

r
1=p�1

k
. M0.t/�

19˛�9=7
qC1 �M0.t/cRıqC2=10:

In view of the standard mollification estimates we use (4.3) to find that for t 2 Œ0; TL�,

kRcomkCtL1 . `.kvqkC1t;x
C kzqkCtC1/.kvqkCtL2 C kzqkCtL2/

C `1=2�2ı.kzqkC1=2�2ıt L1
C kvkC1t;x

/.kvqkCtL2 C kzqkCtL2/

. 2`.�4q C �
˛=4
qC1/M0.t/C `

1=2�2ı.�
˛=4
qC1 C �

4
q/M0.t/ �M0.t/cRıqC2=5;

where ı < 1=12 and we require that `1=2�2ı.�˛=4qC1 C �
4
q/ < cRıqC2=10, i.e.

�
2ˇb�˛=2
qC1 ��2=3q .�

˛=4
qC1 C �

4
q/� 1:

With the choice of ` in (4.17) and since we postulated that ˛ > 18ˇb and ˛b > 16, this
can indeed be achieved by possibly increasing a and consequently decreasing ˇ. Finally,
we use (4.3) to obtain, for t 2 Œ0; TL�,

kRcom1kCtL1 . .kvqC1kCtL2 C kzqC1kCtL2 C kz`kCtL2/kz` � zqC1kCtL2

. M0.t/
1=2
kz` � zqC1kCtL2 . M0.t/

1=2.kz` � zqkCtL2 C kzqC1 � zqkCtL2/

. M0.t/.`
1=2�2ı

C �
�˛8 .1�ı/

qC1 / �M0.t/cRıqC2=5;

where we use
�
2bˇ�˛8 .1�ı/

qC1 � 1;

which holds because ˛ > 18ˇb. Summarizing the above estimates we obtain

k VRqC1kCtL1 �M0.t/cRıqC2;

which is the desired last bound in (4.4). The proof of Proposition 4.2 is complete.

5. Nonuniqueness in law II: the case of a linear multiplicative noise

5.1. Probabilistically weak solutions

In the case of an additive noise, the stopping times employed in convex integration can
be regarded as functions of the solution u. This does not follow a priori from their defini-
tion (4.2), but can be seen from (3.13) and (3.16). Accordingly, it was possible to prove
nonuniqueness of martingale solutions in the sense of Definition 3.1 directly. However,
the situation is rather different in the case of a linear multiplicative noise. Indeed, the stop-
ping times are functions of the driving noise B , which is not a function of u, and therefore
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it is necessary to work with the extended canonical space N� including trajectories of both
the solution u and the noise B .

To this end, we define the notion of probabilistically weak solution. In the first step,
we then establish joint nonuniqueness in law: we show that the joint law of .u; B/ is
not unique. In the second step, we extend the finite-dimensional result of Cherny [9] to
a general SPDE setting (see Appendix C), proving that uniqueness in law implies joint
uniqueness in law. This permits us to deduce the desired nonuniqueness of martingale
solutions stated in Theorem 1.4.

To avoid confusion, we point out that the two notions of solution, i.e. martingale solu-
tion and probabilistically weak solution, are equivalent. The only reason why the proof of
nonuniqueness in law from Section 3 does not apply to the case of linear multiplicative
noise is the different definition of stopping times. Conversely, the proof of the present
section applies to the additive noise case as well. However, it is more complicated than
the direct proof in Section 3 which does not rely on the generalization of Cherny’s result
in Theorem C.1.

Definition 5.1. Let s � 0 and x0 2 L2� , y0 2 U1. A probability measure P 2 P. N�/

is a probabilistically weak solution to the Navier–Stokes system (1.1) with initial value
.x0; y0/ at time s provided

(M1) P.x.t/ D x0, y.t/ D y0, 0 � t � s/ D 1 and for any n 2 N,

P

²
.x; y/ 2 N� W

ˆ n

0

kG.x.r//k2L2.U IL�2 /
dr <1

³
D 1:

(M2) Under P , y is a cylindrical . NBt /t�s-Wiener process on U starting from y0 at time s
and for every ei 2 C1.T3/ \ L2� and all t � s,

hx.t/� x.s/; ei i C

ˆ t

s

hdiv.x.r/˝ x.r//��x.r/; ei idr D
ˆ t

s

hei ;G.x.r//dyri:

(M3) For any q 2 N there exists a positive real function t 7! Ct;q such that for all t � s,

EP
�

sup
r2Œ0;t�

kx.r/k
2q

L2
C

ˆ t

s

kx.r/k2H dr

�
� Ct;q.kx0k

2q

L2
C 1/:

For the application to the Navier–Stokes system, we will again require a definition of
probabilistically weak solutions defined up to a stopping time � . To this end, we set

N�� WD ¹!.� ^ �.!// W ! 2 N�º:

Definition 5.2. Let s � 0 and x0 2 L2� , y0 2 U1. Let � � s be a . NBt /t�s-stopping time.
A probability measure P 2 P. N�� / is a probabilistically weak solution to the Navier–
Stokes system .1.1/ on Œs; � � with initial value .x0; y0/ at time s provided

(M1) P.x.t/ D x0, y.t/ D y0, 0 � t � s/ D 1 and for any n 2 N,

P

²
.x; y/ 2 N� W

ˆ n^�

0

kG.x.r//k2L2.U IL�2 /
dr <1

³
D 1:
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(M2) Under P , hy.� ^ �/; liU is a continuous square integrable . NBt /t�s-martingale start-
ing from y0 at time s with quadratic variation process given by .t ^ � � s/klk2U for
l 2 U . For every ei 2 C1.T3/ \ L2� and t � s,

hx.t ^ �/ � x.s/; ei i C

ˆ t^�

s

hdiv.x.r/˝ x.r// ��x.r/; ei i dr

D

ˆ t^�

s

hei ; G.x.r//dyri:

(M3) For any q 2 N there exists a positive real function t 7! Ct;q such that for all t � s,

EP
�

sup
r2Œ0;t^��

kx.r/k
2q

L2
C

ˆ t^�

s

kx.r/k2H dr

�
� Ct;q.kx0k

2q

L2
C 1/:

Similarly to Theorem 3.1 we obtain the following existence and stability result. The
proof is presented in Appendix A.

Theorem 5.1. For every .s; x0; y0/ 2 Œ0;1/�L2� �U1, there exists P 2P. N�/ which is
a probabilistically weak solution to the Navier–Stokes system (1.1) starting at time s from
the initial condition .x0; y0/ in the sense of Definition 5.1. The set of all such solutions
with the same implicit constant Ct;q is denoted by W .s; x0; y0; Ct;q/.

Let .sn; xn; yn/! .s; x0; y0/ in Œ0;1/�L2� �U1 as n!1 and let Pn 2W .sn; xn;

yn;Ct;q/. Then there exists a subsequence nk such that the sequence ¹Pnk ºk2N converges
weakly to some P 2 W .s; x0; y0; Ct;q/.

As in the case of additive noise, the nonuniqueness in law stated in Theorem 1.4 means
nonuniqueness of martingale solutions in the sense of Definition 3.1. Nonuniqueness of
probabilistically weak solutions corresponds to joint nonuniqueness in law.

Definition 5.3. We say that joint uniqueness in law holds for (1.1) if probabilistically
weak solutions starting from the same initial distribution are unique.

5.2. General construction for probabilistically weak solutions

The overall strategy is similar to Section 3.2: in the first step, we shall extend probabilisti-
cally weak solutions defined up to a . NBt /t�0-stopping time � to the whole interval Œ0;1/.
We denote by NB� the � -field associated to � .

Proposition 5.2. Let � be a bounded . NBt /t�0-stopping time. Then for every ! 2 N� there
exists Q! 2P. N�/ such that for ! 2 ¹x.�/ 2 L2�º,

Q!
�
!0 2 N� W .x; y/.t; !0/ D .x; y/.t; !/ for 0 � t � �.!/

�
D 1; (5.1)

Q!.A/ D R�.!/;x.�.!/;!/;y.�.!/;!/.A/ for all A 2 B�.!/; (5.2)

whereR�.!/;x.�.!/;!/;y.�.!/;!/ 2P. N�/ is a probabilistically weak solution to the Navier–
Stokes system (1.1) starting at time �.!/ from .x.�.!/;!/;y.�.!/;!//. Furthermore, for
every B 2 NB the mapping ! 7! Q!.B/ is NB� -measurable.
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Proof. The proof is identical to the proof of Proposition 3.2 applied to the extended path
space N� instead of �0 and making use of Theorem 5.1 instead of Theorem 3.1.

We proceed with a result which is analogous to Proposition 3.4.

Proposition 5.3. Let x0 2 L2� . Let P be a probabilistically weak solution to the Navier–
Stokes system (1.1) on Œ0; �� starting at time 0 from the initial condition .x0; 0/. In addition
to the assumptions of Proposition 5.2, suppose that there exists a Borel set N � N�� such
that P.N / D 0 and for every ! 2 N c ,

Q!
�
!0 2 N� W �.!0/ D �.!/

�
D 1: (5.3)

Then the probability measure P ˝� R 2P. N�/ defined by

P ˝� R.�/ WD

ˆ
N�

Q!.�/ P.d!/

satisfies P ˝� R D P on �¹x.t ^ �/; y.t ^ �/ W t � 0º and is a probabilistically weak
solution to the Navier–Stokes system (1.1) on Œ0;1/ with initial condition .x0; 0/.

Proof. The fact that P ˝� R.A/D P.A/ for every Borel set A 2 �¹.x.t ^ �/; y.t ^ �// W
t � 0º, and property (M1), follow directly from the construction together with (5.3). In
order to show (M3), we write

EP˝�R
�

sup
r2Œ0;t�

kx.r/k
2q

L2
C

ˆ t

0

kx.r/k2H dr

�
� EP˝�R

�
sup

r2Œ0;t^��

kx.r/k
2q

L2
C

ˆ t^�

0

kx.r/k2H dr

�
CEP˝�R

�
sup

r2Œt^�;t�

kx.r/k
2q

L2
C

ˆ t

t^�

kx.r/k2H dr

�
� C.kx0k

2q

L2
C 1/C C.EP kx.�/k

2q

L2
C 1/

� C.kx0k
2q

L2
C 1/;

where we use (M3) for P and for R, (5.3) and the boundedness of the stopping time � .
For (M2), we first recall that since P is a probabilistically weak solution on Œ0; ��,

the process hyt^� ; liU is a continuous square integrable . NBt /t�0-martingale under P
with quadratic variation process given by .t ^ �/klk2U : On the other hand, since for
every ! 2 N�, the probability measure R�.!/;x.�.!/;!/;y.�.!/;!/ is a probabilistically
weak solution starting at time �.!/ from the initial condition .x.�.!/; !/; y.�.!/; !//,
the process hyt � yt^�.!/; liU is a continuous square integrable . NBt /t��.!/-martingale
under R�.!/;x.�.!/;!/;y.�.!/;!/ with quadratic variation process given by .t � �.!//klk2U ,
t � �.!/. Then by the same arguments as in the proof of Proposition 3.4 we deduce that
under P ˝� R, the process hy; liU is a continuous square integrable . NBt /t�0-martingale
with quadratic variation process given by tklk2U , t � 0, which implies that y is a cylin-
drical . NBt /t�0-Wiener process on U .
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Furthermore, under P , for every ei 2 C1.T3/ \ L2� and all t � 0,

M
x;y;i
t^�;0 WD hx.t ^ �/ � x.0/; ei i C

ˆ t^�

0

hdiv.x.r/˝ x.r// ��x.r/; ei i dr

D

ˆ t^�

0

hei ; G.x.r//dy.r/i:

On the other hand, for ! 2 N�, under R�.!/;x.�.!/;!/;y.�.!/;!/ we have, for t � �.!/,

M
x;y;i
t;t^� WD hx.t/ � x.�.!//; ei i C

ˆ t

�.!/

hdiv.x.r/˝ x.r// ��x.r/; ei i dr

D

ˆ t

�.!/

hei ; G.x.r//dy.r/i:

Therefore, we obtain

P ˝� R

²
M
x;y;i
t;0 D

ˆ t

0

hei ; G.x.r//dy.r/i; ei 2 C
1.T3/ \ L2� ; t � 0

³
D

ˆ
N�

dP.!/Q!

²
M
x;y;i

t;t^�.!/
D

ˆ t

t^�.!/

hei ; G.x.r//dy.r/i;

M
x;y;i

t^�.!/;0
D

ˆ t^�.!/

0

hei ; G.x.r//dy.r/i; ei 2C
1.T3/ \ L2� ; t�0

³
:

Now, using (5.3) and (5.2) we obtain

ˆ
N�

dP.!/Q!

²
M
x;y;i

t;t^�.!/
D

ˆ t

t^�.!/

hei ; G.x.r//dy.r/i; ei 2 C
1.T3/ \ L2� ; t � 0

³
D

ˆ
N�

dP.!/R�.!/;x.�.!/;!/;y.�.!/;!/

²
M
x;y;i

t;t^�.!/
D

ˆ t

t^�.!/

hei ; G.x.r//dy.r/i;

ei 2 C
1.T3/ \ L2� ; t � 0

³
D 1;

and using (5.3) and (5.1) we deduce

ˆ
N�

dP.!/Q!

²
M
x;y;i

t^�.!/;0
D

ˆ t^�.!/

0

hei ; G.x.r//dy.r/i; ei 2 C
1.T3/ \ L2� ; t � 0

³
D P

²
M
x;y;i
t^�;0 D

ˆ t^�

0

hei ; G.x.r//dy.r/i; ei 2 C
1.T3/ \ L2� ; t � 0

³
D 1:

In view of the elementary inequality for probability measures, Q!.A \ B/ � 1 �
Q!.A

c/ �Q!.B
c/, we finally deduce that P ˝� R-a.s.,

M
x;y;i
t;0 D

ˆ t

0

hei ; G.x.r//dy.r/i for all ei 2 C1.T3/ \ L2� ; t � 0;

and hence condition (M2) follows.
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5.3. Application to solutions obtained through Theorem 1.3

The general construction presented in Section 5.2 applies to a general infinite-dimensional
stochastic perturbation of the Navier–Stokes system. From now on, we restrict ourselves
to the setting of a linear multiplicative noise. In particular, the driving Wiener process is
real-valued and consequently U D U1 D R.

For n 2 N, L > 1 and ı 2 .0; 1=12/ we define

�nL.!/ D inf ¹t � 0 W jy.t; !/j > .L � 1=n/1=4º

^ inf ¹t > 0 W ky.t; !/k
C
1=2�2ı
t

> .L � 1=n/1=2º ^ L:

Then the sequence ¹�nLºn2N is nondecreasing and we define

�L WD lim
n!1

�nL: (5.4)

Without additional regularity of the process y, we have �nL.!/D 0. By Lemma 3.5 we find
that �nL is a . NBt /t�0-stopping time and hence so is �L as an increasing limit of stopping
times.

Now, we fix a real-valued Wiener process B defined on a probability space .�;F ;P/
and we denote by .Ft /t�0 its normal filtration. On this stochastic basis, we apply The-
orem 1.3 and denote by u the corresponding solution to the Navier–Stokes system (1.8)
on Œ0; TL�, where the stopping time TL is defined in (6.3). We recall that u is adapted to
.Ft /t�0, which is an essential property employed to prove the martingale property in the
proof of Proposition 5.4. We denote by P the law of .u;B/ and obtain the following result
by similar arguments to the proof of Proposition 3.7.

Proposition 5.4. The probability measure P is a probabilistically weak solution to the
Navier–Stokes system (1.8) on Œ0; �L� in the sense of Definition 5.2, where �L was defined
in (5.4).

Proof. The proof is similar to the proof of Proposition 3.7 once we note that

y.t; .u; B// D B.t/ for t 2 Œ0; TL� P-a.s.

In particular, property (M2) in Definition 5.2 follows since .u; B/ satisfies (1.8).

Proposition 5.5. The probability measure P ˝�L R is a probabilistically weak solution
to the Navier–Stokes system (1.8) on Œ0;1/ in the sense of Definition 5.1.

Proof. In light of Propositions 5.2 and 5.3, it only remains to establish (5.3), which fol-
lows by similar arguments to those in the proof of Proposition 3.8.

Finally, we have all in hand to conclude the proof of Theorem 1.4.

Proof of Theorem 1.4. Let T > 0 be arbitrary. Let � D 1=2 andK D 2 and apply Theorem
1.3 and Proposition 5.5. As in the proof of Theorem 1.2 it follows that the constructed
probability measure P ˝�L R satisfies

P ˝�L R.�L � T / D P.TL � T / > 1=2;
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and consequently
EP˝�LRŒkx.T /k2

L2
� > 2eT kx0k

2
L2
:

The initial value x0 D v.0/ 2 L2� is given through the construction in Theorem 1.3. How-
ever, based on Galerkin approximation one can construct a probabilistically weak solution
QP to (1.8) starting from the same initial value as P ˝�L R. In addition, this solution sat-

isfies the usual energy inequality, that is,

E
QP Œkx.T /k2

L2
� � eT kx0k

2
L2
:

Therefore, the two probabilistically weak solutions are distinct and as a consequence
joint nonuniqueness in law, i.e. nonuniqueness of probabilistically weak solutions, holds
for the Navier–Stokes system (1.8). In view of Theorem C.1 we finally deduce the desired
nonuniqueness in law, i.e., nonuniqueness of martingale solutions.

6. Proof of Theorem 1.3

As the first step, we transform (1.8) to a random PDE. To this end, we consider the
stochastic process

�.t/ D eBt ; t � 0;

and define v WD ��1u. Then by Itô’s formula we obtain

@tv C
1
2
v ��v C � div.v ˝ v/C ��1rP D 0;

div v D 0:
(6.1)

Our aim is to develop an induction argument as in Section 4 and apply it to (6.1). At
each step q 2 N0, a pair .vq; VRq/ is constructed solving the system

@tvq C
1
2
vq ��vq C � div.vq ˝ vq/Crpq D div VRq;

div vq D 0:
(6.2)

We choose suitable parameters a 2 N and b 2 N sufficiently large and a parameter ˇ 2
.0; 1/ sufficiently small and define

�q D a
bq ; ıq D �

�2ˇ
q :

The necessary stopping times TL are now defined in terms of the Wiener process B as

TL WD inf ¹t > 0 W jB.t/j � L1=4º ^ inf ¹t > 0 W kBk
C
1=2�2ı
t

� L1=2º ^ L (6.3)

for L > 1 and ı 2 .0; 1=12/. As a consequence, for t 2 Œ0; TL�,

jB.t/j � L1=4; kBk
C
1=2�2ı
t

� L1=2; (6.4)

which implies

k�k
C
1=2�2ı
t

C j�.t/j C j��1.t/j � 3L1=2eL
1=4

DW m2L: (6.5)
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We also define
M0.t/ WD e

4LtC2L: (6.6)

For the induction, we will assume the following bounds for .vq; VRq/ which are valid for
t 2 Œ0; TL�:

kvqkCtL2 � mLM0.t/
1=2
�
1C

X
1�r�q

ı1=2r

�
� 2mLM0.t/

1=2;

kvqkC1t;x
� mLM0.t/

1=2�4q;

k VRqkCtL1 � cRM0.t/ıqC1:

(6.7)

Here
P
1�r�0 ı

1=2
r WD 0, cR > 0 is a sufficiently small universal constant given in (6.22),

(6.24) and we have used the fact that
P
r�1 ı

1=2
r �

P
r�1 a

�rbˇ D
a�ˇb

1�a�ˇb
< 1=2 and

aˇb > 3 (6.8)

in the first inequality. The following result sets the starting point of our iteration procedure
and gives the key compatibility conditions between the parameters L; a; ˇ; b.

Lemma 6.1. Let L > 1 and define

v0.t; x/ WD
mLe

2LtCL

.2�/3=2
.sin.x3/; 0; 0/:

Then the associated Reynolds stress is given by

VR0.t; x/ D
mL.2LC 3=2/e

2LtCL

.2�/3=2

0@ 0 0 � cos.x3/
0 0 0

� cos.x3/ 0 0

1A :
The initial values v0.0; x/ and VR0.0; x/ are deterministic. Moreover, all the estimates in
(6.7) on level q D 0 for .v0; VR0/ as well as (6.8) are valid provided

18 � .2�/3=2
p
3 < 2 � .2�/3=2

p
3 a2ˇb �

cRe
L

L1=4.2LC 3=2/e
1
2L

1=4
; 4L � a4: (6.9)

In particular, the minimal lower bound for L is given through

18 � .2�/3=2
p
3 <

cRe
L

L1=4.2LC 3=2/e
1
2L

1=4
: (6.10)

Proof. We observe that for t 2 Œ0; TL�,

kv0.t/kL2 D
mLe

2LtCL

p
2

�mLM0.t/
1=2; kv0kC1t;x

� 4LmLe
2LtCL

�mLM0.t/
1=2�40;

provided
4L � a4: (6.11)
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The associated Reynolds stress can be directly computed and admits the bound

k VR0.t/kL1 � 2 � .2�/
3=2mL.2LC 3=2/e

2LtCL
�M0.t/cRı1

provided
2 � .2�/3=2

p
3L1=4.2LC 3=2/e1=2L

1=4

� eLcRa
�2ˇb : (6.12)

Under conditions (6.11) and (6.12) all the estimates in (6.7) are valid on level q D 0.
Combining (6.11), (6.12) with (6.8) we arrive at (6.9), (6.10) from the statement of the
lemma.

We note that the compatibility conditions (6.9), (6.10) are similar in spirit to the cor-
responding conditions in the additive noise case, i.e. (4.7), (4.8). In other words, (6.10)
gives the minimal admissible lower bound for L. Then based on the second condition in
(6.9) we obtain a minimal admissible lower bound for a. Whenever we need to increase
a or b in the course of the main iteration process below, we have to decrease the value of
ˇ simultaneously so that the first condition in (6.9) is not violated.

Proposition 6.2 (Main iteration). Let L > 1 satisfying (6.10) be given and let .vq; VRq/
be an .Ft /t�0-adapted solution to (6.2) satisfying (6.7). Then there exists a choice of
parameters a; b; ˇ such that (6.9) is fulfilled and there exist .Ft /t�0-adapted processes
.vqC1; VRqC1/ which solve (6.2), obey (6.7) at level q C 1 and for t 2 Œ0; TL� we have

kvqC1.t/ � vq.t/kL2 � mLM0.t/
1=2ı

1=2
qC1: (6.13)

Furthermore, if vq.0/ and VRq.0/ are deterministic, so are vqC1.0/ and VRqC1.0/.

The proof of Proposition 6.13 is presented in Section 6.1 below. Based on this result,
we are able to conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. Starting from .v0; VR0/ given in Lemma 6.1 and using Proposition
6.2 we obtain a sequence .vq; VRq/ satisfying (6.7) and (6.13). By interpolation, it follows
that for  2 .0; ˇ

4Cˇ
/ and t 2 Œ0; TL�,X

q�0

kvqC1.t/ � vq.t/kH .
X
q�0

kvqC1.t/ � vq.t/k
1�

L2
kvqC1.t/ � vq.t/k



H1

. mLM0.t/
1=2:

Therefore, the sequence vq converges to a limit v 2 C.Œ0; TL�IH  / which is .Ft /t�0-
adapted. Furthermore, we know that v is an analytically weak solution to (6.1) with a
deterministic initial value, since due to (6.7) we have limq!1

VRq D 0 in C.Œ0; TL�IL1/.
According to (6.13) and (6.8), it follows that for t 2 Œ0; TL�,

kv.t/ � v0.t/kL2 �
X
q�0

kvqC1.t/ � vq.t/kL2 � mLM0.t/
1=2

X
q�0

ı
1=2
qC1

�
1
2
mLM0.t/

1=2:
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Now, we show that for a given T > 0 we can choose L D L.T / > 1 large enough so that
v fails to satisfy the corresponding energy inequality at time T , namely,

kv.T /kL2 > e
2L1=2

kv.0/kL2 (6.14)

on the set ¹TL � T º. To this end, we observe that

e2L
1=2

kv.0/kL2 � e
2L1=2.kv0.0/kL2 C kv.0/ � v0.0/kL2/ � e

2L1=2 3

2
mLM0.0/

1=2:

On the other hand, we obtain, on ¹TL � T º,

kv.T /kL2 � .kv0.T /kL2 � kv.T / � v0.T /kL2/ �

�
1
p
2
�
1

2

�
mLM0.T /

1=2

> e2L
1=2 3

2
mLM0.0/

1=2

provided �
1
p
2
�
1

2

�
e2LT >

3

2
e2L

1=2

: (6.15)

Hence (6.14) follows for a suitable choice of L satisfying additionally (6.15). Further-
more, for a given T > 0 we can increase L if necessary so that P.TL � T / > �.

To conclude the proof, we define u WD �v and observe that u.0/ D v.0/. In addition,
u is .Ft /t�0-adapted and solves the original Navier–Stokes system (1.5). Then in view of
(6.14) and the fact that j�T j � e�L

1=4
on the set ¹TL � T º due to (6.4), we obtain

ku.T /kL2 D j�.T /j kv.T /kL2 > e
L1=2
ku.0/kL2 on ¹TL � T º.

Choosing L sufficiently large in dependence on K and T from the statement of the theo-
rem, the desired lower bound follows. Finally, setting t WD TL completes the proof.

6.1. The main iteration – proof of Proposition 6.2

The overall strategy of the proof is similar to Section 4.1 but modifications are required
since the approximate system on level q has a different form. As in Section 4.1, we have
to make sure that the construction is .Ft /t�0-adapted at each step.

6.1.1. Choice of parameters. We choose a small parameter ` 2 .0; 1/ as in Section 4.1.1:
for a sufficiently small ˛ 2 .0;1/ to be chosen below, we let ` 2 .0;1/ be a small parameter
defined in (4.17) and satisfying (4.16). We note that the compatibility conditions (6.9) and
(6.10) and the last condition in (4.16) can all be fulfilled provided we make a large enough
and ˇ small enough at the same time. In addition, we will require ˛b > 16 and ˛ > 8ˇb.

In order to verify the inductive estimates (6.7) we need to absorb various expressions
including m4LM0.t/

1=2 for all t 2 Œ0; TL�. To this end, we need to change the condition
(4.18) in Section 4.1.1 to

Cm4L`
1=3�4q � cRıqC2=5; m4LM0.L/

1=2�
13˛�1=7
qC1 � cRıqC2=10; mL� `

�1: (6.16)



M. Hofmanová, R. Zhu, X. Zhu 214

In other words, we need

9Le2L
1=4

ab.�
˛
2C

10
3b
C2bˇ/

� 1;

9Le2L
1=4

e2L
2CLab.13˛�

1
7C2bˇ/ � 1;

p
3L1=4e1=2L

1=4

� a2C
3˛
2 �7L

2

:

Choosing bD .7L2/_ .17 � 142/, in view of ˛ > 8ˇb, (6.16) can be achieved by choosing
a large enough and ˛ D 14�2. This choice also satisfies ˛b > 16 required above, and the
condition ˛ > 8ˇb can be achieved by choosing ˇ small. It is also compatible with all the
other requirements needed below.

6.1.2. Mollification. As the next step, we define space-time mollifications of vq and VRq
and a time mollification of � as follows:

v` D .vq �x �`/ �t '`; VR` D . VRq �x �`/ �t '`; �` D e
B
�t '`:

By choosing time mollifiers that are compactly supported in RC, the mollification pre-
serves .Ft /t�0-adaptedness. If the initial data vq.0/; VRq.0/ are deterministic, so are v`.0/
and VR`.0/; @t VR`.0/. Then using (6.2) we find that .v`; VR`/ satisfies

@tv` C
1
2
v` ��v` C �` div.v` ˝ v`/Crp` D div. VR` CRcom/;

div v` D 0;

where

Rcom D �`.v` V̋ v`/ � .�vq V̋ vq/ �x �` �t '`;

p` D .pq �x �`/ �t '` �
1
3

�
�`jv`j

2
� .� jvqj

2
�x �`/ �t '`

�
:

With this setting, the counterparts of the estimates (4.20), (4.21) and (4.22) are
obtained the same way only replacing M0.t/

1=2 by mLM0.t/
1=2. In particular,

kvq � v`kCtL2 �
1
4
mLM0.t/

1=2ı
1=2
qC1; (6.17)

kv`kCtL2 � mLM0.t/
1=2
�
1C

X
1�r�q

ı1=2r

�
� 2mLM0.t/

1=2; (6.18)

kv`kCNt;x
� mLM0.t/

1=2`�N��˛qC1: (6.19)

6.1.3. Construction of vqC1. We recall that the intermittent jetsW.�/ and the correspond-
ing estimates are summarized in Appendix B. The parameters �; rk; r?; � are chosen as
in (4.23) and we define � and � to be the same functions as in Section 4.1.3 with M0.t/

given by (6.6). Now, we define the modified amplitude functions

Na.�/.!; t; x/ WD Na�;qC1.!; t; x/ WD �
�1=2

`
�.!; t; x/1=2�

�
Id �

VR`.!; t; x/

�.!; t; x/

�
.2�/�3=4

D �
�1=2

`
a�;qC1.!; t; x/; (6.20)
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where � is introduced in Lemma B.1 and a�;qC1 is as in Section 4.1.3 with M0.t/ given
in (6.6). Since �; �` and VR` are .Ft /t�0-adapted, we know Na.�/ is .Ft /t�0-adapted. Note
that since �`.0/ and @t�`.0/ are deterministic, if VR`.0/ and @t VR`.0/ are deterministic, so
are Na�.0/ and @t Na�.0/. By (B.5) we have

.2�/3=2
X
�2ƒ

Na2.�/

 
T3
W.�/ ˝W.�/ dx D �

�1
` .� Id � VR`/; (6.21)

and for t 2 Œ0; TL�,

k Na.�/kCtL2 � k�
�1=2

`
kCt k�k

1=2

CtL1
k�kC0.B1=2.Id//

�
4c
1=2
R .8�3 C 1/1=2M

8jƒj.8�3 C 1/1=2
mLM0.t/

1=2ı
1=2
qC1 �

c
1=4
R mLM0.t/

1=2ı
1=2
qC1

2jƒj
; (6.22)

where we choose cR as a small universal constant to absorb M , the universal constant
from Lemma B.1, and we apply the bound j��1

`
j � m2L. Furthermore, since � is bounded

from below by 4cRıqC1M0.t/, we obtain, for t 2 Œ0; TL�,

k Na.�/kCNt;x
. `�2�5N c

1=4
R mLM0.t/

1=2ı
1=2
qC1 (6.23)

for N � 0, where we have used (6.5) and 4L � `�1 and the derivative of ��1=2
`

gives an
extra `�1m4L and mL � `�1.

As the next step, we definewqC1 much as in Section 4.1.3. In particular, first we define
the principal part w.p/qC1 of wqC1 as (4.30) with a.�/ replaced by Na.�/ given in (6.20). Then
it follows from (6.21) that

�`w
.p/
qC1 ˝ w

.p/
qC1 C

VR` D �`
X
�2ƒ

Na2.�/P¤0.W.�/ ˝W.�//C � Id:

The incompressible corrector w.c/qC1 is therefore defined as in (4.32) again with a.�/

replaced by Na.�/. The temporal corrector w.t/qC1 is now defined as in (4.33) with a.�/ given
in (4.26) for M0.t/ from (6.6). Note that for the temporal corrector we use the original
amplitude functions a.�/ from Section 4.1.3 (only using a different functionM0.t/), since
we need the extra �` to obtain a suitable cancelation. The total velocity increment wqC1
and the new velocity vqC1 are then given by

wqC1 WD w
.p/
qC1 C w

.c/
qC1 C w

.t/
qC1; vqC1 WD v` C wqC1:

Both are .Ft /t�0-adapted, divergence-free and wqC1 is mean zero. If vq.0/, VR`.0/ are
deterministic, so is vqC1.0/.

6.1.4. Verification of the inductive estimates for vqC1. For the counterparts of the esti-
mates (4.37)–(4.47), the main difference now is the extra mL appearing in the bounds
(6.22) and (6.23) for Na.�/. Therefore, many of the estimates remain valid with M0.t/

1=2

replaced bymLM0.t/
1=2, only the bounds for the temporal correctorw.t/qC1 do not change.
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More precisely, for t 2 Œ0; TL� we obtain

kw
.p/
qC1kCtL2 �

1
2
mLM0.t/

1=2ı
1=2
qC1; (6.24)

kw
.p/
qC1kCtLp . mLM0.t/

1=2ı
1=2
qC1`

�2r
2=p�1
?

r
1=p�1=2

k
; (6.25)

kw
.c/
qC1kCtLp . mLM0.t/

1=2ı
1=2
qC1`

�12r
2=p
?

r
1=p�3=2

k
; (6.26)

kw
.t/
qC1kCtLp . M0.t/ıqC1`

�4r
2=p�1
?

r
1=p�2

k
��1qC1: (6.27)

Combining (6.24), (6.26) and (6.27) then leads to

kwqC1kCtL2 � mLM0.t/
1=2ı

1=2
qC1.1=2C C�

24˛�2=7
qC1 C CM0.t/

1=2ı
1=2
qC1�

8˛�1=7
qC1 /

�
3
4
mLM0.t/

1=2ı
1=2
qC1; (6.28)

where we use (6.16) to bound CM0.L/
1=2ı

1=2
qC1�

8˛�1=7
qC1 � 1=8.

As a consequence of (6.28) and (6.18), the first bound in (6.7) on level q C 1 readily
follows. In addition, (6.28) together with (6.17) implies (6.13) from the statement of the
proposition. In order to verify the second bound in (6.7), we observe that similarly to
(4.43)–(4.45), for t 2 Œ0; TL�,

kw
.p/
qC1kC1t;x

. mLM0.t/
1=2`�7r�1? r

�1=2

k
�2qC1; (6.29)

kw
.c/
qC1kC1t;x

. mLM0.t/
1=2`�17r

�3=2

k
�2qC1; (6.30)

kw
.t/
qC1kC1t;x

. M0.t/`
�9r�1? r�2

k
�1C˛qC1 : (6.31)

Combining (6.29)–(6.31) with (6.19) and taking (6.16) into account, the second bound in
(6.7) follows.

In order to control the Reynolds stress below, we observe that similarly to (4.46),
(4.47), the following bounds hold true for t 2 Œ0; TL� and p 2 .1;1/:

kw
.p/
qC1 C w

.c/
qC1kCtW 1;p � mLM0.t/

1=2r
2=p�1
?

r
1=p�1=2

k
`�2�qC1; (6.32)

kw
.t/
qC1kCtW 1;p �M0.t/r

2=p�2
?

r
1=p�1

k
`�4�

�2=7
qC1 : (6.33)

6.1.5. Definition of the Reynolds stress VRqC1. As before, we know

div VRqC1 � rpqC1

D
1
2
wqC1 ��wqC1 C @t .w

.p/
qC1 C w

.c/
qC1/C �` div.v` ˝ wqC1 C wqC1 ˝ v`/„ ƒ‚ …

div.Rlin/Crplin

C �` div
�
.w

.c/
qC1 C w

.t/
qC1/˝ wqC1 C w

.p/
qC1 ˝ .w

.c/
qC1 C w

.t/
qC1/

�„ ƒ‚ …
div.RcorCrpcor/

C div.�`w
.p/
qC1 ˝ w

.p/
qC1 C

VR`/C @tw
.t/
qC1„ ƒ‚ …

div.Rosc/Crposc

C .� � �`/ div.vqC1 V̋ vqC1/„ ƒ‚ …
div.Rcom1/Crpcom1

C div.Rcom/ � rp`:
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Therefore, applying the inverse divergence operator R we define

Rlin WD
1
2
RwqC1 �R�wqC1 CR@t .w

.p/
qC1 C w

.c/
qC1/

C �`v` V̋ wqC1 C �`wqC1 V̋ v`;

Rcor WD �`.w
.c/
qC1 C w

.t/
qC1/ V̋ wqC1 C �`w

.p/
qC1
V̋ .w

.c/
qC1 C w

.t/
qC1/;

Rcom1 WD .�` � �/.vqC1 V̋ vqC1/:

And similarly to Section 4.1.5 we have

Rosc WD
X
�2ƒ

R
�
ra2.�/P¤0.W.�/ ˝W.�//

�
�
1

�

X
�2ƒ

R
�
@ta

2
.�/.�

2
.�/ 

2
.�/�/

�
;

with a.�/ given in (4.26) for M0.t/ from (6.6). Hence the bounds for Rosc are the same as
in Section 4.1.6. The Reynolds stress on level q C 1 is then defined as

VRqC1 WD Rlin CRosc CRcor CRcom CRcom1:

6.1.6. Verification of the inductive estimate for VRqC1. In the following we estimate the
remaining terms in VRqC1 separately. We choose p D 32

32�7˛
> 1.

For the linear error, for t 2 Œ0; TL� have

kRlinearkCtLp

. kwqC1kCtW 1;p C kR@t .w
.p/
qC1 C w

.c/
qC1/kCtLp

Cm2Lkv` V̋ wqC1 C wqC1 V̋ v`kCtLp

. kwqC1kCtW 1;p C

X
�2ƒ

k@t curl. Na.�/V.�//kCtLp C �
4
qm

3
LM0.t/

1=2
kwqC1kCtLp :

Hence using (6.32), (6.33), (6.23), (B.7) and (6.25)–(6.27) we have, for t 2 Œ0; TL�,

kRlinearkCtLp

. mLM0.t/
1=2`�2r

2=p�1
?

r
1=p�1=2

k
�qC1 CM0.t/`

�4r
2=p�2
?

r
1=p�1

k
�
�2=7
qC1

CmLM0.t/
1=2`�7r

2=p
?

r
1=p�3=2

k
�CmLM0.t/

1=2`�12r
2=p�1
?

r
1=p�1=2

k
��1qC1

Cm4LM0.t/`
�2r

2=p�1
?

r
1=p�1=2

k
�4q

. mLM0.t/
1=2�

5˛�1=7
qC1 CM0.t/�

9˛�2=7
qC1 CmLM0.t/

1=2�
15˛�1=7
qC1

CmLM0.t/
1=2�

25˛�15=7
qC1 Cm4LM0.t/�

7˛�8=7
qC1

�M0.t/cRıqC2=5;

where we use the fact that a is sufficiently large and ˇ is suffciently small, in particular,
(6.16) holds.
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The corrector error is estimated by (6.25)–(6.27) for t 2 Œ0; TL� as follows:

kRcorkCtLp

� m2Lkw
.c/
qC1 C w

.t/
qC1kCtL2pkwqC1kCtL2p Cm

2
Lkw

.c/
qC1 C w

.t/
qC1kCtL2pkw

.p/
qC1kCtL2p

. m4LM0.t/.`
�12r

1=p
?

r
1=.2p/�3=2

k
C `�4M0.t/

1=2r
1=p�1
?

r
1=.2p/�2

k
��1qC1/

� `�2r
1=p�1
?

r
1=.2p/�1=2

k

. m4LM0.t/.`
�14r

2=p�1
?

r
1=p�2

k
C `�6M0.t/

1=2r
2=p�2
?

r
1=p�5=2

k
��1qC1/

� m4LM0.t/.�
29˛�2=7
qC1 CM0.t/

1=2�
13˛�1=7
qC1 / �M0.t/cRıqC2=5;

where we again use (6.16) to have m4L�
29˛�2=7
qC1 Cm4LM0.L/

1=2�
13˛�1=7
qC1 � cRıqC2=5.

In view of a standard mollification estimate we deduce that, for t 2 Œ0; TL�,

j�`.t/ � �.t/j � `
1=2�2ıL1=2eL

1=2

� `1=2�2ım2L;

kRcomkCtL1 . m2L`kvqkC1t;x
kvqkCtL2 C `

1=2�2ım4LM0.t/�
4
q

. `1=2�2ım4LM0.t/�
4
q �M0.t/cRıqC2=5;

where ı 2 .0; 1=12/ and we choose a large enough to have

C`1=2�2ım4L�
4
q <

cR

5
�
�2ˇ
qC2: (6.34)

With the choice of ` and since we postulated that ˛ > 8ˇb and ˛b > 16, this can indeed
be achieved by possibly increasing a and consequently decreasing ˇ.

The second commutator error can be estimated for t 2 Œ0; TL� as follows:

kRcom1kCtL1 � `
1=2�2ım4LM0.t/ �M0.t/cRıqC2=5;

where we use (6.34) to have `1=2�2ım4L <
cR
5
ıqC2.

Thus, collecting the above estimates we obtain the desired third bound in (6.7), and
the proof of Proposition 6.2 is complete.

7. Nonuniqueness in law III: the case of a nonlinear noise

The treatment of a nonlinear noise requires more input coming from the driving Brownian
motion, namely, the corresponding iterated integral of B against B as known in the theory
of rough paths. This is reflected through an additional variable Y included in the path
space. Furthermore, we include a variable Z which is used to control the first step of
the iteration scheme defined via (8.1), (8.2) below, namely to control z0. This is just an
auxiliary point, which by Corollary 7.1 does not restrict the final nonuniqueness in law
result.

In what follows, we therefore use the following notations. Let

z� WD C.Œ0;1/IH�3 �Rm �Rm�m�H�3/ \ L2loc.Œ0;1/IL
2
� �Rm �Rm�m�L2� /
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and let P. z�/ denote the set of all probability measures on . z�; zB/with zB being the Borel
� -algebra coming from the natural topology on z�. Let .x; y;Y ; Z/ W z�! H�3 �Rm �
Rm�m�H�3 denote the canonical process on z� given by

.xt .!/; yt .!/;Yt .!/;Zt .!// D !.t/:

For t � 0 we define the � -algebra zBt D �¹.x.s/; y.s/;Y .s/; Z.s// W s � tº. Finally, we
define the canonical filtration zB0

t WD �¹.x.s/; y.s/;Y .s/;Z.s// W s � tº, t � 0, as well as
its right continuous version zBt WD

T
s>t
zB0
s , t � 0. In this section we choose U D Rm.

7.1. Generalized probabilistically weak solutions

Accordingly, we need to generalize our notion of solution, taking the additional vari-
ables Y and Z into account. We fix a deterministic function v0 2 C 1t;x , which will be
chosen in Lemma 8.1 below. In order to define the stopping time in the same path space,
the process Z solves the SPDE

dZt ��Zt D G.v0 CZt /dBt ; divZ D 0: (7.1)

By [36, Theorem 4.2.5], the solution to (7.1) belongs to C.Œ0;1/IL2� / a.s.

Definition 7.1. Let s � 0 and x0 2 L2� , y0 2 Rm, Y0 2 Rm�m, Z0 2 L2� . A probability
measure P 2P. z�/ is a generalized probabilistically weak solution to the Navier–Stokes
system (1.1) with initial value .x0; y0;Y0; Z0/ at time s provided

(M1) P.x.t/D x0, y.t/D y0, Y .t/D Y0,Z.t/DZ0, 0� t � s/D 1 and for any n 2N,

P

²
.x; y;Y ; Z/ 2 z� W

ˆ n

0

kG.x.r//k2
L2.RmIL

2
� /
dr <1; Z 2 CL2�

³
D 1:

(M2) Under P , y is a . zBt /t�s-Brownian motion in Rm starting from y0 at time s and for
every ei 2 C1.T3/ \ L2� and all t � s,

hx.t/�x.s/; ei iC

ˆ t

s

hdiv.x.r/˝x.r//��x.r/; ei i dr D
ˆ t

s

hei ; G.x.r//dy.r/i;

Y .t/�Y .s/D

ˆ t

s

y.r/˝dy.r/;

hZ.t/�Z.s/; ei i�

ˆ t

s

h�Z.r/; ei i dr D

ˆ t

s

hei ; G.v0CZ.r//dy.r/i:

(M3) For any q 2 N there exists a positive real function t 7! Ct;q such that for all t � s,

EP
�

sup
r2Œ0;t�

kx.r/k
2q

L2
C

ˆ t

s

kx.r/k2H dr

�
� Ct;q.kx0k

2q

L2
C 1/;

EP
�

sup
r2Œ0;t�

kZ.r/k
2q

L2
C

ˆ t

s

krZ.r/k2
L2
dr

�
� Ct;q.kZ0k

2q

L2
C 1/:
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By the assumption (1.4) on G, pathwise uniqueness holds for (7.1). Hence, since v0
is deterministic, the law of Z is uniquely determined by the Brownian motion B accord-
ing to the Yamada–Watanabe Theorem. Under (1.4), we know that the constant Ct;q is
independent of v0.

Define yr;t WD y.t/ � y.r/ and Xr;t WD Y .t/ � Y .r/ � y.r/˝ .y.t/ � y.r//. Note
that under a generalized probabilistically weak solution P , the pair .y;X/ can be viewed
as a rough path, concretely, it is the Itô lift of an m-dimensional Brownian motion. In
particular, Chen’s relation holds true:

ıXr;�;t D Xr;t �Xr;� �X�;t D yr;� ˝ y�;t ; r � � � t: (7.2)

For the application to the Navier–Stokes system, we will again require a definition of
generalized probabilistically weak solutions defined up to a stopping time � . To this end,
we set

z�� WD ¹!.� ^ �.!// W ! 2 z�º:

Definition 7.2. Let s � 0 and x0 2 L2� , y0 2 Rm, Y0 2 Rm�m, Z0 2 L2� . Let � � s
be a . zBt /t�s-stopping time. A probability measure P 2 P. z�� / is a generalized prob-
abilistically weak solution to the Navier–Stokes system (1.1) on Œs; � � with initial value
.x0; y0;Y0; Z0/ at time s provided

(M1) P.x.t/D x0, y.t/D y0, Y .t/D Y0,Z.t/DZ0, 0� t � s/D 1 and for any n 2N,

P

²
.x; y;Y ; Z/ 2 z� W

ˆ n^�

0

kG.x.r//k2L2.RmIL�2 /
dr <1; Z 2 CL2�

³
D 1:

(M2) Under P , y D .yi /miD1 and each component yi .� ^ �/; i D 1; : : : ;m, is a continuous
square integrable . zBt /t�s-martingale starting from yi0 at time s with cross variation
process between yi and yj given by .t ^ � � s/ıij . For every ei 2 C1.T3/ \ L2�
and all t � s,

hx.t ^ �/ � x.s/; ei i C

ˆ t^�

s

hdiv.x.r/˝ x.r// ��x.r/; ei i dr

D

ˆ t^�

s

hei ; G.x.r//dy.r/i;

Y .t ^ �/ � Y .s/ D

ˆ t^�

s

y.r/˝ dy.r/;

hZ.t ^ �/ �Z.s/; ei i �

ˆ t^�

s

h�Z.r/; ei i dr D

ˆ t^�

s

hei ; G.v0 CZ.r//dy.r/i:

(M3) For any q 2 N there exists a positive real function t 7! Ct;q such that for all t � s,

EP
�

sup
r2Œ0;t^��

kx.r/k
2q

L2
C

ˆ t^�

s

kx.r/k2H dr

�
� Ct;q.kx0k

2q

L2
C 1/;

EP
�

sup
r2Œ0;t^��

kZ.r/k
2q

L2
C

ˆ t^�

s

krZ.r/k2
L2
dr

�
� Ct;q.kZ0k

2q

L2
C 1/:
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It is easy to see the following relation between generalized probabilistically weak
solutions and probabilistically weak solutions.

Corollary 7.1. Let P be a generalized probabilistically weak solution starting from
.x0; y0; 0; 0/ at time s. Then the canonical process Y and Z under P is a measurable
function of y. In other words, P is fully determined by the joint probability law of x; y
and can be identified with a probability measure on the reduced path space N�. Hence P
is a probabilistically weak solution with initial value .x0; y0/ at time s.

Conversely, let .x0; y0/ 2 L2� � Rm be given, let P 2 P. N�/ be a probabilistically
weak solution and define P -a.s. for t � s,

Y .t/ WD

ˆ t

s

y.r/˝ dy.r/;

and set Z to be the unique probabilistically strong solution to (7.1) with B replaced
by y and Z.s/ D 0. Let Q be the joint law of .x; y;Y ; Z/ under P . Then Q 2P. z�/

gives rise to a generalized probabilistically weak solution starting from the initial value
.x0; y0; 0; 0/ at time s.

Similarly to Theorem 3.1, the following existence and stability result holds. We prove
it in Appendix A.

Theorem 7.2. For every .s; x0; y0; Y0; Z0/ 2 Œ0;1/ � L2� � Rm � Rm�m�L2� , there
exists P 2P. z�/ which is a generalized probabilistically weak solution to the Navier–
Stokes system (1.1) starting at time s from the initial condition .x0; y0; Y0; Z0/ in the
sense of Definition 7.1. The set of all such solutions with the same implicit constant Ct;q
is denoted by G W .s; x0; y0;Y0; Z0; Ct;q/.

Let

.sn; xn; yn;Yn; Zn/! .s; x0; y0;Y0; Z0/ in Œ0;1/ � L2� �Rm �Rm�m�L2�

as n!1 and let
Pn 2 G W .sn; xn; yn;Yn; Zn; Ct;q/:

Then there exists a subsequence nk such that the sequence ¹Pnk ºk2N converges weakly
to some P 2 G W .s; x0; y0;Y0; Z0; Ct;q/.

By Corollary 7.1 nonuniqueness of generalized probabilistically weak solutions from
.x0; y0; 0; 0/ implies joint nonuniqueness in law from .x0; y0/ in the sense of Defini-
tion 5.3.

7.2. General construction for generalized probabilistically weak solutions

The overall strategy is similar to Section 3.2. In the first step, we shall extend generalized
probabilistically weak solutions defined up to a . zBt /t�0-stopping time � to the whole
interval Œ0;1/. We denote by zB� the � -field associated to � .
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Proposition 7.3. Let � be a bounded . zBt /t�0-stopping time. Then for every ! 2 z� there
exists Q! 2P. z�/ such that for ! 2 ¹x.�/ 2 L2� ; Z.�/ 2 L

2
�º,

Q!
�
!0 2 z� W .x; y;Y ; Z/.t; !0/ D .x; y;Y ; Z/.t; !/ for 0 � t � �.!/

�
D 1; (7.3)

Q!.A/ D R�.!/;x.�.!/;!/;y.�.!/;!/;Y.�.!/;!/;Z.�.!/;!/.A/ for all A 2 B�.!/; (7.4)

where R�.!/;x.�.!/;!/;y.�.!/;!/;Y.�.!/;!/;Z.�.!/;!/ 2P. z�/ is a generalized probabilisti-
cally weak solution to the Navier–Stokes system (1.1) starting at time �.!/ from the initial
condition

.x.�.!/; !/; y.�.!/; !/;Y .�.!/; !/;Z.�.!/; !//:

Furthermore, for every B 2 zB the mapping ! 7! Q!.B/ is zB� -measurable.

Proof. The proof is identical to the proof of Proposition 3.2 applied to the extended path
space z� instead of �0 and making use of Theorem 7.2 instead of Theorem 3.1.

We proceed with an analogue to Proposition 5.3.

Proposition 7.4. Let x0 2 L2� . Let P be a generalized probabilistically weak solution
to the Navier–Stokes system (1.1) on Œ0; �� starting at time 0 from the initial condition
.x0; 0; 0; 0/. In addition to the assumptions of Proposition 7.3, suppose that there exists a
Borel set N � z�� such that P.N / D 0 and for every ! 2 N c ,

Q!.!
0
2 z� W �.!0/ D �.!// D 1: (7.5)

Then the probability measure P ˝� R 2P. z�/ defined by

P ˝� R.�/ WD

ˆ
z�

Q!.�/ P.d!/

satisfies P ˝� R D P on the � -algebra �.x.t ^ �/; y.t ^ �/;Y .t ^ �/;Z.t ^ �/ W t � 0/
and is a generalized probabilistically weak solution to the Navier–Stokes system (1.1) on
Œ0;1/ with initial condition .x0; 0; 0; 0/.

Proof. Most of the proof follows exactly the same argument as in Proposition 5.3. For
(M2), we consider the z part and similar to the proof of Proposition 5.3 we obtain

P ˝� R

²
Y .t/ � Y .0/ D

ˆ t

0

y.r/˝ dy.r/; t � 0

³
D

ˆ
z�

dP.!/Q!

²
Y .t/ � Y .t ^ �.!// D

ˆ t

t^�.!/

y.r/˝ dy.r/;

Y .t ^ �.!// � Y .0/ D

ˆ t^�.!/

0

y.r/˝ dy.r/; t � 0

³
D 1;

and

P ˝� R

²
hZ.t/ �Z.0/; ei i �

ˆ t

0

hZ.r/;�ei i dr

D

ˆ t

0

hei ; G.v0 CZ.r//dy.r/i; ei 2 C
1.T3/ \ L2� ; t � 0

³
D 1:

Hence condition (M2) follows.
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7.3. Application to solutions obtained through Theorem 1.5

For ˛ 2 .0; 1/ we denote

kXk˛;Œ0;T � WD sup
0�r<t�T

jXr;t j

jr � t j˛
;

and for n 2 N, L > 1 and ı 2 .0; 1=12/ we define

�nL.!/ D inf ¹t > 0 W ky.!/k
C
1=2�2ı
t

> .ln lnL � 1=n/º ^ ln lnL

^ inf ¹T � 0 W kXk1�4ı;Œ0;T � > .ln lnL � 1=n/º

^ inf ¹t � 0 W kZ.t/kL2 > L � 1=nº:

Then the sequence ¹�nLºn2N is nondecreasing and we define

�L WD lim
n!1

�nL: (7.6)

Without additional regularity of the process y, we have �nL.!/ D 0. By Lemma 3.5 we
deduce that �nL is a . zBt /t�0-stopping time and consequently so is �L as an increasing limit
of stopping times.

On a stochastic basis .�;F ; P/, we apply Theorem 1.5 and denote by u and z0 the
corresponding solutions to the Navier–Stokes system (1.9) and to the linear equation (8.1)
with q D 0 on Œ0; TL�, where the stopping time TL is defined in (8.3) below. We recall that
u is adapted to .Ft /t�0. The process z0 is the unique probabilistically strong solution,
hence is also adapted to .Ft /t�0. We denote by P the law of .u; B;

´ �
0
B dB; z0/ and

obtain the following result by similar arguments to those in the proof of Proposition 3.7.

Proposition 7.5. The probability measure P is a generalized probabilistically weak solu-
tion to the Navier–Stokes system (1.9) with initial condition .u.0/; 0; 0; 0/ on Œ0; �L� in the
sense of Definition 7.2, where �L was defined in (7.6).

Proof. The proof is similar to the proof of Proposition 3.7 once we note that from the
definition of the canonical process we have

y

�
t;

�
u;B;

ˆ
B dB; z0

��
D B.t/; Y

�
t;

�
u;B;

ˆ
B dB; z0

��
D

ˆ t

0

Br dBr ;

Z

�
t;

�
u;B;

ˆ
B dB; z0

��
D z0.t/;

Xs;t

�
u;B;

ˆ
B dB; z0

�
D

ˆ t

s

Bs;r ˝ dBr DW Bs;t for s; t 2 Œ0; TL� P-a.s.;

and by Chen’s relation (7.2) and the definition of Z, the functions

t 7! kBk
C
1=2�2ı
t

; t 7! kBk1�4ı;Œ0;t�; t 7! kz0.t/kL2

are continuous P-a.s. In particular, property (M2) in Definition 7.2 follows since
.u; B;

´
B dB/ satisfies (1.9) and .z0; B/ satisfies (8.1) with q D 0.
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Proposition 7.6. The probability measure P ˝�L R is a generalized probabilistically
weak solution to the Navier–Stokes system (1.9) on Œ0;1/ in the sense of Definition 7.1.

Proof. In light of Propositions 7.3 and 7.4, it only remains to establish (7.5). By Theo-
rem 1.5 and Proposition 7.5 we know that

P
�
! W y.� ^ �L/ 2 C

1=2�ıRm; Z.� ^ �L/ 2 CL
2
�

�
D 1;

and by Xs;t^�L D
´ t^�L
s

ys;r ˝ dyr for t > s, we have

P.! W kXk1�2ı;Œ0;�L� <1/ D 1:

In other words, there exists a P -measurable set N � z� such that P.N / D 0 and for
! 2 N c ,

y.� ^ �L.!// 2 C
1=2�ıRm; kX.!/k1�2ı;Œ0;�L.!/� <1; Z.� ^ �L.!// 2 CL

2
� :

Moreover, by Chen’s relation, for all ! 2 N c \ ¹x.�L/ 2 L
2
� ; Z.�L/ 2 L

2
�º we have

Q!
�
!0 W kXk1�2ı;Œ0;T � <1; y 2 C

1=2�ı
T Rm; Z 2 CTL

2
� ; T > 0

�
D Q!

�
!0 W kXk1�2ı;Œ0;�L.!/� <1; kXk1�2ı;Œ�L.!/^T;T � <1;

y 2 C
1=2�ı
T Rm; Z 2 CTL

2
� ; T > 0

�
D ı!

�
!0 W y.� ^ �L.!// 2 C

1=2�ıRm; Z.� ^ �L.!// 2 CL
2
� ; kXk1�2ı;Œ0;�L.!/� <1

�
�R�L.!/;.x;y;Y ;Z/.�L.!/;!/

�
!0 W y � y.� ^ �L.!// 2 C

1=2�ı
T Rm;

Z �Z.� ^ �L.!// 2 CTL
2
� ; kXk1�2ı;Œ�L.!/^T;T � <1; T > 0

�
:

Here the first factor on the right hand side equals 1 for all ! 2 N c . Since
R�L.!/;.x;y;Y ;Z/.�L.!/;!/ is a generalized probabilistically weak solution starting at the
deterministic time �L.!/ from the deterministic initial condition .x; y;Y ; Z/.�L.!/; !/,
the process !0 7! y � y.� ^ �L.!// is a . zBt /t�0-Wiener process starting from �L.!/ and
Xs;t D

´ t
s
ys;r ˝ dyr for t > s � �L.!/ under the measureR�L.!/;.x;y;Y ;Z/.�L.!/;!/. Thus

we deduce that also the second factor equals 1. To summarize, we have proved that for all
! 2 N c \ ¹x.�L/ 2 L

2
� ; Z.�L/ 2 L

2
�º,

Q!.!
0
W y 2 C

1=2�ı
T Rm; Z 2 CTL

2
� ; kXk1�2ı;Œ0;T � <1; T > 0/ D 1:

Therefore for all ! 2 N c \ ¹x.�L/ 2 L
2
� and Z.�L/ 2 L2�º, kykC1=2�2ı

T

; kXk1�4ı;Œ0;T �
are continuous with respect to T and Z 2 CL2� . The proof is completed by the same
argument as for Proposition 3.8.

Now, we are ready to conclude the proof of Theorem 1.6.

Proof of Theorem 1.6. By (1.11) with K D 2 and an argument as in the proof of Theo-
rem 1.2, we deduce that the generalized probabilistically weak solution P ˝�L R does
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not satisfy the energy inequality. The solutions obtained in Theorem 7.2 satisfy the usual
energy inequality by Galerkin approximation. Hence the two generalized probabilistically
weak solutions starting from the initial condition .u.0/; 0; 0; 0/ are distinct, which by
Corollary 7.1 implies joint nonuniqueness in law, i.e. nonuniqueness of probabilistically
weak solutions. In view of Theorem C.1 we finally deduce the desired nonuniqueness in
law, i.e. nonuniqueness of martingale solutions.

8. Proof of Theorem 1.5

In this section, we fix an m-dimensional Brownian motion B on a probability space
.�;F ;P/ with its normal filtration .Ft /t�0 and assume the coefficient G satisfies (1.4).
The principal difference between this setting and the setting of additive or linear mul-
tiplicative noise is that no transformation of the SPDE (1.9) into a PDE with random
coefficients is available. Therefore we introduce a convex integration scheme which at
each step additionally solves a parametrized stochastic Stokes equation with a nonlinear
Itô noise. To be more precise, let v�1 � v0 be given in Lemma 8.1 below. At each step
q 2 N0, we construct a triple .zq; vq; VRq/ solving

dzq ��zqdt D G.vq�1 C zq/dB;

div zq D 0;

zq.0/ D 0;

(8.1)

@tvq ��vq C div..vq C zq/˝ .vq C zq//Crpq D div VRq;

div vq D 0:
(8.2)

In order to obtain the desired iterative estimates (4.4) from the random PDE (8.2), it
is necessary to have pathwise control of each zq . This is not possible using stochastic
Itô integration theory. Instead, we make use of rough path theory which we present in
Appendix D. As explained in Section D.1, if vq�1 is adapted, then the unique rough path
solution zq of (8.1) coincides P-a.s. with the unique stochastic solution coming from
stochastic Itô integral theory. In particular, zq is an .Ft /t�0-adapted process. This in turn
permits one to conclude that the next iteration vq is .Ft /t�0-adapted as well.

As before, we consider an increasing sequence ¹�qºq2N � N which diverges to1,
and a sequence ¹ıqºq2N � .0; 1/ which is decreasing to 0. For a; b 2 N and ˇ 2 .0; 1/ to
be chosen below we define

�q D a
bq ; ıq D �

�2ˇ
q :

It will be seen that ˇ will be chosen sufficiently small and a as well as b will be chosen
sufficiently large. Set Bs;t WD

´ t
s
.Br �Bs/˝ dBr and define, forL> 1 and 0 < ı < 1=12,

TL WD T
1
L ^ T

2
L ;

T 1L WD inf ¹t � 0 W kBk
C
1=2�2ı
t

� ln lnLº

^ inf ¹t � 0 W kBk1�4ı;Œ0;t� � ln lnLº ^ ln lnL;

T 2L WD inf ¹t � 0 W kz0.t/kL2 � Lº:

(8.3)
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By the definition of Brownian motion and the properties of the solution to the heat equa-
tion (8.1) for qD 0, the stopping time TL is P-a.s. strictly positive, and TL "1 asL!1
P-a.s. Moreover, by Theorem D.9, for t 2 Œ0; TL� with L large enough and q 2 N,

kzqkCtC1 � L
1=4.1C kvq�1kC1t;x

/; kzqkC1=2�2ıt L1
� L1=2.1C kvq�1kC1t;x

/;

kz0kCtL2 � L; kz0kCtC1 � L
1=4.1C kv0kC1t;x

/;

kz0kC1=2�2ıt L1
� L1=2.1C kv0kC1t;x

/:

(8.4)

Let M0.t/ D L
4e4Lt . We postulate that the iterative bounds (4.4) hold for .vq; VRq/.

Lemma 8.1. For L > 1 define

v0.t; x/ D
L2e2Lt

.2�/3=2
.sin.x3/; 0; 0/;

and let z0 solve (8.1) with v�1 � v0. Then the associated Reynolds stress is given by

VR0.t; x/ D
.2LC 1/L2e2Lt

.2�/3=2

0@ 0 0 � cos.x3/
0 0 0

� cos.x3/ 0 0

1AC v0 V̋ z0 C z0 V̋ v0
C z0 V̋ z0:

Moreover, all the estimates in (4.4) on level q D 0 for .v0; VR0/ as well as (4.5) are valid
provided (4.7) and (8.4) hold. In particular, we require that (4.8) holds. Furthermore, the
initial values v0.0; x/ and VR0.0; x/ are deterministic.

Proof. The proof follows from the same argument as in Lemma 4.1.

As part of the following result we also control the difference zqC1 � zq on the time
interval Œ0; t �, t 2 Œ0; TL�, in a pathwise manner in the space of controlled rough paths. We
refer the reader to Appendix D and in particular to Definition D.2 where the corresponding
norm k � k NB;2˛; , ˛ 2 .1

3
; 1
2
/,  2 R, is defined. We denote by k � k NB;2˛;;t the norm in

D2˛
NB;
.Œ0; t �/. In general, k � k NB;2˛; is the norm for the pair process .z; z0/, where z0 is

the Gubinelli derivative of the controlled rough path z. In the following we use it for zq
with z0q D G.zq C vq�1/ and we will write kzqk NB;2˛;;t instead of kzq; z0qk NB;2˛;;t in this
section.

Proposition 8.2 (Main iteration). Let L > 1 satisfying (4.8) be given and let .zq; vq; VRq/
be an .Ft /t�0-adapted solution to (8.1), (8.2) satisfying (4.4). Then there exists a choice
of parameters a; b;ˇ such that (4.7) is fulfilled and there exist .Ft /t�0-adapted processes
.zqC1; vqC1; VRqC1/ which solve (8.1), (8.2), obey (4.4) at level q C 1 and for t 2 Œ0; TL�
we have for ı > 0, q 2 N0, ˛0 D 2=3C �, and � > 0 small enough,

kvqC1.t/ � vq.t/kL2 �M0.t/
1=2ı

1=2
qC1; kvqC1 � vqkC˛0t B�5�ı

1;1

�M0.t/
1=2ı

1=2
qC1;

(8.5)

kzqC1 � zqk NB;˛0;2˛0;t �M0.t/
1=2ı

1=2
qC1: (8.6)

Furthermore, if vq.0/ and VRq.0/ are deterministic, so are vqC1.0/ and VRqC1.0/.
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Having Proposition 8.2 at hand, we may prove Theorem 1.5.

Proof of Theorem 1.5. The proof mostly uses exactly the same argument as in the proof
of Theorem 1.1. Starting from .z0; v0; VR0/ given in Lemma 8.1, Proposition 8.2 gives a
sequence .zq; vq; VRq/ satisfying (4.4) and (8.5). Hence, as in the proof of Theorem 1.1,
we obtain a limiting solution v D limq!1 vq which lies in C.Œ0; TL�IH  / and (4.13)
holds. Since vq is .Ft /t�0-adapted for every q � 0, so is the limit v. By (8.6) we obtain
the convergence of zq in ND˛0

B;2˛0
.Œ0; TL�/ introduced in Definition D.2. We denote by z

the limit and note that it is also .Ft /t�0-adapted as a limit of adapted processes.
Hence we can take the limit in (8.1), (8.2) and conclude that u D v C z satisfies the

Navier–Stokes system (1.9) in the analytically weak sense before time TL. In order to pass
to the limit in the stochastic integral, we recall that by Section D.1 the rough integral in
(8.1) on level q coincides with the Itô stochastic integral. By the P-a.s. convergence of vq
and zq , we may therefore pass to the limit limq!1

´
G.vq C zqC1/dB D

´
G.vC z/dB

in L2.�/ in the Itô formulation. Moreover, the limit stochastic integral again coincides
with the corresponding rough path integral.

By the same argument as in the proof of Theorem 1.1 we obtain

kv.T /kL2 > .kv.0/kL2 C L/e
LT on ¹TL � T º: (8.7)

In other words, given T > 0 and the universal constant cR > 0, we can choose L D
L.T;cR/ > 1 large enough so that (4.8) and (4.15) hold and consequently (8.7) is satisfied.
Moreover, in view of the definition of the stopping times (8.3), for a given T > 0 we may
increase L if necessary so that P.TL � T / > �.

To verify (1.10) and (1.11), we use Itô’s formula for zq and let q!1 to have, for all
p 2 N,

E
�

sup
t2Œ0;TL�

kz.t/k
2p

L2
C

ˆ TL

0

kz.t/k2
H1
dt

�
� Ct;p;

which combined with (4.13) implies (1.10). We also have

EŒkz.T /k2
L2
� � CGT:

We then apply (8.7) on ¹TL � T º together with 1
2
v2 � z2 C u2 to obtain

EŒ1TL�T ku.T /k
2
L2
� � 1

2
EŒ1TL�T kv.T /k

2
L2
� � EŒkz.T /k2

L2
�

> 1
2
�.kv.0/kL2 C L/

2e2LT � CGT:

Thus, since u.0/ D v.0/ we may increase L if necessary, depending on K and CG , in
order to get the desired lower bound (1.11). The initial value v.0/ is deterministic by
construction. Finally, we set t WD TL, which finishes the proof.

8.1. The main iteration – proof of Proposition 8.2

8.1.1. Choice of parameters. Let us summarize how the parameters need to be chosen
in order to fulfill all the compatibility conditions below. First, for a sufficiently small
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˛ 2 .0; 1/ to be chosen later, we define ` 2 .0; 1/ as in (4.17). The last condition in (4.16)
together with (4.7) leads to

45 � .2�/3=2 < 5 � .2�/3=2a2ˇb � cRL � cR
a4 � .2�/3=2 � 1

2
:

We remark that the reasoning from the beginning of Section 4.1 remains valid for this
new condition: we may freely increase a provided we make ˇ smaller at the same time.
In addition, we will require ˛b > 32 and ˛ > 16ˇb2.

In order to verify the inductive estimates (4.4), especially dealing with the terms with
rough paths, it will also be necessary to absorb various expressions includingM0.t/

M0.t/
7

with t D ln lnL. It will be seen that the strongest such requirement is, for q 2 N,

L2M0.ln lnL/M0.ln lnL/7�20˛�1=42q � cRıqC2=10;

L2M0.ln lnL/M0.ln lnL/7.��3˛=2q ��2q�1/
1=6�4q�1 � cRıqC2=10;

(8.8)

needed in the estimates of RqC1. In other words, for NML WD dL
2M0.ln lnL/M0.ln lnL/7e,

NMLa
20˛� 1

42C2b
2ˇ
� 1; NMLa

� b˛4 C
11
3 C2b

3ˇ
� 1;

and choosing b D 28 NML _ .33 � 28 � 80/ (this choice comes from the fact that with our
choice of ˛ below we want to guarantee that ˛b > 32 as well as the fact that b is a multiple
of 28 needed for the parameters in the intermittent jets, cf. Appendix B) and choosing a
large such that NML < b � a

˛=2 leads to

a20˛C˛=2�
1
42C2b

2ˇ
� 1; a˛=2�

b˛
4 C

11
3 C2b

3ˇ
� 1:

In view of ˛ > 16ˇb2, this can be achieved by choosing a large enough and ˛ D

80�1 � 28�1. This choice also satisfies ˛b > 32 required above, and the condition ˛ >
16ˇb2 can be achieved by choosing ˇ small. It is also compatible with all the other
requirements needed below.

From now on, the parameters ˛ and b remain fixed and the free parameters are a and ˇ
for which we already have a lower, respectively upper, bound. In what follows, we will
possibly increase a and decrease ˇ at the same time in order to preserve all the above
conditions and to fulfil further conditions appearing below.

8.1.2. Verification of the inductive estimates for vqC1. Note that v`, z`, VR` are defined as
in Section 4.1.2. We could check that v` satisfies the equation

@tv` ��v` C div..v` C z`/˝ .v` C z`//Crp` D div. VR` CRcom/;

div v` D 0

with

Rcom D .v` C z`/ V̋ .v` C z`/ � ..vq C zq/ V̋ .vq C zq// �x �` �t '`:

Hence, the estimates (4.20)–(4.22) hold in this case.
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For the intermittent jets we choose the following parameters:

� D �qC1; rk D �
�4=7
qC1 ; r? D �

�27=28
qC1 ; � D �

9=7
qC1; (8.9)

where we note in particular the new value of r? as compared to (4.23). This is needed in
order to obtain the sufficient (Young) time regularity of vqC1 � vq in (8.5), which in turn
is employed for the rough path control of zqC1 � zq in Section 8.1.3 below.

Next, we define �;a.�/,w
.p/
qC1;w

.c/
qC1 andw.t/qC1 as in Section 4.1.3 with the new param-

eters given in (8.9). By exactly the same argument as in Section 4.1.3, all the estimates
and equalities in (4.24)–(4.36) hold. When applying Lemma 4.3 we choose � D `�8 with
.`�8/5 < .�qC1r?/ D �

1=28
qC1 , where we use ˛ D 1

28�80
. Hence, (4.37)–(4.39) also hold.

The estimation in (4.40) follows the same way except for the last equality, i.e. we have

kw
.t/
qC1kCtLp . ıqC1M0.t/`

�4r
2=p�1
?

r
1=p�2

k
.��1r�1? rk/:

By the choice of the parameters, we haveM0.ln lnL/1=2�4˛�1=28qC1 < 1, which implies that
(4.41) holds in this case. As a result, for t 2 Œ0; TL� we obtain

kwqC1kCtL2 �M0.t/
1=2ı

1=2
qC1.1=2C C�

24˛�11=28
qC1 C CM0.t/

1=2ı
1=2
qC1�

8˛�1=28
qC1 /

�
3
4
M0.t/

1=2ı
1=2
qC1:

Hence the first inequality in (8.5) holds.

8.1.3. Estimate of kzq � zqC1k NB;˛0;2˛0;t . In the following, we intend to estimate
kvq � vqC1kC˛0t B

�
1;1

for some ˛0 > 2=3 and  > 0. This is required for the rough path

estimate of kzq � zqC1k NB;˛0;2˛0;t on the time interval Œ0; t �; cf. Theorem D.10.
To this end, we first estimate kwqC1kC˛0t B

�
1;1

. The idea is to gain some negative power

of �qC1 from kW.�/kC˛0t B
�
1;1

. By paraproduct estimates similar to [28, Lemma A.7] and
applying Lemma B.2 we deduce that for any ı > 0 and  D 5C ı,

kW.�/kC˛0t B
�
1;1

. k .�/kC˛0t HCı
k�.�/kH� ;

. �˛0.�qC1r?=rk/
˛0CCı.�qC1/

�r�ı? . �
.53˛0C44ı�11/=28
qC1 :

Using the paraproduct estimates again we have, for  D 5C ı,

kw
.p/
qC1kC

˛0
t B

�
1;1

. ka.�/kC˛0CCıx;t

kW.�/kC˛0t B
�
1;1

. ı
1=2
qC1M0.t/

1=2`�2�5d˛0CCıe�
.53˛0C44ı�11/=28
qC1 ;

where dxe denote the smallest integer greater than x. In view of (B.7), we find (applying
interpolation similarly to Lemma B.2)

kw
.c/
qC1kC

˛0
t L1

. ka.�/kC˛0x;t kW
.c/

.�/
k
C
˛0
t L1

C ka.�/kC2C˛0x;t

kV.�/kC˛0t W 1;1

. ı
1=2
qC1M0.t/

1=2`�17r?r
1=2

k
.r?r

�1
k
C ��1qC1/

�r?�qC1�
rk

�˛0
. ı

1=2
qC1M0.t/

1=2`�17�
53˛0=28�23=14
qC1 :
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We choose p D 35
35�14˛

> 1 so that in particular r2=p�2
?

r
1=p�1

k
� �˛qC1. Then for ˛0 D

2=3C � with � > 0 small we obtain

kw
.t/
qC1kC

˛0
t Lp

. ��1ka.�/kC˛0x;t
ka.�/kCx;t k�.�/k

2
L2p
k .�/kC˛0t L2p

k .�/kCtL2p

. ıqC1M0.t/`
�9r

2=p�2
?

r
1=p�1

k
��1

�
r?�qC1�

rk

�˛0
. ıqC1M0.t/`

�9�
53˛0=28C˛�9=7
qC1

and then using ˛0 D 2=3C � we get 53˛0=28 � 9=7 D �1=42C 53�=28, so finally

kw
.t/
qC1kC

˛0
t Lp

. ıqC1M0.t/`
�9�

�1=42C53�=28C˛
qC1 :

We also have

kvq � v`kC˛0t L2
. kvq � v`k1�˛0CtL2

kvq � v`k
˛0

C1t L
2

. `1�˛0kvqkC1t;x
� `1�˛0�4qM0.t/

1=2:

Combining the above estimates we obtain, for ˛0 D 2=3C �,  D 5C ı,

kvq � vqC1kC˛0t B
�
1;1

. M0.t/
1=2.`1�˛0�4q C `

�17�
53˛0=28�23=14
qC1 CM0.t/

1=2`�9�
�1=42C53�=28C˛
qC1

C `�2�5d˛0CCıe�
.53˛0C44ı�11/=28
qC1 /

. M0.t/
1=2.`1�˛0�4q CM0.t/

1=2`�9�
�1=42C53�=28C˛
qC1 / �M0.t/

1=2ı
1=2
qC1:

In the last inequality we have used `1�˛0�4q � .�
�3˛=2
qC1 ��2q /

1=6�4q � �
�ˇb
qC1, where the first

inequality follows from the definition of ` together with the fact that 1� ˛0 > 1=6, and the
second inequality is implied by the second inequality in (8.8) with q replaced by q C 1.

Then the second inequality in (8.5) holds.
By the choice of v0 in Lemma 8.1 we obtain

kvqkC˛0t B�5�ı
1;1

. kv0kC˛0t B�5�ı
1;1

C

X
k�0

kvk � vkC1kC˛0t B�5�ı
1;1

� .2LC 2/M0.t/
1=2:

Moreover, by Theorem D.10 we have

kzqkCtL2 � kzqk NB;˛0;2˛0;t � .2LC 2/LM0.t/
1=2; (8.10)

We intend to combine the above two estimates with the last inequality in Theorem D.10.
To this end, we observe that NN DM0.ln lnL/ in Theorem D.10 and the right hand side of
the estimate can be controlled by NN .6:5/T NN6:5 . Then we could choose L large enough to
have it controlled by NN NN7 . As a consequence, we choose � small satisfying 53�=28� ˛=2
and (8.8) to see for q 2 N that

kzq � zqC1k NB;˛0;2˛0;t

. M0.t/
1=2.`

1�˛0
0 �4q�1 C `

�9
0 �

�1=42C53�=28C˛
q M0.t/

1=2/M0.ln lnL/M0.ln lnL/7

�M0.t/
1=2ı

1=2
qC1 (8.11)
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with `0 D �
�3˛=2
q ��2q�1. For q D 0 nothing needs to be proven since z1 D z0. Hence, (8.6)

holds.

8.1.4. Conclusion

Proof of Proposition 8.2. Recall that we changed the parameter r? to a smaller value.
Hence, (4.43)–(4.45) hold, which implies that for t 2 Œ0; TL�,

kvqC1kC1t;x
� kv`kC1t;x

C kwqC1kC1t;x

�M0.t/
1=2
�
�˛qC1 C C�

14˛C3C1=4
qC1 C C�

34˛C20=7
qC1 C CM0.t/

1=2�
19˛C3C3=28
qC1

�
�M0.t/

1=2�4qC1;

where we use CM0.ln lnL/1=2 � 1
2
�
25=28�19˛
qC1 . Thus, the second estimate in (4.4) holds

true on level q C 1. Moreover, the estimates (4.46)–(4.47) hold.
In the following we control VRqC1. We choose pD 35

35�14˛
>1 so that r2=p�2

?
r
1=p�1

k
�

�˛qC1. First, we recall that r? becomes smaller and p is close to 1. Hence r2=p�1
?

becomes

smaller and we use r2=p�2
?

r
1=p�1

k
� �˛qC1. As a result, the bounds for R.t/osc and the terms

not involving z in Rlin do not change. For Rcor we have

kRcorkCtLp

. M0.t/
�
`�12r

1=p
?

r
1=.2p/�3=2

k
C `�4M0.t/

1=2r
1=p�1
?

r
1=.2p/�1=2

k
��1r�1? r

�1=2

k

�
� `�2r

1=p�1
?

r
1=.2p/�1=2

k

. M0.t/
�
`�14r

2=p�1
?

r
1=p�2

k
C `�6M0.t/

1=2r
2=p�3
?

r
1=p�3=2

k
��1

�
. M0.t/

�
�
29˛�11=28
qC1 CM0.t/

1=2�
13˛�1=28
qC1

�
�M0.t/cRıqC2=5:

As before, we also have

kR.x/osc kCtLp . M0.t/`
�9r

2=p�2
?

r
1=p�1

k
.r�1? ��1qC1/ . M0.t/`

�9�˛qC1.r
�1
? ��1qC1/

. M0.t/�
19˛�1=28
qC1 �M0.t/cRıqC2=10:

In the following it suffices to consider the terms containing z in Rlin, Rcom and Rcom1.
Recall that we have

z` D .zq �x �`/ �t '`;

Rcom D .v` C z`/ V̋ .v` C z`/ � ..vq C zq/ V̋ .vq C zq// �x �` �t '`;

Rcom1 D vqC1 V̋ zqC1 � vqC1 V̋ z` C zqC1 V̋ vqC1 � z` V̋ vqC1 C zqC1 V̋ zqC1

� z` V̋ z`:

In order to estimate the remaining term in Rlin,

R1lin WD .v` C z`/ V̋ wqC1 C wqC1 V̋ .v` C z`/;
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we use (8.4) as well as (4.16) to obtain, for q 2 N,

kR1linkCtLp . k.v` C z`/ V̋ wqC1 C wqC1 V̋ .v` C z`/kCtLp

. M0.t/
1=2.�4q C �

4
q�1L

1=4/kwqC1kCtLp

. M0.t/`
�2r

2=p�1
?

r
1=p�1=2

k
.�4q C �

4
q�1L

1=4/ . M0.t/�
6˛�5=4
qC1

�M0.t/cRıqC2=10;

where we have used �4q�1L
1=4 � �4q . For q D 0 we have

kR1linkCtLp . M0.t/`
�2r

2=p�1
?

r
1=p�1=2

k
.�40 C �

4
0L

1=4/ . M0.t/�
4
0L

1=4�
5˛�5=4
1

�M0.t/cRıqC2=10;

where the last inequality follows from ˛b > 32 and ˛ > 16ˇb2.
In view of the standard mollification estimates we deduce, for t 2 Œ0; TL� and q D 0,

kRcomkCtL1 . `1=2�2ı�40L
1=4L2M0.t/ �M0.t/cRı2=5;

where we use ˛b > 32 and ˛ > 16ˇb2 in the last inequality. For q 2 N we have

kRcomkCtL1 . `.kvqkC1t;x
C kzqkCtC1/.kvqkCtL2 C kzqkCtL2/

C `1=2�2ı.kzqkC1=2�2ıt L1
C kvqkC1t;x

/.kvqkCtL2 C kzqkCtL2/

. `�4qL
2M0.t/C `

1=2�2ı�4qL
2M0.t/ �M0.t/cRıqC2=5;

where we have used (8.10) and �4q�1L
1=2 � �4q and ı < 1=12 and we require `1=2�2ı�4qL

2

< cRıqC2=10, i.e.
L2�

�˛=2
qC1 �

�2=3
q �4q < �

�2ˇb
qC1 ;

with the choice of ` in (4.17), and the exponents were obtained with the choice ı D 1=12.
Since we postulated that ˛b > 32, this can indeed be achieved by possibly increasing a
and consequently decreasing ˇ.

Finally, we use (8.4) and (8.8) to obtain, for t 2 Œ0; TL� and q 2 N,

kRcom1kCtL1

. kvqC1kCtL2kzqC1 � z`kCtL2 C .kzqC1kCtL2 C kz`kCtL2/kzqC1 � z`kCtL2

. M0.t/.`
1�˛0
0 �4q�1 CM0.t/

1=2`�90 �
�1=42C53�=28C˛
q C `1=2�2ı�4q�1/

�M0.ln lnL/M0.ln lnL/7L2

�M0.t/cRıqC2=5;

with `0 D �
�3˛=2
q ��2q�1 and where we have used (8.11), yielding for q 2 N,

kzqC1 � z`kCtL2 � kzqC1 � zqkCtL2 C kzq � z`kCtL2

. M0.t/
1=2.`

1�˛0
0 �4q�1 C `

�9��1=42C53�=28C˛q M0.t/
1=2

C `1=2�2ı�4q�1/M0.ln lnL/M0.ln lnL/7 :
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For q D 0 we use (8.4) to get

kz1 � z`kCtL2 � kz1 � z0kCtL2 C kz0 � z`kCtL2 � `
1=2�2ıL1=2.1C kv0kC1t;x

/

� `1=2�2ıL1=2�40M0.t/
1=2;

which combined with (8.10) implies, for t 2 Œ0; TL� and q D 0,

kRcom1kCtL1 . M0.t/`
1=2�2ı�40L

5=2 . M0.t/cRı2=5:

The proof is complete.

Appendix A. Proof of Theorems 3.1, 5.1 and 7.2

Let us begin with the following tightness result.

Lemma A.1. Let ¹.sn; xn/ºn2N � Œ0;1/ � L
2
� be such that .sn; xn/ ! .s; x0/. Let

¹Pnºn2N be a family of probability measures on �0 satisfying, for all n 2 N,

Pn.x.t/ D xn; 0 � t � sn/ D 1; (A.1)

and for some ; � > 0 and any T > 0,

sup
n2N

EPn
�

sup
t2Œ0;T �

kx.t/kL2 C sup
r¤t2Œ0;T �

kx.t/ � x.r/kH�3

jt � r j�
C

ˆ T

sn

kx.r/k2H dr

�
<1:

(A.2)
Then ¹Pnºn2N is tight in S WD C.Œ0;1/IH�3/ \ L2loc.Œ0;1/IL

2
� /.

Proof. In view of the uniform bound (A.2), the canonical process under the measure Pn
is bounded in L1loc.Œ0;1/IL

2/\ C �loc.Œ0;1/IH
�3/\L2loc.Œsn;1/IH

 / and the bounds
are uniform in n. We recall that a set K � S is compact provided

KT WD ¹f jŒ0;T � W f 2 Kº � C.Œ0; T �IH
�3/ \ L2.0; T IL2� /

is compact for every T > 0. In addition, for every T > 0, the embedding

L1.0; T IL2/ \ C �.Œ0; T �IH�3/ \ L2.Œ0; T �IH  / � C.Œ0; T �IH�3/ \ L2.0; T IL2� /

is compact (see e.g. [3, Section 1.8.2]). This implies that also the embedding of the local-
in-time spaces

L1loc.Œ0;1/IL
2/ \ C �loc.Œ0;1/IH

�3/ \ L2loc.Œ0;1/IH
 / � S

is compact. This result, however, cannot be applied directly in order to prove the claim of
the lemma due to the fact that the uniform H  regularity in (A.2) only holds on the time
intervals Œsn; T �. The idea is instead to use (A.1) which says that under each measure Pn
the canonical process is constant on Œ0; sn� and its value equals to xn. Together with the
fact that .sn; xn/! .s; x0/ in Œ0;1/ � L2� , the desired compactness then follows.



M. Hofmanová, R. Zhu, X. Zhu 234

To be more precise, we fix � > 0 and any k 2 N with k � k0 WD supn2N sn, we may
choose Rk > 0 sufficiently large such that

Pn

�
x 2�0 W sup

t2Œ0;k�

kx.t/kL2 C sup
r¤t2Œ0;k�

kx.t/ � x.r/kH�3

jt � r j�
C

ˆ k

sn

kx.r/k2H dr > Rk

�
� �=2k :

Now, we set �n WD ¹x 2 �0 W x.t/ D xn; 0 � t � snº and define

K WD
[
n2N

\
k2N
k�k0

²
x 2 �n W sup

t2Œ0;k�

kx.t/kL2 C sup
r¤t2Œ0;k�

kx.t/ � x.r/kH�3

jt � r j�

C

ˆ k

sn

kx.r/k2H dr � Rk

³
: (A.3)

By Chebyshev’s inequality together with (A.2), it follows that

sup
n2N

Pn. xK
c/ � sup

n2N
Pn.K

c/ � �;

so it only remains to show that xK is compact in S. As mentioned above, it is sufficient to
prove that for every k � k0, the set of restrictions of functions in K to Œ0; k� is relatively
compact in Sk WD C.Œ0; k�IH

�3/ \ L2.0; kIL2� /.
To this end, let ¹xmºm2N be a sequence inK. If there existsN 2N such that xm 2�N

for infinitely many m, the result can be obtained by a standard argument based on the
compact embedding discussed above. If this is not true, we may assume without loss of
generality that xm 2 �m. The compactness in C.Œ0; k�IH�3/ is a direct consequence of
the bound

sup
t2Œ0;k�

kxm.t/kL2 C sup
r¤t2Œ0;k�

kxm.t/ � xm.r/kH�3

jt � r j�
� Rk

and the compact embedding

L1.0; kIL2/ \ C �.Œ0; k�IH�3/ � C.Œ0; k�IH�3/:

Consequently, we can find a subsequence xml such that

lim
l;n!1

sup
t2Œ0;k�

kxml .t/ � xmn.t/kH�3 D 0: (A.4)

With this in hand, we deduceˆ k

0

kxml .t/ � xmn.t/k
2
L2
dt

�

ˆ sml^smn

0

kxml .t/ � xmn.t/k
2
L2
dt

C

ˆ sml_smn

sml^smn

kxml .t/ � xmn.t/k
2
L2
dt C

ˆ k

sml_smn

kxml .t/ � xmn.t/k
2
L2
dt
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� kkxml .0/ � xmn.0/k
2
L2
C 4R2k.sml _ smn � sml ^ snm/

C "

ˆ k

sml_smn

kxml .t/ � xmn.t/k
2
H dt C C"k sup

t2Œ0;k�

kxml .t/ � xmn.t/k
2
H�3

� kkxml .0/ � xmn.0/k
2
L2
C 4R2k.sml _ smn � sml ^ smn/

C 4"Rk C C"k sup
t2Œ0;k�

kxml .t/ � xmn.t/k
2
H�3
! 0

as ml ; mn !1, where we have used interpolation and Young’s inequality in the second
step and (A.4) in the last step. Now the proof is complete.

Proof of Theorem 3.1. The existence of a martingale solution can be easily deduced by
Galerkin approximation and the same arguments as in [22,26]. The stability of martingale
solutions with respect to the initial time and initial condition will be proved based on
Lemma A.1.

First, we prove that ¹Pnºn2N is tight in S WD C.Œ0;1/IH�3/\L2loc.Œ0;1/IL
2
� /. To

this end, we denote F.x/ WD �P div.x ˝ x/C�x. Since for every n 2 N, the measure
Pn is a martingale solution to (1.1) starting from the initial condition xn at time sn in the
sense of Definition 3.1, we know that for t 2 Œsn;1/,

x.t/ D xn C

ˆ t

sn

F.x.r// dr CM x
t;sn

Pn-a.s.,

where t 7! M
x;i
t;sn
D hM x

t;sn
; ei i, x 2 �0, is a continuous square integrable martingale

with respect to .Bt /t�sn with quadratic variation process t 7!
´ t
sn
kG.x.r//�eik

2
U dr .

Moreover, according to (M3), for every p > 1,

EPn
�

sup
r¤t2Œsn;T �

k
´ t
r
F.x.l// d lk

p

H�3

jt � r jp�1

�
� EPn

�ˆ t

sn

kF.x.r//k
p

H�3
dr

�
. kxnk2pL2 C 1;

where the implicit constant is universal and therefore independent of n since all Pn share
the same Ct;q . By the condition on G we have, for every p > 1,

EPnkMt;sn �Mr;snk
2p

L2
� CpE

Pn

�ˆ t

r

kG.x.l//k2
L2.U IL

2
� /
dl

�p
� Cpjt � r j

p�1EPn
ˆ t

r

kG.x.l//k
2p

L2.U IL
2
� /
dl

� Cpjt � r j
p�1EPn

ˆ t

r

.kx.l/k
2p

L2
C 1/ dl � Cpjt � r j

p�1.kxnk
2p

L2
C 1/:

By Kolmogorov’s criterion, for any ˛ 2 .0; p�1
2p
/ we get

EPn
�

sup
r¤t2Œ0;T �

kMt;sn �Mr;snkL2

jt � r jp˛

�
� Cp.kxnk

2p

L2
C 1/:
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Combining the above estimates, we conclude that for all � 2 .0; 1=2/,

sup
n2N

EPn
�

sup
r¤t2Œ0;T �

kx.t/ � x.r/kH�3

jt � r j�

�
<1: (A.5)

Combining (A.5), (M3) and Lemma A.1 it follows that ¹Pnºn2N is tight in S.
Without loss of generality, we may assume that Pn converges weakly to some proba-

bility measure P 2P.�0/. It remains to prove that P 2 C .s; x0; Ct;q/. By Skorokhod’s
representation theorem, there exists a probability space . Q�; QF ; QP / and S-valued random
variables Qxn and Qx such that

(i) Qxn has law Pn for each n 2 N,

(ii) Qxn ! Qx in S QP -a.s., and Qx has law P .

Since the initial conditions xn as well as the initial times sn are deterministic, we find by
(i), (ii), and (M1) applied to Pn that

P.x.t/ D x0; 0 � t � s/ D QP . Qx.t/ D x0; 0 � t � s/

D lim
n!1

QP . Qxn.t/ D xn; 0 � t � sn/

D lim
n!1

Pn.x.t/ D xn; 0 � t � sn/ D 1:

As the next step, we verify (M2) for P . We know that under QP , according to the conver-
gence in (ii), for every ei 2 C1.T3/ we have

h Qxn.t/; ei i ! h Qx.t/; ei i;

ˆ t

sn

hF. Qxn.r//; ei i dr !

ˆ t

s

hF. Qx.r//; ei i dr QP -a.s.

This implies that for every t 2 Œs;1/ and every p > 1,

sup
n2N

E
QP ŒjM

Qxn;i
t;sn
j
2p� � C sup

n2N
EPn

��ˆ t

sn

kG.x.r//k2
L2.U IL

2
� /
dr

�p�
<1;

lim
n!1

E
QP ŒjM

Qxn;i
t;sn
�M

Qx;i
t;s j� D 0:

(A.6)

Let t > r � s and g be any bounded and real-valued Br -measurable continuous function
on S. Using (A.6) we know that

EP Œ.M
x;i
t;s �M

x;i
r;s /g.x/� D E

QP Œ.M
Qx;i
t;s �M

Qx;i
r;s /g. Qx/�

D lim
n!1

E
QP Œ.M

Qxn;i
t;sn
�M Qxn;i

r;sn
/g. Qxn/�

D lim
n!1

EPn Œ.M
x;i
t;sn
�M x;i

r;sn
/g.x/� D 0:

Consequently,
EP ŒM

x;i
t;s jBr � DM

x;i
r;s ;

hence t 7!M i
t;s is a .Bt /t�s-martingale under P . Similarly,

lim
n!1

E
QP ŒjM

Qxn;i
t;sn
�M

Qx;i
t;s j

2� D 0;
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which gives

EP
�
.M

x;i
t;s /

2
�

ˆ t

s

kG.x.l//�eik
2
U dl

ˇ̌̌̌
Br

�
D .M x;i

r;s /
2
�

ˆ t

r

kG.x.l//�eik
2
U dl;

and (M2) follows.
Finally, we verify (M3). Define

S.t; s; x/ WD sup
r2Œ0;t�

kx.r/k
2q

L2
C

ˆ t

s

kx.r/k2H dr;

It is easy to see that x 7! S.t; s; x/ is lower semicontinuous on S. Hence, by Fatou’s
lemma,

EP ŒS.t; s; x/� D E
QP ŒS.t; s; Qx/� � lim inf

n!1
E
QP ŒS.t; sn; Qxn/�

� Ct;q lim inf
n!1

.kxnk
2q

L2
C 1/

<1:

The proof is complete.

Proof of Theorem 5.1. The existence of a probabilistically weak solution can be easily
deduced from Theorem 3.1 and the martingale representation theorem (see [14]). The
stability of weak solutions with respect to the initial time and initial condition will be
proved as in Theorem 3.1. First, we prove that the set ¹Pnºn2N is tight in

NS WD C.Œ0;1/IH�3 � U1/ \ L
2
loc.Œ0;1/IL

2
� � U1/:

To this end, we denote F.x/ WD �P div.x˝ x/C�x and recall that for every n 2N, the
measure Pn is a probabilistically weak solution to (1.1) starting from the initial condition
xn at time sn in the sense of Definition 5.1. Thus, for t 2 Œsn;1/,

x.t/ D xn C

ˆ t

sn

F.x.r// dr C

ˆ t

sn

G.x.r// dy.r/ Pn-a.s.

where under Pn the process y is a cylindrical Wiener process on U starting from yn
at time sn. In other words, under Pn the process t 7! y.t C sn/ � yn is a cylindrical
Wiener process on U starting at time 0 from the initial value 0. Since the law of the
Wiener process is unique and tight, for a given � > 0 there exists a compact set K1 �
C.Œ0;1/IU1/ \ L

2
loc.Œ0;1/IU1/ such that

sup
n2N

Pn
�
y.� C sn/ � yn 2 K

c
1

�
� �:

Let us now define

K2 WD
[
n2N

®
y 2 C.Œ0;1/IU1/ W

y.t C sn/ � yn 2 K1 for t 2 Œ0;1/; y.t/ D yn for t 2 Œ0; sn�
¯
:
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Then
sup
n2N

Pn. xK
c
2/ � sup

n2N
Pn.y.� C sn/ � yn 2 K

c
1/ � � (A.7)

and we claim that K2 is relatively compact in C.Œ0;1/IU1/ � L2loc.Œ0;1/IU1/. Indeed,
let ¹ymºm2N be a sequence in K2. Then for every m 2 N there exist nm 2 N and
ym;nm 2 K1 such that

ym.t C snm/ � ynm D y
m;nm.t/ for t 2 Œ0;1/; ym.t/ D ynm for t 2 Œ0; snm �:

If there exists N 2 N such that nm D N for infinitely many m 2 N then the relative
compactness of ¹ymºm2N follows directly from the fact that the corresponding sequence
¹ym;nmºm2N is relatively compact due to compactness ofK1. If such anN does not exist,
then by passing to a subsequence and relabeling we can assume without loss of generality
that nm D m. In addition, for t 2 Œsm;1/,

ym.t/ D ym;m.t � sm/C ym:

Hence using the relative compactness of

¹ym;mºm2N � K1 and ¹.sm; ym/ºm2N � Œ0;1/ � U1;

we finally deduce that the given sequence ¹ymºm2N is relatively compact.
Now, we recall that the setK defined in the course of the proof of Theorem 3.1 in (A.3)

is relatively compact inC.Œ0;1/IH�3/\L2loc.Œ0;1/IL
2
� /. Chebyshev’s inequality again

shows that
sup
n2N

Pn. xK
c/ � sup

n2N
Pn.K

c/ � �: (A.8)

Hence the set K �K2 is relatively compact in NS and the desired tightness follows from
(A.7) and (A.8).

Without loss of generality, we may assume that Pn converges weakly to some prob-
ability measure P . It remains to prove that P 2 W .s; x0; y0; Ct;q/. By Skorokhod’s
representation theorem, there exists a probability space . Q�; QF ; QP / and NS-valued random
variables . Qxn; Qyn/ and . Qx; Qy/ such that

(i) . Qxn; Qyn/ has law Pn for each n 2 N,

(ii) . Qxn; Qyn/! . Qx; Qy/ in NS QP -a.s., and . Qx; Qy/ has law P .

Let . QFt /t�0 be the QP -augmented canonical filtration of the process . Qx; Qy/. Then it is easy
to see that Qy is a cylindrical Wiener process on U with respect to . QFt /t�0. In fact, let
t > s and g be any bounded and real-valued NBs-measurable continuous function on N�.
We have

EP Œ.y.t/ � y.s//g.x; y/� D E
QP Œ. Qy.t/ � Qy.s/r/g. Qx; Qy/�

D lim
n!1

E
QP Œ. Qyn.t/ � Qyn.s//g. Qxn; Qyn/� D 0;
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and similarly for yi D hy; li i with ¹liº an orthonormal basis in U ,

EP Œ.yi .t/yj .t/ � yi .s/yj .s/ � ıij .t � s//g.x; y/� D 0;

We then find that y is a cylindrical Wiener process on U with respect to . NBt /t�0 under P .
Conditions (M1) and (M3) follow similarly to the proof of Theorem 3.1. Finally, we

shall verify (M2) for P . We know that under QP , by the convergence in (ii), for every
ei 2 C

1.T3/ we have

h Qxn.t/; ei i ! h Qx.t/; ei i;

ˆ t

sn

hF. Qxn.r//; ei i dr !

ˆ t

s

hF. Qx.r//; ei i dr QP -a.s.

Define

M
x;i
t;s D

�
x.t/ � x.s/ �

ˆ t

s

F.x.r// dr; ei

�
:

Then for every t 2 Œs;1/ and every p 2 .1;1/ we have

sup
n2N

E
QP ŒjM

Qxn;i
t;sn
j
2p� � C sup

n2N
EPn

��ˆ t

sn

kG.x.r//k2
L2.U IL

2
� /
dr

�p�
<1;

lim
n!1

E
QP ŒjM

Qxn;i
t;sn
�M

Qx;i
t;s j

2� D 0:

(A.9)

Let t > r � s and g be any bounded continuous function on NS. Using (A.9) we know

EP Œ.M
x;i
t;s �M

x;i
r;s /g.xjŒ0;r�; yjŒ0;r�/� D E

QP Œ.M
Qx;i
t;s �M

Qx;i
r;s /g. QxjŒ0;r�; QyjŒ0;r�/�

D lim
n!1

E
QP Œ.M

Qxn;i
t;sn
�M Qxn;i

r;sn
/g. QxnjŒ0;r�; QynjŒ0;r�/�

D lim
n!1

EPn Œ.M
x;i
t;sn
�M x;i

r;sn
/g.xjŒ0;r�; yjŒ0;r�/� D 0:

Consequently, t 7!M i
t;s is a . NBt /t�s-martingale under P . Similarly,

EP
�
.M

x;i
t;s /

2
�

ˆ t

s

kG.x/�eik
2
U dl

ˇ̌̌̌
NBr

�
D .M x;i

r;s /
2
�

ˆ r

s

kG.x/�eik
2
U dl;

which identifies the quadratic variation of t 7!M i
t;s . It remains to identify the cross vari-

ation of this process with the cylindrical Wiener process y under P . To this end, we let
¹lj ºj2N be an orthonormal basis of U and define yj D hy; lj iU . Then we deduce that

EP
�
M
x;i
t;s .yj .t/ � yj .s// �

ˆ t

s

hG�.x/ei ; lj iU dl

ˇ̌̌̌
NBr

�
DM x;i

r;s .yj .r/ � yj .s// �

ˆ r

s

hG�.x/ei ; lj iU dl:

Thus, the quadratic variation process ofM x;i
t;s �

´ t
s
hei ;G.x/dyi is 0, which implies (M2).

The proof is complete.
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Proof of Theorem 7.2. The existence of a generalized probabilistically weak solution fol-
lows from a similar argument to the proof of Theorem 5.1 and defining Y .t/ D Y0 C´ t
s
y.r/ ˝ dy.r/. By [36, Theorem 4.2.5] we have P.Z 2 CL2� / D 1. The stability of

solutions with respect to the initial time and initial condition follows in a similar way to
Theorem 5.1. First, it follows as in Theorem 5.1 that ¹Pnºn2N is tight in

zS WD Cloc.Œ0;1/IH
�3
�Rm �Rm�m �H�3/\L2loc.Œ0;1/IL

2
� �Rm �Rm�m �L2� /:

Without loss of generality, we may assume that Pn converges weakly to some probability
measure P . It remains to prove that P 2 G W .s; x0; y0;Y0; Z0; Ct;q/. By Skorokhod’s
representation theorem, there exists a probability space .�0;F 0;P 0/ and zS-valued random
variables . Qxn; Qyn; QYn; QZn/ and . Qx; Qy; QY ; QZ/ such that

(i) . Qxn; Qyn; QYn; QZn/ has law Pn for each n 2 N,

(ii) . Qxn; Qyn; QYn; QZn/! . Qx; Qy; QY ; QZ/ in zS P 0-a.s., and . Qx; Qy; QY ; QZ/ has law P .

In the following we verify (M1)–(M3) for P .
For (M1), using the convergence in (i) above, we have

P.x.t/ D x0; y.t/ D y0; Y .t/ D Y0; Z.t/ D Z0; 0 � t � s/

D P 0. Qx.t/ D x0; Qy.t/ D y0; QY .t/ D Y0; QZ.t/ D Z0; 0 � t � s/ D 1:

By condition (1.4) on G, P.
´ T
0
kG.x.r//k2

L2.RmIL
2
� /
dr < 1/ D 1 for every T > 0.

Condition (M3) follows by similar arguments to the proof of Theorem 3.1. Then by [36,
Theorem 4.2.5] we have P.Z 2 CL2� / D 1.

For (M2), we write Y D .Yij /, y D .yi / and QY D . QYij /, Qy D . Qyi / and QYn D . QYn;ij /,
QynD . Qyn;i /. Similarly to the proof of Theorem 5.1 we find that y is a . zBt /t�s- Rm-valued
Brownian motion.

Next, we shall prove

P

�
Y .t/ � Y .s/ D

ˆ t

s

y.r/˝ dy.r/

�
D 1: (A.10)

To this end, we need to verify that

� the quadratic variation process of Yij is given by
´ t
s
yi .r/

2dr ,

� the cross variation of Yij with yk is given by
´ t
s
yi .r/ dr ıjk .

Let t > r � s and g be any bounded and real-valued zBr -measurable continuous function
on z�. Then

EP
��

Yij .t/
2
� Yij .r/

2
�

ˆ t

r

yi .l/
2 dl

�
g.x; y;Y /

�
D EP

0

��
QYij .t/

2
� QYij .r/

2
�

ˆ t

r

Qyi .l/
2 dl

�
g. Qx; Qy; QY /

�
D lim
n!1

EP
0

��
QYn;ij .t/

2
� QYn;ij .r/

2
�

ˆ t

r

Qyn;i .r/
2 dr

�
g. Qxn; Qyn; QYn/

�
D 0;
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and

EP
��

Yij .t/yk.t/ � Yij .r/yk.r/ � ıkj

ˆ t

r

yi .l/ d l

�
g.x; y;Y /

�
D EP

0

��
QYij .t/ Qyk.t/ � QYij .r/ Qyk.r/ � ıkj

ˆ t

r

Qyi .l/ d l

�
g. Qx; Qy; QY /

�
D lim
n!1

EP
0

��
QYn;ij .t/ Qyn;k.t/ � QYn;ij .r/ Qyn;k.r/ � ıkj

ˆ t

r

Qyn;i .l/ d l

�
g. Qxn; Qyn; QYn/

�
D 0:

Hence the quadratic variation process of Y .t/ � Y .s/ �
´ t
s
y.r/ ˝ dy.r/ is zero and

(A.10) follows. Similarly,

P

�
Z.t/ �Z.s/ �

ˆ t

s

�Z.r/ dr D

ˆ t

s

G.v0 CZ.r// dy.r/

�
D 1:

The rest follows by the same argument as in the proof of Theorem 5.1.

Appendix B. Intermittent jets

In this part we recall the construction of intermittent jets from [7, Section 7.4] and derive
a new estimate in Lemma B.2. We point out that the construction is entirely determinis-
tic, that is, none of the functions below depends on !. Let us begin with the following
geometric lemma which can be found in [7, Lemma 6.6].

Lemma B.1. Denote by B1=2.Id/ the closed ball of radius 1=2 around the identity matrix
Id in the space of 3� 3 symmetric matrices. There existsƒ � S2 \Q3 such that for each
� 2 ƒ there exists a C1-function � W B1=2.Id/! R such that

R D
X
�2ƒ

�.R/
2.� ˝ �/

for every symmetric matrix satisfying jR� Idj � 1=2. For CƒD 8jƒj.1C 8�3/1=2, where
jƒj is the cardinality of the set ƒ, define the constant

M D Cƒ sup
�2ƒ

�
k�kC0 C

X
jj j�N

kDj �kC0
�
:

For each � 2 ƒ let A� 2 S2 \Q3 be an orthogonal vector to � . Then for each � 2 ƒ,
¹�;A� ; � �A�º � S2 \Q3 is an orthonormal basis for R3. We denote by n� the smallest
natural number such that

¹n��; n�A� ; n�� � A�º � Z3 for every � 2 ƒ.
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Let � W R2 ! R be a smooth function with support in a ball of radius 1. We define
ˆ WD ��� and � WD ��ˆ D .��/2� and we normalize so that

1

4�2

ˆ
R2
�.x1; x2/

2 dx1 dx2 D 1: (B.1)

This particular form of � given through the function � did not appear in [7]. It is needed
below in Lemma B.2 which we apply in Section 8.1 with  D 5 C ı, i.e. l D 2. By
definition we know

´
R2 � dx D 0. Define  W R! R to be a smooth, mean zero function

with support in the ball of radius 1 satisfying

1

2�

ˆ
R
 .x3/

2 dx3 D 1: (B.2)

For parameters r?; rk > 0 such that

r? � rk � 1;

we define the rescaled cut-off functions

�r?.x1; x2/ D
1

r?
�

�
x1

r?
;
x2

r?

�
;  rk.x3/ D

1

r
1=2

k

 

�
x3

rk

�
;

ˆr?.x1; x2/ D
1

r?
ˆ

�
x1

r?
;
x2

r?

�
:

We periodize �r? ; ˆr? and  rk so that they are viewed as periodic functions on T2;T2

and T respectively.
Consider a large real number � such that �r? 2N, and a large time oscillation param-

eter � > 0. For every � 2 ƒ we introduce

 .�/.t; x/ WD  �;r?;rk;�;�.t; x/ WD  rk.n�r?�.x � � C �t//;

ˆ.�/.x/ WD ˆ�;r?;�.x/ WD ˆr?
�
n�r?�.x � ˛�/ � A� ; n�r?�.x � ˛�/ � .� � A�/

�
;

�.�/.x/ WD ��;r?;�.x/ WD �r?
�
n�r?�.x � ˛�/ � A� ; n�r?�.x � ˛�/ � .� � A�/

�
;

where ˛� 2 R3 are shifts to ensure that ¹ˆ.�/º�2ƒ have mutually disjoint supports.
The intermittent jets W.�/ W T3 �R! R3 are defined as in [7, Section 7.4]:

W.�/.t; x/ WD W�;r?;rk;�;�.t; x/ WD � .�/.t; x/�.�/.x/: (B.3)

By the choice of ˛� we have

W.�/ ˝W.�0/ � 0 for � ¤ � 0 2 ƒ; (B.4)

and by the normalizations (B.1) and (B.2) we obtain
 

T3
W.�/.t; x/˝W.�/.t; x/ dx D � ˝ �:
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These facts combined with Lemma B.1 imply thatX
�2ƒ

�.R/
2

 
T3
W.�/.t; x/˝W.�/.t; x/ dx D R (B.5)

for every symmetric matrix R satisfying jR � Idj � 1=2. Since W.�/ are not divergence-
free, we introduce the corrector term

W
.c/

.�/
WD

1

n2��
2
r .�/ � curl.ˆ.�/�/ D curl curlV.�/ �W.�/ (B.6)

with
V.�/.t; x/ WD

1

n2��
2
� .�/.t; x/ˆ.�/.x/:

Thus we have
div.W.�/ CW

.c/

.�/
/ � 0:

Next, we recall the key bounds from [7, Section 7.4]. For N;M � 0 and p 2 Œ1;1�
the following holds provided r�1

k
� r�1

?
� �:

kr
N @Mt  .�/kCtLp . r

1=p�1=2

k

�
r?�

rk

�N�
r?��

rk

�M
;

kr
N�.�/kLp C kr

Nˆ.�/kLp . r
2=p�1
?

�N ;

kr
N @Mt W.�/kCtLp C

rk

r?
kr

N @Mt W
.c/

.�/
kCtLp C �

2
kr

N @Mt V.�/kCtLp

. r
2=p�1
?

r
1=p�1=2

k
�N
�
r?��

rk

�M
;

(B.7)

where the implicit constants may depend on p; N and M , but are independent of
�; r?; rk; �.

Finally, we establish two additional estimates employed in Section 8.1.

Lemma B.2. Let ˛0 2 Œ0; 1� and ; ı > 0. Suppose that l D �1�ı
2
2N and � D .��/l�

for a smooth function � with support in a ball of radius 1. Then

k .�/kC˛0
T
HCı

. �˛0
�
r?�

rk

�˛0CCı
; k�.�/kH� . ��r�ı? :

Proof. The first bound is a consequence of (B.7) and interpolation

k .�/kHCı . k .�/k1�.Cı/=dCıeL2
k .�/k

.Cı/=dCıe

HdCıe
.
�
r?�

rk

�Cı
;

hence using interpolation again leads to

k .�/kC˛0
T
HCı

. k .�/k1�˛0CTHCı
k .�/k

˛0

C1
T
HCı

. �˛0
�
r?�

rk

�˛0CCı
:
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Let us now show the estimate for the H� -norm of �.�/. We view �.�/ as a periodic
function on R3 and we have
ˆ

R3
�.�/.x/e

�ik�x dx D e�ik�˛�
ˆ

R3
�r?.n��r?u1; n��r?u2/e

�iAk�u du

D ı0..Ak/3/e
�ik�˛�

ˆ
R2
�r?.n��r?u1; n��r?u2/e

�iŒ.Ak/1u1C.Ak/2u2� du1 du2

D ı0..Ak/3/e
�ik�˛� .n��r?/

�2

ˆ
R2
�r?.u1; u2/e

�iŒ
.Ak/1
n��r?

u1C
.Ak/2
n��r?

u2� du1 du2

D ı0..Ak/3/e
�ik�˛�

X
m22�n��r?Z2

O�r?

�
.Ak/1

n��r?
;
.Ak/2

n��r?

�
ı0...Ak/1; .Ak/2/Cm/;

where in the first equality we use u D .u1; u2; u3/ D .x � A� ; x � .� � A�/; x � �/ WD Ax
with A being an orthonormal matrix and O�r?.k/ D

´
T2 �r?.x/e

�ik�x dx. Then

.1 ��/�=2�.�/.x/

D

X
m22�n��r?Z2

e�iA
�.m;0/�˛� .1C jmj2/�=2 O�r?

�
m

n��r?

�
eiA
�.m;0/�x :

Thus,

k�.�/k
2
H� .

X
m22�n��r?Z2

.1C jmj2/�
ˇ̌̌̌
O�r?

�
m

n��r?

�ˇ̌̌̌2
D

X
m22�n��r?Z2n¹0º

.1C jmj2/�
ˇ̌̌̌
O�r?

�
m

n��r?

�ˇ̌̌̌2
. .�r?/

�2
X

k22�Z2n¹0º

jkj�2 j O�r?.k/j
2:

Here, in the equality we have used the fact that �r? has zero mean. Moreover, for l D
�1�ı
2
2 N and � D .��/l� with a smooth compactly supported function � we have

O�r?.k/ D r?

ˆ
R2
�.x/e�ikr?�x dx D r?

ˆ
R2
�.��/le�ikr?�x dx;

which implies that for l D �1�ı
2

and ı > 0,

k�.�/k
2
H� . .�r?/

�2r2?

X
k22�Z2n¹0º

jkj�2 .k�kL1.jkjr?/
2l /2

. ��2 .r?/
�2ı

X
k22�Z2n¹0º

jkj�2�2ık�k2
L1

. ��2 .r?/
�2ı :
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Appendix C. Uniqueness in law implies joint uniqueness in law

In this part we will extend the result of Cherny [9] to a general infinite-dimensional
setting. A generalization to a semigroup framework in Banach spaces was proved by
Ondreját [38]. Let U; U1; H and H1 be separable Hilbert spaces and suppose that the
embedding U � U1 is Hilbert–Schmidt and the embedding H � H1 is continuous. Con-
sider the SPDE of the form

dX D F.X/dt CG.X/dB; X.0/ D x 2 H; (C.1)

where F W H ! H1 is B.H/=B.H1/-measurable and B is a cylindrical Wiener process
on U which is defined on a stochastic basis .�;F ; .Ft /t�0; P /. In other words, B can be
viewed as a continuous process taking values in U1 and we assume that for x 2 H , G.x/
is a Hilbert–Schmidt operator from U to H . Solutions to (C.1) are then understood in the
following sense.

Definition C.1. A pair .X; B/ is a solution to (C.1) provided there exists a stochastic
basis .�;F ; .Ft /t�0; P / such that

(H1) B is a cylindrical .Ft /t�0-Wiener process on U ;
(H2) X is an .Ft /t�0-adapted process in C.Œ0;1/IH1/ P -a.s.;
(H3) F.X/ 2 L1loc.Œ0;1/IH1/ and G.X/ 2 L2loc.Œ0;1/IL2.U;H// P -a.s.;
(H4) P -a.s. we have, for all t 2 Œ0;1/,

Xt D x C

ˆ t

0

F.Xs/ ds C

ˆ t

0

G.Xs/ dBs :

Let us now recall the definition of uniqueness in law and of joint uniqueness in law.

Definition C.2. We say that uniqueness in law holds for (C.1) if for any two solutions
.X;B/ and . QX; QB/ starting from the same initial distribution, one has Law.X/D Law. QX/.
We say that joint uniqueness in law holds for (C.1) if for any two solutions .X; B/ and
. QX; QB/ starting from the same initial distribution, one has Law.X;B/ D Law. QX; QB/.

Clearly, joint uniqueness in law implies uniqueness in law. The following result shows
that the two notions are in fact equivalent for SPDEs of the form (C.1).

Theorem C.1. Suppose that uniqueness in law holds for (C.1). Then joint uniqueness in
law holds for (C.1).

Set E D L2.U IH/. Since E is separable, C.Œ0; t �IE/ is dense in L2.Œ0; t �IE/. By
the same argument as in [9, Lemma 3.2], we can prove the following result.

Lemma C.2. Let t > 0 and f 2 L2.Œ0; t �IE/. For k 2 N, set

f .k/.s/ D

´
0 if s 2 Œ0; t=k�;
k
t

´ it=k
.i�1/t=k

f .r/ dr if s 2 .i t=k; .i C 1/t=k� .i D 1; : : : ; k � 1/:

Then f .k/ ! f in L2.Œ0; t �IE/.
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By Lemma C.2 and the same argument as in [9, Lemma 3.3], we obtain the following.

Lemma C.3. Let .X; B/ be a solution to (C.1) defined on a stochastic basis
.�; F ; .Ft /t�0; P /. Let .Q!/!2� be a conditional probability distribution of .X; B/
given F0.2 Let Y be the coordinate process with values inH1 and let Z be the coordinate
process with values in U1. Let .Ht /t�0 be the canonical filtration on C.Œ0;1/IH1 �U1/
and denote H D

W
t�0 Ht . Then for P -a.e. ! 2 � the pair .Y; Z/ is a solution to (C.1)

on the stochastic basis .C.Œ0;1/IH1 � U1/;H ; .Ht /t�0;Q!/.

Proof of Theorem C.1. Let .X; B/ be a solution to (C.1) on a stochastic basis
.�; F ; .Ft /t�0; P /. Let ¹ˇkºk2N and ¹ Ňkºk2N be two families of independent real-
valued Wiener processes defined on another stochastic basis .�0;F 0; .F 0t /t�0; P

0/ and
set

. Q�; QF ; . QFt /t�0; QP / D .� ��
0;F ˝ F 0; .Ft ˝ F 0t /t�0; P ˝ P

0/:

All the processes X;B; ˇk ; Ňk , k 2 N, can be defined on Q� in the obvious way. Assume
that the cylindrical Wiener process B admits a decomposition B D

P1
kD1 ˛

klk , where
¹˛kºk2N is a family of independent real-valued Wiener processes and ¹lkºk2N is an
orthonormal basis in U . Let '.x/ be the orthogonal projection from U to .kerG.x//?

and  .x/ be the orthogonal projection from U to kerG.x/. Then set

's WD '.Xs/;  s WD  .Xs/;

Vt WD

1X
kD1

�ˆ t

0

's d˛
k
s lk C

ˆ t

0

 s dˇ
k
s lk

�
;

NVt WD

1X
kD1

�ˆ t

0

's d Ň
k
s lk C

ˆ t

0

 s d˛
k
s lk

�
:

In the following, hh�; �iit denotes the cross variation process at time t . We obtain

hhhV; li iU ; hV; lj iU iit

D

1X
kD1

�ˆ t

0

h'slk ; li iU h'slk ; lj iU ds C

ˆ t

0

h slk ; li iU h slk ; lj iU ds

�
D

ˆ t

0

Œh'sli ; 'slj iU C h sli ;  slj iU � ds D

ˆ t

0

h.'s C  s/li ; .'s C  s/lj iU ds

D

ˆ t

0

hli ; lj iU ds D ıij t:

Similarly,

hhhV; li iU ; h NV ; lj iU iit D 0;

hhh NV ; li iU ; h NV ; lj iU iit D ıij t:

2Here, we consider .X;B/ as a C.Œ0;1/IH1 � U1/-valued process.
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As a consequence, under QP the process .V; NV / is an . QFt /t�0-cylindrical Wiener process
on U � U . Moreover, for any t � 0, we have

ˆ t

0

G.Xs/ dBs D

ˆ t

0

G.Xs/'s dBs D

ˆ t

0

G.Xs/ dVs :

Hence .X; V / is a solution to (C.1) on . Q�; QF ; . QFt /t�0; QP /.
Consider now the filtration

Gs D QFs _ �. NVt W t � 0/ D QFs _ �. NVt � NVs W t � s/; s � 0:

Since QFs and �.Vt � Vs W t � s/ _ �. NVt � NVs W t � s/ are independent, the process V is a
cylindrical .Gt /t�0-Wiener process on U under QP . Thus .X; V / is a solution to (C.1) on
. Q�; QF ; . QGt /t�0; QP /.

Let .Q Q!/ Q!2 Q� be a conditional probability distribution of .X; V / given G0.
By Lemma C.3, for QP -a.e. Q! 2 Q�, the pair .Y; Z/ is a solution to (C.1) on
.C.Œ0;1/IH � U/;H ; .Ht /t�0; Q Q!/. As uniqueness in law holds for (C.1), the prob-
ability law induced by Y on each of these stochastic bases, i.e. Q Q! ı Y �1, is the same
for QP -a.e. Q! 2 Q�. Since this is the conditional probability distribution of X given G0, it
follows that the process X is independent of G0. In particular, X and NV are independent.
Let �.x/ be the pseudo-inverse ofG.x/ (see e.g. [36, Appendix C] for more details); then
�.x/G.x/ D '.x/. Set �s WD �.Xs/. Thus,

ˆ t

0

's dBs D

ˆ t

0

�sG.Xs/ dBs D

ˆ t

0

�s dMs;

where

Mt D

ˆ t

0

G.Xs/ dBs D Xt � x �

ˆ t

0

F.Xs/ ds:

Accordingly, we obtain

Bt D

ˆ t

0

's dBs C

ˆ t

0

 s dBs D

ˆ t

0

�s dMs C

ˆ t

0

 s d NVs :

The process M is a measurable functional of X , while NV is independent of X . Thus the
distribution Law.X;B/ is unique.

Appendix D. Analysis of rough partial differential equations

In this section, we employ the theory of rough paths to derive estimates for the following
rough partial differential equation. Assume that v 2 C 1t;x and z solves the system

dz D �zdt CG.v C z/ dB;

div z D 0;

z.0/ D z0;

(D.1)
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with div z0 D 0. Then we have

z.t/ D Ptz0 C

ˆ t

0

Pt�sG.v C z/ dBs;

where Pt D et� is the heat semigroup. The nonlinearity G in (D.1) is defined through

G.u/ D
�
gij .�; hu; '

ij
1 i; : : : ; hu; '

ij

kij
i/
�

(D.2)

with gij 2C 3b .T
3 �Rkij /; 'ij

`
2C1.T3/, i D 1; : : : ; 3; j D 1; : : : ;m, `D 1; : : : ; kij , i.e.

the functions gij and their derivatives up to order 3 are bounded and g�j is divergence-free
with respect to the spatial variable in T3.

The driving process B is an m-dimensional Brownian motion and we view it as a
rough path. To this end, fix ˛ 2 .1

3
; 1
2
/. We use �˛.B/ to denote its ˛-Hölder rough path

seminorm which is given by

�˛.B/ D sup
0�s<t�T

jBt � Bsj

jt � sj˛
C sup
0�s<t�T

j
´ t
s
.Br � Bs/˝ dBr j

jt � sj2˛
:

The first component of the rough path is denoted by Bs;t WD Bt � Bs and we understand
the iterated integral Bs;t WD

´ t
s
.Br � Bs/˝ dBr in the Itô sense. However, the results of

this section apply mutatis mutandis to other rough path lifts of the Brownian motion as
well as general rough paths.

Let C ˇ denote the closure of smooth functions with respect to the usual Hölder norm.
We also use the Hölder–Besov space Cˇ ; ˇ 2 R; defined by the closure of smooth func-
tions with respect to the Bˇ1;1-norm

kf kCˇ WD kf kBˇ1;1
D sup
j2N0[¹�1º

2ˇj k�jf kL1

with�j ; j 2 N0 [ ¹�1º, being the usual Littlewood–Paley blocks. For any 0 < ˇ … N it
is well known (see [1, p. 99]) that kf kCˇ � kf kCˇ : For a path h defined on Œ0; T �, we
denote its increment ht � hs by hs;t .

We also recall the following smoothing effect from the heat semigroup (see e.g. [49,
Lemma 2.8]), which is used in the following proof.

Lemma D.1. Let T > 0.

(i) For any � > 0, ˛ 2 R, and t 2 Œ0; T �,

kPtf kC�C˛ . t��=2kf kC˛ ; kPtf kH�C˛ . t��=2kf kH˛ ; (D.3)

with the implicit constant independent of f .

(ii) For any 0 < � < 2 and t 2 Œ0; T �,

kPtf � f kL1 . t�=2kf kC� ; kPtf � f kL2 . t�=2kf kH� ; (D.4)

with the implicit constant independent of f .
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Now, we introduce the definition of a controlled rough path adapted to our purposes
(see also [27]).

Definition D.1. Let  2 R. We call a pair .y; y0/ a controlled rough path in the C -scale
provided .y; y0/ 2 CTC � .CTC�2˛ \ C ˛TL

1/ and the remainder

.s; t/ 7! R
y
s;t WD ys;t � y

0
sBs;t (D.5)

belongs to C 2˛2;TL
1, the space of 2-index maps on Œ0; T �2 with values in L1 such that

kRyk2˛;L1 D sup
0�s<t�T

kR
y
s;tkL1

jt � sj2˛
<1:

The space of controlled rough paths in the C -scale is denoted byD2˛
B; and endowed

with the norm

ky; y0kB;2˛; D kykCTC C ky
0
kCTC�2˛ C ky

0
kC˛

T
L1 C kR

y
k2˛;L1 :

We also present the corresponding definition with C replaced by H  .

Definition D.2. Let  2 R. We call a pair .y; y0/ a controlled rough path in theH  -scale
provided .y; y0/ 2 CTH  � .CTH

�2˛ \ C ˛TL
2/ and the remainder

.s; t/ 7! R
y
s;t WD ys;t � y

0
sBs;t (D.6)

belongs to C 2˛2;TL
2, the space of 2-index maps on Œ0; T �2 with values in L2 such that

kRyk2˛;L2 D sup
0�s<t�T

kR
y
s;tkL2

jt � sj2˛
<1:

The space of controlled rough paths in theH  -scale is denoted by ND2˛
B; and endowed

with the norm

ky; y0k NB;2˛; D kykCTH C ky
0
kCTH�2˛ C ky

0
kC˛

T
L2 C kR

y
k2˛;L2 :

The following integration lemma is a version of [25, Theorem 4.5] adapted to our
setting.

Lemma D.2. Let � 2 Œ0; ˛/ and .y; y0/ 2 D2˛
B;4˛�2� . Then the integral

ˆ t

0

P.t � r/yr dBr WD lim
j�j!0

X
Œs;r�2�

P.t � s/.ysBs;r C y
0
sBs;r /

exists as an element of C�2� for � > 1� 3˛C � where the limit is taken over partitions �
of Œ0; t � with vanishing mesh size. Moreover, for every 0 � � < 1,ˆ t

s

P.t � r/yr dBr � P.t � s/ysBs;t � P.t � s/y
0
sBs;t


C4˛�2�

. ky; y0kB;2˛;4˛�2� jt � sj.˛��C�/^.3˛/�˛.B/:

Here the implicit constant is independent of y; �˛.B/.
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Proof. The proof follows the ideas of the usual sewing lemma which has already appeared
in many variants; see e.g. [23, Lemma 4.2], [24, Theorem 2.4]. The key computation is
the following.

Let
�s;t WD ysBs;t C y

0
sBs;t DW �

1
s;t C �

2
s;t ;

which gives

ı�s;u;t WD �s;t � �s;u � �u;t D �R
y
s;uBu;t � y

0
s;uBu;t DW h

1
s;u;t C h

2
s;u;t ;

where the first equality is the definition of increment of a 2-index map �. Consider dyadic
partitions �k D ¹s D t0 < t1 < � � � < t2k D tº with ti D s C 2�ki.t � s/, let

Ik WD
X

Œu;v�2�k

Pt�u�u;v;

and denote m D .uC v/=2. Then we have

Ik � IkC1 D
X

Œu;v�2�k

Pt�uı�u;m;v C Pt�m.Pm�u � I /�m;v

D

X
Œu;v�2�k

Pt�uh
1
u;m;v C

X
Œu;v�2�k

Pt�uh
2
u;m;v

C

X
Œu;v�2�k

Pt�m.Pm�u � I /�
1
m;v C

X
Œu;v�2�k

Pt�m.Pm�u � I /�
2
m;v

D

4X
iD1

Ji :

By (D.3) and (D.4) we have, for 2˛ � 1 < ˇ < 3˛ � � � 1 and ˇ � 2˛ � � ,

kJ4kC4˛�2� .
X

Œu;v�2�k

.t �m/ˇ�2˛C�k.Pm�u � I /�
2
m;vkC2ˇ

.
X

Œu;v�2�k

.t �m/ˇ�2˛C� .m � u/˛���ˇky0kCTC2˛�2� .v �m/
2˛�˛.B/

. ky0kCTC2˛�2��˛.B/2
�k.3˛�ˇ�1��/

jt � sj3˛�ˇ�1��
X

Œu;v�2�k

.t �m/ˇ�2˛C� .m � u/

. ky0kCTC2˛�2��˛.B/2
�k.3˛�ˇ�1��/

jt � sj˛��C� ;

where in the last inequality above, in view of the condition ˇ� 2˛C � >�1, we estimated
the Riemann sum by the corresponding integral (using convexity of the integrand) and
integrated. Similarly, for 2˛ � 1 < ˇ < 3˛ � � � 1 and ˇ � 2˛ � � we have

kJ3kC4˛�2� .
X

Œu;v�2�k

.t �m/ˇ�2˛C� .m � u/2˛���ˇkykCTC4˛�2��˛.B/.v �m/
˛

. kykCTC4˛�2��˛.B/2
�k.3˛�ˇ�1��/

jt � sj3˛�ˇ�1��
X

Œu;v�2�k

.t �m/ˇ�2˛C� .m � u/

. kykCTC4˛�2��˛.B/2
�k.3˛�ˇ�1��/

jt � sj˛��C� :
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Moreover, by (D.3) and (D.4),

kJ1kC4˛�2� .
X

Œu;v�2�k

.t � u/.�2˛C�/^0kh1u;m;vkL1

.
X

Œu;v�2�k

.t � u/.�2˛C�/^0.m � u/2˛kRyk2˛;L1.v �m/
˛�˛.B/

. kRyk2˛;L12�k.3˛�1/jt � sj3˛�1
X

Œu;v�2�k

.t �m/.�2˛C�/^0.m�u/�˛.B/

. kRyk2˛;L12�k.3˛�1/jt � sj.˛C�/^.3˛/�˛.B/:

Similarly,

kJ2kC4˛�2� .
X

Œu;v�2�k

.t � u/.�2˛C�/^0kh2u;m;vkL1

.
X

Œu;v�2�k

.t � u/.�2˛C�/^0.m � u/˛ky0kC˛
T
L1�˛.B/.v �m/

2˛

. ky0kC˛
T
L1�˛.B/2

�k.3˛�1/
jt � sj.˛C�/^.3˛/:

Thus the result follows by summing over k and taking the limit. In particular, the
lower bound for � from the statement of the lemma comes from the requirement that
˛ � � C � > 1.

As the corresponding semigroup estimates remain the same in the H  -scale, we also
obtain the following result.

Lemma D.3. Let � 2 Œ0; ˛/ and .y; y0/ 2 ND2˛
B;4˛�2� . Then the integral

ˆ t

0

P.t � r/yr dBr WD lim
j�j!0

X
Œs;r�2�

P.t � s/.ysBs;r C y
0
sBs;r /

exists as an element ofH�2� for � > 1� 3˛� � , where the limit is taken over partitions �
of Œ0; t � with vanishing mesh size. Moreover, for every 0 � � < 1,ˆ t

s

P.t � r/yr dBr � P.t � s/ysBs;t � P.t � s/y
0
sBs;t


H4˛�2�

. ky; y0k NB;2˛;4˛�2� jt � sj
.˛��C�/^.3˛/�˛.B/:

Here the implicit constant is independent of y; �˛.B/.

By a similar argument to that for [30, Lemma 3.5] we obtain the following result:

Lemma D.4. Let T 2 .0; 1�, � 2 Œ0; ˛/ and .y; y0/ 2 D2˛
B;4˛�2� : Then

.z; z0/ D

�ˆ �
0

P.� � s/ys dBs; y

�
2 D2˛

B;4˛
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and

kz; z0kB;2˛;4˛

. .1C �˛.B//.ky0kC4˛�2� C ky
0
0kC2˛�2� C T

˛.˛��/=.2˛��/
ky; y0kB;2˛;4˛�2� /:

Here the implicit constant is independent of y; �˛.B/.

Proof. By (D.5) we first have

kz0kC˛
T
L1 D kykC˛

T
L1 . .ky0kCTL1 C ky0kL1/�˛.B/C kR

y
k˛;L1

. .1C �˛.B//.ky
0
0kL1 C ky0kL1 C T

˛
ky; y0kB;2˛;4˛�2� /:

The desired bound for the Gubinelli derivative z0 D y in CTC2˛ follows from

kz0k
C
˛.˛��/=.2˛��/
T

C2˛
. kyk˛=.2˛��/

CTC4˛�2�
kyk

.˛��/=.2˛��/

C˛
T
L1

:

In order to bound z in CTC4˛ , we write

zt D

�ˆ t

0

P.t � s/ys dBs � P.t/y0B0;t � P.t/y
0
0B0;t

�
C P.t/y0B0;t C P.t/y

0
0B0;t :

We apply Lemma D.2 with � D 0 to control the first term for 0 � t � T :ˆ t

0

P.t � s/ys dBs �P.t/y0B0;t �P.t/y
0
0B0;t


C4˛

. T ˛��ky; y0kB;2˛;4˛�2��˛.B/;

and for the remaining two we estimate by (D.3) as follows:

kPty
0
0B0;tkC4˛ . t�˛��C2˛ky00kC2˛�2��˛.B/ . ky00kC2˛�2��˛.B/;

kPty0B0;tkC4˛ . t��C˛ky0kC4˛�2��˛.B/ . ky0kC4˛�2��˛.B/:

It remains to control the 2˛-Hölder norm of Rz in L1. We have

Rzs;t D

�ˆ t

s

P.t � r/yr dBr � P.t � s/ysBs;t � P.t � s/y
0
sBs;t

�
C .P.t � s/ � Id/ysBs;t C .P.t � s/ � Id/

ˆ s

0

P.s � r/yr dBr C P.t � s/y
0
sBs;t

D I1 C � � � C I4:

Applying Lemma D.2 with � D 2˛ � �, � > 0 small enough we obtain, for 0 � t � T ,

kI1kL1 . kI1kC2� . ky; y0kB;2˛;4˛�2� jt � sj3˛�����˛.B/
. T ˛����ky; y0kB;2˛;4˛�2� jt � sj

2˛�˛.B/;

whereas the remaining terms are estimated by (D.3) and (D.4) as follows:

kI2kL1 . jt � sj3˛��kyskC4˛�2��˛.B/ . T ˛��ky; y0kB;2˛;4˛�2� jt � sj
2˛�˛.B/;

kI3kL1 . jt � sj2˛
ˆ s

0

P.s � r/yr dBr


C4˛
D kzskC4˛ jt � sj

2˛;
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which combined with the above estimate for z 2 CTC 4˛ yields the desired bound for I3,
and finally

kI4kL1 . jt � sj2˛ky0skL1�˛.B/ . .T ˛ky; y0kB;2˛;4˛�2� C ky
0
0kL1/jt � sj

2˛:

The claim follows.

By the same arguments, we deduce the H  -counterpart of Lemma D.4.

Lemma D.5. Let T 2 .0; 1�, � 2 Œ0; ˛/ and .y; y0/ 2 ND2˛
B;4˛�2� : Then

.z; z0/ D

�ˆ �
0

P.� � s/ys dBs; y

�
2 ND2˛

B;4˛

and

kz; z0k NB;2˛;4˛

. .1C �˛.B//.ky0kH4˛�2� C ky
0
0kH2˛�2� C T

˛.˛��/=.2˛��/
ky; y0k NB;2˛;4˛�2� /:

Here the implicit constant is independent of y; �˛.B/.

By a similar argument to that for [30, Lemma 3.6] we obtain the following result.

Lemma D.6. Let G satisfy assumption (D.2) and .y; G.v C y// 2 D2˛
B;4˛ . Then for

� 2 Œ0; ˛/ we have .G.v C y/;DG.v C y/G.v C y// 2 D2˛
B;4˛�2� and

kG.v C y/;DG.v C y/G.v C y/kB;2˛;4˛�2�

. .1C ky;G.v C y/kB;2˛;4˛ C kvkC1
T;x
/.1C �˛.B//

2:

Moreover, if . Qy;G.v C Qy// 2 D2˛
B;4˛ then

kG.v C y/ �G.v C Qy/;DG.v C y/G.v C y/ �DG.v C Qy/G.v C Qy/kB;2˛;4˛�2�

. .1C ky;G.v C y/kB;2˛;4˛ C k Qy;G.v C Qy/kB;2˛;4˛ C kvkC1/.1C �˛.B//
2

� .ky � Qy;G.v C y/ �G.v C Qy/kB;2˛;4˛/:

Remark D.7. It will be seen in the proof below that due to the definition of
the coefficient G in (D.2), the spatial regularity of the controlled rough path
.G.v C y/;DG.v C y/G.v C y// actually only depends on the spatial regularity of the
functions gij and not on the spatial regularity of v, y. Consequently, the claimed space
regularity of order 4˛ � 2� was only taken for convenience in order to follow more easily
the arguments of [30].

Proof of Lemma D.6. For simplicity we only concentrate on the case G.y/D g.�; hy; 'i/
with ' smooth and g 2 C 3

b
. First, we observe that as a consequence of (D.5) with y0 D

G.v C y/ we have

kykC˛
T
L1 . .ky0kCTC2˛ C ky0kL1 C kR

y
k˛;L1/.1C �˛.B//:
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Then, since the spatial dependence of G.v C y/ only depends on the spatial dependence
of g, we get

kG.v C y/kCTC4˛�2� . 1;

and sinceDG.vC y/G.vC y/ D @g.�; hvC y; 'i/hg.�; hvC y; 'i/; 'i where @ denotes
the derivative with respect to the variable in place of the inner product, we have

kDG.v C y/G.v C y/kC˛
T
L1 . 1C kykC˛

T
L1 C kvkC1

T;x

. .1C ky;G.v C y/kB;2˛;4˛ C kvkC1
T;x
/.1C �˛.B//;

kDG.v C y/G.v C y/kCTC2˛�2� . 1:

Moreover,

RGs;t D g.hvt C yt ; 'i/ � g.hvs C ys; 'i/ � @g.hvs C ys; 'i/hg.hvs C ys; 'i/Bs;t ; 'i

D

ˆ 1

0

�
@g.hvs C ys C r.vs;t C ys;t /; 'i/hvs;t C ys;t ; 'i � @g.hvs C ys; 'i/

�
dr

� hg.hvs C ys; 'i/Bs;t ; 'i

D

ˆ 1

0

@g.hvs C ys C r.vs;t C ys;t /; 'i/hvs;t ; 'i dr

C

ˆ 1

0

Œ@g.hvs C ys C r.vs;t C ys;t /; 'i/ � @g.hvs C ys; 'i/� dr

� hg.hvs C ys; 'i/Bs;t ; 'i

C

ˆ 1

0

@g.hvs C ys C r.vs;t C ys;t /; 'i/hR
y
s;t ; 'i dr: (D.7)

Consequently, we deduce

kRGs;tk2˛;L1 . .kvkC1
T;x
C kykC˛

T
L1/.1C �˛.B//C kR

y
k2˛;L1

. .1C kvkC1
T;x
C ky;G.v C y/kB;2˛;4˛/.1C �˛.B//

2:

Thus the proof of the first result is complete. The second one is a simpler version of the
argument in the proof of Lemma D.8 below, so we leave it to the reader.

Lemma D.8. Let G satisfy assumption (D.2) and .y; G.v C y// 2 ND2˛
B;4˛ . Then for � 2

Œ0; ˛/, we have .G.v C y/;DG.v C y/G.v C y// 2 ND2˛
B;4˛�2� , and for  > 0,

kG.v C y/;DG.v C y/G.v C y/k NB;2˛;4˛�2�

. .1C ky;G.v C y/k NB;2˛;4˛ C kvkC2˛
T
H� /.1C �˛.B//

2:

Moreover, if . Qy;G. Qv C Qy// 2 ND2˛
B;4˛ , then for  > 0,

kG.v C y/ �G. Qv C Qy/;DG.v C y/G.v C y/ �DG. Qv C Qy/G. Qv C Qy/k NB;2˛;4˛�2�

. .1C ky;G.v C y/k NB;2˛;4˛ C k Qy;G. Qv C Qy/k NB;2˛;4˛ C kvkC2˛
T
H� C kQvkC2˛

T
H� /

� .1C �˛.B//
2.ky � Qy;G.v C y/ �G. Qv C Qy/k NB;2˛;4˛ C kv � QvkC2˛

T
H� /:
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Proof. For notational simplicity we again focus only on the case G.y/ D g.�; hy; 'i/

with ' smooth and g 2 C 3
b

; the general case follows the same argument. The first esti-
mate is similar to Lemma D.6. Now we prove the second one. First, we observe that as a
consequence of (D.6) with y0 D G.v C y/ we have

ky � QykC˛
T
L2 . ky � Qy;G.v C y/ �G. Qv C Qy/k NB;2˛;4˛.1C �˛.B//:

Then (as in Remark D.7, also here the spatial regularity of v; y does not influence the
estimate)

kG.y C v/ �G. Qy C Qv/kCTH4˛�2� . ky � QykCTH4˛�2� C kv � QvkCTH� ;

and

kDG.v C y/G.v C y/ �DG. Qv C Qy/G. Qv C Qy/kCTH2˛�2�

. ky � QykCTH2˛�2� C kv � QvkCTH� :

Moreover,

.DG.v C y/G.v C y/ �DG. Qv C Qy/G. Qv C Qy//s;t

D

ˆ 1

0

�
@2g.hys C vs C r.y C v/s;t ; 'i/ � @

2g.h Qys C Qvs C r. Qy C Qv/s;t ; 'i/
�
dr

� h.y C v/s;t ; 'ihGt .v C y/; 'i

C

ˆ 1

0

@2g.h QysC QvsC r. QyC Qv/s;t ; 'i/ dr h.yCv/s;t � . QyC Qv/s;t ; 'ihGt .vCy/; 'i

C

ˆ 1

0

@2g.h QysC QvsC r. QyC Qv/s;t ; 'i/ dr h. QyC Qv/s;t ; 'ihGt .vCy/�Gt . QvC Qy/; 'i

C .@g.hysCvs; 'i/�@g.h QysC Qvs; 'i//hG.vCy/s;t ; 'i

C@g.h QysC Qvs; 'i/hG.vCy/s;t �G. QvC Qy/s;t ; 'i;

which implies

kDG.v C y/G.v C y/ �DG. Qv C Qy/G. Qv C Qy/kC˛
T
L2

. .1C ky;G.v C y/k NB;2˛;4˛ C k Qy;G. Qv C Qy/k NB;2˛;4˛ C kvkC2˛
T
H� C kQvkC2˛

T
H� /

� .1C �˛.B//
2.ky � Qy;G.v C y/ �G. Qv C Qy/k NB;2˛;4˛ C kv � QvkC2˛

T
H� /:

Furthermore, for RGs;t in (D.7) we have RGs;t � QR
G
s;t D I1 C I2 C I3; with Ii corre-

sponding to the difference of the last three lines:

I1 C I3 D

ˆ 1

0

�
@g.hvs C ys C r.vs;t C ys;t /; 'i/ � @g.h Qvs C Qys C r. Qvs;t C Qys;t /; 'i/

�
� hvs;t CR

y
s;t ; 'i dr

C

ˆ 1

0

@g.h Qvs C Qys C r. Qvs;t C Qys;t /; 'i/hvs;t � Qvs;t CR
y
s;t �R

Qy
s;t ; 'i dr;
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I2 D

ˆ 1

0

ˆ 1

0

@2g.hvs C ys C r�.vs;t C ys;t /; 'i/ d� dr hvs;t C ys;t ; 'i

� hg.hvs C ys; 'i/Bs;t ; 'i

�

ˆ 1

0

ˆ 1

0

@2g.h Qvs C Qys C r�. Qvs;t C Qys;t /; 'i/ d� dr h Qvs;t C Qys;t ; 'i

� hg.h Qvs C Qys; 'i/Bs;t ; 'i:

Then

kRG � QRGk2˛;L2

.
�
1C ky;G.v C y/k NB;2˛;4˛ C k Qy;G. Qv C Qy/k NB;2˛;4˛ C kvkC2˛

T
H� C kQvkC2˛

T
H�

�
� .1C �˛.B//

2.ky � Qy;G.v C y/ �G. Qv C Qy/k NB;2˛;4˛ C kv � QvkC2˛
T
H� /:

Thus, the proof is complete.

Thus, combining Lemma D.4, Lemma D.6 and a similar argument to that in [30,
Lemma 3.8, Theorem 3.9] we obtain the following result.

Theorem D.9. Let T > 0 and G satisfy assumption (D.2). Then there exists a unique
global solution .z; G.z C v// 2 D2˛

B;4˛.Œ0; T �/ to (D.1). Moreover, the solution satisfies,
for � 2 Œ0; ˛/,

kzkCTC4˛ � .kz0kC4˛ C 1C kvkC1
T;x
/N TN

2˛��
˛.˛��/

;

kzkC˛
T
L1 � .kz0kC4˛ C 1C kvkC1

T;x
/TNN

2˛��
˛.˛��/ TC 2˛��

˛.˛��/ ;

where N D C.1C �˛.B//3 for some constant C independent of B , z, v.

Proof. By Lemmas D.4 and D.6, for � D ˛.˛��/
2˛��

and z0 D G.z C v/ we have

kz; z0kB;2˛;4˛ � C.1C �˛.B//
3.kz0kC4˛ C 1C T

�
kz; z0kB;2˛;4˛ C T

�
kvkC1

T;x
/:

Then we can choose NT such that 1=4 < C.1C �˛.B//3 NT � � 1=2. Thus

kz; z0kB;2˛;4˛;Œ0; NT � � 2C.1C �˛.B//
3.kz0kC4˛ C 1/C kvkC1

T;x
:

Here kz; z0kB;2˛;4˛;Œs;t� is the norm for the spaceD2˛
B;4˛ on the time interval Œs; t �. Starting

from NT we obtain

kz; z0kB;2˛;4˛;Œ NT ;2 NT � � N.N.kz0kC4˛ C 1/C kvkC1
T;x
C 1/C kvkC1

T;x
:

Then we know we have at most l-fold iteration with l < .4N /1=�T and we obtain

kzkCTC4˛ . .kz0kC4˛ C 1C kvkC1
T;x
/N TN1=� ;

kz; z0kB;2˛;4˛;Œ0;T � � .kz0kC4˛ C 1C kvkC1
T;x
/TNN1=�TC1=� :

Here we may increase the constant C in the expression of N .
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Analogously, we obtain the result in the H  -scale.

Theorem D.10. Let T > 0 and G satisfy assumption (D.2). Then there exists a unique
global solution .z; G.z C v// 2 ND2˛

B;4˛.Œ0; T �/ to (D.1). Moreover, the solution satisfies,
for � 2 Œ0; ˛/,

kzkCTH4˛ � .kz0kH4˛ C 1C kvkC2˛T H� /N
TN

2˛��
˛.˛��/

;

kz; z0k NB;2˛;4˛ � .kz0kH4˛ C 1C kvkC2˛
T
H� /TN

N
2˛��
˛.˛��/ TC 2˛��

˛.˛��/ :

where z0 D G.z C v/, N D C.1C �˛.B//3 for some constant C independent of B , z, v.
Furthermore, let z; Qz be two solutions corresponding to v; Qv respectively. Then

kz � QzkCTH4˛ . kv � QvkC2˛
T
H�

NN
NN
2˛��
˛.˛��/ T ;

kz � Qz; z0 � Qz0k NB;2˛;4˛ . kv � QvkC2˛
T
H�T

NN T NN
2˛��
˛.˛��/C 2˛��

˛.˛��/ :

Here

NN D C.1C kz; z0k NB;2˛;4˛ C kQz; Qz
0
k NB;2˛;4˛ C kvkC2˛

T
H� C kQvkC2˛

T
H� /

� .1C �˛.B//
3:

D.1. Back to Itô stochastic integration

If v was .Ft /t�0-adapted, then equation (D.1) can be solved in the Itô sense as well. As
expected, the solutions z obtained from these two approaches coincide P-a.s., which can
be seen as follows. Equation (D.1) has a unique stochastic solution zsto adapted to the
filtration .Ft /t�0. In view of [23, Proposition 5.1], zsto solves (D.1) also in the rough path
sense P-a.s. On the other hand, for ! from the set of full probability where the rough
path lift .B;B/ is constructed, we obtain a rough path solution z.!/. By uniqueness for
the rough path formulation of (D.1), z.!/ D zsto.!/ on a set of full probability. As a
consequence, the rough path solution may be regarded as an adapted stochastic process.
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[19] Flandoli, F., Gątarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes
equations. Probab. Theory Related Fields 102, 367–391 (1995) Zbl 0831.60072
MR 1339739

[20] Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic
perturbation. Invent. Math. 180, 1–53 (2010) Zbl 1200.35226 MR 2593276

https://doi.org/10.1007/978-3-642-16830-7
https://doi.org/10.1007/978-3-642-16830-7
https://zbmath.org/?q=an:1227.35004
https://mathscinet.ams.org/mathscinet-getitem?mr=2768550
https://doi.org/10.1016/j.jde.2017.06.020
https://doi.org/10.1016/j.jde.2017.06.020
https://zbmath.org/?q=an:1409.60094
https://mathscinet.ams.org/mathscinet-getitem?mr=3688418
https://doi.org/10.1365/s13291-019-00200-1
https://zbmath.org/?q=an:1387.76001
https://mathscinet.ams.org/mathscinet-getitem?mr=3791804
https://doi.org/10.2140/apde.2020.13.371
https://doi.org/10.2140/apde.2020.13.371
https://zbmath.org/?q=an:1435.35289
https://mathscinet.ams.org/mathscinet-getitem?mr=4078230
https://doi.org/10.4171/jems/1162
https://doi.org/10.4171/jems/1162
https://zbmath.org/?q=an:1493.35063
https://mathscinet.ams.org/mathscinet-getitem?mr=4422213
https://doi.org/10.4007/annals.2015.182.1.3
https://doi.org/10.4007/annals.2015.182.1.3
https://zbmath.org/?q=an:1330.35303
https://mathscinet.ams.org/mathscinet-getitem?mr=3374958
https://doi.org/10.4171/emss/34
https://zbmath.org/?q=an:1440.35231
https://mathscinet.ams.org/mathscinet-getitem?mr=4073888
https://doi.org/10.4007/annals.2019.189.1.3
https://zbmath.org/?q=an:1412.35215
https://mathscinet.ams.org/mathscinet-getitem?mr=3898708
https://doi.org/10.1137/s0040585x97979093
https://doi.org/10.1137/s0040585x97979093
https://zbmath.org/?q=an:1036.60051
https://doi.org/10.1512/iumj.2021.70.8591
https://doi.org/10.1512/iumj.2021.70.8591
https://zbmath.org/?q=an:1496.35294
https://mathscinet.ams.org/mathscinet-getitem?mr=4318474
https://doi.org/10.1090/tran/8129
https://doi.org/10.1090/tran/8129
https://zbmath.org/?q=an:1462.35263
https://mathscinet.ams.org/mathscinet-getitem?mr=4223016
https://doi.org/10.1006/jfan.2002.3919
https://doi.org/10.1006/jfan.2002.3919
https://zbmath.org/?q=an:1013.60051
https://mathscinet.ams.org/mathscinet-getitem?mr=1941997
https://doi.org/10.1016/S0021-7824(03)00025-4
https://zbmath.org/?q=an:1109.60047
https://mathscinet.ams.org/mathscinet-getitem?mr=2005200
https://doi.org/10.1017/CBO9780511666223
https://zbmath.org/?q=an:0761.60052
https://mathscinet.ams.org/mathscinet-getitem?mr=1207136
https://doi.org/10.4007/annals.2009.170.1417
https://zbmath.org/?q=an:1350.35146
https://mathscinet.ams.org/mathscinet-getitem?mr=2600877
https://doi.org/10.1007/s00205-008-0201-x
https://doi.org/10.1007/s00205-008-0201-x
https://zbmath.org/?q=an:1192.35138
https://mathscinet.ams.org/mathscinet-getitem?mr=2564474
https://doi.org/10.1007/s00222-012-0429-9
https://zbmath.org/?q=an:1280.35103
https://mathscinet.ams.org/mathscinet-getitem?mr=3090182
https://doi.org/10.1007/978-3-642-36297-2_2
https://zbmath.org/?q=an:1301.35086
https://mathscinet.ams.org/mathscinet-getitem?mr=3076070
https://doi.org/10.1007/BF01192467
https://doi.org/10.1007/BF01192467
https://zbmath.org/?q=an:0831.60072
https://mathscinet.ams.org/mathscinet-getitem?mr=1339739
https://doi.org/10.1007/s00222-009-0224-4
https://doi.org/10.1007/s00222-009-0224-4
https://zbmath.org/?q=an:1200.35226
https://mathscinet.ams.org/mathscinet-getitem?mr=2593276


Nonuniqueness in law of stochastic 3D Navier–Stokes equations 259

[21] Flandoli, F., Luo, D.: High mode transport noise improves vorticity blow-up control in 3D
Navier–Stokes equations. Probab. Theory Related Fields 180, 309–363 (2021)
Zbl 1469.60205 MR 4265023

[22] Flandoli, F., Romito, M.: Markov selections for the 3D stochastic Navier–Stokes equations.
Probab. Theory Related Fields 140, 407–458 (2008) Zbl 1133.76016 MR 2365480

[23] Friz, P. K., Hairer, M.: A course on rough paths. Universitext, Springer, Cham (2014)
Zbl 1327.60013 MR 3289027
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