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Abstract. We consider the stochastic Navier—Stokes equations in three dimensions and prove that
the law of analytically weak solutions is not unique. In particular, we focus on three examples of a
stochastic perturbation: an additive, a linear multiplicative and a nonlinear noise of cylindrical type,
all driven by a Wiener process. In these settings, we develop a stochastic counterpart of the con-
vex integration method introduced recently by Buckmaster and Vicol. This permits us to construct
probabilistically strong and analytically weak solutions defined up to a suitable stopping time. In
addition, these solutions fail to satisfy the corresponding energy inequality at a prescribed time with
a prescribed probability. Then we introduce a general probabilistic construction used to extend the
convex integration solutions beyond the stopping time and in particular to the whole time interval
[0, o). Finally, we show that their law is distinct from the law of solutions obtained by Galerkin
approximation. In particular, nonuniqueness in law holds on an arbitrary time interval [0, T'], T > 0.
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1. Introduction

The fundamental problems in fluid dynamics remain largely open. On the theoretical side,
existence and smoothness of solutions to the three-dimensional incompressible Navier—
Stokes system is one of the Millennium Prize Problems. An intimately related question is
that of uniqueness of solutions. Intuitively, smooth solutions are unique whereas unique-
ness for less regular solutions, such as weak solutions, is very challenging and not true for
a number of models.

A revolutionary step was made through the method of convex integration by De Lellis
and Székelyhidi Jr. [15-17]. They were able to construct infinitely many weak solutions
to the incompressible Euler system which dissipate energy and even satisfy various addi-
tional criteria such as a global or local energy inequality. After this breakthrough, an
avalanche of excitement and intriguing results followed, proving existence of solutions
with often rather pathological behavior. In particular, it is nowadays well understood
that the compressible counterpart of the Euler system is desperately ill-posed: even cer-
tain smooth initial data give rise to infinitely many weak solutions satisfying an energy
inequality; see Chiodaroli et al. [11]. Very recently, the nonuniqueness of weak solu-
tions to the incompressible Navier—Stokes equations was obtained by Buckmaster and
Vicol [8]; see also Buckmaster, Colombo and Vicol [5].

In view of these substantial theoretical difficulties, it is natural to believe that a cer-
tain probabilistic description is indispensable and may eventually help with the non-
uniqueness issue. In particular, it is essential to develop a suitable probabilistic under-
standing of the deterministic systems, in order to capture their chaotic and intrinsically
random nature after the blow-up and loss of uniqueness. Moreover, there is evidence that
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a suitable stochastic perturbation may provide a regularizing effect on deterministically
ill-posed problems, in particular those involving transport, as shown, e.g., by Flandoli,
Gubinelli and Priola [20] and Flandoli and Luo [21]. Also a linear multiplicative noise
as treated in the present paper has a certain stabilizing effect on the three-dimensional
Navier—Stokes system; see Rockner, Zhu and Zhu [40].

On the other hand, an external stochastic forcing is often included in the system of
governing equations, taking additional model uncertainties into account. Mathematically,
this introduces new phenomena and raises basic questions of solvability of the system, i.e.
existence and uniqueness of solutions, as well as their long time behavior. In particular,
the question of uniqueness of the probability measures induced by solutions, the so-called
uniqueness in law, has been a longstanding open problem.

In the present paper, we prove that nonuniqueness in law holds for the stochastic three-
dimensional Navier—Stokes system posed on a periodic domain in a class of analytically
weak solutions. This system governs the time evolution of the velocity u of a viscous
incompressible fluid under stochastic perturbations. It reads

du —vAudt + diviu @ u)dt + VPdt = G(u)dB,

1.1
divu =0, (-

where G (u)d B represents a stochastic force acting on the fluid and v > 0 is the kinematic
viscosity.

We particularly focus on three examples of stochastic forcing, namely, an additive
noise driven by a cylindrical Wiener process B of trace class, i.e.,

o0
Gw)dB = GdB =Y G'dB;, G'=G'(x). Tr(GG*) < oo, (1.2)
i=1

and a linear multiplicative noise driven by a real-valued Wiener process By, i.e.,
G(u)dB = udBy, (1.3)

and finally a nonlinear noise of cylindrical type

GdB = () gy (w01, (. 9%, ))dB))

j=1 ' (1.4)

gij € CF(T3 xRNIIR), ¢ € C(T?),

where B = (Bj) is an m-dimensional Wiener process and g.; is divergence-free with
respect to the spatial variable in T 3.

In these three settings, we develop a stochastic counterpart of the convex integration
method introduced by Buckmaster and Vicol [7] and construct analytically weak solutions
with unexpected behavior defined up to suitable stopping times. The striking feature of
these solutions is that they are probabilistically strong, i.e., adapted to the given Wiener
process. This severely contradicts the general belief present within the SPDE community,
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namely, that probabilistically strong solutions and uniqueness in law could help with the
uniqueness problem for the Navier—Stokes system.

We say that uniqueness in law holds for a system of SPDEs if the probability law
induced by the solutions is uniquely determined. On the other hand, we say that path-
wise uniqueness holds true if any two solutions coincide almost surely. There are explicit
examples of stochastic differential equations (SDEs) where pathwise uniqueness does not
hold but uniqueness in law is valid. Pathwise uniqueness for the stochastic Navier—Stokes
system essentially poses the same difficulties as uniqueness in the deterministic setting.
As a consequence, there has been a clear hope that showing uniqueness in law for the
Navier—Stokes system might be easier than proving pathwise uniqueness. Furthermore,
Yamada—Watanabe—Engelbert’s theorem states that, for a certain class of SDEs, pathwise
uniqueness is equivalent to uniqueness in law and existence of a probabilistically strong
solution; see Kurtz [35] and Cherny [9]. This suggests another possible way towards path-
wise uniqueness, provided one could prove uniqueness in law.

Our main result proves the above hopes wrong, at least for a certain class of analyti-
cally weak solutions. However, the question of uniqueness of the so-called Leray solutions
remains an outstanding open problem. In particular, we show that nonuniqueness in law
for analytically weak solutions holds true on an arbitrary time interval [0, T], T > 0.
This trivially implies pathwise nonuniqueness. More precisely, we construct a determin-
istic divergence-free initial condition #(0) € L? which gives rise to two solutions to the
Navier—Stokes system (1.1) with distinct laws. One of the solutions is constructed by
means of the convex integration method whereas the other one is a solution obtained by a
classical compactness argument via Galerkin approximation; see e.g. [19].

We note that the solutions obtained by Galerkin approximation are clearly more physi-
cal as they correspond to Leray solutions in the deterministic setting and satisfy the energy
inequality. However, these solutions are not probabilistically strong as the adaptedness
with respect to the given noise is lost within the stochastic compactness method. On the
other hand, convex integration permits one to construct adapted solutions up to a stopping
time but they behave in an unphysical way with respect to the energy inequality. More-
over, spatial regularity is worse as we can only prove that they belong to H? for a certain
y > 0 small.

1.1. Main results

Even though the main result, i.e., nonuniqueness in law, is the same in the three settings
(1.2), (1.3) and (1.4), the proofs are different. The additive noise case is easier and we
present a direct construction of two solutions with different laws. This is not possible
in the case of a linear multiplicative noise where the proof becomes more involved. The
nonlinear case is even more challenging and requires tools from the theory of rough paths.
For notational simplicity, we suppose from now on that v = 1.
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1.1.1. Additive noise. Consider the stochastic Navier—Stokes system driven by an addi-
tive noise on T3, which reads

du — Audt + div(u @ u)dt + VPdt = dB,

1.5
divu =0, (15

where B is a G G*-Wiener process on a probability space (22, £, P) and G is a Hilbert—
Schmidt operator from L? to L2. Let (¥;);>0 denote the normal filtration generated by B,
that is, the canonical right continuous filtration augmented by all the P-negligible events.

Our first result in this setting is the existence of a probabilistically strong solution
which is defined up to a stopping time and which violates the corresponding energy
inequality.

Theorem 1.1. Suppose that Tr(GG*) < oo. Let T > 0, K > 1 and « € (0, 1) be given.
Then there exist y € (0, 1) and a P-a.s. strictly positive stopping time t satisfying P(t > T)
> k such that the following holds true: There exists an (¥;);>o-adapted process u which
belongs to C([0,t]; HY) P-a.s. and is an analytically weak solution to (1.5) with u(0)
deterministic. In addition,

esssup sup |u(@)|gy < oo, (1.6)
weR  tel0,t]

and
(T2 > K|[u(0)|l;2 + K(T Te(GG*)?  on the set {t > T}. (1.7)

The proof of this result relies on the convex integration method, and the stopping time
is employed in the construction in order to control the noise in various bounds. While
this result readily implies nonuniqueness in law for solutions defined on the random time
interval [0, t], our main result is more general: we prove nonuniqueness in law on an
arbitrary time interval or more generally up to an arbitrary stopping time.

Theorem 1.2. Suppose that Tr(GG™*) < co. Then nonuniqueness in law holds for the
Navier-Stokes system (1.5) on [0, 00). Furthermore, for every given T > 0, nonuniqueness
in law holds for the Navier-Stokes system (1.5) on [0, T'].

In order to derive the result of Theorem 1.2 from Theorem 1.1, it is necessary to extend
the convex integration solutions to the whole time interval [0, co0). To this end, we present
a general probabilistic construction which connects the law of solutions defined up to
a stopping time to a law of a solution obtained by the classical compactness argument.
The principal difficulty is to allow for the concatenation of solutions at a random time.
Since the stopping time t is defined in terms of the solution u, we work with the notion
of martingale solution which is defined as the law of a solution u. Consequently, we are
able to obtain nonuniqueness in law, i.e., nonuniqueness of martingale solutions directly,
as opposed to the case of a linear multiplicative noise.



M. Hofmanova, R. Zhu, X. Zhu 168

1.1.2. Linear multiplicative noise. Consider the stochastic Navier—Stokes equation
driven by a linear multiplicative noise on T3, which reads

du — Audt + div(u @ u)dt + VPdt = udB,

1.8
divu =0, 18

where B is a real-valued Wiener process on a probability space (2, ', P). As above, we
denote by (F;);>o the normal filtration generated by B. The main results in this case are
as follows.

Theorem 1.3. Let T > 0, K > 1 and k € (0, 1) be given. Then there exist y € (0, 1) and
a P-a.s. strictly positive stopping time t satisfying P(t > T') > « such that the following
holds true: There exists an (¥;):>o-adapted process u which belongs to C([0,t]; HY)
P-a.s. and is an analytically weak solution to (1.8) with u(0) deterministic. In addition,

esssup sup ||u(@)|gr < oo,
we  tel0,t]

and
lu(T)|| 2 > KeT/2||u(0)||Lz on the set {t > T}.

Theorem 1.4. Nonuniqueness in law holds for the Navier—Stokes system (1.8) on [0, 00).
Furthermore, for every given T > 0, nonuniqueness in law holds for the Navier—Stokes
system (1.8) on [0, T'].

In contrast to the additive noise setting, the stopping time t in the case of the linear
multiplicative noise is a function of B and not a function of the solution u. As a conse-
quence, we are forced to work with the notion of a probabilistically weak solution which
governs the joint law of (u, B). We extend our method of concatenation of two solutions to
connect the probabilistically weak solution obtained through Theorem 1.3 to a probabilis-
tically weak solution obtained by compactness. Accordingly, we first only deduce joint
nonuniqueness in law, i.e., nonuniqueness of probabilistically weak solutions. Finally, we
prove that joint nonuniqueness in law implies nonuniqueness in law, concluding the proof
of Theorem 1.4. This relies on a generalization of the result of Cherny [9] to the infinite-
dimensional setting, which is interesting in its own right; see Appendix C.

1.1.3. Nonlinear noise. We consider the Navier—Stokes equations

du — Audt + div(u @ u)dt + VPdt = G(u)dB,

1.9
divu =0, (1.9

with G(u) defined via (1.4) and B an m-dimensional Brownian motion defined on a prob-
ability space (€2, ¥, P) and we denote by (F;);>0 its normal filtration. In this setting, we
apply convex integration in order to establish the following results.

Theorem 1.5. Let T > 0, K > 1 and k € (0, 1) be given. Then there exist y € (0, 1) and
a P-a.s. strictly positive stopping time t satisfying P(t > T') > « such that the following
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holds true: There exists an (F;);>o-adapted process u which belongs to C([0,t]; L?) N
L?([0,t]; H?) P-a.s. and is an analytically weak solution to (1.9) with u(0) deterministic.
In addition, for g € N,

AL
E[ sup 24+ [ ||u(r>||%,ydr]sct,q (1.10)
re 0

[0,£At]

for some constant C; 4, and
E[liz7 [u(T)]72] > Kllu(O)7> + KTCq (L.11)

with

3 m
Co = 2m)* > > lgijllzo-
i=1j=1
Theorem 1.6. Nonuniqueness in law holds for the Navier-Stokes system (1.9) on [0, 00).
Furthermore, for every given T > 0, nonuniqueness in law holds for the Navier—Stokes
system (1.9) on [0, T].

This nonlinear case presents further challenges which do not appear in the previous
settings of additive and linear multiplicative noise. First of all, there is no obvious transfor-
mation of the SPDEs into a PDE with random coefficients. Consequently, it is necessary
to employ rough path theory in order to obtain pathwise control of the stochastic integral
in the convex integration scheme. This is the reason why we restricted ourselves to the
cylindrical noise of the form (1.4). Nevertheless, a more general noise could be considered
provided the corresponding rough path estimate is valid.

Using rough path theory to control the stochastic integral requires the so-called iter-
ated integral of B against B to be included in the path space. Accordingly, the stopping
time t is a function of (B, [ B ® dB). Since we have to define the corresponding stopping
time on the canonical path space, the difficulty lies in how to define the iterated stochastic
integral on the path space without the use of any probability measure. Indeed, due to the
low time regularity of the Wiener process, the stochastic integral cannot be defined by
purely analytical means and probability theory is required in a nontrivial way. We over-
come this by introducing a notion of generalized probabilistically weak solution which
takes this issue into account.

We note that in order to apply rough path theory it is essential that the intermittent jets
possess sufficient time regularity, namely, we require complementary Young regularity to
the Brownian motion, i.e. €9 = 2/3 + « for k > 0 small. To this end, it is necessary to
lower spatial regularity and we derive new bounds for the intermittent jets in Lemma B.2.
They lead to the convergence of v, in C*([0, t]; B} ?_5); see (8.5). This is the reason
for restricting to the case of a cylindrical noise, i.e. one which smoothens in the spatial
variable. Other cases of spatially smoothing noise can be treated similarly.

Remark 1.7. Let us emphasize that if we directly tried to apply convex integration with-
out using stopping time, we would have to take expectation to control the stochastic
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integral. As convex integration is an iteration procedure, we would have to include L?-
moment estimates for arbitrary p, which is typically achieved by the Burkholder—Davis—
Gundy inequality. However, as the implicit constant here depends on p, the estimates
would blow up during the iteration scheme.

Remark 1.8. Our convex integration schemes in the case of additive and nonlinear noise

could be understood as follows. In addition to the principal part of the perturbation w;i) 15

the incompressibility corrector wffll and the temporal corrector wflt}rl as appearing in

the deterministic literature, we introduce a stochastic corrector wés_i)_ ;- Its role is to add

noise scale by scale as one proceeds through the iteration. More precisely, for the original
equation for u, we construct iterations u,4 given by
(») c) t
Ugr1 = V41 + Zgr1 = ve + wy +wid Fwid; + zg0

(e +z0) + By + w + w |+ (Zg1 —2z0)

ug + w;ﬁ_)l + w;z)—l + wz(1t4)—1 + w;ﬂ)-l»

where w;ﬁ)_l = Zg41 — z¢ is the stochastic corrector. In the case of additive noise, we set

Zg+1 = P< r(g+1)Z (i.e. a suitable truncation in Fourier space) with
dz — Azdt = GdB,
whereas in the case of nonlinear noise we define
dzg41 — Azgy1dt = G(vg + 244+1)dB.

Due to the dependence on v,_1, z, diverges in C! but converges in L?. When we need
to control the C !-norm of Z4 in the estimates of the Reynolds stress, we can always use a
small constant from v, to absorb the blow-up of this norm.

Finally, we note that due to its particular structure, the linear multiplicative noise case
is different in this respect. Here, the perturbations are additionally randomized multiplica-
tively by e? in the following way:

B B B, (c B (@
Ug+1 =€ Vg t+e wc(]’jr)l—i-e w;ll+e w;}r].

1.2. Further relevant literature

Stochastic Navier—Stokes equations driven by a trace-class noise have been the subject
of a large number of works. The reader is referred e.g. to [18, 19, 29] and the refer-
ences therein. In the two-dimensional case, existence and uniqueness of strong solutions
was obtained if the noisy forcing term is white in time and colored in space. In the
three-dimensional case, existence of martingale solutions was proved in [13,22,26]. Fur-
thermore, ergodicity was proved if the system is driven by a nondegenerate trace-class
noise [13,22,42]. Navier-Stokes equations driven by space-time white noise are also con-
sidered in [12,50], and the system is studied in the context of rough path theory in [31,32].
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The linear multiplicative noise (1.3) can be seen as a damping term: it is shown in [40] that
it prevents the system from exploding with large probability. In a more recent work, Flan-
doli and Luo [21] proved that one kind of transport noise improves the vorticity blow-up in
3D Navier—Stokes equations with large probability. In [2], a global solution starting from
small initial data was constructed for 3D Navier—Stokes equations in vorticity formulation
driven by a linear multiplicative noise. However, the solutions are not adapted to the fil-
tration generated by the noise and the stochastic integral should be understood in a rough
path sense (see [37,41] for more general noise). By the methods in [2,37], adapted solu-
tions up to a stopping time can also be obtained. However, existence of globally defined
probabilistically strong solutions to the stochastic Navier—Stokes system without any stop-
ping time remains a challenging open problem. Finally, we note that convex integration
has already been applied in a stochastic setting, namely, to the isentropic Euler system in
[4] and to the full Euler system in [10].

1.3. Relevant literature update

In the first version of the present paper uploaded to arXiv we established nonuniqueness
in law only for a spatially regular additive noise (namely, Tr((—A)3/2T20GG*) < o)
and a linear multiplicative noise. Our method was then applied to several other fluid
models driven by these noises [33, 34, 39, 44—48]. In particular, in [33] we studied the
question of well-posedness for stochastic Euler equations from various perspectives. In
[34] we proved existence and nonuniqueness of global-in-time probabilistically strong
and Markov solutions to the stochastic Navier—Stokes system. In the present version of
the manuscript we are for the first time able to prove nonuniqueness in law for the Navier—
Stokes system with a nonlinear stochastic perturbation.

1.4. Organization of the paper

In Section 2, we collect the notations used throughout. Sections 3 and 4 are devoted to
the proof of our first main result, Theorem 1.2, nonuniqueness in law for the case of
an additive noise. First, in Section 3 we introduce the notion of martingale solution and
present a general method of extending martingale solutions defined up to a stopping time
to the whole time interval [0, co). This is then applied to solutions obtained through the
convex integration technique, and nonuniqueness in law is shown in Section 3.3. Convex
integration solutions are constructed in Section 4, which proves Theorem 1.1. A similar
structure can be found in Sections 5 and 6 devoted to the setting of a linear multiplicative
noise. This relies on the notion of probabilistically weak solution and a general concate-
nation procedure presented in Section 5.2. Application to convex integration solutions
together with the proof of Theorem 1.4 can be found in Section 5.3. Convex integration
in this setting is applied in Section 6, where Theorem 1.3 is established. In Sections 7
and 8, we prove the results for the nonlinear noise. In Appendix A, we collect several
auxiliary results concerning stability of martingale, probabilistically weak as well as gen-
eralized probabilistically weak solutions. In Appendix B, the construction of intermittent
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jets needed for convex integration is recalled. In Appendix C, we show that nonuniqueness
in law implies joint nonuniqueness in law in a general infinite-dimensional SPDE setting.
Finally, Appendix D is devoted to the rough path analysis required in the nonlinear setting.

2. Notations

2.1. Function spaces

Throughout, we write a < b if there exists a constant ¢ > 0 such thata < cbh,anda >~ b
ifa < b and b < a. Given a Banach space E with anorm || - |[g and T > 0, we write
Cr E =C(]0,T]; E) for the space of continuous functions from [0, 7] to E, equipped with
the supremum norm || f'{|c; £ = supsejo,ry | /()| . We also use CE or C([0, 00); E)
to denote the space of continuous functions from [0, c0) to E. For a € (0, 1) we define
C7 E as the space of a-Holder continuous functions from [0, T'] to £, endowed with the
seminorm || f ||C%E = SUP; se[0,T], 551 % When E = R we write C7. We also
use C2 E for the space of functions from [0, co) to E satisfying f'|[jo,r] € C5 E for all
T > 0.For p € [1,00] we write L. E = L?([0, T]; E) for the space of L?-integrable func-
tions from [0, 7] to E, equipped with the usual L?-norm. We also use LY ([0, c0); E)
to denote the space of functions f from [0, c0) to E satisfying f'|jo,7] € LY E for
all 7 > 0. We use L? to denote the set of standard L?-integrable functions from T3
to R3. For s >0, p> 1 we set W92 := {f € L? : ||(I — A)*'2f||rr < oo} with
the norm || f||ws.r = ||(I — A)*/% f|Lr. Set L2 ={ueL?:divu = 0}. For s > 0,
H*® := W52 N L2. For s < 0 define H* to be the dual space of H™*. We also use the
Besov space Bﬁq, B € R, defined as the closure of smooth functions with respect to the

B
B, 4-norm

: 1/q
115, = (D2 2208, £180)
‘ jz=1
with A;, j € Ny U {—1}, being the usual Littlewood—Paley blocks.
We set ”f”Ct}Yx = ZOanalsN 0¥ D f || oo o< . For a Polish space H we also use
B(H) to denote the o-algebra of Borel sets in H.

2.2. Probabilistic elements

Let ¢ := C([0,00); H3) N L ([0, 00); L2) and let 22(Q) denote the set of all prob-
ability measures on (29, 8) with B being the Borel g-algebra coming from the topology
of locally uniform convergence on Q. Let x : Qo — H 3 denote the canonical process
on ¢ given by

xt(w) = w(1).

Similarly, for > 0 we define Q; := C([t,00); H™3) N L _([¢,00); L2) equipped with its
Borel o-algebra B’ which coincides with o {x(s) : s > ¢}. Finally, we define the canonical

filtration 3? = o{x(s):s <t},t >0, as well as its right continuous version B; :=
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A B0, t > 0. For a given probability measure P we use E P to denote the expectation
under P.

For a Hilbert space U, let L,(U; L2) be the space all Hilbert-Schmidt oper-
ators from U to L2 with the norm | - ||L2(U;L%). Let G : L2 — Ly(U; L2) be
B(L2)/B(L2(U; L2))-measurable. In the following, we assume

1GOOI, wirzy = €A+ llxlz2)

for every x € C°(T3) N L2 and if in addition y, — y in L? then
lim [|G(yn)*x = G(y)*x[lv =0,
n—o00

where the asterisk denotes the adjoint operator.
Suppose there is another Hilbert space U; such that the embedding U C U, is Hilbert—
Schmidt. Let Q := C([0, 00); H > x Uy) N L2 ([0, 00); L2 x Uy) and let 22($2) denote

loc

the set of all probability measures on (2, 8) with B being the Borel o-algebra coming
from the topology of locally uniform convergence on Q. Let (x,y) : Q — H™3 x U;
denote the canonical process on 2 given by

(X1 (@), y1 (@) = w(?).

For ¢ > 0 we define the o-algebra B! = o {(x(s), y(s)) : s > t}. Finally, we define the
canonical filtration BY := o {(x(s), y(s)) : s <1}, 1 > 0, as well as its right continuous
version B, 1= (=, B2, 7 > 0.

s>t

3. Nonuniqueness in law I: the case of an additive noise

3.1. Martingale solutions

Let us begin with a definition of martingale solution on [0, c0). In what follows, we fix
y €(0.1).

Definition 3.1. Lets > 0and xo € L2. A probability measure P € () is a martingale
solution to the Navier—Stokes system (1.1) with initial value x¢ at time s provided

(M1) P(x(t) =x0,0<t <s)=1,andforanyn € N,
n
P{x € Qp: / ||G(x(r))||i2(U_L2)dr < oo} =1.
0 o
(M2) Forevery e; € C®°(T3) N L2 and all 1 > s the process

M{ = (x(t) = x(s), ) + /t (div(x(r) ® x(r)) — Ax(r),e;) dr

is a continuous square integrable (8B;);>s-martingale under P with quadratic vari-
ation process given by fst |G(x(r))*e; ||2U dr.
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(M3) For any g € N there exists a positive real function ¢ — C; 4 such that for all # > s,

t
E”( s )15 + JACCIE dr) < CoglmolS + 1),
N

rel0,z
where E¥ denotes the expectation under P.

In particular, we observe that in the context of Definition 3.1 for the additive noise
case, i.e. for G independent of x, if {e; };eN is an orthonormal basis of L2 consisting of
eigenvectors of GG* then M, s := ) ; .y M/ je; is a GG*-Wiener process starting from
s with respect to the filtration (8;);> under P.

Similarly, we may define martingale solutions up to a stopping time 7 : Q¢ — [0, oo].
To this end, we define the space of trajectories stopped at T by

Qo i={w(-AT(w)):® € Ro}.

We note that due to the Borel measurability of 7, the set Qo = {w € Qo : x(t, ) =
x(t A 1(w), w), YVt > 0} is a Borel subset of Q¢, hence Z2(Q29,;) C Z(Qo).

Definition 3.2. Lets > 0 and xo € L2. Let T > s be a (B;),>s-stopping time. A prob-
ability measure P € &(Qo,7) is a martingale solution to the Navier—Stokes system (1.1)
on [s, T] with initial value x¢ at time s provided

M1) P(x(t) =x0,0<t <s)=1andforanyn € N,

NAT
P {x € Qp: /o ||G(x(r))||i2(U;Lg) dr < oo} =1.

(M2) Forevery ¢; € C*®(T3) N L2 and all 1 > s the process

M ey = (x(t AT) = Xo,€i) + /W(diV(X(r) ®x(r)) — Ax(r).e;) dr

is a continuous square integrable (8B;);>s-martingale under P with quadratic vari-
ation process given by fStM IG(x(r))*e; ||%] dr.

(M3) For any g € N there exists a positive real function t — C; 4 such that for all # > s,

INT
EP( sup x4+ | ||x(r)||§,ydr)fct,q(nxoni%l),
N

ref0,tAt]
where E¥ denotes the expectation under P.

The following result provides the existence of martingale solutions as well as stabil-
ity of the set of all martingale solutions. A similar result can be found in [22, 26] but
in the present paper we require in addition stability with respect to the initial time. For
completeness, we include the proof in Appendix A.
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Theorem 3.1. For every (s, xo) € [0, 00) x L2, there exists P € 9(Qq) which is a
martingale solution to the Navier—Stokes system (1.1) starting at time s from the initial
condition xq in the sense of Definition 3.1. The set of all such martingale solutions with
the same C; 4 in (M3) of Definition 3.1 is denoted by € (s, xo, Ct,4).

Let (sn, Xp) — (s,X0) in [0,00) X L2 asn — oo and let P, € € (sn, X, Ct,4). Then
there exists a subsequence ny such that the sequence { Py, }reN converges weakly to some
P € C(s,%0,Cr ).

For completeness, let us recall the definition of uniqueness in law.

Definition 3.3. We say that uniqueness in law holds for (1.1) if martingale solutions
starting from the same initial distribution are unique.

Now, we have all in hand to proceed with the proof of our first main result, Theo-
rem 1.2. On the one hand, by classical arguments as in Theorem 3.1 we obtain existence
of a martingale solution to (1.1) which satisfies the corresponding energy inequality. On
the other hand, for the case of an additive noise, Theorem 1.1 provides a stopping time
t such that there exists an (¥7):>0-adapted analytically weak solution u € C([0,t]; HY)
to (1.5) which violates the energy inequality. The main idea is to construct a martingale
solution which is defined on the full interval [0, o0) and preserves the properties of the
adapted solution on [0, t], that is, the energy inequality is not satisfied in this random time
interval. To this end, the essential point is to make use of adaptedness of solutions obtained
through Theorem 1.1 and connect them to ordinary martingale solutions obtained by The-
orem 3.1. The difficulty is that the connection has to happen at a random time, which only
turns out to be a stopping time with respect the right continuous filtration (8;);>0. Con-
sequently, the classical martingale theory of Stroock and Varadhan [43] does not apply
and we are facing a number of measurability issues which have to be carefully treated.

3.2. General construction for martingale solutions

First, we present an auxiliary result which is then used to extend martingale solutions
defined up to a stopping time 7 to the whole interval [0, 0o). To this end, we denote by B
the o-field associated to the stopping time t. The results of this section apply to a general
form of noise in (1.1); the restriction to an additive noise is only required in Section 3.3
below in order to apply the result of Theorem 1.1.

Proposition 3.2. Let t be a bounded (B;):>o-stopping time. Then for every w € Qg there
exists Q, € P(Qo) such that for v € {x(t) € L2},
Qu(0 € Qo x(t,0) = w() for0 <t < t(w)) =1, (3.1
Q0(A) = Re(w)x(r(w)w)(A) forall A e B™), (3.2)
where Ry(w) x(z(w),0) € P (R0) is a martingale solution to the Navier-Stokes system (1.1)

starting at time t(w) from the initial condition x (t(w), ®). Furthermore, for every B € 8
the mapping w — Q4 (B) is B-measurable.
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Proof. We have to be able to select from the set of all martingale solutions in a mea-
surable way. To this end, we observe that as a consequence of stability with respect to
the initial time and the initial condition in Theorem 3.1, for every (s, xo) € [0, 00) x L2
the set €' (s, xo, Cy,4) of all martingale solutions to (1.1) with the same C; 4 is compact
with respect to weak convergence of probability measures. Let Comp(Z?(£2)) denote the
space of all compact subsets of &?(£2¢) equipped with the Hausdorff metric. Using the
stability from Theorem 3.1 together with [43, Lemma 12.1.8] we find that the map

[0, 00) X L[zr — Comp(Z(R0)), (s,x0) = E(s,x0.Crq),

is Borel measurable. Accordingly, [43, Theorem 12.1.10] gives the existence of a measur-
able selection. More precisely, there exists a Borel measurable map

[O’ OO) X L¢27 - @(QO)’ (SvXO) = RS,X07

such that Ry x, € € (s, x0, Ct,4) for all (s, x9) € [0, 00) x L2.

As the next step, we recall that the canonical process x on €2¢ is continuous in H -3,
hence x : [0, 00) x Q¢ — H ™3 is progressively measurable with respect to the canonical
filtration (8%);>0, and consequently also with respect to the right continuous filtration
(B¢)¢>0. In addition, 7 is a stopping time with respect to (8B;);>0. Therefore, it fol-
lows from [43, Lemma 1.2.4] that both t and x(z (), -) are 8;-measurable. Furthermore,
L2 C H™3 continuously and densely, and by Kuratowski’s measurability theorem we
know L2 € B(H3) and B(L2) = B(H %) N L2, which implies that Lx(mer2y € Br.
Therefore, x(z(+),-)1 (x(eL2} Qo — L2 is B,-measurable, where B, is the o-algebra
associated to t. Combining this with the measurability of the selection (s, xo) - Ry, x,
constructed above, we deduce that

Qo — P(Qo), o+ Rr(w),x(r(a)),w)l (3.3)

x(t().w)eLd}’
is B;-measurable as a composition of B;-measurable mappings. Recall that for every w €
Qo N {x(r) € L2} this mapping gives a martingale solution starting at the deterministic
time 7(w) from the deterministic initial condition x (7 (»), w). Hence, for w € {x(t) € L2},

Ri() x(t(@),0) (@ € Qo : x(1(0),0) = x(t(0), w)) = 1.

Now, we apply [43, Lemma 6.1.1] to deduce that for every o € Q¢ N {x(r) € L2}
there is a unique probability measure

5(0 ®r(w) Rr(w),x(r(w),w) € Q(QO) (3'4)

such that for every @ € Q¢ N {x(r) € L2}, (3.1) and (3.2) hold. This permits us to con-
catenate, at the deterministic time 7 (w), the Dirac mass 3, with the martingale solution
R (w),x(x(0).0)- Define

0, = 80 ®1(w) Rei@xw@.o ifo € {x(r) € Lz},
¢ Ox(-Az(@)) otherwise.
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In order to show that the mapping w — Q(B) is B;-measurable for every B € B,
it is enough to consider sets of the form A = {x(¢t;) € I'1,...,x(t,) € T',} wheren € N,
0<tp<---<ty,andI'q,..., T, € B(H_3). Then by the definition of Q,, we have

8(0 ®r(w) Rr(w),x(r(w),w)(A) = 1[0,1‘1)(T(w))Rr(w),x(t(w),w)(A)

n—1
+ D Mg (@@) Iry (x (01, @) -+ I, (x (1. @)
k=1

X Re(w)x(c(@).w) (X (k1) € Tkg1. ... x(tn) € Tn)
+ 111,,,00) (T(@)) 11y (x (11, @) - - 11, (X (tn, @)

Here the right hand side multiplied by 1, ) 12} is B;-measurable as a consequence of
the B;-measurability of (3.3) and 7. Moreover, §x(.az(e)) i Br-measurable as a conse-
quence of the B;-measurability of x (z A -). Thus the final result follows from {x (t) € L2}
being B,-measurable. |

Remark 3.3. If P is a martingale solution up to a stopping time t, our ultimate goal is to
make use of Proposition 3.2 in order to define a probability measure

P ®: R() := /S2 0u() P(dw)

and show that it is a martingale solution on [0, c0) in the sense of Definition 3.1 which
coincides with P up to time t. However, due to the fact that t is only a stopping time
with respect to the right continuous filtration (B;);>0, (3.1) does not suffice to show that
(Qw)weq, 18 a conditional probability distribution of P ® R given B.. More precisely,
we cannot prove that for every A € 8; and B € 8B,

P ®; R(ANB) = /A 0o(B) P(dw).

This is the reason why the corresponding results of [43], namely Theorem 6.1.2 and in
particular Theorem 1.2.10 leading to the desired martingale property (M2), cannot be
applied. It will be seen below in Proposition 3.4 that an additional condition on Q,,
i.e., (3.5), is necessary in order to guarantee (M1)-(M3). To conclude this remark, we
note that measurability of the mapping w + Q,(B) in a certain sense is only needed
to define the integral in (3.6). Since we do not show that (Q4)weq, is a conditional
probability distribution, the 8;-measurability from Proposition 3.2 is actually not used in
the following.

Proposition 3.4. Let xo € L2. Let P be a martingale solution to the Navier-Stokes sys-
tem (1.1) on [0, t] starting at time O from the initial condition xo. In addition to the
assumptions of Proposition 3.2, suppose that there exists a Borel set N C 2o, such that
P(N) = 0 and for every w € N€,

Qu(@ € Qo :1(0) = t(w)) = 1. (3.5)
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Then the probability measure P @, R € P () defined by
P& RO = [ 0u0) PWdo) (3.6)
0

satisfies P ®; R = P on the 0-algebra o (x(t A7) : t > 0) and it is a martingale solution
to the Navier-Stokes system (1.1) on [0, 0o) with initial condition x.

Proof. First, we observe that due to (3.5) and (3.1), we have P ®; R(A) = P(A) for
every Borel set A € o(x(t A T) :t > 0). It remains to verify that the measure P ®; R
satisfies (M1)—-(M3) in Definition 3.1 with s = 0. The first condition in (M1) follows
easily since by construction P ®; R(x(0) = x9) = P(x(0) = x¢) = 1; the second one
follows from (M3) and the assumption on G. In order to show (M3), we write

t
E“’@fR( (0134 + [ o dr)

rel0,t

IAT
sEP@rR( sup ()% + /0 ||x(r>||%1ydr)

rel0,zAt]

t
+EP®fR( sup x (1) + / ||x<r>||%,ydr).
AT

re[tnt,t] A

Here, the first term on the right hand side can be estimated due to the bound (M3) for P,
whereas the second term can be bounded based on (M3) for R. Then by (3.5),

t
EP®TR( sup ()P4 + /0 ()12 dr)

ref0,z]
< C(Ixol2% + D) + CEP |x(@7% + 1) < Clxoll74 + ).

In the last step, we have used the fact that t is bounded together with (M3) for P.
Finally, we shall verify (M2). To this end, we recall that since P is a martingale solu-
tion on [0, 7], the process M/ Ar,0 18 @ continuous square integrable (B;)>o-martingale
under P with quadratic variation process given by fot MNG(x(r))*e; ||%] dr. On the other
hand, since for every w € 2, the probability measure Ry (), x(r(w),») 15 @ martingale solu-
tion starting at time t(w) from the initial condition x (t (), ), the process M t’;t Ar() isa
continuous square integrable (B;);>r(w)-martingale under R (), x(z(0),0) With quadratic
variation process given by fttm(w) IG(x(r))*e; ||%] dr, t > t(w). In other words, the

process Mti o— M is a continuous square integrable (B;),>o-martingale under

tl/\r(w),o

R1(0),x(r(w),0) With quadratic variation process given by ftt/\r(w) IG(x(r))*e; ||%] dr.
Next, we will show that M ti,O is a continuous square integrable (8B;);>o-martingale

under P ®; R with quadratic variation process given by fot IG(x(r))*e; ||%] dr. To this

end, lets < and A € B,. We first prove that
ECo[M] 314] = EC° M, (0)vs.0lal. (3.7)

In fact, it is enough to consider sets of the form A = {x(¢;) € I'1, ..., x(#,) € [y} where
neN,0<ty<---<ty<s,andTy,..., T, € £(H_3).Formoregeneral A € Bs we
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could use approximation and the continuity of M,’;O. Then by the definition of @, and
using the martingale property with respect to Ry (y),x(r(w).0)> Which is valid for t > t(w),
we have

EQw [(Mti,o - M(it/\r(w))vs,o) IA]
= 1jo,) (t(w) ERr@ xc@.0 [(M] | — M] ) 14]

n—1
+ Z l[tk,tk+1)(T(w)) 1F1 (X(t] P a))) e ll"k (X(tk, C!)))
k=1

+ 1y 00 (T (@) I, (X (11,0)) -+ I, (3 (10, 0)) X ER@5C@0100 (M~ My rvs.0)
=0.

Now (3.7) follows.
Then it follows from (3.6) and (3.4) that

EPORMI 1] = /S2 E% [M] 114] P(dw)
0

= / Efo®r@ Rr@).xw).o) [Mti,olA] P(dw).
Qo
According to (3.7) and then using the key assumption (3.5) we further deduce that

EP®RIM/ \14] = / Efe®r@Re@axc@o M s 014l P(dw)

Qo
P®cRiryi
=E ® [M(lt/\r)vs,OIA]

= EP®RM{, olane=s] + ETO R M o Lunie<y].
Finally, using the martingale property up to t with respect to P, we get
EP@IR[M;,OIA] = EP®IR[Msi,01Aﬂ{r>s}] + EP@IR[Msi,olAﬂ{rss}]
= EP®RM! 14].

Hence M! is a (B:)¢>0-martingale with respect to P ®, R. In order to identify its
quadratic variation, we proceed similarly and write

EP®IR[((M;‘,O>2 - / GGy al? dr) IA}
0

t
= [ g | (ly = Mipo? = [ MGG el dr) 14| Prdo)

At(w)
. tAnt(w)
+ /Q EQw[((M;A,(wm)Z— /0 ||G<x<r))*e,-||%])1A]P(dw)
0

2 [ EO My oMy~ M0y 1] PG
0

= Ji1+ o+ J;5.
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Here, due to the martingale property with respect to R and P similar to (3.7), we obtain

" . . >
J1= /SZ EQ |:((Mtl/\r(a))vs,0 - Mtl/\r(a)),O)
0

tAT(w)Vs
- / 16 el dr) u} P(dw).

At(w)

) sSAT(w)
Ja =/Q EQw[((1\4;“@),0)2 —/0 1G(x(r)*e;i |3 dr) 1A] P(dw),
0
J3 = 2/Q EQw [Mti/\r(w),O(Mti/\r(w)vs,O - Mti/\t(w),o) 14] P(dw).
0

Combining these calculations and using (3.5) as above we finally deduce that

EP®TR[((MZ,0)2 - / oGy al? dr) 1A]
0
_ EP®fR[(<M;'M,o)2 - / 16 el dr) u}
0

S
+ EP@’IR[((M;,O Mgy - / GG el dr) Lm{fss}]

n 2EP®TR[MII',O(MS",O — Mi,o) Lan(r<sy]
S

which completes the proof of (M2). ]

As the next step, we present an auxiliary result which allows us to show that for weakly
continuous stochastic processes, hitting times of open sets are stopping times with respect
to the corresponding right continuous filtration. Here we want to emphasize that the fil-
tration (B;);>0 used below is not the augmented one since we have to consider different
probabilities. As a consequence, we have to be careful about making any conclusions
about stopping times.

Lemma 3.5. Let (2, ¥, (F1)i>0, P) be a stochastic basis. Let Hy, H, be separable
Hilbert spaces such that the embedding H, C H> is continuous. Suppose that there exists
{hitken C Hy C HY such that for all f € Hy,

I/ Iz, = sup hi(f).
keN

Suppose X is an (¥;):>0-adapted stochastic process with trajectories in C([0, 00); H3).
Let L > 0anda € (0,1). Then

r=inf{t = 0: | X@)|#, > L} and v :=inf{t >0:|X|coen, > L}

are (F14)i=o0-stopping times where 14 = (\,o¢ Frte-
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We note that in the above result, the process X a priori need not take values in H;.
In other words, without additional regularity of the trajectories of X, we simply have
71 = 15 = 0. However, in the application of Lemma 3.5 in the proof of Theorem 1.2
below, additional regularity will be known a.s. under a suitable probability measure.

Proof of Lemma 3.5. In the proof we use X“(s) to denote X (s, ®). First, we observe that
the trajectories of X are lower semicontinuous in H; in the following sense:

I X@) |, = sup hx(X(2)) = sup lim g (X(s)) < liminf sup hx(X(s))
keN keNS™1t 520 keN
< limitnf N X() e, s (3.8)
Nad

where ¢ > (. Note that since by assumption we only know that X takes values in H, D Hq,
the Hj-norms appearing in (3.8) may be infinite. Next, for # > 0 we have

fmzty= (UXOlm, <Ly= () UXOlla, <L} € Fr.

s€[0,¢] s€[0,:]1NQ

Indeed, to show the first equality, we observe that the right hand side is a subset of the left
one. For the converse inclusion, we know that {t; > ¢} is a subset of the right hand side.
Now, we consider w € {r; = ¢}. In this case, | X“(s)||z, < L forevery s € [0,¢). Thus,
there exists a sequence # 1 ¢ such that | X (tx)||#, < L and by the lower semicontinuity
of X it follows that || X“(¢)||mz, < L. The second equality is also a consequence of lower
semicontinuity. Indeed, if w belongs to the right hand side, then for s € [0,7], s ¢ Q,
there is a sequence (sx)ken C [0,¢] N Q, sy — s, such that || X“(sg)|lg, < L. Hence
| X“ ()7, <L and w belongs to the left hand side as well. Therefore, we deduce that

({n<ty=({n <t+eeF.
e>0

which proves that t; is an (¥;4)>0-stopping time.
We proceed similarly for 7. By the same argument as in (3.8) we find that also the
time increments of X are lower semicontinuous in H;. More precisely, for 1,7, > 0,

[X(#1) — X(22)|lg, < liminf [ X(s1) — X(s2) ||,
S1—>11,82—>12

and as a consequence if #; # t, then

||X(l1)—X(lz)||H1< liminf | X(s1) — X(s2) | o,

[t1 — 12]* T os1—tL, 80 ls1 — 82|
S17#S52

This implies for ¢ > O that

{e =1} ={IIXllcen, =L} =

ﬂ {||X(S1)—X(S2)||H1

51— 5,7 SL} € ¥,

s1#52€[0,:.]NQ
3.9)
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Indeed, for the first equality, the inclusion D is immediate, because the process ¢ —
[ Xllce a, is nondecreasing. For the converse inclusion, we know that {2 > 7} is a sub-
set of the right hand side. Let w € {t, = ¢}. Then there is a sequence f; 1 ¢ such that
||X“’||Cto]c(H < L and we have

X (s1) = X“(s2)llmy _ . IXC G A ) = X O (52 A i) ||,
> < sup  liminf >
51752€[0,1] |s1 — $2 51 #5,€[0,1] k>0 Is1 Atk — 52 At
- [X“(s1) — X (s2) 11,
<sup  sup

keN s1 #s2€[0,1x] [s1 — s52]*

<L.

We deduce that | X“[ce g, < L, hence w also belongs to the set on the right hand side
of the first equality in (3.9). The second equality in (3.9) follows by a similar argument.
Therefore, we conclude that 75 is an (¥4 )>0-stopping time. [ ]

3.3. Application to solutions obtained through Theorem 1.1

As the first step, we decompose the Navier—Stokes system (1.5) into two parts, one of
which is linear and contains the stochastic integral, whereas the other one is a nonlinear
but random PDE. More precisely, we consider

dz — Az + VPidt = dB,
divz = 0, (3.10)
z(0) =0,

and
v—Av+div(v+2)®(v+12))+ VP, =0,

3.11
divv =0, ( )

where P; and P, denote the associated pressure terms. Note that the initial value for v was
not given in advance but it was part of the construction in Theorem 1.1. This decompo-
sition allows us to separate the difficulties coming from the stochastic perturbation from
those originating in the nonlinearity.

Now, we fix a GG *-Wiener process B defined on a probability space (2, ¥, P) and
we denote by (F;);>0 its normal filtration, i.e. the canonical filtration of B augmented
by all the P-negligible sets. This filtration is right continuous. We recall that using the
factorization method it is standard to derive regularity of the stochastic convolution z
which solves the linear equation (3.10) on (2, ¥, (¥ )0, P). In particular, the following
result follows from [14, Theorems 5.14, 5.16] together with the Kolmogorov continuity
criterion.

Proposition 3.6. Suppose that Te(GG*) < oo. Then forall § € (0,1/2) and T > 0,

P
Elzllcr mi-s + lzllg/2-s o] < 00



Nonuniqueness in law of stochastic 3D Navier—Stokes equations 183

As the next step, for every w € Q¢ we define a process M, similarly to Definition
3.1, that is,

t
M = o(t) — o(0) + / [Pdiv(w(r) @ w(r)) — Aw(r)]dr (3.12)
0
and for every w € Q¢ we let
t
Z°(@t) == MP, +/ P A TIAME dr. (3.13)
0

The idea behind these definitions is as follows. The process M is defined in terms of the
canonical process x and hence its definition makes sense for every w € 2, i.e. without the
reference to any probability measure. Consequently, the same applies to Z. In addition, if
P is a martingale solution to the Navier—Stokes system (1.5), the process M is a GG*-
Wiener process under P. Hence we may apply integration by parts to show that Z solves
(3.10) with B replaced by M. In other words, under P, Z is almost surely equal to a
stochastic convolution, i.e., we have

t
Z(1) = / Pe"NAdM,, P-as.
0

In addition, by definition of Z and M together with the regularity of trajectories in
Qo, it follows that for every w € Qq, Z® € C([0, 00); H™3). Forn € N, L > 0 and for
8 € (0, 1/12) to be determined below we define

— /
() = inf{t >0 Z°0)] 15 > M}

Cs
_ /
(L—1/n)! 2} AL

A inf {t >0: ||Z“’||Ct1/2—25 Cs

2~
where Cg is the Sobolev constant for || f'||Lec < Cs|| f || 3+0)/2 With o > 0. We observe
that the sequence (7} ),en is nondecreasing and define

7 = lim 7. (3.14)

n—o0o

Note that without additional regularity of the trajectory w, we have 7 (w) = 0. How-
ever, under P we may use the regularity assumption on G to deduce that Z €
CH'7n Ckl)éz_a L? P-as. By Lemma 3.5 we find that 7/ is a (8);>0-stopping time
and consequently also 77, is a (8B;);>o-stopping time as an increasing limit of stopping
times. We emphasize that we need to introduce the stopping time on the path space with-
out using any probability. The introduction of 7' is to approximate 7z, which coincides
with the stopping time 77, introduced in (4.2) below under the law of the convex inte-
gration solution. Moreover, 77 is defined on the path space and is a stopping time by
Lemma 3.5. We cannot directly prove that 7, is a stopping time on the path space without
using the continuity property of the Brownian motion.
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As the next step, we apply Theorem 1.1 on the stochastic basis (2, ¥, (¥;)¢>0, P).
We note that the stopping time t from the statement of Theorem 1.1 is given by 77, for
a sufficiently large L > 1, defined in (4.2) below. We recall that u is adapted to (F;)>0
which is an essential property employed in what follows. We denote by P the law of u
and prove the following result.

Proposition 3.7. The probability measure P is a martingale solution to the Navier—
Stokes system (1.5) on [0, tp ] in the sense of Definition 3.2, where tr, was defined in (3.14).

Proof. Recall that the stopping time 77, was defined in (4.2) in terms of the process z, the
solution to the linear equation (3.10). Theorem 1.1 yields the existence of a solution u to
the Navier-Stokes system (1.5) on [0, 7] such that u(- A T1) € Q¢ P-a.s. We will now
prove that

1 (u) =T P-as. (3.15)

To this end, we observe that due to the definition of M in (3.12) and Z in (3.13) together
with the fact that u solves the Navier—Stokes system (1.5) on [0, 71], we have

Z¥(t) = z(t) fort €[0,TL] P-as. (3.16)

Since z € CH' % n Ckl)éz_‘sL2 P-a.s. according to Proposition 3.6, the trajectories of the
processes
1t lz@)gi-s and > 2] o1/2-25 5
r

are P-a.s. continuous. It follows from the definition of 77, that one of the following three
statements holds P-a.s.:

either Tp =L or |z(To)|g1-s > LY*/Cs or 2l c1/2-28,2 = LY2/Cs.
L

Therefore, as a consequence of (3.16), we deduce that 77, (#) < Ty, P-a.s. Suppose now
that 77, (u) < Tr, on a set of positive probability P. Then on this set, either

Iz (L @)l g1-5 = 1 Z* (@) g1-s = L'*/Cs,  or

u _ 1/2
| Z ”Crlﬁ;)zst = ”Z”C:Z%;)MLZ >L"*/Cg,

which however contradicts the definition of 7. Hence we have proved (3.15).

Recall that 7z, is a (B;);>o-stopping time. We intend to show that P is a martingale
solution to the Navier—Stokes system (1.5) on [0, tz] in the sense of Definition 3.2. First,
we observe that it can be seen from the construction in Theorem 1.1 that the initial value
u(0) = v(0) + z(0) = v(0) is indeed deterministic. Hence condition (M1) follows. How-
ever, we note that the initial value v(0) cannot be prescribed in advance. In other words,
Theorem 1.1 does not yield a solution to the Cauchy problem, it only provides the exis-
tence of an initial condition for which a solution violating the energy inequality exists.
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For an appropriate choice of the constant C; 4 in Definition 3.2, which has to depend on
the constant Cy, in (1.6) in Theorem 1.1, condition (M3) also follows.

Let us now verify (M2). To this end, let s < ¢ and let g be a bounded, real-valued,
Bs-measurable and continuous function on . Since u(- A Tr) is an (F;);>o0-adapted
process and (3.15) holds, we deduce that u(- A 7,(u)) is also (¥;);>0-adapted. Conse-
quently, the composition g(u(- A 77,(u))) is Fz-measurable. On the other hand, we know
that under P, Mt”AltL .0 = (Biaty u)- €:) is an (¥;)s>o-martingale. Its quadratic variation
process is given by || Ge; ||i2 (t At (u)). Therefore, we have

EF[M].,, o8l = EF[M} 8] =EF[M o e@)] = EP[M],, og]

and by similar arguments we also find that

EP[((M]r, 0)? =t A)GeilF2)g] = EP (M, 0)* — (s Ao Geill72)g].

Accordingly, the process M t‘ Az ,0 1S @ continuous square integrable (B;);>o-martingale
under P with quadratic variation process given by ||Ge; ||i2 (t A 1), and (M2) in Defini-

tion 3.2 follows. u

At this point, we are already able to deduce that martingale solutions on [0, 7] in
the sense of Definition 3.2 are not unique. However, we aim at a stronger result, namely
that globally defined martingale solutions on [0, 00) in the sense of Definition 3.1 are not
unique. Moreover, we will prove that for an arbitrary time interval [0, T'], the martingale
solutions on [0, T'] are not unique. To this end, we will extend P to a martingale solution
on [0, oo) through the procedure developed in Section 3.2. More precisely, as an immedi-
ate corollary of Proposition 3.7 and the fact that 77, is a (8;);>0-stopping time, we may
apply Proposition 3.2. In particular, we construct Q, for all ® € 2¢. In view of Proposi-
tion 3.4, (M 1)—(M3) follow once we verify condition (3.5) for Q. This will be achieved
in the following result.

Proposition 3.8. The probability measure P ®, R is a martingale solution to the
Navier-Stokes system (1.5) on [0, 00) in the sense of Definition 3.1.

Proof. Inlight of Propositions 3.2 and 3.4, it only remains to establish (3.5). Due to (3.15)
and (3.16), we know that

P(w:Z°( Atp(w) e CH' P ncl?L?)

loc
=P(Z'( At () e CH' ™ nCl/>L?)
=P(z(AT) e CH' P NP 12) = 1.

oc

This means that there exists a P-measurable set N' C ¢ ;, such that P(4') = 0 and for
w € N€,
- -8
Z% . w ECH' T nClP L2 (3.17)

loc
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On the other hand, it follows from (3.13) that for every o’ € Qy,

Z9(t) — Z(t At (@)
t
= My — e TINL@IA et /t P A ME ds

At (@)
(t—tAtL(@)A Ji Mcu’ AT (@) PA (t/\rL(w)fs)AMa/ d
+ (e ) tAtr (@),0 + 0 ¢ 5,0 45

= 7%

(@

J(1) + (UTATLE@A _ 179 (1 A 1y ()

with

t

T o (0) = MZ) — ttre @B pgel / P A2 M, ds

tATr (@)
t
’ ’ —5)A / ’
=M =M ot /t o) P A IM(ME — ME (1)) dS-

Since M.o — M.\, ()0 is B (@)_measurable, we know that Z?L/ () is B @) _measur-
able.

Using (3.1) and (3.2) we find that for all ® € Qy,

Ou(@ €Qy:Z% e CH P nCl/?L2)

loc
- Qw(w/ €% Z'a/)\,fL(w) € CHI_S N Cl/z_‘stv Zw/ ) € CHI_S n Cl/z_‘st)

loc . (w loc
= 6u(0' € R : Z%, (o € CH' N CY>L?)

loc

4 — 1/2-48
X RrL(w),x(rL(w),w)(w/ € Qo : Z?L(a)) eCH' ™ ncC /2 Lz).

loc

Here the first factor on the right hand side equals 1 for all ® € N ¢ due to (3.17). Since
for w € {x(7) € Lg}, R+, (0),x(z; (w),0) 15 @ martingale solution to the Navier-Stokes
system (1.5) starting at the deterministic time tz, (w) from the deterministic initial condi-
tion x (tz (w), w), the process @’ > M_"%/ — M‘X;L (@).0 is a G G*-Wiener process starting
from 7z (w) with respect to (8;);>0 under the measure R;; (w),x(z; (w),0)- DUE to the
regularity of its covariance we deduce that also the second factor equals 1. Indeed, for
Ry} (@),x(1; (0).0)-2-€. @ we have

t
@@= /0 P4 (MY, — M, @).0)

and the regularity of this stochastic convolution follows again from Proposition 3.6. In
particular, for Ry, (v).x(z; (0),0)-2-€. ®',
! 1-§ 1/2=8 72
L3 () ECH T NC. " L7,
To summarize, we have proved that for all w € N¢ N {x(7) € L2},

Qu(@ €Qo:2% eCH' P nC/? L2 =1.

loc
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As a consequence, for all @ € N¢ N {x(t) € L2} there exists a measurable set N,
such that O, (N,) = 0 and for all " € N the trajectory ¢ > ze' (¢) belongsto C H' =% N
C /27812 Therefore, by (3.14) we deduce that 77 (0') = 77 (') for all " € NS where

loc
(@) i= inf{t > 0:|Z¥ (1) grs = LY*/Cs)

Ainf{t > 0: |2l g1/2-28 2 = LY?/Cs} A L.
t

This implies that forz < L,

{0 € NS 1 (o) <1}
- {a) eNE: sup [|Z()]| s > L1/4/cs}
seQ, s<t
12 (s1) = Z'(s2) || .2
|51 _32|1/2—28

U {a)’ e NS > Ll/z/cs}
51752€QN[0,1]

= NSN A, (3.18)

Finally, we deduce that for all € N N {x () € L2} with P(x(t) € L2) = 1,

Qo0 € Qo :1(0) =11(0)) = Qo0 € Ny : 1p(0) = 11(0))

= Qu(@ €NS:0'(s) =w(s), 0<s <1r(w), (@) =1(w) =1, (3.19)

where we have used (3.1) and the fact that (3.18) implies

o0
{0 € Ny 1 7p(0) = (W)} = Ny N (ArL(w)\ U ArL(w)—l/n) € Ny N B ()

n=1

and Qo (Az, @)\ Unet Az, (w)—1/n) = 1. This verifies condition (3.5) in Proposition 3.4
and as a consequence P ®;, R is a martingale solution to the Navier-Stokes system (1.5)
on [0, o0) in the sense of Definition 3.1. |

Remark 3.9. The property (3.19) is essential for showing that the concatenated proba-
bility measure satisfies (M1)—(M3). This is the reason why we had to introduce 7;, and
make use of the continuity of Z under the law of a martingale solution, which is different
from the original regularity of Z following merely from its definition (3.13) together with
the regularity of trajectories in 2. Without the improved regularity, we could only prove
that 77, is a stopping time with respect to the right continuous filtration (8;);>0, and the
dependence on the right limit does not allow one to establish (3.19).

Finally, we have all in hand to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Let T > 0 be arbitrary, let « = 1/2 and K = 2. Based on The-
orem 1.1 and Proposition 3.8 there exists L > 1 and a measure P ®;, R which is a
martingale solution to the Navier—Stokes system (1.5) on [0, co) and it coincides on the
random interval [0, tz] with the law of the solution constructed through Theorem 1.1.
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The martingale solution P ®;, R starts from a certain deterministic initial value xo =
v(0) € L2 dictated by the construction in Theorem 1.1. The key result is the failure of
the energy inequality at time 7" formulated in (1.7) on the set {7y, > T} C Q. In view of
(3.6), (3.19) and (3.15) we obtain, by (1.7) and the choice of K = 2,

EP® L R|x(T)|2,] = EPO LR [y, sy X (T)122] + EP® LR [, <yl|lx(T)]125]

> /Q E20 (1, oy x(T)]22] P(dw) > 2(|x02 + T TH(GGY)).
0

On the other hand, by a classical compactness argument based on Galerkin approx-
imation we may construct another martingale solution P which starts from the same
deterministic initial condition x( and which satisfies the energy inequality

EP[Ix(D)72] < %072 + T Te(GG™).

Therefore, the two martingale solutions P ®., R and P are distinct and nonunique-
ness in law holds for the Navier—Stokes system (1.5). ]

4. Proof of Theorem 1.1

In this section we fix a probability space (€2, ¥ ,P) and let B be a GG *-Wiener process on
(2, F,P). We let (¥;):>0 be the normal filtration generated by B, that is, the canonical
right continuous filtration augmented by all the P-negligible sets. In order to verify that the
solution constructed in this section is a martingale solution before a suitable stopping time,
it is essential that the solution is adapted to the filtration (¥7),>0, which corresponds to a
probabilistically strong solution. In the following, we construct a probabilistically strong
solution before a stopping time. Furthermore, the solution does not satisfy the energy
inequality.

We intend to develop an iteration procedure leading to the proof of Theorem 1.1.
More precisely, we apply the convex integration method to the nonlinear equation (3.11).
The iteration is indexed by a parameter ¢ € Ny. We consider an increasing sequence
{Ag}gen C N which diverges to oo, and a sequence {5, }4en C (0, 1) which is decreasing
to 0. We choose a,b € N and 8 € (0, 1) and let

b4 —
Ag=a", 8, =277,

where B will be chosen sufficiently small and a as well as b will be chosen sufficiently
large. At each step ¢, a pair (vq, Ry) is constructed solving the system

0:vg — Avg +div((vg + z4) ® (vg + z4)) + Vpg = div 13(1,

divvy, = 0,

4.1)

with z; = P< r(p)z for f(q) = Agf 1 and P< r(,) being the Fourier multiplier operator,
which projects a function onto its Fourier frequencies < f(g) in absolute value. Hence, in
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addition to the conditions below, we need bo/8 € N such that f(g) € N. By the Sobolev
embedding we know || f'||zoc < Cs|| f || gG+o)/2 for o > 0, where we choose Cs > 1. For
L >1and0 < § < 1/12 define

T =inf{t > 0: |z()| g1-s = LY*/Cs} Ainf{t = 02 ||z]| 1225, = L2/ Cs} A L.
t
(4.2)

According to Proposition 3.6, the stopping time T is P-a.s. strictly positive and Ty, 1 oo
as L — oo P-a.s. Moreover, for ¢ € [0, T ],

2@l 15 < LY*/Cs, Izl g1/2-28 72 = L'?/Cs, Izqllrro2s,2 = LY?/Cs,

g+1 q+1° q+1

(4.3)
Let Mo(t) = L*e*L". By induction on g we assume the following bounds for the iterations
(vg. 13,1): ift € [0, T] then

lzg(@)llee < LY4ALE. V2o @)llzoe < LY*2LY . Nlzgll o128 oo < AGKH LY.
t

loalle 2 = Mo®)2(14+ 3 8/2) = 2Mo0)'/2,

1<r=q

logllcy = Mo()'/2Ag, @4
[Rgllc, 1 < Mo(t)cRrSg+1-

Here we define ) ©; _._ :=0, and cg > 0 is a sufficiently small universal constant given in

(4.28) and (4.37) below. In addition, we use Zrzl 8,1/2 < Zrzl a—"b — lf;fl;b <1/2,
which boils down to the requirement

af? > 3, (4.5)

which we assume from now on. The iteration will be initiated through the following result
which also establishes compatibility conditions between the parameters L, a, 8, b essen-
tial for what follows.

Lemma 4.1. For L > 1 define

L2 2Lt

W (sin(X3), 0, 0)

vo(t, x) =

Then the associated Reynolds stress is given by'

o QL + 1)L?eL 0 0 —costxs)
RO(Z, X) = W 0 0 0
—cos(x3) O 0
=+ Vo é Zo + Zoévo + Z()éZ(). (46)

'We denote by ® the trace-free part of the tensor product.
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Moreover, all the estimates in (4.4) on level ¢ = 0 for (v, 130), as well as (4.5), are valid
provided

27)3/2 4%
45-(21)%% < 5. 21)32a?P < cxL < cg ((”)Ta — 1). 4.7)

In particular, we require

crL > 45 (2m)%/2. (4.8)
Furthermore, the initial values vy(0, x) and 130(0, X) are deterministic.
Proof. The first bound in (4.4) follows immediately since

2 2Lt
[vo()llz = == =< Mo())*

For the second bound, we have

2(1+ L)

228" T =) 1/294 _ 1/2, 4
lvollcy = Mo(2) Qi = Mo(1)"“Ag = Mo(1) '“a
provided
2(1+ L) 4

A direct computation implies that the corresponding Reynolds stress is given by (4.6) and
we obtain

IRo@) 11 < 27)¥2Mo(6)/22(2L + 1) + 2Mo(t)/2LY* + LV2.
Therefore, the desired third bound in (4.4) holds provided
IRo()ll 1 <5+ (2m)3/*Mo(t)/L < Mo(t)crS1 = Mo(t)cra=2P?,

which requires 5 - (277)3/2L~! < cga—2Pb. Here we have used (4.8) in the first inequality.
Combining this condition with (4.9), we obtain the requirement

2 3/2 4
5.(27)%2a%P < ¢rL < cg ((”)Ta — 1). (4.10)

In particular, we require that
crL > 5-(2m)%?, (4.11)

otherwise the left inequality in (4.10) cannot be fulfilled. Under these conditions, all the
estimates in (4.4) are valid on level ¢ = 0. Taking into account (4.5), conditions (4.10)
and (4.11) are strengthened to (4.7) and (4.8) from the statement of the lemma, and the
proof is complete. ]
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The key result of this section which is used to prove Theorem 1.1 is the following.

Proposition 4.2 (Main iteration). Let L > 1 satisfying (4.8) be given and let (vq, 13(1)
be an (¥;)s>o0-adapted solution to (4.1) satisfying (4.4). Then there exists a choice of
parameters a, b, B such that (4.7) is fulfilled and there exist (¥;);>0-adapted processes

(Vg+1. ﬁq+1) which solve (4.1), obey (4.4) at level ¢ + 1 and fort € [0, T1] we have
lvg41(6) = vg (D)2 < Mo(1)"/2813,. 4.12)

Furthermore, if v4(0) and 13q (0) are deterministic, so are vy41(0) and 13q+1 0).

The proof of Proposition 4.2 is presented in Section 4.1. At this point, we take Propo-
sition 4.2 for granted and apply it in order to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof relies on the above described iteration procedure. More
precisely, our goal is to prove that for L > 1 satisfying (4.8), Lemma 4.1 and Proposi-
tion 4.2 give rise to an (¥;);>o-adapted analytically weak solution v to the transformed
problem (3.11). By possibly increasing the value of L, the corresponding solution v fails
to satisfy a suitable energy inequality at the given time 7 . Finally, again by possibly mak-
ing L bigger, we verify that u := v 4 z and t := T}, fulfill all the requirements in the
statement of the theorem.

Starting from (vo, 130) given in Lemma 4.1, the iteration of Proposition 4.2 yields a
sequence (vg, 134) satisfying (4.4) and (4.12). By interpolation we deduce that the follow-
ing series is summable for y € (0, %) andt € [0, TL]:

D g1 @) = vgOllay £ vgr1(t) = vg )57 [vg41(6) = vg (O,

q=0 q=0

11—y
S Mo(0) Y 8,3, A5% 0 S Mo().
q=0

Thus we obtain a limiting solution v = lim,, o V4, which lies in C([0, T1]; HY). Since v,
is (¥¢)¢>0-adapted for every ¢ > 0, the limit v is (¥;);>0-adapted as well. Furthermore,
v is an analytically weak solution to (3.11) since limy_so 13q =01in C([0, T]; L") and
limgo0 zg = z in C([0, T1]; L?). In addition, there exists a deterministic constant Cy,
such that

lv@)||lgy < Cp forallt € [0, Tr]. (4.13)

Let us now show that the constructed solution v fails to satisfy the corresponding
energy inequality at time 7". Namely, we will show

(T) L2 > (w2 + L)etT. (4.14)
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According to (4.12), in view of b9T1 > b(g + 1) which holds if » > 2 and then applying
(4.5), for all ¢t € [0, T1] we obtain

(@) = vo()lzz < Y Ivg41() — vg@)llz2 < Mo()'/2 Y 8)/7
q=>0 q=0
—Bb 1

— a
= Mo(@)'2 3 @) = Mo()' P ——p

—5 < EMo(t)l/z.

q=0

Consequently,

(O)ll2 + L) T < (oo @1z + [0(0) — vo(0)]| 2 + L)e-T
< GMO(O)W + L)e”,

which we want to estimate (strictly) by

1 1
(5 3 )M < IuDlz = 1) = wo(Dlzz < (D
on the set {Tp, > T} C Q. In view of the definition of M{(¢), this is indeed possible
provided
301 11\ g7
-+ — — == . 4.15
2T LT (ﬁ ) 12

In other words, given 7" > 0 and the universal constant cg > 0, we can choose L =
L(T, cgr) > 1 large enough so that (4.8) as well as (4.15) hold and consequently (4.14)
is satisfied. Moreover, in view of Proposition 3.6 and the definition of the stopping times
(4.2), we observe that for a given 7" > 0 we may possibly increase L so that the set
{Ty, = T} satisfies P(T, > T) > «.

Let us now define u := v + z. Then u is (¥;)>¢-adapted, solves the Navier—Stokes
system (1.5) and we deduce from (4.13) together with (4.3) that (1.6) holds true. To verify
(1.7), we use (4.3) and apply (4.14) on {Ty, > T} to obtain

(D)2 = (T2 = 12(Dll2 > (w2 + L)e"" — LY/ Cs.

Thus, since u(0) = v(0) we may possibly increase the value of L depending on K and
Tr(GG*) to deduce the desired lower bound (1.7). The initial value v(0) is deterministic
by our construction. Finally, we set t := T, which finishes the proof. [

To summarize the above discussion, first we fix the parameter L large enough in
dependence on T, cg, k, K and Tr(GG*). Then we apply Proposition 4.2 and deduce the
result of Theorem 1.1. It remains to prove Proposition 4.2 and to verify that the parameters
a, b, B can be appropriately chosen.

4.1. The main iteration — proof of Proposition 4.2

The proof of Proposition 4.2 proceeds along the lines of [7, Section 7]. We have to track
the proof carefully to make the construction in each step (F;);>o-adapted and the initial
value v(0) deterministic. In the course of the proof we will need to adjust the value of the
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parameters a, b, 8 as further conditions on these parameters will appear. The parameter L
is given and will be kept fixed. In addition, we have to make sure that the condition (4.7),
which is essential for the failure of the energy inequality in Theorem 1.1, is not violated.
However, we observe that the right inequality in (4.7) remains valid if we increase a.
In other words, given L we find the minimal value of a for which this inequality holds
and from now on we may increase a as we wish. On the other hand, increasing a or b
can in principle cause problems in the left inequality in (4.7), but here we may make the
parameter 8 smaller so that the inequality remains true. To summarize, we may freely
increase a or b at the cost of making  smaller.

4.1.1. Choice of parameters. In the following, additional parameters will be indispens-
able and their value has to be carefully chosen in order to respect all the compatibility
conditions appearing in the estimations below. First, for a sufficiently small ¢ € (0, 1) to
be chosen below, we let £ € (0, 1) be a small parameter satisfying

EAY < A%y, TP =A,. AL =il (4.16)
In particular, we define
0= 2,332,2 4.17)

The last condition in (4.16) together with (4.7) leads to

a*-2n)¥? -1
> .

We remark that the reasoning from the beginning of Section 4.1 remains valid for this
new condition: we may freely increase a provided we make 8 smaller at the same time.
In addition, we will require ab > 16 and @ > 188b.

In order to verify the inductive estimates (4.4) in Sections 4.1.4 and 4.1.6, it will also
be necessary to absorb various expressions including Mo (#)'/2 for all ¢ € [0, T;]. Since
the stopping time 77, is bounded by L, this reduces to absorbing Mg (L)"/2, and it will be
seen that the strongest such requirement is

45.27)%?% < 5. 21)¥%a*Pb < cgxL < cg

Mo(L)' 2273577 < erdg42/10, (4.18)

needed in Section 4.1.6. In other words,

L2€2L2ab(13a—1/7+2bﬁ) <1

and choosing b = 8 - 14212 L e N, (this choice comes from the fact that with our choice
of o below we want to guarantee that ab > 16, as well as the fact that b is a multiple of 7
needed for the choice of parameters needed for the intermittent jets below, cf. Appendix B)

and €2 < a leads to
hab/144b(13a—1/7+2bB) o |

In view of & > 18 8b, this can be achieved by choosing a large enough and & = 1472, This
choice also satisfies ab > 16 required above, and the condition & > 188b can be achieved
by choosing  small. It is also compatible with all the other requirements needed below.
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From now on, the parameters « and b remain fixed and the free parameters are a and j
for which we already have a lower, respectively upper, bound. Below, we will possibly
increase a and decrease § at the same time in order to preserve all the above conditions
and to fulfil further conditions appearing below.

4.1.2. Mollification. We intend to replace v, by a mollified velocity field v,. To this end,
we extend z4(¢) = z4(0), v4(t) = v4(0) for t < 0 and let {¢¢}¢>0 be a family of standard
mollifiers on R3, and let {@,}¢~0 be a family of standard mollifiers with support on R
We define a mollification of v, 13q and z, in space and time by convolution as follows:

Ve = (Vg *x @¢) *1 @r,  Re = (Ry *x @) %1 0o, Zg = (24 *x $g) *1 @4,

where ¢y = K%q&(i) and @ = %(p(i). Since the mollifier ¢; is supported on RY, it is
easy to see that z, is (¥;);>o-adapted and so are vy and 134. Since ¢y is supported on R,
if the initial values v, (0) and 13,] (0) are deterministic, so are vy (0) and I%g (0), 94 I%g(O).
Moreover, z4(0) = 0 implies that z;(0) and Rc,m(0) given below are deterministic as well.
Then using (4.1) we find that (v, 134) satisfies

0,v¢ — Avg + div((ve + 2¢) ® (vg + 2¢)) + Vg = div(Ry + Reom).
divvy, =0,

(4.19)

where
Reom = (e +2¢) @ (v + 20) — (g + 2) © (vg + 29)) *x b *1 9,
pe = (g *x D0) *¢ ¢ — (e + ze|* — (vg + zg* *x Be) *1 @0).
By using (4.4) and (4.16) we find, for ¢ € [0, T ],

4 1/2 1/29—
g = velle 2 5 llvg = velleo < Llvgller < Mo/ < Mo(1)/227%,

IA

IMo()'25,/7,. (4.20)

where we use the fact that @ > B and we choose a large enough in order to absorb the
implicit constant. In addition, for ¢ € [0, T ],

lvelle,z2 < lvglle,z2 < Mo (14 37 82). (4.21)
1<r=q
and for N > 1,
loellep. S €N vglley = €CVHAIMo@)'? < Mo)'2ONAY, 4.22)

where we have chosen a large enough to absorb the implicit constant.

4.1.3. Construction of vg+1. Let us now proceed with the construction of the perturba-
tion wy41 which then defines the next iteration by vg4+1 := vg + wg41. To this end, we
make use of the construction of the intermittent jets [7, Section 7.4], which we recall in
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Appendix B. In particular, the building blocks W) = W ;| 4, for & € A are defined
in (B.3) and the set A is introduced in Lemma B.1. The necessary estimates are collected
in (B.7). For the intermittent jets we choose the following parameters:

_ _a—4/7 _ 1Ay 1 4—6/7 _ —1 _ 49/7
A=Agrr. rp=2A, s ro=rp A = AL = Al = AL

(4.23)
It is required that b is a multiple of 7 to ensure that A, 417 = a7 e N.
In order to define the amplitude functions, let y be a smooth function such that

@) 1 if0<z<l,

Z) =

X z ifz>2,

and z < 2y(z) < 4z for z € (1,2). We then define, for t € [0, 7.] and w € L,
p(@,1,x) = 4crSyr1Mo(1) 1 ((cRSq+1 Mo (1)) ™! Re(w, 1, %)),

which is (F;);>0-adapted and we have

1 (cRSg41Mo()) ! [Re(w, 1, x)|

= - =

4 X ((cRSq1 Mo() ™! [Re(w, 1, X))

Note that if 134 (0, x) and 8;]%4 (0, x) are deterministic, so are p(0, x) and d; p(0, x). More-
over, for any p € [1,00] and ¢t € [0, T1] we have

lelc,r < 16((873) Y Perdgst Mo(t) + | Rellc,Lr)- (4.24)

Furthermore, by mollification estimates, the embedding W4l ¢ L and (4.4) we obtain,
for N >0andt € [0, TL],

Ry(w.1.x)
pl®,1,x)

N =

IRellepy, S €N erbyai Mo(0),
and by repeated application of the chain rule (see [6, Proposition C.1]) we obtain
lollep, < €4 erSga1Mo(t) + (crSg+1 Mo ()™ 17N (cRSg1 Mo (1) ™
SN RSy Mo (), (4.25)
where we have used the fact that %Mo (t) = 4LMy(t) with 4L < £~ and the implicit

constants are independent of .
As the next step, we define the amplitude functions

ﬁg(w,l,x)

—3/4
; (amx))(zn) . (4.26)

agy(w.t,x) =ag441(w,t,x):= ,o(a),t,x)l/zyg (Id

where yg is introduced in Lemma B.1. Since p and 1%@ are (¥;);>0-adapted, we know that

also ag) is () s>o0-adapted. If 1315 (0,x) and o, 135 (0, x) are deterministic, so are ag) (0, x)
and d;a)(0, x). By (B.5) we have

@m)¥2 Y " ad, ]fr Wi ® Wiy dx = pld— Ry, (4.27)
EeA
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and using (4.24) for ¢ € [0, T ],

1/2 1/2
1/2 83+ 1M 1/21/2
lawlic,z2 = llolle, i llvellcos, am) = 8|A|(87‘r3 N Mo(1)/78,55

1/4 1/251/2
M
< & Mol oy (4.28)
2|A|

where we choose cg to be a small universal constant to absorb M and we use M to denote
the universal constant as in Lemma B.1. Furthermore, by using the fact that p is bounded
from below by 4cg84+1Mo(t), we deduce by similar arguments to those in (4.25) that for
tel0,T]and N > 0,

lagllep, < €27 N e 8,2 Mo()' 2. (4.29)

(

With these preparations in hand, we define the principal part w qu_) , of the perturbation

Wq+1 as
w®. -
wy =) aeWe- (4.30)
EeA
If 134 (0, x) and 0, 13(&(0» x) are deterministic, so are w(p)l(O x) and 9, w(p)1 (0, x). Since
the coefficients ag) are (#;):>o-adapted and W(g) is a deterministic function we deduce

that w(p )1 is also (¥7):>0-adapted. Moreover, according to (4.27) and (B.4) it follows that
w @ W + Re =Y afyPro(Weey ® Weey) + p1d, (4.31)
EeA

where Pyo f := f = F f(0) = f — 2n)32 {3 f.

We also define an incompressibility corrector by

© ._
wqc-i-l = Z curl(Va(g) X V(g)) + Vag x curl Vig) + ag W(E) , (4.32)
EeA
with W(c) and V(g) being given in (B.6). Since ag) is (¥ ):>0-adapted and W(g,, W(g) and
V(¢ are deterministic functions we know that w(c) 11 is also (37,) >o0-adapted. If 134 0,x)

and 8th (0, x) are deterministic, so are w (0 x) and 8,w 1(0, x). By a direct com-
putation we deduce that

(13_)1 + wl(;)_l Z curl curl(ag) Vig)).
EeA

hence
divw?, +wi?)) =o.

We also introduce a temporal corrector

wi) = —— Z PP2o(ae dle) Vi b)- (4.33)
EEA
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where P is the Helmholtz projection. If I%g (0, x) and 9, I%g (0, x) are deterministic, so is
;’J)r 1(0,x). As above, w; J)rl is (¥7)¢>0-adapted and by a direct computation we obtain

drwily + Y Prolal div(We ® Wee)))

&eA
== Z PP00: (a3 b Vi) 6) + Z P20 ()0t () Vi £))
§EA SEA
= (1d- JP’); D Prodi (@bl Vo) — Z Pro(drale) @l V).  (4.34)

E€A .§eA

Note that the first term on the right hand side can be viewed as a pressure term V p;.
Finally, the total perturbation wy 41 is defined by

wasr == wih +wl) +wl), (4.35)

which is mean zero, divergence-free and (¥;)>o-adapted. If 13@ (0, x) and 0, 134 (0, x) are
deterministic, so is wg41(0, x). The new velocity vy 4 is defined as

VUg+1 := Vg + Wg+1- (4.36)
Thus, it is also (F;);>o-adapted. If 13,1(0, x) and vg(0, x) are deterministic, so is

Ug+1 (07 .X).

4.1.4. Verification of the inductive estimates for vgy1. Next, we verify the inductive esti-
mates (4.4) on level g + 1 for v and we prove (4.12). First, we recall the following result
from [7, Lemma 7.4].

Lemma 4.3. Fix integers N,k > 1 and let { > 1 be such that

27V/3¢ 1 4 @r /30N
> (f——— =<1
K 3 kN

and

Let p €{1,2} and let f be a T3-periodic function such that there exists a constant Cy >0
such that

ID7 fllLr < CrE?
forall0 < j < N + 4. In addition, let g be a (T /«k)3-periodic function. Then
I fgliLr < Crliglier,
where the implicit constant is universal.

This result will be used to bound w‘(]{’,_) , In L2, whereas for the other L?-norms we
apply a different approach. By (4.28) and (4.29) we obtain, for ¢ € [0, 7],

1/4 1/
< xR Mot §L2 078

j
[D?agllc, 12 < 2IA| g+
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which combined with Lemma 4.3 for { = £78 yields, for ¢ € [0, T.],
1 U4 1/2 1 1/2
lwgillc e < Z STATCR Mo 28 Wee e 12 = 5Mo0) 28,0, 437)

where we use clle/ # to absorb the universal constant and the fact that due to (B.3) together

with the normalizations (B.1), (B.2) we have || W(g)|| .2 2 1 uniformly in all the parameters
involved.
For a general L? norm we apply (B.7) and (4.29) to deduce that for ¢ € [0, T ] and

p € (1,00),

lwghiller <" laglcy IWellc e
EeA

< Mo(0)' 2850 1P, (438)
lwgdiller < Ula@lco IWE leinr + lawlcz 1V lcwir)
EeA
< M, (t)1/281/2 12, 2/p 1 ||l/p 1/2(”_,,”—1 +A;Jlr1)

3 Mo(t)I/ZS;flﬁ_lzri/prnl/p_y 2 (4.39)

and
® » , . .
lwgislle,er S ™) lagy o Ie@L2n 1V @llE, 20
EeA
< 5q+1Mo(t)€_4r2/p_lrl/l’—z(u—lrllr”)

= Mo(t)8q1 04777 /P20 L (4.40)

We note that for p = 2, (4.38) provides a worse bound than (4.37) which was based on
Lemma 4.3. Since by (4.18), Mo(L)"/242%"7 < 1, we see that for ¢ € [0, T],

lwi e, e + 1wl e,z
1/2 ,—2 2/p—1_1/p—1/2,,— 12——32
5M0(t)1/2844rlﬁ 2rL/p r"/p / (5 10, ” +M0(t)1/25/ 2 / Aq+1)

< Mo()V28) 20723/ 102, (4.41)

where we use (4.16) and the fact that AZT{” T<1 by our choice of . The bound (4.41)
will be used below in the estimation of the Reynolds stress.

Combining (4.37), (4.39) and (4.40) we obtain, for ¢ € [0, T ],

lwgsille 2 < Mo()V/28)/2,(1/2 + CL72rprt + CMo()28)12 42 A 01 )

q+1 qg+1
< Mo()'28,/2,(1/2+ CAZT7 + CMO(z)l/Z(s;flAjill”)
< IMo(1)'28,17,. (4.42)
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where by (4.18) we choose 8 small enough and a large enough such that

CAZETT <18, CMo(L)28, 2057 < 1/8.

The bound (4.42) can be directly combined with (4.21) and the definition (4.36) of the
velocity vy41 to deduce the first bound in (4.4) on level ¢ + 1. Indeed, for ¢ € [0, T ],

lvg+1llc,2 = llvelle, 2 + llwg+1llc, 2 = Mo(l‘)m(l + > 3}/2)-
I=r=g+1
In addition, (4.42) together with (4.20) yields, for ¢ € [0, T ],

lvg1 = vglle 22 < lwgsille, 22 + llve = vglle, 12 < Mo(0)'/28,13,
hence (4.12) holds.
As the next step, we shall verify the second bound in (4.4). Using (4.29) and (B.7) we
get, fort € [0, T1],

lwgilley, = D lawller Wele;
EeA
< Mo(t)1/2€_7rllr”_1/2)kq+1(1 T %)
< Mo()' 27T A2 (4.43)
w3 (lagler WS ler +lagles (Vellcier + Velle,c2))
g+1lic} . ~ ®lict Mg lict @licg V@ lctcl ®lic,cz
EeA
_ riLUA
< Mo()'2er, 3/2(u 4 e "“)
I
S Mo()'207 7322 (4.44)

and

1

t

lwghilley, = 5 D_lagedl Ve lc,wives + g9 Vol weer]
EeA

IA

1
=D la@llco Nlallcitallbw e Ve I8, Los
EeA

+llaglc; llaglco Id@llLeUldelwi+acs Ve lE, oo
+ o llwaelVelc,e Ve e o)

+llaglic; llaelco d@lzelvellc,Loelvelc wi+er
+ V@ lcp o lV@llcwer + W@ le= Vel cpwa.n))

1 9 _o _ rL
S Mo r A0, (4.45)
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where we have chosen p large enough and applied the Sobolev embedding in the first
inequality in (4.45) needed because PP is not a bounded operator on C 0 in the last
inequality we have used interpolation and an extra )&Z 41 appeared. Combining (4.22) and
(4.43)—(4.45) with (4.16) we obtain, for ¢ € [0, TL],

||Uq+l||ct1' = ||U£||c1 + ||wq+1||ct1_x

< Mo(1)'7?(22 g+1 T CAMa+22/T | (03442007 | opp (t)1/2119a+3)

q+1 q+1
< Mo(t)'?A%, ..

where we use (4.18) to have
CMo(L)"? < 1071

Thus, the second estimate in (4.4) holds true on level ¢ + 1.
We conclude this part with further estimates of the perturbations w;’jr)l, wc(121 and

;ll, which will be used below in order to bound the Reynolds stress Icéqﬂ and to

establish the final estimate in (4.4) on level ¢ + 1. By a similar approach to (4.38), (4.39),
(4.40), we derive the following estimates: for ¢ € [0, 7] by using (4.16), (4.29) and (B.7),

”w;}j&-)l + w;:)‘IHCth‘p

< Z [curl curl(acg) Vig)llc, wi.p
EeA

<Y (lawles IVolcLr +llaglcz Ve lcw .
EeA

+lagler Weolcw2r + laglco Vellc,wa.»)
S M) 2/ P PRI A AL T+ 20 0)

) Mo(t)l/zri/p_lrlll/p_l/zﬁ_quﬂ, (4.46)

and
1
lwglillewrr < — D (la@lco lagler 1@ 1WelE, L2
EeA

+ llag ”éz"x e ll2r Vo lL2r 1@ NZ, 20
+ ||a(s)||20 @725 IV @) e, 20 1¥ @) ¢, 120)

My(1) -
I(; JZ_/P 2 1/P 1(@ e 4/\q+1)

Mo (1)r2/P2 ”1/1’ oA (4.47)

2/\

A
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4.1.5. Definition of the Reynolds stress 13q+1. Subtracting system (4.19) from (4.1) at
level g + 1, we obtain

div Rq+1 — qu+1
= —Awgy1 + 0 (W +w)) + div((ve + 20) ® wyr1 + war1 ® (Ve + 20))

diV(Rlin)+VP11n

+ div((wgy + wgly) ® waer + wiy ® (W, +wil)))

div(Reor)+V peor

+ d1V(w(p) (p) 1+ R({) + B,wgll

div(Rosc)+V Posc

+ div(vg+1®2Zg+1 — Vg+1®2¢ + Zg+1®Vg+1 — Zg®Vg+1 + Zg+1®Zg+1 — Z¢®Zy)

diV(Rcoml )+Vpcoml
+ diV(Rcom) - Vp[ (448)

We recall the inverse divergence operator R of [7, Section 5.6], which acts on vector
fields v with [3 vdx = 0as

(R = @A™ + 8 A7) — L8k + A7) div ATy
for k,l € {1,2,3}. Then KRv(x) is a symmetric trace-free matrix for each x € T3, and R

is a right inverse of the div operator, i.e. div(Rv) = v. By using R we define

Riin := —RAwg41 + RO, (w(p)l + w;i)l) + (v +2z)® Wy+1 + Wyt1 & (vg + 2¢),
Rcor = (wécll + wq+l) ® Wq+1 + w;{?l ® (wécll + w;tll),
Reom1 1= vg+1 ® Zg+1 — Vg+1 ® z¢ + Zg+1 ® Vg+1 — Z¢ ® Vg+1 + Zg+1 ® Zg+1

o
—Zy Q Zy.

We observe that if 13(] (0, x) and v, (0, x) are deterministic, the same is valid for the above
defined error terms R}, (0, x), Reor(0, x) and Reom; (0, x).

In order to define the remaining oscillation error from the third line in (4.48), we apply
(4.31) and (4.34) to obtain

div(w(p)l ® w(”)l + Re) + atwq+1
= Z d1V a(s)]P’#O(W(g) ® W(g))) +Vp+ 8;‘11)33.1

EeA
= 3" Pro(VakyPro(Wie) ® W) + Vp+ Y Pro(ak, div(We ® Wee)) +diwi ),
§€A geA

1
=Y Pro(VagyPro(Wie) ® Wie) + Vo+Vpi—— > Puo(dsale) (@ Vi)-
E€A geA
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Therefore,

1
Rose i= ) R(Vagy Pro(Wiey ® Wee)) — — > R(D:afy) @G Vp)h) =2 RE + RRQ.
EeA EeA

which is also deterministic at time 0. Finally, we define the Reynolds stress on level g + 1
by
Rq+1 = Rlin + Rcor + Rosc + Rcom + Rcoml-

(o}
We note that by construction, R;41(0, x) is deterministic.

4.1.6. Verification of the inductive estimate (4.4) for I%Q_H. To conclude the proof of
Proposition 4.2, we shall verify the third estimate in (4.4). To this end, we estimate each
term in the definition of R, separately.

2/p=2 1/p=1 _ b

In the following we choose p = ﬁ > 1 so that in particular r 7’ "I g+1-

For the linear error we apply (4.4) to obtain, for ¢ € [0, 7],

IRinlc,zr < RAWg41llc e + 1RO (W + ) Dlc, Lo
+ (v +20) ® Wgt1 + Wyt1 ® (e + zo)ll e, Lo

S lwgillewir + D 119; curl(age Vie) llc, e
EeA

+ M) 2k + 283 lwgr1llc

where by (B.7) and (4.29),

> 119 curl(agey Vi) llc, L
E€A
< 2 (la@lic,ct19:Vilcwrr + 13:a@ et 1Vellcw.»)
EeA

S Mo(0)' 2077/ Pr P32 1 Mo (0) 2012 P P L

In view of (4.46), (4.47) as well as (4.38), (4.41), we deduce that for ¢t € [0, T ],

|Runllcize S Mo/ P P71 20 gy 4 Mo *r 2 P2 P12 2
I I q

l/P—l/ZA—l

+ Mo(t)1/26_7ri/pr“1/p_3/2u + Mo(t)l/zﬁ—lzri/p—lr” e

+ Mo 2P PR 0  20E)
< M()(Z)l/z)tsa_lﬁ + MO(Z)A9a—2/7

q+1 q+1
+ Mo() 223 4+ Mo(0) 122G

< Mo(t)crSg+2/5.

Here, we have taken a sufficiently large and g sufficiently small.
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The corrector error is estimated using (4.38)—(4.41), for ¢ € [0, T.], as

”Rcor”Cle’

< wsy + w2 lwgsille, 2 + 1wl + wille, 2o 1w e 120

< Mo(t)(€™ 12r1/pr”1/(2p) 32 4 o 4M0(t)1/2rJl_/p lr”l/(Zp) 2)&,;“)
% E_zri/p_lr”l/(zl’)_l/z

< Mo(t)(3—14},i/p—1rl/p—2_|_£—6MO(I)1/2ri/p—2r”1/p—5/2)k 1

I a+1)

< Mo@) (T + Mo(0) 22T

< My(t)crq+2/5.

Here we use (4.18) to have MO(L)I/Z)L}I?&_I” < cRr84+2/10.

Finally, we proceed with the oscillation error R, and we focus on R((,fc) first. Since
W) is (T /(r1Aq+1))>-periodic, we deduce that

Poo(Wie)y @ Wig)) = Porja,11/2(Wie) ® Weg),

where P>, = Id — P, and P, denotes the Fourier multiplier operator which projects a
function onto its Fourier frequencies < r in absolute value. We also recall the following
results from [7, Lemma 7.5].

Lemma 4.4. Fix parameters 1 < < «, p € (1,2], and assume there exists N € N such
that N < kN72. Leta € CN(T?3) be such that there exists C, > 0 with

ID7allco < Cat’
forall0 < j < N.Assume that f € L?(T?3) with fT3 a(x)Ps f(x)dx = 0. Then

|1V @Pse /)], £ a”fﬂ”,

where the implicit constant depends only on p and N.
Using Lemma 4.4 with a = Va(zg) for Cy = Mo(t)0°, e =475,k = r1Aq+1 and
any N > 3, we have
2
IR Ncir < D | R(VaiePoryag i /2(Weey © W) | ¢, 10
EeA

”I/V(E) ”étLZp

0 9 ”VV(S) &® W(S)”CtLP

< Mo(1) < My(t)e™?

TJ_Aq+1 VJ_)\q+1
< Mo)Er P2 PN A )

< Mo()€™ 9'1a+1(ﬂlkg+1)
< Mo)AZT < Mo(1)crg42/10.
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For the second term R(()tsg we use Fubini’s theorem to integrate along the orthogonal direc-
tions of ¢ and ¥ () and use (B.7) to deduce

IRQNcLr = ™' Y- 1d:ayllco 9@z, 201V @ I, 120
EeA

< Mo P72 P < Mo)ALTT < Mo(t)erSg42/10.

In view of the standard mollification estimates we use (4.3) to find that for ¢ € [0, 1],

[Reomllc, 1 < 5(||Uq||ct1_x +lzgllc,c)Ulvgllc, 2 + lzglle, 22)
1/2-25
+ e (||Zq||ctl/2—28Loo vl VUvglle, 2 + llzgllc, 22)

<20+ AL Mo () + 027 + A Mo(t) < Mo(t)crSg42/5.

where 8 < 1/12 and we require that £'/228 (AZTI + Ag) < cr8442/10, ie.

AEETEPA2B0ME ) < 1

With the choice of £ in (4.17) and since we postulated that @ > 1885 and ab > 16, this
can indeed be achieved by possibly increasing a and consequently decreasing §. Finally,
we use (4.3) to obtain, for z € [0, TL],

[ Reomillc,zr < (lvg+1lle, 2 + 1zg+1llc, 12 + Izellc, .2)ze — Zg+1llc, L2

< Mo()' 2|z — zgs1lle, 12 S Mo (Ize = zglle, 2 + Nzg+1 — Zqlle, £2)
_ —2(1-68)
S M) + A, 57 < Mo(1)crdq+2/5,

where we use
26B—2(1-5)

Ay <1,

which holds because o > 188b. Summarizing the above estimates we obtain

o
[Rg+1llc, L1 < Mo(t)cRrdg+2,

which is the desired last bound in (4.4). The proof of Proposition 4.2 is complete.

5. Nonuniqueness in law II: the case of a linear multiplicative noise

5.1. Probabilistically weak solutions

In the case of an additive noise, the stopping times employed in convex integration can
be regarded as functions of the solution u. This does not follow a priori from their defini-
tion (4.2), but can be seen from (3.13) and (3.16). Accordingly, it was possible to prove
nonuniqueness of martingale solutions in the sense of Definition 3.1 directly. However,
the situation is rather different in the case of a linear multiplicative noise. Indeed, the stop-
ping times are functions of the driving noise B, which is not a function of u, and therefore
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it is necessary to work with the extended canonical space Q including trajectories of both
the solution u and the noise B.

To this end, we define the notion of probabilistically weak solution. In the first step,
we then establish joint nonuniqueness in law: we show that the joint law of (u, B) is
not unique. In the second step, we extend the finite-dimensional result of Cherny [9] to
a general SPDE setting (see Appendix C), proving that uniqueness in law implies joint
uniqueness in law. This permits us to deduce the desired nonuniqueness of martingale
solutions stated in Theorem 1.4.

To avoid confusion, we point out that the two notions of solution, i.e. martingale solu-
tion and probabilistically weak solution, are equivalent. The only reason why the proof of
nonuniqueness in law from Section 3 does not apply to the case of linear multiplicative
noise is the different definition of stopping times. Conversely, the proof of the present
section applies to the additive noise case as well. However, it is more complicated than
the direct proof in Section 3 which does not rely on the generalization of Cherny’s result
in Theorem C.1.

Definition 5.1. Let s > 0 and xo € L2, yo € U;. A probability measure P € Z2(Q)
is a probabilistically weak solution to the Navier—Stokes system (1.1) with initial value
(x0, yo) at time s provided

M1) P(x(t) = x0,y(t) =y0,0<t <s)=1andforanyn € N,
n
P{(x,y) e Q :/o ||G(x(r))||22(U;Lg) dr < oo} =1.

(M2) Under P, y is a cylindrical (8;) ¢>s-Wiener process on U starting from yg at time s
and for every e; € C®(T3 N L?, andall ¢ > s,

(x() = x(s).ex) + / (v (r) ® x(r) — Ax(r). ;) dr = / e Gx(r)dyy).

(M3) Forany g € N there exists a positive real function ¢ — C; 4 such that for all ¢ > s,
t
2 2
EP( swp X3+ JRCGI® dr) < Cog(lxol?d + 1),
relo,z s

For the application to the Navier—Stokes system, we will again require a definition of
probabilistically weak solutions defined up to a stopping time 7. To this end, we set

Q: i={w( A1) : 0 e Q).

Definition 5.2. Lets > 0 and xo € Lg, yo€Up.Lett >sbea (i_?,),zs—stopping time.
A probability measure P € () is a probabilistically weak solution to the Navier—
Stokes system (1.1) on [s, t] with initial value (xg, yo) at time s provided

M1) P(x(t) = x0,y(t) = 0,0 <t <s) =1andforanyn € N,

nAT
P {(x,y) €eQ: /O ||G(x(r))||iz(U;Lg) dr < oo} =1.
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(M2) Under P, (y(- A 1),1)y is a continuous square integrable (8 ¢)1>s-martingale start-
ing from yy at time s with quadratic variation process given by (t A 7 — s)||/ ||%] for
[ € U.Foreverye; € C®°(T3) N L2and? > s,

(x(t A T) — x(s).e) + / " v ) @ x () — Ax(r),er) dr
- / (i G(x(r)dyr).

(M3) Forany g € N there exists a positive real function ¢ +— C; 4 such that forall ¢ > s,

tAT
2
EP( sup [lx (1)l 3 +/ lx (") 177> dr) < Crq(Ixol 7% + 1)
rel0,tAt] K
Similarly to Theorem 3.1 we obtain the following existence and stability result. The
proof is presented in Appendix A.

Theorem 5.1. For every (s, Xo, yo) € [0,00) x L2 x Uy, there exists P € P(Q) which is
a probabilistically weak solution to the Navier—Stokes system (1.1) starting at time s from
the initial condition (xg, yo) in the sense of Definition 5.1. The set of all such solutions
with the same implicit constant C; 4 is denoted by W (s, X0, Y0, Ct,4)-

Let (Sp, Xn, Yn) = (8, X0, Vo) in [0, 00) X L(Zf x Uy asn — oo and let Py, € W (Sp, Xn,
Y, Cr,q). Then there exists a subsequence ny such that the sequence { Py, }xeN converges
weakly to some P € W (s, X0, Y0, Crq).

As in the case of additive noise, the nonuniqueness in law stated in Theorem 1.4 means
nonuniqueness of martingale solutions in the sense of Definition 3.1. Nonuniqueness of
probabilistically weak solutions corresponds to joint nonuniqueness in law.

Definition 5.3. We say that joint uniqueness in law holds for (1.1) if probabilistically
weak solutions starting from the same initial distribution are unique.

5.2. General construction for probabilistically weak solutions

The overall strategy is similar to Section 3.2: in the first step, we shall extend probabilisti-
cally weak solutions defined up to a (8B;),>o-stopping time 7 to the whole interval [0, 00).
We denote by B; the o-field associated to 7.

Proposition 5.2. Lett be a bounded (B;) t>0-Stopping time. Then for every o € Q there
exists Qo € P(Q) such that for w € {x(t) € L2},
Qv €Q: (x,y)(t.0) = (x,y)(t,w) for 0 < 1 < 1(w)) = 1, 5.1
00(A) = Re(w)x(c@)0).y(c(@)0)(A) forall A e 7@, (5.2)
where Re(w) x(z(0),0),y(x(@).0) € P(Q) is a probabilistically weak solution to the Navier—

Stokes system (1.1) starting at time t(w) from (x (t(w), ), y(t(w), w)). Furthermore, for
every B € 8B the mapping w — Q(B) is B;-measurable.
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Proof. The proof is identical to the proof of Proposition 3.2 applied to the extended path
space  instead of Q¢ and making use of Theorem 5.1 instead of Theorem 3.1. ]

We proceed with a result which is analogous to Proposition 3.4.

Proposition 5.3. Let xo € L2. Let P be a probabilistically weak solution to the Navier—
Stokes system (1.1) on [0, t] starting at time 0 from the initial condition (x¢,0). In addition
to the assumptions of Proposition 5.2, suppose that there exists a Borel set N C Q¢ such
that P(N) = 0 and for every w € N°€,

Qu(w' € Q:1(0) =1(w) = 1. (5.3)

Then the probability measure P @, R € P(Q) defined by
P& RO = [ 0,0 P0)

satisfies P ®; R = P on o{x(t A1),y A7) :t > 0} and is a probabilistically weak
solution to the Navier-Stokes system (1.1) on [0, 00) with initial condition (xg, 0).

Proof. The fact that P ®, R(A) = P(A) for every Borel set A € 6{(x(t A7), y(t AT)):
t > 0}, and property (M1), follow directly from the construction together with (5.3). In
order to show (M3), we write

t
EPM( ¥} + /0 ()1 dr)

rel0,t

IAT
sEf’@fR( sup x()]%4 + /O ||x(r)||%,ydr)

ref0,tAt]

t
+EP®fR( wp v+ [ ||X(”)||12L1Vd”)
AT

reftat,t] A
< C(Ixoll22 + 1) + C(EP |x(@)[7% + 1)
< C(Ixol2% + 1),

where we use (M3) for P and for R, (5.3) and the boundedness of the stopping time 7.

For (M2), we first recall that since P is a probabilistically weak solution on [0, 7],
the process (ysac.[)y is a continuous square integrable (B;);>o-martingale under P
with quadratic variation process given by (¢ A 7)||/ ||%J On the other hand, since for
every w € 2, the probability measure Ry(y),x(r(w),0),y(z(w),0) 1S @ probabilistically
weak solution starting at time 7(w) from the initial condition (x (7 (w), w), y(t(w), w)),
the process (y: — Yiaz(w), [)U is a continuous square integrable (ig’,),Zt(w)-martingale
under Ry (), x(z(w),0),y(z(w),w) With quadratic variation process given by (1 — t(w))||/[|3,
t > t(w). Then by the same arguments as in the proof of Proposition 3.4 we deduce that
under P ®; R, the process (y, !}y is a continuous square integrable (B;) r>o0-martingale
with quadratic variation process given by ¢||||%,, ¢ > 0, which implies that y is a cylin-
drical (i_?,),zo—Wiener process on U.
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Furthermore, under P, for every ¢; € C*°(T Hn Lf, andallt > 0,

M52 = (x(t A1) = x(0).e;) + /Mr(div(x(r) ® x(r)) — Ax(r).e;) dr
0

tAT
~ [ e Gaonay).
0
On the other hand, for w € €, under R(w),x(t(0),0),y(x(w),w) WE have, fort > 7(w),

X, Yol .
Mt,t/\r =

(x(t) — x(t(w)), e;) + /( )(diV(x(r) ® x(r)) — Ax(r),e;)dr

= /( )(e,-,G(x(r))dy(V))-

Therefore, we obtain

. t
P ®. R {M;f;,y” = / (i, G(x(r)dy(r)), e; e CX(T*N L2, t > o}
0

- [ ar@o. {Mjf;i’i(w) -/ e Gy ().

AT(w)

. tAT(w)
Mpo= [ e Gy} e cC=THn L2, zzo}.

Now, using (5.3) and (5.2) we obtain

AT(w)

/_ dP(a))Qa,{Mtxt’JA’sri(w) _ /’ (ei, G(x(r)dy(r)), e; € CX(T*N L2, t > 0}
Q ’ t

t

= /Sz AP () R (0).x(:(0).0).5((@).0) {Mffz’i’i(w) = /t {ei, G(x(r)dy(r)),

AT(w)
e € C¥(THNL2, t > 0}
=1,

and using (5.3) and (5.1) we deduce

. tAT(w)
/_ dP(0) Qs {Mtfo(’w) 0= / (ei, G(x(r)dy(r)), e; € CX(T*N L2, t > O}
Q ’ 0

X INT
= P{M:‘A’ija =/0 (ei. Gx(r)dy(r)), ei € C®(T3) N L3, 1 zO} =L

In view of the elementary inequality for probability measures, Q,(A N B) > 1 —
0, (A% — Q4 (B°), we finally deduce that P ®; R-a.s.,

_ t
M;f(’)y’l = /0 (ei, G(x(r)dy(r)) foralle; € C®(T* N L2, t>0,

and hence condition (M2) follows.
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5.3. Application to solutions obtained through Theorem 1.3

The general construction presented in Section 5.2 applies to a general infinite-dimensional
stochastic perturbation of the Navier—Stokes system. From now on, we restrict ourselves
to the setting of a linear multiplicative noise. In particular, the driving Wiener process is
real-valued and consequently U = U; = R.

Forn e N, L > 1 and § € (0,1/12) we define

7 (@) = inf{t > 0: [y(t,0)| > (L —1/m)"/*}
Ainf{t >0z [ly(t. o)l c1/2-2 > (L = 1/m)Y2y A L.

Then the sequence {7} },en is nondecreasing and we define

7z = lim 1. (5.4)
n—00

Without additional regularity of the process y, we have 7' (w) = 0. By Lemma 3.5 we find
that 77 is a (B)) ¢>0-stopping time and hence so is 77, as an increasing limit of stopping
times.

Now, we fix a real-valued Wiener process B defined on a probability space (2, ¥, P)
and we denote by (F;);>0 its normal filtration. On this stochastic basis, we apply The-
orem 1.3 and denote by u the corresponding solution to the Navier—Stokes system (1.8)
on [0, Ty ], where the stopping time 77, is defined in (6.3). We recall that u is adapted to
(%%)¢>0, which is an essential property employed to prove the martingale property in the
proof of Proposition 5.4. We denote by P the law of (u, B) and obtain the following result
by similar arguments to the proof of Proposition 3.7.

Proposition 5.4. The probability measure P is a probabilistically weak solution to the
Navier-Stokes system (1.8) on [0, t1] in the sense of Definition 5.2, where 1, was defined
in (5.4).

Proof. The proof is similar to the proof of Proposition 3.7 once we note that
y(t,(u,B)) = B(t) fort €[0,T.]P-as.
In particular, property (M2) in Definition 5.2 follows since (1, B) satisfies (1.8). |

Proposition 5.5. The probability measure P ®+, R is a probabilistically weak solution
to the Navier-Stokes system (1.8) on [0, 00) in the sense of Definition 5.1.

Proof. In light of Propositions 5.2 and 5.3, it only remains to establish (5.3), which fol-
lows by similar arguments to those in the proof of Proposition 3.8. ]

Finally, we have all in hand to conclude the proof of Theorem 1.4.

Proof of Theorem 1.4. Let T > 0 be arbitrary. Let k = 1/2 and K = 2 and apply Theorem
1.3 and Proposition 5.5. As in the proof of Theorem 1.2 it follows that the constructed
probability measure P ®, R satisfies

P®y Riep =2T) =P(TL 2 T) > 1/2,
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and consequently
EP®LR[|x(T)|2,] > 2¢7 |02,

The initial value xo = v(0) € L2 is given through the construction in Theorem 1.3. How-
ever, based on Galerkin approximation one can construct a probabilistically weak solution
P to (1.8) starting from the same initial value as P ®-, R. In addition, this solution sat-
isfies the usual energy inequality, that is,

EP[IIx(T)|2,] < eTllxoll,.

Therefore, the two probabilistically weak solutions are distinct and as a consequence
joint nonuniqueness in law, i.e. nonuniqueness of probabilistically weak solutions, holds
for the Navier—Stokes system (1.8). In view of Theorem C.1 we finally deduce the desired
nonuniqueness in law, i.e., nonuniqueness of martingale solutions. |

6. Proof of Theorem 1.3

As the first step, we transform (1.8) to a random PDE. To this end, we consider the
stochastic process
6(r) =eBr, >0,

and define v := 0~ 'u. Then by Itd’s formula we obtain

90+ 2v—Av+0divo®v) +67'VP =0,

6.1
divv = 0. ©-.1)

Our aim is to develop an induction argument as in Section 4 and apply it to (6.1). At
each step ¢ € Ny, a pair (vq, R;) is constructed solving the system

drvg + 3vg — Avg + 0.div(vy ® vg) + Vpg = div R, 62)
divuy = 0.

We choose suitable parameters ¢ € N and b € N sufficiently large and a parameter 8 €
(0, 1) sufficiently small and define

Ag=a". 8;=21,.
The necessary stopping times 77, are now defined in terms of the Wiener process B as
Ty :=inf{r > 0:|B(t)| = LY*Y Ainf{t > 0: 1Bllc1/2-25 = LY2yAL  (6.3)
for L > 1 and 6 € (0, 1/12). As a consequence, for ¢ € [0, 7],
BO)| = L3, ||B 1228 < L'V2, (6.4)
which implies

16111225 +16@)] + 167" ()] = 3LY2LH =2 (6.5)
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We also define
Moy(t) := e*F1 2L, (6.6)
For the induction, we will assume the following bounds for (vg, ﬁq) which are valid for

tel0,Tr]:

lvglle,z2 = mLMo(f)l/z(1 + ) 5:/2) < 2mp Mo(1)'/?,

1<r=q

lvgller < meMo()'/?2, (6.7)
IRgllc,11 < cRMo(1)8441.

Here ), <r<0 8,1 /2= 0, cgr > 0 is a sufficiently small universal constant given in (6.22),

(6.24) and we have used the fact that ), ., M2 < s a = lf;f;,, < 1/2and

aft >3 (6.8)

in the first inequality. The following result sets the starting point of our iteration procedure
and gives the key compatibility conditions between the parameters L, a, 8, b.

Lemma 6.1. Ler L > 1 and define

my e2Lt+L

W(Siﬂ()@), 0, 0)

vo(t, x) :=

Then the associated Reynolds stress is given by

° mL(ZL + 3/2)e2Lt+L 0 0 - COS(XS)
Ro(t,x) = ISEE 0 0 0
—cos(x3) O 0

The initial values v (0, x) and 130 (0, x) are deterministic. Moreover, all the estimates in
(6.7) on level g = 0 for (vo, Ro) as well as (6.8) are valid provided
L

18- 2m)¥2V/3 < 2. (271)¥2/3a?P? < R 4L <d*. (69)
LY4QL + 3/2)e2t

In particular, the minimal lower bound for L is given through

L
18- (21)3/24/3 < L (6.10)
LY4Q2L + 3/2)ezL'*
Proof. We observe that for ¢ € [0, T ],
mLeth+L LitL
loo®llze = == 7—= mpMo(D'?, vollcy - <4Lmpe*H ™t <mp Mo(1)' 215,

provided
4L < a*. (6.11)
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The associated Reynolds stress can be directly computed and admits the bound
1Ro()ll11 < 2-Q2m)*?mp QL + 3/2)*H < Mo(1)cr:

provided
2.2n)¥2V3LVAQL + 3/2)e LY < oLepa PP, (6.12)

Under conditions (6.11) and (6.12) all the estimates in (6.7) are valid on level ¢ = 0.
Combining (6.11), (6.12) with (6.8) we arrive at (6.9), (6.10) from the statement of the
lemma. ]

We note that the compatibility conditions (6.9), (6.10) are similar in spirit to the cor-
responding conditions in the additive noise case, i.e. (4.7), (4.8). In other words, (6.10)
gives the minimal admissible lower bound for L. Then based on the second condition in
(6.9) we obtain a minimal admissible lower bound for a. Whenever we need to increase
a or b in the course of the main iteration process below, we have to decrease the value of
B simultaneously so that the first condition in (6.9) is not violated.

Proposition 6.2 (Main iteration). Let L > 1 satisfying (6.10) be given and let (vq, I(éq)
be an (¥;)s>o0-adapted solution to (6.2) satisfying (6.7). Then there exists a choice of
parameters a, b, B such that (6.9) is fulfilled and there exist (¥;);>0-adapted processes
(Vg+1, §q+1) which solve (6.2), obey (6.7) at level ¢ + 1 and for t € [0, TL] we have

[og41(t) — vg (D)l 2 < mp Mo(0) 125}/, (6.13)

Furthermore, if vq(0) and ng (0) are deterministic, so are vg41(0) and I3q+1 (0).

The proof of Proposition 6.13 is presented in Section 6.1 below. Based on this result,
we are able to conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. Starting from (vo, I%o) given in Lemma 6.1 and using Proposition
6.2 we obtain a sequence (vq, Ry) satisfying (6.7) and (6.13). By interpolation, it follows
that for y € (0, %) and ¢ € [0, T.],

Z ||Uq+l(l) - Uq(l)”HV ) Z ||Uq+l(t) - Uq(l)||z;y||vq+l([) - Uq(t)”};l

q=>0 q>0
< mpMo(1)'/2.

Therefore, the sequence v, converges to a limit v € C([0, Tz]; HY) which is (F;)>0-
adapted. Furthermore, we know that v is an analytically weak solution to (6.1) with a
deterministic initial value, since due to (6.7) we have lim,_ oo ﬁq =0in C([0, TL]; LY).
According to (6.13) and (6.8), it follows that for ¢ € [0, T ],

0@ = w012 < Y g1 () = vgO)llL2 < me Mo()> " 8112

q=0 q=0

< dmp Mo(1)"/2.
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Now, we show that for a given T > 0 we can choose L = L(T) > 1 large enough so that
v fails to satisfy the corresponding energy inequality at time 7', namely,

1/2
[v0(T) 2 > e [v(0)| 2 (6.14)

on the set {77, > T'}. To this end, we observe that
1/2 1/2 123
L 02 < e (luo(0)]l 2 + v(0) — vo(0)[|L2) < e*F EmLMow)”z.

On the other hand, we obtain, on {77, > T},

1 1
0Tz = (oo = Io(T) = vo(T) ) = (7= = 5 | M)

3
> e2L!? EmLMo(O)l/2

provided

! U\ arr _ 3 2112
— - ) 6.15
(«/5 2)e > Se (6.15)

Hence (6.14) follows for a suitable choice of L satisfying additionally (6.15). Further-
more, for a given 7 > 0 we can increase L if necessary so that P(Tp, > T) > «.

To conclude the proof, we define u := Ov and observe that #(0) = v(0). In addition,
u is (¥;)s>0-adapted and solves the original Navier—Stokes system (1.5). Then in view of
(6.14) and the fact that |07| > e~L"* on the set {Ty, > T} due to (6.4), we obtain

L1/2|

[e(T)ll2 = [0 [v(T) 2 > €™ [[u(0)|lL2 on{TL = T}

Choosing L sufficiently large in dependence on K and 7' from the statement of the theo-
rem, the desired lower bound follows. Finally, setting t := 77 completes the proof. ]

6.1. The main iteration — proof of Proposition 6.2

The overall strategy of the proof is similar to Section 4.1 but modifications are required
since the approximate system on level g has a different form. As in Section 4.1, we have
to make sure that the construction is (¥;);>o-adapted at each step.

6.1.1. Choice of parameters. We choose a small parameter £ € (0, 1) as in Section 4.1.1:
for a sufficiently small & € (0, 1) to be chosen below, we let £ € (0, 1) be a small parameter
defined in (4.17) and satisfying (4.16). We note that the compatibility conditions (6.9) and
(6.10) and the last condition in (4.16) can all be fulfilled provided we make a large enough
and B small enough at the same time. In addition, we will require b > 16 and o > 88b.

In order to verify the inductive estimates (6.7) we need to absorb various expressions
including m§ Mo (1)1 for all ¢ € [0, T]. To this end, we need to change the condition
(4.18) in Section 4.1.1 to

Cmie2A4 < crdgia/5. miMo(L)V2A00T 7 < crdysa/10. mp <71 (6.16)
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In other words, we need

9Le?L!* gb(=5 +35+268) < 1,

9L 2L 2LPHL b (13a—42bp) |

V3 LVA2LY o 24512
Choosing b = (7L?) v (17 - 14?), in view of o > 88b, (6.16) can be achieved by choosing
a large enough and o = 1472, This choice also satisfies ab > 16 required above, and the

condition o > 88b can be achieved by choosing 8 small. It is also compatible with all the
other requirements needed below.

6.1.2. Mollification. As the next step, we define space-time mollifications of v, and 134
and a time mollification of 6 as follows:

ve = (vg *x ¢0) *¢ 0o, Re = (Rg *x ¢0) *¢ o, 0p = e® %, .

By choosing time mollifiers that are compactly supported in R*, the mollification pre-
serves (F;):>o-adaptedness. If the initial data v, (0), R, (0) are deterministic, so are v, (0)

and 135 (0), 9, 13g (0). Then using (6.2) we find that (vg, 134) satisfies
drvg + 3v¢ — Avg + b div(ve ® ve) + Vg = div(Rg + Reom),
divvy, =0,
where
Reom = 0 (v ® vg) — (04 ® vg) *x by *¢ 0y
Pe = (Pg *x D0) *¢ pr — 2(Olvel® — (Olvg|* *x ) *: ¢¢).

With this setting, the counterparts of the estimates (4.20), (4.21) and (4.22) are
obtained the same way only replacing Mo(¢)'/2 by my Mo(t)'/?. In particular,

lvg — velle, 2 < mpMo(1)'/26)/2. (6.17)

lvelle, 22 < mLMO(t)l/z(l + Z 5,1/2) < 2mp Mo(t)"/?, (6.18)
1<r=q

loelepy, <meMo(®)' e VA%, (6.19)

6.1.3. Construction of vg41. We recall that the intermittent jets W(g) and the correspond-
ing estimates are summarized in Appendix B. The parameters A, r|, 71, u are chosen as
in (4.23) and we define y and p to be the same functions as in Section 4.1.3 with M ()
given by (6.6). Now, we define the modified amplitude functions

d— R[(U),[,X) (2]_[)—3/4
plw,t,x)
= 0,20 411 (0,1, %), (6.20)

- - —-1/2
Cl(g):)(a),t,x) = aé,q—f'l(w’tv-x) = 9[ / p(wvtax)l/zyé (I
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where y¢ is introduced in Lemma B.1 and ag 44 is as in Section 4.1.3 with My () given
in (6.6). Since p, 6¢ and Rl are (¥;)>o0-adapted, we know a@) is (F7)¢>0-adapted. Note

that since 6;(0) and d,6,(0) are deterministic, if R( (0) and 0, Rg (0) are deterministic, so
are g (0) and 9;a¢(0). By (B.5) we have

(27)3/? Za@)][ Wiey ® Wiy dx = 6] (p1d — Ry), (6.21)
EeA

and for ¢ € [0, T ],

_ —1/2 1/2
la@lc,z2 < 16 2le, ol el cocs, o aan
1/4 1/2
4c113/2(87r3 + 1)1/2Mm Mo(1)V28Y2 < g mLMo()'/28, (6.22)
= TRIA[Ers + iz e e = 20| -

where we choose cg as a small universal constant to absorb M, the universal constant
from Lemma B.1, and we apply the bound |6, 1 < mi Furthermore, since p is bounded
from below by 4crdy+1Mo(t), we obtain, for ¢ € [0, Tz ],
laglcp, < €N g fmp Mo ()28}, (6.23)

for N > 0, where we have used (6.5) and 4L < £~1 and the derivative of 9[ 1/2 gives an
extra E_lmi and my, < €71,

As the next step, we define wy 41 much as in Section 4.1.3. In particular, first we define
the principal part w;’jr) 1 of wy 1 as (4.30) with ag) replaced by ag) given in (6.20). Then
it follows from (6.21) that

Bewgy ® willi + Re = 00 ) ag ProWeey ® Wigy) + pld.
EeA

The incompressible corrector wéc_,)_l is therefore defined as in (4.32) again with a,

replaced by ag). The temporal corrector w[(;}rl is now defined as in (4.33) with a ) given
in (4.26) for My(t) from (6.6). Note that for the temporal corrector we use the original
amplitude functions ag) from Section 4.1.3 (only using a different function My (z)), since
we need the extra 6, to obtain a suitable cancelation. The total velocity increment w1

and the new velocity vy are then given by

. () (©) @) .
Wg+1 = wqﬁ_l T Wyl T Weig, Vg1 1= Vg A+ Wgt.
o
Both are (¥;);>0-adapted, divergence-free and wg41 is mean zero. If v, (0), R¢(0) are
deterministic, so is vg41(0).

6.1.4. Verification of the inductive estimates for vq4y1. For the counterparts of the esti-
mates (4.37)—(4.47), the main difference now is the extra mj appearing in the bounds
(6.22) and (6.23) for ag). Therefore, many of the estimates remain valid with M (t)l/ 2
replaced by mz Mo (t)'/2, only the bounds for the temporal corrector w! 7 +1 do not change.
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More precisely, for ¢t € [0, 1] we obtain

”w(l-)i—)l”C,Lz = l'71L1V10(l)1/251£r21, (6.24)
lw$llc,Le < mpMo(0)128)2 0723/ P71 12712, (6.25)
lwi e e < meMo(e)/?8)/7 6712 i/l’ AR (6.26)
lwyllc e S Mo(®)8q1€*r P~ /P20 04,. (6.27)

Combining (6.24), (6.26) and (6.27) then leads to

lwgsillc, 2 < meMo(6)/28)12,(1/2 + CAZA T + CMo ()28, 20355 717)

< 3mLMo(1)'/?6)72,. (6.28)
where we use (6.16) to bound CMO(L)I/ZS;fl)LS“ 17 <1/8.

As a consequence of (6.28) and (6.18), the first bound in (6.7) on level g + 1 readily
follows. In addition, (6.28) together with (6.17) implies (6.13) from the statement of the
proposition. In order to verify the second bound in (6.7), we observe that similarly to
(4.43)—(4.45), for t € [0, TL],

lwgZille S meMo@)!2€7r 222, (6.29)
lwiylley S mMo()' /e ‘3/2A§+1, (6.30)
lwghilley, S Mo()eorr rp 244, (6.31)

Combining (6.29)—(6.31) with (6.19) and taking (6.16) into account, the second bound in
(6.7) follows.

In order to control the Reynolds stress below, we observe that similarly to (4.46),
(4.47), the following bounds hold true for ¢t € [0, 7] and p € (1, 00):

lwy + widy le,wie < moMo@) 2P P22, 4 (6.32)
2 2 1 1 —2/7
lwidy e, wir < Moy P2 P A 207 (6.33)

6.1.5. Definition of the Reynolds stress I%q.’-]. As before, we know

div Rg+1 = Vpg+1

(p) (c)

= %wq+1 — Awgy1 + 0 (w g+1 T W +1) + 0¢ div(ve @ wgt1 + Wa+1 ® V)

div(Riin)+V plin

—i—nglv((qu +wq+1)®wq+1 +w(p) @

()
+1 ® (wqcif-l + wq—H))

div(Reor+V peor)

+ div(94gw(p)1 ® w(p)1 + Rg) + 8twq+l

div(Rose) +V pose
+ (6 = 00) div(vg+1 ® vg41) + div(Reom) = Vpr.

div(Reom1)+V Peom1
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Therefore, applying the inverse divergence operator R we define

Ripy = Rwg 41 — RAwg 41 + RO (WP + wi))
+ 0ve & w1 + Owg 1 @ v,

Reor = eﬁ(w;?.l + wq+]) ® Wg+1 + eéw;ﬁ-)l ® (w;c—?—l + wtgtj-l)

Reomt = (B¢ — 0)(Vg+1 ® vg41)-

And similarly to Section 4.1.5 we have

1
Roe := Y R(ValyPro(We) ® W) — — Y R(3:aly) (@G V)
ge€A §eA

with ag) given in (4.26) for My(¢) from (6.6). Hence the bounds for R are the same as
in Section 4.1.6. The Reynolds stress on level g + 1 is then defined as

Rq—H ‘= Rjin + Rosc + Reor + Reom + Reomi -

o
6.1.6. Verification of the inductive estimate for Ryy1. In the following we estimate the

32

g > L

o
remaining terms in R, separately. We choose p =
For the linear error, for ¢ € [0, T ] have

”Rlinear”C,Lp
< Nlwgstlleywrr + 1R WP +wiDllc, Lo
o
+ m,2_||v4 ® Wy41 + Wyt1 ® velle, e

S lwgtille,wir + D 10; curl@eey Viey e, e + Agmi Mo()"? |l wgt1llc,Lo-
EeA

Hence using (6.32), (6.33), (6.23), (B.7) and (6.25)—(6.27) we have, for ¢ € [0, T ],

”Rlinear”C,LP
<mLMO([)1/2E -2 2/P 1 ”1/17 l/qu-i—l‘i‘MO(t)g —4 2/p -2 lll/p 11;1/17
+ mp My (t)l/ze -7 2/p ||l/p 3/2M+mLM (t)1/2€—12 2/p—1 |l/p 1/2)Lqurl

+mi Mo(0)¢~2rY P‘lr"” P12y

< mLMO([)l/ZASa—IH + MO([)AQa—2/7 + mLMo(l)l/zllsa_lﬁ

g+1 g+1 g+1
+mp Mo()2A24 T i Mo(0)A %Y

< Mo(t)crdy+2/5,

where we use the fact that a is sufficiently large and f is suffciently small, in particular,
(6.16) holds.
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The corrector error is estimated by (6.25)—(6.27) for ¢ € [0, T1] as follows:

”Rcor”CtL”

210© L © 20, @ (»)
< millwgiy + woiille, 2o lwgrtllc, L2 +mlwgyy +wyilc, r2rllwgd e, L2r

< mi Mo() (€27 /P P72 =y () 2P G2

% Z_er_/p_l rlll/(Zp)—l/2

S mf Mo(t) (M4 P P72 4 M (02 PR PP

< mi Mo()AZS7 + Mo() 223577 < Mo(t)erSgia/5.

where we again use (6.16) to have milsial_zﬁ + szo(L)l/z)L;ial_lﬁ < cRrOg+2/5.

In view of a standard mollification estimate we deduce that, for ¢ € [0, 1],
10c(t) = 6(1)] < €22 LI2LY < 122 d
[Reomllc, 1 < miﬁllvqllcl{x lvgllc, 2 + €2 mf Mo()A%
S22 md Mo(H)Ay < Mo(t)crSg42/5.
where § € (0, 1/12) and we choose a large enough to have
_ CR . —
COV2 s < ?Aqiﬁ. (6.34)

With the choice of £ and since we postulated that @ > 885 and ab > 16, this can indeed
be achieved by possibly increasing @ and consequently decreasing S.
The second commutator error can be estimated for ¢ € [0, T.] as follows:

[ Reomtllc, 21 < €272 m} Mo(t) < Mo(t)crSqg+2/5.

where we use (6.34) to have 61/2_25;712 < %R5q+2.
Thus, collecting the above estimates we obtain the desired third bound in (6.7), and
the proof of Proposition 6.2 is complete.

7. Nonuniqueness in law III: the case of a nonlinear noise

The treatment of a nonlinear noise requires more input coming from the driving Brownian
motion, namely, the corresponding iterated integral of B against B as known in the theory
of rough paths. This is reflected through an additional variable Y included in the path
space. Furthermore, we include a variable Z which is used to control the first step of
the iteration scheme defined via (8.1), (8.2) below, namely to control zg. This is just an
auxiliary point, which by Corollary 7.1 does not restrict the final nonuniqueness in law
result.
In what follows, we therefore use the following notations. Let
Q= C([0,00); H3 x R™ x R™™x H=3) N L2 _([0,00); L2 x R™ x R™™Mx[2)

loc
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and let ﬁ(ﬁ) denote the set of all probability measures on (§~2, ﬁ) with 8 being the Borel
o-algebra coming from the natural topology on Q. Let (x,y,Y,Z) : Q — H ™3 x R™ x
R™*™ x H=3 denote the canonical process on 2 given by

(xt (@), yi (), Y (@), Zt(w)) = o(2).

For t > 0 we define the o-algebra B = o{(x(s), y(s),Y(s), Z(s)) : s > t}. Finally, we
define the canonical filtration B := o {(x(s), y(s), Y(s), Z(s)) : s <1}, > 0, as well as
its right continuous version B; := () P 58?, t > 0. In this section we choose U = R™.

7.1. Generalized probabilistically weak solutions

Accordingly, we need to generalize our notion of solution, taking the additional vari-

ables Y and Z into account. We fix a deterministic function vo € C/!, which will be

chosen in Lemma 8.1 below. In order to define the stopping time in the same path space,
the process Z solves the SPDE

dZ; — AZ; = G(vo + Z;)dB;, divZ =0. (7.1)
By [36, Theorem 4.2.5], the solution to (7.1) belongs to C([0, c0); L2) a.s.

Definition 7.1. Lets > 0 and x¢ € L(z,, vo € R™ Yo € R™™ Z, € L(z,. A probability
measure P € H(Q) is a generalized probabilistically weak solution to the Navier—Stokes
system (1.1) with initial value (xo, yo, Yo, Z¢) at time s provided

M1) P(x(t) =x0,y() =0, Y() =Yy, Z(t) = Zp,0<t <s)=1landforanyn € N,
n
P {(x,y,Y,Z) € Q :/ ||G(x(r))||iz(Rm,L2)dr <00, Z € CLCZ,} = 1.
0 s ~HO

(M2) Under P, yisa (ﬁz) ¢>s-Brownian motion in R™ starting from y, at time s and for
every ¢; € C®°(T3) N L2 andallz > s,

t t
(x () —x(s). 1) + / (v ()@ (r) — Ax (). ) dr = / (er, Gx(r)dy(r)).
t
Y)Y (s) = / Y ®dy(r),
: t t
(Z(0)~Z(s). er) / (AZ(r).er) dr = / (1. G(vo+Z(r)dy().
(M3) Forany g € N there exists a positive real function ¢ = C; 4 such that for all ¢ > s,

t
EP( sup [lx(r)[174 + / ()12 dr) < Crg(lxoll74 + 1),
N

rel0,¢]

t
E"( s 120134 + [ vz, dr) < Cra(lZolP4 + 1),
s

rel0,t



M. Hofmanova, R. Zhu, X. Zhu 220

By the assumption (1.4) on G, pathwise uniqueness holds for (7.1). Hence, since vg
is deterministic, the law of Z is uniquely determined by the Brownian motion B accord-
ing to the Yamada—Watanabe Theorem. Under (1.4), we know that the constant C; 4 is
independent of vy.

Define y,; := y(t) —y(r) and X, ; :==Y(t) = Y(r) — y(r) ® (¥(¢) — y(r)). Note
that under a generalized probabilistically weak solution P, the pair (y, X) can be viewed
as a rough path, concretely, it is the It6 lift of an m-dimensional Brownian motion. In
particular, Chen’s relation holds true:

X0 =X, = X0 —Xgr =90 ®yos, r=<0=t. (7.2)

For the application to the Navier—Stokes system, we will again require a definition of
generalized probabilistically weak solutions defined up to a stopping time 7. To this end,

we set
Q. = {o(-A1t(0): v e Q).

Definition 7.2. Let s > 0 and xg € L2, yo € R™, Yo € R™™, Zy € L2. Lett > s
be a (ﬁt),zs—stopping time. A probability measure P € ,@(Qt) is a generalized prob-
abilistically weak solution to the Navier—Stokes system (1.1) on [s, t] with initial value
(x0, Yo, Yo, Zp) at time s provided

M1) P(x(t) =x0,y() =0, Y() =Yy, Z(t) = Zp,0<t <s)=1landforanyn € N,
- AT 5 >
P {(x,y,Y,Z) e Q: /0 ||G(x(r))||L2(Rm;Lg)dr <00, Z € CLU} = 1.
(M2) Under P,y = (y;)7L, and each component y;(- A 7),i = 1,...,m, is a continuous
square integrable (B;);>s-martingale starting from yf) at time s with cross variation

process between y; and y; given by (f A T — 5)§;;. For every e; € C®°(T3) N L2
and all > s,

(Xt A7) — (). e5) + /W(div(x(r) ® x(r) — Ax(r). ;) dr
s -/ " e GOy (),
V(e AT) - V() = /A Y() ® dy(r),
7o -z~ [ azeerdr = [ e 6o + 200,

(M3) For any g € N there exists a positive real function t = C; 4 such that for all # > s,

IAT
EP( wp [xOI3+ / () dr)sct,q(uxoni%l),
N

ref0,tnt

IAT
EP( sup | Z(r)]7% + / ||VZ<r)||izdr)sct,q(uzoni%ﬂ).
s

rel0,tAt]
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It is easy to see the following relation between generalized probabilistically weak
solutions and probabilistically weak solutions.

Corollary 7.1. Let P be a generalized probabilistically weak solution starting from
(x0, 0,0, 0) at time s. Then the canonical process Y and Z under P is a measurable
function of y. In other words, P is fully determined by the joint probability law of x, y
and can be identified with a probability measure on the reduced path space Q. Hence P
is a probabilistically weak solution with initial value (xg, yo) at time s.

Conversely, let (xg, yo) € L2 x R™ be given, let P € P(Q) be a probabilistically
weak solution and define P-a.s. fort > s,

Y() = / ¥(r) ® dy(r),

and set Z to be the unique probabilistically strong solution to (7.1) with B replaced
by y and Z(s) = 0. Let Q be the joint law of (x,y,Y, Z) under P. Then Q € ,@(ﬁ)
gives rise to a generalized probabilistically weak solution starting from the initial value
(x0, y0,0,0) at time s.

Similarly to Theorem 3.1, the following existence and stability result holds. We prove
it in Appendix A.

Theorem 7.2. For every (s, xo, yo, Yo, Zo) € [0,00) x L2 x R™ x R™*Mx[2, there
exists P € & (52) which is a generalized probabilistically weak solution to the Navier—
Stokes system (1.1) starting at time s from the initial condition (xg, yo, Yo, Zo) in the
sense of Definition 7.1. The set of all such solutions with the same implicit constant C; 4
is denoted by 9 (s, xo, yo, Yo, Zo, Ct.q).

Let

(Snvxih YmYn’ Zn) - (S, X0, Yo, YO, Z()) in [0, OO) X Lg, X ]Rm X RmmeLg

asn — oo and let
Pn S gW(Sn, Xn, ynsY}’h Zns Ct,q)~

Then there exists a subsequence ny such that the sequence { Py, }xeNn converges weakly
to some P € GW (s,xo0. Y0, Yo, Zo,Cr ).

By Corollary 7.1 nonuniqueness of generalized probabilistically weak solutions from
(x0, y0, 0, 0) implies joint nonuniqueness in law from (xg, y¢) in the sense of Defini-
tion 5.3.

7.2. General construction for generalized probabilistically weak solutions

The overall strategy is similar to Section 3.2. In the first step, we shall extend generalized
probabilistically weak solutions defined up to a (8B;);>0-stopping time 7 to the whole
interval [0, 00). We denote by B, the o-field associated to t.
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Proposition 7.3. Let t be a bounded (i);,) t>0-Stopping time. Then for every o € Q there
exists Qp € P(Q) such that for w € {x(x) € L2, Z(z) € L2},

Qa,(a)’ eQ: x, .Y, 2)t,0") = (x, 9. Y, Z)(t,w) for 0 < < r(a))) =1, (13)
00 (A) = Re(w) x(1(0).0) y (2 (@) .0). Y (2(@) ). Z((@).0)(A)  forall A€ B, (7.4

where Ri(w),x(t(0),0),y(t(@),0),Y ((@),0),Z((@).0) € 9’(52) is a generalized probabilisti-
cally weak solution to the Navier—Stokes system (1.1) starting at time t(w) from the initial

condition
(x(t(@), w), y(1(®), 0), Y((0), ®), Z(t(0), ®)).
Furthermore, for every B € B the mapping o — Q4 (B) is ﬁ,-measumble.

Proof. The proof is identical to the proof of Proposition 3.2 applied to the extended path
space 2 instead of 2y and making use of Theorem 7.2 instead of Theorem 3.1. ]

We proceed with an analogue to Proposition 5.3.

Proposition 7.4. Let xo € L2. Let P be a generalized probabilistically weak solution
to the Navier-Stokes system (1.1) on [0, t] starting at time O from the initial condition
(x0,0,0,0). In addition to the assumptions of Proposition 7.3, suppose that there exists a
Borel set N C Q. such that P(N) = 0 and for every v € N€,

00(@ € Q:1(0) = t(w)) = 1. (7.5)
Then the probability measure P @, R € 33(52) defined by
P& RO= [ 0u() Pdo)

satisfies P ® R = P onthe o-algebraoc(x(t A7),y A1), Yt AT),Z(tAT):t>0)
and is a generalized probabilistically weak solution to the Navier—Stokes system (1.1) on
[0, 00) with initial condition (xy, 0,0, 0).

Proof. Most of the proof follows exactly the same argument as in Proposition 5.3. For
(M2), we consider the z part and similar to the proof of Proposition 5.3 we obtain

P ®: R {\Y(t) -Y(0) = / y(r)®dy(r), t = 0}
0

- /ﬁdP(w)Qw {Y(r)—Y(mr(w))= / V() ® dy(r),

tAT(w)

tAT(w)
Y@ A t(w)) —Y(0) :/ y(r)®dy(r), t 20} =1,
0
and

P ®;: R {(Z(t) — Z(0),e;) — /t(Z(r), Ae;)dr
0

= /t(ei,G(vo + Z(r)dy(r)), ei € C®(T3) N Ltz,, t > 0} =1.
0

Hence condition (M2) follows. ]
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7.3. Application to solutions obtained through Theorem 1.5

For @ € (0, 1) we denote

Xt
Xle,[0,77 = sup :
@l0T] o<r<t<T |r _t|a’

andforn € N, L > 1 and § € (0, 1/12) we define
7 (w) =inf{t > 0: [|y(®)||o1/2-2s > (Inln L — 1/n)} Alnln L
t

AINf{T > 0 : ||X]|1—48,[0,r] > (Inln L — 1/n)}
Ainf{t >0: | Z(t)|lz2 > L —1/n}.

Then the sequence {7} },en is nondecreasing and we define

7 := lim t7. (7.6)

n—>00

Without additional regularity of the process y, we have 77 (w) = 0. By Lemma 3.5 we
deduce that 7/ isa (ﬁ,) ¢>0-stopping time and consequently so is 77, as an increasing limit
of stopping times.

On a stochastic basis (2, #, P), we apply Theorem 1.5 and denote by u and zq the
corresponding solutions to the Navier—Stokes system (1.9) and to the linear equation (8.1)
with ¢ = 0 on [0, 7], where the stopping time 77, is defined in (8.3) below. We recall that
u is adapted to (F;);>0. The process zg is the unique probabilistically strong solution,
hence is also adapted to (F7);>0. We denote by P the law of (u, B, [, B dB, zo) and
obtain the following result by similar arguments to those in the proof of Proposition 3.7.

Proposition 7.5. The probability measure P is a generalized probabilistically weak solu-
tion to the Navier-Stokes system (1.9) with initial condition (4(0),0,0,0) on [0, 7] in the
sense of Definition 7.2, where t1, was defined in (7.6).

Proof. The proof is similar to the proof of Proposition 3.7 once we note that from the
definition of the canonical process we have

u,B, | BdB, = B(t), Y|t,|(u,B, | BdB, = B, dB,,
(e (wr fmana)) = 50 w(n (s [ mana)) - |
Z(t, (u,B,/BdB,ZO)) = zo(1),

t
X,z (u, B,/BdB,zo) = / B, ®dB, =:Bs; fors,t €[0,T.] P-as.,
N
and by Chen’s relation (7.2) and the definition of Z, the functions

te> Bligiraas, = [IBlli-as 00, ¢+ lzo(0)llz2

are continuous P-a.s. In particular, property (M2) in Definition 7.2 follows since
(u, B, [ B dB) satisfies (1.9) and (zo, B) satisfies (8.1) with ¢ = 0. |
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Proposition 7.6. The probability measure P ®-, R is a generalized probabilistically
weak solution to the Navier-Stokes system (1.9) on [0, 00) in the sense of Definition 7.1.

Proof. In light of Propositions 7.3 and 7.4, it only remains to establish (7.5). By Theo-
rem 1.5 and Proposition 7.5 we know that

Plw:y(At)eCY?R™ Z(-A1y) € CLE) =1,

and by X /a7, = ftML Vs.r ® dy, fort > s, we have

s

P(w: | X|l1225,[0,c,] < 00) = 1.

In other words, there exists a P-measurable set &' C € such that P(N) = 0 and for
w € N€,

YeATL(@) € CPIR™ X (@) 122807, @) < 00, Z(- A TL(w)) € CL.

Moreover, by Chen’s relation, for all w € N¢ N {x(zz) € L2, Z(x) € L2} we have

Ou (@ : IX[l1-26,50,r) < 00. y € CTI/Z_SR'", ZeCrL% T >0)
= Qu(0": IXll1—28,/0.11 @)] < 00 IXl1-26,[c @)aT,T] < 00,
yeCPR" Z e Cr L2, T > 0)

=8p(0 1 y(- At(w) € CY2IR™, Z(- At (@) € CL2, |IX|1-25,[0,0, (@)] < O°)

-
X R (@),(x,0,Y,2)(z (@),0) (@ 1y — Y AT (0)) € C;/z R™,

Z—Z(A1r(w)) € Cr L2, |IX|l1-28, (e (@)aT,7] < 00, T > 0).

Here the first factor on the right hand side equals 1 for all w € N€. Since
Rz, (0),(x,9,Y,2)(z; (0),w) 15 @ generalized probabilistically weak solution starting at the
deterministic time 7z (w) from the deterministic initial condition (x, y,Y, Z) (71 (w), w),
the process w’ = y — y(- A 1 (w)) is a (ﬁ,),zo—Wiener process starting from 7z (w) and
Xsr = f; Vs,r @ dyy fort > s > 17, (w) under the measure Ry, (w),(x,y,Y,Z)(z; (@),0)- ThUS
we deduce that also the second factor equals 1. To summarize, we have proved that for all
we N N{x(t) € L2, Z(xL) € L2},

Qu(@ 1y e CH* P R™ Z € CrL2, |X|1—2s,10.0] <00, T > 0) = 1.

Therefore for all w € N N {x(zz) € L2 and Z(z1) € L2}, Iyl c1/2-25, X [l1-45,[0,77
are continuous with respect to T and Z € CL2. The proof is cor%pleted by the same
argument as for Proposition 3.8. ]

Now, we are ready to conclude the proof of Theorem 1.6.

Proof of Theorem 1.6. By (1.11) with K = 2 and an argument as in the proof of Theo-
rem 1.2, we deduce that the generalized probabilistically weak solution P ®, R does
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not satisfy the energy inequality. The solutions obtained in Theorem 7.2 satisfy the usual
energy inequality by Galerkin approximation. Hence the two generalized probabilistically
weak solutions starting from the initial condition (1(0), 0, 0, 0) are distinct, which by
Corollary 7.1 implies joint nonuniqueness in law, i.e. nonuniqueness of probabilistically
weak solutions. In view of Theorem C.1 we finally deduce the desired nonuniqueness in
law, i.e. nonuniqueness of martingale solutions. ]

8. Proof of Theorem 1.5

In this section, we fix an m-dimensional Brownian motion B on a probability space
(2, ¥, P) with its normal filtration (¥;);>0 and assume the coefficient G satisfies (1.4).
The principal difference between this setting and the setting of additive or linear mul-
tiplicative noise is that no transformation of the SPDE (1.9) into a PDE with random
coefficients is available. Therefore we introduce a convex integration scheme which at
each step additionally solves a parametrized stochastic Stokes equation with a nonlinear
1t6 noise. To be more precise, let v_; = o be given in Lemma 8.1 below. At each step
g € Ny, we construct a triple (z4, vq4, Ry) solving

dzqg — Azgdt = G(vg—1 + z4)dB,

divzg =0, (8.1
z4(0) =0,
0:vg — Avg +div((vg + z4) ® (vg + z4)) + Vpg = div Icéq, 82)
divy, = 0.

In order to obtain the desired iterative estimates (4.4) from the random PDE (8.2), it
is necessary to have pathwise control of each z,. This is not possible using stochastic
Itd integration theory. Instead, we make use of rough path theory which we present in
Appendix D. As explained in Section D.1, if v, is adapted, then the unique rough path
solution z, of (8.1) coincides P-a.s. with the unique stochastic solution coming from
stochastic It6 integral theory. In particular, z, is an (¥;);>o-adapted process. This in turn
permits one to conclude that the next iteration v, is (¥;);>0-adapted as well.

As before, we consider an increasing sequence {A,},en C N which diverges to oo,
and a sequence {§;}gen C (0, 1) which is decreasing to 0. Fora,b € N and 8 € (0,1) to
be chosen below we define

Ag=a", 8, =2,

It will be seen that B will be chosen sufficiently small and a as well as b will be chosen
sufficiently large. Set By ; := f; (B, — Bs) ® dB; and define, for L > 1 and 0 <6 < 1/12,

Ty =T} ATZ,

T} :=inf{t > 0:||B| ,1/2-2s > Inln L}

13
Ainf{t > 0: ||B|l1-45,0,) = InIn L} Alnln L,
T? := inf{t > 0: |zo(t)||z2 > L}.

(8.3)
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By the definition of Brownian motion and the properties of the solution to the heat equa-
tion (8.1) for g = 0, the stopping time 77, is P-a.s. strictly positive, and T, 1 oo as L — 0o
P-a.s. Moreover, by Theorem D.9, for ¢ € [0, 7] with L large enough and ¢ € N,

lzgllc,cr < LY*(1 + ||Uq—1||c[l.x), ||Zq||ct1/2728Loo <L'Y2(1 + ||Uq—l||ctl.x)’
lzollc,.2 < L. lzolic,cr < LY*(1 + Ilvollcy ), (8.4)
200l 1228 oo < LY2(1+ [0l ).

Let My(t) = L*e*t!. We postulate that the iterative bounds (4.4) hold for (v, Icéq).

Lemma 8.1. For L > 1 define
2 2Lt

(1) = 5 6in(33).0.0)
and let zo solve (8.1) with v_1 = vy. Then the associated Reynolds stress is given by
. QL + 1)L2e2Lt 0 0 —cos(xs) . .
Ro(t,x)=(2—3/2 0 0 0 +U0®ZO+ZO®U0
) —cos(x3) O 0
+ Zo é) Z0-

Moreover, all the estimates in (4.4) on level ¢ = 0 for (v, I%o) as well as (4.5) are valid
provided (4.7) and (8.4) hold. In particular, we require that (4.8) holds. Furthermore, the
initial values vo(0, x) and Ro(0, x) are deterministic.

Proof. The proof follows from the same argument as in Lemma 4.1. ]

As part of the following result we also control the difference z;,41 — z; on the time
interval [0,¢], ¢ € [0, T1 ], in a pathwise manner in the space of controlled rough paths. We
refer the reader to Appendix D and in particular to Definition D.2 where the corresponding
norm |« || 3 24, @ € (;, ;) y € R, is defined. We denote by || - [| 5 54 vt the norm in
Dz"‘ ([0 1]). In general, | - || 5 54, i the norm for the pair process (z, z "), where z’ is
the Gubmelh derivative of the controlled rough path z. In the following we use it for z,
with Zq = G(z4 + v4—1) and we will write ||Zq||B,2a,y,z instead of ||z, zq ||B,2a’y’t in this
section.

Proposition 8.2 (Main iteration). Let L > 1 satisfying (4.8) be given and let (z4, vy, I(éq)
be an (¥;)¢>o-adapted solution to (8.1), (8.2) satisfying (4.4). Then there exists a choice
of parameters a, b, B such that (4.7) is fulfilled and there exist (¥;):>0-adapted processes
(zg+1,Vg+1, I3q+1) which solve (8.1), (8.2), obey (4.4) at level ¢ + 1 and fort € [0, T ]
we have for § > 0, g € Ng, ag = 2/3 + «, and k > 0 small enough,

1/2 1/2
log1() = vg@)llz2 < Mo()"285%1. g1 = vgll oo pos-s < Mo()'/28/2,
(8.5)
1zg+1 = Zq | B .ag 2gs < Mo(0)'/28)/7,. (8.6)

Furthermore, if vg(0) and 13,1 (0) are deterministic, so are vy41(0) and Icéq_H(O).
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Having Proposition 8.2 at hand, we may prove Theorem 1.5.

Proof of Theorem 1.5. The proof mostly uses exactly the same argument as in the proof
of Theorem 1.1. Starting from (z¢, v, I%O) given in Lemma 8.1, Proposition 8.2 gives a
sequence (g, Vg, Icéq) satisfying (4.4) and (8.5). Hence, as in the proof of Theorem 1.1,
we obtain a limiting solution v = lim,_o v4 Which lies in C([0, T]; H?) and (4.13)
holds. Since v, is (¥7):>0-adapted for every g > 0, so is the limit v. By (8.6) we obtain
the convergence of z, in Dg?wo([o, Tr]) introduced in Definition D.2. We denote by z
the limit and note that it is also (F;);>0-adapted as a limit of adapted processes.

Hence we can take the limit in (8.1), (8.2) and conclude that u = v + z satisfies the
Navier—Stokes system (1.9) in the analytically weak sense before time 77 . In order to pass
to the limit in the stochastic integral, we recall that by Section D.1 the rough integral in
(8.1) on level ¢ coincides with the Itd stochastic integral. By the P-a.s. convergence of v,
and z,, we may therefore pass to the limit limg—oo [ G(vq + zg+1)dB = [ G(v +2)dB
in L2(R) in the Itd formulation. Moreover, the limit stochastic integral again coincides
with the corresponding rough path integral.

By the same argument as in the proof of Theorem 1.1 we obtain

lo(T)llz2 > (lv(©)]I2 + L)e"T  on{Ty > T}. (8.7)

In other words, given 7" > 0 and the universal constant cg > 0, we can choose L =
L(T,cg) > 1 large enough so that (4.8) and (4.15) hold and consequently (8.7) is satisfied.
Moreover, in view of the definition of the stopping times (8.3), for a given 7 > 0 we may
increase L if necessary so that P(Tp, > T') > «.

To verify (1.10) and (1.11), we use It6’s formula for z, and let ¢ — oo to have, for all
peN,

TL
%sw”mw3+A wwﬁwﬂsaw

tel0,Ty,

which combined with (4.13) implies (1.10). We also have
E[|z(T)|7.] < C6T.
We then apply (8.7) on {Ty, > T} together with %vz < z2 + u? to obtain
Ell7, >7 [u(T)|7-] = 3E[ 7 >7[0(D)]7] = Elllz (T3]
> Lie(lv(0)|| 2 + L)?*e*rT — CgT.

Thus, since u(0) = v(0) we may increase L if necessary, depending on K and Cg, in
order to get the desired lower bound (1.11). The initial value v(0) is deterministic by
construction. Finally, we set t := T, which finishes the proof. [

8.1. The main iteration — proof of Proposition 8.2

8.1.1. Choice of parameters. Let us summarize how the parameters need to be chosen
in order to fulfill all the compatibility conditions below. First, for a sufficiently small
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a € (0, 1) to be chosen later, we define £ € (0, 1) as in (4.17). The last condition in (4.16)
together with (4.7) leads to

a*-(2m)3? -1
5 .

We remark that the reasoning from the beginning of Section 4.1 remains valid for this
new condition: we may freely increase a provided we make 8 smaller at the same time.
In addition, we will require ab > 32 and o > 168b2.

In order to verify the inductive estimates (4.4), especially dealing with the terms with
rough paths, it will also be necessary to absorb various expressions including My (t)Mo @’
with ¢ = Inln L. It will be seen that the strongest such requirement is, for ¢ € N,

45 . (27r)3/2 <5- (27[)3/2612Bb <crL <cp

L2 Mo(InTn L)Mo(nin1)73200=1/42 < o5 1o /10,

(8.8)
L2 My(Inln )Mo L) (3 =3a/23°2 )1/6)4 | < ¢p8,42/10,

needed in the estimates of R, ;. In other words, for My := [L?My(Inln L)Mo(nIn L)7] i
Mpa®= 54208 | Mpa= 208

and choosing b = 28 My, v (33 - 28 - 80) (this choice comes from the fact that with our
choice of o below we want to guarantee that ab > 32 as well as the fact that b is a multiple
of 28 needed for the parameters in the intermittent jets, cf. Appendix B) and choosing a
large such that ML <b< a*/? leads to

a20a+a/2—ﬁ+2b2'g < 1, aa/Z—%+%+2b3ﬂ < 1.

In view of a > 168b2, this can be achieved by choosing a large enough and o =
801 . 2871, This choice also satisfies ab > 32 required above, and the condition o >
168b? can be achieved by choosing B small. It is also compatible with all the other
requirements needed below.

From now on, the parameters « and b remain fixed and the free parameters are ¢ and
for which we already have a lower, respectively upper, bound. In what follows, we will
possibly increase a and decrease 8 at the same time in order to preserve all the above
conditions and to fulfil further conditions appearing below.

o
8.1.2. Verification of the inductive estimates for vg1. Note that v, z¢, Ry are defined as
in Section 4.1.2. We could check that v, satisfies the equation

d;vg — Avg + div((ve + 20) ® (Vg + 20)) + Ve = div(Rg + Reom),
divvy =0
with
Reom = (v¢ +20) & (v + 2¢) — (vg + 2g) ® (vg + 24)) *x de %1 1.

Hence, the estimates (4.20)—(4.22) hold in this case.
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For the intermittent jets we choose the following parameters:
_ _ 1-27/28 9/7
A =2Ag+1, r||—/\q+1, rJ_—)Lq+1 , —Aq+1, (8.9)

where we note in particular the new value of r| as compared to (4.23). This is needed in
order to obtain the sufficient (Young) time regularity of v,41 — vg in (8.5), which in turn
is employed for the rough path control of zq_H Z4 in Section 8.1.3 below.

Next, we define p,ag), w;ﬁ_)I , w;_i)_l and wq+1 as in Section 4.1.3 with the new param-
eters given in (8.9). By exactly the same argument as in Section 4.1.3, all the estimates
and equalities in (4.24)—(4.36) hold. When applying Lemma 4.3 we choose ¢ = £~8 with
(78 < (Agg1rL) = A;/fls, where we use a = m Hence, (4.37)—(4.39) also hold.
The estimation in (4.40) follows the same way except for the last equality, i.e. we have

—4 2/p—1 _1/p—2, —1 —
) 4rJ_/p r“/p (1 lrJ_lr”).

1/2/1401—1/28
q+1

t
w2 le,zr < 841 Mo(t)

By the choice of the parameters, we have My(Inln L)
(4.41) holds in this case. As a result, for ¢t € [0, 77 ] we obtain

< 1, which implies that

lwgsrlle e < Mo()' /28512, (172 + CAGET2 4 CMo(1) 128,200, >)

< 3Mo(1)'28)/7,.

Hence the first inequality in (8.5) holds.

8.1.3. Estimate of ||zg — zg+1ll 5 In the following, we intend to estimate
q q B,agp,2a0,t" 8
Vg — Vg+1|| ~@0 — for some g > 2/3 and y > 0. This is required for the rough path
q a+1licop; 14 q ghp

estimate of ||zq zq+1 I 3 00 200, O the time interval [0, 7]; cf. Theorem D.10.
0,200,
To this end, we first estimate ||wg+1|| coByT The idea is to gain some negative power

of Agy1 from ||Wg) || croBy- By paraproduct estimates similar to [28, Lemma A.7] and
applying Lemma B.2 we deduce that forany § > Oandy =5+ 6,

W) ||c°foB r SV@lceogrisldela—r.
S O Qi /1) (g ) 7T S AN/,
Using the paraproduct estimates again we have, fory = 5 + §,

||wq+1||caoB—v < lagll ao+v+8||W(§)||CaoB—v

1/2 — 53 445—11y)/28
f,SqilMo(f)l/zf 2— SFao+1’+5u;+‘i‘0+ v)/ ,

where [x] denote the smallest integer greater than x. In view of (B.7), we find (applying
interpolation similarly to Lemma B.2)

llwq+1llcaoL1 < lla@llceo IV, g) ||CaoL1 + lagll, 2o Vel ooy

- 1 (TLAg+1p\0
S 8 Mo 2 T P! +Aq+1)( rqn )

< 8;{‘_21M()(t)1/26_1712?:‘10/28_23/14,
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35 : ; 2/p=2,1/p-1 o
We choose p = 3z=175 > 1 so that in particular r" " < Agtr-

2/3 + « with k > 0 small we obtain

”wtyj-l”CaOLP Su 1||a(s)||c“0 la@ llce. @720 1V@llcoo 20 V@) llc, 120

_ _ A
§8q+1M0(z)€_9ri/p 2r||l/p IM_I(—M ;1”4—1#)

Then for «g =

< Sgp1Mo(1)0™ 9)‘;1&10/28“ 9/7

and then using og = 2/3 + k we get 5309/28 — 9/7 = —1/42 + 53k /28, so finally

-9 1/42+53k/28+
lwgdill oo, p < Sqea Mo(t) A 1253 28w

We also have

1—- 1— —ap g4
lvg = vellgeo 2 < llvg — vellcj‘illvq—vellc 12 Sl xsﬁl WAL Mo(1)"2.

Combining the above estimates we obtain, forag = 2/3 +k,y =5+ 6,

g — Uq+1||c0‘03—y
< M (t)l/Z(El a0A4 —‘1-5_17/\53“0/28 23/14 +MO([)1/26—9Aq—i/142+53k/28+a

+ ¢~25lao+y+8] AEIS-E?OJFMS_] 11/)/28)

< MO(K)I/Z(EI—OLOA; +MO(Z)1/26—9/\;_}_/142+53x/28+a) < MO(I)I/ZS;fl-

In the last inequality we have used £'~#0A2 < (A;iof/ 2A;2)1/ oA <A fl, where the first

inequality follows from the definition of £ together with the fact that 1 —oap>1/6,and the

second inequality is implied by the second inequality in (8.8) with g replaced by g + 1.
Then the second inequality in (8.5) holds.

By the choice of vy in Lemma 8.1 we obtain
1vgllceo ps-5 < lvollcogos—s + D vk = vesillgeo pos-s = QL +2)Mo(1) /2.
k>0

Moreover, by Theorem D.10 we have
Izalle,z2 < 1201l 5.ag 200 = L +2)LMo(1)'/2, (8.10)

We intend to combine the above two estimates with the last inequality in Theorem D.10.
To this end, we observe that N = My (InIn L) in Theorem D.10 and the right hand side of
the estimate can be controlled by N (¢ TN Then we could choose L large enough to
have it controlled by N N7 Asa consequence, we choose x small satisfying 53« /28 <«/2
and (8.8) to see for ¢ € N that

”Zq ~Zg+1 ”B ,00,200,
< MO(I)I/Z(KI aox4 L+ 669A;1/42+53k/28+aMO([)I/Z)MO(ln In L)Mo(lnlnL)7

< Mo(1)V/26)/2, 8.11)
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with £¢ = /1[;3“/216;31. For ¢ = 0 nothing needs to be proven since z; = z¢. Hence, (8.6)
holds.

8.1.4. Conclusion

Proof of Proposition 8.2. Recall that we changed the parameter r to a smaller value.
Hence, (4.43)—(4.45) hold, which implies that for ¢ € [0, 1],

”vq—H”cl S ”v(”Cl + ||wq+l||ctl,x
< Mo(1)/2 (A%, + CAMGFITUA | 03402007 1 oy 1)1/2) 190 3+3/28)

a+1 g+1
= Mo(f)l/qu-u,

where we use CMo(Inln L)/2 < 1A25/28—19a Thus, the second estimate in (4.4) holds
true on level g + 1. Moreover, the estlmates (4.46)—(4. 47) hold.
2/p=2,1/p—1

In the following we control Rq+1 We choose p = > 1 sothatr}’ |

35—1da 14
AZ 11 First, we recall that r; becomes smaller and p is close to 1. Hence ri/ p-1

2/p=2 ”1/ 1 < /\2‘ +1- As aresult, the bounds for R((,tsg and the terms

becomes

smaller and we use 7’
not involving z in le do not change. For R, we have

”Rcor”C[LP
< MO(Z)(ef1zri/pr“1/(2p)—3/2 +E*“Mo(t)l/zri/p_lr“l/(zp)_l/zu*lrllr”_l/z)

% 6‘2ri/p_1r”1/(2p)_1/2

< Mo(t)(€_14r2/p_lr||1/p_2 + £—6M (t)l/zri/p_3r||1/p_3/zu_l)
< Mo() (A28 25 4 Mo(0) 2L ?) < Mo(t)crSqa/5.
As before, we also have
IR e, s Mo(0)e™rY P72 P T A1) S MoE2A%,, (T AL )

0sc
< Mo()Ap22 7 < Mo(1)crSg4+2/10.

In the following it suffices to consider the terms containing z in Rjin, Reom and Reom1 -
Recall that we have
zg = (2q *x ) *1 o,
Reom = (ve + 20) ® (e + 20) = ((vg + 2¢) ® (v + 2¢)) *x be %1 ¢,
Reomt = vg+1 é Zg+1 — Vg+1 é Ze + Zg+1 é) Vg+1 — Z¢ é Vg+1 + Zg+1 é Zg+1
—Zy & Zy.

In order to estimate the remaining term in Ry,

Ry, = (v¢ + z¢) ® Wg+1 + Wg+1 & (vg + 20),
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we use (8.4) as well as (4.16) to obtain, for g € N,
IRllconr S I(ve + 20) @ war1 + w1 ® (v + 20)llc v
< Mo()' (g + Ag LY wgsrllc e
< M€ 2P P72 08 4 ad LYY < Mo(oAg8
< Mo(t)crS4+2/10,

where we have used A;‘_ILl/“ < /\3. For ¢ = 0 we have

1/1’—1/2(13 +13L1/4) < Mo(l)Ang/“)tfa_S/“

1 2/p—1
”Rllin”CzLP < My(0)e ZrJ_/p rl

< Mo(t)cRrS4+2/10,

where the last inequality follows from ab > 32 and o > 168b2.
In view of the standard mollification estimates we deduce, for ¢ € [0, T.] and ¢ = O,

| Reomllc, 21 5 €127 AGLY* L2 Mo (1) < Mo(t)crb2/5,
where we use ab > 32 and @ > 168b? in the last inequality. For ¢ € N we have
[Reomllc, Lt = €lllvgllcr  + lzgllic,c)Ulvgllc 2 + z4llc, 22)
+ 022 (2 122 o+ gy Igle, 2 + Izglle, 22)
SOASLAMo(t) + 27258 L2 Mo (1) < Mo(t)crSg+2/5.,
where we have used (8.10) and )L;_ILI/Z < )L;‘ and § < 1/12 and we require €1/2728A2L2

< CR8q+2/10, ie.

29—a/29-2/314 —28b
L )Lq+1 Aq / Aq < lq+1 ’

with the choice of £ in (4.17), and the exponents were obtained with the choice § = 1/12.
Since we postulated that ab > 32, this can indeed be achieved by possibly increasing a
and consequently decreasing f3.

Finally, we use (8.4) and (8.8) to obtain, fort € [0, Ty] and g € N,

”Rcoml ”C[L1

< lvg+ille, r2llzg+1 — zelle, 22 + (Izg+1lle, 2 + Izelle, 22)12g+1 — Zell ¢, 12
< Mo(t)(ﬁ(l)_aolg_l " MO(Z)1/2£89A;1/42+53x/28+a +€1/2728A3_1)

x Mo(Inln L)Motnin D)7 2
< Mo(t)crdq+2/5,

with £y = )L;M/Z/\;fl and where we have used (8.11), yielding for g € N,

lzg+1 = zellc, 2 = lzg+1 — Zqlle, 12 + 2 — zellc, 12
S Mo(t)l/Z(E(l)—OtOA‘ql_l + E_QA;I/4Z+53K/28+(1M()(I)1/2

+ 61/2_2813_1)M0(1n In L)M()(lnln L)7.
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For g = 0 we use (8.4) to get
lz1 = zelle 2 < 71 = Zolle 22 + 20 = 2l 2 < €722 LY (1 + Jwollcy )
< 51/2—28L1/213M0(t)1/2’
which combined with (8.10) implies, for ¢ € [0, T.] and ¢ = 0,
| Reomi llc, 1 S Mo(0)€ 272 AGL32 < Mo (1)cr8a /5.

The proof is complete. |

Appendix A. Proof of Theorems 3.1, 5.1 and 7.2

Let us begin with the following tightness result.

Lemma A.l. Let {(sy, Xn)}nen C [0, 00) X L2 be such that (sp, xn) — (s, Xo). Let
{ Py }neN be a family of probability measures on Qg satisfying, for alln € N,

Pp(x(t) = xp,0 <t <s5,) =1, (A.1)
and for some y,k > 0 and any T > 0,

T
x(t) —x(r —
sup £77(sup el +_swp POZXOM 4 [, ar) <o
neN 1€[0,T] r#1€[0,T] |t —r sn
(A2)

Then { Py }nen is tight in' S := C([0,00); H=3) N L2 ([0, 00); L2).

loc

Proof. In view of the uniform bound (A.2), the canonical process under the measure P,
is bounded in L2 ([0, 00); L?) N Cf ([0, 00); H™3) N L2 ([sn,00); HY) and the bounds
are uniform in n. We recall that a set K C S is compact provided

Kr:={flor: f €K} CC(0,T); H ) NL*0,T;L2)
is compact for every 7' > 0. In addition, for every T' > 0, the embedding
L0, T: L) N C ([0, T]: H) N L*([0, T]: H”) C C([0.T]; H>) N L>(0, T; L)
is compact (see e.g. [3, Section 1.8.2]). This implies that also the embedding of the local-
in-time spaces

L2 ([0,00); L*) N Cf.([0, 00); H3) N LE ([0, 00); HY) C S

loc

is compact. This result, however, cannot be applied directly in order to prove the claim of
the lemma due to the fact that the uniform H?Y regularity in (A.2) only holds on the time
intervals [s,, T]. The idea is instead to use (A.1) which says that under each measure P,
the canonical process is constant on [0, s,] and its value equals to x,. Together with the
fact that (s,, x,) — (s, Xo) in [0, 00) x L2, the desired compactness then follows.
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To be more precise, we fix € > 0 and any k € N with k > k¢ := sup, ¢y S», We may
choose R; > 0 sufficiently large such that

x(t)—=x(r)||g-3 k
P, (x €Qo: sup |[x(@®)|lz2+ sup lx () 3||H +/ Ix ()3 dr > Rk)
r€[0.k] r£1€0.k] |t —r| S

EE/Zk.
Now, we set Q, := {x € Q¢ : x(t) = x,, 0 <t < s,} and define
x(t) —x(r -3
K := U ﬂ {x € Qp: sup ||x(@)llz2 + sup <) "l
t

S
neN keN €[0,k] r#t€(0,k] |t - r|K
kao

k
+ / lx ()1 y dr < Rk}. (A.3)
Sn
By Chebyshev’s inequality together with (A.2), it follows that

sup P,(K€) < sup P,(K°) <e,

neN neN
s0 it only remains to show that K is compact in S. As mentioned above, it is sufficient to
prove that for every k > k, the set of restrictions of functions in K to [0, k] is relatively
compact in Sy := C([0,k]; H™3) N L2(0,k; L2).

To this end, let {x,, } men be a sequence in K. If there exists N € N such that x,, € Qy
for infinitely many m, the result can be obtained by a standard argument based on the
compact embedding discussed above. If this is not true, we may assume without loss of
generality that x,, € ,,. The compactness in C([0, k]; H~3) is a direct consequence of

the bound TrE—
X 1)—Xx r —3
sup xm ()2 + sup me MY < Ry
t€[0,k] ro£tef0,k] [t —r]

and the compact embedding
L*(0.k: L?) N C*([0.k]: H™?) C C([0.k]: HT).
Consequently, we can find a subsequence x,,, such that

lim — sup ||xpm, (1) = Xm, )| g-3 = 0. (A4)

l,n—00 t€[0,k]

With this in hand, we deduce
k
| im0 = 3m, 01 a1
0

Smy NSmp )
< / o () — oy (622
0

Sm; VSmp k
4 / 1y (1) — oy (122 dt + / o (6) — Xy (0)]25 it
S

my NSmy, SmyVSmp



Nonuniqueness in law of stochastic 3D Navier—Stokes equations 235

< kl|xm, (0) — xm, (O)Hiz + 4R/%(5m1 V Smy = Smy A Snp)

k
+ 8/ 1%m; (€) = Xm,, ()| 7> dt + Cek Sup 1%, (€) = Xm,, (D)7
my;VSmp te[0.k
=< k”xm[ 0) - Xmy, (O)HLZ + 4Rk(5m1 vV Smy — Smy N Smn)
+4eRy + Cok sup || xm; () — Xm, (t)||§1,_3 -0
tef0,k]
as mj, m, — 0o, where we have used interpolation and Young’s inequality in the second
step and (A.4) in the last step. Now the proof is complete. ]

Proof of Theorem 3.1. The existence of a martingale solution can be easily deduced by
Galerkin approximation and the same arguments as in [22,26]. The stability of martingale
solutions with respect to the initial time and initial condition will be proved based on
Lemma A.1.

First, we prove that { P, },en is tightin S := C([0, 00); H™3) N L2 ([0, 00); L2). To
this end, we denote F(x) := —P div(x ® x) + Ax. Since for every n € N, the measure
P, is a martingale solution to (1.1) starting from the initial condition x;, at time s, in the
sense of Definition 3.1, we know that for ¢ € [s,, 00),

t
x(t) = x, + / F(x(r))dr + M} S P,-as.,
Sn

where 7 > M} = (M}

fsn+ €i)s X € Qo, is a continuous square integrable martingale

with respect to (B;)>s, with quadratic variation process ¢ > |. Stn IG(x(r))*e; ||%J dr.
Moreover, according to (M3), for every p > 1,

: P
EP"[ sup IS F(x(l))dl||H—3} < EPn [/I IFeI? s dr}
r#t€lsy,,T]

|t —r|P~1

S Il + 1,

where the implicit constant is universal and therefore independent of n since all P, share
the same C; 4. By the condition on G we have, for every p > 1,

p
E”"||Mt,sn—M,,s,,||i’;scEPn( / IGGENIE, o) )
< Gyl —rf7" 1EP"/ IGEDIZ 4y, dT
< Cplt —r|P EP / (xDIEE + 1) dl < Cplt — |7 (Ixall25 + 1).

By Kolmogorov’s criterion, for any o € (0, 1’2—;1) we get

M;s, — M,
EPn|: Sup ” t,Sn r,Sn ||L2:| S Cp(”xn”ig + 1)

r#1€0,T] |t —r|pe




M. Hofmanova, R. Zhu, X. Zhu 236

Combining the above estimates, we conclude that for all ¥ € (0, 1/2),

f) — _
sup EP"[ [|x(2) X(VZHH 3} - o
neN r#1€0,T] |t —r

(A.5)

Combining (A.5), (M3) and Lemma A.1 it follows that { P, },,eN is tight in S.

Without loss of generality, we may assume that P, converges weakly to some proba-
bility measure P € (). It remains to prove that P € ‘g(s X0, Ct,4). By Skorokhod’s
representation theorem, there exists a probability space (2, , P) and S-valued random
variables X, and X such that

(i) X, haslaw P, foreachn € N,

(ii) X¥» — Xin'S P-a.s., and ¥ has law P.

Since the initial conditions x, as well as the initial times s, are deterministic, we find by
(1), (ii), and (M1) applied to P, that

P(x(t) =x0,0<t<s)=P@E({)=x0,0<1<5)
lim P(%n(t) = xn, 0 <1 <sp,)

n—00

lim P,(x(t) = x4, 0 <1 <s,) = 1.
n—>o0

As the next step, we verify (M2) for P. We know that under P, according to the conver-
gence in (ii), for every e; € C*®(T3) we have

(Fn0). i) — (£(0). ). / (F(Gn(r)). &) dr — / (FG().ei)dr  Peas.

Sn

This implies that for every ¢ € [s, 00) and every p > 1,

neN

V4
sup EP (1M 7] = C sup EP[( / G2 ) ] <o,
' eN LaUsL3) (A.6)

lim EP[IM " — M5 = o.
n—o0o ’
Lett > r > s and g be any bounded and real-valued 8, -measurable continuous function
on S. Using (A.6) we know that

EP[(MY] — M})g(x)] = EP (M — MF)g(3)]
= lim EF[(M" — M¥ni)g(3,)]

00 t,Sn rsSn
= Jim EP (M5, — M)g(0] =0,

Consequently, ‘
EP M 18,1 = MY

r,s °

hencet — M t’  is a (B;);>s-martingale under P. Similarly,

lim EP[IM — MFi P =0,
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which gives

EP[(M:S;")Z— / ||G<x<z>)*e,-||%,d1‘£r} (M) — / 1GG) el dl.

and (M2) follows.
Finally, we verify (M3). Define

t
St.s.x):= sup [x(r)]72 / () |7y dr.
rel0,¢] K
It is easy to see that x — S(¢, s, x) is lower semicontinuous on S. Hence, by Fatou’s
lemma, 5 y
PIS(t,s.x)] = EP[S(t,5,%)] < liminfEP[S(t,s,,,fcn)]

IA

Ciyg 11m1nf(||x,,|| +1)
< 00.

The proof is complete. ]

Proof of Theorem 5.1. The existence of a probabilistically weak solution can be easily
deduced from Theorem 3.1 and the martingale representation theorem (see [14]). The
stability of weak solutions with respect to the initial time and initial condition will be
proved as in Theorem 3.1. First, we prove that the set { P, }eN is tight in

S := C([0,00); H* x Uy) N L ([0, 00); L2 x Uy).

To this end, we denote F(x) := —P div(x ® x) + Ax and recall that for every n € N, the
measure P, is a probabilistically weak solution to (1.1) starting from the initial condition
Xy at time s, in the sense of Definition 5.1. Thus, for ¢ € [s;, 00),

x(t) = xp +/ F(x(r))dr+/ G(x(r))dy(r) Pp-as.

where under P, the process y is a cylindrical Wiener process on U starting from Yy,
at time s,. In other words, under P, the process ¢ > y(t + s,) — y, is a cylindrical
Wiener process on U starting at time O from the initial value 0. Since the law of the
Wiener process is unique and tight, for a given € > 0 there exists a compact set K; C
C([0, 00); Uy) N L2 ([0, 00); Uy) such that

loc

sup P,,(y(- +8y) —yn € Kf) <e.
neN
Let us now define

= | J {y € C([0.00): ) :
nel y(t + sn) — yn € Ky fort € [0,00), y(t) = yu fort € [0,5,]}.
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Then
sup Py(K5) < sup Pu(y(- +sn) = yn € K{) <€ (A7)
neN neN
and we claim that K is relatively compact in C([0, 00); U;y) C LIOC([O, o0); Uy). Indeed,
let {y™}men be a sequence in K,. Then for every m € N there exist n,, € N and
y™nm e K; such that

ym(t + Snm) _ynm = ym’nm(t) forz € [0700)’ ym(t) = ynm forz € [O7snm]'

If there exists N € N such that n,, = N for infinitely many m € N then the relative
compactness of {y™},,en follows directly from the fact that the corresponding sequence
{ymnm}, N is relatively compact due to compactness of K. If such an N does not exist,
then by passing to a subsequence and relabeling we can assume without loss of generality
that n,, = m. In addition, for ¢ € [s,, 00),

YU =y = sm) + Ym-
Hence using the relative compactness of

{ym’m}mEN C K; and {(Sms Ym)}mEN C [O»OO) x Uy,

we finally deduce that the given sequence {y™},,eN is relatively compact.

Now, we recall that the set K defined in the course of the proof of Theorem 3.1 in (A.3)
is relatively compact in C([0,00); H3) N L2 ([0,00); L2). Chebyshev’s inequality again
shows that

supP(K)<supP(K)<e (A.8)
neN
Hence the set K x K is relatively compact in S and the desired tightness follows from
(A.7) and (A.8).

Without loss of generality, we may assume that P, converges weakly to some prob-
ability measure P. It remains to prove that P € #/(s, xo, Yo, C;,4). By Skorokhod’s
representation theorem, there exists a probability space (Q, , P) and S-valued random
variables (X, y,) and (X, y) such that

(i) (X, yn) haslaw P, foreachn € N,

(i) (Xn, V) — (%, 7)inS P-as., and (%, 7) has law P.

Let (ﬁ,) ¢>0 be the P-augmented canonical filtration of the process (X, )7) Then it is easy
to see that y is a cylindrical Wiener process on U with respect to (37,) +>0. In fact, let

t > s and g be any bounded and real-valued Bs-measurable continuous function on €2.
We have

EP[(y(1) = y(6)g(x. 1] = EP[(7(0) = F(©)r)g(F. )]
= lim ET[(Fn(6) = ()8 (En. 5u)] = 0,
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and similarly for y; = (y,/;) with {/;} an orthonormal basis in U,

EP[(i@0)y; (1) = yi(9)y;(s) = 8t = $)g(x, )] =0,

We then find that y is a cylindrical Wiener process on U with respect to (C,‘é,),zo under P.

Conditions (M1) and (M3) follow similarly to the proof of Theorem 3.1. Finally, we

shall verify (M2) for P. We know that under P, by the convergence in (ii), for every
€ C®(T?3) we have

(Xn(1),ei) > (X(t),e;), /(F(fc,,(r)),e,-)dr—>/(F(i(r)),ei)dr P-as.

Define .
M = <x(l) —x(s) — / F(x(r))dr, ei>.

Then for every ¢ € [s, 00) and every p € (1, 00) we have

~ o p
sup E (M3 P71 < € sup EP[( / IGGEIZ, gz ) ] < oo,
ne

neN (A.9)
. P Xnsi _ agX,i2 —
Tim EP[IM - M) = 0.

Letf > r > s and g be any bounded continuous function on S. Using (A.9) we know

EP[(M = M7 e(Klion YIoo)] = EFI(ME = M5 E o, Flio)]
= 1im EP[(M7 — M) e (Zlt0.17s Falfo.r)]

n—>00 IsSn
= lim E[(M;, — M%) (x]o.1. ¥lo.)] = 0.

Consequently, t — M t’ sisa (B:) r>s-martingale under P. Similarly,

. t -
e[ - [16eoaly ar | 8] = ong2 - [Ci6wrald ar
s
which identifies the quadratic variation of 7 - Mt",s. It remains to identify the cross vari-

ation of this process with the cylindrical Wiener process y under P. To this end, we let
{/;};e~ be an orthonormal basis of U and define y; = (y,/;)y. Then we deduce that

P[M:f;"(y,-m—y,-(s))— / (G* (e | wz‘ }
= M (3 (r) — y7(5)) — / (G* ()er, ) dl.

Thus, the quadratic variation process of M ,x ;i - St (ei, G(x)dy) is 0, which implies (M2).
The proof is complete. u
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Proof of Theorem 7.2. The existence of a generalized probabilistically weak solution fol-
lows from a similar argument to the proof of Theorem 5.1 and defining Y (¢) = Yo +
f; y(r) ® dy(r). By [36, Theorem 4.2.5] we have P(Z € CL2) = 1. The stability of
solutions with respect to the initial time and initial condition follows in a similar way to
Theorem 5.1. First, it follows as in Theorem 5.1 that { P, },eN is tight in

S 1= Cioe([0,00); H3 x R™ x R™™ x H73) N L2 _([0,00); L2 x R™ x R™™ x [.2),

loc

Without loss of generality, we may assume that P, converges weakly to some probability
measure P. It remains to prove that P € 4%/ (s, xo. yo. Yo, Zo, C;,4). By Skorokhod’s
representation theorem, there exists a probability space (R, ¥, P') and S-valued random
variables (X, ¥n, Yy, Zy) and (X, y,Y, Z) such that
1) (xn, in,f(,,, Z,,) has law P,, foreachn € N,
(i) (Xn, fn,ffn, Zn) — (i,f,Y, Z) inS P’-as., and (X, f,ﬁ?, Z) has law P.
In the following we verify (M1)—-(M3) for P.

For (M1), using the convergence in (i) above, we have

P(X(t) = Xo, y(t) = Yo, Y(t) = YO» Z(t) = ZO7 0 <t =< S)
= P'(Z(t) = x0. 7(t) = yo. Y(t) = Yo, Z(t) = Zo, 0 <1 < 5) = 1.

By condition (1.4) on G, P(fOT ||G(x(r))||i2(Rm.L2
Condition (M3) follows by similar arguments to the f)roof of Theorem 3.1. Then by [36,
Theorem 4.2.5] we have P(Z € CL2) = 1.

For (M2), we write Y = (Y;j), y = (yi) and ¥ = (¥y), 7 = (i) and ¥, = (Vp45),
Yn = (Pn,i). Similarly to the proof of Theorem 5.1 we find that y is a (8;);>s- R™-valued
Brownian motion.

Next, we shall prove

)dr<oo)=lforeveryT>O.

P (Y(l) —-Y(s) = / y(r)® dy(r)) =1. (A.10)

To this end, we need to verify that
e the quadratic variation process of Y;; is given by |, St yi(r)?dr,
e the cross variation of Y;; with yy is given by fst yi(r)drdji.

Let? > r > s and g be any bounded and real-valued ﬁr—measurable continuous function
on 2. Then

EP[(Y,-,W Y2 — / yi(nzdz)g(x,y,m]
- EP’[(Y,-,- (02 =T,y (r)? — / g (l)zdl)g(i,f,\i?)]

t
= lim EP I:(Yn,ij(t)2 - Yn,ij(r)2 - / )7n,i (r)z dr)g(;cnv )7nv Yn)jl =0,
r

n—oo
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and

EP[(Yij(l)yk(l)—Yij(r)yk(r)—5kj/ yi(l)dl)g(x,y,Y)}

EP [(Yﬁ O (1) = Ty ()0 () — S5 / 5() dl)g(x, . \‘?)}
~ lim EP’[(s?fn,mr)yu,k(t)—@n,i,-(r)fn,ur)—% / yn,i(z)dz)gm,ym?n)}

=0.

Hence the quadratic variation process of Y(r) — Y(s) — /. ; y(r) ® dy(r) is zero and
(A.10) follows. Similarly,

P (Z(t) — Z(s) — /t AZ(r)dr = /t G(vo + Z(r)) dy(r)) = 1.

N s

The rest follows by the same argument as in the proof of Theorem 5.1. ]

Appendix B. Intermittent jets

In this part we recall the construction of intermittent jets from [7, Section 7.4] and derive
a new estimate in Lemma B.2. We point out that the construction is entirely determinis-
tic, that is, none of the functions below depends on w. Let us begin with the following
geometric lemma which can be found in [7, Lemma 6.6].

Lemma B.1. Denote by By, (1d) the closed ball of radius 1/2 around the identity matrix
Id in the space of 3 x 3 symmetric matrices. There exists A C S? N Q3 such that for each
& € A there exists a C*°-function yg : By/2(Id) — R such that

R=Y"1(R*E®E

EeA

for every symmetric matrix satisfying |R —1d| < 1/2. For Cx = 8|A|(1 + 87%)'/2, where
|A| is the cardinality of the set A, define the constant

M = Cysup(lvelco + Y 1D peleo).
feh ljI=N

For each & € A let Ag € S*> N Q3 be an orthogonal vector to §. Then for each § € A,
{&, Ag, & x Ag} C S? N Q3 is an orthonormal basis for R3. We denote by n the smallest
natural number such that

(&, niAg, nik x Agy CZ3  forevery £ € A.
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Let y : R? — R be a smooth function with support in a ball of radius 1. We define
®:=—Ayand ¢ := —A® = (—A)?y and we normalize so that

1

H/Rz d(x1,x2)% dx;dxy = 1. (B.1)

This particular form of ¢ given through the function y did not appear in [7]. It is needed
below in Lemma B.2 which we apply in Section 8.1 with y = 5+ §, i.e. [ = 2. By
definition we know fR2 ¢ dx = 0. Define ¢ : R — R to be a smooth, mean zero function
with support in the ball of radius 1 satisfying

1
—/ Y(x3)>dxs = 1. (B.2)
2w R
For parameters 1, rj > 0 such that
r LK1,

we define the rescaled cut-off functions

! 1
bry (x1,x2) = r—¢(ﬂ 2) Y (x3) = WW(E)

’
1 ry ri r” |
1 X1 X2

D, (x1,x2) = —@ =, 2 ).
ry rp ri

We periodize ¢, , ®,, and 1//r” so that they are viewed as periodic functions on T2, T2
and T respectively.

Consider a large real number A such that Ar; € N, and a large time oscillation param-
eter u > 0. For every £ € A we introduce

1//(5)(t,x) = wé,rJ_,r”,/l,;L(tvx) = 1,//r” (nar 1 A(x - & + pr)),
D) (x) 1= Dy 2 (x) 1= D) (arLA(x —ag) - Ag nar1 A(x — ag) - (€ x Ag)),
D) (x) 1= Per 2 (X) 1= @y, (nar i A(x —ag) - Ag, nari A(x — o) - (§ x Ag)),

where a¢ € R3 are shifts to ensure that {®)}eea have mutually disjoint supports.
The intermittent jets Wi, : T3 x R — R3 are defined as in [7, Section 7.4]:

Wiey(t,x) = Wery ryan(t,X) = 9 (1, X)) (x). (B.3)

By the choice of ag we have
We @ Wy =0 foré #E& €A, (B.4)

and by the normalizations (B.1) and (B.2) we obtain

]fr3 W@)(t,x) X W(g)(t,x)dx = E ®§.
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These facts combined with Lemma B.1 imply that

Z)/g(R) ][ We)(t, x) @ Wey(t, x) dx = (B.5)

EeA

for every symmetric matrix R satisfying |R —Id| < 1/2. Since W(g, are not divergence-
free, we introduce the corrector term

1
W((sc)) = n2A2 —75 V¥ x curl(®g)§) = curlcurl Vigy — Wi (B.6)
with

Viey(t, x) = —5EV @) (1, X) D) (x).

n2 Az
Thus we have
div(Weg) + W) = 0.

Next, we recall the key bounds frorn [7, Section 7.4]. For N, M > 0 and p € [1, o]
the following holds provided r|| Lr] s

N M
_ rJ_X rJ_)L
IV M g llc o < ril” ”2(—) ( “) ,

Ul Ul

2/p—1
VN eyl + IIVN%)HLP < ry/Pn,

IVV O Wy leio + THIVN O W e, o + 22 IVY 0 Vig e, o

B.7)

1 e M
< p2/ry e 1/ZAN(VJ- M) ’
Ul
where the implicit constants may depend on p, N and M, but are independent of
A ,rl, r|| , M.
Finally, we establish two additional estimates employed in Section 8.1.

Lemma B.2. Let ag € [0,1] and y,8 > 0. Suppose that | = Y= 1 §eN and p = (—A) y
for a smooth function y with support in a ball of radius 1. Then

riA

aog+y+6 s
L) Welar <47

||1/f(§)||c"‘0Hy+8 < u® (
Proof. The first bound is a consequence of (B.7) and interpolation

rJ_)L)y+5

1— 8 8 8 8
el = Do 152 g4 5 -

hence using interpolation again leads to

rJ_A )ao+y+8

17
V& lczo s = IIW@)IICTO}(}yH||¢(s)||‘é(;m+s < M“O(r—”
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Let us now show the estimate for the H~”-norm of ¢). We view ¢ as a periodic

function on R and we have
/ bie) ()e ¥ dx = e7He / br, (AT LUy, maAr Lus)e AR gy
R3 R3
= 8o((Ak)3)e ke / br L (Medriuy, noArpup)e (A0 +@2] gy gy
R2

. _ Ak (Ak)p
— 80((Ak)3)e_lk'°‘5(n*/\rJ_)_z/2(i)rl(ul,uz)e l[n*)»rLul‘f'n*Arl’uz] duy dus
R

ik A Ak Ak
—bo((Abye ke S g, (AL A2y Ak + ),
NeAT| NiAFL
me2nnyAr ) 72
where in the first equality we use u = (41, U2, u3) = (x - Ag, x - (§ x Ag), x - §) := Ax
with A being an orthonormal matrix and ¢, (k) = sz Or, (x)e™"** dx. Then

(1= A) "2 (x)

_ Z AT m 0 e (1 4 |m|z)—y/2qgu( m )eiA*(m,0)~x
T .
me2nniAr 72 Mad L

Thus,
2

A

Y A+ mP)

me2nnyAr | 72

S m
Pr. (n*)uu_)
= Yoo A+ mP7

b (i)
r1
me2mxnyAry Z2\{0} neAry

SAr)™ Y kT e, ()

ke2mnZ2\{0}

e 17—

2

Here, in the equality we have used the fact that ¢,, has zero mean. Moreover, for [ =
"_2;_8 € N and ¢ = (—A)! y with a smooth compactly supported function y we have

‘Z’U_ (k) = rJ_/ ¢(X)€_ikrl'x dx = rJ_/ X(_A)le—iku‘x dx,
R2 R2

which implies that for / = y_;_s and § > 0,

le@llz— < Qro ™ > kT (lxl (klr)®h?
ke2nZ2\{0}

SATTEDT D kTP
ke2rnZ2\{0}

SATD T .
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Appendix C. Uniqueness in law implies joint uniqueness in law

In this part we will extend the result of Cherny [9] to a general infinite-dimensional
setting. A generalization to a semigroup framework in Banach spaces was proved by
Ondrejat [38]. Let U, Uy, H and H; be separable Hilbert spaces and suppose that the
embedding U C U, is Hilbert—Schmidt and the embedding H C H is continuous. Con-
sider the SPDE of the form

dX = F(X)dt + G(X)dB, X(0)=xc¢€H, (C.1)

where F : H — H; is 8(H)/8(H;)-measurable and B is a cylindrical Wiener process
on U which is defined on a stochastic basis (2, ¥, (¥;)s>0, P). In other words, B can be
viewed as a continuous process taking values in U; and we assume that for x € H, G(x)
is a Hilbert—Schmidt operator from U to H. Solutions to (C.1) are then understood in the
following sense.

Definition C.1. A pair (X, B) is a solution to (C.1) provided there exists a stochastic
basis (2, F, (¥7)¢>0, P) such that

(H1) B is a cylindrical (¥7);>0-Wiener process on U;
(H2) X is an (¥7)>0-adapted process in C([0, 00); H1) P-a.s.;
(H3) F(X) € L} ([0,00); Hy) and G(X) € L2 ([0,00); Lo(U, H)) P-ass.;

(H4) P-a.s. we have, for all ¢ € [0, c0),

t t
X; =x+/ F(Xs)ds—i-/ G(X5) dB;.
0 0

Let us now recall the definition of uniqueness in law and of joint uniqueness in law.

Definition C.2. We say that uniqueness in law holds for (C.1) if for any two solutions
(X, B) and (X, B) starting from the same initial distribution, one has Law(X) = Law(X).
We say that joint uniqueness in law holds for (C.1) if for any two solutions (X, B) and
(X, B) starting from the same initial distribution, one has Law(X, B) = Law(X, B).

Clearly, joint uniqueness in law implies uniqueness in law. The following result shows
that the two notions are in fact equivalent for SPDEs of the form (C.1).

Theorem C.1. Suppose that uniqueness in law holds for (C.1). Then joint uniqueness in
law holds for (C.1).

Set E = L,(U; H). Since E is separable, C([0,t]; E) is dense in L2([0,¢]; E). By
the same argument as in [9, Lemma 3.2], we can prove the following result.

Lemma C.2. Lett > Oand f € L*([0,t]; E). For k € N, set

=10 if s €[0,1/kl,
ki S dr if s € t/k. G+ De/k) G = 1.....k—1).

Then f® — fin L2([0,1]; E).
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By Lemma C.2 and the same argument as in [9, Lemma 3.3], we obtain the following.

Lemma C.3. Let (X, B) be a solution to (C.1) defined on a stochastic basis
(2, F,(Ft)ts0, P). Let (Qw)weq be a conditional probability distribution of (X, B)
given 5y.> Let Y be the coordinate process with values in Hy and let Z be the coordinate
process with values in Uy. Let (#;) >0 be the canonical filtration on C ([0, 00); Hy x Uy)
and denote H = \/,.y H;. Then for P-a.e. v € Q the pair (Y, Z) is a solution to (C.1)
on the stochastic basis (C([0,00); Hy x Uy), K, (H1)r>0, Quw)-

Proof of Theorem C.1. Let (X, B) be a solution to (C.1) on a stochastic basis
(Q.F.(F1)i=0. P). Let {BX}ren and {B*}ren be two families of independent real-
valued Wiener processes defined on another stochastic basis (', ¥/, (¥/)¢>0. P’) and
set

(Q.F.(F)iz0. P) = (Qx Q. FQF . (F: @ F)i=0. P ® P).

All the processes X, B, B, ,B_k ,k € N, can be defined on € in the obvious way. Assume
that the cylindrical Wiener process B admits a decomposition B = Y 72, o1, where
{aF}ren is a family of independent real-valued Wiener processes and {li}xen is an
orthonormal basis in U. Let ¢(x) be the orthogonal projection from U to (ker G(x))*
and v (x) be the orthogonal projection from U to ker G(x). Then set

es = 0(Xs), Y5 = Y(Xs),

e t t

Vi = Z[/ Ps daf Ik +/ Vs dﬂf lk:|,
k=1 0 0

B o t _ t

V,::Z[/ %dﬂfzw/ wsdafzk].
k=170 0

In the following, (-, -); denotes the cross variation process at time z. We obtain

((V.L)u. (V.lj)u):

o

:2 [/0 (wslk,li)u(wslk,lj)udw/o(wslk,zi)U(wszk,lj)Uds}
k=1
t

t
= /0 [((psliafpslj)U + (wsli» 1,”slj>U] ds = /0 (((ps + 1ﬂs)liv (‘ps + 1»”s)lj>U ds

t
= / (l,‘,lj)U ds = (Sijl.
0

Similarly,

ZHere, we consider (X, B) as a C([0, 00); H x Up)-valued process.
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As a consequence, under P the process (V, V) is an (ﬁ})tzo—cylindrical Wiener process
on U x U. Moreover, for any ¢ > 0, we have

/0, G(X,)dBs = /0, G(Xs)ps dBy = /0’ G(X,) V.

Hence (X, V') is a solution to (C.1) on (fZ, 7, (ﬁ,),zo, }5).
Consider now the filtration

ﬁs:fﬁ's\/o(Vt:tzO)zﬁva(?,—K:tzs), s > 0.

Since % and o(V; = Vit >s)Vvo(V; —Vy:t>s)are independent, the process V is a
cylindrical (;);>0-Wiener process on U under P. Thus (X, V) is a solution to (C.1) on
Q. F.Z)izo. P).

Let (Q&)zes be a conditional probability distribution of (X, V) given %.
By Lemma C.3, for P-ae. @ € fz, the pair (Y, Z) is a solution to (C.1) on
(C([0,00); H x U), #H, (H:)t>0, Op)- As uniqueness in law holds for (C.1), the prob-
ability law induced by Y on each of these stochastic bases, i.e. Qg o Y1, is the same
for P-a.e. @ € Q. Since this is the conditional probability distribution of X given 9y, it
follows that the process X is independent of §p. In particular, X and V are independent.
Let x(x) be the pseudo-inverse of G(x) (see e.g. [36, Appendix C] for more details); then

X(xX)G(x) = @(x). Set x5 := x(Xs). Thus,
t t t
/gosstz/ )(SG(XS)stz/ xXs dMs,
0 0 0

t t
M, =/ G(X;) dB; =X,—x—/ F(X;) ds.
0 0

where

Accordingly, we obtain

t t t t
B,:/ <psst+/ %st=/ Xdeer/ Vs d V.
0 0 0 0

The process M is a measurable functional of X, while Vis independent of X . Thus the
distribution Law(X, B) is unique. |

Appendix D. Analysis of rough partial differential equations

In this section, we employ the theory of rough paths to derive estimates for the following
rough partial differential equation. Assume that v € Ctl,x and z solves the system

dz = Azdt + G(v + z) dB,

divz =0, (D.1)
2(0) = zo,
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with div zg = 0. Then we have
t
z(t) = Pizg +/ P,_sG(v+ z)dBs,
0

where P; = e'” is the heat semigroup. The nonlinearity G in (D.1) is defined through
G(u) = (gij (. (u, @Y. ..., (M,wllcju))) (D.2)

with gi; € C2(T3 x R¥i/), 9/ € C®(T?),i=1,....3,j =1,....m,L=1,... ki, ie.
the functions g;; and their derivatives up to order 3 are bounded and g.; is divergence-free
with respect to the spatial variable in T 3.

The driving process B is an m-dimensional Brownian motion and we view it as a
rough path. To this end, fix o € (%, %). We use py(B) to denote its a-Holder rough path
seminorm which is given by

pa(B) =  sup 1B: = Bs| |fst(Br—Bs)®dB,|

o<s<t<T |0 =S| = o<s<i<T |t — 5|2

The first component of the rough path is denoted by B ; := B; — By and we understand
the iterated integral B, := f;(Br — Bs) ® dB, in the It6 sense. However, the results of
this section apply mutatis mutandis to other rough path lifts of the Brownian motion as
well as general rough paths.

Let C# denote the closure of smooth functions with respect to the usual Hélder norm.
We also use the Holder—Besov space €2, 8 € R, defined by the closure of smooth func-
tions with respect to the Bfo’oo-norm

Iflles == 1flgs = sup 2] fllre
’ jeNoU{—1}

with A;, j € No U {—1}, being the usual Littlewood—Paley blocks. Forany 0 < 8 ¢ N it
is well known (see [1, p. 99]) that || f |cs =< || f |les. For a path & defined on [0, T'], we
denote its increment s, — hg by hg ;.

We also recall the following smoothing effect from the heat semigroup (see e.g. [49,
Lemma 2.8]), which is used in the following proof.

Lemma D.1. Let T > 0.
(i) Forany8 >0, € R, andt € [0, T],

1P flleora S 702 fliea, 1P fllgote St fllge,  (D.3)

with the implicit constant independent of f.
(ii) Forany0 <6 <2andt €[0,T],

1P f = flizee S 921 fllieo. NP f — fllzz S 921 fligo. (D.4)

with the implicit constant independent of f.
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Now, we introduce the definition of a controlled rough path adapted to our purposes
(see also [27]).

Definition D.1. Let y € R. We call a pair (y, y’) a controlled rough path in the € -scale
provided (y, y') € CT€” x (CT€Y~2% N C% L°°) and the remainder

Yy o 4
st T R s .
(s,1) = Ry, = ysu VsBs.t (D.5)
belongs to C3%. L, the space of 2-index maps on [0, T]* with values in L* such that
1RS¢ lloe
RY Loo = Su —_—
” ”2% 05s<$§T |t — 5|2a

The space of controlled rough paths in the €7 -scale is denoted by D%‘j‘y and endowed
with the norm

1y, Y lB2ay = Iyllcrer + 1Y lcper—2e + 1Y llcgroe + IR |20, 00
We also present the corresponding definition with €7 replaced by H”.

Definition D.2. Lety € R. We call a pair (y, y’) a controlled rough path in the H? -scale
provided (y,y") € CTHY x (CTH?™2* N C;‘LZ) and the remainder

(5.8) > Ry, = yos — YiBos (D.6)
belongs to C3%.L?, the space of 2-index maps on [0, 7']? with values in L? such that
IR N2
IR ll2q,2 = sup ————
2ok o<s<t<T |t —5[**

The space of controlled rough paths in the H? -scale is denoted by Dlzg‘f‘y and endowed
with the norm

1.1 320,y = WWllcrar + 1Y ey av—20 + 1Y lcgrz + 1R |l 20,12

The following integration lemma is a version of [25, Theorem 4.5] adapted to our
setting.

Lemma D.2. Leto € [0,&) and (y,y') € D%“M_ZU. Then the integral

t
| Pa=nyds = tim 3 PG 900Ba + B
0 w|—>0

[s,r]lenm

exists as an element of €~ 2¢ for k > 1 — 3a + o where the limit is taken over partitions 7
of [0, t] with vanishing mesh size. Moreover, for every 0 < 0 < 1,

5 ”y’ y/||B,2a,4a—2U |t - S|(a_0+0)/\(3a),0a (B)

Here the implicit constant is independent of y, py (B).

t
/ P(t—r)y,dB, — P(t —$)ysBss — P(t —5)y;Bs
s

e4a—260
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Proof. The proof follows the ideas of the usual sewing lemma which has already appeared
in many variants; see e.g. [23, Lemma 4.2], [24, Theorem 2.4]. The key computation is
the following.

Let

Sst:—)’sBst‘Fys st_%-st_’_gst’
which gives
853,14,1 = é‘_s,t - Es,u - Eu,t = _RsymBu ys u = h; u,t + hs u,t?

where the first equality is the definition of increment of a 2-index map &. Consider dyadic
partitions 7 = {s =g <t; < -+ < tox =t} witht; = s +27Ki(t —s), let

Z Ptfugu,v»

[u,vlemy

and denote m = (1 + v)/2. Then we have

[k - lk+l = Z Pt—uSSu,m,v + Pt—m(Pm—u - [)sm,v

[u,v]eny
Z Pt u u m,v + Z Pt—uhi,m,v

[u,v]emy [u,v]emx

+ Z Pt—m(Pm—u - I)‘i:rll,v + Z Pt—m(Pm—u - I)Sﬁl,v
[u,vlemy [u,vlemy

4
=>

i=1
By (D.3) and (D.4) we have, for2aa — 1 < 8 <3a¢—0 —l and  <2a — 0,

[Jalesa—2e S D (t —=m)P2F0)(Pyy — DEL Il 26

[u,v]emy
Yo @=mP P =) Py | pera2o (v = m)* pu(B)
[u,v]leny
< ”y/”CT‘CZOZ*ZGpa(B)Z_k(Sa_ﬂ_l_U)|[ _ s|3a—/3—1—0‘ Z (t o m)ﬁ—ZOH-@(m _ M)

[u,vlemy
S 1Y lleyeza-20 pa(B)2CTPTIm |1 — gm0,
where in the last inequality above, in view of the condition 8 — 2« + 6 > —1, we estimated
the Riemann sum by the corresponding integral (using convexity of the integrand) and
integrated. Similarly, for 20 — 1 < f < 3a¢ —0 — 1 and B < 2« — 6 we have

[3llesae S D (6 =m)P2*H0(m —u)®* 7P|yl esa—20 po (B) (v — m)®
[u,v]emy

S 1yl cpesa—zo pa(B)27FCHA1Z0 ) — gPpemhm1=0 N (1 — )P 200 (i — )

[u,v]em

S ||y||CT~.34a—2apo,(B)z_k(3“—3—1—0)|t _ s|o¢—a+0.
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Moreover, by (D.3) and (D.4),

illesa—ze S Y (t—w) 22T p) oo

u,m,v
[u,v]emy
S Yt —w) O — u)>¥ | R 54, 100 (v — m)* po(B)
[u,v]emny
S IR [l2a,Loo27 ¥ Ve —s P21 " (1 —m) 22D — 1) py (B)

[u,v]emy

S IR 2,002 KOO D1 — 5 @FONCD g, (),

Similarly,

—2 N0 7,2
I2llesa—2e S D (t—w) 22O B2 oo

[u,v]em

S Y =W TN — )|y || ca oo pu(B) (v — m)>

[u,v]leny

S 1Y g oo pu(B)27HC* D1 — 5| @+OAGD),

Thus the result follows by summing over k and taking the limit. In particular, the
lower bound for « from the statement of the lemma comes from the requirement that
a—o+60>1. (]

As the corresponding semigroup estimates remain the same in the H7Y -scale, we also
obtain the following result.

Lemma D.3. Leto € [0,a) and (y, y') € D%"‘m_m. Then the integral

‘
/ P(t —r)y,dB; ;== lim E P(t —$)(ysBsy + y:Bs,r)
0 |0

[s,rlenm

exists as an element of H2 for k > 1 — 3« — o, where the limit is taken over partitions 7
of [0, t] with vanishing mesh size. Moreover, for every 0 < 0 < 1,

Here the implicit constant is independent of y, py(B).

t
e A
S

5 ”y’ y/||1§,2a,4a_2o—|l _ S|(a_a+0)/\(3a),0a(3).

H4a—26

By a similar argument to that for [30, Lemma 3.5] we obtain the following result:

LemmaDd4. Let T € (0,1], 0 € [0,) and (v, y') € D%

B,4a—20" Then

(z,Z)) = (/0 P(-—5)ys st,J’) € D%y



M. Hofmanova, R. Zhu, X. Zhu 252

and
Iz.2']lB,20,40
< (14 pa(B) (I1yollgta—20 + yplleze—o + TV Dy 5 54 40-20).
Here the implicit constant is independent of y, py(B).
Proof. By (D.5) we first have
IZ'lcgr = Iyllcgr= < (Iy'llcrLoe + [1yollLee)pa(B) + R [la,ro0
< (L4 pa(B)(lyollzee + yollee + Ty, ¥l B20,4020)-
The desired bound for the Gubinelli derivative z/ = y in C7 €2 follows from
o/(a—0o) (x—0)/(2a—a)

”Z/”C%(a—a)/ﬁa—v)gz«x <y ||CT‘€40(726 Iy ”C%Loo

In order to bound z in C7€4%, we write

t
Z; = (/ P(t —s)ysdBs — P(t)yoBo,; — P(t)y{)]B%o,,) + P(t)yoBo, + P(t)yoBo.:-
0

We apply Lemma D.2 with 6 = 0 to control the first term for 0 <t < T':

t
H/ P(t —5)ys dBs — P(t)yoBo, — P(1)yoBo, STy, ¥'llB,20,40—20 Pa (B),
0

©cdo

and for the remaining two we estimate by (D.3) as follows:

1P yoBosllese < 17477 2% yglle2a—20 pa(B) < 175 lle2e—20 pu(B),
1Pt yoBotllesa <177 vollesa—20 pa(B) < llyollesa—20pa(B).

It remains to control the 2«-Holder norm of R? in L°°. We have
t
RZ, = ( [ Pu=ryedn, —pa =5y - P —s)y;Bs,t)
S

S
+ (P(t —s)—1d)ysBs; + (P(t —5) — Id)/ P(s—r)yrdB, + P(t —5)y.Bs,;
0
=Ii+-+ 14
Applying Lemma D.2 with 6 = 2« — «, k > 0 small enough we obtain, for0 <t < T,

I1llzee < [1lle2e < 11, 3|18 2040201t = 513777 pa(B)

STy, VB 20,4a—20 1t — $[** pa(B),
whereas the remaining terms are estimated by (D.3) and (D.4) as follows:
I2llzee S 1t = s1** 77 | ysllesa—20 pa(B) S Ty, ¥'l| 82040201t — 51> pa(B).

S
I sllzeo < It — P / PGs =y, dB,| = |zllesell — s
0

84(2
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which combined with the above estimate for z € Cy C#* yields the desired bound for /3,
and finally

allzoe S 1t = sPP*N1yillzocpa(B) < (T*|1y. ¥'l|B.2a.4a—20 + | VollLoc) |t — s|**.
The claim follows. u

By the same arguments, we deduce the H?-counterpart of Lemma D.4.

LemmaD.5. Let T € (0,1], 0 € [0,) and (y.y') € D3%,, _,, - Then

(sz/) = (/ P(-—s)ys dBSvy) € Dlzf4a
0

and

“Z’ Z/||B,2a,4a
< (1 + pa(B)(Iyoll graa—20 + 9ol gr2a—20 + T¥@ Dy 3|15 0 sane)-

Here the implicit constant is independent of y, py (B).
By a similar argument to that for [30, Lemma 3.6] we obtain the following result.

Lemma D.6. Let G satisfy assumption (D.2) and (y, G(v + y)) € Dé‘j“m. Then for
o € [0,a) we have (G(v + y), DG(v + y)G(v + y)) € D%

B,4a—20 and

IG( + ), DG + 1)G(v + )3 204020
S (4 13, G + )lpwsa + Illcy )1+ pa(B?.

Moreover, if (¥,G(v+ y)) € D%‘j‘w then

[Gv+y) =G+ 7). DG+ y)G +y) = DG + )G + J)|B,20.40—20
S A4y, G + Y)B2asa + 17, G0 + Dllp 204 + [Vl + pa(B))?
X([y =76+ y) =G + Y)B.20.40)-

Remark D.7. It will be seen in the proof below that due to the definition of
the coefficient G in (D.2), the spatial regularity of the controlled rough path
(G(v+y), DG(v 4+ y)G(v + y)) actually only depends on the spatial regularity of the
functions g;; and not on the spatial regularity of v, y. Consequently, the claimed space
regularity of order 4o — 20 was only taken for convenience in order to follow more easily
the arguments of [30].

Proof of Lemma D.6. For simplicity we only concentrate on the case G(y) = g(-, (¥, ¢))
with ¢ smooth and g € C b3 First, we observe that as a consequence of (D.5) with y’ =
G(v + y) we have

Iyllcgree < (1Y llcpe2e + lvollzoe + 1R [la,Loe) (1 + pa(B)).



M. Hofmanova, R. Zhu, X. Zhu 254

Then, since the spatial dependence of G(v + y) only depends on the spatial dependence
of g, we get

G + )lcreta—20 S 1,

and since DG(v + y)G(v + y) = 9g(-, (v + y,0)){(g(:, (v + y,¢)), ¢) where d denotes
the derivative with respect to the variable in place of the inner product, we have

DGO+ )G+ Mlicgre S 1+ Iyllegree + Ile
< U+ 7.6 + 9)52sa + [0lley )0+ pa(B)).
IDGW + )G + y)lepeze2e 5 1.

Moreover,
RE, = g((vi + yi.9)) — g({vs + y5. 0)) — 0g({vs + ys. @))(g((vs + Ys.9)) By @)

1
- /0 [8g (s + ¥s + F(ss + 5.0 @) (s + Vsur0) — g (s + vs. )] dr
x (g({vs + ys.9))Bs,s, 0)

1
- / 3¢ (s + s + F(vss + Ys.)s 0D (5.0 ) dF
0

+/ 3805 + s s+ vor). @) — 3 ({5 + o D] dr
x (g({vs + s, 9)) Bs,r, ¢)
+ [ 8oy + o + r(vss + o) DR ) dr (D7)
Consequently, we deduce
IRS ll2a,Lo0 S (vlles  +1yllegree)d + pa(B)) + [ R¥|l20, 100
S A+ vley A+ 1y, G+ y)lp204a) (1 + pa(B))>.

Thus the proof of the first result is complete. The second one is a simpler version of the
argument in the proof of Lemma D.8 below, so we leave it to the reader. ]

Lemma D.8. Let G satisfy assumption (D.2) and (y,G(v + y)) € Dlzf4a~ Then for o €
[0, ), we have (G(v + y), DG(v + y)G(v + y)) € D-%fm—zo’ and fory > 0,
G+ ). DG + y)G( + Y) 5 24,40—20
SA+y, G+ y)||é,2a,4a + ”v”C%O‘H—V)(l + Pot(B))z'
Moreover, if (y,G(V 4+ y)) € D_zzfm’ then fory > 0,
G+ y)=G@W + 7)., DG+ y)Gv + y) = DGO + Y)G(O + V)l 5 24,40-20
SA+1y. G+ V52040 + 17 GO + I 3 20,40 + IV c20 55— + 10l 20 5r—)
< (14 pa(B)*(Ily = 7. G + ) = GO + P 20,40 + IV = Fllcze ).
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Proof. For notational simplicity we again focus only on the case G(y) = g(-, (y, ¢))
with ¢ smooth and g € C b3; the general case follows the same argument. The first esti-
mate is similar to Lemma D.6. Now we prove the second one. First, we observe that as a
consequence of (D.6) with y’ = G(v + y) we have

Iy =JVlegrz 1y = 5.6+ y) = GO + ) 5 20,401 + Pa(B)).

Then (as in Remark D.7, also here the spatial regularity of v, y does not influence the
estimate)

IG(y +v) =G + V)lcpmae—20 Sy = Flleymoa—20 + v =0llc,a—,

and

IDG(v + y)G(v + y) — DG(B + 5)G® + §)llc; gre—20
Sy = Vlley a2e—20 + v = 0llcrm—-

Moreover,
(DG +y)G +y) = DG@ + J)G@ + ))ss
= /01(32g(<ys + 05+ 1 4 Vs 9)) = 32 (Fs + Ts +1(F + D)s 9))) dr
X{(y + )50, 0N (G (v + y). 9)

1
4 /0 Py (5 + s+ G+ D)ot @) dr (v + V)5 — G + D 9){Ge (0 + 7). )

1
4 /0 g (75 + B+ (4 Do 0)) dr (G + Do 9HGe (0 + 1) — GG+ 5). )

+(0g({ys +vs5,9)) — g (Vs + Vs, @G+ ¥)s,0. 0)
+03g((Vs + Us, @G+ y)se =G0+ V)5, ).

which implies
[DG(v+ y)G(v +y) = DG + 7)G( + Y)llcgr2
SU+1y, G+ 52040 T 17 GO + I 52040 + IV c20 g + 10l c20 1)
< (14 pa(B)?*(Ily = 7. G + ) = GO + P g 20,40 + IV = Fllc2e ).

Furthermore, for RSGJ in (D.7) we have Rscft — Iégt = I + I, + I3, with I; corre-
sponding to the difference of the last three lines:

1

L +15 = / (ag((vs + ys +1(Vs + Y1), @) — 0g((Us + Vs + 1 (Vs + fs,t)vw)))
0

X (Vg + Rz’,, @)dr

1 .
+ / 0g((Us + Vs + (Vs + Vs,0) @))(vsyr — Vs + Ri, - R;,pfﬂ) dr,
0
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b= 1 / (s + 3y + Ot + 1)) A0 dr (vgy + Yor. )
x (g((vs + ys, ) Bs.t, ¢)
-/ 1 / Pt T+ (s + 7o) @) dOdr (s + Trro)
x (g((Us + Vs, ¢)) Bs,e, 0).
Then
||RG - EG”za,m
SA+1y. 6O+ 52040+ 17. GO + D g 204a + IVlcze g + 15l 20 5->)
< (1+ pa(B)*(Iy = 7. G+ y) = G + M) 5 2040 + 1V = Bllcze g—)-
Thus, the proof is complete. u

Thus, combining Lemma D.4, Lemma D.6 and a similar argument to that in [30,
Lemma 3.8, Theorem 3.9] we obtain the following result.

Theorem D.9. Let T > 0 and G satisfy assumption (D.2). Then there exists a unique
global solution (z, G(z + v)) € D%"‘m ([0, T]) to (D.1). Moreover, the solution satisfies,
foro € [0,),

200—0
N a(a—0)

T
Izllepes < (lzolless + 1+ vllcy IN ,

2o—o 200—0
N ala=0) T+o¢(o¢7cr) s

Izllcgroe = (20l gt + 1+ [vllcs TN

where N = C(1 4 pg(B))3 for some constant C independent of B, z, v.

Proof. By Lemmas D.4 and D.6, for § = %9=2) and z’ = G(z + v) we have

20—0

12,2/ 182040 < C(1 + pa(B) (20l + 1+ 7712, 2/ 32000 + T It ).
Then we can choose T such that 1/4 < C(1 + po(B))3*T? < 1/2. Thus

1223 2o 71 = 2001 + (B (2ol + 1) + [0l

Here ||z, z'|| B,2a,4a,[s,r] is the norm for the space Dlz;j“m on the time interval [s, ¢]. Starting

from T we obtain
2.2 3 204017271 = NN (Izollese + D) + vl + 1D+ ol -

Then we know we have at most /-fold iteration with / < (4N)/?T and we obtain

1/6
Izllcpes < (1zollese + 1+ vllcy INTY

s

I/GT
2.2 I8 20aato.r) < (lzollgsa + 14 [ollgy JTNN/T+18.

Here we may increase the constant C in the expression of N. ]
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Analogously, we obtain the result in the H?-scale.

Theorem D.10. Let T > 0 and G satisfy assumption (D.2). Then there exists a unique
global solution (z, G(z + v)) € l_)f;“‘m ([0, T]) to (D.1). Moreover, the solution satisfies,
foro €[0,),

2a—0
N a(a—0o)

T
Izlcrmae = (zollgae + 14 (vl 20—+ )N ;

20—0
+(x(a70) .

2a—0
Nala—o) T
12. 21l 3 2040 = (lZ0llrae + 1+ [Vl c20 g—)TN

where 2/ = G(z +v), N = C(1 + pg(B))3 for some constant C independent of B, z, v.
Furthermore, let z, Z be two solutions corresponding to v, v respectively. Then

200—0
- ~ o N ala=0) T
Iz = Zleprsa S 10 = Ollczagg—NY "

’

— - a=c 20—0
TNTN ala—o) 4 G0y |

Iz =2.2" = Zll 3 040 S v =Dl 20 g
Here

N =CU+ 12,2 g a0 + 1221 8200 + 10120~ + [0l 20 )

x (1+ pa(B))*.

D.1. Back to Ité stochastic integration

If v was (¥7)>0-adapted, then equation (D.1) can be solved in the Ito sense as well. As
expected, the solutions z obtained from these two approaches coincide P-a.s., which can
be seen as follows. Equation (D.1) has a unique stochastic solution z*° adapted to the
filtration (%7)¢>0. In view of [23, Proposition 5.1], z*° solves (D.1) also in the rough path
sense P-a.s. On the other hand, for @ from the set of full probability where the rough
path lift (B, B) is constructed, we obtain a rough path solution z(w). By uniqueness for
the rough path formulation of (D.1), z(w) = z%°(w) on a set of full probability. As a
consequence, the rough path solution may be regarded as an adapted stochastic process.
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