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Abstract. We develop a strategy to classify the components of the space of sections of a del Pezzo
fibration over P1. In particular, we prove the Movable Bend-and-Break lemma for del Pezzo fibra-
tions. Our approach is motivated by Geometric Manin’s Conjecture and proves upper bounds on
the associated counting function. We also give applications to enumerativity of Gromov–Witten
invariants and to the study of the Abel–Jacobi map.
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1. Introduction

Manin’s Conjecture predicts the asymptotic growth rate of the number of rational points
of bounded height on a smooth Fano variety defined over a global field. The modern
formulation of the conjecture [3,4,30,56,64] has been heavily influenced by unpublished
notes of Batyrev [2]. In these notes Batyrev develops a heuristic for Manin’s Conjecture
over a global function field that is based on certain assumptions about the geometry of the
moduli space of curves. By translating the principles underlying Batyrev’s heuristic from
global function fields to complex function fields, we obtain a set of predictions known as
Geometric Manin’s Conjecture (described in more detail below).

We initiate the study of Geometric Manin’s Conjecture for Fano varieties over C.t/
by investigating del Pezzo surfaces. It is usually more convenient to work directly with an
integral model:

Definition 1.1. Let k be an algebraically closed field of characteristic 0. A del Pezzo
fibration over P1 is an algebraic fiber space � WX! P1 such that X has only Gorenstein
terminal singularities and the general fiber of � is a del Pezzo surface.

Our main results address the structure of the space of sections, Sec.X=P1/, of a del
Pezzo fibration. First, we describe an inductive procedure for generating all irreducible
components of Sec.X=P1/ from a finite set of components in low degree. We illustrate
this technique in many examples. Second, we identify the exceptional set in Geometric
Manin’s Conjecture for del Pezzo surfaces and prove that it is controlled by the Fujita
invariant. Our work validates Batyrev’s heuristic (in characteristic 0): we define a formal
counting function and prove that it has the properties predicted by the heuristic. Third,
we discuss applications to stabilization of the Abel–Jacobi map and to enumerativity of
certain Gromov–Witten invariants associated to spaces of sections.

1.1. Overview of goals and motivation

Let us review Manin’s Conjecture over a global function field for trivial families over P1.
Let X be a smooth Fano variety defined over a finite field Fq . The main protagonist is
the moduli space of rational curves, Mor.P1; X/. For each numerical curve class ˛, we
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denote by Mor.P1; X; ˛/ the fine moduli scheme parametrizing morphisms f W P1 ! X

such that f�ŒP1� D ˛. In this setting Manin’s Conjecture concerns the behavior of the
number of Fq-points

Mor.P1; X; ˛/.Fq/

as the anticanonical degree d D �KX � ˛ goes toC1.
In [2], Batyrev developed a heuristic to establish the asymptotic formula for this count-

ing function based on the following assumptions:

(1) There exists some proper closed subset V such that any irreducible component of
Mor.P1;X/ parametrizing rational curves not contained in V has the expected dimen-
sion;

(2) for each nef numerical class ˛, Mor.P1; X; ˛/ is irreducible;

(3) the cardinality of Mor.P1; X; ˛/.Fq/ is approximated by qdim Mor.P1;X;˛/.

Although these assumptions are not valid in general, based on [56] we can expect that
their failure is controlled by an invariant from birational geometry known as the Fujita
invariant. In [58] we investigated these assumptions for rational curves on complex Fano
varieties.

Manin’s Conjecture makes predictions in a more general setting. For a non-trivial
family of Fano varieties � WX ! P1, Manin’s Conjecture concerns the space of sections

Sec.X=P1/

instead of the space of rational curves Mor.P1; X/. We denote by Sec.X=P1; ˛/ the
finite type fine moduli scheme parametrizing sections of numerical class ˛. We expect the
following principles to hold for fibrations with Fano fibers over an arbitrary ground field:

(1) There exists some proper closed subset V such that any irreducible component of
Sec.X=P1/ parametrizing rational curves not contained in V has the expected dimen-
sion;

(2) for each sufficiently positive nef numerical class ˛, Sec.X=P1;˛/ consists of jBr.X/j
irreducible components parametrizing sections not coming from exceptional sets;

(3) the irreducible components of Sec.X=P1; ˛/ exhibit motivic ([10]) or homological
([28]) stability as the anticanonical degree of ˛ goes toC1.

(The third principle was proposed by Ellenberg and Venkatesh who noted that homolog-
ical stability of Mor.P1; X; ˛/ combined with the Grothendieck–Lefschetz trace formula
could prove Batyrev’s heuristic on point counting; see [28].) Furthermore, Geometric
Manin’s Conjecture predicts that the exceptional set can be explicitly identified using
the Fujita invariant as explained in [56].

In this paper we study Geometric Manin’s Conjecture in characteristic 0 for
Sec.X=P1/ when � W X ! P1 is a del Pezzo fibration over P1. The main results of
this paper are the following. For simplicity suppose that X is smooth, the relative anti-
canonical class �KX=P1 is relatively ample and the degree of a general del Pezzo fiber
is � 2. Under these assumptions, we prove:
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(1) there exists a proper closed V � X such that any irreducible component of
Sec.X=P1/ parametrizing sections not contained V has the expected dimension;

(2) Movable Bend-and-Break theorem which is an inductive technique to prove the irre-
ducibility of Sec.X=P1; ˛/;

(3) a polynomial upper bound P.d/ for the number of components of Sec.X=P1/
parametrizing sections of height �KX=P1 � C � d ;

(4) a certain stabilization of the Stein factorization of Abel–Jacobi mappings;

(5) the enumerativity of certain Gromov–Witten invariants on X.

The main theorem of this paper is the Movable Bend-and-Break theorem for del
Pezzo fibrations. Recall that Mori’s Bend-and-Break lemma states that if we deform a
rational curve while fixing two points on it, then it degenerates into a non-integral curve
with rational components. However, in general it is hard to control the properties of the
degenerate curve. For sufficiently positive sections of del Pezzo fibrations we perform a
“controlled” degeneration so that the resulting curve has exactly two irreducible compo-
nents and represents a smooth point of the moduli space of stable maps. This enables us
to study properties of irreducible components of the space of sections based on induction
on the height of sections, and we use this strategy to study multiple examples in Section 8.

We also give a refinement of Batyrev’s heuristic in the setting of del Pezzo fibrations in
Section 9. This is the first study of such a heuristic in the setting of non-trivial fibrations.

1.2. Main results

We next describe our main results in more detail.

1.2.1. Classifying sections. Let � W X ! P1 be a del Pezzo fibration over P1. There are
two types of sections C of � :

� sections which deform to cover X, or

� sections which do not deform to cover X.

Sections of the first type have nice deformation properties. One can show that a general
member of an irreducible component of Sec.X=P1/ parametrizing such sections is free
and in particular the component has the expected dimension.

Sections of the second type are pathological in some sense. For example, it is possible
that a component parametrizing such sections has dimension higher than expected dimen-
sion or is everywhere non-reduced. For this reason such sections should be considered
as part of the “exceptional set” in Manin’s Conjecture and it is important to have some
control on these components for Batyrev’s heuristic.

Our first main theorem describes the components of Sec.X=P1/ which parametrize a
non-dominant family of sections.

Theorem 1.2. Let � WX!P1 be a del Pezzo fibration such that�KX=P1 is relatively nef.
Then there is a proper closed subset V ¨ X such that any component M � Sec.X=P1/
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parametrizing a non-dominant family of sections will parametrize sections contained
in V .

Our proof of Theorem 1.2 is constructive: we show that V is the union of the subvari-
eties of X which have larger generic Fujita invariant with a locus swept out by low height
sections.

Remark 1.3. [20, 3.3 Theorem] shows that any del Pezzo surface over the function field
of P1 admits an integral model with Gorenstein terminal singularities such that �KX=P1

is relatively nef. Thus every del Pezzo fibration admits a birational model where Theo-
rem 1.2 applies.

For dominant families of sections, the key question is the number of components of
Sec.X=P1/ parametrizing sections of a given nef numerical class ˛. In Batyrev’s heuris-
tic, it is important to control this number when the degree of ˛ is sufficiently large.

Conjecture 1.4. Let � WX! P1 be a del Pezzo fibration over P1 such that every smooth
del Pezzo fiber has degree � 2. Let X� denote the generic fiber of � and let E1; : : : ; Er
be generators of the pseudo-effective cone of divisors for X� . Then

(1) for a nef numerical class ˛ of sections the number of dominant components of
Sec.X=P1/ parametrizing sections of class ˛ is uniformly bounded;

(2) there exists a constant C > 0 such that if ˛ is a nef numerical class of sections such
that Ei � ˛ � C for any i then the number of dominant components of Sec.X=P1/
parametrizing sections of class ˛ is equal to jBr.X/j.

We will analyze this conjecture using the inductive approach of [35] based on breaking
and gluing rational curves. Our second main theorem shows that we can break curves
while remaining in the setting of free curves so that the outcome of our controlled Bend-
and-Break will be a smooth point of the moduli space:

Theorem 1.5 (Movable Bend-and-Break for sections). Let � W X ! P1 be a del Pezzo
fibration such that �KX=P1 is relatively ample. There is a constant Q.X/ satisfying the
following property. Suppose that M � Sec.X=P1/ is a component that parametrizes a
dominant family of sections C satisfying �KX=P1 � C � Q.X/. Then the closure of M
in xM0;0.X/ contains a point representing a stable map whose domain has exactly two
components, each mapping birationally onto a free curve.

Here Q.X/ is an explicit constant determined by the behavior of the Fujita invariant
and low degree sections.

Remark 1.6. [20, 1.10 Theorem] shows that any del Pezzo fibration whose generic fiber
has degree � 3 will admit a birational model which has Gorenstein terminal singularities
and a relatively ample anticanonical divisor.

Based on the results above, we can use the following strategy to classify sections of a
del Pezzo fibration with �KX=P1 relatively ample:
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(1) Classify all non-dominant families of sections using Theorem 1.2.

(2) Classify all dominant families of sections of small height using the explicit geometry
of the fibration.

(3) Classify all dominant families of sections of large height by induction using Theo-
rem 1.5.

We illustrate this strategy in several examples:

Example 1.7. Let X3 denote a smooth cubic threefold in P4. By taking a general pencil
of hyperplane sections and resolving the base locus we obtain a del Pezzo fibration � W
X ! P1. In Example 8.3 we will use the strategy above to show that Sec.X=P1/ admits
a unique component representing sections of any height � �1 and that each of these
components has the expected dimension.

A similar argument works for other del Pezzo fibrations constructed by blowing up a
Fano 3-fold, and we give several examples of this type.

Example 1.8. Consider the smooth threefold X �P1s;t �P3x;y;z;w defined by the equation
sx3 C ty3 C .t C s/z3 C .t C 2s/w3 D 0 equipped with the cubic surface fibration � W
X ! P1. Using the above strategy one can show that for any integer d � �1 there is
a unique component of Sec.X=P1/ with height d . Since the Galois action on Pic.Xx�/
factors through .Z=3Z/3 and under this action the 27 lines split into orbits of size .9; 9; 9/
it follows from [46, the Appendix, No. 71] that X� has Brauer group Z=3Z. Thus this
example demonstrates that it is the Brauer group of the total space and not the Brauer
group of the generic fiber which plays a role in Geometric Manin’s Conjecture over a
complex curve (see Section 9.2).

1.2.2. Upper bounds in Manin’s Conjecture and Geometric Manin’s Conjecture. The
following invariant plays a central role in the development of Manin’s Conjecture:

Definition 1.9. LetX be a smooth projective variety over a field of characteristic 0. LetL
be a big and nef Q-Cartier divisor onX . We define the Fujita invariant, or the a-invariant,
to be

a.X;L/ D min ¹t 2 R j KX C tL 2 Eff1.X/º: (1.1)

When L is nef but not big, we formally set a.X;L/ D C1.
When X is singular, we define the Fujita invariant as the Fujita invariant of the pull-

back of L to any smooth model. This is well-defined because of [38, Proposition 2.7].

Just as in [56], we expect the “exceptional set” of sections in Manin’s Conjecture to
be controlled by the generic a-invariant. The following definition describes the sections
which are allowed to contribute to the counting function.

Definition 1.10. We say that a component M � Sec.X=P1/ is a Manin component if
for the universal family U! M the evaluation map U! X does not factor rationally
through any proper subvariety Y satisfying

a.Y�;�KX=P1/ � a.X�;�KX=P1/:
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We let Manini denote the set of Manin components that parametrize sections C satisfying
�KX=P1 � C D i .

Remark 1.11. The above formulation is slightly different from the formulation in [56]
which predicts the exceptional set for rational points in the general setting. (The difference
is in how we handle subvarieties with the same a-value.) However, in our situation the
difference is negligible for the asymptotic formula of the counting function in Geometric
Manin’s Conjecture, so for the sake of simplicity we will use the definition of a Manin
component given above.

The counting function encodes the number and dimension of Manin components rep-
resenting sections of height at most d .

Definition 1.12. Fix a real number q > 1. For any positive integer d define

N.X;�KX=P1 ; q; d/ WD

dX
iD1

X
M2Manini

qdimM :

The exceptional set in Geometric Manin’s Conjecture is contained in the closed set V
of Theorem 1.2. The theorem implies that after removing the sections in V every family
has the expected dimension, giving the correct exponential term in the asymptotic formula
for N.X;�KX=P1 ; q; d/. In order to control the subexponential term, we apply ideas
from [58] to prove a special case of a conjectural heuristic of Batyrev:

Corollary 1.13. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is rela-
tively ample. There is a polynomial P.d/ which is an upper bound for the number of
components of Sec.X=P1/ that parametrize sections C satisfying

�KX=P1 � C � d:

Corollary 1.13 implies an upper bound on the counting function of the expected form

N.X;�KX=P1 ; q; d/ D O.q
dd r /

for some positive integer r .
Of course, whenever one can completely classify sections, one obtains a precise

asymptotic formula for the counting function. Assuming Conjecture 1.4, we develop a
refined heuristic of Batyrev showing the asymptotic formula for the above formal count-
ing function:

Theorem 1.14. Let � WX! P1 be a del Pezzo fibration such that X is smooth,�KX=P1

is relatively ample, and the general fiber is a del Pezzo surface of degree � 2 that is not
P2 or P1 � P1. Assume that Conjecture 1.4 holds. Then

N.X;�KX=P1 ; q; d/ �d!1
Cqdd�.X�/�1

for some C > 0.
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In this way we can analyze the counting function for some low degree del Pezzo
surfaces over k.P1/.

1.2.3. Stabilization of the Abel–Jacobi map. For a del Pezzo fibration � WX!P1 over C
such that X is smooth, we let IJ.X/ denote the intermediate Jacobian of X. For any
reduced component M � Sec.X=P1/ the universal family of curves over M induces
a rational map AJM W M Ü IJ.X/. Using our main theorems we show that the Stein
factorizations of the Abel–Jacobi maps “stabilize” as we increase the height.

Theorem 1.15. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
ample, X is smooth, and the general fiber is a del Pezzo surface with degree� 3. Consider
the set of components M � Sec.X=P1/ such that the Abel–Jacobi map AJM W MÜ
IJ.X/ is dominant. There are only finitely many morphisms ¹Zi ! IJ.X/º which occur as
a Stein factorization of a resolution of a projective compactification of one of these AJM .

Example 1.16. Suppose that � W X ! P1 is constructed by taking a general pencil of
hyperplane sections of a Fano threefold of Picard rank 1, index 2, and degree 5. In this
case IJ.X/ is an elliptic curve. We prove that the Abel–Jacobi map for every family of
sections of height� 1 is dominant with connected fibers, so that the finite part of the Stein
factorization is always the identity map. (We expect that in this example the Abel–Jacobi
map coincides with the MRC fibration for every family of sections.)

Our original motivation for Theorem 1.15 was to analyze whether the Abel–Jacobi
map relates to other possible types of stability results for components of Sec.X=P1/:

� Does the MRC fibration for components of Sec.X=P1/ stabilize as the degree
increases? ([24, 77, 78] provide negative answers to this question in related settings.)

� Do components of Sec.X=P1/ exhibit cohomological stability? (See [10, 17, 28] for
positive results and [15] for some negative results in related settings.)

However, Examples 10.5 and 10.7 show that for components of Sec.X=P1/ neither the
MRC fibration nor the Albanese map needs to coincide with the Abel–Jacobi map.

Example 1.17. Let S be a del Pezzo surface of degree 2 equipped with a conic fibration
g W S! P1. Let X be a conic bundle over S whose discriminant locusD is a very general
element of j�2KS j. By composing with g we obtain a degree 4 del Pezzo surface fibration
� W X ! P1. In this case IJ.X/ is a two-dimensional abelian variety.

We show that:

� If the Abel–Jacobi map for a component of Sec.X=P1/ is dominant, then it is not
birational to the MRC fibration. (This follows from results of [37, 77].)

� There are components of Sec.X=P1/ whose Albanese variety has dimension larger
than 2.

In particular, the dimension of the intermediate Jacobian does not provide an a priori
bound on the dimension of H 1. xM;C/ for the resolution xM of a projective closure of a
component M of Sec.X=P1/.
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1.2.4. Gromov–Witten theory. The arguments we use to prove Theorem 1.5 also show
that certain Gromov–Witten invariants for classes of sections are enumerative.

Proposition 1.18. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is rela-
tively ample and X is smooth. Let F be a general fiber of � . There is a constant C.X/
such that the following is true. Fix an integer n � C.X/. Let ˇ 2 N1.X/Z denote a curve
class satisfying �KX=P1 � ˇ D 2n � 2 and F � ˇ D 1 for a general fiber F of � . Then

the GW-invariant hŒpt�niX;ˇ0;n is enumerative: it counts the number of rational curves of
class ˇ through n general points of X.

Proposition 11.2 gives a similar result for classes of odd height, and Proposition 11.3
gives conditions which guarantee that these GW-invariants do not vanish. These results
complement [72, Theorem 4.1] which proves the non-vanishing of other GW-invariants
for del Pezzo fibrations over P1.

1.3. Relations to other work

Here we discuss relations of the current paper to other work in the subject.

1.3.1. Past work. As mentioned above, Batyrev developed a heuristic (“Batyrev’s
dream”) for Manin’s Conjecture over finite fields in [2] based on three assumptions. (This
heuristic is explained in [74, Section 4.7] and [11, Section 1.2].) This perspective leads
to the formulation of the Batyrev–Manin Conjecture in [3]. We investigated this heuristic
for Fano varieties in characteristic 0 in [58] and confirmed that the first assumption is
always valid. However, the second assumption fails in general mainly due to the presence
of Zariski dense thin exceptional sets which are intensively studied in the case of rational
points over number fields [33,38,56,57,61,67]. Moreover in [58], we proposed Geomet-
ric Manin’s Conjecture which predicts that for a Fano varietyX the number of irreducible
components of Mor.P1;X; ˛/ which contribute to the counting function is constant when
the degree of ˛ is sufficiently large. (The appellation “Geometric Manin’s Conjecture”
comes from the fact that this conjecture over complex function fields is derived from
Manin’s Conjecture over global function fields, just as the geometric Langlands Program
over complex function fields is derived from the Langlands Program over global func-
tion fields.) In this paper, we extend this perspective to the setting of del Pezzo fibrations
over P1. See Section 9 for more details.

The classification of components of Mor.P1;X/ for a smooth Fano variety has a long
and rich history. This has been done for homogeneous spaces in [49, 71]. There was also
a pioneering work [35] analyzing the inductive structure using Mori’s Bend-and-Break
when X is a smooth Fano hypersurface. This has been subsequently generalized in [6,66]
completing the analysis for most Fano hypersurfaces. (See [13, 14] for another approach
using an idea from analytic number theory.) Toric varieties have been analyzed in [12]
and the moduli spaces of vector bundles on curves have been studied in [15]. Smooth del
Pezzo surfaces have been handled by Testa [70], and smooth Fano threefolds have been
the focus of many studies [15, 21, 58, 59].
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The stabilization of MRC fibrations/Abel–Jacobi mapping has also been well-studied.
In positive directions, there are some results [34] for cubic threefolds, [15] for moduli
spaces of vector bundles on curves, [23] for 2-Fano fibrations, and [82] for homogenous
fibrations. [24] provides examples where MRC fibrations do not stabilize and [77] char-
acterizes when the Abel–Jacobi mappings coincide with the MRC fibrations for rationally
connected threefolds.

Del Pezzo fibrations have been studied extensively due to their prominent role in the
minimal model program for threefolds. [32] guarantees that a del Pezzo fibration admits
a section. There is a large body of literature on the Weak Approximation Conjecture for
sections of del Pezzo fibrations; see e.g. [19,39,40,50,53,69,73,80,81]. The Abel–Jacobi
map for sections has been studied for quadric surface fibrations in [41] and for degree 4
del Pezzo fibrations in [42]; and [72] has studied Gromov–Witten invariants for del Pezzo
fibrations over P1.

1.3.2. Comparison to the sequel. In the sequel paper [60], we study sections of del Pezzo
fibrations over higher genus curves. Using ideas in the current paper, we generalize The-
orems 1.2 and 1.5 to the case when the base curve has a higher genus. However, the
various constants (such as Q.X/ from Theorem 1.5) are rather impractical compared to
the constants in the current paper. In this paper we are able to analyze multiple examples
of non-trivial del Pezzo fibrations, while in [60] the only examples are trivial del Pezzo
fibrations over a higher genus curve. In addition, the applications to stabilization of Abel–
Jacobi mappings and to enumerativity of Gromov–Witten invariants are only discussed
in this paper (although similar arguments will work for del Pezzo fibrations over higher
genus curves).

2. Preliminaries

Fix a field k which is algebraically closed and of characteristic 0. In this paper our ground
field will usually be k or k.P1/. A variety is a reduced irreducible separated scheme of
finite type over the ground field. Unless otherwise stated, a component means an irre-
ducible component. When we take a component of a scheme, we always endow it with its
reduced structure.

Throughout the paper we will use �rat to denote rational equivalence of cycles and
�alg to denote algebraic equivalence of cycles.

LetX be a projective separated scheme of finite type over the ground field. We will let
N 1.X/R denote the space of R-Cartier divisors up to numerical equivalence on X and let
Eff1.X/ and Nef1.X/ denote respectively the pseudo-effective and nef cones of divisors.
Dually, N1.X/R denotes the space of R-curves up to numerical equivalence and Eff1.X/
and Nef1.X/ denote respectively the pseudo-effective and nef cones of curves. We denote
the lattices generated by integral cycles byN 1.X/Z �N

1.X/R andN1.X/Z �N1.X/R.
We define Nef1.X/Z WD Nef1.X/ \N1.X/Z.
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We say that a reduced irreducible curve C is movable on X if C is a member of a
family of curves which dominates X .

2.1. Free rational curves on Gorenstein terminal threefolds

We recall some deformation theory of rational curves on threefolds with Gorenstein ter-
minal singularities.

Definition 2.1. Let X be a Gorenstein threefold with only terminal singularities. Let f W
P1 ! X be a rational curve. We say f is free if the image f .P1/ is contained in the
smooth locus of X and we have

f �TX D O.a1/˚O.a2/˚O.a3/

with 0 � a1 � a2 � a3.

It is well-known that for a smooth quasi-projective variety Y and any component
M � Mor.P1; Y / we have

dimM � �KY � C C dimY;

where C 2 M is a general member (see [51, Theorem II.1.2]). We have the following
lemma for Gorenstein terminal threefolds:

Lemma 2.2. Let X be a Gorenstein terminal threefold. Let M be a component of
Mor.P1; X/. Then

dimM � �KX � C C 3;

where C 2M is a general member.

Proof. [51, Theorem II.1.3] shows that our assertion holds for locally complete intersec-
tion varieties, so we just need to verify this condition for X .

Since X has Gorenstein terminal singularities, it has isolated cDV singularities [55,
Corollary 5.38]. It is well-known that isolated cDV singularities are analytically isomor-
phic to hypersurface singularities. For any local ring which is the homomorphic image of
a regular local ring the complete intersection property can be detected on the completion
(see e.g. the discussion in [27, Section 18.5, p. 462]), and we deduce that X is locally
complete intersection in the Zariski topology.

Lemma 2.3. Let X be a Gorenstein threefold with terminal singularities. Suppose that
M � Mor.P1; X/ is a component parametrizing a dominant family of curves. Then a
general member of M is free.

Proof. Suppose that all members ofM pass through singular points ofX . Let � W Y !X

be a resolution. Let C be a general member of M and let C 0 denote its strict trans-
form on Y . Then C 0 must meet a �-exceptional divisor. However, the terminal condition
implies that

�KY � C < �KX � C
0:
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Since deformations of C 0 dominate Y , the family of deformations of C 0 has the expected
dimension. We conclude that dim.M/ D �KY � C

0 C 3. This contradicts Lemma 2.2
which shows that dim.M/ � �KX � C C 3.

2.2. Fano fibrations

In this paper, a Fano fibration will always be an integral model with mild singularities for
a Fano variety over k.P1/. More precisely:

Definition 2.4. A Fano fibration is a morphism � W X ! P1 satisfying the following
properties:

(1) X is a normal projective variety with Gorenstein terminal singularities,

(2) f is an algebraic fiber space,

(3) the general fiber of � is a smooth Fano variety.

We will always denote the generic point of P1 by � and the generic fiber of � by X� .

Fano fibrations satisfy the following important properties:

� Every fiber of f is rationally chain connected (see [51, IV.3.5 Corollary]).

� As we vary F over all smooth fibers, the dimension of N 1.F /R is constant. Indeed,
the dimension ofN 1.F /R does not change under a base change of algebraically closed
fields, so one may assume that our ground field k is an algebraic closure of a finitely
generated field over Q. Such a field admits an embedding into C, so we may assume
that k D C. Now the previous property combined with [54, Section 2.1] shows that F
is rationally connected. In particular, dim.N 1.F /R/ D dimH 2.X;R/ and the latter is
constant in smooth families by [26, p. 154, Proposition].

Furthermore, Fano fibrations have the nice property that the positivity of divisors on
the generic fiber is related to positivity of divisors on a general fiber.

Lemma 2.5 ([79, Theorem 1], [22, Theorem 6.8 and preceding discussion]). Let � W
X ! P1 be a Fano fibration. Let L be a Q-Cartier divisor on X. Then the following
are equivalent:

(1) LjF is ample for some smooth Fano fiber F .

(2) LjF is ample for all smooth Fano fibers F .

(3) LjX� is ample.

The analogous statement is true for nefness, for bigness, and for pseudo-effectiveness.

2.3. Height functions

Let � W X ! P1 be a projective morphism of finite type of separated schemes over the
ground field. Then the choice of an ample Q-Cartier divisor on the generic fiber X� will
define a height function on sections of � . It is well-known that a Northcott property holds
in this setting:
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Lemma 2.6. Let � W X ! P1 be a dominant projective morphism of finite type of sepa-
rated schemes over the ground field. Let L be a Q-Cartier divisor on X whose restriction
to a general fiber is ample. For any fixed constant 
 , the set of classes of sections C
satisfying L � C � 
 lies in a bounded subset of N1.X/R.

Proof. The proof is by induction on the dimension of the generic fiber of � . The base case
is when the relative dimension is 0. Then the set of sections is finite and the statement is
obviously true.

Now suppose that the generic fiber of � has dimension n > 0. Let ¹Xiº
r
iD1 denote the

set of (reduced) irreducible components of X which map dominantly to P1. The inclu-
sions induce a linear map

L
N1.Xi /R ! N1.X/R whose image contains the numerical

classes of all sections of � . Since any section of � will also be a section of �jXi for
some i , it suffices to prove the statement for each irreducible component Xi . Thus we
may assume that X is a projective variety of dimension n that maps dominantly to P1.

By assumption there is an open subset U � P1 such that Lj��1.U / is �j��1.U /-
relatively ample. In turn this implies that L is �-relatively big over P1. Let F denote a
general fiber of � and choose a positive integerm such that LCmF is big on X. We can
write LCmF � H C E for some ample Q-divisor H and some effective Q-divisor E.
Then every section C in the statement of the theorem satisfies either

� E � C � 0, in which case H � C � 
 Cm, or

� E � C < 0.

The numerical classes of sections of the first type lie in a bounded subset of N1.X/R.
Sections of the second type must be contained in Supp.E/. We then conclude the desired
statement by the induction hypothesis applied to Supp.E/ equipped with the Q-Cartier
divisor LjE .

One consequence of Lemma 2.6 is that there is a lower bound on the possible values
of L � C as we vary C over all sections.

Definition 2.7. Let � WX! P1 be a Fano fibration and letL be a Q-Cartier divisor on X

whose restriction to the generic fiber is ample. We define neg.X; L/ to be the smallest
value of L � C as we vary C over all sections of � W X ! P1.

2.4. Spaces of sections

Let � W X ! P1 be a Fano fibration. We let Sec.X=P1/ denote the open subset of
Hilb.X/ parametrizing sections of � . Using the functorial definitions, we see that there
is an inclusion Sec.X=P1/ � xM0;0.X/. In particular, any component M of Sec.X=P1/
embeds as a dense open subset of a unique component xM of xM0;0.X/.

The expected dimension of a component M � Sec.X=P1/ is

expdim.M/ D �KX=P1 � C C .dim X � 1/

where C denotes a general section parametrized by M . Lemma 2.2 shows that the ex-
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pected dimension is a lower bound for dim.M/whenever dim.X/� 3. IfM parametrizes
a family of free sections then the actual dimension agrees with the expected dimension.

Lemma 2.8. Let � WX! P1 be a Fano fibration with dim.X/� 3 and let n be a positive
integer. Suppose that C is a section such that any n general points of X are contained
in a deformation of C . If we let C 0 be a general deformation of C and write NC 0=X DL

OP1.ai / then ai � n � 1 for each i . Moreover, we can find such a section C 0 through
any n general points.

Conversely, if C is a free section of X with NC=X D
L

OP1.ai / and ai � n� 1 for
each i , then any n general points of X are contained in some deformation of C .

Proof. This follows from the commutative diagram (2) in [68, p. 240].
First suppose that some deformation of C contains n general points. By Lemma 2.3

we know that a general deformation of C is free. Consider the sublocus of Sec.X=P1/
parametrizing free deformations of C through a fixed set of n � 1 general points. We
know that there is some component of this locus whose universal family maps dominantly
onto X. It follows that the differential map of tangent spaces for the universal family is
generically full rank. Thus the commutative diagram (2) in [68] implies that ai � n � 1.

Conversely, suppose that ai � n � 1 for some free section C . We prove our assertion
by induction on n. For the base case when n D 1, C is free so that our assertion is clear.
For the induction step, we suppose that the statement is true for n and ai � n for every i .
By the induction hypothesis, a general deformation of C passes through n general points.
We fix n general points and we consider the deformation space of curves passing through
n general points. Shen shows that the differential of the map from the universal family to
X is generically full rank. This means that this evaluation map must be dominant, so a
general deformation of C will pass through nC 1 general points.

2.5. Rational curves on del Pezzo surfaces

In this section we review some results of [70] concerning the moduli spaces of rational
curves on del Pezzo surfaces defined over an algebraically closed field of characteristic 0.
When we discuss rational curves on del Pezzo surfaces we will always refer to the anti-
canonical polarization: lines mean �KS -lines, conics mean �KS -conics, etc. We start by
discussing the classification of rational curves of low anticanonical degree.

Lemma 2.9. Let S be a del Pezzo surface of degree d defined over an algebraically
closed field of characteristic 0. Then:

(1) The lines on S are either .�1/-curves or singular elements of j�KS j .when d D 1/.

(2) The conics on S are either fibers of a conic fibration or the pullbacks of rational
curves in the anticanonical linear series on a degree 2 del Pezzo surface via birational
maps .when d D 1; 2/ or rational curves which lie in j�2KF j .when d D 1/.

(3) Suppose d � 2. Then the cubics on S are pullbacks of elements of jOP2.1/j under
birational maps � W S ! P2 or the pullbacks of rational curves in the anticanonical
linear series on a degree 3 del Pezzo surface S 0 via birational maps .when d D 2; 3/.
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In particular, suppose that C is a cubic curve on a del Pezzo surface S of degree between
2 and 8 that contains a point p0 not lying on any line in S . Then we can deform C while
keeping p0 fixed to a stable map whose image is the union of a conic containing p0 and
a line.

Proof. (1) follows from [7, Lemma 3.3]. (2) follows from [7, Lemma 3.4]. (3) follows
from [7, Lemma 4.3] and its proof. It only remains to prove the last claim. If C is smooth,
then there is a birational map � W S ! P2 such that C is the strict transform of a line. Let
p00 denote the �-image of p0 and let q0 denote a point where ��1 is not defined. Then C
deforms to the union of the strict transform of the line passing through p00 and q0 and the
.�1/-curve over q0. If C is singular, then there is a birational map � W S ! P2 such that
C is the strict transform of a rational plane cubic C on P2 passing through the image p00
and six points where ��1 is not defined. Such a curve degenerates to the union of the strict
transform of a conic passing through p00 and four of the points with the strict transform of
a line passing through the other two points. Thus our assertion follows.

By combining with [70, Proposition 2.4] we obtain the following.

Lemma 2.10. Let S be a del Pezzo surface of degree � 3. Then the spaces of conics and
cubics on S are rational.

Testa’s main theorem is the following.

Theorem 2.11 ([70, Theorem 5.1]). Let S be a del Pezzo surface of degree � 2. Then for
every numerical class ˛, there is at most one component of xM0;0.S; ˛/ that generically
parametrizes stable maps that are birational onto their image.

The following lemma is a key step in his proof and we will need it as well.

Lemma 2.12. Let S be a del Pezzo surface. Let C be a general free curve on S such that

�KS � C � 4:

Fix two general points x0; x1 of C . Then we can deform C as a stable map, keeping x0
and x1 fixed, so that the image of the resulting stable map is the union C0 [ C1 of two
free curves such that x0 2 C0 and x1 2 C1.

Moreover, by continuing this inductively we can deformC as a stable map into a chain
of free curves of anticanonical degree � 3 such that the end curves C0 and C1 contain
x0; x1 respectively.

Proof. To see the first statement, consider the deformations of C which contain a fixed
set of �KS � C � 2 general points on S . By Bend-and-Break, C deforms into a broken
curve through these points. By [70, Lemma 1.14] this broken curve must be the union of
two free curves, and we deduce the statement.

We prove the second statement by induction on �KS �C D r . Let xM denote the com-
ponent of xM0;0.S/ containing the stable map represented by the normalization P1 ! C .
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The first statement shows that xM contains stable maps g whose domain has two compo-
nents and whose image in S is C0 [ C1 where C0 and C1 are free curves and xi 2 Ci . If
both of the Ci have degree � 3 then we are done.

If exactly one of theCi has degree� 3, we may suppose without loss of generality that
this component is C0. Choose a general point x2 on C0. By choosing x0 general in S , we
may assume that x2 is also general in S . By deforming C1 (and deforming the attachment
point to C0), we may suppose that C1 contains both x1 and x2 so that the attachment is x2.
Then we apply the induction hypothesis to C1 with x1 and x2.

Finally, suppose that both the Ci have degree > 3. Let xM0 and xM1 denote the compo-
nents of xM0;0.S/ containing C0 and C1 and let xM .1/

0 and xM .1/
1 denote the corresponding

components of xM0;1.S/. Since g is a smooth point of xM0;0.S/, we see that xM con-
tains a component of xM .1/

0 �S
xM
.1/
1 representing gluings of deformations of C0 and C1.

Since C0 is free and x0 is general, if we fix a general point x2 2 S then the sublocus
of xM0 parametrizing curves through x0 and x2 has codimension 2. By our degree assump-
tion this locus is non-empty, and a general such curve will not contain x1. Similarly, the
sublocus of xM1 parametrizing curves through x1 and x2 has codimension 2. By our degree
assumption this locus is non-empty, and a general such curve will not contain x0. Thus the
corresponding component of xM .1/

0 �S
xM
.1/
1 contains a stable map onto two free curves

zC0 and zC1 such that zC0 contains x0 but not x1, and zC1 contains x1 but not x0, and the
image of the node is the general point x2. Then we may apply the induction hypothesis
to zC0 with x0; x2 and to zC1 with x1; x2 and our assertion follows.

We will also need the following lemma:

Lemma 2.13. Let S be a smooth del Pezzo surface of degree � 2. Then every element of
Nef1.S/Z is represented by a sum of free rational curves.

Proof. By [70, Corollary 2.3], it suffices to show that for every del Pezzo surface S of
degree � 2 there is a free rational curve in the anticanonical linear series j�KS j. This
is clear for P1 � P1; for any other del Pezzo surface, we can find a birational map � W
S ! P2. Then the strict transform C of a rational cubic on P2 which contains the �-
exceptional locus will be a rational curve in j�KS j. Using deformation theory we see
that C must deform in at least a one-dimensional family on S , showing that a general
deformation will be free.

3. Fujita invariants

In this section we work over an arbitrary field of characteristic 0. Recall that we have the
following definition of the Fujita invariants.

Definition 3.1. Let X be a smooth projective variety over a field of characteristic 0. Let
L be a big and nef Q-Cartier divisor on X . The Fujita invariant, or the a-invariant, is

a.X;L/ D min ¹t 2 R j KX C tL 2 Eff1.X/º: (3.1)
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Note that the a-invariant is geometric: it does not change under field extension. We
will be interested in how the Fujita invariant behaves over k.P1/.

Definition 3.2. Let � W X ! P1 be a morphism with irreducible generic fiber and let
L be a Q-Cartier divisor on X whose restriction to the generic fiber is big and nef. The
generic a-invariant of X with respect to L is a.X�; LjX�/.

When � is a Fano fibration, we obtain a geometric interpretation of the generic a-
invariant using Lemma 2.5.

Lemma 3.3. Let � WX! P1 be a Fano fibration and let L be a Q-Cartier divisor on X

whose restriction to a general fiber is big and nef. Then for any smooth Fano fiber F we
have

a.X�; LjX�/ D a.F;LjF /:

Proof. By Lemma 2.5 we see that KX� C tLjX� is pseudo-effective if and only if
KF C tLjF is pseudo-effective for every smooth Fano fiber F . In particular, the cor-
responding Fujita invariants must coincide.

For del Pezzo surfaces, it is easy to work out the behavior of the a-invariant of the
anticanonical divisor when restricted to subvarieties. This leads to the following descrip-
tion:

Lemma 3.4. Let � W X ! P1 be a del Pezzo fibration. Then:

� A subvariety Y will have a.Y�;�KX=P1/ > 1 if and only if its intersection with a
general fiber F is a union of curves of the following types: .�1/-curves, or rational
curves in j�KF j when F has degree 1.

� A subvariety Y will have a.Y�;�KX=P1/ D 1 if and only if its intersection with a
general fiber F is a union of curves of the following types: irreducible fibers of a conic
fibration on F , rational curves in j�KF j if F has degree 2, and rational curves which
lie in j�2KF j or the pullback of the anticanonical linear series on a degree 2 del Pezzo
surface if F has degree 1.

Proof. By [56, Proposition 4.4] every irreducible component of YK.B/ will have the same
Fujita invariant as Y� . Thus it suffices to show that if S is a del Pezzo surface over an
algebraically closed field of characteristic 0 then any subvarietyZ � S with Fujita invari-
ant � 1 must have one of the types described in the statement. Any such curve Z must be
rational. The desired statement then follows from Lemma 2.9 and the computation

a.Z;�KS / D
2

�KS �Z
:

In particular, the subvarieties Y with larger generic a-invariant than X form a closed
subset. The subvarieties Y with the same generic a-invariant as X are a little more
complicated; note that they need not form a bounded family on X (even though the cor-
responding subvarieties of X� do form a bounded family).
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4. Bend-and-Break

We will frequently use Bend-and-Break (as in [63] and [55, Lemma 1.9]) for families of
rational curves through two fixed points, but we will need a slightly more precise version
than is usually stated in the literature. In order to explain this precise version we review
the following lemma (used in the proof of Bend-and-Break) which identifies the exact
criterion we will need.

Lemma 4.1. Let � W Y !C be a fibration with general fiber P1 from a smooth projective
surface Y to a smooth projective curve C . Let X be a projective variety and suppose f W
Y ! X is a morphism such that dim.f .Y // D 2 and two sections C1; C2 are contracted
to different points x1; x2 in X . Then there is some fiber F of � admitting two different
components F1; F2 such that

� neither F1 nor F2 is contracted by f ,

� the f -image of F1 contains x1 and the f -image of F2 contains x2.

Proof. Assume otherwise. Let D1 denote the connected component of the f -fiber over
x1 that contains C1. Using the Hodge index theorem, we can assign coefficients to the
components of D1 so that the resulting divisor zD1 satisfies the following properties:

� C1 occurs in zD1 with coefficient 1,

� any other �-horizontal component of D1 occurs with coefficient 0 in zD1,

� zD1 �E D 0 for every �-vertical component E of D1.

In the same way we use C2 to construct D2 and zD2 in the fiber over x2. Note that zD1
and zD2 do not intersect.

By our assumption, every fiber F of � has a unique component F0 such that

� F0 is not contracted by f ,

� F0 is the unique component of F that meets D1 but is not contained in D1,

� F0 is the unique component of F that meets D2 but is not contained in D2.

If F0 occurs with coefficient m0 in F , then by construction

m0F0 � zD1 D F � zD1 D 1:

Similarly m0F0 � zD2 D 1. We deduce that zD1 � zD2 has vanishing intersection against
every �-vertical curve. Since the general fiber of � is a rational curve, this condition
implies that zD1 � zD2 is numerically equivalent to a curve whose support is �-vertical.
By [62, Lemma 1-2-10] we deduce that zD1 � zD2 is numerically equivalent to a multiple
of the fiber F . Thus

0 D . zD1 � zD2/
2
D zD2

1 C
zD2
2 � 2

zD1 � zD2:

But since zD1 and zD2 are contracted by f , they both have negative self-intersection. Fur-
thermore, zD1 � zD2 D 0. This yields a contradiction.
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Following through the proof of Bend-and-Break, we obtain the following corollary.

Corollary 4.2. Let X be a projective variety. Let f W P1 ! X be a birational map onto
a rational curve in X . Suppose that that there are two different points p1; p2 2 P1 and a
curve Bı � Mor.P1; X; f jp1;p2/ such that the images of the maps parametrized by Bı

sweep out a surface in X . Then f deforms as a stable map to a morphism g W C ! X

such that C has .at least/ two components C1; C2 which are not contracted by g and
which satisfy f .pi / 2 g.Ci / for i D 1; 2.

Proof. By construction, there is some curveBı�Mor.P1;X;f jp1;p2/ containing f such
that we get a morphism s W P1 �Bı! X that contracts two sections. If we let B denote a
projective closure of a normalization of Bı then s defines a rational map P1 � BÜ X .
Let � W S ! P1 � B be a birational map of smooth varieties resolving s. Note that any
fiber of S ! B is a union of rational curves. By applying Lemma 4.1 to s, we find a
reducible fiber T of S ! B and two components T1; T2 that are not contracted by sjT
whose images contain p1 and p2. Although sjT may be a prestable map that is not stable,
after a stabilization procedure as in [8, discussion before Proposition 3] we obtain a stable
map g W C ! X satisfying the desired properties.

4.1. Breaking curves on surfaces

It will also be helpful to have more precise breaking results for sections of a fibration
f W S ! P1 whose generic fiber is P1. We first need a lemma:

Lemma 4.3. Let Y be a smooth projective surface with a morphism � W Y ! P1 such that
a general fiber of � is isomorphic to P1. Let F be a singular fiber of � with components
¹Eiº

r
iD1. Suppose that E1 is a .�1/-curve that has multiplicity 1 in the fiber F . Then

there is another .�1/-curve in the fiber F .

Proof. The argument is by induction on the number of components of F . When F has
two components the claim is clear.

We next prove the inductive step. There is a sequence of contractions of .�1/-curves

Y D Y1
�1
�! Y2

�2
�! Y3

�3
�! � � �

�r�1
���! Yr�1

which contract all the components of F but one. We may suppose that E1 is the excep-
tional divisor for �1 since otherwise the statement is clear. Let E2 denote the exceptional
divisor for �2 and also (by abuse of notation) its strict transform on Y . If E2 does not
intersectE1 on Y then it is another .�1/-curve, proving the claim. IfE2 does intersectE1
on Y , then on Y2 the curve E2 is a .�1/-curve and it must have multiplicity 1 (since the
multiplicity of E2 on Y2 is a lower bound for the multiplicity of E1 on Y ). By applying
the induction hypothesis to Y2 we find another .�1/-curve Ej . The strict transform of Ej
to Y cannot intersect E1 (since this would make the multiplicity of E1 in the fiber F
larger than 1), showing that Ej is a .�1/-curve on Y in the fiber F .
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Corollary 4.4. Suppose that � W Y ! P1 is a Fano fibration of relative dimension 1.
Fix a section C of � . There is a birational map � from Y to a Hirzebruch surface Fe D
PP1.O ˚O.�e// that is an isomorphism on an open neighborhood of C .

Proof. Suppose that � admits a reducible fiber F0. Then F0 must contain a .�1/-curve.
This curve may or may not be disjoint from C . However, if it is not disjoint from C

then it must have multiplicity 1 in F0, and Lemma 4.3 guarantees that there is a different
.�1/-curve in this fiber. Thus either way we are guaranteed to have a .�1/-curve in F0
disjoint from C . Contracting such .�1/-curves inductively yields the desired Hirzebruch
surface.

The following theorem gives us two breaking results for sections on surfaces, depend-
ing on whether or not we want the resulting section to be movable.

Theorem 4.5. Let � W Y ! P1 be a Fano fibration of relative dimension 1 and let F
denote a general fiber of � . Fix a dominant family of sections C on Y and set q D
�KY=P1 � C . Let � W Y ! Fe be the birational map constructed by Corollary 4.4 applied
to C . Then e � q and

(1) there exists a section C0 such that C �rat C0 C
qCe
2
F C T for some �-vertical effec-

tive cycle T ,

(2) there exists a dominant family of sections C1 such that C �rat C1 C
q�e
2
F:

In both situations the coefficient of F is an integer.

Proof. Pushing forward general deformations of C to Fe , we obtain a dominant family of
sections zC on Fe of height q. Since the minimal height of a moving section of Fe is e, we
have e � q.

We have zC �rat zC0 C
qCe
2
zF where zC0 is the rigid section and zF is a fiber of the pro-

jective bundle structure. We also have zC �rat zC1 C
q�e
2
zF where zC1 is the minimal free

section of Fe . Pulling back general deformations to Y gives us the desired two expres-
sions.

5. Expected dimension of sections

[58] proves that if X is a smooth Fano variety andM is a component of Mor.P1;X/ with
dimension larger than expected then the curves parametrized by M will all be contained
in a subvariety Y � X with a.Y;�KX / > a.X;�KX /. We would like to formulate an
analogous result for Fano fibrations using the generic a-invariant with respect to�KX=P1 .
However, the analogy fails in two different ways.

First, there can be components with higher than expected dimension that are not
observed by the a-invariant at all.

Example 5.1. Consider the Fano fibration f W Fe ! P1 where Fe D PP1.O ˚O.�e//.
Since Fe;� D P1

k.P1/
, there are no subvarieties with larger generic a-invariant. However,

the rigid section has higher than expected dimension as soon as e > 1.
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Examples of this type indicate that our proposed analogy should only address sections
with large anticanonical degree. (Note that this setting is sufficient for applications to
Manin’s Conjecture.)

Second, even sections which have large anticanonical degree and which deform more
than expected need not be contained in subvarieties with higher generic a-invariant. The
following example shows that such sections can sweep out a subvariety Y whose generic
a-invariant is the same as the generic a-invariant of X. As above, we will let Fe denote
the Hirzebruch surface defined by O ˚O.�e/.

Example 5.2. Let h W F2! P1 denote the projection map, let C0 denote the rigid section
of h and let D denote a fiber of h. We define g W X ! F2 to be the P1-bundle defined
by O ˚ O.�C0 � D/. The composed map � W X ! P1 realizes X as an F1-fibration
over P1. We let � denote the unique effective section of OX=F2.1/. Note that KX=P1 D

�2� C g�.�3C0 � 3D/.
Let Y � X denote the g-preimage of C0. Then Y is isomorphic to F1 and we have

KX=P1 jY DKY=P1 C 2T where T is the fiber of Y ! P1. Note that the generic a-invari-
ants of X and Y with respect to �KX=P1 are equal.

Let C be any section of Y ! P1 whose deformations cover Y . The calculation above
shows that the expected dimension of the moduli space of deformations of C on X is
always 1 less than the actual dimension. Furthermore, we can find such sections C with
arbitrarily large height.

In light of the examples above, the following conjectural statements should be seen as
the correct analogues of [58, Theorem 1.1]:

(1) Any section with sufficiently large anticanonical degree that deforms more than ex-
pected will sweep out a subvariety Y � X whose generic a-invariant with respect to
�KX=P1 is at least as large as that of X.

(2) If Y is an “accumulating subvariety” (in the sense that sections on Y will dominate
the expected exponential term in Geometric Manin’s Conjecture), then the generic
a-invariant of Y with respect to �KX=P1 is strictly larger than that of X.

In this section we will prove statements of this type for del Pezzo fibrations.

Remark 5.3. Another distinction with the case of trivial families is that one does not
expect any sort of converse to hold. That is, there can be subvarieties Y satisfying the
condition a.Y�;�KX=P1/ > a.X�;�KX=P1/which do not admit any families of sections
with higher than expected dimension. This is a consequence of the fact that the resolution
of the structure map Y ! P1 need not have connected fibers.

Theorem 5.4. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
nef. Let M denote a component of Sec.X=P1/ parametrizing sections C satisfying

�KX=P1 � C � sup ¹�2 neg.X;�KX=P1/ � 1; 1º:

Let Y denote the closure of the locus swept out by the corresponding sections. Suppose
that either
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� Y ¨ X, or

� dim.M/ > �KX=P1 � C C 2.

Then a.Y�;�KX=P1 jY / � a.X�;�KX=P1/.

Proof. Note that every rigid section C will satisfy �KX=P1 � C � �2. Due to our restric-
tion on height we see that in either of the two cases of the theorem we must have dim.Y /
D 2. Let � W zY ! Y denote a resolution of singularities. Let zC denote the strict trans-
form of a general deformation of the section C . By assumption the deformations of zC
are Zariski dense on zY ; thus the natural map  W zY ! P1 is an algebraic fiber space.
Moreover, our height bound guarantees that there is at least a one-parameter family of
deformations of zC through two general points of zY . By Bend-and-Break we see that zY is
generically a P1-bundle over the base. Since the zC dominate zY , we have

dim.M/ D �K zY =P1 �
zC C 1:

Thus in either of the two cases in the statement of the theorem we are guaranteed to have

.K zY =P1 � �
�KX=P1 jY / � zC < 0:

By applying Theorem 4.5 to zY , we find a Hirzebruch surface Fe and a birational map
� W zY ! Fe which is an isomorphism on a neighborhood of zC . As in the statement of
Theorem 4.5 there exists a section zC0 such that zC �rat zC0 C

qCe
2
F C T for some �-

vertical effective cycle T , where

q D �KY=P1 � zC > �KX=P1 � C � �2 neg.X;�KX=P1/ � 1;

the last inequality following from our height bounds. In particular, since the coefficient
of F is an integer, we have qCe

2
� � neg.X;�KX=P1/. Note that

0 > .K zY =P1 � �
�KX=P1 jY / � zC

D �q � ��KX=P1 jY �

�
zC0 C

q C e

2
F C T

�
D e C

q C e

2
.���KX=P1 jY � F � 2/ � �

�KX=P1 � . zC0 C T /

� e C
q C e

2
.���KX=P1 jY � F � 2/ �KX=P1 � �� zC0 (5.1)

where we use the relative nefness of �KX=P1 at the last step. Suppose for a contradiction
that there is an inequality a.Y�;�KX=P1 jY / < a.X�;�KX=P1/. This is equivalent to
saying that ���KX=P1 jY � F � 3. Then by combining the two inequalities above we
obtain

0 > e C
q C e

2
C neg.X;�KX=P1/ � e � 0;

yielding a contradiction.

The most interesting situation in Theorem 5.4 is when we have a.Y�;�KX=P1 jY / D

a.X�;�KX=P1/. In this case the same argument gives a little more:
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Theorem 5.5. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
nef. LetM denote a component of Sec.X=P1/. Suppose that the sections C parametrized
by M satisfy

�KX=P1 � C � sup ¹�2 neg.X;�KX=P1/ � 1; 1º

and sweep out a surface Y ¨ X satisfying

a.Y�;�KX=P1 jY / D a.X�;�KX=P1/:

Then there exists a component M 0 of Sec.X=P1/ parametrizing sections C1 satisfying
�KX=P1 � C1 < � neg.X; �KX=P1/ � 1 such that the corresponding sections sweep
out Y . Furthermore, the difference between the expected and actual dimension of M is
the same as the difference between the expected and actual dimension of M 0.

Proof. We return to the setting of the proof of Theorem 5.4, keeping the constructions
and notation established there. In this situation we have ���KX=P1 jY � F D 2 and

.K zY =P1 � �
�KX=P1 jY / � F D 0:

Let zC1 denote the strict transform on zY of a general moving section of Fe of minimal
height. Since � is an isomorphism on a neighborhood of zC1, we have

0> .K zY =P1 ��
�KX=P1 jY / � zC D .K zY =P1 ��

�KX=P1 jY / � zC1D�e��
�KX=P1 jY �

zC1:

On the other hand, by inequality (5.1) in the proof of Theorem 5.4 we also have

0 > e C neg.X;�KX=P1/:

Altogether it follows that

���KX=P1 jY �
zC1 < � neg.X;�KX=P1/ � 1:

Let C1 be the image in X of zC1. We let M 0Y denote the component of Sec. zY =P1/
parametrizing deformations of zC1 and letM 0 denote the component of Sec.X=P1/which
parametrizes deformations of C1. Since zC and zC1 differ by mF for some integer m, we
have

dim.M/ D �K zY =P1 �
zC C 1 D �K zY =P1 �

zC1 C 2mC 1 D dim.M 0Y /C 2m;

expdim.M/ D �KX=P1 � C C 2 D �KX=P1 � C
0
C 2mC 2 D expdim.M 0/C 2m:

Note that there is a natural pushforward map M 0Y ! M 0. We claim that in fact this map
is birational. In other words, we must show that Y is the closure of the locus swept
out by the sections defined by M 0. It is clear that this locus contains Y , and we only
must verify that it is not a larger set. We know that dim.M/ � expdim.M/ � 0, since
any family of curves on X deforms at least as much as the expected dimension. By
the equations above, dim.M 0Y / � expdim.M 0/ � 0 as well. Suppose for a contradiction
that M 0 parametrizes a dominant family of sections. Then dim.M 0/ D expdim.M 0/ so
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that dim.M 0Y / � dim.M 0/ � 0. Since the reverse inequality is also true, we deduce that
dim.M 0Y /D dim.M 0/. But then a general deformation of C1 in X should be coming from
a deformation of zC1 in Y , contradicting the fact that M 0 parametrizes a dominant family.
Thus the curves parametrized by M 0 cannot sweep out all of X and must be contained
in Y . The final statement is a consequence of the identification dim.M 0Y /D dim.M 0/ and
the earlier equations.

Example 5.6. We return to Example 5.2, keeping the notation established there. Recall
that the fibers T of Y ! P1 satisfy�KX=P1 � T D�KY=P1 � T . Thus if we take any fixed
section C in Y , glue on copies of the free curve T , and smooth the resulting curve, the dif-
ference between the expected dimension of deformations in X and the actual dimension
of deformations in Y stays constant.

Conversely, starting from any movable section in Y , we can repeatedly break off
copies of T . Eventually we will obtain a movable section of smallest degree, namely �jY .
This section satisfies �KX=P1 � �jY D �1. This verifies Theorem 5.5 which claims that
there is a section of height less than � neg.X;�KX=P1/ � 1 D 2 whose deformations
cover Y .

Remark 5.7. Note that in the situation of Theorem 5.5 the difference between the actual
and expected dimension is constant for the sections which sweep out Y . This means that
the contributions of Y to the counting function in Geometric Manin’s Conjecture have the
same exponential term as the expected value. In other words, the “accumulating subvari-
eties” which contribute a larger exponential term are exactly the subvarieties with larger
generic a-value.

5.1. Constructing a closed set

Combining previous results, we prove Theorem 1.2.

Proof of Theorem 1.2. By Theorem 5.4, any componentM � Sec.X=P1/ parametrizing
a non-dominant family will satisfy one of the following properties:

(1) M will parametrize sectionsC with�KX=P1 �C< sup¹�2neg.X;�KX=P1/� 2;1º,
or

(2) M will parametrize sectionsC with�KX=P1 �C � sup¹�2neg.X;�KX=P1/� 2;1º

which sweep out a two-dimensional subvariety Y satisfying a.Y�; �KX=P1 jY / >

a.X�;�KX=P1/, or

(3) M will parametrize sectionsC with�KX=P1 �C � sup¹�2neg.X;�KX=P1/� 2;1º

which sweep out a two-dimensional subvariety Y satisfying a.Y�; �KX=P1 jY / D

a.X�;�KX=P1/.

Lemma 2.6 shows that curves of the first type lie in a bounded family. Thus, the union
of the subvarieties swept out by the non-dominant families will be a proper closed subset
of X. Lemma 3.4 shows that the subvarieties defined by the components of the second
type will lie in a proper closed subset of X. We still need to address the third type.
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Suppose that Y is a two-dimensional subvariety satisfying a.Y�; �KX=P1 jY / D

a.X�;�KX=P1/ that is swept out by the sections parametrized by M . By Theorem 5.5,
we know that there will be a componentM 0 � Sec.X=P1/ parametrizing a non-dominant
family of sections C which satisfy �KX=P1 � C < � neg.X;�KX=P1/ � 1 and which
sweep out Y . By Lemma 2.6 we conclude that the union of all such subvarieties Y is a
proper closed subset of X.

6. Stable maps through general points

Let � WX! P1 be a del Pezzo fibration. Suppose that f WC !X is a genus 0 stable map
whose image contains n general points of X. In this section we study what restrictions
this condition imposes on C and f . We first discuss the bound for irreducible curves:

Lemma 6.1. Let � W X ! P1 be a del Pezzo fibration. Let M � Sec.X=P1/ denote a
component such that for any n general points of X there exists a member ofM containing
those points. Then the curves C parametrized by M have height � 2n � 2 with respect
to �KX=P1 . Furthermore, if the height is exactly 2n� 2 then there are only finitely many
curves parametrized by M through n fixed general points and if the height is 2n� 1 then
there is a sublocus of M of dimension at most 1 parametrizing curves through n fixed
general points.

Proof. Since the points are general, they will impose independent conditions on M , so
that dim.M/� 2n. SinceM parametrizes a dominant family of curves, it has the expected
dimension, showing that

2n � �KX=P1 � C C 2:

The last two statements are clear.

To understand reducible curves takes more preparation.

Definition 6.2. Let � W X ! P1 be a del Pezzo fibration. Fix an integer d . We let
maxdef.d/ denote the maximum dimension of any componentM � Sec.X=P1/ paramet-
rizing sections of height d . When there is no section of height d , we simply set maxdef.d/
D �1. We also define

maxdef.X/ D sup
d<0

maxdef.d/:

Lemma 6.3. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
ample. Fix an integer d < 0 and a positive integer n � maxdef.d/. Suppose that we
have a connected effective curve C D C0 C

P
aiTi where C0 is a section of height d

and each Ti is a �-vertical curve. If C contains n general points ¹xj ºnjD1 of X then
�KX=P1 � C � d C 3n �maxdef.d/.

Proof. Let M be the component of Sec.X=P1/ containing C0. Since d < 0 by assump-
tion, we know that M does not parametrize a dominant family. First suppose that the
curves parametrized by M sweep out a surface Y � X. Note that deformations of C0
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cannot contain any general points of X. Thus each general point xj is contained in a
different free vertical curve Tj .

Suppose that �KX=P1 � Tj D 2. There is only a finite set of conics in a del Pezzo
surface through a fixed general point xj . By generality of xj the intersection points of
these conics with Y form a finite set. To ensure that C is connected, C0 must contain one
of these points. By generality, the conditions imposed on C0 by insisting that C0 contain
the attachment points for conics Tj will be independent for different j . Thus we see that
there can be at most maxdef.d/ such conics Tj in the curve C . This proves that

�KX=P1 � C � d C 2maxdef.d/C 3.n �maxdef.d//:

When C0 is a rigid curve, the argument is similar but easier since every component Tj
containing a general point must satisfy �KX=P1 � Tj � 3.

The following two propositions describe which sections can pass through the maximal
number of general points of X. The proof of [72, Theorem 4.1] establishes a related
statement for a particular type of curves of minimal height. The first proposition handles
the case of even height.

Proposition 6.4. Let � WX! P1 be a del Pezzo fibration such that�KX=P1 is relatively
ample. Fix a positive integer

n � maxdef.X/C 2C sup ¹0;� neg.X;�KX=P1/º:

Suppose that f W C ! X is a genus 0 stable map whose image has anticanonical height
2n � 2 such that the unique component of C whose image is not �-vertical maps bira-
tionally to a section. Then:

(1) Suppose the image of C contains n general points of X. Then f is a birational map
to a free section.

(2) Fix a general curveZ in a basepoint free linear series in a general fiber of � . Suppose
the image of C contains n � 1 general points of X and intersects Z. Suppose also
that the image of C is reducible and at least one of the general points is contained in
a �-vertical component of C . Then C has exactly two components and f maps one
component birationally onto a free section and the other birationally onto either a
free �KX-conic or a free �KX-cubic in a general fiber of � .

Construction 6.5. Before giving the proof, we clarify what “general” means in the state-
ment of the proposition. We may ensure that n general points and a general member Z of
a basepoint free linear series in a general fiber of � satisfy several conditions:

(1) We may ensure that the n points and Z are contained in different fibers of � and that
every such fiber is a smooth del Pezzo surface F . We may furthermore ensure that
none of these points lies on any �KF -line in F .

(2) Fix a positive integer d so that d � n. Suppose we fix any subset of our set of points
of size d . Then we may ensure that the set of sections of height 2d � 2 which contain
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this subset is finite (possibly empty) and that every such section is free. Indeed, a free
section of height 2d � 2 will deform in dimension 2d . Since there are only finitely
many components of Sec.X=P1/ parametrizing free sections of height 2d � 2, we
can choose d points general with respect to these families such that there are only
finitely many sections in these families containing all d points. Since the finitely
many sections satisfying these incidence correspondences are general in the moduli,
we conclude that they are free.

A similar argument shows that we may ensure there are finitely many loci of
dimension � 1 in xM0;0.X/ that parametrize sections of height 2d � 1 which contain
this set of d points and a general point in each locus is a free section.

(3) We may ensure that for each of our points p the finite set of �KF -conics in F
through p has the expected dimension of intersection against the sections described
in (2); namely, for any zero-dimensional component of the parameter space consist-
ing of sections of height 2d � 2 passing through d general points which are different
from p, the corresponding section is disjoint from each �KF -conic, and for any
one-dimensional component of the parameter space consisting of sections of height
2d � 1 through d general points which are different from p there are only finitely
many sections intersecting each �KF -conic. Moreover, we may ensure that these
finitely many sections are all free.

To see this, consider the incidence correspondence I � T � S where T paramet-
rizes sets of d points contained in a section of degree 2d � 2, S parametrizes a choice
of a point p and a �-vertical conic containing it, and I represents the condition that
the section meet the conic. Since in a family of free curves it is a codimension 1
condition to intersect any fixed curve, we see that the general fiber of the second pro-
jection I ! S has codimension 1 in T . In particular, I is a proper closed subscheme
of T � S . A similar argument works for the other condition.

(4) We may ensure that the sections in (2) and (3) meet Z in the expected dimension: for
any zero-dimensional component of the parameter space the corresponding section
is disjoint from Z, and for any one-dimensional component of the parameter space
there are only finitely many sections intersecting Z. Moreover, we may ensure that
these finitely many sections are all free. The argument is the same as for (3).

(5) Suppose we fix a subset of our n points of size d � 1. We may ensure that there
are only finitely many sections of height 2d � 2 � 2n � 2 passing through all d � 1
points which also intersect Z and intersect a �KF -conic containing a general point
which is distinct from our chosen subset of d � 1 points. Moreover, we may ensure
that these finitely many sections are all free.

To see this, note that sections of height 2d � 2 containing d � 1 general points
can deform in dimension at most 2. Among them sections meeting Z will form a
locus of dimension at most 1. Using an incidence correspondence as above, we see
there are only finitely many sections passing through the d � 1 points that intersectZ
and intersect a �KF -conic passing through a point different from the d � 1 general
points. Since such sections are general in moduli, we conclude that they are free.
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(6) For a point p in our set we may ensure that there are only finitely many �KF -cubics
in F through p that intersect any section that is parametrized by a zero-dimensional
subset as in (2)–(5) with respect to a subset of points not containing p. The argument
is the same as for (3).

(7) We may ensure that there is no section as in (3) and (5) intersecting �KF -conics
through two different points in our set. Furthermore, we may ensure that sections
parametrized by a zero-dimensional component of the parameter space as in (2)–(5)
do not intersect any vertical line meeting Z. The argument is the same as before.

(8) Since n � maxdef.X/, we may ensure that for any d < 0 and any subset of our set
of points of size � maxdef.d/ the points are general in the sense of Lemma 6.3.

Proof of Proposition 6.4. (1) It suffices to show that the image of f is irreducible. Sup-
pose otherwise, so that f .C / D C0 C

P
i2I aiTi for some �-vertical curves Ti . Let d

denote the height of C0 and set ti D �KX=P1 � Ti , so that

2n � 2 D d C
X
i2I

ai ti :

Note that C0 can contain at most sup ¹0; bd=2c C 1º general points of X. An irreducible
�-vertical curve Ti can contain at most one general point and if it does then ti � 2. Let
I 0 � I denote the set of vertical curves that contain one of the general points.

We now break the argument into several cases.

Case 1: d � 0. Then the number of general points contained in f .C / is bounded above
by the number of general points contained in C0 and in the Ti . Thus

sup ¹0; bd=2C 1cº C jI 0j � n D d=2C 1C
X
i2I

ai ti=2:

Since d � 0, the RHS is an upper bound for the LHS. Thus the inequality above must
be an equality. This means that d is even and C0 goes through the maximum number of
points possible, that each ai D 1, and that each component of T is a free vertical curve
through one of the general points with ti D 2. In particular, the set of d=2C 1 general
points determines a finite number of possibilities for C0, and each vertical curve is also
determined by a general point up to a finite set of possibilities. If there are any vertical
components, then for general choices f .C / will not be connected, an impossibility. Thus
f .C / is irreducible. Then f .C / contains all n general points so there are only finitely
many choices of f W C ! X. Thus by generality it must be free.

Case 2: d < 0. Due to our lower bound on n we may apply Lemma 6.3. It shows that C
must have height

�KX=P1 � C � neg.X;�KX=P1/C 3n �maxdef.X/ > 2n � 2;

contradicting our assumption on the height of C .
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(2) Write f .C / D C0 C
P
i2I aiTi for some �-vertical curves Ti . Let d denote the

height of C0 and set ti D �KX=P1 � Ti , so that

2n � 2 D d C
X
i2I

ai ti :

Let I 0 � I denote the set of vertical curves that contain one of the general points. Again
we separate into cases:

Case 1: d � 0 and C0 intersects Z. Since C0 intersects Z, it can contain at most
sup ¹0; bdC1

2
cº general points of X. The number of general points contained in f .C /

is bounded above by the number of general points contained in C0 and in the Ti . Thus

sup
²
0;

�
d C 1

2

�³
C jI 0j � n � 1 �

d

2
C

X
i2I

ai ti=2:

If d is even, then we must have equality everywhere. This means that the set of defor-
mations of C0 which meet Z and go through the maximal number of points is at most
one-dimensional, that every ai D 1, and that each component of T is a free vertical curve
through one of the general points with ti D 2. However, for C0 to meet a vertical conic
through a general point is a codimension 1 condition, so by generality there can be at
most one vertical component. Moreover, there are only finitely many such sections going
through the maximum number of points and meeting Z and a conic going through a gen-
eral point, thus C0 must be free by generality. Thus we obtain the desired expression.

If d is odd, then C0 must contain the maximal number of points, b.d C 1/=2c. This
means that the difference between jI 0j and

P
ai ti=2 can be at most 1=2. Thus there are

only three options for the vertical components:

(1) Every component of T has anticanonical degree 2 and contains a general point.

(2) Every component of T but one has anticanonical degree 2 and contains a general
point, and the last one has anticanonical degree 3 and contains a general point.

(3) Every component of T but one has anticanonical degree 2 and contains a general
point, and the last component has anticanonical degree 1.

Note that there are only finitely many deformations of C0 which meet Z and go through
.d C 1/=2 points. Thus C0 must be free by generality. Recall that by assumption there
is a vertical component of f .C / through a general point. However, since there are only
finitely many vertical conics through a general point, by generality no such conic can
intersect C0. This rules out the first and third situations, showing that C must be the
union of a free section and a cubic in a fiber.

Case 2: d � 0 and C0 does not intersect Z. Just as before, the number of general points
contained in f .C / is bounded above by the number of general points contained in C0 and
in the Ti . Thus

sup ¹0; bd=2c C 1º C jI 0j � n � 1 � d=2C
X
i2I

ai ti=2:
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Since C0 does not intersect Z, there must be a vertical curve that does intersect Z but
does not contain any general points, so thatX

i2I

ai ti=2 � jI
0
j �

X
i2I

ai ti=2 �
X
i2I 0

ai ti=2 � 1=2:

Thus when d is even, C0 must contain the maximal number of points, d=2C 1. In this
situation the difference between jI 0j and

P
i2I 0 ai ti=2 is at most 1=2. There are four

options for the vertical components:

(1) Every component of T but one has anticanonical degree 2 and contains a general
point, and the last one has anticanonical degree 1 and meets Z.

(2) Every component of T but two has anticanonical degree 2 and contains a general
point, one has anticanonical degree 1 and meets Z, and the last one has anticanonical
degree 3 and contains a general point.

(3) Every component of T but two has anticanonical degree 2 and contains a gen-
eral point, and the last two components have anticanonical degree 1, one of which
meets Z.

(4) Every component of T has anticanonical degree 2, all but one contain a general point,
and the last component meets Z.

Since by generality there are only finitely many deformations of C0 through the required
number of points, such C0 cannot intersect a vertical line meeting Z or a vertical conic
through a general point. This rules out the first three cases immediately, and the fourth is
also ruled out since by assumption there exists at least one vertical curve which contains
some general point.

If d is odd thenC0 must contain the maximal number of points, bd=2cC 1. In this case
there is only one option: every component of T but one has anticanonical degree 2 and
contains a general point, and the last one has anticanonical degree 1 and meets Z. How-
ever, since by generality C0 can only deform in a one-parameter family while containing
the maximal number of points, it is impossible for C0 to meet both a line intersecting
Z and a conic through a general point. Since by assumption f .C / contains a vertical
component through a general point, this case is also ruled out.

Case 3: d < 0. In this case Lemma 6.3 shows that C must have height

�KX=P1 � C � neg.X;�KX=P1/C 3.n � 1/ �maxdef.X/ > 2n � 2;

proving the impossibility of this case.

The next proposition is the analogue of Proposition 6.4 for sections of odd height.

Proposition 6.6. Let � WX! P1 be a del Pezzo fibration such that�KX=P1 is relatively
ample. Fix a positive integer

n � maxdef.X/C sup ¹0;� neg.X;�KX=P1/º:



Classifying sections of del Pezzo fibrations, I 319

Suppose that f W C ! X is a genus 0 stable map whose image has anticanonical height
2n � 1 such that the unique component of C whose image is not �-vertical maps bira-
tionally to a section. Then:

(1) Fix a general curve Z in a basepoint free linear series in a general fiber of � . Sup-
pose the image of C contains n general points of X and intersects Z. Then f is a
birational map to a free section.

(2) Suppose the image of C contains n general points of X. Suppose also that the image
of C is reducible and at least one of the general points is contained in a �-vertical
component of C . Then C has exactly two components and f maps one component
birationally onto a free section and the other birationally onto a free �KX-conic or
a free �KX-cubic in a general fiber of � .

The proof is essentially the same as the proof of Proposition 6.4, but slightly easier.

7. Movable Bend-and-Break for del Pezzo fibrations

The following conjecture is essential for understanding sections of Fano fibrations.

Conjecture 7.1 (Movable Bend-and-Break for sections). Let � W X ! P1 be a Fano
fibration. There is a constantQ DQ.X/ such that the following holds. Suppose that C is
a movable section of � satisfying �KX=P1 � C > Q.X/. Then C deforms (as a stable
map) to a chain of free curves with at least two components.

We establish Movable Bend-and-Break for sections of del Pezzo fibrations such that
�KX=P1 is relatively ample. The proof is based on techniques from [59,68]. The follow-
ing statement is a stronger version of Theorem 1.5 where we state a precise value for the
bound Q.X/.

Theorem 7.2. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
ample. Define

Q.X/ D sup
®
3;�2 neg.X;�KX=P1/ � 5;

� neg.X;�KX=P1/C 3;

2maxdef.X/ � 5 neg.X;�KX=P1/ � 5;

2maxdef.X/ � neg.X;�KX=P1/ � 3;

2maxdef.X/C 2C 2 sup ¹0;� neg.X;�KX=P1/º
¯
:

Suppose that M � Sec.X=P1/ is a component that parametrizes a dominant family of
sectionsC satisfying�KX=P1 �C �Q.X/. Then the closure ofM in xM0;0.X/ contains a
point representing a stable map whose domain has exactly two components, each mapping
birationally onto a free curve.

For later applications it will be convenient to introduce the following definition:
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Definition 7.3. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
ample. We define MBBbound.X/ to be the smallest non-negative integer r such that any
component of xM0;0.X/ which generically parametrizes free sections of height at least r
will also contain a stable map whose domain has exactly two components, each mapping
birationally to a free curve.

Thus Theorem 7.2 establishes that MBBbound.X/ exists and gives an explicit upper
bound MBBbound.X/ � Q.X/.

Proof of Theorem 7.2. Suppose that M is a component of Sec.X=P1/ parametrizing a
dominant family of sections C that satisfy

�KX=P1 � C � Q.X/:

In particular, the general section in the family is free. Since each section is smooth we can
consider its normal bundle, and we separate into several cases based on the normal bundle
of the general curve C . Write NC=X D O.a/˚ O.b/ with 0 � a � b. Our height bound
implies that if a D 0 then b � 3 and if a D 1 then b � 2.

Case 1: a � 1 and b � a C 2. Suppose we fix a C 1 general points of X and choose
a curve C with the generic normal bundle containing these points. According to [68,
Remark 2.2], the locus parametrizing curves with the generic normal bundle that contain
all aC 1 points has a unique smooth irreducible component that contains C . The closure
of the locus swept out by these curves is an irreducible surface†. Let†0! † denote the
normalization map. [68, Corollary 2.7] shows that if C is a general curve through these
points then†0 is smooth along the strict transform C 0 of C and the normal bundle of C 0 in
†0 is O.b/. Let z† denote a minimal resolution of singularities of†0, let � W z†!† denote
the induced birational map, and let zC denote the strict transform of C 0 in z†. Since †0 is
smooth along C 0, we see that zC still has normal bundle O.b/ because z†! †0 is locally
an isomorphism along zC . Note that z† is covered by curves with degree 1 over the base P1,
so that the map  W z†! P1 is an algebraic fiber space. Furthermore, since b � 3 by the
usual Bend-and-Break we know that the general fiber of  must be P1. Since † contains
a general point, we may assume that �KX=P1 � F � 2 where F is a general fiber of  .

As in the statement of Theorem 4.5, there exists a birational map � W z†! Fe , a mov-
ing section zC1 of z† such that zC �rat zC1 C

b�e
2
F , and a section zC0 such that zC �rat

zC0 C
bCe
2
F C T for some �-vertical curve T . Thus

a D �b � ��KX=P1 �
zC

D �b C
b C e

2
.���KX=P1 � F / � �

�KX=P1 � . zC0 C T /

D e C
b C e

2
.���KX=P1 � F � 2/ � �

�KX=P1 � . zC0 C T /

� e C
b C e

2
.���KX=P1 � F � 2/ � �

�KX=P1 �
zC0 (7.1)

where the last inequality follows from the fact that �KX=P1 is relatively ample.
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Claim 7.4. We have b > e.

The statement of Theorem 4.5 guarantees that b � e; suppose for a contradiction that
b D e. We separate the argument into two cases. First suppose that �KX=P1 � F � 3.
Then inequality (7.1) yields

a � 2b � ��KX=P1 �
zC0 � 2b C neg.X;�KX=P1/:

Since also b � 2 � a, we deduce that b � � neg.X;�KX=P1/ � 2. Thus

�KX=P1 � C D aC b � 2b � 2 � �2 neg.X;�KX=P1/ � 6;

which contradicts our height bounds on C .
Now suppose that �KX=P1 � F D 2. Then inequality (7.1) yields

a � b � ���KX=P1 �
zC0; (7.2)

and in particular�2����KX=P1 �
zC0. Recall that† contains aC 1 general points of X,

and that their preimages give a set of aC 1 distinct points in z†. Since b > aC 1, we can
deform the b fibers F in our broken curve to ensure that they meet these aC 1 points. By
taking images in X, we find a broken curve which is a deformation of C through a C 1
general points of X such that the section �� zC0 in this broken curve has height � �2.
According to Lemma 6.3, this implies that either

�KX=P1 � C � neg.X;�KX=P1/C 3.aC 1/ �maxdef.X/;

or aC 1 < maxdef.X/. Furthermore, by inequality (7.2),

�KX=P1 � C D aC b � 2a � neg.X;�KX=P1/:

Comparing the two bounds we see that

a � sup ¹maxdef.X/ � 2 neg.X;�KX=P1/ � 3;maxdef.X/ � 2º;

which in turn implies that

�KX=P1 � C

� sup ¹2maxdef.X/� 5 neg.X;�KX=P1/� 6; 2maxdef.X/� neg.X;�KX=P1/� 4º:

This possibility is ruled out by our degree bounds and finishes the proof of the claim.

We now return to the main argument. Since b�e
2

is an integer, Claim 7.4 shows that
it is at least 1. If b�e

2
> 1, then we smooth zC1 C .b�e2 � 1/F to obtain a section zC2.

If b�e
2
D 1, we set zC2 D zC1. In either case we have zC �rat zC2 C F . We claim that the

�-images of zC2 and F are movable curves in X. Recall that † contains a general point
of X, and in particular † is not contained in the closed set constructed by Theorem 1.2.
Since �� zC2 deforms to cover †, its image in X must deform to cover X. We also claim
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that �� zC2 avoids any singularity of X. Indeed, the preimage of the singular locus of X

is a union of points and  -vertical divisors. Since zC2 and zC have the same intersection
numbers against  -vertical divisors, the fact that zC avoids the preimage of the singu-
lar locus of X implies that zC2 does as well. Similarly, F deforms to cover †, and thus
contains a general point of X. Since the �KX=P1 -degree of F admits an a priori upper
bound in terms of the height of C and in terms of neg.X;�KX=P1/, this implies that F
is a movable curve. It is also contained in the smooth locus of X.

Case 2: a D 0 and b � 3. The argument is very similar to Case 1. Fix a general point x
and consider a component † of the locus swept out by the curves in M through x with
generic normal bundle. Lemma 2.8 shows that † ¨ X. Since there is a b-dimensional
family of curves through x with generic normal bundle, † must be a surface.

Let � W z†! † be a resolution; by possibly blowing up further we may suppose that
the preimage of x is divisorial, so that the condition for a curve on z† to go through x 2 †
is a numerical condition. The strict transforms zC of the general sections sweeping out †
will define a dominant family of sections of z† that deforms in dimension b. Thus we have
�Kz†=P1 �

zC D b � 1. Note that the induced map  W z†! P1 has connected fibers since
z† is dominated by sections of  . Also, since b � 1 � 2, by the usual Bend-and-Break we
know that the general fiber of  is P1.

As in the statement of Theorem 4.5, there exists a birational map � W z†! Fe , a mov-
ing section zC1 of z† such that zC �rat zC1 C

b�e�1
2

F , and a section zC0 such that zC �rat
zC0 C

bCe�1
2

F C T for some �-vertical curve T . The analogue of inequality (7.1) is

0 � e � 1C
b C e � 1

2
.���KX=P1 � F � 2/ � �

�KX=P1 �
zC0: (7.3)

We claim that b � 1 > e. Assume for a contradiction that b � 1 D e. First suppose
that �KX=P1 � F � 3. By (7.3) we deduce that 2e � 1 � neg.X;�KX=P1/ and thus

�KX=P1 � C � �
1
2

neg.X;�KX=P1/C
3
2
;

contradicting our height bound. Next suppose that �KX=P1 � F D 2. Then by (7.3) we
deduce e � 1 � neg.X;�KX=P1/ and thus

�KX=P1 � C � � neg.X;�KX=P1/C 2;

contradicting our height bound.
Since b�e�1

2
must be an integer, our claim implies that it is at least 1, and we conclude

the argument in the same way as before.

Case 3: a � 1 and b � a � 1. First suppose that a D b; in this case our height bounds
imply that

a � maxdef.X/C 1C sup ¹0;� neg.X;�KX=P1/º:

Fix a general points of X and fix a general curve Z in a basepoint free linear series in
a general fiber of � . There is a union of a one-parameter family of deformations of C
containing a general points and meeting Z. Fix one component of this parameter space.
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By applying the Bend-and-Break theorem (as in Corollary 4.2), we can deform C �alg

C0 C T , where

� C0 is a section,

� T is an effective �-vertical curve and at least one component contains one of our a
general points.

By Proposition 6.4 the stable map corresponding to C0 C T has the desired form.
The case when b � a D 1 is similar. In this case there is a one-parameter family of

sections containing a C 1 general points. By considering the broken curve C0 C T and
applying Proposition 6.6, we can repeat the argument to obtain the same conclusion.

7.1. Consequences of Movable Bend-and-Break

Definition 7.5. A comb is a nodal curve consisting of one “central curve” C0 and of r � 0
“teeth” T1; : : : ; Tr such that each Ti intersects C0 in a single point and there are no other
intersections between any irreducible components of C . For the purposes of this paper
every tooth of a comb will be a rational curve.

By repeating the breaking argument of Theorem 1.5 inductively, we obtain:

Corollary 7.6. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
ample. Suppose that C is a section of � satisfying �KX=P1 � C �MBBbound.X/ whose
deformations dominate X. Then C deforms as a stable map to a morphism f W C ! X

whose domain C is a comb C0 [ T1 [ � � � [ Tr where

� f maps each component of C birationally onto a free curve,

� the image of C0 is a section satisfying �KX=P1 � C0 < MBBbound.X/,

� the image of each Ti is a free �-vertical curve.

Proof. Let xM be a component of xM0;0.X/ containing a stable map f W C ! X such
that C is a comb, the central curve C0 is mapped birationally to a free section of � ,
and the teeth T1; : : : ; Tr are mapped birationally to free �-vertical curves. (Our original
assumption is that xM contains such a curve with zero teeth.) Suppose that

�KX=P1 � C0 � MBBbound.X/:

We show that xM also contains a comb C 0 of the same form such that the central curve C 00
has strictly smaller degree against �KX=P1 .

Let xMi denote the component of xM0;0.X/ containing the curve C0 (when i D 0)
or Ti (when i � 1). Each such component generically parametrizes irreducible free curves.
Let xM .k/

i denote the unique component of xM0;k.X/ lying over xMi . Since the comb f W
C ! X is a smooth point of the moduli space, there is a component zM of

xM
.r/
0 �X�r

�Y
i�1

xM
.1/
i

�
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that maps into xM . Note that zM dominates each component of the product under the
corresponding projection map: indeed, since the evaluation mapY

i�1

xM
.1/
i ! X�r

is flat on the locus parametrizing free curves, every component of the product containing
a union of free curves will have the expected dimension and will thus map dominantly
onto every factor. By Theorem 1.5, the component xM .r/

0 contains in its smooth locus
a general point of a component of xN .rC1/

0 �X
xN
.1/
1 where xN0 generically parametrizes

free sections of smaller �KX=P1 -degree and xN1 generically parametrizes free �-vertical
curves. Since the locus xN .rC1/

0 �X
xN
.1/
1 has codimension 1 in xM .r/

0 and the projection
map to xM .r/

0 is flat on the locus of free curves, a dimension count shows that a general
point in the preimage of xN .rC1/

0 �X
xN
.1/
1 in zM represents a comb of free curves.

The next statement is similar to Theorem 1.5, but we additionally impose an upper
bound on the height of C0.

Theorem 7.7. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
ample. Suppose that C is a section of � whose deformations dominate X and which
satisfies �KX=P1 �C �MBBbound.X/. Then C deforms .as a stable map/ to a union of
a free sectionC0 satisfying�KX=P1 �C0 <MBBbound.X/ with a free �-vertical moving
curve.

We prove this by regluing the �-vertical curves in the setting of Corollary 7.6.

Proof. Let xM � xM0;0.X/ be a component containing a point f W P1 ! X which is a
birational map onto a section as in the statement of Theorem 1.5. Corollary 7.6 shows
that xM contains a smooth point representing a comb of r C 1 free curves such that the
section C0 satisfies the desired bound. We prove by induction on r that xM contains a
point representing a union of two free curves such that the section C0 satisfies the desired
bound. In the base case when r D 1 there is nothing to prove.

For the induction step, label the �-vertical free curves as T1; : : : ; Tr . Since all the
components are free, we may deform the comb so that C0 and T1 intersect at a general
point of X . Suppose we then deform T2 along C0 until its attaching point coincides with
that of T1. Due to the generality of C0 \ T1, we may ensure that the corresponding defor-
mation of T2 through this point is an irreducible free curve T 02. Thus, the resulting stable
map f 0 W C 0 ! X will have r C 2 components: there will be one curve E � C 0 which is
contracted by f and which is attached to the components mapping to C0;T1;T 02. Note that
f 0 represents a smooth point of xM0;0.X/. Thus the component M also contains a point
representing a stable map whose image is a comb C0 [ T1 [ T 002 [ T3 [ � � � [ Tr where
we attach an irreducible free deformation T 002 of T2 to a general point of T1. Note that this
is again a smooth point of xM0;0.X/. Since T1 and T 002 are free curves in a fiber, we can
glue them while fixing the attaching point with C0 by [51, II.7.6.1 Theorem], yielding a
comb of the form C0 [ T� [ T3 [ � � � [ Tr where T� is a free curve in a fiber. This point
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is also contained in xM , and we conclude by induction on the number of components of
the comb.

Another version of the result is:

Proposition 7.8. Let � WX! P1 be a del Pezzo fibration such that�KX=P1 is relatively
ample. Suppose that C is a section of � whose deformations dominate X and satisfies
�KX=P1 � C � MBBbound.X/. Then C deforms .as a stable map/ to a union of a free
section C0 with a free �-vertical moving curve T such that �KX=P1 � T � 3.

Proof. By Theorem 7.7, xM contains a point representing the union of a free section C0
satisfying �KX=P1 � C0 � MBBbound.X/ � 1 with a free �-vertical curve. We may
assume that the gluing point of the two curves is a general point of the fiber contain-
ing it. By Lemma 2.12 we can further deform the free �-vertical curve to a chain of free
�-vertical curves, each of which has anticanonical degree at most 3, while preserving the
attachment point with C0. After smoothing all but one of the �-vertical components into
the section, we obtain the desired breaking.

Finally, by breaking again we can obtain a polynomial upper bound on the number of
height d components of Sec.X=P1/ as predicted by Batyrev.

Proof of Corollary 1.13. It suffices to prove the existence of a polynomial upper bound
on the number of components of rigid families, the number of components of families of
sections which sweep out surfaces, and the number of components of dominant families
of sections. The first claim is clear since there are only finitely many rigid curves.

Suppose that M � Sec.X=P1/ parametrizes sections of height d which sweep out a
closed surface Y . Let zY denote a resolution of Y . If d � 0 then there is a one-parameter
family of rational curves through a general point on zY . Thus zY is rationally connected,
so that two sections on zY will be numerically equivalent if and only if they are linearly
equivalent. Thus, the number of components of Sec.X=P1/ that sweep out Y and have
height at most d is bounded above by the number of numerical classes of sections of zY of
height at most d . This latter number is a polynomial in d . By Theorem 1.2 only finitely
many surfaces Y can be obtained in this way, giving a universal polynomial bound on all
components of sections of this type.

Finally, suppose that M is a component of Sec.X=P1/ that parametrizes a dominant
family of sections. Let xM denote the corresponding component of xM0;0.X/. By Theorem
7.7, if the height of the sections parametrized by M is at least MBBbound.X/ then xM
contains a point representing the union of a free section C0 satisfying �KX=P1 � C0 �

MBBbound.X/� 1 with a free �-vertical curve. We may assume that the gluing point of
the two curves is a general point of the fiber containing it. By Lemma 2.12 we can further
deform the free �-vertical curve to a chain of free �-vertical curves, each of which has
anticanonical degree at most 3, while preserving the attachment point with C0.

Choose a positive integerm such thatA WD �KX=P1 CmF is an ample divisor where
F denotes a general fiber of � . We have shown that each component M parametrizing a
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dominant family of sections yields a component xM which contains a chain of free curves
where each component has A-degree no more than sup ¹3;mCMBBbound.X/º.

Now we take a smooth birational model ˇ W zX ! X such that ˇ is an isomor-
phism on the smooth locus of X. Any free section is contained in this smooth locus,
so by taking strict transforms of dominant components M of Sec.X=P1/ we obtain
dominant components zM of Sec. zX=P1/. Moreover, by taking the strict transforms of
chains of free curves, we conclude that for each such component the Zariski closure
xzM � xM0;0. zX/ contains a chain of free curves where each component has ˇ�A-degree no

more than sup ¹3; m CMBBbound.X/º. Further, [58, Theorem 5.13] proves that there
is a polynomial upper bound P.d/ on the number of components xzM � xM0;0. zX/ of
ˇ�A-degree d which contain a chain of free curves where each component has ˇ�A-
degree � sup ¹3; m C MBBbound.X/º. This yields a polynomial upper bound on the
number of components M as desired.

7.2. Fibers of evaluation maps

We now apply Movable Bend-and-Break to show that for sections with large height the
evaluation map for the universal family has connected fibers. This is the analogue in our
setting of [58, Proposition 5.15].

Lemma 7.9. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
ample. Let M � Sec.X=P1/ denote a component that parametrizes a dominant family
of sections. Let p W U! M denote the universal family and let s W U! X denote the
evaluation map.

Suppose that there is a component Q of xM0;0.X/ parametrizing a dominant fam-
ily of reduced �-vertical curves C with �KX=P1 � C � 3 such that a general curve
parametrized byQ appears as a component of some stable map in the closure xM ofM in
xM0;0.X/. For any birational model U0 of U the induced map s0 WU0!X has irreducible

general fiber.

Proof. By taking projective closures and taking resolutions we find smooth projective
varieties W , MW which admit maps xs W W ! X and xp W W ! MW that agree with s
and p on open subsets. Let f W Y ! X denote a resolution of the Stein resolution of xs.
Our goal is to show that f is a birational map.

By construction, Y is dominated by sections of the natural map  D � ı f W Y ! P1,
so that Y has the structure of an algebraic fiber space over P1. Let xN denote the com-
ponent of xM0;0.Y / whose general point is the image of a general fiber of xp. We know
that xN admits a birational morphism to the corresponding component xM of xM0;0.X/.
In particular, there is a dominant family of  -vertical curves P mapping onto the cor-
responding curves in Q. Since the induced map from P to Q is dominant, the expected
dimensions of P and Q agree. This implies that the curves C parametrized by P satisfy
.KY=P1 � f

�KX=P1/ � C D 0. By the Riemann–Hurwitz formula, KY=P1 � f �KX=P1

is relatively pseudo-effective, and since C is a movable  -vertical curve, we see that this
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divisor is not relatively big. This means that

a.Y�;�f
�KX=P1/ D 1 D a.X�;�KX=P1/:

Consider the map of geometric generic fibers xf� W YK.B/ ! XK.B/. By [56, Proposi-
tion 4.4] the Fujita invariant of a geometrically integral variety over a field of characteris-
tic 0 is preserved by base change of the ground field. Then [57, Theorem 6.2] implies that
either xf� is birational orKY

K.B/
� xf �� KX

K.B/
has Iitaka dimension 1. However, in the lat-

ter case the curves xC contracted by the Iitaka fibration will satisfy � xf �� KX
K.B/
� xC D 2.

This contradicts the fact that �KX=P1 � f�C � 3. We deduce that xf� is birational, hence
so is f� , and hence f as well.

Corollary 7.10. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is rela-
tively ample. Let M � Sec.X=P1/ denote a component that parametrizes a dominant
family of sections. Suppose that the curves C parametrized by M satisfy �KX=P1 � C �

MBBbound.X/C 2. Then any resolution of the universal family map over M has irre-
ducible general fiber.

Proof. Let xM denote the corresponding component of xM0;0.X/. Applying Theorem 7.7
to xM on X, we see that it contains points which are the union of a free �-vertical curve
of �KX=P1 -degree at least 3 and a horizontal moving section. Since such a stable map is
a smooth point of the moduli space, a general deformation of this �-vertical curve must
appear as a component of some curve parametrized by xM . We then apply Lemma 7.9.

8. Examples

In this section we analyze several explicit examples of del Pezzo fibrations.

8.1. Improving previous bounds

In many situations the upper bound on MBBbound given in Theorem 7.2 is much larger
than the actual value. In order to compute examples it will be useful to give more precise
bounds for del Pezzo fibrations satisfying certain properties.

� Suppose that we have classified the sections on X of negative height. Then we can hope
to prove a more precise statement in place of Lemma 6.3. This in turn will improve the
bounds in Cases 1 and 2 of Theorem 7.2 in the d < 0 situation, and in Case 3 of
Theorem 7.2 via Propositions 6.4 and 6.6.

� Suppose that X� does not admit any rational curves of anticanonical degree 2 defined
over the ground field k.P1/. This implies that the surface z† constructed in the proof of
Theorem 7.2 is not ruled by �KX=P1 -conics. In particular, this allows us to give more
precise bounds in (7.1) and (7.3).
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� When the height is 3 or 4 and the conditions above hold, we can mimic the proof of
Theorem 7.2 using more explicit constructions to prove a Movable Bend-and-Break
theorem by hand.

By implementing these improvements we have:

Lemma 8.1. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
ample. Suppose that maxdef.d/ � d � 2 for every d < 0 such that there is a section of
height d . If X� does not admit any rational curves defined over k.P1/ of anticanonical
degree 2 then

MBBbound.X/ � 3:

The following theorem improves Proposition 7.8 by giving conditions where we are
guaranteed to be able to break off a �-vertical conic. This simplifies inductive arguments,
since it means that we can understand dominant families of sections of height n using
only the dominant families of sections of height n � 2.

Theorem 8.2. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is rela-
tively ample. Assume that a general fiber of this fibration is a del Pezzo surface with
2 � .�KS /

2 � 8 and that every surface swept out by the �-vertical lines contained in
smooth fibers is a big divisor. Suppose that C is a section of � of height d whose defor-
mations dominate X and that d �MBBbound.X/. Then C deforms .as a stable map/ to
a union of a free section C0 and a free �-vertical conic.

Proof. By Proposition 7.8 we know that we can find a breaking C �alg C0C T where the
vertical curve T is either a free �-vertical conic or a free �-vertical cubic. In the first case
we are done. In the second case, let xP denote the component of xM0;0.X/ parametrizing
the deformations of T . By Lemma 2.9 we see that every general fiber of � contains a
curve parametrized by xP which is the union of a conic and a line. Since such curves are
smooth points of xP , in fact there is an entire component xQ of the parameter space of
�-vertical lines contained in smooth fibers such that every stable map parametrized by xQ
occurs as the restriction of a stable map parametrized by xP to a subcurve.

By assumption the surface swept out by the curves parametrized by xQ is big. Thus
every deformation of C0 intersects this surface. Consider the point of xP obtained by
gluing a general �-vertical line parametrized by xQ to a �-vertical conic. Then there is
a free deformation C1 of C0 that intersects the image of this curve along the line. By
gluing, we obtain a stable map whose image has the form C1 [ ` [ T1 where C1 is a
free deformation of C0, ` is a �-vertical line, and T1 is a free �-vertical conic. This is
a smooth point of xM0;0.X/ that lies in the same component of xM0;0.X/ as C0 [ T . We
can then glue C1 to ` to conclude the desired statement.

8.2. Blow-ups of Fano threefolds

One of the most common ways to construct a del Pezzo fibration is by blowing up a Fano
threefold. In this section we analyze several examples of this type.
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Example 8.3. Let X3 be a smooth cubic 3-fold in P4. Let Z denote a smooth elliptic
curve which is the base locus of a general pencil of hyperplane sections. Let � WX! P1

denote the resolution of the pencil. We have Pic.X/ D ZH ˚ ZE where H is the pull-
back of the hyperplane class from X3 and E is the exceptional divisor of the blow-up
� W X ! X3. In this notation �KX=P1 D E, so that neg.X;�KX=P1/ D �1 and the
sections achieving this bound will exactly be the sections contained in E Š Z � P1.

Computation of �-vertical curves: The monodromy action on the Néron–Severi space of
the general fiber is the full Weyl group W.E6/. Indeed, since our pencil is general, it will
be a Lefschetz pencil in the sense of [75, Definition 2.6]. It follows from [75, Proposi-
tion 2.27] that the primitive cohomology of a smooth member of the pencil is generated by
vanishing spheres. The theory of Picard–Lefschetz tells us that vanishing spheres are roots
and the monodromy is generated by orthogonal reflections with respect to these roots.
Moreover, since the monodromy action on the lattice generated by vanishing spheres is
irreducible, the lattice generated by vanishing spheres is an irreducible root lattice. How-
ever, there is no irreducible root lattice contained in the lattice E6 other than itself. Thus
all roots are vanishing spheres, proving the claim. This implies that for �-vertical curves
of anticanonical degree 1 or 2 there is a unique family of rational curves on X that domi-
nates the base P1.

Computation of the closed set: Since any rigid section will satisfy �KX=P1 � C � �2,
there are no rigid sections of � .

By Lemma 3.4, if Y � X is a subvariety with a.Y�;�KX=P1/ > a.X�;�KX=P1/

then the intersection of Y with a general fiber is a union of .�1/-curves. Since the mon-
odromy action is maximal, every .�1/-curve in a general fiber is equivalent to any other
.�1/-curve under the monodromy action. This implies that there is a unique irreducible
surface V whose intersection with a general fiber is a union of .�1/-curves. If zV denotes
a resolution of V then the map zV ! P1 is not an algebraic fiber space, showing that V
cannot be covered by sections.

On a cubic del Pezzo surface the subvarieties with the same a-value are exactly the
conics. Since the monodromy action is maximal, the set of all conics in general fibers is
parametrized by an irreducible surface. In particular, the Stein factorization of the eval-
uation map for the universal family of �-vertical conics is non-trivial. This implies that
any one-parameter family of conics that dominates the base P1 will fail to be an algebraic
fiber space over P1 and thus cannot be dominated by sections.

By combining the results above with Theorem 5.4 we see that the only possible non-
dominant families of sections will have height � 0. We analyze sections in this range
below and we deduce that there is only one non-dominant family consisting of the sections
contained in E.

Computation of low degree sections: We analyze the sections of low height with respect
to �KX=P1 :

Height �1: As discussed above, these are exactly the rational curves in E Š Z � P1.
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Height 0: These will be the strict transforms of lines in X3 not meeting Z. Thus this
space is irreducible.

Height 1: These will be the strict transforms of conics in X3 which meet Z once.
[58, Theorem 7.6] shows that for the universal family U of conics on X3 the evaluation
map s WU! X3 has equidimensional irreducible fibers over an open neighborhood ofZ.
Thus the space of height 1 sections is irreducible.

Height 2: These will be the strict transforms of twisted cubics inX3 which meetZ in two
points. Any twisted cubic C in X3 is contained in a unique hyperplane section H � P4

and C is a smooth rational curve of degree 3 in the cubic surface S D H \ X3. Such a
curve is the strict transform of a line via a birational morphism S ! P2. Since the space
of twisted cubics in X3 is irreducible (see [36]), we know that the monodromy action
on classes of twisted cubics in S is transitive as H varies in an open set U � .P4/�.
Otherwise, each orbit corresponds to an irreducible component of the space of twisted
cubics, contradicting the irreducibility of such a space. Choose two points p1;p2 onZ and
consider the hyperplanesH � P4 containing `D span.p1;p2/. For eachH there are only
finitely many twisted cubics passing through p1;p2. By the Lefschetz hyperplane theorem
the monodromy action of the hyperplanes containing ` is still transitive, so these curves
are parametrized by an irreducible variety. The irreducibility of the space of sections of
height 2 follows.

Classification of sections: Lemma 8.1 shows that MBBbound.X/ � 3. We can now clas-
sify all families of sections. As explained above, there is a unique family of sections
of height �1, 0, 1, and 2. We prove the irreducibility of the moduli space of sections of
height� 3 by induction. As discussed earlier, we know that any component of Sec.X=P1/
in this height range will parametrize a dominant family of sections. By Lemma 8.1 and
Theorem 8.2 we know that for d � 3 any free section of height d will deform as a stable
map to the union of a free section of height d � 2 and a free �-vertical conic. So it suf-
fices to show that if M denotes the unique component of Sec.X=P1/d�2 then the space
of curves obtained by gluing free �-vertical conics to curves in M is also irreducible. By
the fact that the monodromy is maximal, we know that the space of conics which meet a
fixed section is irreducible, and the desired conclusion follows immediately.

An analogous argument holds for other similar constructions.

Example 8.4. Let X5 be a general codimension 3 linear section of Gr.2; 5/ � P9. Let
Z denote a smooth elliptic curve which is the base locus of a general pencil of hyper-
plane sections. Let � W X ! P1 denote the resolution of the pencil. We have Pic.X/ D
ZH ˚ ZE where H is the pullback of the hyperplane class and E is the exceptional
divisor of the blow-up � W X ! X5. In this notation �KX=P1 D E.

Since the fibration is constructed by resolving a Lefschetz pencil, the monodromy
action will again be full. Thus, by arguing just as in Example 8.3, we can classify all
components of Sec.X=P1/ by analyzing the behavior of sections of height � 2.
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Computation of low degree sections: We analyze the sections of low height with respect
to �KX=P1 :

Height �1: These are the rational curves in E Š Z � P1.

Height 0: These will be the strict transforms of lines in X5 not meeting Z. As described
by [45], this space is irreducible.

Height 1: These will be the strict transforms of conics in X5 which meet Z once.
[58, Theorem 7.6] shows that for the universal family U of conics on X5 the evaluation
map s WU! X5 has equidimensional irreducible fibers over an open neighborhood ofZ.
Thus the space of height 1 sections is irreducible.

Height 2: These will be the strict transforms of twisted cubics inX5 which meetZ in two
points. Consider the incidence correspondence I of pairs .H;C /whereH is a hyperplane
such that S D H \ X5 is smooth and C is a twisted cubic in S . Note that each S is a
degree 5 del Pezzo surface and C is the pullback of a line under a birational map S! P2.
The correspondence I admits a map to an open subset U � P6� and the monodromy
action of U on the classes of twisted cubics in a fixed surface S is transitive. Choose two
points p1; p2 on Z. They are parametrized by Sym2.Z/. Then we consider hyperplanes
H � P6 containing ` D span.p1; p2/. For each H there are only finitely many twisted
cubics contained inH \X5 passing through p1;p2. By the Lefschetz hyperplane theorem
the monodromy action of the hyperplanes containing ` is still transitive on the set of cubics
in each surface S , so the set of twisted cubics meeting Z in two points is parametrized by
an irreducible variety. The irreducibility of the space of sections of height 2 follows.

By mimicking the argument in Example 8.3, we see that there is a unique irreducible
family of sections of every height � �1.

Similar computations hold for

� the blow-up of the intersection of two quadrics along the base locus of a general pencil
of hyperplanes,

� the blow-up of a quadric along the base locus of a general pencil of quadrics.

In these cases the behavior of low degree sections is described in [42].

8.3. Subvarieties of products of projective spaces

Another common way of constructing a del Pezzo fibration is by taking a complete inter-
section inside a product of a threefold with a curve. The following example illustrates
how one can compute sections in this situation.

Example 8.5 (Diagonal cubic surface .1; t; t C 1; t C 2/). Consider the smooth threefold
X � P1s;t � P3x;y;z;w defined by the equation sx3 C ty3 C .t C s/z3 C .t C 2s/w3 D 0.
The projection map to P3 realizes X as the blow-up of the base locus of a pencil of
cubic surfaces on P3. We let Z denote the smooth genus 10 curve which is the base locus
of this pencil and let E denote the exceptional divisor. The projection � W X ! P1 is
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a cubic surface fibration. We will see below that the Galois action on Pic.Xx�/ factors
through .Z=3Z/3 and under this action the 27 lines split into orbits of size .9; 9; 9/. It
follows from [46, Appendix, No. 71] that X� has Brauer group Z=3Z. However, since
X is birational to P3, its Brauer group is trivial. Let H1 and H2 denote the pullbacks
of the hyperplane class under the two projection maps. Then �KX=P1 D �H1 CH2 is
relatively ample.

Computation of �-vertical curves: The Galois group acts on Pic.Xx�/ through .Z=3Z/3

and the rank of Pic.X�/ is 1. Indeed, letLD k.t1=3; .t C 1/1=3; .t C 2/1=3/ be the splitting
field of Pic.Xx�/. Then the Galois action on L factors through .Z=3Z/3 given by .i; j; k/ �
.t1=3; .t C 1/1=3; .t C 2/1=3/ D .�i3t

1=3; �
j
3 .t C 1/

1=3; �k3 .t C 2/
1=3/ where �3 is a cubic

root of unity. There are three orbits of lines, each of size 9. There are three orbits of classes
of conics, each of size 9, since every conic fibration has the form Xx� 3 .x W y W z W w/!

.s1=3x C t1=3y W .t C s/1=3z C .t C 2s/1=3w/ 2 P1 up to permutation and Galois action.
This implies that X� does not admit a curve of anticanonical degree 1 or 2 that is defined
over the ground field.

The computation above shows that xX admits three families of �-vertical lines which
meet a general fiber. There are also four singular fibers of � , each of which is a cone
over a cubic curve. There is a one-parameter family of �-vertical lines contained in every
singular fiber of � . In all seven families of �-vertical lines a general line has restricted
tangent bundle O.2/˚O ˚O.�1/.

Computation of the closed set: A section must have intersection number 1 againstH1. So
its degree under the pushforward to P3 will be 1more than the height. The lowest possible
height is�1, and each such section is contracted by the map X!P3. As explained above,
we know that the generic fiber of � has no line or conic defined over the ground field, so
by Theorem 5.4 we see that the only possible non-dominant families of sections will have
height � 0. We analyze sections in this range below.

Computation of low degree sections: We next classify sections of low height.

Height �1: These will be the sections contained in E. There is an irreducible one-
parameter family of such sections.

Height 0: These will be strict transforms of lines in P3. Such a line must meet every
hyperplane in our family with multiplicity 2 along Z, so these lines are the bisecants
to Z. They are parametrized by an irreducible space birational to Sym2.Z/.

Height 1: These will be strict transforms of smooth conics which meet each cubic in
our family with multiplicity 5 along Z. Each generic plane P contains a finite number of
such conics. Indeed, P \Z will be nine points, and any conic which contains five of these
points will yield a section. We claim there is a unique component of Sec.X=P1/ whose
generic section has this form. Indeed, by [47, Proposition 1.1], as we vary the plane P ,
the monodromy action on P \Z factors through the action of the full symmetric group.
But if there were more than one irreducible component then the monodromy action could
not be transitive.
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We show there are no other components using a dimension count. Suppose that P is a
plane containing a family of height 1 sections which has dimension � 1. This means that
there is a length � 4 dimension 0 subscheme of P such that every conic containing this
subscheme meets Z with multiplicity 5 along these points. In particular, the restriction of
every cubic in our family to P must be singular. However, there is no such plane P , since
the tangent planes of our cubics at each point z 2 Z vary.

Height 2: These will be strict transforms of cubics in P3. We first show that there is a
unique component M � Sec.X=P1/ whose general curve C corresponds to a twisted
cubic C 0 in P3. Our strategy is to show that any such component M will contain broken
curves of a certain type. Recall that there are two irreducible components M0;M1 of the
moduli space of rational curves which parametrize free sections of height 0 and height 1
respectively. We let L0; L1; L2 denote the three components which parametrize a family
of �-vertical lines which dominate P1, and we let S1; S2; S3; S4 denote the four compo-
nents which parametrize vertical lines in the four singular fibers of � . Finally, there are
three components N0; N1; N2 parametrizing vertical free conics.

LetM be any component of Sec.X=P1/ consisting of the strict transforms of twisted
cubics C 0. Then the general C 0 meets Z in eight points. Fix one general point x on X

and one general point z on Z; the set of sections C passing through x and meeting the
exceptional curve in X corresponding to z in Z forms a family of dimension at least 1.
The pushforwards of deformations of C to P3 are twisted cubics C 0 meeting the two
fixed points x; z. Applying Bend-and-Break to this family of twisted cubics we obtain
a breaking curve

Pk
iD1 C

0
i in P3. The breaking curve must be either the union of a line

and a conic, or the union of three lines. However, a connected chain of three lines cannot
meet x and z while meeting Z at seven other points. So the broken curve must be a line
plus a conic. There are two possibilities: (i) the line meets Z at three points and the conic
meets Z at five points; (ii) the line meets Z at two points and the conic meets Z at six
points. Going back to X, this means that we break a curve C into either (i) a vertical line
and a section of height 1, or (ii) a vertical conic and a section of height 0. Moreover, by
construction our breaking curve must meet x and one general section of height �1, and in
fact by Lemma 4.1 each component of the broken curve must meet either x or the general
section.

Next we show that both types of breaking curve are smooth points of xM0;0.X/. In
case (i), there are only finitely many �-vertical lines meeting a fixed general section of
height �1. If the section is general then the line must also be general so its normal bundle
has the form O ˚O.�1/. Furthermore, the sections of height 1 passing through x form a
one-dimensional locus. Among them only finitely many meet a fixed general vertical line.
This implies that our section of height 1 must be free. We conclude that the broken curve
is a smooth point of the moduli space. In case (ii), x meets either a section of height 0 or
a vertical conic. If the former holds, there are finitely many sections of height 0 passing
through x and by generality any such conic must be free. Then there are only finitely many
choices of a �-vertical conic meeting fixed general sections of height 0 and height �1, so
the conic must also be free. If the latter holds, there are only finitely many choices for a
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vertical conic and by generality it must be free. Then there are only finitely many sections
of height 0 meeting one general section of height �1 and one of our chosen conics, so the
section must also be free.

Before continuing, we note that for any j D 1; 2; 3; 4 there is a unique component of
M
.1/
1 �X S

.1/
j which generically parametrizes the union of a free section and a general

line in Sj . Indeed, since any section meets the corresponding singular fiber of � in one
point, the parameter space of such glued curves is birational to M1.

Suppose that M contains the union of a general vertical line in some Li and a free
section of height 1. Then the locus of broken curves in M of this type must admit a
dominant map to M1. Since the space of height 1 sections is irreducible, its closure in
xM0;0.X/ contains a two-dimensional locus parametrizing unions of a free height 0 section

and a general line in S1. Correspondingly, the closure of M in xM0;0.X/ parametrizes a
curve which is a chain `1 [ C0 [ `2 where `1 is a general line in S1, C0 is a free height 0
section, and `2 is a line in Li which must be general by a dimension count. Note that this
is a smooth point of xM0;0.X/. We can smoothC0 [ `2, and furthermore we can deform `1
and the intersection point along with the smoothing. Thus we see that the closure of M
in xM0;0.X/ must contain M .1/

1 �X S
.1/
1 . By an analogous reasoning, it also contains

M
.1/
1 �X S

.1/
j for any j D 1; 2; 3; 4.

Suppose that M contains the union of a general vertical line in some Sj and a free
section of height 1. Since this is a smooth point of xM0;0.X/, M must contain the entire
locus M .1/

1 �X S
.1/
j .

Finally, suppose that M contains the union of a general vertical conic in some Ni and
a free section of height 0. Then the locus of broken curves in M of this type must admit
a dominant map to M0. Since the space of height 0 sections is irreducible, its closure
in xM0;0.X/ contains a one-dimensional locus parametrizing unions of a general height
�1 section and a general line in S1. Since this locus is one-dimensional, an incidence
correspondence argument shows that the closure of M in xM0;0.X/ parametrizes a chain
` [ C0 [ T where ` is a general line in S1, C0 is a general height �1 section, and T is
a free conic. This is a smooth point of xM0;0.X/. Note that we can smooth C0 [ T , and
furthermore we can deform ` and the intersection point along with the smoothing. Thus
we see that the closure of M in xM0;0.X/ must contain M .1/

1 �X S
.1/
1 . By an analogous

reasoning, it also contains M .1/
1 �X S

.1/
j for any j D 1; 2; 3; 4.

We have shown that any component M parametrizing the strict transform of twisted
cubics must contain M .1/

1 �X S
.1/
j for some j D 1; 2; 3; 4. Furthermore, there must be

at least one component which contains a smoothing of a general height 1 section and a
general line in Li . This particular component contains M .1/

1 �X S
.1/
j for every j . Since

for each j the spaceM .1/
1 �X S

.1/
j is irreducible and contains smooth points of xM0;0.X/,

altogether we deduce that there is a unique such component M .
We next show that there is no component M � Sec.X=P1/ whose general point cor-

responds to a planar cubic C in P3. Let P be the plane containing C . If P is generic,
then either C contains eight points of P \ Z or the singular point of C lies on P \ Z
and C must contain six other points of P \ Z. Note that there are only finitely many
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possible such C in any fixed P . Thus a dimension count shows that the collection of such
curves cannot be dense in a component of Sec.X=P1/. Similar dimension counts work
for non-generic P to show that we get no new components in this way.

Classification of sections: By Lemma 8.1, MBBbound.X/ � 3. Let d � 3 and assume
that for every �1 � k < d there is a unique component Mk parametrizing free sections
of height k. Suppose we fix a component M of Sec.X=P1/ generically parametrizing
free sections of height d � 3. Then xM contains a stable map consisting of a free section
Cd�2 of height d � 2 and a free conic T . Fix some j 2 ¹1; 2; 3º. Since the space of
height d � 2 sections is irreducible, a free section of height d � 2 can be deformed into
the union of a general section Cd�4 of height d � 4 and a general vertical free conic T 0

in the component Nj parametrizing vertical conics. Furthermore, since T is free, we can
deform T and the attachment point to Cd�2 along with the deformation above to obtain
a chain T [ Cd�4 [ T 0 where T is still a free vertical conic. Then we smooth T [ Cd�4
and obtain an element of M .1/

d�2
�X N

.1/
j which is a smooth point of xM0;0.X/. Since

M
.1/

d�2
�X N

.1/
j is irreducible, we conclude that M is unique.

9. Bounds in Geometric Manin’s Conjecture

9.1. Algebraic and numerical equivalence for curves

We start by recalling some facts about algebraic and numerical equivalence for curve
classes on del Pezzo fibrations.

9.1.1. Numerical equivalence. By dualizing the surjective restriction map N 1.X/R !

N 1.X�/R we obtain an inclusionN1.X�/R �N1.X/R. Let i W F ,!X denote the inclu-
sion of a general fiber of � . By applying the Invariant Cycle Theorem (see [25, Théorème
(4.1.1) (ii)] and the following discussion) to divisors and dualizing, we see that

N1.X�/R D i�.N1.F /R/ D i�.N1.F /
mon
R /

where N1.F /mon
R denotes the monodromy invariant part of N1.F /R. Under this identifi-

cation we have Nef1.X�/ D i�Nef1.F /.
The behavior of lattices of curves in these spaces is more subtle. We have inclusions

N1.X�/Z � i�.N1.F /Z/ � N1.X/Z \N1.X�/R

as full-rank sublattices. While the first inclusion can be strict, the second inclusion is an
equality for del Pezzo fibrations which have a smooth total space.

Proposition 9.1. Let � WX!P1 be a Fano fibration such that X is smooth. LetF denote
a general fiber of � . Suppose that the pairing of N 1.F /Z and N1.F /Z is unimodular.
Then i�.N1.F /Z/ D N1.X/Z \N1.X�/R.
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Proof. First note that the restriction map N 1.X/Z � N 1.X�/Z is surjective, since any
Cartier divisor on X� , can be extended to a Weil divisor on X and X is smooth. The
Hochschild–Serre spectral sequence for H 2.X�;Gm/ (as in [65, Corollary 6.7.8]) reads

0! Pic.X�/! Pic.Xx�/Gal.k.P1//
! Br.k.P1//! H 2.X�;Gm/:

Since the Brauer group Br.k.P1// is 0, we conclude that N 1.X�/Z Š N
1.Xx�/

Gal.k.P1//
Z .

This last group is in turn isomorphic toN 1.F /mon
Z . Indeed,N 1.F /Z ŠN

1.Xx�/Z and the
Galois group is acting on this space through the monodromy action. Combining, we have
maps

N 1.X/Z � N 1.X�/Z Š N
1.F /mon

Z ,! N 1.F /Z

where the first map is the pullback and the third is the inclusion. Taking the dual we obtain

N1.F /Z � .N 1.F /mon
Z /_ Š N 1.X�/

_
Z ,! N 1.X/_Z:

Finally, we note thatN 1.X�/
_
ZDN1.X�/R \N

1.X/_Z. Indeed, sinceN 1.X/Z is torsion
free, the kernel of N 1.X/Z � N 1.X�/Z is also a free abelian group. Thus the coker-
nel of N 1.X�/

_
Z ,! N 1.X/_Z is torsion free. This proves that N1.X�/R \ N1.X/Z �

i�.N1.F /Z/ as desired.

9.1.2. Algebraic equivalence. For a smooth rationally connected threefold X over C we
have

Br.X/ Š H 3.X;Z/tors:

According to the universal coefficient theorem for cohomology (as in [43, Theorem 3.2]),
we can equally well think of Br.X/ as the torsion classes of H2.X; Z/. Let Q1.X/
denote the set of algebraic equivalence classes of curves of X. Now, [9, Theorem 1]
shows that algebraic and homological equivalence coincide for curve classes on X, and
[76, Theorem 2] proves the integral Hodge conjecture for X. Together these show:

Theorem 9.2 ([9, 76]). Let X be a smooth rationally connected threefold over C. Then
jBr.X/j is the size of the kernel of the quotient map q W Q1.X/! N1.X/Z.

9.2. Counting components

The key to Geometric Manin’s Conjecture is to count the number of components of
Sec.X=P1/. We separate this into two questions:

(1) Which numerical classes are represented by a section?

(2) How many components of Sec.X=P1/ represent a fixed numerical class? How many
such components parametrize a dominant family of curves?

In this section we analyze these questions using heuristic arguments. The goal is to
develop a precise conjecture describing what we will need for Geometric Manin’s Con-
jecture. For simplicity we assume that X is smooth.
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For Question (1) the key input is the Weak Approximation Conjecture. A section can
only intersect components of fibers which occur with multiplicity 1. Conversely, since
the Brauer group of k.P1/ is trivial, the Weak Approximation Conjecture predicts that
this is the only restriction on the possible intersection numbers with components of fibers
(see e.g. [39, Conjecture 2]). Let �X be the (finite) set of all possible combinations of
intersection numbers of a section against �-vertical divisors, i.e., the set parametrizing
the ways of choosing one component of multiplicity 1 in every fiber of � . We call an
element � of �X an intersection profile. We will let N� � N1.X/R denote the affine
linear subspace of classes with a given intersection profile �. Note that once we have one
section with a given intersection profile, we can obtain many more by gluing on �-vertical
free curves.

We next turn to Question (2). Each component of Sec.X=P1/ naturally determines
an algebraic equivalence class. Conversely, we expect that each “sufficiently positive”
algebraic equivalence class is represented by at most one dominant family of sections.
By combining this with Theorem 9.2, we expect that each “sufficiently positive” numer-
ical equivalence class is represented by jBr.X/j different dominant families of sections.
Precisely:

Conjecture 9.3. Let � W X ! P1 be a del Pezzo fibration such that X is smooth. Fix an
intersection profile � and let Nef� D Nef1.X/ \N�. Then:

(1) There is an upper bound on the number of dominant families of sections representing
any fixed numerical class in Nef�.

(2) There is some translate T of Nef� in N� such that every numerical class in TZ is
represented by exactly jBr.X/j different dominant families of sections.

The following example shows that when jBr.X/j > 1 we can indeed find multiple
dominant components of Sec.X=P1/ representing some sufficiently positive numerical
classes.

Example 9.4. Consider the Artin–Mumford example of a unirational threefold X with
non-trivial Brauer group from [1]. The construction starts with a linear subspace P3 in
the parameter space for quadrics on P3. We then take a double cover Y ! P3 ramified
over the locus of singular quadrics. Y has ten double point singularities, and by resolving
them we obtain our threefold X .

Let p 2P3 denote the image of one of the singular points on Y . By composing the map
X! P3 with projection from p, we obtain a morphism g WX! P2. This is generically a
conic bundle, and [1, Section 2] shows that the discriminant locus consists of two elliptic
curves D1; D2 � P2. Furthermore, if we take one component T1 of a reducible conic
over D1 and one component T2 of a reducible conic over D2, then T1 � T2 is a class that
is numerically equivalent to 0 but not algebraically equivalent to 0 on X .

Now compose the map X ! P3 with projection from a general line. By resolving
this map, we obtain � W X ! P1. The general fiber is a double cover of P2 ramified
along a smooth quartic, so that � gives X the structure of a degree 2 del Pezzo fibra-
tion. The curves T1; T2 above yield two sections of � that are numerically equivalent but
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not algebraically equivalent on X. If we glue these two curves to any sufficiently pos-
itive �-vertical curve and smooth, we will find two different dominant components of
Sec.X=P1/ representing different algebraic classes but the same numerical class.

9.3. Geometric Manin’s Conjecture

Throughout this section, � WX! P1 denotes a del Pezzo fibration polarized by �KX=P1

such that X is smooth. For simplicity, we will assume that the general fibers are not
isomorphic to P2 or P1 � P1. (In these two cases one must adjust the counting function
slightly to reflect the fact that the general fiber does not contain any curve class with
anticanonical degree 1.)

Recall that we have the following definition of our counting function:

Definition 9.5. Fix a real number q > 1. For any positive integer d define

N.X;�KX=P1 ; q; d/ WD

dX
iD1

X
M2Manini

qdimM :

For the definition of Manini see Definition 1.10.

For the remainder of the section, we study the asymptotic growth rate of the function
N.X;�KX=P1 ; q; d/ by modifying Batyrev’s heuristic for the relative setting. We will
need the following constants:

Definition 9.6. Let � W X ! P1 be a del Pezzo fibration. We equip N1.X�/R with the
Lebesgue measure � such that the fundamental domain for the lattice N1.X�/Z has vol-
ume 1. Then we define the alpha-constant of X� by

˛.X�;�KX=P1/

WD dimN1.X�/R � �
�
Nef1.X�/ \ ¹
 2 N1.X�/R j �KX� � 
 � 1º

�
:

Definition 9.7. Let � W X ! P1 be a del Pezzo fibration such that X is smooth. We
define

�X D j�X j � ŒN1.X/Z \N1.X�/R W N1.X�/Z�

where �X denotes the set of allowable intersection profiles for X as in Section 9.2.

Putting everything together, Theorems 1.2 and 1.5 imply the following asymptotic
formula.

Theorem 9.8. Let � WX ! P1 be a del Pezzo fibration such that X is smooth, �KX=P1

is relatively ample, and the general fiber is a del Pezzo surface of degree � 2 that is not
P2 or P1 � P1. Assume that Conjecture 9.3 holds for every intersection profile �. Then

N.X;�KX=P1 ; q; d/ �
d!1

�
�X � ˛.X�;�KX=P1/ � jBr.X/j �

q

q � 1

�
qdd�.X�/�1:
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The restriction on the degree of the general fiber is not necessary: we impose this
restriction in order to apply Lemma 2.13, but with more care one can prove a similar
statement for degree 1 del Pezzo fibrations. (After appropriate modifications we can also
find a formula for P2 or P1 � P1 fibrations.)

We expect the same asymptotic formula to hold even when the relative canonical
divisor is not relatively ample.

Proof of Theorem 9.8. For convenience we letD denote the discriminant of N1.X�/Z in
N1.X/Z \N1.X�/R.

By Theorem 1.2 each Manin component of sufficiently high degree parametrizes a
dominant family of sections. Thus we can estimate N.X;�KX=P1 ; q; d/ by counting
how many dominant families of sections parametrize curve classes of height at most d . We
execute this plan for each intersection profile � separately and then add the contributions
at the end.

Recall that for each intersection profile � 2 �X there is a unique translate N� of
N1.X�/ in N1.X/ parametrizing classes with this intersection profile. For each � we
will fix an isomorphism  between N1.X�/ and N� by mapping 0 to some fixed Z-class
v� 2 N� and extending linearly. Under this isomorphism N1.X�/Z is identified with a
full-rank sublattice of N�;Z WD N� \N1.X/Z of index D.

Let†� denote the set of dominant components of Sec.X=P1/ parametrizing sections
with intersection profile �. By composing the map to N1.X/R with  �1, we obtain

� W †� ! N1.X�/R:

Fix any coset „ of N1.X�/Z in N1.X�/R \ N1.X/Z. We claim that there is a movable
section with class in ��1„. Indeed, since a general fiber F is a del Pezzo surface,N1.F /Z
is generated by curves that are movable in F . By [48, §3, Proposition 3] there is a set T �

N1.F /R which is a translate of a full-dimensional cone such that every lattice point TZ can
be written as a non-negative sum of elements in this generating set. By Conjecture 9.3 we
know that there is a movable section C with intersection profile �. Since i�.N1.F /Z/ D
N1.X�/R \N1.X/Z there is an element ˇ 2 TZ such that the sum of ˇ and the class of C
lies in ��1„. By gluing C to a union of free curves representing ˇ we find a movable
section in ��1„.

We next claim that there are classes v1; v2 2  �1.„/ such that

v1 C Nef1.X�/Z � �.†�/ \„ � v2 C Nef1.X�/Z:

To see the first inclusion, let v1 be the class of a movable section in �.†�/ \„. Lemma
2.13 implies that for a general fiber F every element in Nef1.F /Z is represented by
a union of free curves. Using a gluing argument, we see that every element of v1 C
Nef1.X�/Z is represented by a dominant family of free sections.

To see the second inclusion, note that Movable Bend-and-Break (more precisely, The-
orem 7.7) shows that �.†�/ is contained in the sum of Nef1.X�/\N1.X/Z with a finite
set of classes. This implies that �.†�/ \„ is contained in the sum of Nef1.X�/Z with a
finite set of classes. Thus �.†�/ \„ is contained in a translate of Nef1.X�/Z.
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For each � 2 �X , we can determine the contribution of � to the counting function
N.X;�KX=P1 ; q; d/ by taking a sum over the lattice points �.†�/ � N1.X�/R, which
can further be subdivided as a sum over cosets of N1.X�/Z. As we determined above,
for any coset „ the set �.†�/ \„ is sandwiched between two translates of Nef1.X�/Z.
We let � denote the set of numerical classes contained in the larger translate but not the
smaller one. After perhaps increasing � , by Conjecture 9.3 (2) we may also suppose that
every fiber of � over a point not in � is either empty or of size exactly jBr.X/j.

Note that by Conjecture 9.3 (1) the contribution of the irreducible components in � to
the counting function is asymptotically negligible. In particular, the asymptotic behavior
of the counting function is unchanged if we assume that each element of �.†�/ con-
tributes exactly jBr.X/jqdimM to the sum.

We can now estimate the contribution of sections of intersection type � to the asymp-
totic formula using the usual Tauberian methods for linear functionals on the cone
Nef1.X�/. Using [16, Corollary A.5], each intersection profile � gives an asymptotic
contribution of

D � ˛.X�;�KX=P1/ � jBr.X/j �
q

q � 1
qdd�.X�/�1:

We then multiply by j�X j to add up the contributions from every � 2 �X , which yields
the formula in the statement of the theorem.

9.4. Upper bounds

Our results allow us to prove upper bounds on the counting function which approximate
the expected form.

Theorem 9.9. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is relatively
ample and X is smooth. Then there is a positive integer r such that

N.X;�KX=P1 ; q; d/ D O.qdd r /:

Proof. By Corollary 1.13 we can choose r sufficiently large so that the number of com-
ponents of Sec.X=P1/ with �KX=P1 -degree at most d is O.d r /. By arguing as in the
proof of Theorem 9.8 but using Corollary 1.13 in place of Conjecture 9.3, one obtains the
desired statement.

10. Stabilization of the Abel–Jacobi map

In this section, � W X ! P1 will denote a del Pezzo fibration over C such that X is
smooth. We let IJ.X/ŠH 2;1.X/_=ImH3.X;Z/ denote the intermediate Jacobian of X.
Since h3;0.X/ D h1;0.X/ D 0, the intermediate Jacobian is an abelian variety by [18,
Lemma 3.4].

Let W be a smooth variety and let Z � W � X be a family of homologically equiv-
alent effective 1-cycles on X. After subtracting a constant 1-cycle we obtain a family of
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homologically trivial 1-cycles and thus an Abel–Jacobi morphism AJW W W ! IJ.X/ as
constructed in [75, Section 12.1.2]. The choice of constant cycle only affects the map up
to translation, and thus we frequently omit it from the discussion. More generally, if W
is any projective variety and Z is a family of homologically equivalent effective 1-cycles
on X over W , we can define the Abel–Jacobi map on the open locus where W is smooth
and then consider it as a rational map AJW W W Ü IJ.X/.

Our goal is to analyze the Abel–Jacobi map for families of sections. Recall that any
componentM of Sec.X=P1/ is a reduced subscheme of Hilb.X/. Thus there is a natural
rational map M Ü Chow.X/ defined over the (semi)normal locus of M . By pulling
back the universal family over Chow.X/, we obtain a family of cycles over the smooth
locus of M , yielding AJM WMÜ IJ.X/ that is well-defined on the smooth locus.

We need to analyze how the Abel–Jacobi map behaves under gluing of free curves.

Proposition 10.1. Let � WX! P1 be a del Pezzo fibration with X smooth whose general
fiber is a del Pezzo surface with degree � 3. Suppose that M � Sec.X=P1/ is a compo-
nent parametrizing a dominant family of sections such that AJM is dominant. Suppose
that we construct a family of sections M 0 by gluing a family of �-vertical free conics or
cubics to M and smoothing. Then AJM 0 is also dominant.

Furthermore, let Z ! IJ.X/ denote the Stein factorization of the resolution of the
Abel–Jacobi map for a projective closure of M , and let Z0 ! IJ.X/ denote the similar
construction for M 0. Then we have a factorization Z ! Z0 ! IJ.X/.

Proof. Choose a general fiber F of � W X ! P1. Fix a component W of the parameter
space of conics or cubics in F . By Lemma 2.10, W is rational; thus the Abel–Jacobi map
for W is constant. Note that since M parametrizes free curves, a general section in M
will intersect a general curve parametrized by W . Let G � xM0;0.X/ denote the locus
parametrizing the stable maps obtained by gluing curves parametrized by M to curves
parametrized byW . Note thatG admits a dominant morphism  W G! xM ; from now on
we will replaceG by a component for which is dominant. SinceG intersects the smooth
locus of xM0;0.X/, the universal family induces an Abel–Jacobi map AJG W GÜ IJ.X/.
Since the Abel–Jacobi map is constant on W , it is in particular constant on the fibers
of  , so we see that AJG coincides with AJ xM ı  as a rational map. Since the forgetful
mapG!M has connected fibers, the Stein factorization of the resolution of a projective
closure of AJG is isomorphic to Z.

Let M 0 denote the family of sections obtained by smoothing the curves parametrized
by G and let xM 0 denote the corresponding component of xM0;0.X/. Let Z0 ! IJ.X/
denote the Stein factorization of a resolution of the Abel–Jacobi map AJ xM 0 . Since G is
contained in the smooth locus of xM 0, the restriction of AJ xM 0 to G is just AJG . Using the
universal property of Stein factorizations, we see that the map Z ! IJ.X/ must factor
through the map Z0 ! IJ.X/.

By combining Proposition 10.1 with Lemma 2.12 and an inductive argument, we
obtain a similar statement when gluing �-vertical free curves of arbitrary degree.
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Corollary 10.2. Let � W X ! P1 be a del Pezzo fibration with X smooth whose general
fiber is a del Pezzo surface with degree � 3. Suppose that M is a dominant family of sec-
tions such that the induced Abel–Jacobi map is also dominant. Suppose that we construct
a family of sections M 0 by gluing a family of �-vertical free curves to M and smoothing.
Then AJM 0 is also dominant.

Furthermore, let Z ! IJ.X/ denote the Stein factorization of the resolution of the
Abel–Jacobi map for a projective closure of M , and let Z0 ! IJ.X/ denote the similar
construction for M 0. Then we have a factorization Z ! Z0 ! IJ.X/.

By a combinatorial argument we can deduce a stabilization result for the Abel–Jacobi
maps of the spaces of sections.

Fact 10.3. Equip Zm�0 with the partial order � such that Ew � Ew0 when every coordinate
of Ew is at least as large as the corresponding coordinate of Ew0. Suppose we have a function
h W Zm�0 ! Z such that h preserves the partial order, i.e. Ew � Ew0) h. Ew/ � h. Ew0/.

Then for any integer c, the set h�1.Z�c/ is either empty or a finite union of translates
of Zm�0. By a c-corner of h we will mean any element of the minimal finite set ¹Eviº of
vectors such that

h�1.Z�c/ D
[
i

.Evi C Zm�0/:

Proof of Theorem 1.15. Let F � Sec.X=P1/ be the set of components which generi-
cally parametrize free curves of height � MBBbound.X/. Since there are only finitely
many dominant components of Sec.X=P1/ not contained in F , it suffices to restrict our
attention to this set.

By applying Proposition 7.8 repeatedly, we see that every family in F of height
� MBBbound.X/ C 3 can be obtained by gluing free �-vertical conics and cubics to
a family of free sections of height at most MBBbound.X/ C 2 and smoothing. We let
¹Miº � F denote the finite set of sections of height at most MBBbound.X/ C 2. Let
¹Rkº

r
kD1

denote the families of free �-vertical conics on X and let ¹SlºslD1 denote the
families of free �-vertical cubics on X. We let Ea denote a vector with non-negative inte-
ger components whose kth coordinate records how many times we glue conics from Rk
to Mi ; we let Eb denote the similar vector for the Sl . By combining Corollary 7.10 with
[58, Lemma 5.11] which allows us to reorder components, we see that if we fix Mi , Ea,
and Eb then by gluing the corresponding curves and smoothing we can only obtain one
component of F . In sum, we have a well-defined surjective map � from the set of triples
¹.Mi ; Ea; Eb/ j Ea 2 Zr�0;

Eb 2 Zs�0º to F .
Let Fdom denote the subset of F such that AJM is dominant. For each Mi , we define

the function hi W ZrCs�0 ! ¹0; 1º where hi .Ea; Eb/ D 1 exactly when �..Mi ; Ea; Eb// 2 Fdom.
By Proposition 10.1, hi preserves the partial order. By Fact 10.3, for each fixed Mi the
set of pairs .Ea; Eb/ such that �..Mi ; Ea; Eb// 2 Fdom is a finite union of translates of ZrCs�0 .
We conclude there is a finite subset ¹Nj º � Fdom such that every element of Fdom can be
obtained by gluing vertical conics and cubics onto the Nj . Just as before, we represent
this fact by a surjective map  W ¹.Nj ; Ea; Eb/º ! Fdom.
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For each fixed j , let dj denote the degree of the Stein factorization of a resolution
of AJNj . We define a function gj W ZrCs�0 ! Z sending a pair .Ea; Eb/ to dj � d.Ea; Eb/

where d.Ea; Eb/ denotes the degree of the Stein factorization of a resolution of AJ
 .Nj ;Ea;

Eb/
.

Fact 10.3 guarantees that there are only finitely many c-corners of gj as we vary c 2
¹0; : : : ; dj º. Furthermore, due to the factorization structure in Proposition 10.1 we know
that the Stein factorization of the resolution of any Abel–Jacobi map AJ

 .Nj ;Ea;
Eb/

will be
dominated by the Stein factorization coming from one of these corners. Since there are
only finitely many Nj , we deduce the statement.

Example 10.4. Consider the del Pezzo fibration � WX! P1 consisting of a general pen-
cil of hyperplane sections of the degree 5 index 2 Fano threefold X5 � P6. As discussed
in Example 8.4, the spaces of sections of every height are irreducible.

Let � WX! X5 be the birational map and let E denote the exceptional divisor. There
is a P1-fibration � W E ! Z where Z is an elliptic curve in X5. We have isomorphisms

H 3.X;Z/_ �!
g
H 1.E;Z/_ ���!

��_
H 1.Z;Z/_

where g is the sequence of isomorphisms

H 3.X;Z/_ �!
PD

H3.X;Z/ ��!
\E

H1.E;Z/ �!
PD

H 1.E;Z/_:

These operations all respect the Hodge structure, giving isomorphisms

H 2;1.X/_ �!
g
H 1;0.E/_ ���!

��_
H 1;0.Z/_:

Suppose Md is the family of sections of � of height d . Fix a general curve C0 paramet-
rized by Md . For a general point b 2 Md , we can identify a real 3-cycle � on X such
that ŒCb� � ŒC0� D @� . The Abel–Jacobi map sends b to Œ�� 2 H 2;1.X/_=H3.X;Z/.
Using the isomorphism g we obtain an element of H 1;0.E/_=H1.E;Z/ which is repre-
sented by integration against Œ� \ E�. Note that � \ E is a 1-cycle whose boundary is
exactly ŒCb \ E� � ŒC0 \ E�. We now translate once more under the isomorphism ��_;
the corresponding element of Jac.Z/ is given by integration against the 1-cycle �.� \E/
whose boundary is Œ�.Cb/ \ Z� � Œ�.C0/ \ Z�. In sum, under the chain of isomor-
phisms above, a general point b 2Md is mapped under the Abel–Jacobi map to the point
�.Cb/ \Z � �.C0/ \Z in Jac.Z/.

This map can be realized geometrically as follows. Note that for any d � 0 a general
height d section on X is the same thing as a curve in X5 of degree d C 1 which meets Z
in d distinct points. This equips Md with a rational map to Symd .Z/. Since Z is an
elliptic curve, Symd .Z/ is a projective bundle over Jac.Z/, and the compositionMdÜ
Jac.Z/ is the Abel–Jacobi map (up to translation).

We can now analyze the Abel–Jacobi map for low height sections:

Height 0: The Abel–Jacobi map contractsM0 to a point. Note that sinceM0 is birational
to the space of lines in X5, a projective closure is rationally connected by [31].
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Height 1: We claim that the Abel–Jacobi map is the MRC fibration for M1. Recall that
an open subset of M1 parametrizes conics on X5 which meet Z once. By [44] the space
of conics on X5 is isomorphic to P4_; the isomorphism sends a general conic T � X5 �
G.2; 5/ to the hyperplane in P4 spanned by the corresponding lines.

Suppose we now fix a quintic elliptic Z in X5. Note that there is a morphism from
G.2;5/ to the parameter space P of Schubert varieties �1;1 in P4_ sending a line to the set
of hyperplanes containing it. The image ofZ under this map is an elliptic curve in P , and
the corresponding Schubert varieties sweep out a P2-bundle over Z. We claim thatM1 is
birational to this P2-bundle. Indeed, we know that M1 has dimension 3 and is contained
in this locus, thus it must contain an open subset.

The Abel–Jacobi map for M1 sends a curve to its intersection point with Z. This
agrees with the projection map from the P2-bundle to Z. This proves our claim.

Height 2: The Abel–Jacobi map is a MRC fibration. Indeed, Sym2.Z/! Jac.Z/ is a pro-
jective bundle. We claim that a general fiber ofM2Ü Sym2.Z/ is rationally connected.
Fix two general points x1; x2 on Z. Now, [29, Theorem 4.9] shows that the general fiber
of the map from the 2-pointed cubic curves on X5 to X5 � X5 is rationally connected.
(Note that this does not yet imply our desired statement since the fiber of interest in our
situation is not general.) The argument uses the birational map � W X5ÜQ to the three-
dimensional quadric Q given by projection from a line through x1. Tracing through the
proof, it suffices to show that the space of conics in the three-dimensional quadric Q
which

– meet the twisted cubic where ��1 is not defined,

– meet the line in Q which is the fiber over x1, and

– meet �.x2/

is rationally connected. This is the same as the space of planes in P4 meeting these loci,
and it is not difficult to see directly that this surface admits a rational map to P1 whose
fibers are rational curves.

By the argument of Theorem 1.15 we deduce that the Abel–Jacobi map has connected
fibers for the family of sections of any height � 1. We conjecture that in this situation the
Abel–Jacobi map always agrees with the MRC fibration for a family of sections.

10.1. Conic bundles over del Pezzo surfaces

In this section we discuss a couple examples showing that the Abel–Jacobi map does
not need to interact well with other possible stabilization results. These examples were
suggested to us by Hassett.

The first example shows that there might be no components of Sec.X=P1/ whose
Abel–Jacobi mapMÜ IJ.X/ is dominant and birationally equivalent to the MRC fibra-
tion.
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Example 10.5. Let S be a general del Pezzo surface of degree 2 equipped with a conic
fibration g W S ! P1. Let q W X ! S be a conic bundle over S such that its discriminant
divisor D is a very general element in j�2KS j (as constructed by [1]). Then � D g ı q W
X ! P1 is a del Pezzo fibration of degree 4 and [37, Theorem 1] shows that X does not
admit an integral Chow decomposition of the diagonal.

The variety X also does not admit an integral homological decomposition of the
diagonal. To see this, let M be a component of the parameter space for the set of conic
bundles over S whose discriminant divisor lies in j�2KS j. Since j�2KS j is basepoint free
and contains a union of two smooth elliptic curves meeting transversally in two points,
[37, proof of Theorem 1] shows that M parametrizes a conic bundle which has only ordi-
nary double point singularities and whose resolution has non-trivial Brauer group. Fur-
thermore, [77, Corollary 4.5] shows that this resolution does not admit an integral homo-
logical decomposition of the diagonal. Finally, [78, Theorem 2.1 (ii)] (combined with a
Hilbert scheme argument) applies in our situation to show that a very general X parametr-
ized by M also does not admit an integral homological decomposition of the diagonal.

We next verify that the hypotheses (i)–(iii) of [77, Theorem 4.9] hold in this situa-
tion. Since X is rationally connected, all the higher cohomology of the structure sheaf
vanishes, verifying hypothesis (i). Then [77, Theorem 1.3] shows that Z4.X/ D 0, ver-
ifying hypothesis (ii). Hypothesis (iii) has two parts. First, since IJ.X/ is isomorphic to
the Jacobian of a genus 2 curve, there is a one-cycle � of class Œ‚�g�1=.g � 1/Š on IJ.X/.
Second, since X ! S has irreducible smooth discriminant locus, [1, Theorem 2] shows
that the Brauer group of X is trivial.

Since X does not admit an integral homological decomposition of the diagonal,
[77, Theorem 4.9] implies that if M � Sec.X=P1/ is a component then the Abel–Jacobi
map is either non-dominant or the projective closure of a general fiber is not rationally
connected. In particular, the MRC fibration for a resolution of a projective closure of M
cannot coincide with the Abel–Jacobi map whenever the Abel–Jacobi map is dominant.

Remark 10.6. We expect that in Example 10.5 the dimension of the base of the MRC
fibration is unbounded. Indeed, consider the map h W Sec.X=P1/! Sec.S=P1/ induced
by pushforward. Let M be a component of Sec.X=P1/. Every component of a general
fiber of hjM is rationally connected and the finite part of the Stein factorization of hjM
can have very large degree. Thus it seems quite likely that the Stein factorization of hjM
will often coincide with the MRC fibration for M .

The following example shows that there can be an infinite set of components of
Sec.X=P1/ whose Albanese varieties have larger dimension than IJ.X/.

Example 10.7. Let S be a general del Pezzo surface of degree 2 equipped with a conic
fibration g W S!P1. Let q WX! S be a conic bundle over S whose discriminant locusD
is a general element of j�2KS j (as constructed by [1]). By composing q with g we obtain
a degree 4 del Pezzo surface fibration � W X ! P1. In this case IJ.X/ is the Jacobian of
a genus 2 curve.
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Note that q induces a map h W Sec.X=P1/ ! Sec.S=P1/. If C is a section of g W
S ! P1 then C is not contained in the discriminant locus, so that its q-preimage is gener-
ically a rationally connected fibration over C . Thus the map Sec.X=P1/! Sec.S=P1/
is surjective.

Let C be a section of g W S ! P1 satisfying �KS � C D 2 and C 2 D 0. Note that the
corresponding component N of Sec.S=P1/ is an open subset of P1. Assuming C is gen-
eral, it meets the discriminant locus transversally in four points. Choose any component
M of Sec.X=P1/ mapping dominantly onto N and let xM be a smooth projective variety
birational to M for which the Abel–Jacobi map is a morphism. Denote by h1 W xM ! Z

and h2 W Z ! P1 the Stein factorization of the map xM ! P1 induced by h. We prove
that Z is a smooth curve of genus at least 5.

Let 
 W S!P1 be the morphism which contracts the deformations of the conicC . The
restriction of 
 to the discriminant divisor D has degree 4. We claim that 
 jD W D ! P1

is simply branched. Indeed, by generality we may ensure that the branch points of 
 jD
avoid the singular fibers of 
 W S ! P1. If we fix a fiber C of 
 , then the locus in j�2KS j
parametrizing curves D bitangent to C has codimension 2. Since there is only a one-
parameter family of deformations ofC , we conclude that a generalD will not be bitangent
to any of C .

We deduce that 
 jD has 12 ramification points, each of which is contained in a smooth
fiber of 
 . This also shows that the monodromy of D over P1 is transitive and generated
by transpositions, and is thus the entire symmetric group S4.

Let I denote the divisor in X which is the preimage of D in S . Note that I is irre-
ducible because it arises from the construction of [1]. Let I 0 denote a resolution of I and
let B denote the Stein factorization of the map I 0 ! P1 induced by 
 . Let Gmon denote
the monodromy group of  W B ! P1. First of all, note that  factors through D as a
2 W 1 cover. Furthermore, the map B ! D is étale: the discriminant divisor is smooth, so
every fiber of gjS consists of two distinct lines and not a double line. Using this covering
map to D, we get an exact sequence

1! K ! Gmon ! S4 ! 1 (10.1)

where K is the kernel of Gmon ! S4. Then since Gmon is contained in the stabilizer
of a conic fibration in the Weyl group W.D5/, we have #K D 1; 2; 4, or 8. Since I is
irreducible, #K D 1 is impossible. Moreover, we can conclude that K consists of involu-
tions, since each element will either fix or switch the two irreducible components in each
reducible fiber of 
 .

Suppose we fix a conic C in our family on S . The g-preimage of C is a surface such
that the map to C has four reducible fibers. Thus there are 16 possible intersection profiles
for curves lying over C in a fixed numerical class on X. We next study the action ofGmon

on these 16 possible intersection profiles. First of all note that there are eight intersection
profiles realized by sections which are .�1/-curves, and there are eightt other intersection
profiles which cannot be realized by sections which are .�1/-curves. These are preserved
by the monodromy action of Gmon. Our goal is to prove that there are two orbits under the
action of Gmon of size 8 given by these intersection profiles.
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First we will prove that K has a unique non-trivial involution � in the center of Gmon.
Suppose we fix a section in our familyM . This section intersects the four reducible fibers
along componentsQ1,Q2,Q3,Q4, and does not intersect the other four componentsQ01,
Q02, Q03, Q04 of the reducible fibers. We can identify the action of Gmon on intersection
profiles by analyzing how it permutes these eight curves. Note that the quotient S4 ofGmon

acts on the set of pairs Pi WD ¹Qi ; Q0iº via the natural symmetric group action. If we
have a non-trivial involution � in the center then the action of � is given by Qi $ Q0i .
The conjugacy classes of other involutions have size 4, 6, 4 respectively. So the only
possibilities are that #K D 2 and the decomposition of conjugacy classes on K is .1; 1/
or #K D 8 and the decomposition of conjugacy classes on K is given by .1; 1; 6/. Thus
K has a unique non-trivial involution � in the center of Gmon. Also note that K does not
intersect non-trivially with the stabilizer of any intersection profile and elements in K act
trivially on the set of pairs ¹Piº.

If K has order 2, the sequence (10.1) cannot split. If it did then we would have a
factoringB!D0! P1 whereD0! P1 has degree 2. SinceD! P1 is simply branched
andB!D is étale, the fibers ofB!P1 would consist of either eight points or six points.
This implies that D0 ! P1 is étale. But this is impossible.

Now the possible sizes of theGmon-orbit of an intersection profile are 2;4;6;8. A com-
binatorial argument shows that if there more than two orbits then there must be an orbit
of size 2 or 4, so it suffices to prove there is no orbit of these types. When K has order 8,
orbits of size 2 and 4 are impossible as K does not intersect non-trivially the stabilizer of
any intersection profile.

When K has order 2, an orbit of size 2 is impossible: since � is not contained in the
stabilizer, the map Gmon ! S4 would restrict to an isomorphism on the stabilizer group,
contradicting the fact that there is no splitting of this map. An orbit of size 4 is also
impossible: if we had such an orbit, then the stabilizer Gstab would be identified with A4
under the quotient map Gmon ! S4. Let �ij for 1 � i < j � 4 be an element of Gmon

mapping to the transposition .ij / in S4. Any product of an even number of the �ij must lie
in eitherGstab or �Gstab. By writing down the possible actions of the �ij on the components
of the singular fibers which satisfy this constraint, it is not hard to see that either some �ij
or some ��ij will also be contained in the stabilizer, a contradiction.

To summarize, we have shown that the action of Gmon on the set of intersection pro-
files of sections lying above C has two orbits. This implies that there are at most two
components M of Sec.X=P1/ which map to the component N and which represent a
fixed numerical class on X. The Stein factorization of a resolution of a projective closure
of the map M ! N has degree 8.

Consider again the conics C which are fibers of 
 . If C is general, then the g-preim-
age � is birationally ruled over C with four singular fibers. But when C is tangent to D,
the singular fibers of � behave differently. This will happen at the 12 simple ramification
points of 
 jD . At each such point, formally locally in a neighborhood of the fiber over the
tangency point � looks like the subset of A2s;t � P3x;y;z defined by the equations s D 0 and

.s � t2/z2 C xy:
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Setting s D 0, we see that � has a single A1-singularity. Its resolution has three singular
fibers under the map to S which have two, two, and three components. Thus there are
possibly 12 intersection profiles for such a surface, but six of them are realized by sections
of .�1/-curves and the other six are not. We deduce that the fiber of h2 corresponding to
this singular surface has at most six components. Thus the contribution to the ramification
divisor of h2 at this point is at least 2. Altogether we see that the contribution of such
fibers to the ramification divisor R for h2 has degree at least 24, so that the genus of Z is
at least 5.

We have a morphism Alb. xM/! Jac.Z/ induced by h1. Since h1 W xM ! Z is sur-
jective, the image of Alb. xM/ generates Jac.Z/. Thus the map Alb. xM/ ! Jac.Z/ is
surjective. We conclude that the dimension of Alb. xM/ is at least 5, so it cannot coin-
cide with IJ.X/.

11. Gromov–Witten invariants

Let � W X ! P1 denote a del Pezzo fibration such that X is smooth. We will consider
Gromov–Witten invariants on X with n point insertions, i.e. hŒpt�niX;ˇ0;n where ˇ is a curve
class satisfying F � ˇ D 1 for a general fiber F of � . In order to obtain the correct virtual
dimension, we must have �KX=P1 � ˇ D 2n � 2.

Proposition 11.1. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is rela-
tively ample and X is smooth. Suppose that

n � maxdef.X/C 2C sup ¹0;� neg.X;�KX=P1/º:

Let ˇ 2 N1.X/R denote a curve class satisfying �KX=P1 � ˇ D 2n � 2 and F � ˇ D 1

for a general fiber F of � . Then the GW-invariant hŒpt�niX;ˇ0;n is enumerative: it counts the
number of rational curves of class ˇ through n general points of X.

This extends [72, Theorem 4.1] which establishes the non-vanishing of certain GW-
invariants for sections of a del Pezzo fibration. The argument is very similar to the proof
of Theorem 1.5.

Proof of Proposition 11.1. Fix n general points of X. If a component M � xM0;n.X; ˇ/

contributes to the GW-invariant, then there must be a stable map parametrized by M
whose image C contains all n points. By Proposition 6.4 we know that M must generi-
cally parametrize free curves. In particular, such componentsM have the expected dimen-
sion, are generically smooth, and do not admit a generic stabilizer. This suffices to yield
the result.

By essentially the same argument, we have:

Proposition 11.2. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is rela-
tively ample and X is smooth. Suppose that

n � maxdef.X/C sup ¹0;� neg.X;�KX=P1/º:
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Let ˇ 2 N1.X/R denote a curve class satisfying �KX=P1 � ˇ D 2n� 1 and F � ˇ D 1 for
a general fiber F of � . Fix a �-vertical curve C that is a general member of a basepoint
free linear series in a general fiber. Then the GW-invariant hŒpt�n;C iX;ˇ0;nC1 is enumerative:
it counts the number of rational curves of class ˇ that intersect C and contain n general
points of X.

Finally, we prove an existence result which can be used to show that certain GW-
invariants are non-zero. Recall that a smooth rational curve C contained in a smooth
threefold X is said to have balanced normal bundle if NC=X Š O.a/ ˚ O.b/ where
jb � aj � 1.

Proposition 11.3. Let � W X ! P1 be a del Pezzo fibration such that �KX=P1 is rela-
tively ample and X is smooth. Suppose that n � .Q.X/C 2/=2 where Q.X/ is defined
as in Theorem 7.2. There exists a free section with balanced normal bundle containing n
general points of X.

If the general fiber of � is not P2 or P1 � P1, then for any a � .Q.X/C 8/=2 there
exists a free section with normal bundle O.a/ ˚ O.a/ and a free section with normal
bundle O.a/ ˚ O.a C 1/. In particular, the Gromov–Witten invariant as in Proposi-
tion 11.1 or Proposition 11.2 is positive for the corresponding curve class.

[72, proof of Theorem 4.1] gives a similar statement with no explicit restriction on the
size of n or a.

Proof of Proposition 11.3. We know there exists a very free section C through n general
points of X. Let us choose such a curve of minimal height. Write NC=X D O.a/˚O.b/

with a � b. Furthermore, since C contains n general points, we know that if we replace C
by a general deformation then a � n � 1 by Lemma 2.8.

Suppose for a contradiction that the normal bundle is not balanced, so that aC 1 < b.
By repeating the arguments of [68] as used in Theorem 7.2, we obtain a smooth model z†
of a surface † swept out by deformations of C through aC 1 general points. We further
blow up the preimages of the general a C 1 points so that the preimages are divisorial.
There is an induced generically P1-fibration  W z†! P1, and the preimage of each of the
general points contains a component of a fiber of that meets the strict transform zC of C .
Continuing the argument of Theorem 7.2, we can break the curve zC on z† into zC1 C F
where F denotes a fiber of  . Note that zC1 must have the same intersection against  -
vertical curves in z† as zC does, and in particular the image of zC1 must also go through
a C 1 general points of X and avoid singularities of X. This contradicts the minimality
of C . Thus C must have balanced normal bundle, proving the first statement.

Now suppose that a general fiber of � is not P2 or P1 � P1. In particular, a general
fiber F contains �KX=P1 -cubics which are the strict transforms of lines on P2 and con-
tains �KX=P1 -quartics T such that TF jT ŠO.2/˚O.2/. Some elementary deformation
arguments show:

� Suppose we take a general section C with normal bundle O.a/˚ O.a/, fix a general
fiber F , and set T to be a curve in F through C \ F . If T is a �KX=P1 -cubic with
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a general tangent direction at C \ F , then a general smoothing of C [ T has normal
bundle O.a C 1/˚ O.a C 2/. If T is a �KX=P1 -quartic with TF jT D O.2/˚ O.2/

and a general tangent direction at C \ F , then a general smoothing of C [ T has
normal bundle O.aC 2/˚O.aC 2/.

� Suppose we take a general section C with normal bundle O.a/ ˚ O.a C 1/, fix a
general fiber F , and set T to be a curve in F through C \ F . If T is a �KX=P1 -
cubic with a general tangent direction at C \ F , then a general smoothing of C [ T
has normal bundle O.a C 2/ ˚ O.a C 2/. If T is a �KX=P1 -quartic with TF jT D
O.2/˚ O.2/ and a general tangent direction at C \ F , then a general smoothing of
C [ T has normal bundle O.aC 2/˚O.aC 3/.

By applying this gluing argument twice to a curve with balanced normal bundle, we obtain
curves of the desired type with any height at least 6 more than the original curve. Since
the balanced curve constructed in the first part has height Q.X/ or Q.X/C 1, we obtain
the desired statement.
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