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Abstract. We study vector-valued Littlewood–Paley–Stein theory for semigroups ¹Tt ºt>0 of regu-
lar contractions onLp.�/ for a fixed 1<p <1. We prove that if a Banach spaceX is of martingale
cotype q, then there is a constant C such that�Z 1

0

t @@t Pt .f /
q
X

dt

t

�1=q
Lp.�/

� Ckf kLp.�IX/; 8f 2 Lp.�IX/;

where ¹Pt ºt>0 is the Poisson semigroup subordinated to ¹Tt ºt>0. Let LPc;q;p.X/ be the least con-
stant C , and let Mc;q.X/ be the martingale cotype q constant of X . We show

LPc;q;p.X/ . max.p1=q ; p0/Mc;q.X/:

Moreover, the order max.p1=q ;p0/ is optimal as p! 1 and p!1. IfX is of martingale type q, the
reverse inequality holds. If additionally ¹Tt ºt>0 is analytic on Lp.�IX/, the semigroup ¹Pt ºt>0
in these results can be replaced by ¹Tt ºt>0 itself.

Our new approach is built on holomorphic functional calculus. Compared with the previous
approaches, ours is more powerful in several aspects: (a) it permits us to go much further beyond the
setting of symmetric submarkovian semigroups; (b) it yields the optimal orders of growth on p for
most of the relevant constants; (c) it gives new insights into the scalar case for which our orders of
the best constants in the classical Littlewood–Paley–Stein inequalities for symmetric submarkovian
semigroups are better than those of Stein.

In particular, we resolve a problem of Naor and Young on the optimal order of the best constant
in the above inequality when X is of martingale cotype q and ¹Pt ºt>0 is the classical Poisson or
heat semigroup on Rd .
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1. Introduction

This article continues our investigation of vector-valued Littlewood–Paley–Stein theory
that was initiated in [64] and further carried out in [41, 65, 66]. Our research in this
domain has been profoundly influenced by Stein’s monograph [55] and developed in two
parallel directions. On the one hand, it deals with the Banach space valued case as in
the just quoted articles as well as in the present one; and on the other hand, it extends
Littlewood–Paley–Stein theory to the noncommutative setting (see [30, 35] for maximal
function inequalities and [29] for square function inequalities).

Note that Betancor and coauthors studied this theory for some special semigroups
(cf. [7–10]); see also [1, 5, 6, 21, 27, 49, 56] for related results. Recently, the theory has
found applications to Lipschitz embedding of metric spaces into Banach spaces, and to
approximation of Lipschitz maps by linear maps; see, for instance, the papers by Hytönen
and Naor [25], Lafforgue and Naor [34], and Naor and Young [46].

First, we recall the famous Littlewood–Paley–Stein inequality that is the starting point
of all our research in this domain. Let .�;A; �/ be a � -finite measure space and ¹Ttºt>0
a symmetric diffusion semigroup on .�;A; �/ in Stein’s sense [55, Section III.1], that is,

� Tt is a contraction on Lp.�/ for every 1 � p � 1,

� TtTs D TtCs ,

� limt!0 Tt .f / D f in L2.�/ for every f 2 L2.�/,

� Tt is positive (i.e., positivity preserving),

� Tt is selfadjoint on L2.�/,

� Tt .1/ D 1.

The last condition is markovianity; the next to last is symmetry. Thus such a semigroup
is also called a symmetric markovian semigroup. A semigroup satisfying all the above
conditions except markovianity is usually called a symmetric submarkovian semigroup
(submarkovianity means Tt .1/ � 1).

It is a classical fact that the orthogonal projection F from L2.�/ onto the fixed point
subspace of ¹Ttºt>0 extends to a contractive projection on Lp.�/ for every 1 � p � 1.
Then F is also positive and F.Lp.�// is the fixed point subspace of ¹Ttºt>0 on Lp.�/.

Stein’s celebrated extension of the classical Littlewood–Paley inequality asserts that
for every symmetric diffusion semigroup ¹Ttºt>0 and every 1 < p <1,

kf � F.f /kLp.�/ �p

�Z 1
0

ˇ̌̌̌
t
@

@t
Tt .f /

ˇ̌̌̌2
dt

t

�1=2
Lp.�/

; f 2 Lp.�/: (1.1)

The classical inequality corresponds to the case where ¹Ttºt>0 is the Poisson semigroup
on the torus T or the Euclidean space Rd . Stein’s inequality above is the core of [55]
in which Stein developed a beautiful general theory. Later, Cowling [13] presented an
elegant alternative approach to Stein’s theory for symmetric submarkovian semigroups;
Cowling’s goal is to show that the negative generator of ¹Ttºt>0 has a bounded holomor-
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phic functional calculus, and then to deduce the maximal inequality on ¹Ttºt>0, which is
another fundamental result of Stein.

In the present article we are concerned with the vector-valued case. Given a Banach
spaceX letLp.�IX/ denote theLp-space of strongly measurable functions from� toX .
It is a well known elementary fact that if T is a positive bounded operator on Lp.�/ with
1 � p � 1, then T ˝ IdX is bounded on Lp.�IX/ with the same norm. For notational
convenience, throughout this article, we will denote T ˝ IdX by T too. Thus ¹Ttºt>0 is
also a semigroup of contractions onLp.�IX/ for any Banach spaceX with F.Lp.�IX//
as its fixed point subspace.

The vector-valued Littlewood–Paley–Stein theory consists in investigating (1.1) for
f 2Lp.�IX/ (with the absolute value on the right hand side replaced by the norm ofX ).
It is not hard to show that the equivalence (1.1) continues to hold in the X -valued setting
for the Poisson semigroup on T iff X is isomorphic to a Hilbert space (see [20, 64]).
However, if one requires only the validity of one of the two one-sided inequalities, the
corresponding family of Banach spaces is much larger: the upper estimate corresponds
to 2-uniformly smooth spaces, while the lower one to 2-uniformly convex spaces (up to
renorming).

These geometrical properties of Banach spaces can be characterized by martingale
inequalities. Recall that a Banach space X is of martingale cotype q (with 2 � q <1)
if there exists a positive constant c such that every finite X -valued Lq-martingale .fn/
satisfies the inequality X

n

Ekfn � fn�1k
q
X � c

q sup
n

Ekfnk
q
X ;

where E denotes the underlying expectation. X is of martingale type q (with 1 < q � 2)
if the reverse inequality holds (with c�1 in place of c). The corresponding best constant
will be denoted by Mc;q.X/ for martingale cotype q and by M t;q.X/ for martingale type q.
Pisier’s famous renorming theorem asserts that X is of martingale type (resp. cotype) q
iff X admits an equivalent norm that is q-uniformly smooth (resp. convex). We refer the
reader to [51, 53, 54] for more information.

Note that in the study of one-sided inequalities in the vector-valued case, the index 2
on the right hand side of (1.1) plays no special role and can be replaced by 1 < q <1,
q � 2 for the upper estimate and q � 2 for the lower estimate. Now we can summarize
the main results of [41, 64, 66] as follows.

Theorem A. Let X be a Banach space and 1 < q <1.

(i) X is of martingale cotype q iff for every symmetric diffusion semigroup ¹Ttºt>0 and
for every 1 < p <1 .equivalently, for some 1 < p <1/ there exists a constant c
such that�Z 1

0

t @@t Tt .f /
q
X

dt

t

�1=q
Lp.�/

� ckf kLp.�IX/; f 2 Lp.�IX/:
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(ii) X is of martingale type q iff for every symmetric diffusion semigroup ¹Ttºt>0 and for
every 1 < p <1 .equivalently, for some 1 < p <1/ there exists a constant c such
that

kf � F.f /kLp.�IX/ � c

�Z 1
0

t @@t Tt .f /
q
X

dt

t

�1=q
Lp.�/

; f 2 Lp.�IX/:

Note that F.f / does not contribute to the norm on the left hand side of the inequality
in (i) above since @

@t
Tt .F.f // D 0 for any t > 0; so if this inequality holds, it automati-

cally holds with f replaced by f � F.f / on the right hand side. In what follows, when
cotype inequalities are considered, we will often use simply f instead f � F.f / as in (i).
However, for the type inequalities as in (ii), we must use f � F.f / on the left hand side.

Both “if” parts in the above theorem are proved in [64]; for that purpose we need only
the case where ¹Ttºt>0 is the usual Poisson semigroup on T (or Rd as in [41]). This
is the easy direction thanks to the classical link between Poisson integral and Brownian
motion. The other direction is harder. It is first proved in [64] for the Poisson semigroup
on the unit circle, then in [41] for the Poisson semigroup subordinated to any symmetric
diffusion semigroup ¹Ttºt>0. Left as an open problem in [41], the statement for ¹Ttºt>0
itself as above was finally settled in [66]. Note that as in [55], the key tool in [41, 66] is
Rota’s martingale dilation of a symmetric diffusion semigroup that allows us to adapt the
scalar Littlewood–Paley–Stein theory developed in [55].

The use of Rota’s dilation prevented us from weakening the assumption on a sym-
metric diffusion semigroup. Cowling’s approach in [13] does not use Rota’s dilation but
it requires the semigroup under consideration to be symmetric and submarkovian. It has
been an open problem to establish the results of [41] or [66] in Cowling’s setting. In fact,
since a long time it has been a desire to extend all previous results to more general semi-
groups. This was done in some special cases (Hermite, Laguerre and Bessel semigroups)
by Betancor and coauthors (cf. [7–10]).

The objective of the present article is to resolve the above problems. We will develop
a vector-valued Littlewood–Paley–Stein theory for semigroups of regular operators on
Lp.�/ for a single 1 < p < 1, thereby going considerably beyond Stein–Cowling’s
setting.

Recall that an operator T on Lp.�/ (1 � p � 1) is regular if there exists a constant
c such that sup

k

jT .fk/j

p
� c

sup
k

jfkj

p

for all finite sequences ¹fkºk�1 in Lp.�/. The least constant c is called the regular norm
of T . Obviously, any positive operator is regular with regular norm equal to its operator
norm. It is well known that, conversely, if T is regular, then there exists a positive opera-
tor S on Lp.�/ such that jT .f /j � S.jf j/ for any f 2 Lp.�/ with kSk equal to the reg-
ular norm of T ; such a positive S is unique and called the absolute value of T and denoted
by jT j (see [43, Chapter 1]). For presentation simplicity, in this article we will only con-
sider contractively regular operators, i.e., those with regular norms less than or equal to 1,
and we will simply call these operators regular with a slight abuse of terminology.
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It is well known (and easy to check) that if T is a contraction on Lp.�/ for every
1 � p � 1, then T is regular on Lp.�/. Like positive operators, a regular operator T
extends to a contraction on Lp.�IX/ for any Banach space X . This extension will be
denoted by T too.

Now let ¹Ttºt>0 be a strongly continuous semigroup of regular operators on Lp.�/
with 1 < p <1. When extended to Lp.�IX/, ¹Ttºt>0 remains a strongly continuous
semigroup of contractions on Lp.�IX/. Let again F be the projection from Lp.�/ onto
the fixed point subspace of ¹Ttºt>0. Then F is also regular, so extends to a contractive
projection on Lp.�IX/. Note that F.Lp.�IX// coincides with the fixed point subspace
of ¹Ttºt>0 on Lp.�IX/.

Let ¹Ptºt>0 be the Poisson semigroup subordinated to ¹Ttºt>0:

Pt .f / D
1
p
�

Z 1
0

e�s
p
s
Tt2=.4s/.f / ds: (1.2)

Recall that if A denotes the negative infinitesimal generator of ¹Ttºt>0 (i.e., Tt D e�tA),
then Pt D e�t

p
A. Instead of the square root, one can, of course, consider other subordi-

nated semigroups e�tA
˛

for 0 < ˛ < 1, but we will not deal with the latter here.
To proceed further, we need to introduce some notions. Define

G Tq .f / D

�Z 1
0

t @@t Tt .f /
q
X

dt

t

�1=q
for f in the definition domain ofA inLp.�IX/.X is said to be of Luzin cotype q relative
to ¹Ttºt>0 if there exists a constant c such that

kG Tq .f /kLp.�/ � ckf � F.f /kLp.�IX/

for all f as above. The smallest c is denoted by LTc;q;p.X/. Similarly, we define the Luzin
type q of X by reversing the above inequality and changing c to c�1, and the correspond-
ing type q constant is denoted by LTt;q;p.X/. See Section 4 below for more information.

Remark 1.1. The subordination formula (1.2) immediately implies the pointwise
inequality GPq .f / � C G Tq .f / for any f , where C is an absolute positive constant. It
then follows that

LTc;q;p.X/ � CLPc;q;p.X/ and LTt;q;p.X/ � CLPt;q;p.X/:

In [64], the Luzin type and cotype relative to the Poisson semigroup on the unit circle
are shown to be equivalent to the martingale type and cotype, respectively. Theorem A
above extends this to symmetric diffusion semigroups.

We will use the following convention:A.B (resp.A." B) means thatA�CB (resp.
A � C"B) for some absolute positive constant C (resp. a positive constant C" depending
only on "). A � B or A �" B means that these inequalities as well as their inverses hold.
The index p will be assumed to satisfy 1 < p <1 and p0 will denote its conjugate index.

Below is our first principal result.
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Theorem 1.2. LetX be a Banach space and 1<p;q <1. Let ¹Ttºt>0 be a strongly con-
tinuous semigroup of regular operators on Lp.�/ and ¹Ptºt>0 its subordinated Poisson
semigroup.

(i) If X is of martingale cotype q, then X is of Luzin cotype q relative to ¹Ptºt>0 and

LPc;q;p.X/ . max.p1=q; p0/Mc;q.X/:

(ii) If X is of martingale type q, then X is of Luzin type q relative to ¹Ptºt>0 and

LPt;q;p.X/ . max.p; .p0/1=q
0

/M t;q.X/:

The above two inequalities can be reformulated in another (clearer) way, for instance,
the first one reads

LPc;q;p.X/ .

´
p1=qMc;q.X/ if p � q;

p0Mc;q.X/ if p < q:

Remark 1.3. All the growth orders, except the one on LPt;q;p.X/ as p ! 1, are optimal
since they are already so in the scalar case X D C. More precisely,

(i) LPc;q;p.C/ & max.p1=q; p0/ for all 1 < p <1 when ¹Ptºt>0 is the classical Poisson
semigroup on R (see Proposition 8.5 below);

(ii) LPt;q;p.C/ & p as p !1 when ¹Ptºt>0 is the Poisson semigroup subordinated to a
symmetric diffusion semigroup ¹Ttºt>0, as shown by Zhendong Xu and Hao Zhang
[68]; in fact, they proved the stronger inequality LTt;q;p.C/ & p as p ! 1 for a
symmetric diffusion semigroup ¹Ttºt>0.

Part (i) of the above theorem cannot hold for the semigroup ¹Ttºt>0 itself without
any additional assumption (see Remark 4.4 below). It turns out that the missing condition
is the analyticity of ¹Ttºt>0 on Lp.�IX/. Recall that ¹Ttºt>0 is analytic on Lp.�IX/
if ¹Ttºt>0 extends to a bounded analytic function from an open sector †ˇ0 D ¹z 2 C W
jarg.z/j < ˇ0º to B.Lp.�IX// for some 0 < ˇ0 � �=2, where B.Y / denotes the space
of bounded linear operators on a Banach space Y . In this case,

Tˇ0 D sup ¹kTzkB.Lp.�IX// W z 2 †ˇ0º <1: (1.3)

Theorem 1.4. Let X and p; q be as above.

(i) If X is of martingale type q, then X is of Luzin type q relative to ¹Ttºt>0 and

LTt;q;p.X/ . max.p; .p0/1=q
0

/M t;q.X/:

(ii) Assume additionally that ¹Ttºt>0 satisfies (1.3). Let ˇq D ˇ0 min.p=q; p0=q0/. If X
is of martingale cotype q, then X is of Luzin cotype q relative to ¹Ttºt>0 and

LTc;q;p.X/ . ˇ�3q Tmin.p=q;p0=q0/
ˇ0

max.p2=q; .p0/1C1=q
0

/Mc;q.X/:

The above two theorems considerably improve Theorem A. Firstly, the semigroup
¹Ttºt>0 now acts onLp.�/ for a single p. Secondly, the markovianity or submarkovianity
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is not assumed (in fact, Tt .1/ is not even defined if the measure on � is infinite). Thirdly,
the symmetry is not needed either, since the semigroup does not act on L2.�/ if p ¤ 2.

Another improvement concerns the precise estimates of the best constants: the present
estimates are much better than all previously known ones, even in the scalar case (see Sec-
tion 8 below for historical comments). Moreover, except one case, they give the optimal
orders of growth as p ! 1 and as p !1, as already pointed out in Remark 1.3. This is
perhaps a major novelty of our method.

The aforementioned optimality allows us to answer a question raised by Naor and
Young about the optimal orders of LPc;q;p.X/ and LTc;q;p.X/ when ¹Ttºt>0 is the heat
semigroup on Rd (see [47, appendix]). In fact, we will show a much stronger result. Let
' W Rd ! C be an integrable function satisfying8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:
j'.x/j �

1

.1C jxj/dC"
; x 2 Rd ;

j'.x/ � '.y/j �
jx � yjı

.1C jxj/dC"Cı
C

jx � yjı

.1C jyj/dC"Cı
; x; y 2 Rd ;Z

Rd
'.x/ dx D 0

(1.4)

for some positive constants " and ı.
We will also need ' to be nondegenerate in the sense that there exists another func-

tion  satisfying (1.4) such thatZ 1
0

b'.t�/b .t�/ dt
t
D 1; 8� 2 Rd n ¹0º: (1.5)

This nondegeneracy allows us to use the Calderón reproducing formula. There exist plenty
of functions satisfying these conditions, for instance, the kernel of t @

@t
Tt , where ¹Ttºt>0

is either the heat or the Poisson semigroup on Rd , as well as any Schwartz function '
with the property that for any � 2 Rd n ¹0º there is t > 0 such thatb'.t�/ ¤ 0.

Let 't .x/ D 1

td
'.x

t
/ for x 2 Rd and t > 0. We define

Gq;'.f /.x/ D

�Z 1
0

k't � f .x/k
q
X

dt

t

�1=q
; x 2 Rd ; (1.6)

for any (reasonable) function f W Rd ! X . Let L'c;q;p.X/ be the best constant c such that

kGq;'.f /kLp.Rd / � ckf kLp.Rd IX/; f 2 Lp.R
d
IX/:

Similarly, we define L't;q;p.X/ for the reverse inequality (with c�1 instead of c).

Theorem 1.5. LetX be a Banach space and 1 < p;q <1. Assume that ' satisfies (1.4).

(i) If X is of martingale cotype q, then

L'c;q;p.X/ .d;";ı max.p1=q; p0/Mc;q.X/:

(ii) Assume additionally that ' is nondegenerate. If X is of martingale type q, then

L't;q;p.X/ .d;";ı max.p; .p0/1=q
0

/M t;q.X/:
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Let ¹Htºt>0 be the classical heat semigroup on Rd whose convolution kernel is given
by

Ht .x/ D .4�t/
�d=2e�jxj

2=.4t/:

Its subordinated Poisson semigroup is the usual Poisson semigroup ¹Ptºt>0 with convo-
lution kernel

Pt .x/ D
cd t

.jxj2 C t2/.dC1/=2
:

The above theorem implies the following corollary that resolves Naor and Young’s prob-
lem.

Corollary 1.6. We have

LP
c;q;p.X/ . max.p1=q; p0/Mc;q.X/ and LH

c;q;p.X/ .d max.p1=q; p0/Mc;q.X/:

Moreover,

LH
c;q;p.X/ & LP

c;q;p.C/ & max.p1=q; p0/ and LH
c;q;q.X/ & LP

c;q;q.X/ & Mc;q.X/:

Remark 1.7. It is worth pointing out that the estimate on LP
c;q;p.X/ is independent of d

thanks to Theorem 1.2 (i). It would be interesting to have a dimension-free estimate for the
heat semigroup too. This is related to another problem, whether the analyticity constant of
¹Htºt>0 on Lp.Rd IX/ relative to an appropriate angle can be controlled by a dimension
free constant (see Example A.2 below).

Problem 1.8. (i) Does the second inequality in the first part of Corollary 1.6 hold with a
constant independent of the dimension d?

(ii) It would also be interesting to determine the optimal orders of LP
t;q;p.X/ and

LH
t;q;p.X/ as p ! 1 or p !1.

Note that (i) above remains open even for X D C (see [67, Problem 7]). It is also so
for (ii) as p !1 (see Section 8 below and [67] for more information).

Apart from the inequality kGPq .f /kLp.�/� LPc;q;p.X/kf kLp.�IX/, the following vari-
ant is also useful: �Z 1

0

t @@t Pt .f /
r
Lp.�IX/

dt

t

�1=r
� ckf kLp.�IX/

whenX is of martingale cotype q (see, for instance, [34]). Inequalities of this type are less
delicate than the previous ones. It is well known that if X is of martingale cotype q, then
Lp.�IX/ is of martingale cotype max.p;q/, so the above inequality can hold only for r D
max.p; q/. We can, of course, consider similar variants in the situation of Theorems 1.4
and 1.5 as well as their reverse inequalities when X is of martingale type q; but we will
concentrate on the above inequality and on the case 1 < p � q for illustration.

Theorem 1.2 (i) easily implies the following.
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Corollary 1.9. Let ¹Ttºt>0 and ¹Ptºt>0 be as in Theorem 1.2. Assume that X is of mar-
tingale cotype q and 1 < p � q. Then�Z 1

0

t @@t Pt .f /
q
Lp.�IX/

dt

t

�1=q
. max..p0/1=q;Mc;q.X//kf kLp.�IX/

for all f 2 Lp.�IX/. Moreover, the constant on the right hand side is optimal as p! 1.

Like the martingale type and cotype, the Luzin type and cotype behave well with
respect to duality as shown by Theorem 4.5 below. This duality theorem allows us to
deduce the type case from the cotype case. In contrast to the martingale case, the proof
of Theorem 4.5 is much harder and depends on a bounded projection on a certain vector-
valued radial tent space. Let RC be equipped with the measure dt

t
. The radial space is

Lp.�ILq.RCIX// whose elements h are functions of two variables ! 2 � and t 2 RC,
i.e., h W .!; t/ 7! ht .!/. The desired projection maps Lp.�ILq.RCIX// onto the sub-
space of all h of the form ht D t

@
@t
Tt .f / for some f 2 Lp.�IX/; formally, it is given

by

T .h/s D 4

Z 1
0

st
@

@s
Ts
@

@t
Tt .ht /

dt

t
; s > 0: (1.7)

Here the expression @
@t
Tt .ht / is interpreted as @

@t
Tt .f / with f D ht . Note that T .h/ is

well-defined for nice functions h 2 Lp.�ILq.RCIX//, for instance, for all compactly
supported continuous functions from RC to the definition domain of the generator of
¹Ttºt>0 in Lp.�IX/. Similarly, we define P associated to the subordinated Poisson
semigroup ¹Ptºt>0.

The following is the key result for the duality argument.

Theorem 1.10. Let ¹Ttºt>0 be a strongly continuous semigroup of regular operators on
Lp.�/ and ¹Ptºt>0 its subordinated Poisson semigroup. Let X be a Banach space and
1 < p <1.

(i) The map P extends to a bounded projection on Lp.�I Lq.RCI X// with norm
majorized by C max..p0/1�p=q; p1�p

0=q0/ for any 1 � q � 1.

(ii) Assume additionally that 1<q<1 and ¹Ttºt>0 satisfies (1.3) for some 0<ˇ0��=2.
Then T extends to a bounded projection on Lp.�ILq.RCIX// with norm majorized
by

Cˇ�4q Tmin.p=q;p0=q0/
ˇ0

max..p0/1�p=q; p1�p
0=q0/ with ˇq D ˇ0 min.p=q; p0=q0/:

It is remarkable that the first part of the theorem above holds for any Banach space X
and any subordinated Poisson semigroup. Under the stronger assumption that ¹Ttºt>0 be
a symmetric diffusion semigroup, assertion (i) above is [41, Theorem 3.2]. However, the
proof in [41] contains a gap which consists in the reduction of Theorem 3.2 to Lemma 3.3
in [41] via Rota’s dilation theorem. Recall that if ¹Ptºt>0 is the Poisson semigroup on
the torus, assertion (i) above was proved in [64] by using Calderón–Zygmund singular
integral theory.
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Remark 1.11. The analyticity assumption in Theorems 1.4 and 1.10 (ii) is unremovable.
Recall that ¹Ttºt>0 is analytic on Lp.�IX/ with 1 < p < 1 in one of the following
cases:

� ¹Ttºt>0 is a symmetric diffusion semigroup and X is superreflexive [52];

� ¹Ttºt>0 is a convolution semigroup induced by symmetric probability measures on a
locally compact abelian group and X is K-convex [52];

� ¹Ttºt>0 is an analytic semigroup of regular operators on Lp.�/ and X is � -Hilbertian,
i.e., a complex interpolation space of a Hilbert space and another Banach space [65].

Many classical semigroups are analytic on Lp.�IX/ for any X (see Appendix A below).
On the other hand, ¹Ttºt>0 is analytic on Lp.�IX/ iff its adjoint semigroup ¹T �t ºt>0 is
analytic on Lp0.�IX�/. Thus the class of Banach spaces X such that ¹Ttºt>0 is analytic
on Lp.�IX/ is stable under the passage to duals, subspaces and quotient spaces.

On the other hand, it is well known that the subordinated Poisson semigroup ¹Ptºt>0
is always analytic on Lp.�IX/ for any Banach space X since its negative generator is a
sectorial operator of type �=4 (see Section 2 for more information).

A summary of the main techniques and the contents seems to be in order. Our
approach is different from all the previous ones. It is based on holomorphic functional
calculus, which constitutes perhaps one of the major ideas of this article. In this regard,
it shares some common points with Cowling’s approach that deals with the bounded H1

functional calculus of the generator of a symmetric submarkovian semigroup and the
related maximal inequality. We need, however, to adapt McIntosh’s H1 functional cal-
culus for our purpose. This is done in the preparatory Section 2 in which we introduce
a key notion of the article: the `q-boundedness of a family of operators on Lp.�IX/;
it gives rise to the definitions of `q-sectorial operators and `q-analytic semigroups. We
transfer to this setting some well known results about sectorial operators and analytic
semigroups. After this preparation, we prove Theorem 1.10 in Section 3. This projection
theorem is a crucial ingredient for the duality studied in Section 4. Theorem 4.5 estab-
lishes our duality result between the Luzin cotype of X and the Luzin type of the dual
spaceX�; this result is as nice as the corresponding one in the martingale case, except the
links between the constants involved (compare the constants in Theorem 4.5 and those
in (6.2) below). This section also contains some general properties of the Luzin type and
cotype, in particular, a characterization by lacunary discrete differences (Theorem 4.7).

As Rota’s dilation is no longer available in the present situation, we use instead
Fendler’s dilation for semigroups of regular operators. Fendler’s theorem transfers Theo-
rem 1.2 (i) to the special case where ¹Ttºt>0 is the translation group of R. This allows us
to exploit techniques from harmonic analysis. Our strategy is built, in a crucial way, on
Calderón–Zygmund singular integral theory and modern real-variable Littlewood–Paley
theory. We present all this in the preparatory Section 5 that will be needed for the proofs
of Theorems 1.2 and 1.5. These proofs constitute the most heavy and technical part of the
article. The proofs of Theorem 1.5 and Corollary 1.6 are given in Section 6. We then use
transference to show Theorem 1.2 in Section 7. To that end, we first need to represent the
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g-function associated to the Poisson semigroup subordinated to the translation group of R
as a singular integral operator. Theorem 1.4 will follow from Theorem 1.2 by functional
calculus; Corollary 1.9 is an easy consequence of Theorem 1.2 (i).

An additional major significant aspect of the new approach is that it improves the
growth orders on p of the relevant best constants even in the scalar Littlewood–Paley–
Stein inequalities (see Section 8); moreover, except the case of the Luzin type constant as
p! 1, it yields the optimal orders, which is not the case for the previous methods of Stein
and Cowling (see the historical comments in Section 8). This shows, to a certain extent,
that our method is optimal. Section 8 also contains the optimality of the best constants in
Corollary 1.6. We end the article by an appendix that gives some examples of semigroups.

The techniques developed in this article allow one to simplify and extend many recent
results in scalar Littlewood–Paley–Stein theory, in particular, those on positive operators
on L2 with kernels satisfying Gaussian upper estimates. On the other hand, they are also
applicable to the noncommutative setting. We will carry out all this elsewhere.

Throughout the article, X will be a Banach space, 1 < p <1 and 1 � q � 1 (but
1< q <1most of the time). Unless explicitly stated otherwise, ¹Ttºt>0 will be a strongly
continuous semigroup of regular operators on Lp.�/, and ¹Ptºt>0 its subordinated Pois-
son semigroup. These semigroups are extended to Lp.�IX/. A will denote the negative
generator of ¹Ttºt>0, so Tt D e�tA and Pt D e�t

p
A.

2. The `q-boundedness

This section is the preparatory part of the article. We will introduce the notion of `q-
boundedness that is the direct extension to the vector-valued setting of the Rq-bounded-
ness introduced by Weis [59]. In fact, though not explicitly stated, this notion appeared
before in harmonic analysis with regard to vector-valued inequalities for classical oper-
ators. Most results below are the `q-boundedness analogues of well known results or of
those due to Kunstmann and Ullmann [33] in the scalar case. I learnt the existence of
[33, 59] after the submission of this article for publication, and I thank Emiel Lorist for
pointing out these references to me.

We start with a brief introduction to holomorphic functional calculus in order to fix
notation (see [12] for more information). Recall that a densely defined closed operator B
on a Banach space Y is called a sectorial operator of type ˛ with 0 � ˛ < � if C n† is
contained in the resolvent set of B for any  > ˛ and

sup ¹kz.z � B/�1kB.Y / W z … †º <1;

where † is the open sector ¹z 2 C W jarg.z/j < º in the complex plane. Let ˇ > 

and let H1.†ˇ / denote the space of bounded analytic functions in †ˇ and H10 .†ˇ / its
subspace consisting of all ' satisfying

j'.z/j �
cjzjı

1C jzj2ı
for some c > 0 and ı > 0:



Q. Xu 12

Let � be the boundary of†ˇ , positively oriented. Then for any ' 2H10 .†ˇ / the integral

'.B/ D
1

2� i

Z
�

'.z/.z � B/�1dz

defines a bounded operator on Y , where the integral absolutely converges in B.Y /.
The following resolution of the identity will be useful later. Let  2H10 .†ˇ / be such

that Z 1
0

 .t/
dt

t
D 1:

Then the integral

y D

Z 1
0

 .tB/.y/
dt

t
D lim
"!0

lim
C!1

Z C

"

 .tB/.y/
dt

t
(2.1)

exists for every y 2 imB . This is [26, Proposition 10.2.5]. Let us include its easy verifi-
cation for completeness. For ' 2 H10 .†ˇ /, we have

'.z/ D

Z 1
0

 .tz/'.z/
dt

t
; z 2 †ˇ :

Thus for any y 2 Y ,

'.B/.y/ D

Z 1
0

 .tB/'.B/.y/
dt

t
:

Choose

'.z/ D
n2z

.nC z/.1C nz/
:

Then '.B/.y/! y in Y as n!1 for any y 2 imB (see [12, Theorem 3.8]), whence
(2.1) follows by virtue of the convergence lemma [12, Lemma 2.1].

Definition 2.1. A family F � B.Lp.�IX// is said to be `q-bounded if there exists a
constant c such that�X

k

kAk.fk/k
q
�1=q

Lp.�/
� c

�X
k

kfkk
q
�1=q

Lp.�/

for all finite sequences ¹Akº � F and ¹fkº � Lp.�IX/, with the usual modification for
q D1 in the above inequality.

Remark 2.2. It is clear that the sums in the above definition can be replaced by integrals
without changing the constant c. On the other hand, it is easy to show that the absolutely
convex hull of an `q-bounded family is again `q-bounded with the same constant.

Accordingly, we introduce the `q-boundedness versions of sectoriality of operators
and analyticity of semigroups. Recall that a semigroup ¹Stºt>0 on a Banach space Y
is said to be analytic if it extends to an analytic function from †ˇ to B.Y / for some
0 < ˇ � �=2 and bounded in any smaller sector. In this case, we call ¹Stºt>0 an analytic
semigroup of type ˇ.
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Definition 2.3. (i) A densely defined closed operator B on Lp.�IX/ is called an `q-
sectorial operator of type ˛ with 0 � ˛ < � if C n† is contained in the resolvent
set of B for any  > ˛ and the family ¹z.z � B/�1 W z … †º is `q-bounded on
Lp.�IX/.

(ii) A semigroup ¹Stºt>0 on Lp.�IX/ is called an `q-analytic semigroup of type ˇ with
0 < ˇ � �=2 if ¹Stºt>0 extends to an analytic function from †ˇ to B.Lp.�IX//
and for any � < ˇ the family ¹Sz W z 2 †�º is `q-bounded on Lp.�IX/.

The following is the `q-boundedness analogue of a classical characterization of ana-
lytic semigroups.

Proposition 2.4. Let ¹Stºt>0 be a strongly continuous bounded semigroup on Lp.�IX/
and B its negative generator. Then the following statements are equivalent:

(i) ¹Stºt>0 is `q-analytic of type ˇ for some 0 < ˇ � �=2;

(ii) B is `q-sectorial of type ˛ for some ˛ < �=2;

(iii) ¹St ; tBStºt>0 is `q-bounded on Lp.�IX/.

Proof. The proof is a straightforward adaptation of the classical argument (cf. e.g. [50,
proof of Theorem 5.2]). As we want to track the links between the different constants
involved, we give an outline below.

(i))(ii). Let ˛ D �=2 � ˇ. For ˛ <  < �=2 choose 0 < � < ˇ such that  C �
> �=2, for instance, we can take � D ˇ � �˛

2
so that  C � D �

2
C

�˛
2

. Then for any
z D rei� … † and z ¤ 0, we have

z.z � B/�1 D �z

Z 1
0

etzSt dt D �ze
isgn.�/�

Z 1
0

etre
i.�Csgn.�/�/

Steisgn.�/� dt:

IfC� denotes the `q-boundedness constant of the family ¹S� W � 2†�º, then by Remark 2.2
we deduce that ¹z.z � B/�1 W z … † ; z ¤ 0º is `q-bounded with constant C given by

C � C� sup
z…†

jzj

Z 1
0

jetre
i.�Csgn.�/�/

j dt �
C�

jcos.� C sgn.�/�/j
�

C�

jcos. C �/j
:

(ii))(iii). Let ˛ <  < �=2 and � be the boundary of † with positive orientation.
Then

tBSt D
1

2� i

Z
�

t�e�t�.� � B/�1 d�; t > 0:

Thus ¹tBStºt>0 is `q-bounded with constant

C 0d �
C

�
sup
t>0

Z 1
0

te�tr cos dr D
C

�

Z 1
0

e�r cos dr D
C

� cos 
:

To show the `q-boundedness of ¹Stºt>0 we need to slightly modify the contour � . Let
� 0 be the union of the part of � with j�j � 1 and the arc in C n† of the circle with the
origin as center and radius 1. Then we have

St D
1

2� i

Z
�0
e�t�.� � B/�1 d�; t > 0:
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The change of variables � D t� yields

St D
1

2� i

Z
t�0
e��

1

t

�
�

t
� B

��1
d�;

where t� 0 is the union of the part of � with j�j � t and the arc in C n † of the circle
with the origin as center and radius t . However, the Cauchy formula ensures that we can
go back to � 0:

St D
1

2� i

Z
�0
e��

1

t

�
�

t
� B

��1
d�:

This implies that ¹Stºt>0 is `q-bounded with constant

C 00d �
C

�

Z 1
1

e�r cos dr

r
C
C

2�

Z 2��



e� cos � d� �
CC

cos 
:

(iii))(i). LetCd denote the `q-boundedness constant of ¹St ; tBStºt>0. The function
t 7! St is infinitely differentiable in RC and for any positive integer n,

.St /
.n/
D .S 0t=n/

n:

This shows that ¹tn.St /.n/ºt>0 is `q-bounded with constant .Cd /n. Let ˇ D arctan 1
eCd

.
Then ¹Stºt>0 becomes an `q-analytic semigroup of type ˇ thanks to the formula

Sz D

1X
nD0

.St /
.n/

nŠ
.z � t /n; z 2 †ˇ ;

and for any � < ˇ the family ¹Sz W z 2 †�º is `q-bounded with constant

C� �
1

1 � eCd tan �
:

The proof is thus complete.

The following is again the `q-boundedness version of an elementary result on sectorial
operators. The case used later concerns only

p
B .

Proposition 2.5. Let B be an `q-sectorial operator of type ˛ on Lp.�IX/ with ˛ < � .
Let � > 0 with �˛ < � . Then B� is an `q-sectorial operator of type �˛ on Lp.�IX/.

Proof. Let  >  0 > �˛. Given z … † , writing

z D Œz�
�1

.z � �� /C .z�
�1

�� � z�/�.z�
�1

� �/�1;

we have
z.z � �� /�1 D z�

�1

.z�
�1

� �/�1 C '.�/;

where '.�/ D .z�
�1
�� � z�/.z � �� /�1.z�

�1
� �/�1. Thus

z.z � B� /�1 D z�
�1

.z�
�1

� B/�1 C '.B/:
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Note that ' is analytic in †��1 . Let � be the boundary of † 0��1 . Then

'.B/ D
1

2� i

Z
�

'.�/.� � B/�1 d� D
1

2� i

Z
�

'.�/Œ�.� � B/�1�
d�

�
:

The change of variables � D z��
�1
� yieldsZ

�

j'.�/j
jd�j

j�j
D

Z
z��
�1
�

j�� � �j

j1 � �� j j1 � �j

jd�j

j�j
:

Decomposing the last integral into three parts corresponding to j�j close to 0, 1 and1,
respectively, we get Z

�

j'.�/j
jd�j

j�j
.
1

�
C

1

�. �  0/2
:

Hence by Remark 2.2, we deduce the desired assertion.

Now we return to our distinguished semigroup ¹Ttºt>0 of regular operators onLp.�/.
We have extended ¹Ttºt>0 to Lp.�IX/. Recall our convention that the regular operators
considered in this article are all assumed to be contractively regular. Also recall the fact
that T is regular on Lp.�/ iffX

k

jT .fk/j

p
�

X
k

jfkj

p

for all finite sequences ¹fkº in Lp.�/ (see [40]). Consequently, T is regular on Lp.�/
iff its adjoint T � is regular on Lp0.�/. In particular, ¹T �t ºt>0 is a strongly continuous
semigroup of regular operators on Lp0.�/.

Lemma 2.6. Let

Mt D
1

t

Z t

0

Ts ds; t > 0:

The family ¹Mtºt>0 is `q-bounded onLp.�IX/ with constant max..p0/1�p=q;p1�p
0=q0/.

Proof. The celebrated theorem of Akcoglu [2] asserts that ¹Mtºt>0 satisfies the maximal
ergodic inequalitysup

t>0

jMt .f /j

Lp.�/

� p0kf kLp.�/; f 2 Lp.�/I

see also [31, Theorem 5.2.5]. The regularity of ¹Mtºt>0 insures that this inequality
remains valid for any f 2 Lp.�I X/. Thus for any finite sequences ¹tkº � RC and
¹fkº � Lp.�IX/, we havesup

k

kMtk .fk/kX


Lp.�/

�

sup
k

jMtk j.kfkkX /

Lp.�/

�

sup
k

jMtk j

�
sup
j

kfj kX

�
Lp.�/

� p0
sup
j

kfj kX


Lp.�/

:
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This means that ¹Mtºt>0 is `1-bounded on Lp.�IX/ with constant p0. On the other
hand, ¹Mtºt>0 is bounded, so p̀-bounded onLp.�IX/with constant 1. Thus by complex
interpolation, ¹Mtºt>0 is `q-bounded on Lp.�IX/ with constant .p0/1�p=q for q > p.

The case of q < p is treated by duality. Applying the previous discussion to the adjoint
semigroup ¹T �t ºt>0, we deduce that ¹M �t ºt>0 is `1-bounded on Lp0.�IX�/ with con-
stant p, so ¹Mtºt>0 is `1-bounded on Lp.�IX/ with constant p. The assertion for q < p
then follows by complex interpolation once more.

Remark 2.7. The above lemma and the subordination formula (1.2) imply that the
Poisson subordinated semigroup ¹Ptºt>0 is `q-bounded on Lp.�I X/ with constant
C max..p0/1�p=q; p1�p

0=q0/, where C is an absolute constant coming from (1.2).

It is a classical result that the negative generator A of ¹Ttºt>0 on Lp.�IX/ is a
sectorial operator of type �=2. The following shows that it is moreover `q-sectorial.

Proposition 2.8. The negative generator A of ¹Ttºt>0 is an `q-sectorial operator of
type �=2 on Lp.�IX/. More precisely, the family

¹z.z � A/�1 W z … †˛ º

is `q-bounded on Lp.�IX/ with constant C˛ max..p0/1�p=q; p1�p
0=q0/ for any �=2 <

˛ < � .
Consequently,

p
A is an `q-sectorial operator of type �=4 on Lp.�I X/. More-

over, the `q-boundedness constant of ¹z.z �
p
A /�1 W z … †˛º is majorized by

C˛ max..p0/1�p=q; p1�p
0=q0/ for any �=4 < ˛ < � .

Proof. Let z 2 C with Re z < 0. Then

.z � A/�1 D

Z 1
0

etzTt dt D �z

Z 1
0

tetzMt dt:

Thus by Lemma 2.6 and Remark 2.2, we deduce that²
.Re z/2

jzj
.z � A/�1 W Re z < 0

³
is `q-bounded on Lp.�IX/ with constant max..p0/1�p=q; p1�p

0=q0/. This implies the
assertion on A with the constant C˛ given by

C˛ D sup
z…†˛

.Re z/2

jzj2
:

The assertion on
p
A then follows from Proposition 2.5.

Proposition 2.9. Assume that ¹Ttºt>0 satisfies (1.3) for some 0 < ˇ0 � �=2. Let 1 < q
<1 and ˇq D ˇ0min.p=q;p0=q0/. Then ¹Ttºt>0 is an `q-analytic semigroup of type ˇq
on Lp.�IX/. More precisely, for any 0 < ˇ < ˇq the family ¹Tz W z 2†ˇ º is `q-bounded
on Lp.�IX/ with constant majorized by

C.ˇq � ˇ/
�1 Tmin.p=q;p0=q0/

ˇ0
max..p0/1�p=q; p1�p

0=q0/:
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Consequently, A is `q-sectorial of type ˛q D �=2� ˇq on Lp.�IX/. More precisely, for
any ˛q < ˛ < �=2 the family ¹z.z � A/�1 W z … †˛º is `q-bounded on Lp.�IX/ with
the relevant constant majorized by

C.ˇq � ˇ/
�2 Tmin.p=q;p0=q0/

ˇ0
max..p0/1�p=q; p1�p

0=q0/ with ˇ D �=2 � ˛:

Proof. Define

Mz D
1

z

Z z

0

T� d�; z 2 †ˇ0 ;

where the integral is taken along the segment Œ0; z�. Clearly, M is analytic in †ˇ0 . By
Lemma 2.6, ¹Mt W t > 0º is `1-bounded (resp. `1-bounded) onLp.�IX/with constant p0

(resp. p). On the other hand, (1.3) means that ¹Mz W z 2†ˇ0º is p̀-bounded onLp.�IX/
with constant Tˇ0 . Then by complex interpolation, ¹Mz W z 2 †ˇq º is `q-bounded on

Lp.�IX/ with constant Tp=q
ˇ0
.p0/1�p=q for p < q and Tp

0=q0

ˇ0
p1�p

0=q0 for p > q.
We use the identity Tz DMz C zM

0
z to pass fromMz to Tz , so it remains to show that

¹zM 0z W z 2 †ˇ º is `q-bounded. To this end, let ı D 1
2
.ˇ C ˇq/. For any z D rei� 2 †ˇ

let C be the circle with center z and radius r sin.ı � j� j/. Note that one of the two rays
limiting †ı is a tangent of C . By the Cauchy integral formula, we have

zM 0z D
z

2� i

Z
C

M� d�

.� � z/2
:

Since
jzj

2�

Z
C

jd�j

j� � zj2
D

1

sin.ı � j� j/
�

1

sin 1
2
.ˇq � ˇ/

:

The `q-boundedness of ¹Mz W z 2 †ıº and Remark 2.2 imply that ¹zM 0z W z 2 †ˇ º is
`q-bounded on Lp.�IX/ with constant majorized by

C.ˇq � ˇ/
�1 Tmin.p=q;p0=q0/

ˇ0
max..p0/1�p=q; p1�p

0=q0/:

The last part on the `q-sectoriality ofA follows from the proof of the implication (i)) (ii)
of Proposition 2.4, ˇ and � there being respectively ˇq and ˇ now.

3. Proof of Theorem 1.10

Armed with the tools of Section 2, we will follow the proof of [29, Theorem 4.14]. In
what follows, we will use the abbreviation @ D @

@t
. Recall that RC is equipped with the

measure dt
t

. Also recall our convention that ¹Ttºt>0 is a strongly continuous semigroup
of regular operators on Lp.�/ and ¹Ptºt>0 its subordinated Poisson semigroup.

We first show part (i) concerning the subordinated Poisson semigroup ¹Ptºt>0. Fix
�=4 < ˛ < ˇ < �=2. Let � be the boundary of †˛ . Define F.z/ D �ze�z . Then F 2
H10 .†ˇ /. For any t > 0 we have

t@Pt D F.t
p
A / D

1

2� i

Z
�

F.tz/R.z/ dz; (3.1)
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where R.z/ D .z �
p
A /�1. Recall that the map P is defined by (1.7) (with ¹Ptºt>0

instead of ¹Ttºt>0 there). It can be rewritten as

P .h/s D
2

� i

Z
�

Z 1
0

F.sz/F.tz/zR.z/.ht /
dt

t

dz

z
; s > 0: (3.2)

Let � be equipped with the measure jdzj
jzj

. We define three maps as follows:

� ˆ1 W Lp.�ILq.RCIX//! Lp.�ILq.�IX// by

ˆ1.h/z D

Z 1
0

F.tz/ht
dt

t
; z 2 �; h 2 Lp.�ILq.RCIX//;

� ˆ2 W Lp.�ILq.�IX//! Lp.�ILq.RCIX// by

ˆ2.g/s D

Z
�

F.sz/gz
dz

z
; s > 0; g 2 Lp.�ILq.�IX//

� ˆ W Lp.�ILq.�IX//! Lp.�ILq.�IX// by

ˆ.g/z D
2

� i
zR.z/.gz/; z 2 �; g 2 Lp.�ILq.�IX//:

Then P D ˆ2ˆˆ1. Thus it remains to show that the three newly defined maps are all
bounded. Consider first the case q <1. By the Hölder inequality, we have

kˆ1.h/zk
q
X �

�Z 1
0

jF.tz/j
dt

t

�q�1 Z 1
0

jF.tz/j khtk
q
X

dt

t
:

Note that for z D re˙i˛ 2 � ,Z 1
0

jF.tz/j
dt

t
D

Z 1
0

jF.te˙i˛/j
dt

t
D

1

cos˛
:

On the other hand, for any t > 0,Z
�

jF.tz/j
jdzj

jzj
D

2

cos˛
:

We then deduce that

kˆ1.h/kLp.�ILq.�IX// �
21=q

cos˛
khkLp.�ILq.RCIX//:

Thus

kˆ1k �
21=q

cos˛
:

The same upper estimate holds for kˆ2k. Finally, the boundedness ofˆ is just a reformu-
lation of the `q-boundedness of ¹ 2

� izR.z/ W z 2 � n ¹0ºº. Thus by Proposition 2.8,

kP k .
1

cos2 ˛
max..p0/1�p=q; p1�p

0=q0/:
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This finishes the proof of the first assertion for q <1 (choosing ˛ close to �=4). The
boundedness of P for q D1 is obtained from that for q D 1 by duality.

Let us show that P is a projection. Let h 2 Lp.�ILq.RCIX// be given by ht D
t@Pt .f / for some f 2 Lp.�IX/. Then by (3.2),

P .h/s D
2

� i

Z
�

Z 1
0

F.sz/F.tz/F.tz/R.z/.f /
dt

t
dz

D
2

� i

Z
�

F.sz/R.z/.f /dz

Z 1
0

.F.t//2
dt

t

D
1

2� i

Z
�

F.sz/R.z/.f / dz

D F.s
p
A /.f / D s@Ps.f /:

Thus P .h/ D h, so P is a projection. This shows (i).
Assertion (ii) on the semigroup ¹Ttºt>0 itself is proved in exactly the same way.

Indeed, letting ˛q D �=2 � ˇq , by Proposition 2.9, A is `q-sectorial of type ˛q . Let
ˇ D ˇq=2 and ˛ D �=2 � ˇ. Then ˛q < ˛ < �=2 and

1

cos2 ˛
�

1

ˇ2q
;

1

.ˇq � ˇ/2
�

1

ˇ2q
:

Thus using the estimate on the `q-sectoriality constant of A and repeating the above argu-
ment, we show that T is bounded with the announced norm estimate.

4. Luzin type and cotype

In this section we study Banach spaces that are of Luzin cotype or type. Before proceeding
we briefly discuss the projection F onto the fixed point subspace of ¹Ttºt>0 (equivalently,
of ¹Ptºt>0). By the mean ergodic theorem, F is given by

F.f / D lim
t!1

1

t

Z t

0

Ts.f / ds; f 2 Lp.�/:

Thus F is also regular, so extends to a contractive projection onLp.�IX/. Then the above
formula remains valid for f 2Lp.�IX/, and F.Lp.�IX// coincides with the fixed point
subspace of ¹Ttºt>0 on Lp.�IX/. It follows that Lp.�IX/ admits the following direct
sum decomposition:

Lp.�IX/ D F.Lp.�IX//˚ ker F: (4.1)

On the other hand, ker F is the closure of ¹.Id � Tt /.Lp.�IX// W t > 0º. Moreover,

F.Lp.�IX// D kerA D ker
p
A and ker F D imA D im

p
A: (4.2)

By the paragraph before Lemma 2.6, the adjoint semigroup ¹T �t ºt>0 is regular on
Lp0.�/. Thus the above discussion also applies to the semigroup ¹T �t ºt>0 extended to
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Lp0.�IX
�/ again. Consequently, (4.1) and (4.2) transfer to this dual setting. We should

draw the reader’s attention to the fact that Lp0.�I X�/ is in general not the dual of
Lp.�IX/ but an isometric subspace. With this in mind, we have

IdX� ˝ T �t D .IdX ˝ Tt /
�
jLp0 .�IX

�/:

A similar formula holds for the negative generator A of ¹Ttºt>0 on Lp.�IX/ and the
negative generator A� of ¹T �t ºt>0 on Lp0.�IX�/, that is, the restriction to Lp0.�IX�/
of the adjoint of the former coincides with the latter. Moreover, F�jLp0 .�IX�/ is the fixed
point projection associated to ¹T �t ºt>0 on Lp0.�IX�/. All this allows us to use duality
arguments without any problem as when Lp.�IX/� D Lp0.�IX�/ (which is the case for
reflexive X ).

According to [64], we introduce the following definition already mentioned before
Theorem 1.2.

Definition 4.1. Let 1 � q � 1.

(i) Define

G Tq .f / D

�Z 1
0

kt@Tt .f /k
q
X

dt

t

�1=q
; f 2 Lp.�IX/: (4.3)

(ii) X is said to be of Luzin cotype q relative to ¹Ttºt>0 if there exists a constant c such
that

kG Tq .f /kLp.�/ � ckf kLp.�IX/; f 2 Lp.�IX/: (4.4)

The smallest c is denoted by LTc;q;p.X/.

(iii) X is said to be of Luzin type q relative to ¹Ttºt>0 if there exists a constant c such
that

kf � F.f /kLp.�IX/ � ckG
T
q .f /kLp.�/; f 2 Lp.�IX/: (4.5)

The smallest c is denoted by LTt;q;p.X/.

In (4.3), f is implicitly assumed to belong to the definition domain of A in order to
guarantee the differentiability of Tt .f / in t . Note that if ¹Ttºt>0 is analytic on Lp.�IX/,
then G Tq .f / is defined for any f 2 Lp.�IX/. When it is defined, G Tq .f / is a positive
measurable function on� but may not belong to Lp.�/, in which case kG Tq .f /kLp.�/ is
interpreted as1 (then (4.5) is trivially satisfied for such f ). On the other hand, the above
definition implicitly depends on p, but this dependence is not essential thanks to the fact
that in most cases, if (4.4) or (4.5) holds for one p, then it does for any allowed p. Thus to
lighten the terminology, we have decided not to explicitly mention p in the above notions;
anyway, this dependence on p is reflected in the constants LTc;q;p.X/ and LTt;q;p.X/.

Remark 4.2. Without additional assumptions on ¹Ttºt>0, the definition may be insignif-
icant. For instance, if ¹Ttºt>0 is the translation group of R, it is easy to check that�Z 1

0

jt@Tt .f /j
q dt

t

�1=qp
Lp.R/

D

Z
R

�Z 1
0

jtf 0.s C t /jq
dt

t

�p=q
ds D1
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for any 1 � q �1 and for any f 2 Lp.R/ with f 0 not identically zero. Thus C is not of
Luzin cotype q for any q relative to the translation group of R.

This remark shows that to have a meaningful theory of Luzin type and cotype, some
minimal condition should be imposed to ¹Ttºt>0. It turns out that this minimal condi-
tion is the analyticity of ¹Ttºt>0 on Lp.�IX/. As shown in Section 2, the subordinated
Poisson semigroup ¹Ptºt>0 always satisfies this condition.

It is sometimes convenient to have a discrete version of G Tq .f /. Recall that if ¹Ttºt>0
is analytic on Lp.�/, we have the maximal inequalitysup

t>0

jTt .f /j

Lp.�/

� Tmaxkf kLp.�/; f 2 Lp.�/; (4.6)

for some constant Tmax (see [35]). A similar inequality holds for the adjoint semigroup
¹T �t ºt>0, the relevant constant being denoted by T�max.

Proposition 4.3. Assume that ¹Ttºt>0 is analytic on Lp.�/. Let 1 � q � 1 and a > 1.
Then for any f 2 Lp.�IX/,

c�1T;q;akG
T
q .f /kLp.�/ �

�X
k2Z

kak@Tak .f /k
q
X

�1=q
Lp.�/

� CT;q;akG
T
q .f /kLp.�/;

where

cT;q;a D q
�1=q.aq � 1/1=q max.T1�p=qmax ; .T�max/

1�p0=q0/;

CT;q;a D q
1=q.1 � a�q/�1=q max.T1�p=qmax ; .T�max/

1�p0=q0/:

Similar inequalities hold for ¹Ptºt>0 in place of ¹Ttºt>0 without any additional assump-
tion on ¹Ttºt>0, the corresponding constants being given by

cP;q;a D C
�1q�1=q.aq � 1/1=q max..p0/1�p=q; p1�p

0=q0/;

CP;q;a D Cq
1=q.1 � a�q/�1=q max..p0/1�p=q; p1�p

0=q0/:

Proof. Using (4.6) and its adjoint version, and repeating the proof of Lemma 2.6, we
show that ¹Ttºt>0 is `q-bounded onLp.�IX/with constant max.T1�p=qmax ; .T�max/

1�p0=q0/.
Write

G Tq .f /
q
D

X
k2Z

Z akC1

ak
kt@Tt .f /k

q
X

dt

t
D

X
k2Z

Z a

1

kakt@Tak t .f /k
q
X

dt

t
:

Using @TtCs D Ts@Tt , we have @Tak t .f /D Tak.t�1/@Tak .f /. Then the `q-boundedness
of ¹Ttºt>0 on Lp.�IX/ yields

kG Tq .f /kLp.�/ �max.T1�p=qmax ; .T�max/
1�p0=q0/

�X
k2Z

Z a

1

kakt@Tak .f /k
q
X

dt

t

�1=q
Lp.�/

D q�1=q.aq � 1/1=q max.T1�p=qmax ; .T�max/
1�p0=q0/

�X
k2Z

kak@Tak .f /k
q
X

�1=q
Lp.�/

:
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For the converse inequality, we write

kak@Tak .f /k
q
X D q.1 � a

�q/�1
Z 1

a�1
kaktTak.1�t/@Tak t .f /k

q
X

dt

t
:

As above, we then deduce�X
k2Z

kak@Tak .f /k
q
X

�1=q
Lp.�/

� q1=q.1 � a�q/�1=q max.T1�p=qmax ; .T�max/
1�p0=q0/kG Tq .f /kLp.�/:

The assertion on ¹Ptºt>0 is just a particular case with Pmax D Cp0 and P�max D Cp by
virtue of Remark 2.7.

Recall the classical fact that ¹Ttºt>0 is analytic on Lp.�IX/ iff ¹t@Tt W t > 0º is
uniformly bounded on Lp.�IX/. Thus the following remark immediately follows from
the above result; it shows in particular that the analyticity of ¹Ttºt>0 on Lp.�IX/ is
necessary for X to be of Luzin cotype q relative to ¹Ttºt>0 for some q.

Remark 4.4. Assume that ¹Ttºt>0 is analytic on Lp.�/. If X is of Luzin cotype .resp.
type/ q relative to ¹Ttºt>0, then X is of Luzin cotype .resp. type/ r relative to ¹Ttºt>0
for any r > q .resp. r < q/. Moreover, ifX is of Luzin cotype1 relative to ¹Ttºt>0, then
¹Ttºt>0 must be analytic on Lp.�IX/.

The following is one of the main results of this section.

Theorem 4.5. Let X be a Banach space and 1 � q � 1.

(i) X is of Luzin cotype q relative to ¹Ptºt>0 iff X� is of Luzin type q0 relative to
¹P �t ºt>0. Moreover, the relevant constants satisfy

LP
�

t;q0;p0.X
�/ . LPc;q;p.X/ . max..p0/1�p=q; p1�p

0=q0/LP
�

t;q0;p0.X
�/:

(ii) Assume additionally that 1 < q <1 and ¹Ttºt>0 satisfies (1.3) for some 0 < ˇ0 � �
2

.
Then X is of Luzin cotype q relative to ¹Ttºt>0 iff X� is of Luzin type q0 relative to
¹T �t ºt>0. Moreover, the relevant constants satisfy

LT
�

t;q0;p0.X
�/. LTc;q;p.X/. ˇ�4q Tmin.p=q;p0=q0/

ˇ0
max..p0/1�p=q; p1�p

0=q0/ LT
�

t;q0;p0.X
�/

with ˇq D ˇ0 min.p=q; p0=q0/.

Proof. (i) Assume that X is of Luzin cotype q. Let g 2 Lp0.�IX�/ with F�.g/ D 0. Let
f 2 Lp.�IX/. We want to estimate hf; gi, where the duality bracket is that between
Lp.�IX/ and Lp0.�IX�/. By (4.1) and its dual version, we can assume F.f / D 0,

which, together with (4.2), implies that f 2 ker F D im
p
A. With F.z/ D �ze�z and by

(2.1) we have

f D 4

Z 1
0

F.t
p
A /F.t

p
A /.f /

dt

t
:
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Thus by the Hölder inequality and the Luzin cotype q of X ,

jhf; gij D 4

ˇ̌̌̌Z 1
0

hF.t
p
A /.f /; F.t

p
A�/.g/i

dt

t

ˇ̌̌̌
� 4kGPq .f /kLp.�/ kG

P�

q0 .g/kLp0 .�/

� 4LPc;q;p.X/kf kLp.�IX/ kG
P�

q0 .g/kLp0 .�/:

Taking the supremum over f with norm 1, we show that X� is of Luzin type q0 with

LP
�

t;q0;p0.X
�/ � 4LPc;q;p.X/:

To show the converse implication, let f 2 Lp.�I X/ and h 2 Lp0.�I Lq0.RCI X�//
(recalling that RC is equipped with dt

t
). We haveZ 1

0

ht@Pt .f /; ht i
dt

t
D

Z 1
0

hf; t@P �t .ht /i
dt

t
D hf; gi;

where

g D

Z 1
0

t@P �t .ht /
dt

t
:

Applying Theorem 1.10 (i) to ¹P �t ºt>0 on Lp0.�IX�/, we have

kGP
�

q0 .g/kLp0 .�/ . max..p0/1�p=q; p1�p
0=q0/khkLp0 .�ILq0 .RCIX�//:

Combining the above inequalities, we getˇ̌̌̌Z 1
0

ht@Pt .f /; ht i
dt

t

ˇ̌̌̌
. max..p0/1�p=q; p1�p

0=q0/LP
�

t;q0;p0.X
�/kf kLp.�IX/ khkLp0 .�ILq0 .RCIX�//;

which implies the Luzin cotype q of X with

LPc;q;p.X/ . max..p0/1�p=q; p1�p
0=q0/LP

�

t;q0;p0.X
�/:

(ii) The proof of this part is similar by using Theorem 1.10 (ii).

Corollary 4.6. Any Banach space X is of Luzin type 1 relative to ¹Ptºt>0, so relative
to ¹Ttºt>0 too. If ¹Ttºt>0 is analytic on Lp.�IX/, then X is of Luzin cotype 1 rela-
tive to ¹Ttºt>0, so X is always of Luzin cotype 1 relative to the subordinated Poisson
semigroup ¹Ptºt>0.

Proof. Indeed, let f 2 Lp.�IX/ be such that F.f /D 0. Then by (4.2) and (2.1) we have

f D �

Z 1
0

t@Pt .f /
dt

t
;

whence
kf kLp.�IX/ � kG

P
1 .f /kLp.�/:
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Thus X is of Luzin type 1 relative to ¹Ptºt>0, hence also relative to ¹Ttºt>0 by virtue
of Remark 1.1. Passing to duality by means of Theorem 4.5, we see that X is of Luzin
cotype1 relative to ¹Ttºt>0 under the analyticity assumption of ¹Ttºt>0 on Lp.�IX/.

The following formulation of the Littlewood–Paley function GPq .f / in terms of dis-
crete lacunary differences is of interest in its own right.

Theorem 4.7. Let X be a Banach space, 1 � q � 1 and a > 1.

(i) X is of Luzin cotype q relative to ¹Ptºt>0 iff there exists a constant c such that�X
k2Z

k.Pak t � PakC1t /.f /k
q
X

�1=q
Lp.�/

� ckf kLp.�IX/ (4.7)

for all 1 � t � a and f 2 Lp.�IX/. Moreover, the best c and LPc;q;p.X/ are linked
by

.log a/�1=q
0

c � LPc;q;p.X/ . .log a/1=q
aC 1

a � 1
max..p0/1�p=q; p1�p

0=q0/c:

(ii) X is of Luzin type q relative to ¹Ptºt>0 iff there exists a constant c such that

kf � F.f /kLp.�IX/ � c

�Z a

1

X
k2Z

k.Pak t � PakC1t /.f /k
q
X dt

�1=q
Lp.�/

(4.8)

for all f 2 Lp.�IX/. Moreover, the best c and LPt;q;p.X/ are linked by

a � 1

aC 1

�
max..p0/1�p=q; p1�p

0=q0/
��1

c . LPt;q;p.X/ . .a � 1/1=q.log a/1=q
0

c:

(iii) Similar statements hold for ¹Ttºt>0 under the additional assumption that ¹Ttºt>0 be
analytic on Lp.�IX/ and 1 < q <1.

Proof. (i) We have

k.Pak t � PakC1t /.f /k
q
X D

Z akC1t

ak t

@Ps.f / ds

q
X

� .log a/q=q
0

Z akC1t

ak t

ks@Ps.f /k
q
X

ds

s
;

which implies X
k2Z

k.Pak t � PakC1t /.f /k
q
X � .log a/q=q

0

GPq .f /
q :

Thus if X is of Luzin cotype q relative to ¹Ptºt>0, then (4.7) holds with c �

.log a/1=q
0

LPc;q;p.X/:
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To show the converse implication, let b D 1
2
.1C a/. We use an idea from [25] (see

also [66]) to write

@Pt D

1X
kD0

.@Pbk t � @PbkC1t / D

1X
kD0

@Pbk2�1t .Pbk2�1t � Pabk2�1t /:

Hence

kGPq .f /kLp.�/ �

1X
kD0

k¹t@Pbk2�1t .Pbk2�1t � Pabk2�1t /.f /ºt>0kLp.�ILq.RCIX//

D 2

1X
kD0

b�kk¹t@Pt .Pt � Pat /.f /ºt>0kLp.�ILq.RCIX//

D
2.aC 1/

a � 1
k¹t@Pt .Pt � Pat /.f /ºt>0kLp.�ILq.RCIX//:

By Propositions 2.4 and 2.8, the family ¹t@Ptºt>0 is `q-bounded with constant
C max..p0/1�p=q; p1�p

0=q0/. Therefore,

k¹t@Pt .Pt � Pat /.f /ºt>0kLp.�ILq.RCIX//

. max..p0/1�p=q; p1�p
0=q0/k¹.Pt � Pat /.f /ºt>0kLp.�ILq.RCIX//:

To estimate the norm on the right hand side, we writeZ 1
0

k.Pt � Pat /.f /k
q
X

dt

t
D

X
k2Z

Z akC1

ak
k.Pt � Pat /.f /k

q
X

dt

t

D

Z a

1

X
k2Z

k.Pak t � PakC1t /.f /k
q
X

dt

t
:

Note that the function

t 7!
�X
k2Z

k.Pak t � PakC1t /.f /k
q
X

�1=q
is continuous from RC to Lp.�/, so there exists t0 2 Œ1; a� such thatZ a

1

X
k2Z

k.Pak t � PakC1t /.f /k
q
X

dt

t
� .log a/

X
k2Z

k.Pak t0 � PakC1t0/.f /k
q
X :

We then deduce the Luzin cotype q of X from (4.7) with

LPc;q;p.X/ . .log a/1=q
aC 1

a � 1
max..p0/1�p=q; p1�p

0=q0/c:
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(ii) The above argument yields the following discretization of GPq .f /:

a � 1

aC 1

�
max..p0/1�p=q; p1�p

0=q0/
��1
kGPq .f /kLp.�/

.
�Z a

1

X
k2Z

k.Pak t � PakC1t /.f /k
q
X dt

�1=q
Lp.�/

� .a � 1/1=q.log a/1=q
0

kGPq .f /kLp.�/:

This immediately implies assertion (ii).
(iii) is proved similarly by virtue of Propositions 2.4 and 2.9.

We have seen that the proofs of Theorems 4.5 and 1.10 are based on functional calcu-
lus for the special function F.z/ D �ze�z . It is known that functional calculus allows us
to use more general functions.

Definition 4.8. Let B be an `q-sectorial operator of type ˛ on Lp.�IX/ with ˛ < � . Let
ˇ > ˛ and ' 2 H10 .†ˇ / be a nonzero function. Define

GBq;'.f / D

�Z 1
0

k'.tB/.f /k
q
X

dt

t

�1=q
; f 2 Lp.�IX/:

The following result is a variant of [42, Theorem 5] (see also [66, Lemma 20]).

Proposition 4.9. Let ' and  be two nonzero functions in H10 .†ˇ /. Then

kGBq;'.f /kLp.�/ � CB;q;'; kG
B
q; .f /kLp.�/; f 2 Lp.�IX/:

Proof. Let

a D

Z 1
0

 .t/2
dt

t
:

Then

1 D
1

a

Z 1
0

 .tz/2
dt

t
; z 2 †ˇ :

Combined with (2.1), this implies

f D
1

a

Z 1
0

 .tB/2.f /
dt

t
; f 2 imB;

whence

'.sB/.f / D
1

a

Z 1
0

'.sB/ .tB/. .tB/.f //
dt

t
; s > 0:

Let ˛ <  < ˇ and � be the boundary of † . We then deduce

'.sB/.f / D
1

2a� i

Z
�

Z 1
0

'.sz/ .tz/z.z � B/�1
�
 .tB/.f /

� dt
t

dz

z
:
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These equalities are the analogues of (3.1) and (3.2) with ht D  .tB/.f /. It remains to
repeat the proof of Theorem 1.10 to conclude

kGBq;'.f /kLp.�/ �
1

2jaj�
CB;C';C ;kG

B
q; .f /kLp.�/;

where CB; is the `q-boundedness constant of ¹z.z � B/�1 W z 2 � n ¹0ºº,

C'; D max
"D˙1

Z 1
0

j'.tei" /j
dt

t

and C ; is similarly defined.

In particular, combining the previous proposition with the results in Section 2, we
obtain the following.

Corollary 4.10. Let X be a Banach space and 1 � q � 1.

(i) X is of Luzin cotype q relative to ¹Ptºt>0 iff for every nonzero ' 2 H10 .†ˇ / with
ˇ > �=4 .equivalently, for some nonzero ' 2 H10 .†ˇ // there exists a constant c
such that

kG
p
A

q;' .f /kLp.�/ � ckf kLp.�IX/; f 2 Lp.�IX/:

(ii) X is of Luzin type q relative to ¹Ptºt>0 iff for every nonzero ' 2 H10 .†ˇ / with
ˇ > �=4 .equivalently, for some nonzero ' 2 H10 .†ˇ // there exists a constant c
such that

kf � F.f /kLp.�IX/ � ckG
p
A

q;' .f /kLp.�/; f 2 Lp.�IX/:

(iii) Similar statements hold for ¹Ttºt>0 when ¹Ttºt>0 is analytic on Lp.�IX/ and 1 <
q <1.

We conclude this section by some remarks on general `q-sectorial operators on
Lp.�IX/ for which we have defined the g-function in Definition 4.8. In fact, what we
have done so far for semigroups can be developed for these operators too.

Definition 4.11. Let B be an `q-sectorial operator of type ˛ on Lp.�IX/ with ˛ < � .

(i) X is said to be of Luzin cotype q relative to B if there exists a constant c such that

kGBq;'.f /kLp.�/ � ckf kLp.�IX/

for every f 2 imB and some nonzero ' 2 H10 .†ˇ / with ˇ > ˛.

(ii) X is said to be of Luzin type q relative to B if there exists a constant c such that

kf kLp.�IX/ � ckG
B
q;'.f /kLp.�/

for every f 2 imB and some nonzero ' 2 H10 .†ˇ / with ˇ > ˛.

Proposition 4.9 shows that the above definition is independent of the choice of '.
Assume additionally that B admits a dual operator B 0 on Lp0.�IX�/ in the sense of [12],
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namely,
hB.f /; gi D hf;B 0.g/i; f 2 DomB; g 2 DomB 0:

Assume further that B 0 is also `q0 -sectorial of type ˛ on Lp0.�IX�/.

Proposition 4.12. Under the above assumption, X is of Luzin cotype q relative to B iff
X� is of Luzin type q0 relative to B 0.

Proof. Noting that Theorem 1.10 transfers to the present setting, we can repeat the proof
of Theorem 4.5, and so we omit the details.

It would be interesting to investigate the Luzin type and cotype relative to B as above.
Guided by Theorems 1.2 and 1.4, one would like to know those operators B such that
the Luzin type or cotype relative to B is implied by the martingale type or cotype. It
seems that more structure should be imposed on B in order to get significant results. We
have seen that this is indeed the case if B is the negative generator of ¹Ptºt>0 or ¹Ttºt>0
on Lp.�IX/. On the other hand, we have the following proposition that is contained
(essentially) in [58]. Note that [58] can be viewed as the particular case of our discussion
where� is a singleton (the `q-boundedness then simply becomes the usual boundedness).

The notion of type and cotype referred to in the next proposition is the usual
Rademacher type and cotype.

Proposition 4.13. Assume that B has a bounded H1 functional calculus. If X is of
cotype .resp. type/ q, then X is of Luzin cotype .resp. Luzin type/ q relative to B .

Proof. As in [58], this is a simple consequence of Kalton–Weis’ theorem on the uncon-
ditionality of bounded H1 functional calculus (see [26, Theorem 10.4.6] or its discrete
version, Theorem 10.4.4).

Remark 4.14. The assumption on the H1 functional calculus of B seems too strong
since it implies that X is a UMD space in many cases, for instance, if B is the negative
generator of ¹Ttºt>0 on Lp.RIX/ when ¹Ttºt>0 is the heat or Poisson semigroup on R.

5. Dyadic martingales and singular integrals

The proofs of Theorems 1.2 (i) and 1.5 heavily rely on tools from harmonic analysis,
notably from modern real-variable Littlewood–Paley theory. This section is a prepara-
tion for using these tools. In the part on Littlewood–Paley theory we will mainly follow
Wilson’s beautiful treatment in [62] (see also [60, 61]).

5.1. Dyadic martingales

All cubes in Rd considered below are bounded and with sides parallel to the axes;
jQj and `.Q/ denote respectively the volume and side length of the cube Q; tQ stands
for the cube with the same center as Q and `.tQ/ D t`.Q/ for t > 0.
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Let D be the family of all dyadic cubes of Rd , and Dk � D the subfamily of all
cubes with side length 2�k for k 2 Z. Let Ak be the � -algebra generated by Dk , and Ek
the associated conditional expectation. For f 2 Lp.Rd IX/,

Ek.f / D
X
Q2Dk

�
1

jQj

Z
Q

f

�
1Q:

Let dk.f / D Ek.f / � Ek�1.f / and

Sq.f / D
�X
k2Z

kdk.f /k
q
X

�1=q
:

Sq.f / is the q-variant of the usual martingale square function of f . It is useful to note
that dk.f / has vanishing mean on every Q 2 Dk�1 and is constant on every R 2 Dk .

Thus if X is of martingale type q, then

kf kLq.Rd IX/ � M t;q.X/kSq.f /kLq.Rd /; f 2 Lq.R
d
IX/:

We will need dyadic-like families of cubes that Wilson calls good families. F is such
a family if

(a) for Q 2 F , all of its 2d immediate dyadic subcubes belong to F ;

(b) every Q 2 F is one of the 2d immediate dyadic subcubes of another one in F ;

(c) for all Q;R 2 F , we have Q � R, or R � Q, or Q \R D ;.

For F a dyadic-like family of cubes, we define the associated Sq;F :

Sq;F .f / D

�X
Q2F

X
R2F ;R�Q;`.R/D`.Q/=2

 1

jRj

Z
R

f �
1

jQj

Z
Q

f

q
X

1R

�1=q
:

It is easy to see that given a finite number of cubes in F , we can bring the subfamily
consisting of those cubes in F that are contained in one of the given cubes to a subfamily
of D after appropriate translation and rescaling. Thus we have the following.

Lemma 5.1. Let F be a dyadic-like family of cubes. If X is of martingale type q, then

kf kLq.Rd IX/ � M t;q.X/kSq;F .f /kLq.Rd /

for all f 2 Lq.Rd IX/ supported in cubes from F .

An important case needed later concerns the family ¹3QºQ2D . The following is due
to Wilson [60].

Lemma 5.2. The family ¹3QºQ2D is a disjoint union of 3d dyadic-like families.

It suffices to consider the case d D 1. Then every 3Q can be written in the form
Œ3jCs
2k

; 3.jC1/Cs
2k

/ with j; k 2 Z and s 2 ¹0; 1; 2º. Let F k
s be the collection of all such

intervals for given k and s. Then the desired union is
S2
sD0

S
k2Z F k

2jkjs mod 3
.
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Let F be a dyadic-like family of cubes and ı > 0. Consider a family ¹aQºQ2F of
X -valued functions satisfying the following conditions:

supp.aQ/ � Q;
Z
aQ D 0; kaQ.x/ � aQ.y/kX � jQj

�1=q

�
jx � yj

`.Q/

�ı
: (5.1)

These are smooth atoms. Let ¹�QºQ2F be a finite family of complex numbers and f DP
Q2F �Q aQ.
The following is the adaptation of a lemma due to Wilson to the present setting. We

include its proof for the convenience of the reader.

Lemma 5.3. Under the above assumption, we have

Sq;F .f / .d;ı
�X
Q2F

j�Qj
q

jQj
1Q

�1=q
:

Proof. Without loss of generality, we assume that F D D , so Sq;F .f / D Sq.f /. Since
aQ has vanishing mean, dk.aQ/ D 0 whenever k � k.Q/, where 2�k.Q/ D `.Q/ . Let
R 2 Dk�1 with k > k.Q/ and R � Q. Then on R,

dk.aQ/ D
X

I2Dk ; I�R

�
1

jI j

Z
I

aQ �
1

jRj

Z
R

aQ

�
1I

D

X
I2Dk ; I�R

1

jI j jRj

Z
I�R

�
aQ.x/ � aQ.y/

�
dx dy 1I :

Thus by the last condition of (5.1),

kdk.aQ/kX .d jQj�1=q
�
`.R/

`.Q/

�ı
I

hence on R,

kdk.f /kX .d
� X
QWQ�R

j�Qj
q

jQj

�
`.R/

`.Q/

�ı�1=q� X
QWQ�R

�
`.R/

`.Q/

�ı�1=q0
.d;ı

� X
QWQ�R

j�Qj
q

jQj

�
`.R/

`.Q/

�ı�1=q
:

It then follows that

Sq.f /
q.x/ D

X
k2Z

X
R2Dk�1

kdk.f /k
q
X 1R.x/

.d;ı
X
RWx2R

X
QWQ�R

j�Qj
q

jQj

�
`.R/

`.Q/

�ı
1R.x/

.d;ı
X
Q

j�Qj
q

jQj

X
RWx2R�Q

�
`.R/

`.Q/

�ı
1R.x/ .d;ı

X
Q

j�Qj
q

jQj
1Q.x/:

This gives the desired assertion.
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5.2. Singular integrals

Given " > 0 and ı > 0, let H";ı be the class of all integrable functions ' on Rd satis-
fying (1.4). Let ' 2 H";ı . We consider the vector-valued kernel K defined by K.x/ D
¹'t .x/ºt>0 for x 2 Rd , that is, K is a function from Rd to Lq.RC/. With a slight abuse
of notation, we also use K to denote the associated singular integral:

K.f / D

Z
R
K.x � y/f .y/ dy:

Then
Gq;'.f /.x/ D kK.f /.x/kLq.RCIX/; x 2 Rd :

Lemma 5.4. The kernel K has the following regularity properties:

kK.x/kLq.RC/ ."
1

jxjd
; x 2 Rd n ¹0º;

kK.x C y/ �K.x/kLq.RC/ ."
jyjı

jxjdCı
; x; y 2 Rd ; jxj > 2jyj:

Proof. Let x 2 R n ¹0º. Then by (1.4),

kK.x/k
q

Lq.RC/
D

Z 1
0

j't .x/j
q dt

t
�

Z 1
0

�
1

td
1

.1C jxj=t/dC"

�q
dt

t

D
1

jxjdq

Z 1
0

t"q

.1C t /.dC"/q
dt

t
."

1

jxjdq
:

Similarly,

kK.x C y/ �K.x/k
q

Lq.RC/
. jyjıq

Z 1
0

�
1

tdCı
1

.1C jxj=t/dC"Cı

�q
dt

t

D
jyjıq

jxj.dCı/q

Z 1
0

t"q

.1C t /.dC"Cı/q
dt

t
."

jyjıq

jxj.dCı/q
:

5.3. A quasi-orthogonal decomposition

Besides H";ı introduced in the previous subsection, we will need its subclass of functions
supported in the unit ball. More precisely, let H0

ı
be the class of integrable functions '

on Rd such that

supp.'/ � B.0; 1/; j'.x/ � '.y/j � jx � yjı ;
Z

Rd
'.x/ dx D 0: (5.2)

Here B.x; t/ denotes the ball in Rd with center x and radius t .

Any function in H";ı can be decomposed into a series of functions in H0
ı

thanks to
the following lemma due to Uchiyama [57] (see also [61]).
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Lemma 5.5. Let ' 2 H";ı . Then there exist a positive constant C";ı and a sequence of
functions  .k/ 2 H0

ı
such that

' D C";ı

1X
kD0

2�"k. .k//2k :

Proof. The proof is elementary. Let � be a smooth function supported in ¹x 2Rd W 1=2 <
jxj < 2º such that X

k2Z

�.2�kx/ D 1; 8x 2 Rd n ¹0º:

Define
�0.x/ D

X
j��1

�.2�j jxj/; �k.x/ D �.2
�kC1

jxj/ for k � 1

and

�k D

P
0�j�k

R
Rd �j'R

Rd �k
�k :

Then the desired decomposition is given by

' D .'�0 � �0/C

1X
kD1

.'�k � �k C �k�1/ D C";ı

1X
kD0

2�"k. .k//2k :

By our convention that RC is equipped with the measure dt
t

, the upper half-space
RdC1C is equipped with the product measure dx dt

t
. Consistent with our convention before,

we write a function h WRdC1C !X as h.x; t/D ht .x/ for x 2Rd and t 2RC. Let ' 2H";ı

and let h 2 Lq.RdC1C IX/ with compact support. Consider the function

g.x/ D

Z
RdC1
C

't .y � x/ht .y/
dy dt

t
:

We will decompose g into a series of smooth atoms

g D
X
i

�iai ;

where the ai ’s satisfy (5.1) relative to ¹3QºQ2D and the �i ’s are reals such that�X
i

j�i j
q
�1=q

.d;";ı khkLq.RdC1C
IX/
:

This is the so-called quasi-orthogonal decomposition of g. First, using Lemma 5.5, we
reduce our problem to the case where ' is supported in the unit ball:

g.x/ D C";ı

1X
kD0

2�"k
Z

RdC1
C

. .k//2k t .y � x/ht .y/
dy dt

t

D C";ı

1X
kD0

2�"k
Z

RdC1
C

. .k//t .y � x/h2�k t .y/
dy dt

t
:
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Note that h2�k � has the same norm as h in Lq.RdC1C IX/. Thus it suffices to give the
decomposition for each  .k/ in place of '.

In the following, we will assume that ' itself belongs to H0
ı

. The argument below is
classical. For Q 2 D , let TQ D ¹.y; t/ W y 2 Q; `.Q/=2 < t � `.Q/º. Then ¹TQºQ2D

is a partition of RdC1C . So

g.x/ D
X
Q2D

Z
TQ

't .y � x/ht .y/
dy dt

t
DW

X
Q2D

�QaQ.x/

with

�Q D

�Z
TQ

kht .y/k
q
X

dy dt

t

�1=q
:

Clearly, X
Q2D

j�Qj
q
D

Z
RdC1
C

kht .y/k
q
X

dy dt

t
D khk

q

Lq.R
dC1
C
IX/
:

Since ' is supported in the unit ball and has vanishing mean, we see that aQ is supported
in 3Q and has vanishing mean too. On the other hand, since ' is in the Hölder class H0

ı
,

by the Hölder inequality we have

kaQ.x/ � aQ.x
0/kX �

�Z
TQ

j't .y � x/ � 't .y � x
0/jq
0 dy dt

t

�1=q0
�

�Z
TQ

�
1

td

�
jx � x0j

t

�ı�q0
dy dt

t

�1=q0
.d;ı jQj�1=q

�
jx � x0j

`.Q/

�ı
:

Thus aQ is a smooth atom. This yields the desired quasi-orthogonal decomposition.
Combining the above discussion with Lemmas 5.1–5.3, we get the following.

Lemma 5.6. Keep the above notation and assume that X is of martingale type q. Then

kgkLq.Rd IX/ .d;";ı M t;q.X/khkLq.RdC1C
IX/
:

6. Proofs of Theorem 1.5 and Corollary 1.6

With the preparation in Section 5, we are in a position to show Theorem 1.5. For clarity,
we divide the proof into several steps. X will be assumed to be of martingale cotype q in
the first four steps, and of martingale type q in the last step.

Step 1: A weighted norm inequality. Let ' be a function satisfying (1.4), i.e., ' 2 H";ı .
Besides the g-function defined by (1.6), we will need the Luzin integral function

Sq;'.f /.x/ D

�Z
jy�xj<t

k't � f .y/k
q
X

dy dt

tdC1

�1=q
for nice f W Rd ! X . The key of this proof is the following weighted norm inequality:
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For any locally integrable nonnegative function w on Rd and any f 2 Lq.Rd IX/,�Z
Rd

�
Sq;'.f /.x/

�q
w.x/ dx

�1=q
.d;";ı Mc;q.X/

�Z
Rd
kf .x/k

q
XM.w/.x/ dx

�1=q
;

(6.1)
where M.w/ denotes the Hardy–Littlewood maximal function of w:

M.w/.x/ D sup
²
1

jBj

Z
B

w W x 2 B;B a ball
³
:

First consider the unweighted case, i.e., w � 1. By the Fubini theorem, we haveZ
Rd

�
Sq;'.f /.x/

�q
dx D cd

Z
RdC1
C

k't � f .x/k
q
X

dx dt

t
:

Let h W RdC1C ! X� be a compactly supported smooth function such thatZ
RdC1
C

kht .x/k
q0

X�
dx dt

t
� 1:

Then Z
RdC1
C

h't � f .y/; ht .y/i
dy dt

t
D

Z
Rd
hf .x/; g.x/i dx;

where

g.x/ D

Z
RdC1
C

't .y � x/ht .y/
dy dt

t
:

Recall that it is well known (and easy to check) that X is of martingale type q iff X� is of
martingale cotype q0, with the following relation between the relevant constants:

M t;q.X/ � Mc;q0.X
�/ � 2M t;q.X/: (6.2)

Thus applying Lemma 5.6 to h and g with .X�; q0/ in place of .X; q/ there, we get

kgkLq0 .Rd IX�/ .d;";ı M t;q0.X
�/ khk

Lq0 .R
dC1
C
IX�/

.d;";ı Mc;q.X/:

Then taking the supremum over all h in the unit ball of Lq0.RdC1C IX�/, we deduce

kSq;'.f /kLq.Rd / .d;";ı Mc;q.X/kf kLq.Rd IX/;

so the unweighted version of (6.1) holds.
We will deduce the weighted version by a trick from [11]. By Lemma 5.5, we can

assume that ' is supported in the unit ball of Rd . Given a weight w, we write (recalling
that B.y; t/ denotes the ball of center y and radius t )Z

Rd

�
Sq;'.f /.x/

�q
w.x/ dx

D cd

Z
RdC1
C

k't � f .y/k
q
X

�
1

jB.y; t/j

Z
B.y;t/

w.x/ dx

�
dy dt

t
:
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Let

Fk D

²
.y; t/ 2 RdC1C W 2k <

1

jB.y; t/j

Z
B.y;t/

w.x/ dx � 2kC1
³
; k 2 Z:

Clearly, .y; t/ 2 Fk implies B.y; t/ � Ek D ¹x WM.w/.x/ > 2kº. Together with the fact
that 't .y � �/ is supported inB.y; t/, this implies 't � f .y/D 't � .f 1Ek /.y/whenever
.y; t/ 2 Fk . Thus using the unweighted version already proved (applied to f 1Ek ), we
deduce Z

Rd

�
Sq;'.f /.x/

�q
w.x/ dx .d

X
k2Z

2k
Z
Fk

k't � f .y/k
q
X

dy dt

t

.d
X
k2Z

2k
Z
Fk

k't � .f 1Ek /.y/k
q
X

dy dt

t

.d;";ı Mc;q.X/
q
X
k2Z

2k
Z
Ek

kf .x/k
q
X dx

.d;";ı Mc;q.X/
q

Z
Rd
kf .x/k

q
XM.w/.x/ dx:

Thus (6.1) is proved.

Step 2: Another weighted norm inequality. We need to show that (6.1) remains valid
for Gq;' instead of Sq;' :�Z

Rd

�
Gq;'.f /.x/

�q
w.x/ dx

�1=q
.d;";ı Mc;q.X/

�Z
Rd
kf .x/k

q
XM.w/.x/ dx

�1=q
;

(6.3)

To this end, we have to control the g-function by the Luzin area function. If ' is the
Poisson kernel, this is a classical fact thanks to harmonicity. In the present setting, we
need a little more effort.

If additionally all partial derivatives of ' with order up to d belong to H";ı , then we
can show

Gq;'.f /.x/ .d
X
j˛j�d

Sq;D˛'.f /.x/; x 2 Rd ;

where D˛ D
@˛1

@x
˛1
1

� � �
@˛d

@x
˛d
d

for ˛ D .˛1; : : : ; ˛d / and j˛j D ˛1 C � � � C ˛d ; the proof is

elementary (see [63, Lemma 4.3]). Thus (6.3) holds for such '.
For a general ', we need to adapt the arguments of [61] to the present setting by

introducing the vector-valued q-variants of Wilson’s intrinsic square functions:�
Sq;";ı.f /.x/

�q
D

Z
jy�xj<t

sup
'2H";ı

k't � f .y/k
q
X

dy dt

tdC1
;

�
Gq;";ı.f /.x/

�q
D

Z 1
0

sup
'2H";ı

k't � f .x/k
q
X

dt

t
:
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One can show, quite easily, that Sq;";ı.f /.x/ �d;";ı Gq;";ı.f /.x/ for every x 2 Rd

(see [61] for more details).
On the other hand, for a compactly supported smooth function h WRdC1C !X� choose

a family ¹'.y;t/º.y;t/2K � H";ı (K being the support of h) such that

k'
.y;t/
t � f .y/kX �

1

2
sup

'2H";ı

k't � f .y/kX ; .y; t/ 2 K:

Then by adapting the arguments in Section 5.3 to the present situation and by repeating
Step 1, one can estimate the integralZ

RdC1
C

h'
.y;t/
t � f .y/; ht .y/i

dy dt

t
D

Z
Rd

�
f .x/;

Z
RdC1
C

'
.y;t/
t .y � x/ht .y/

dy dt

t

�
dx

to conclude that

kSq;";ı.f /kLq.Rd / .d;";ı Mc;q.X/kf kLq.Rd IX/:

This implies (6.1) with Sq; replaced by Sq;";ı by the passage from the unweighted case
to the weighted one. Then the pointwise equivalence Sq;";ı.f / �d;";ı Gq;";ı.f / shows
that (6.3) holds for Gq;";ı instead of Gq;' , whence (6.3) for every ' 2 H";ı .

Step 3: Proof of Theorem 1.5 (i) for p � q. We can now easily prove part (i) of Theo-
rem 1.5 for p � q. Indeed, the case p D q is just the unweighted version of (6.3). For
p > q, let w be a nonnegative function on Rd with Lr -norm equal to 1, where r is the
conjugate index of p=q. Then for f 2 Lp.RIX/,Z

Rd

�
Gq;'.f /.x/

�q
w.x/ dx .d;";ı Mc;q.X/

q

Z
Rd
kf .x/k

q
XM.w/.x/ dx

.d;";ı Mc;q.X/
q
kf k

q

Lp.Rd IX/
kM.w/kLr .Rd /

.d;";ı r 0Mc;q.X/
q
kf k

q

Lp.Rd IX/
:

Taking the supremum over all w, we get

kGq;'.f /kLp.Rd / .d;";ı p1=qMc;q.X/ kf kLp.Rd IX/;

whence L'c;q;p.X/ .d;";ı p1=qMc;q.X/.

Step 4: Proof of Theorem 1.5 (i) for p < q. We deal with the case p < q by using singular
integrals. Let K be the singular integral associated to ' as in Section 5.2. We reduce to
showing that K is bounded from Lp.Rd IX/ to Lp.Rd ILq.RCIX//. The previous step
ensures this boundedness for p D q. On the other hand, Lemma 5.4 shows thatK is a reg-
ular Calderón–Zygmund kernel. Thus K satisfies the assumption of [19, Theorem V.3.4].
Note that [19, Theorem V.3.4] is formulated for kernels satisfying the regularity prop-
erties of Lemma 5.4 with ı D 1; however, it is well known that [19, Theorem V.3.4]
remains valid for any kernel as in Lemma 5.4 with the same proof. Therefore, K is
of weak type .1; 1/, so by the vector-valued Marcinkiewicz interpolation theorem (see
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[4, Theorem 1.3.1 and its proof]),K is bounded from Lp.Rd IX/ to Lp.Rd ILq.RCIX//
with norm controlled by Cd;";ı p0Mc;q.X/ for 1 < p < q. This finishes the proof of The-
orem 1.5 (i).

Step 5: Proof of Theorem 1.5 (ii). In this last step we show part (ii) by duality. Let
 2 H";ı such that (1.5) holds. Let f 2 Lp.Rd IX/ and g 2 Lp0.Rd IX�/. Then (1.5)
implies Z

Rd
hf .x/; g.x/i dx D

Z
RdC1
C

h't � f .x/;  t � g.x/i
dx dt

t
:

In the scalar case, this Calderón reproducing formula is proved by taking Fourier trans-
forms of both sides. Then by linearity, the formula extends to the vector-valued case
when both f and g take values in finite-dimensional subspaces, which can be assumed
by approximation. Therefore,ˇ̌̌̌Z

Rd
hf .x/; g.x/i dx

ˇ̌̌̌
� kGq;'.f /kLp.Rd / kGq0; .g/kLp0 .Rd /:

Since we are in part (ii) of Theorem 1.5,X is of martingale type q, so X� is of martingale
cotype q0 and Mc;q0.X

�/ � 2M t;q.X/ by (6.2). Thus by part (i) already proved, we have

kGq0; .g/kLp0 .Rd / � L c;q0;p0.X
�/kgkLp0 .Rd IX�/

.d;";ı max..p0/1=q
0

; p/Mc;q0.X
�/kgkLp0 .Rd IX�/:

Henceˇ̌̌̌Z
Rd
hf .x/; g.x/idx

ˇ̌̌̌
.d;";ı max.p; .p0/1=q

0

/M t;q.X/kGq;'.f /kLp.Rd /kgkLp0 .Rd IX�/:

Taking the supremum over all g with kgkLp0 .Rd IX�/ � 1, we deduce

L't;q;p.X/ .d;";ı max.p; .p0/1=q
0

/M t;q.X/

as desired. So the proof of Theorem 1.5 is complete.

Proof of Corollary 1.6. The first part of the corollary immediately follows from Theo-
rem 1.5. The first two inequalities of the second part are consequences of Remark 1.1
and Proposition 8.5 below. Finally, the last inequality LP

c;q;q.X/ & Mc;q.X/ is obtained by
combining [41] and [64].

7. Proofs of Theorem 1.2, Theorem 1.4 and Corollary 1.9

In this section we will first prove Theorem 1.2; Theorem 1.4 and Corollary 1.9 will then
follow quite easily. Our strategy for the proof of Theorem 1.2 is to reduce part (i), via
transference, to the special case of the translation group to which we can apply Theo-
rem 1.5.
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Proof of Theorem 1.2. Again, we divide the proof into several steps; X will be assumed
to be of martingale cotype q in the first two steps, and of martingale type q in the last step.

Step 1: The case of the translation group. For any t 2 R let �t be the translation by t on
Lp.R/, i.e., �t .f /.s/D f .sC t /. Then ¹�tºt2R is a strongly continuous group of positive
isometries on Lp.R/. As usual, ¹�tºt2R extends to a group of isometries on Lp.RIX/.
Let ¹P �t ºt>0 be the associated Poisson subordinated semigroup. Our aim in this step is to
show

LP
�

c;q;p.X/ . max.p1=q; p0/Mc;q.X/: (7.1)

We need to express t@P �t as a convolution operator:
p
t @P �p

t
.f /.x/ D

Z
R
�t .x � y/f .y/ dy D �t � f .x/; x 2 R; t > 0:

Then

GP
�

q .f /.x/ D 2�1=q
�Z 1

0

k�t � f .x/k
q
X

dt

t

�1=q
D 2�1=qGq;�.f /.x/: (7.2)

Elementary computations show that � is the function with Fourier transform

y�.�/ D �
p
�2� i � e�

p
�2� i �

D �
p
2�j�j e�

i sgn.�/�
4 exp

�
�
p
2�j�j e�

i sgn.�/�
4

�
: (7.3)

We are going to show that � belongs to the class H1=2;1 introduced in Section 5.2.
More precisely, � satisfies the estimates

j�.x/j .
1

.1C jxj/3=2
; j�0.x/j .

1

.1C jxj/5=2
; x 2 R: (7.4)

Since �k y�.�/ is integrable on R for any nonnegative integer k, � is of class C1 with
bounded derivatives of any order. Thus it suffices to prove the estimates for jxj � 1.

Let � be a C1 even function on R, supported in ¹� W 1=2 < j�j < 2º, such thatX
j2Z

�.2�j �/ D 1; � 2 R n ¹0º:

Let mj .�/ D y�.�/�.2�j �/ and �.j / be defined by b�.j / D mj . Then

� D
X
j2Z

�.j /:

Using (7.3), one easily showsZ
2j�1�j�j�2jC1

ˇ̌̌̌
dk

d�k
y�.�/

ˇ̌̌̌
d� . 2j.1�k/

kX
`D0

.
p

2j /`C1e�
p
�2j�1 ; 0 � k � 3;

This impliesZ
R

ˇ̌̌̌
dk

d�k
mj .�/

ˇ̌̌̌
d� . 2j.1�k/

kX
`D0

.
p

2j /`C1e�
p
�2j�1 ; 0 � k � 3: (7.5)

Let x 2 R with jxj > 1. For j , we consider two cases, I: 2j jxj � 1 and II: 2j jxj > 1.
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In Case I, we must have j � �1. Using (7.5) for k D 1, we then have

jx�.j /.x/j .
p

2j :

Thus X
j2I

j�.j /.x/j .
1

jxj3=2
:

On the other hand, if j 2 II, we use (7.5) for k D 3 to get

jx3�.j /.x/j . 2�3=2j :

We deduce again X
j2II

j�.j /.x/j .
1

jxj3=2
:

Hence, the first estimate of (7.4) is proved.
The second one is shown in a similar way. Indeed, since b�0.�/ D 2� i � y�.�/, we haveZ
2j�1�j�j�2jC1

ˇ̌̌̌
dk

d�k
b�0.�/ˇ̌̌̌ d� . 2j.2�k/

kX
`D0

.
p

2j /`C1e�
p
�2j�1 ; 0 � k � 3:

It then remains to repeat the above argument with � replaced by �0.
Thus by (7.2), Theorem 1.5 implies (7.1). Let us note that for the kernel � here, we can

avoid Wilson’s intrinsic square functions considered in Step 2 of the proof of Theorem 1.5
since �0 2 H1=2;1 too. Indeed, repeating the proof of (7.4), we show

j�00.x/j .
1

.1C jxj/7=2
:

Consequently, as pointed out in Step 2 of the proof of Theorem 1.5, we have

Gq;�.f /.x/ . Sq;�.f /.x/C Sq;�0.f /.x/; x 2 R:

The proof of this inequality is very easy. It suffices to consider x D 0. Let y 2 R be such
that jyj < t . We write

k�t � f .y/k
q
X � k�t � f .0/k

q
X D

Z 1

0

d

ds
k�t � f .sy/k

q
X ds:

Thenˇ̌
k�t � f .y/k

q
X � k�t � f .0/k

q
X

ˇ̌
� q

Z 1

0

k�t � f .sy/k
q�1
X k�0t � f .sy/kX

jyj

t
ds

� q

Z jyj
0

�t � f �s yjyj
�q�1

X

�0t � f �s yjyj
�

X

ds

t

� q

Z jyj
0

��t � f �s yjyj
�q

X

C

�0t � f �s yjyj
�q

X

�
ds

t
:
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Thus

k�t � f .0/k
q
X

� k�t � f .y/k
q
X C q

Z jyj
0

��t � f �s yjyj
�q

X

C

�0t � f �s yjyj
�q

X

�
ds

t
:

Integrating both sides against dy dt
t2

over the cone ¹.y; t/ 2 R2C W jyj < tº, we deduce the
desired inequality.

Step 2: Transference. We now use the transference principle to bring the general case to
the special one of the translation group. To that end, we first need to dilate our semigroup
¹Ttºt>0 to a group of isometries. Fendler’s dilation theorem is at our disposal for this
purpose. It ensures that there exist another larger measure space . z�; z�/, a strongly con-
tinuous group ¹ zTtºt2R of regular isometries on Lp. z�/, a positive isometric embedding
D from Lp.�/ into Lp. z�/ and a regular projection P from Lp. z�/ onto Lp.�/ such that

Tt D P zTtD; 8t > 0:

This theorem is proved in [16] for positive Tt and then extended to regular Tt in [17].
To prove part (i) of Theorem 1.2, it suffices to show

LPc;q;p.X/ � LP
�

c;q;p.X/: (7.6)

By the above dilation, we can assume that ¹Ttºt>0 itself is a group of regular isometries
on Lp.�/. So its extension to Lp.�IX/ is a group of isometries too. Recall that ¹Mtºt>0

denote the ergodic averages of ¹Ttºt>0 in Lemma 2.6. We use ¹M �
t ºt>0 to denote the

corresponding averages of the translation group ¹�tºt>0. By (1.2), we have

Pt D
1

2
p
�

Z 1
0

t

s3=2
exp

�
�
t2

4s

�
Ts ds:

Thus

t@Pt D
1

2
p
�

Z 1
0

�
t

s3=2
�

t3

2s5=2

�
exp

�
�
t2

4s

�
Ts ds

D
1

2
p
�

Z 1
0

�
t

s3=2
�

t3

2s5=2

�
exp

�
�
t2

4s

�
.sMs/

0 ds

D

Z 1
0

'

�
t
p
s

�
Ms

ds

s

D

Z 1
0

'

�
1
p
s

�
Mt2s

ds

s
;

where
'.x/ D

1

16
p
�
.12x � 12x3 C x5/e�x

2=4:

Let f 2 Lp.�IX/ be an element of norm 1. Let a > 0 (large). ThenZ 1
a

ˇ̌̌̌
'

�
1
p
s

�ˇ̌̌̌
ds

s
�

C
p
a
:
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Thus for any t > 0,Z 1
a

'

�
1
p
s

�
Mt2s.f /

ds

s


X

�

Z 1
a

ˇ̌̌̌
'

�
1
p
s

�ˇ̌̌̌
kMt2s.f /kX

ds

s
�

C
p
a
M �.f /;

where M �.f / D supv>0 kMv.f /kX . By Lemma 2.6,

kM �.f /kLp.�/ � p
0
kf kLp.�IX/ D p

0:

Let b be another large number. Then�Z b

b�1
kt@Pt .f /k

q
X

dt

t

�1=q
Lp.�/

�

�Z b

b�1

Z a

0

'

�
1
p
s

�
Mt2s.f /

ds

s

q
X

dt

t

�1=q
Lp.�/

C
Cp;q;b
p
a
;

where Cp;q;b D Cp0q�1=q.2 log b/1=q . Denote the first term on the right hand side by I.
Using the fact that ¹Ttº is a group of isometries on Lp.�IX/, we introduce an additional
variable u in the integrand of I:

I �
�Z b

b�1

Z a

0

'

�
1
p
s

�
Mt2sTu.f /

ds

s

q
X

dt

t

�1=q
Lp.�/

; u > 0:

Let c > 0. Now define g W R ! Lp.�IX/ by g.u/ D 1.0;ab2Cc�.u/Tu.f /. We easily
verify that

Mt2sTu.f / DM
�
t2s
.g/.u/; 0 < s � a; 0 < t � b; 0 < u � c:

Hence

Ip �
1

c

Z c

0

Z
�

�Z b

b�1

Z a

0

'

�
1
p
s

�
M �
t2s
.g/.u/

ds

s

q
X

dt

t

�p=q
d! du

�
1

c

�Z b

b�1

Z a

0

'

�
1
p
s

�
M �
t2s
.g/

ds

s

q
X

dt

t

�1=qp
Lp.R��/

:

Let .M � /�.g/ D supv>0 kM
�
v .g/kX , so

k.M � /�.g/kLp.R��/ � p
0
kgkLp.R��IX/ � p

0.ab2 C c/1=p:

Reversing the preceding procedure with ¹Ptºt>0 replaced by ¹P �t ºt>0, we have

I � c�1=p
�Z b

b�1

Z 1
0

'

�
1
p
s

�
M �
t2s
.g/

ds

s

q
X

dt

t

�1=q
Lp.R��/

C
Cp;q;b
p
a

�
ab2 C c

c

�1=p
� c�1=pkGP

�

q .g/kLp.R��IX/ C
Cp;q;b
p
a

�
ab2 C c

c

�1=p
:



Q. Xu 42

However,

kGP
�

q .g/kLp.R��/ � LP
�

c;q;p.X/kgkLp.R��IX/ � LP
�

c;q;p.X/.ab
2
C c/1=p:

Combining all the inequalities obtained so far, we finally deduce�Z b

b�1
kt@Pt .f /k

q
X

dt

t

�1=q
Lp.�/

� LP
�

c;q;p.X/

�
ab2 C c

c

�1=p
C
Cp;q;b
p
a

�
1C

�
ab2 C c

c

�1=p�
:

Letting successively c !1, a!1 and b !1, we get

kGPq .f /kLp.�/ � LP
�

c;q;p.X/;

whence (7.6) follows.

Step 3: Duality. Assertion (ii) follows from (i), Theorem 4.5 and (6.2).

Remark 7.1. Step 1 of the proof of Theorem 1.2 can be substantially shortened for
p � q. This alternative proof does not rely on the heavy Littlewood–Paley theory. Its key
point is to show the boundedness of GPq on Lq.�IX/, i.e., for p D q (see the following
remark). Assuming this boundedness and showing that K is bounded from L1.Rd IX/
to BMO.Rd ILq.RCIX// (the latter boundedness is quite easy to get), we can then use
the singular integral as in the proof of Step 4 of Theorem 1.5 to conclude the case p > q.
Unfortunately, this proof yields p as the order of LPc;q;p.X/ instead of the optimal p1=q .

Remark 7.2. The boundedness of GPq onLq.�IX/ can be proved by using Theorem 4.7
and the following inequality from [23]: for a Banach space X of martingale cotype q,�X

k2Z

k.M �
2k
�M �

2kC1
/.f /k

q
X

�1=q
Lq.R/

. Mc;q.X/kf kLq.RIX/; f 2 Lq.RIX/:

By the previous remark, the validity of the above inequality characterizes the martingale
cotype q of X . More generally, let 1 < p <1 and 2 � q <1. Then X is of martingale
cotype q iff there exists a constant c such that�X

k2Z

k.M �
2k
�M �

2kC1
/.f /k

q
X

�1=q
Lp.R/

� ckf kLp.RIX/; f 2 Lp.RIX/:

See [22] for related results.

Proof of Theorem 1.4. By Remark 1.1, LTt;q;p.X/ . LPt;q;p.X/. Thus assertion (i) follows
from Theorem 1.2 (ii).

Assertion (ii) is an easy consequence of Theorem 1.2 and Corollary 4.10. But we will
use Proposition 4.9 in order to explicitly track the relevant constants. Let '.z/ D �ze�z

and  .z/ D �
p
z e�

p
z . Then

GAq;'.f / D G Tq .f / and GAq; .f / D
p
2GPq .f /:
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By Proposition 2.9 and the notation there, A is `q-sectorial of type ˛q D �=2 � ˇq . Let
0 < ˇ < ˇq and ˛ D �=2 � ˇ. Then by Proposition 4.9 and the estimates obtained in its
proof, we get

kG Tq .f /kLp.�/

.
�

cos˛ cos
˛

2

��1
.ˇq � ˇ/

�2 Tmin.p=q;p0=q0/
ˇ0

max..p0/1�p=q; p1�p
0=q0/kGPq .f /kLp.�/:

Choosing ˇ D ˇq=2 yields

kG Tq .f /kLp.�/ . DkGPq .f /kLp.�/;

where
D D ˇ�3q Tmin.p=q;p0=q0/

ˇ0
max..p0/1�p=q; p1�p

0=q0/:

We then deduce Theorem 1.4 (ii) from Theorem 1.2 (i).

Proof of Corollary 1.9. By [44, 45],

Mc;q.Lp.�IX// . max..p0/1=q;Mc;q.X//:

Fix f0 2 Lq.�/ with norm 1. Given f 2 Lp.�IX/ let zf D f ˝ f0. We view zf as a
function from� to Lp.�IX/ by ! 7! f .!/f0. Applying Theorem 1.2 (i) to this function
withX replaced byLp.�IX/ and pD q (noting that then max.q1=q; q0/� 1 since q � 2),
we get�Z 1

0

t @@t Pt .f /˝ f0
q
Lp.�IX/

dt

t

�1=q
Lq.�/

. max..p0/1=q;Mc;q.X//kf ˝ f0kLq.�ILp.�IX//

D max..p0/1=q;Mc;q.X//kf kLp.�IX/:

The left hand side is equal to�Z 1
0

t @@t Pt .f /˝ f0
q
Lq.�ILp.�IX//

dt

t

�1=q
D

�Z 1
0

t @@t Pt .f /
q
Lp.�IX/

dt

t

�1=q
:

Combining the above estimates we get the desired inequality of the corollary.
To show the optimality of the constant, we consider the special case where X D C

and the classical Poisson semigroup ¹Ptºt>0 on R. Let f D P1. Then

kf kLp.R/ � 1 and
t @@t Pt .f /


Lp.R/

�
t

.t C 1/1C1=p
0
:

Thus �Z 1
0

t @@t Pt .f /
q
Lp.R/

dt

t

�1=q
� .p0/1=q :

We then deduce the announced optimality.
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8. The scalar case revisited and optimality

The approach previously presented gives new insights even in the scalar case with regard
to the best constants involved. Let

LTc;p D Lc;2;p.C/ and LTt;p D Lt;2;p.C/:

Thus LTc;p and LTt;p are the best constants in the inequalities

.LTt;p/
�1
kf � F.f /kLp.�/ � kG

T
2 .f /kLp.�/ � LTc;pkf � F.f /kLp.�/; f 2 Lp.�/:

Let us restate Theorems 1.2 and 1.4 for X D C and q D 2.

Theorem 8.1. Let ¹Ttºt>0 be a semigroup of regular contractions on Lp.�/ with 1 <
p <1 and ¹Ptºt>0 its subordinated Poisson semigroup.

(i) We have
LPc;p . max.

p
p; p0/ and LPt;p . max.p;

p
p0/:

(ii) Assume that ¹Ttºt>0 satisfies (1.3) for X D C. Let p̌ D ˇ0 min.p; p0/. Then

LTc;p . ˇ�3p T
1
2 min.p;p0/
ˇ0

max.p; .p0/3=2/ and LTt;p . max.p;
p
p0/:

For symmetric diffusion semigroups we have the following orders, more precise than
those in part (ii) above. We are very grateful to the anonymous referee for pointing out
the references [32, 39] that allow us to improve our previous estimate on LTc;p based on
Stein’s classical analyticity angle of ¹Ttºt>0 on Lp.�/.

Corollary 8.2. Let ¹Ttºt>0 be a semigroup of contractions on Lp.�/ for every 1 �
p � 1. Assume that ¹Ttºt>0 is strongly continuous on L2.�/ and each Tt is a self-
adjoint operator on L2.�/. Then

LTc;p . max.p5=2; .p0/3/ and LTt;p . max.p;
p
p0/:

Proof. First note that Tt is a regular contraction on Lp.�/ for any 1 � p � 1 and any
t > 0. The selfadjointness of Tt implies that ¹Ttºt>0 is an analytic semigroup of type
�=2 with constant 1 on L2.�/. Then by [39, Corollary 3.2] and [32, Corollary 6.2],
¹Ttºt>0 is analytic of type ˇ0p D �=2 � arcsin j1 � 2=pj with constant 1 on Lp.�/ for
1 < p < 1. Note that the angle ˇ0p is optimal and better than Stein’s classical one,
�
2
.1 � j1 � 2=pj/ (see [55, Section III.2]). It remains to apply Theorem 8.1 (ii) with

ˇ0 D ˇ0p � min.
p
p=p0;

p
p0=p / and Tˇ0 D 1. The corresponding p̌ is now equiva-

lent to min.1=
p
p; 1=

p
p0/. We then deduce the desired assertion from Theorem 8.1.

Historical comments. (i) Theorem 8.1 was proved in [35] without any explicit estimates
on the best constants; in fact, their growth obtained there is more than exponential.

(ii) If ¹Ptºt>0 is the Poisson semigroup on a compact Lie group, Stein’s proof in
[55, Section II.3] yields LPc;p . max.p; p0/ and LPt;p . max.p; p0/.
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(iii) If ¹Ttºt>0 is a symmetric diffusion semigroup, Stein’s approach in [55, Sec-
tion IV.4] via Rota’s dilation yields LPc;p . max.p; .p0/3=2/.

(iv) If ¹Ttºt>0 is a symmetric submarkovian semigroup, Cowling [13] proved that the
negative generator A of ¹Ttºt>0 has a bounded holomorphic functional calculus whose
relevant constant is of polynomial growth on p as p! 1 and p!1. Using the equiva-
lence between bounded holomorphic functional calculus and square function inequalities,
one can then deduce polynomial growth of LTc;p and LTt;p too, but the resulting orders are
worse than those in Corollary 8.2.

Remark 8.3. The orders of LPc;p in Theorem 8.1 are optimal both as p !1 and p ! 1

because they are already optimal for the classical Poisson semigroup on R (see Proposi-
tion 8.5 below). Zhendong Xu and Hao Zhang [68] proved that LTt;p & p as p!1 when
¹Ttºt>0 is a symmetric diffusion semigroup, so LPt;p & p as p !1 for the subordinated
Poisson semigroup ¹Ptºt>0 too. This shows that our method is optimal.

However, at the time of this writing, we are unable to determine the optimal orders
of LPt;p as p ! 1 even when ¹Ttºt>0 is a symmetric diffusion semigroup.

Problem 8.4. It would be interesting to determine the optimal orders of LPt;p as p ! 1

when ¹Ttºt>0 is a symmetric submarkovian (or markovian) semigroup. In particular, does
there exist a constant C (possibly depending on ¹Ttºt>0) such that

kf � F.f /kL1.�/ � CkG
P
2 .f /kL1.�/; 8f 2 L1.�/ ‹

The dual version of the above inequality is related to the BMO space considered
in [18]. It is true when ¹Ptºt>0 is the Poisson or heat semigroup on Rd .

We conclude this section with the proof of the optimality of the growth orders of the
best constants in Corollary 1.6 in the scalar case, i.e., X D C (see [67] for more related
results). We will denote LP

c;q;p.C/ and LH
c;q;p.C/ simply by LP

c;q;p and LH
c;q;p , respectively.

It suffices to consider R.

Proposition 8.5. Let 1 < p; q <1. Then

LP
c;q;p & max.p1=q; p0/ and LH

c;q;p & max.p1=q; p0/:

Proof. By Remark 1.1, it suffices to show the assertion for the Poisson semigroup.
Let us first consider the case p � q. Fix s > 0 and let f D Ps . Then

t
@

@t
Pt .f /.x/ D

t

�

x2 � .t C s/2

.x2 C .t C s/2/2
; x 2 R:

For x � 6s, we have

G P
q .f /.x/ �

�Z x=2�s

x=3�s

ˇ̌̌̌
t
@

@t
Pt .f /.x/

ˇ̌̌̌q
dt

t

�1=q
&
1

x
:

Thus

kG P
q .f /kLp.R/ &

�Z 1
6s

1

xp
dx

�1=p
&
s�1=p

0

p � 1
:
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On the other hand,
kf kLp.R/ � s

�1=p0 :

Hence, LP
c;q;p & p0.

Unfortunately, the above simple argument does not apply to the case p > q. Our
proof for the latter is much harder. By periodization, it is equivalent to considering the
torus T (equipped with normalized Haar measure). The g-function relative to the Poisson
semigroup on T is defined by

GP
q .f / D

�Z 1

0

ˇ̌̌̌
.1 � r/

d

dr
Pr .f /

ˇ̌̌̌q
dr

1 � r

�1=q
;

where Pr denotes the corresponding Poisson kernel:

Pr .�/ D
1 � r2

1 � 2r cos � C r2
:

It is shown in [64] that the inequality

kGP
q .f /kLp.T/ � LP

c;q;pkf kLp.T/

is equivalent to the corresponding dyadic martingale inequality on � D ¹�1; 1ºN . It is
well known that the relevant constant in the latter martingale inequality for q D 2 is of
order

p
p as p !1. To reduce the determination of the optimal order of LP

c;q;p to the
martingale case, we need to refine an argument in the proof of [64, Theorem 3.1].

Keeping the notation there, let M D .Mk/0�k�K be a finite dyadic martingale and

Mk �Mk�1 D dk."1; : : : ; "k�1/"k ;

where ."k/ are the coordinate functions of�. The transformation "k D sgn.cos�k/ estab-
lishes a measure preserving embedding of � into T N . Accordingly, define

ak.e
i�1 ; : : : ; ei�k�1/ D dk

�
sgn.cos �1/; : : : ; sgn.cos �k�1/

�
;

bk.e
i�k / D sgn.cos �k/:

Given a rapidly increasing sequence .nk/ of positive integers, put

ak;.n/.e
i� / D ak;.n/.e

i�
I ei�1 ; : : : ; ei�k�1/ D ak.e

i.�1Cn1�/; : : : ; ei.�k�1Cnk�1�//;

bk;.n/.e
i� / D bk;.n/.e

i�
I ei�k / D bk.e

i.�kCnk�//;

f.n/.e
i� / D f.n/.e

i�
I ei�1 ; : : : ; ei�K / D

KX
kD1

ak;.n/.e
i� /bk;.n/.e

i� /:

The functions f.n/, ak;.n/ and bk;.n/ are viewed as functions on T for each .�1; : : : ; �K/
fixed. Furthermore, by approximation, we can assume that all ak and bk are polynomials.
Then, if the sequence .nk/ rapidly increases, Lemmas 3.4 and 3.5 of [64] imply

1

2
GP
q .f.n// �

� KX
kD1

jak;.n/j
qGP

q .bk;.n//
q
�1=q
� 2GP

q .f.n//:
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Therefore, � KX
kD1

jak;.n/j
q GP

q .bk;.n//
q
�1=q

Lp.T/
� 2LP

c;q;pkf kLp.T/: (8.1)

The discussion so far comes from [64]. Now we require a finer analysis of the g-function
GP
q .bk;.n//. To this end we write the Fourier series of the function b D sgn.cos �/:

b.ei� / D
2

�

1X
jD0

.�1/j

2j C 1
Œei.2jC1/�

C e�i.2jC1/� �:

Then

d

dr
Pr .bk;.n//.e

i� / D
4

�
nkr

nk�1 Re
� 1X
jD0

.�1/j r2nkj ei.2jC1/.�kCnk�/
�
:

Elementary computations showˇ̌̌̌
d

dr
Pr .bk;.n//.e

i� /

ˇ̌̌̌q
� cqn

q

k
rq.nk�1/ cosq.�k C nk�/:

Here and below, c; C denote absolute positive constants. Thus

GP
q .bk;.n//

q
� cq cosq.�k C nk�/n

q

k

Z 1

0

.1 � r/q�1rq.nk�1/dr

� cqŒ1C O.1=nk/� cosq.�k C nk�/:

Now lifting both sides of (8.1) to power p, then integrating the resulting inequality over
TK with respect to .�1; : : : ; �K/, we getZ

T

Z
TK

� KX
kD1

jak;.n/.e
i.�1Cn1�/; : : : ; ei.�k�1Cnk�1�//jq

� Œ1C O.1=nk/� cosq.�k C nk�/
�p=q

d�1 � � � d�K d�

� .CLP
c;q;p/

p

Z
T

Z
TK
jf.n/.e

i.�1Cn1�/; : : : ; ei.�KCnK�//jpd�1 � � � d�K d�:

For each fixed � , the change of variables .�1; : : : ; �K/ 7! .�1 � n1�; : : : ; �K � nK�/ being
a measure preserving transformation of TK , we deduceZ

TK

� KX
kD1

jak;.n/.e
i�1 ; : : : ; ei�k�1/jq Œ1C O.1=nk/� cosq �k

�p=q
d�1 � � � d�K

� .CLP
c;q;p/

p

Z
TK
jf.n/.e

i�1 ; : : : ; ei�K /jp d�1 � � � d�K :

Letting n1 !1, we getZ
TK

� KX
kD1

jdk.sgn.cos �1/; : : : ; sgn.cos �k�1//jq cosq �k
�p=q

d�1 � � � d�K

� .CLP
c;q;p/

p
kMKk

p

Lp.�/
:
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Now we consider an elementary example where M is simple random walk stopped
at˙2, namely

dk D 1¹��kº with � D inf
°
k W

ˇ̌̌ kX
jD1

"j

ˇ̌̌
D 2

±
:

Note that the probability of the event ¹� D j º is zero for odd j and 2�j=2 for even j . On
the other hand, recalling "k D sgn.cos �k/ and letting

Aj D ¹� D j; jcos �kj � 1=
p
2; 1 � k � j º;

we easily check that the probability of Aj is 8�j=2 for even j . Thus for K � j ,

KX
kD1

jdk."1; : : : ; "k�1/j
q cosq �k � 1Aj

jX
kD1

1¹��kº cosq �k � 2�q=2j 1Aj I

consequently, for K D 2J with J 2 N,Z
TK

� KX
kD1

jdk.sgn.cos �1/; : : : ; sgn.cos �k�1//jq cosq �k
�p=q

d�1 � � � d�K

� cq
JX
jD1

j p=q8�j � cppp=q :

Noting that jMK j � 2 and combining all the previous inequalities, we finally obtain

LP
c;q;p & p1=q :

This completes the proof.

Appendix A. Examples

There exist plenty of examples of semigroups to which the results of this article apply.
Many second order differential operators in analysis generate such semigroups. In the
following we will only discuss the cotype case since the type case can be dealt with by
duality. Note that it is obvious that if X is of Luzin cotype q relative to ¹Ttºt>0, it is so
relative to the subordinated Poisson semigroup ¹Ptºt>0 of ¹Ttºt>0.

A main task in the study of vector-valued Littlewood–Paley–Stein theory would be
the following.

Problem A.1. Determine the family of semigroups ¹Ttºt>0 such that a Banach space X
is of Luzin type (resp. cotype) q relative to ¹Ttºt>0 or its subordinated Poisson semigroup
¹Ptºt>0 iff X is of martingale type (resp. cotype) q.

Example A.2 (Laplacian operators). The classical heat semigroup on Rd is given by
Ht D e

t�, where � is the Laplacian operator. It is well known (and easy to check) that



Vector-valued Littlewood–Paley–Stein theory 49

¹Htºt>0 is analytic of angle �=2 onLp.Rd IX/ for any 1� p <1 and any Banach space
X ; the relevant constant as in (1.3) with ˇ0 D �=2 depends only on d . By [25, 66], if X
is of martingale cotype q, then X is of Luzin cotype q relative to ¹Htºt>0. Conversely,
suppose thatX is of Luzin cotype q relative to ¹Htºt>0. ThenX is also of Luzin cotype q
relative to the classical Poisson semigroup ¹Ptºt>0, and soX is of martingale cotype q by
virtue of [41]. Thus the Luzin cotype relative to the classical heat semigroup is equivalent
to the martingale cotype.

Example A.3 (Schrödinger operators). Let� be a region in Rd equipped with Lebesgue
measure. Let a.x/ D .aij .x//1�i;j�d be a positive matrix whose entries are locally inte-
grable real functions on � such that

˛.x/ � a.x/ � ˇ.x/

for two positive continuous functions ˛ and ˇ on �. We consider the elliptic operator

L.f / D �

dX
i;jD1

@

@xi

�
aij

@f

@xj

�
:

Given a nonnegative locally integrable function V on �, define A.f / D L.f / C Vf .
It is well known that �A generates a symmetric submarkovian (markovian for V D 0)
semigroup ¹Ttºt>0 on � (see [15, Theorem 1.8.1]). In particular, ¹Ttºt>0 is analytic on
Lp.�/ for any 1<p <1. Thus ifX is of martingale cotype q, then it is of Luzin cotype q
relative to the Poisson semigroup ¹Ptºt>0 subordinated to ¹Ttºt>0 on Lp.�IX/ for any
1 < p <1.

Assume in addition that L is uniformly elliptic, namely, the above two functions ˛
and ˇ are constant. Then the integral kernel K0t .x; y/ of e�tL satisfies the following
Gaussian upper bound (cf. [15, Theorem 3.2.8])

K0t .x; y/ � Cı;˛t
�d=2 exp

�
�
jx � yj2

.1C ı/ˇt

�
; t > 0; x; y 2 �; 0 < ı < 1:

By the Trotter formula

e�tA.f / D lim
n!1

.e�tL=n e�tV=n/n.f /;

we deduce that the integral kernel Kt .x; y/ of e�tA is majorized by K0t .x; y/:

Kt .x; y/ � K
0
t .x; y/:

Thus Kt .x; y/ satisfies the same Gaussian upper bound as K0t .x; y/. Let z 2 C with
Re z > 0. By [15, Theorem 3.4.8], the complex time heat kernel of e�zA satisfies

jKz.x; y/j .ı;˛ .Re z/�d=2 exp
�
�
jx � yj2 Re.z�1/

.1C ı/ˇ

�
:

Then we easily show that ¹Ttºt>0 extends to an analytic semigroup of type �=2 on
Lp.�IX/ for any X and any 1 < p < 1 (p can be equal to 1 too). It then follows
that X is of Luzin cotype q relative to ¹Ttºt>0 whenever X is of martingale cotype q.
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As in the case of Laplacian operators, it is likely that the Luzin cotype relative to the
semigroups generated by Schrödinger operators characterizes the martingale cotype. This
is indeed the case if � D Rd with d � 3, L D �� and the potential V satisfies a reverse
Hölder inequality (see [1]). Let us formulate the general case explicitly as a conjecture.

Conjecture A.4. Let ¹Ptºt>0 be the Poisson semigroup subordinated to the heat semi-
group ¹Ttºt>0 generated by a Schrödinger operator as above. If a Banach space X is of
Luzin cotype q relative to ¹Ptºt>0, then X is of martingale cotype q. The same is conjec-
tured for ¹Ttºt>0 itself when the underlying differential operator L is uniformly elliptic.

Example A.5 (Laplace–Beltrami operators). The preceding examples can be extended
to the setting of Riemannian manifolds. Let M be a complete d -dimensional Rieman-
nian manifold with metric g. Let a.x/ D .aij .x//1�i;j�d be a positive matrix smoothly
depending on x 2M . The associated second order elliptic operator L is represented as

L.f / D �g�1=2
dX

i;jD1

@

@xi

�
g1=2aij

@f

@xj

�
in local coordinates. Then Tt D e�tL extends to a symmetric diffusion semigroup on M
for all 1�p�1 (cf. [14]). Thus our previous results apply to the associated subordinated
Poisson semigroup. The most important case is the one where �L D � is the Laplace–
Beltrami operator. Then the celebrated theorem of Li and Yau [38] asserts that the integral
kernel of et� has a Gaussian upper bound under the additional assumption that the Ricci
curvature is nonnegative (see also [15, Theorem 5.5.6]). Thus as in the Euclidean case, the
heat semigroup ¹et�ºt>0 extends to an analytic semigroup on Lp.M IX/ for any Banach
space X and 1 < p <1. It would be interesting to determine whether the Luzin cotype
of X relative to ¹et�ºt>0 characterizes the martingale cotype of X .

Example A.6 (Hermite operators). The Hermite operator on Rd is a particular Schrö-
dinger operator: A D �� C jxj2. The associated semigroup ¹Ttºt>0 is a symmetric
submarkovian semigroup on Rd . The integral kernel of Tt is given by

Kt .x; y/ D

�
2

� sinh.2t/

�d=2
exp

�
�
1
4
Œjx � yj2 coth t C jx C yj2 tanh t �

�
:

Using the Trotter formula, we see that Kt .x; y/ is less than or equal to the heat kernel:

Kt .x; y/ �

�
1

4�t

�d=2
e�jx�yj

2=t :

This Gaussian upper bound can be deduced from the above explicit formula ofKt . It then
follows that ¹Ttºt>0 is an analytic semigroup of type �=2 on Lp.Rd IX/ for any Banach
space X and 1 < p <1. Betancor et al. [7] showed that X is of Luzin cotype q relative
to ¹Ttºt>0 iff X is of martingale cotype q (see also [9] for related results).

Example A.7 (Laguerre operators). For simplicity, we only consider the Laguerre semi-
group on RC; the multi-dimensional case can be treated by tensor product. In this
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example, RC is equipped with Lebesgue measure, contrarily to our usual convention.
Let ˛ > �1 and

A D
1

2

�
�
d2

dx2
C x2 C

1

x2

�
˛2 �

1

4

��
; x > 0:

We have
A.'˛k / D �

˛
k'

˛
k ; k 2 N;

where �˛
k
D 2k C j˛j C 1 and

'˛k .x/ D

�
2�.k C 1/

�.k C 1C ˛/

�1=2
x˛C1=2e�x

2=2L˛k.x
2/

with L˛
k

the k-th polynomial of type ˛ (see [36, p. 76]); ¹'˛
k
ºk2N is an orthonormal basis

in L2.RC/.
For every f 2 L2.RC/, setting

ck.f / D

Z 1
0

f .x/'˛k .x/ dx;

we consider the operator A formally defined by

A.f / D

1X
kD0

ck.f /�
˛
k'

˛
k :

Note that A.f / D A.f / if f is compactly supported and smooth. Then �A generates a
symmetric semigroup ¹Ttºt>0 of positive contractions on L2.RC/:

Tt .f / D

1X
kD0

ck.f /e
��˛
k
t'˛k ;

with kernel given by

Kt .x; y/ D
1

sinh t
p
xy I˛

�
xy

sinh t

�
exp

�
�
1

2
.x2 C y2/ coth t

�
;

where I˛ is the modified Bessel function of the first kind and order ˛:

I˛.z/ D 2
�˛z˛

1X
kD0

z2k

22k�.k C 1/�.k C ˛ C 1/
:

It is proved in [48] that ¹Ttºt>0 is contractive on Lp.RC/ for all 1 � p � 1 iff
˛ D �1=2 or ˛ � 1=2, and that ¹Ttºt>0 is a bounded semigroup on Lp.RC/ for all
1 � p � 1 if �1=2 < ˛ < 1=2. However, for �1 < ˛ < �1=2, Tt is unbounded on
Lp.RC/ for p � p˛ D 2

2˛C3
and p � p0˛ .

On the other hand, [7] shows that for ˛ >�1=2, a Banach spaceX is of Luzin cotype q
relative to ¹Ttºt>0 iff X is of martingale cotype q; as a byproduct, [7] also shows that for
the same range of ˛, ¹Ttºt>0 is analytic on Lp.RCIX/ for any X .
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In the remaining case of �1 < ˛ < �1=2, it is quite easy to show that ¹Ttºt>0 is
a bounded semigroup on Lp.RC/ for p˛ < p < p0˛ . Let us outline the argument for
the convenience of the reader. By dilation invariance via the change of variables u D
x=
p

sinh t and v D y=
p

sinh t , the kernel Kt is brought to

'.x; y/ D
p
xy I˛.xy/ exp

�
�
1
2
.x2 C y2/ cosh t

�
:

Let ˆ be the associated integral operator:

ˆ.f / D

Z 1
0

'.x; y/f .y/ dy:

To estimate the norm ofˆ inB.Lp.RCIX// for p˛ < p < p0˛ , we appeal to the following
estimates of the Bessel function (cf. [36, Chapter 5]):

I˛.z/ �
z˛

2˛�.˛ C 1/
as z ! 0 and I˛.z/ �

ez
p
�z

as z !1:

Accordingly, I˛ decomposes as

I˛.xy/ D I˛.xy/1xy�1 C I˛.xy/1xy>1 . .xy/˛1xy�1 C .xy/
�1=2exy1xy>1

with the relevant constant depending only on ˛. Thus

'.x; y/ . '1.x; y/C '2.x; y/;

where

'1.x; y/ D .xy/
˛C1=2 exp

�
�
1
2
.x2 C y2/ cosh t

�
1xy�1;

'2.x; y/ D e
xy exp

�
�
1
2
.x2 C y2/ cosh t

�
1xy>1:

Let ˆi be the integral operator corresponding to 'i . Then by the Hölder inequality,

kˆ1kB.Lp.RCIX//

�

�Z 1
0

xp.˛C1=2/e�px
2 cosh t

2 dx

�1=p�Z 1
0

yp
0.˛C1=2/e�p

0y2 cosh t
2 dy

�1=p0
D C˛;p.cosh t /�.˛C1/ � C˛;p;

where we have used the assumption that p˛ <p <p0˛ . Noting that '2.x;y/� e�.x�y/
2=2,

we see that kˆ2kB.Lp.RCIX// � 1.
In particular, ¹Ttºt>0 is a symmetric semigroup of positive contractions on L2.RC/,

so analytic. Applying the previous sections to the associated subordinated Poisson semi-
group ¹Ptºt>0, we recover the result of [9] thatX is of Luzin cotype q relative to ¹Ptºt>0
on L2.RIX/ whenever X is of martingale cotype q. Moreover, [9] shows that the con-
verse is also true. Note that [9] also extends this result to all p 2 .p˛; p0˛/.

We do not know, however, how to determine the analyticity of ¹Ttºt>0 on Lp.RIX/
for the range �1 < ˛ < �1=2.
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Remark A.8. We would like to point out an interesting phenomenon revealed by this
example. It is easy to get a semigroup of contractions on L2 thanks to spectral theory. If
the contractions are further positive (or regular), the results of the previous sections apply.
In many concrete examples, one can then extrapolate L2 to Lp using tools from harmonic
analysis. This is indeed the case for all previous examples.

Example A.9 (Ornstein–Uhlenbeck semigroup). Now Rd is equipped with the canonical
Gaussian measure d . Let ¹Ttºt>0 be the Ornstein–Uhlenbeck semigroup on Rd whose
negative generator is given by A D �� C x � r. This is again a symmetric diffusion
semigroup. By [52], ¹Ttºt>0 is analytic on Lp.Rd ; d IX/ iff X is K-convex (a property
weaker than the finite martingale cotype). On the other hand, by [41], X is of Luzin
cotype q relative to the Poisson semigroup subordinated to ¹Ttºt>0 iff X is of martingale
cotype q. We then deduce that the Luzin cotype q of X relative to ¹Ttºt>0 itself on
Lp.Rd ; d IX/ characterizes the martingale cotype q of X . It is worth noting that in
contrast to [41], all estimates obtained by the present method or by [66] are dimension-
free.

Example A.10 (Walsh semigroup). Let � D ¹�1; 1ºN be the dyadic group equipped
with normalized Haar measure. The coordinate functions ¹"nºn�1 on� form an indepen-
dent sequence of symmetric random variables (Rademacher functions). We introduce the
Walsh system .wA/: for any finite subset A � N let

wA D
Y
k2A

"k :

If A D ;, w; D 1. All such wA’s form an orthonormal basis of L2.�/. Any f 2 L2.�/
admits the following Fourier expansion:

f D
X
A

˛AwA:

Define
Tt .f / D

X
A

e�t jAj˛AwA:

Then ¹Ttºt>0 is a symmetric diffusion semigroup on�; it can be viewed as a baby model
of the Ornstein–Uhlenbeck semigroup. Again, by [52], ¹Ttºt>0 is analytic on Lp.�IX/
iff X is K-convex.

Remark A.11. Let ¹Ttºt>0 be the semigroup in the above example. Then the Luzin
cotype relative to ¹Ttºt>0 characterizes the martingale cotype.

Indeed, assume that X is of Luzin cotype q relative to ¹Ttºt>0. Then by an argument
via the central limit theorem as in [3], we can show that X is of Luzin cotype q relative to
the Ornstein–Uhlenbeck semigroup too, so by the previous example, X is of martingale
cotype q.

It would be interesting to show the analogue of Corollary 1.6 for the Ornstein–Uhlen-
beck or Walsh semigroup.
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Problem A.12. Let ¹Ttºt>0 be the Ornstein–Uhlenbeck or Walsh semigroup as above
and X be of martingale cotype q. Does one have

LTc;q;p.X/ . max.p1=q; p0/Mc;q.X/‹

It would, of course, suffice to consider the Walsh case. On the other hand, it is likely
that in the Ornstein–Uhlenbeck setting one could get a dimension-dependent estimate
LTc;q;p.X/ .d max.p1=q; p0/Mc;q.X/ by standard techniques on the Ornstein–Uhlenbeck
semigroup. However, here a dimension-free estimate is more important than the corre-
sponding one for the heat semigroup in Rd in view of analysis in Wiener space.

Example A.13 (Translation semigroup). We have already used the translation semigroup
¹�tºt>0 in the proof of Theorem 1.2. It is not analytic onLp.R/ for any p. By (7.6), ifX is
of Luzin cotype q relative to the subordinated Poisson semigroup ¹P �t ºt>0 on Lp.RIX/,
then it is so relative to the Poisson semigroup subordinated to any semigroup ¹Ttºt>0 of
regular contractions on Lp.�IX/. Consequently, the Luzin cotype relative to ¹P �t ºt>0 is
equivalent to the martingale cotype.

Example A.14 (L2-theory). LetA be a positive densely defined operator onL2.�/. Then
�A generates an analytic semigroup ¹Ttºt>0 of contractions on L2.�/. Being positivity
preserving can be characterized by means of the Dirichlet form associated to A (cf. [15,
Theorem 1.3.2]). Many classical examples are built in this way. Note, however, that it can
happen that ¹Ttºt>0 extends to a semigroup of bounded operators on Lp.�/ for p only in
a small symmetric interval around 2, as shown by the Laguerre semigroup. Even worse,
it can happen that ¹Ttºt>0 does not extrapolate to Lp.�/ for any p ¤ 2.

Added in proof. After the submission of this article for publication, a few related works
have appeared. For instance, A. K. Lerner, E. Lorist and S. Ombrosi [37] found a new
proof of Theorem 1.5 (i) by the sparse domination principle; T. P. Hytönen and S. Lappas
[28] obtained an estimate close to that appearing in Theorem 1.4 (ii); and G. Hong, Z. Xu
and H. Zhang [24] partially resolved Problem 1.8, Problem A.1 and Conjecture A.4.
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