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Abstract. For 0 < k < 1, a finite-type k-surface in 3-dimensional hyperbolic space is a complete,
immersed surface of finite area and of constant extrinsic curvature equal to k. In Smith (2021), we
showed that such surfaces have finite genus and finitely many cusp-like ends. Each of these cusps
is asymptotic to an immersed cylinder of exponentially decaying radius about a complete geodesic
and terminates at an ideal point which we call the extremity of the cusp. We show that every cusp
of any finite-type k-surface has a well-defined axis, which we will call the Steiner geodesic of the
cusp. One of the end-points of this axis is the extremity, and we will call the other, which constitutes
new geometric data, the Steiner point of the cusp. We prove a new identity involving extremities
and Steiner points in terms of Möbius invariant vector fields over the Riemann sphere.

We define two new functionals over the space of finite-type k-surfaces. The first, which will be
called the generalized volume, is defined by the integral of a certain well-chosen form, and extends
to the non-embedded case the concept of volume of the set bounded by the surface. The second,
which will be called the renormalized energy, is related to the integral of the mean curvature of
the surface, and is well-defined up to a choice of Busemann function. Upon describing natural
parametrizations of the strata of the space of finite-type k-surfaces by open complex manifolds,
we prove a new Schläfli-type formula relating the extremities and Steiner points to the first order
variations of the generalized volume and the renormalized energy. In particular, Möbius invariance
of this formula yields the aforementioned identity. We conclude by studying some applications of
this identity and Schläfli-type formula.

Keywords. Extrinsic curvature, hyperbolic geometry, Schläfli formula, renormalization, contact
geometry, pseudo-holomorphic curves

1. Introduction

1.1. Overview

Surfaces of constant extrinsic curvature in space forms have been natural objects of study
since the publication of Gauss’ famous Teorema Egregium in 1827, and the intriguing
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applications that they have found in recent years in such diverse fields as soliton theory,
general relativity, hyperbolic geometry and Teichmüller theory1 prove that, even almost
two centuries after their introduction, they are still able to surprise and delight. In this
paper, we study the asymptotic properties of a certain subclass of such surfaces in 3-
dimensional hyperbolic space H3.

For 0 < k < 1, a finite-type k-surface in H3 is a pair .S; e/, where S is a smooth
surface and e W S ! H3 is a complete, smooth immersion of finite area and of constant
extrinsic curvature equal to k. The space of reparametrization equivalence classes of such
surfaces identifies with the space of biholomorphism classes of marked ramified covers of
the Riemann sphere OC (see Section 1.3). At this stage, it suffices to note that finite-type k-
surfaces in H3 are topologically finite with cusp-like ends, as illustrated in Figure 1.1.1.
Each cusp terminates in a well-defined point of @1H3 D OC, which we call its extrem-
ity, and since cusps are not necessarily embedded, each also has a well-defined positive
integer-valued winding number.

z3

z1

z4 z2

@1H3
H3

Fig. 1.1.1. A typical finite-type k-surface in H3. Such surfaces are topologically finite with cusp-
like ends. Each cusp has a well-defined extremity in OC and a well-defined positive integer-valued
winding number.

In Section 1.2, we canonically associate to every cusp a complete geodesic in H3,
which we view as the axis of the cusp, and which we call its Steiner geodesic. One of
the end-points of this geodesic will be the extremity of the cusp, and we call the other
the Steiner point of the cusp. A simple example of Steiner geodesics and Steiner points is
illustrated in Figure 1.1.2.

Our aim is to prove the following identity relating the extremities, winding numbers
and Steiner points of any finite-type k-surface. For each x ¤ y 2 OC, we define the vector

1For recent applications of k-surfaces, the reader may consult [3, 6, 7, 17, 20, 24, 33] as well
as our review [9], written in collaboration with F. Fillastre. For k < 0, an attractive and modern
discussion of the relationship between k-surfaces (there referred to as pseudospheres) and soliton
theory is presented in [23].
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field KŒx; y� over OC by

KŒx; y�.z/ WD
.z � x/.z � y/

x � y
@z : (1.1)

This family is Möbius invariant, as is seen upon noting that KŒx; y� is the Killing vector
field of the stabilizer of ¹x; yº in the Möbius group SO.3; 1/.

Theorem 1.1.1. For every finite-type k-surface .S; e/ in H3 with extremities z1; : : : ; zn,
winding numbers m1; : : : ; mn, and Steiner points �1; : : : ; �n,

nX
iD1

mi KŒzi ; �i � D 0: (1.2)

Remark 1.1.1. Theorem 1.1.1 is proven in Section 5.5.

Theorem 1.1.1 follows immediately from a Möbius invariant Schläfli-type formula
that we now describe. We will see that, even in the non-embedded case, every finite-
type k-surface .S; e/ bounds a well-defined, real-valued generalized volume VolŒe�. In
addition, given any Busemann function h WH3! R with centre h1 2 OC, we will say that
.S; e/ is h-admissible whenever its extremities lie in OC n ¹h1º and, in this case, we will
construct a well-defined renormalized energy OEŒeI h� of the surface. We then define, for
every h-admissible finite-type k-surface,

Ek ŒeI h� WD OEŒeI h� � 2.1C k/VolŒe�: (1.3)

For all x ¤ y 2 OC, we define the 1-form �Œx; y� over OC n ¹x; yº by

�Œx; y�.z/ WD
.y � x/dz

.y � z/.x � z/
: (1.4)

This family is also Möbius invariant, as is seen upon noting that, for all suitable x, y, z
and �,

�Œx; y�.z/ D @w Œz; x; y; w�jwDz � �; (1.5)

where Œ�; �; �; �� denotes the cross ratio. Finally, we note that the space of finite-type k-sur-
faces is stratified by finite-dimensional complex manifolds, with each stratum locally
parametrized by the extremities of the cusps. In particular, given a finite-type k-surface
.S; e/ with extremities z1; : : : ; zn, the tangent space of OCn at .z1; : : : ; zn/ naturally iden-
tifies with the tangent space of the stratum at .S; e/. We obtain the following Schläfli-type
formula.

Theorem 1.1.2. Let h W H3 ! R be a Busemann function with centre h1 2 OC. For
every h-admissible finite-type k-surface .S; e/ in H3 with extremities z1; : : : ; zn, wind-
ing numbers m1; : : : ; mn, and Steiner points �1; : : : ; �n, and for every tangent vector
� D .�1; : : : ; �n/ to OCn at .z1; : : : ; zn/,

D Ek ŒeI h� � � D 4�

nX
iD1

mi Re.�Œh1; �i �.zi / � �i /: (1.6)
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Fig. 1.1.2. Steiner geodesics and Steiner points. The embedded k-surface with three extremities at
�1, 0 and 1 is a smooth fattening of the convex hull of these three points in H3. In this case, by
symmetry, the Steiner geodesics are independent of k and have Steiner points at 1=3,1 and �1=3
respectively.

Remark 1.1.2. Theorem 1.1.2 follows immediately from Theorem 5.5.5 and the subse-
quent remark. In particular, Theorem 1.1.1 follows immediately upon applying (1.6) to
the stabilizer of h in SO.3; 1/.

Remark 1.1.3. The classical Schläfli formula is a staple of convex geometry which
describes the first-order variation of the volume of a polyhedron in terms of the lengths
of its edges and the first-order variations of its angles (see [1]). This formula has been
extended in recent decades in various ways. For example, in [5], Bonahon adapted it to the
case of equivariant pleated surfaces in hyperbolic space. More recently, in [15], Krasnov
& Schlenker developed a version for first-order variations of smooth equivariant surfaces
(cf. also [25, 26]). It is this smooth version that is closest in spirit to Theorem 1.1.2.

1.2. Finite-type k-surfaces, Steiner geodesics and Steiner points

The remainder of this introduction will be devoted to detailing the results outlined in
Section 1.1. In this section, we address the geometry of finite-type k-surfaces in H3. We
refer the reader to [30] for proofs of the assertions that follow.

We first describe explicitly the ends of finite-type k-surfaces. Let z 2 @1H3 be an
ideal point and let h be a Busemann function of H3 centred on this point (cf. [2]). For all
t 2 R, let

Ht WD h
�1.¹tº/ (1.7)

denote the horosphere at height t centred on z, and note that this surface is intrinsically
euclidean. For a positive integer m, a k-end of winding number m with extremity z is
defined to be a smooth immersion e W S1 � Œ0;1Œ! H3 of finite area and of constant
extrinsic curvature equal to k such that, for all y, e.�; y/ is an immersed curve in H�y of
total curvature equal to 2�m. Up to rescaling, the metric that e induces over S1 � Œ0;1Œ
is that of a hyperbolic cusp so that, in particular, the length of e.�; y/ tends exponentially
to zero as y tends to infinity. Furthermore, for every unit-speed geodesic 
 W R! H3
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terminating at z and parametrized by the value of �h,

d.
.y/; e.x; y// D O.e�y
p
1�k/ (1.8)

as y tends to infinity. Heuristically, e wraps, ever more tightly,m-times around a complete
geodesic. We will provide a complete description of the asymptotic geometry of k-ends
in Chapter 4.

Now let .S; e/ be a finite-type k-surface. By Huber’s Theorem, S has finite genus and
finitely many ends. We may therefore suppose that S D xS n P , where xS is a compact
surface and P WD ¹p1; : : : ; pnº is a finite subset of xS . The immersion e extends uniquely
to a continuous function xe W xS ! H3 [ @1H3 which maps every point of P to an ideal
point in @1H3. For all 1 � i � n, the i th extremity zi Œe� of .S; e/ is defined by

zi Œe� WD xe.pi /: (1.9)

For each i , let hi W H3 ! R be a Busemann function centred on zi Œe�, and denote

S0 WD ¹p 2 S j .hi ı e/.p/ � 0 8iº: (1.10)

Upon modifying h1; : : : ; hn if necessary, S0 may be taken to be compact with smooth
boundary and the complement in S of its interior may be taken to consist of n connected
components S1; : : : ; Sn such that, for each i , .Si ; e/ is a reparametrization of some k-end
with extremity zi Œe�. In particular, for each i , the i th end of .S; e/ has a well-defined
winding number, which we denote bymi . This completes our description of the geometry
of finite-type k-surfaces in H3.

We now describe the construction of Steiner geodesics and Steiner points. We first
recall some results from the theory of planar curves. Given a locally strictly convex,
immersed, closed curve � W S1 ! R2 with geodesic curvature � W S1 ! R, unit nor-
mal vector field � W S1 ! S1, and winding number m, its Steiner curvature centroid is
defined by

s.�/ WD
1

m�

Z
S1
h�; �i�� dl; (1.11)

where dl denotes the length element of �. The Steiner curvature centroid is also expressed
in terms of the support function of � as follows. Suppose first that � has unit winding
number, so that, by strict convexity, � is a diffeomorphism. Recall (see [28]) that the
support function of � is defined by

 WD h�; �i ı ��1; (1.12)

so that, upon parametrizing S1 by the interval ���; �Œ in the natural manner, we obtain

s.�/ D
1

�

Z �

��

 .�/.cos.�/; sin.�// d�: (1.13)

That is, s.�/ is the first Fourier mode of the support function. We leave the reader to
determine the straightforward extension of this formula to the case of general winding
numbers.
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Let z 2 @1H3 be an ideal point, let e W S1 � Œ0;1Œ! R be a k-end with extremity z,
and let h W H3 ! R be a Busemann function centred on z. Since horospheres are intrin-
sically euclidean, locally strictly convex closed curves in horospheres have well-defined
Steiner curvature centroids. We thus define s W Œ0;1Œ! H3 such that, for all y, s.y/ is
the Steiner curvature centroid in the horosphere H�y of the immersed curve e.�; y/.

Theorem & Definition 1.2.1. There exists a unique unit-speed geodesic 
 W R ! H3

such that
d.
.y/; s.y// D O.e�y

p
4�3k/ as y !1: (1.14)

We call 
 the Steiner geodesic of e, and we call its end-point at �1 the Steiner point of e.

Remark 1.2.1. Theorem & Definition 1.2.1 is proven in Section 4.2.

Remark 1.2.2. Recall that any two distinct unit-speed geodesics terminating at z and
parametrized by the value of �h are separated by a distance proportional to e�y so that,
since 0 < k < 1, the geodesic constructed in Theorem 1.2.1 is indeed unique.

Remark 1.2.3. Although the main interest for us of Theorem & Definition 1.2.1 is the
construction of a canonical axis with noteworthy properties, the Steiner curvature centroid
is itself a remarkable object which has attracted the attention of convex geometers since
the middle of the nineteenth century. The reader may consult [11, Section 14.4], [13,
Section 10.5], and the introduction of [27] for overviews of its history from different
perspectives. Interestingly, an entertaining exercise (see [16]) shows that, in the case of a
convex polygon, the Steiner curvature centroid coincides with the centre of mass of the
system obtained by placing a mass equal to the magnitude of the exterior angle at each
vertex so that, in the case of triangles, it coincides with the Kimberling centre X1115.2

1.3. Finite-type k-surfaces and marked ramified covers

We now describe in detail the topology and geometry of the space of finite-type k-surfaces
in H3. We show, in particular, how this space identifies with the space of marked ramified
covers of the Riemann sphere OC. We refer the reader to [30,32] for proofs of the assertions
that follow.

For 0 < k < 1, we denote the space of finite-type k-surfaces in H3 by O�k . Two finite-
type k-surfaces .S; e/ and .S 0; e0/ will be considered to be equivalent whenever there
exists a diffeomorphism ˛ W S ! S 0 such that e D e0 ı ˛. The quotient space of O�k by
this equivalence relation will be denoted by �k . We often identify a finite-type k-surface
.S; e/ with its equivalence class in �k .

We define a marked ramified cover of the Riemann sphere OC to be a triple . xS; P; �/,
where xS is a compact Riemann surface, P is a finite subset of xS , and � W xS ! OC is a non-
constant holomorphic map with ramification points contained in P . Elements of P will be

2It was another pleasant surprise in writing this paper to learn of the existence of an entire
theory devoted to the study of triangle centres. The interested reader may consult [14] for further
information on this hidden treasure of modern mathematics.
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called generalized ramification points. The space of marked ramified covers of OC will be
denoted by OR. Two marked ramified covers . xS; P; �/ and . xS 0; P 0; �0/ will be considered
to be equivalent whenever there exists a conformal diffeomorphism ˛ W xS ! xS 0 such that
P D ˛�1.P 0/ and �D �0 ı ˛. The quotient space of OR by this equivalence relation will be
denoted by R. We often identify a marked ramified cover . xS; P; �/ with its equivalence
class in R.

We construct a canonical bijection from �k to R as follows. Let .S; e/ be a finite-type
k-surface. Let Oe W S ! UH3 denote the unit normal vector field over e. Let n W UH3 !

@1H3 denote the horizon map defined by setting, for every unit vector �x 2 UH3,

n.�x/ WD 
.C1/; (1.15)

where 
 W R! H3 denotes the unique geodesic whose derivative at zero is �x . The func-
tion

�e WD n ı Oe (1.16)

extends to a ramified cover of OC D @1H3 by xS whose ramification points are elements
of P , and the map

ˆk W �k ! R; .S; e/ 7! . xS;P; �e/; (1.17)

is the desired bijection (see [32]).
The spaces �k and R also carry natural topologies with respect to which ˆk is a

homeomorphism. They are constructed as follows. Let xS be a compact surface. Let U be
a set of finite subsets of xS which is open in the Hausdorff topology. Let V be an open
subset of C 0. xS;H3 [ @1H3/. We define the subset �s. xS;U; V / of O�k by

�s. xS;U; V / WD ¹. xS n P; e/ j #P <1; P 2 U; xe 2 V º: (1.18)

We furnish O�k with the topology generated by all sets of this form. The sequence
. xS n Pm; em/m2N converges to . xS n P1; e1/ with respect to this topology if and only
if .Pm/m2N converges to P1 in the Hausdorff sense and .xem/m2N converges uniformly
to xe1. Now let W be an open subset of C 0. xS; OC/. We define the subset �r . xS; U; W /
of OR by

�r . xS;U;W / WD ¹. xS;P; �/ j #P <1; P 2 U; � 2 W º: (1.19)

We furnish OR with the topology generated by all sets of this form. As before, the sequence
. xS; Pm; �m/m2N converges to . xS; P1; �1/ with respect to this topology if and only if
.Pm/m2N converges to P1 in the Hausdorff sense and .�m/m2N converges uniformly
to �1. Finally, �k and R are furnished with the induced quotient topologies, and it is
with respect to these topologies that the bijection ˆk defined in (1.17) is homeomorphic.

We conclude by describing the stratified holomorphic structures of these spaces. Let
.S; e/ be an element of �k with n ends. A nearby element .S 0; e0/ of �k lies on the same
stratum whenever it has the same number of ends. Since the quantity and winding numbers
of ends can only be varied over a continuous family in �k by splitting or coalescing
existing ends, it follows that the unordered vector .m1; : : : ; mn/ of winding numbers is
constant over every stratum. In Section 5.2, we show that each stratum naturally has the
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structure of a smooth complex manifold, of dimension equal to the number of ends, which
is locally conformally parametrized by the extremities of these ends in OC.

The strata of R are defined similarly. Given an element . xS; P; �/ of R, a nearby
element . xS 0; P 0; �0/ lies on the same stratum whenever P 0 has the same cardinality as P .
This means that a continuous family in R lies on a given stratum whenever no generalized
ramification points of order 1 are added or removed and no generalized ramification points
split or coalesce. Every stratum of R likewise has the structure of a smooth complex
manifold, of dimension equal to the cardinality of the generalized ramification set, which
is locally conformally parametrized by the images of the generalized ramification points.
It follows trivially from these definitions that ˆk restricts to a conformal diffeomorphism
from strata of �k into strata of R.

1.4. Area, generalized volume and renormalized energy

Finally, we introduce three natural geometric functionals over �k which are smooth over
each stratum. These will be the functionals which contribute to the Schläfli-like formula
of Theorem 1.1.2. The first functional, which we include for completeness, is the area

AreaŒe� WD
Z
S

dAreaŒe�: (1.20)

It is of little geometric interest since, by elementary hyperbolic surface theory, it is con-
stant over every stratum. Indeed, for all .S; e/ 2 �k ,

AreaŒe� D �
2��ŒS�

1 � k
; (1.21)

where �ŒS� denotes the Euler characteristic of S .
The second functional generalizes to the case of immersions the concept of volume

bounded by an embedding. We first construct in Section 5.3 a natural family .˛z/z2@1H3

of primitives of the volume form of H3 parametrized by ideal points in OC. The generalized
volume of a finite-type k-surface .S; e/ is then defined by

VolŒe� WD
Z
S

e�˛z (1.22)

for some ideal point z. We verify that this functional is finite and independent of the ideal
point chosen, that it is smooth over every stratum of �k and, whenever e is embedded,
that it coincides with the volume of the convex set that this embedding bounds.

The third functional is what we choose to call the renormalized energy, and is defined
as follows. Let h W H3 ! R be a Busemann function centred on h1 2 OC. Let .S; e/ be
a finite-type k-surface whose extremities z1Œe�; : : : ; znŒe� all lie in OC n ¹h1º. For each i ,
let hi W H3 ! R be a Busemann function centred on zi Œe� and normalized in such a way
that the horosphere h�1i .¹0º/ is tangent to h�1.¹0º/ at some point. For all T 2 R, define

OET ŒeI h� WD
Z
ST

HŒe� dAreaŒe�; (1.23)
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where
ST WD ¹p 2 S j .hi ı e/.p/ � T 8iº; (1.24)

and HŒe� denotes the mean curvature of e. The renormalized energy of .S; e/ with respect
to h is defined by

OEŒeI h� WD lim
T!�1

OET ŒeI h�C
nX
iD1

2�miT; (1.25)

where m1; : : : ; mn are the winding numbers of the ends of e. In Section 5.3, we show
that this limit exists and defines a function over an open, dense subset of �k which is
smooth over every stratum. A different Busemann function will yield another renormal-
ized energy, defined over a different open, dense subset, which differs from the first over
every stratum by a certain quadratic function of the extremities. It is the derivatives of the
generalized volume and renormalized energy which are studied in Theorem 1.1.2.

Note that the renormalized energy arises in a natural manner from the geometry of
the function Oe W S ! UH3 already introduced in Section 1.3. Indeed, this function is an
immersion whose area form with respect to the Sasaki metric of UH3 is

d OEŒe� D
1

k
HŒe� dAreaŒe�: (1.26)

Since Oe is asymptotic over every end of S to a finite cover of a cylinder in UH3, the inte-
gral of this form grows linearly with the absolute value of T as T tends to minus infinity,
from which convergence in (1.25) follows. In [19] (see also [18]), Labourie showed that
Oe is pseudo-holomorphic with respect to a suitable almost complex structure over UH3

and, using this property, derived many valuable results. Since the area of a pseudo-holo-
morphic curve is usually interpreted as an energy (see, for example, [22]), this justifies
our terminology.

1.5. Applications I: lagrangian embeddings

We conclude this introduction with some applications of Theorems 1.1.1 and 1.1.2. We
first show how the extremities and Steiner points yield canonical lagrangian immersions of
the strata of �k into certain open Kähler manifolds. Indeed, let � denote the complement
of the diagonal in OC � OC, that is,

� WD ¹.z; �/ j z ¤ �º: (1.27)

We define the complex-valued symplectic form ! over this set by

! WD
1

.� � z/2
d� ^ dz: (1.28)

Note that the family of 1-forms � introduced in (1.4) satisfies, for all h1,

d�Œh1; �� D !: (1.29)

The Schläfli formula (1.6) thus immediately yields the following result.
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Theorem 1.5.1. LetX be an n-dimensional stratum of �k . Letm WD .m1; : : : ;mn/ be such
that, for all i , mi is the winding number of the i th end of any element of X . The function
.z1; �1; : : : ; zn; �n/ defines a smooth, lagrangian immersion from X into .�n; !m/, where
the symplectic form !m is given by

!m D Re.m1!1 ˚ � � � ˚mn!n/: (1.30)

From a physical perspective, the extremities and Steiner points may be considered as
observable quantities overX . We may thus interpret Theorem 1.5.1 in at least two distinct
ways. On the one hand, in analogy with classical thermodynamics, this result means that,
for each i , the i th extremity and the i th Steiner point together constitute a pair of conjugate
variables over the stratum X . On the other hand, since X is locally parametrized by its
extremities, the locally defined function � given by

�.z1; : : : ; zn/ WD .�1; : : : ; �n/ (1.31)

may be considered as the map of scattering through finite-type k-surfaces. We recall from
linear scattering theory that the symmetry of the scattering matrix corresponds to the phys-
ical reversibility of the process being studied. In the non-linear case, this corresponds to
the lagrangian property of the scattering map, and this is precisely the property established
in Theorem 1.5.1.

1.6. Applications II: the geometry of Steiner points

As a second application, we determine the Steiner points of certain elementary finite-
type k-surfaces. At this stage, it will be convenient to choose an explicit upper half-space
parametrization of H3, namely

H3
WD ¹.x; y; z/t j z > 0º; (1.32)

with metric given by

gij WD
1

z2
ıij : (1.33)

In this parametrization, the ideal boundary @1H3 of H3 naturally identifies with the
extended complex plane C [ ¹1º. Let .S; e/ be a finite-type k-surface, none of whose
extremities z1Œe�; : : : ; znŒe� lie at infinity. For each i , let mi denote the winding number
of the i th end, let �i Œe� denote its Steiner point, and define its Steiner vector ci Œe� by

ci Œe� WD
1

x�i Œe� �xzi Œe�
: (1.34)

Observe that this vector is always finite, since the Steiner point of any end is trivially dis-
tinct from its extremity. Upon expanding (1.2) as a quadratic function of z and analysing
its coefficients, we obtain

nX
iD1

mi ci Œe�xzi Œe� D �
1

2

nX
iD1

mi : (1.35)

It is this form of (1.2) that will be of most use to us in this section.
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Recall from Section 1.3 that finite-type k-surfaces are defined via their marked rami-
fied covers. Consider now the case where xS D OC and � is the identity map. For any finite
subset P of OC, .S; e/ WD ˆ�1

k
. xS; P; �/ is an embedded surface bounding a convex set

in H3 whose intersection with @1H3 is P . In particular, the set P coincides with the
set ¹z1; : : : ; znº of extremities of .S; e/. Suppose now that P WD ¹z1; : : : ; znº where, for
each m,

zm WD e
2�im=n:

P is then symmetric under reflection about the unit circle in C as well as under reflection
about the real line generated by zi for all i . It follows that, for each i , the i th Steiner point
of .S; e/ is

�i Œe� D �zi ;

and the i th Steiner vector is therefore

ci Œe� D �12zi :

The case where n D 5 is illustrated in Figure 1.6.1.

Fig. 1.6.1. Steiner points I. The extremities are shown in black and the Steiner points are shown in
white. When the extremities of an embedded k-surface are evenly distributed along the unit circle
in C, the Steiner point of each end is the antipodal point of its extremity on the unit circle. Figure
1.1.2 is in fact obtained from the case of three points evenly distributed along a circle upon applying
a suitable Möbius transformation.

Suppose now that P WD ¹z0; z1; : : : ; znº, where z0 D 0 and, for all 1 � i � n, zi is as
before. By symmetry again, the Steiner point of .S; e/ at 0 is

�0Œe� D1;

and the corresponding Steiner vector is

c0Œe� D 0:
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Likewise, there exists a real number a such that, for all 1 � i � n, the Steiner point of
.S; e/ at zi is

�i Œe� D azi :

However, symmetry alone is not sufficient to determine the value of a. Instead, using
(1.35), we show that the Steiner vector of .S; e/ at zi is

ci Œe� D �
nC 1

2n
zi ;

so that the corresponding Steiner point is

�i Œe� D
1 � n

1C n
zi :

The case where n D 5 is illustrated in Figure 1.6.2.

Fig. 1.6.2. Steiner points II. As before, the extremities are shown in black and the Steiner points
are shown in white. The extra extremity at the origin displaces the other Stiener points towards the
centre. In the case of five extremities evenly distributed along the unit circle, the Steiner points lie
along the circle of radius 2=3 about the origin.

Finally, we construct a non-trivial covering of OC with a large number of symmetries
as follows. Let n, m0 and m1 be positive integers such that

1

m0
C

n

m1
2 Z: (1.36)

With z0; z1; : : : ; zn as before, let xS be the Riemann surface of the function

f .z/ D z1=m0
nY
iD1

.z � zi /
1=m1 ;

and let � W xS ! OC denote the canonical projection. Condition (1.36) ensures that xS is
obtained from OC by branch cuts joining each zi by a radial line to the origin. In particular,
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the point at infinity is not the image of any ramification point of �. For each i , let pi 2 xS
be the unique preimage of zi . By symmetry, the Steiner point of .S; e/ at p0 is

�0Œe� D1;

and the corresponding Steiner vector is

c0Œe� D 0:

Likewise, by symmetry together with (1.35), for each 1 � i � n, the Steiner vector of
.S; e/ at pi is

ci Œe� D �
m0 C nm1

2nm1
zi ;

so that the corresponding Steiner point is

�i Œe� D
m0 � nm1

m0 C nm1
zi :

1.7. Notation

Throughout this paper, we work with the upper half-space parametrization of H3. The
euclidean metric and norm will be denoted by h�; �ie and k � ke , and the hyperbolic metric
and norm by h�; �ig and k � kg . When describing asymptotic relations, we write f .t/ D
O.g.t//when f .t/=g.t/ remains bounded as t!1, and f .t/D o.g.t//when f .t/=g.t/
tends to zero as t !1.

1.8. Structure

The paper is structured as follows.

Section 2: We define Weinstein coordinates of the unitary bundle of hyperbolic space.
These coordinates are well-adapted to the study of immersed surfaces that are asymptotic
to cylinders over geodesic rays. We express the objects of classical differential geometry
in terms of these coordinates. We conclude by determining a formula for the extrinsic
curvature of an immersed surface.

Section 3: We develop a theory of asymptotic series for solutions of a certain class of
non-linear partial differential equations which includes k-ends. This is the most techni-
cal part of the paper and, since we are not aware of whether this problem has already
been addressed in the literature, we study it in far greater detail than is necessary for our
purposes.

Section 4: We apply the analysis of Section 3 to determine asymptotic estimates of var-
ious geometric properties of k-ends, such as mean curvature, radius, area form, etc. In
particular, we associate a well-defined axis to every k-end, thus proving Theorem 1.2.1.

Section 5: We show how the immersions in each stratum vary smoothly with the extrem-
ities. We introduce the generalized volume and the renormalized energy. We study the
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derivatives of these functionals along the strata, and show that they satisfy the Schläfli
formula of (1.6). We conclude by applying this Schläfli formula to the Killing fields of
the isometry group of hyperbolic space, thereby proving the relations of Theorem 1.1.1.

Appendix A: For the reader’s convenience, we review the theory of composition operators
over Hölder spaces.

2. Geometry in Weinstein coordinates

2.1. Overview

Let M WD M 2mC1 be a contact manifold with contact form ˛. An m-dimensional
immersed submanifold L WD Lm is said to be legendrian whenever the restrictions of
˛ and d˛ to L vanish. The total space of T �L˚R also carries a natural contact structure
given by

Q̨ D dt � �; (2.1)

where � denotes the canonical Liouville form of T �L. Weinstein’s theorem for contact
manifolds then affirms the existence of a neighbourhood� ofL inM contactomorphic to
a neighbourhood of the zero section in T �L˚R (see [21, Theorem 3.4.13] and the pre-
ceding discussion). We call such parametrizations Weinstein coordinates of M about L,
and it follows from the proof of Weinstein’s theorem that such coordinate systems are far
from unique.

Consider now the case where M WD UH3 is the total space of the unit sphere bundle
over hyperbolic space, which is well-known to carry a natural contact structure. When
working with hyperbolic space, it is useful to be aware of a number of coordinate sys-
tems, since different systems highlight different features of its geometry. In this spirit,
Weinstein coordinates of UH3 play a useful role in the study of those immersed surfaces
in H3 which, like k-ends, are asymptotic to narrow cylinders about complete geodesics.
Indeed, the unit normal bundle N � over a complete geodesic � in H3 is an embedded
legendrian surface in UH3, and there is a natural choice of Weinstein coordinates about
this surface which respects the symmetries of H3 that preserve � . In this section, we will
explicitly describe these coordinates, and we will study how the geometric properties of
certain classes of surfaces are described in this framework. We underline that the explicit
coordinates described here are not actually indispensable to what follows, but serve to
greatly simplify our presentation. That said, it turns out that they do, in fact, possess a
number of surprising properties which we believe warrant further study.

2.2. Weinstein coordinates of the unitary bundle

We identify H3 with the upper half-space in R3, that is,

H3
WD ¹.x; y; z/t j z > 0º: (2.2)
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Recall that the hyperbolic metric over this space is given by

gij WD
1

z2
ıij : (2.3)

The total space of the tangent bundle of TH3 identifies with an open subset of R3 � R3

in the natural manner. The total space of the unit tangent bundle then identifies with a
codimension 1 submanifold of this product, namely

UH3
WD ¹.x; y; z; u; v; w/t j z > 0; u2 C v2 C w2 D z2º:

Consider the Liouville form defined over TUH3 by

� WD
1

z2
.udx C vdy C wdz/:

This form, which is invariant under the action of isometries of H3, defines a contact
structure over UH3.

Consider now the complete geodesic

�0;1 WD ¹.0; 0; z/
t
j z > 0º;

and let N�0;1 denote the bundle of unit, normal vectors over this geodesic, that is,

N�0;1 WD ¹.0; 0; z; u; v; 0/t j z > 0; u2 C v2 D z2º:

Since N�0;1 is an embedded legendrian submanifold of UH3, Weinstein coordinates
about this surface may be constructed. First, let T�N�0;1 denote the total space of its
cotangent bundle. If Q� denotes the canonical Liouville form of T�N�0;1, then the form

dt � Q�

defines a contact structure over the product T�N�0;1 � R. Since the universal cover of
N�0;1 is isometric to R2, T�N�0;1 � R naturally identifies with a quotient of R5. An
explicit system ˆ W R5 ! UH3 of Weinstein coordinates about �0;1 is then given by

ˆ.x; y; u; v; t/ WD

.ey t cos.x/�eyu sin.x/; ey t sin.x/Ceyucos.x/; ey ;�Cey cos.x/;�Cey sin.x/;�ey/t ;
(2.4)

where
C WD

1p
1C .t C v/2

; � WD
t C vp

1C .t C v/2
: (2.5)

Indeed, direct computation yields

ˆ�� D
�1p

1C .t C v/2
.dt � udx � vdy/: (2.6)
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This system of Weinstein coordinates is equivariant with respect to the group of isome-
tries of H3 which preserve the point at infinity. Indeed, for all �;�2R and all .a;b/t 2R2,

RŒ���ˆ.x; y; u; v; t/ D ˆ.x C �; y; u; v; t/;

DŒ���ˆ.x; y; u; v; t/ D ˆ.x; y C �; u; v; t/;

TŒa; b��ˆ.x; y; u; v; t/ D ˆ.x; y; uC �x.x; y/; v C �y.x; y/; t C �.x; y//;

(2.7)

where the hyperbolic isometries RŒ��, DŒ�� and TŒa; b� are defined by

RŒ��.x; y; z/t WD .cos.�/x � sin.�/y; sin.�/y C cos.�/x; z/t ;

DŒ��.x; y; z/t WD .�x; �y; �z/t ;

TŒa; b�.x; y; z/t WD .x C a; y C b; z/t ;

(2.8)

and the function � is defined by

�.x; y/ WD �Œa; b�.x; y/ WD ae�y cos.x/C be�y sin.x/: (2.9)

Finally, it will be convenient to introduce the variable

� WD arctan.t C v/; (2.10)

which is none other than the angle that the vectorˆ.x;y;u;v; t/makes with the horizontal
horosphere at height ey . In particular,

C D cos.�/; � D sin.�/; (2.11)

justifying our notation. In addition, we denote

T WD tan.�/ D t C v: (2.12)

These three abbreviations will be used frequently throughout the sequel.

2.3. The horizontal and vertical subbundles

Let WUH3�TUH3 denote the contact distribution of UH3. Letr denote the Levi-Civita
covariant derivative of H3. We recall (see, for example, [31]) that WUH3 decomposes as

WUH3
D HUH3

˚ VUH3; (2.13)

where HUH3 denotes the intersection of WUH3 with the horizontal subbundle of r and
VUH3 denotes the vertical subbundle of TUH3. Let

� WD r �D

denote the Christoffel symbol of r, where D denotes the standard derivative of R3. We
view � as a symmetric bilinear form taking values in R3. By the Koszul formula, with
respect to the standard basis .@x ; @y ; @z/ of R3, it can be written as

�.x; y; z/ D
1

z

0@ @z 0 �@x
0 @z �@y
�@x �@y �@z

1A : (2.14)
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Consider now a point .x; u/t 2 UH3. Given a tangent vector � of H3 at x, its horizontal
and vertical lifts to T.x;u/ UH3 are given by

Œ�; 0�.x;u/ WD .�;��.x/.u; �//
t ; Œ0; ��.x;u/ WD .0; �/

t : (2.15)

The fibres over .x; u/ of the horizontal and vertical subspaces of WUH3 are then given
by

H.x;u/UH3
WD¹Œ�; 0�.x;u/ j h�; uiD0º; V.x;u/UH3

WD¹Œ0; ��.x;u/ j h�; uiD0º: (2.16)

In particular, there is a canonical bundle involution � of WUH3 defined by setting, for all
.x; u/t and for all � ,

�.x;u/Œ�; 0�.x;u/ WD Œ0; ��.x;u/; �.x;u/Œ0; ��.x;u/ WD Œ�; 0�.x;u/: (2.17)

We now determine HUH3, VUH3 and � in the Weinstein coordinates defined in the
previous section. By equivariance, we may suppose that x D y D 0. Consider now the
vector fields

O@x WD @x C u@t � u@v � t@u;

O@y WD @y C v@t � v@v � u@u;

O@u WD @u;

O@v WD C2@v:

(2.18)

We verify by inspection that these vector fields span ˆ�WUH3 and direct computation
yields

ˆ�.C O@u � � O@x/ D Œ.0;C ; 0/; .0; 0; 0/�;

ˆ�.C O@y C � O@v/ D Œ.� ; 0;C/; .0; 0; 0/�;

ˆ�.�O@x/ D Œ.0; 0; 0/; .0;C ; 0/�;

ˆ�.O@v/ D Œ.0; 0; 0/; .� ; 0;C/�:

(2.19)

It follows that

ˆ�HUH3
D hC O@u � � O@x ;C O@y C � O@vi; ˆ�VUH3

D hO@v; O@xi; (2.20)

and, with respect to the basis .O@u; O@y ; O@x ; O@v/,

ˆ�� D

0BB@
�� 0 �C 0

0 �� 0 C

�C 0 � 0

0 C 0 �

1CCA : (2.21)

2.4. The geometry of legendrian immersions

Let � be an open subset of R2. Let u W �! R be a smooth function. Define

Ô Œu� D ˆ ı Ou; (2.22)
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where
Ou.x; y/ WD .x; y; ux.x; y/; uy.x; y/; u.x; t//

t : (2.23)

Since Ou is a legendrian graph, Ô Œu� is a legendrian immersion. Furthermore, every
immersed legendrian surface in UH3 that is sufficiently close to N�0;1 is everywhere
locally the image of such an immersion. Define also

ˆŒu� WD � ı Ô Œu�; (2.24)

where � W UH3 ! H3 is the canonical projection, so that

ˆŒu� D .eyu cos.x/ � eyux sin.x/; eyu sin.x/C eyux cos.x/; ey/: (2.25)

We now review the elementary geometry of the map ˆŒu�. With respect to the bases
.@x ; @y/ of the domain and .O@u; O@y ; O@x ; O@v/ of the codomain, the derivative of Ou is given
by

D Ou D

�
M

N

�
; (2.26)

where

M WD

�
uxx C u uxy C ux

0 1

�
;

N WD C�2
�

C2 0

uyx C ux uyy C uy

�
:

(2.27)

It follows by (2.19) that

ˆŒu��@x D .0; uxx C u; 0/; ˆŒu��@y D .T ; uxy C ux ; 1/: (2.28)

The first fundamental form of ˆŒu� is thus given by

IŒu� WD
�

.uxx C u/
2 .uxx C u/.uxy C ux/

.uxx C u/.uxy C ux/ .uxy C ux/
2 C C�2

�
; (2.29)

its area form is
dAreaŒu� D C�1.uxx C u/dxdy; (2.30)

and the length element that it induces over every horizontal curve is

dlŒu� D .uxx C u/dx: (2.31)

In particular, ˆŒu� is an immersion if and only if

uxx C u ¤ 0; (2.32)

The unit normal vector field NŒu� over ˆŒu� is, up to sign, simply the second compo-
nent of Ô Œu�, so that

NŒu� WD ey.C cos.x/;C sin.x/;��/t : (2.33)
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For all y, the restriction of ˆŒu� to R � ¹yº is the intersection of this immersion with
the horizontal horosphere at height ey . Let ˆy Œu� denote this restriction. We observe in
passing that, when this immersion is locally strictly convex, u.�; y/ is none other than the
support function of this restriction (cf. Section 1.2). The unit conormal vector field over
this curve is

�Œu� WD ey.� cos.x/; � sin.x/;C/t : (2.34)

Indeed, this vector field is orthogonal to the normal NŒu� and, denoting by ^h the cross
product of T H3 compatible with its orientation, we see that

TŒu� WD NŒu� ^h �Œu� D ey.sin.x/;� cos.x/; 0/t (2.35)

is tangent to the curve. Using (2.19), we also obtain the useful formula

�Œu� D Cˆ�@y � C
uxy C ux

uxx C u
ˆ�@x : (2.36)

The triplet .NŒu�; �Œu�;TŒu�/ defines an orthonormal frame over the immersionˆŒu�. Fur-
thermore, viewing ˆŒu� itself as a vector field over this immersion, we obtain

kˆŒu�k2g D 1C u
2
C u2x ; (2.37)

and
hˆŒu�;NŒu�ig D �Cuy ;

hˆŒu�; �Œu�ig D C C �u;

hˆŒu�;TŒu�ig D �ux :

(2.38)

2.5. Curvatures of legendrian immersions

Let �H denote the projection onto ˆ�HUH3 along ˆ�VUH3 and let �V denote the
projection onto ˆ�VUH3 along ˆ�HUH3. Observe that

.ˆ��/ ı �H D �V ı .ˆ
��/; .ˆ��/ ı �V D �H ı .ˆ

��/: (2.39)

Lemma 2.5.1. With respect to the basis .@x ; @y/ of R2, the shape operator of ˆŒu� is

AŒu� WD

�
�� 0

0 ��

�
CM�1

�
�C 0

0 C

�
N; (2.40)

where M and N are the matrices defined in (2.27).

Proof. Indeed, with respect to the basis .@x ; @y/ of R2 and the bases .O@u; O@y/ ofˆ�HUH3

and .O@x ; O@v/ of ˆ�VUH3,

�H ıD Ou DM; �V ıD Ou D N;

so that

ˆ�� ı �V ıD Ou D �H ıˆ
�� ıD Ou D

�
�� 0

0 ��

�
M C

�
�C 0

0 C

�
N:
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Since H U H3 is the horizontal bundle of the Levi-Civita covariant derivative of H3, the
image of D Ou coincides with the graph of A, that is,

.�H ıD Ou/ ı A D ˆ
�� ı �V ıD Ou;

and the result follows.

Upon taking the trace and the determinant of (2.40), we obtain

Lemma 2.5.2. The mean and extrinsic curvatures of ˆŒu� are

HŒu� WD
C

uxxCu
C2��

1

C.uxxCu/
..uxxCu/.uyyCuy/�.uxyCux/

2/; (2.41)

KŒu� WD �2C
1

uxxCu

�
�CCT .uxyCux/

2
�T .uxxCu/.uyyCuy/�.uyyCuy/

�
:

(2.42)

In particular, it follows from (2.42) that ˆŒu� has constant extrinsic curvature equal to
k if and only if

kuxx C uyy � .1 � k/u D F.u;Du;D
2u/; (2.43)

where F is an analytic function of its arguments vanishing up to order 2 at .0; 0; 0/.
Finally, recall the restriction ˆy Œu� of ˆŒu� to R � ¹yº defined in the preceding

section. Let �y Œu� denote its geodesic curvature with respect to the unit normal �Œu�.
Although it will only be of secondary importance to our work, we also show

Lemma 2.5.3. The geodesic curvature �y Œu� of ˆy Œu� is

�y Œu� D
C.uy � uxx/

uC uxx
: (2.44)

Proof. Indeed, the upward pointing unit normal over the horosphere at height ey is

NH D .0; 0; ey/t :

Since every horosphere is totally umbilic with unit curvature,

hrˆ�@x NH .ˆŒu�/; @xig D �kˆŒu��@xk2g D �.uC uxx/
2:

On the other hand, bearing in mind (2.29) and (2.40),

hrˆ�@x NŒu�; ˆ�@xig D IŒu�.AŒu� � @x ; @x/ D C.uC uxx/C �.uC uxx/
2:

Since
�Œu� D C�1 NH .ˆŒu�/C T NŒu�;

the preceding relations yield

hrˆ�@x�Œu�; ˆŒu��@xig D �C.uC uxx/
2
C CT .uC uxx/ D C.uy � uxx/.uC uxx/;

and (2.44) follows upon dividing both sides by kˆŒu��@xk2g .
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3. Asymptotic analysis

3.1. Overview

Theorem 1.2.1 will follow immediately from an asymptotic analysis of k-ends in Wein-
stein coordinates. Since this analysis applies to solutions of general totally non-linear
partial differential equations defined over cylinders, and since we are not aware of whether
it has already been carried out in the literature, we study it in far greater detail than is
actually required for our work. Consider the non-linear second order partial differential
operator

P Œu� WD @2xuC @
2
yu � a

2u � F.u;Du;D2u/; (3.1)

defined over the space of twice differentiable functions u W S1 � Œ0;1Œ! R, where a
is a real constant and F is a smooth function of its arguments. In what follows, we will
suppose that

F.0; 0; 0/ D 0; DF.0; 0; 0/ D 0; (3.2)

and we will study solutions of the problem

PŒu� D 0: (3.3)

When F vanishes, such solutions are completely described via the classical technique of
separation of variables. Our analysis consists of a perturbation of this technique to the
case of non-trivial F .

�6 �4 �2 0 2 4 6

Fig. 3.1.1. The index set. The index set M is the subsemigroup of R2 generated by the set M0

consisting of those points of the hyperbola with integer x-coordinate.

Let M denote the subsemigroup of R �R generated by the set

M0 WD
®�
n;
p
a2 C n2

� ˇ̌
n 2 Z

¯
; (3.4)

as illustrated in Figure 3.1.1. Let A0 denote the vector space of all continuous functions
u W S1 � Œ0;1Œ ! C having the property that there exists a family .a�;�/.�;�/2M of
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complex constants indexed by M such that, for all ! > 0, there exists C > 0 such that,
for all .x; y/, ˇ̌̌

u.x; y/ �
X

.�;�/2M; �<!

a�;�e
i�xe��y

ˇ̌̌
� Ce�!y : (3.5)

Observe that, for all .�; �/, the coefficient a�;� is uniquely determined by u and varies
linearly with this function. When u 2 A0, we write

u �
X

.�;�/2M

a�;�e
i�xe��y : (3.6)

For all non-negative, integer k, let Ak denote the space of all k-times differentiable func-
tions u WS1 � Œ0;1Œ!R all of whose derivatives up to and including order k are elements
of A0. Observe that when u 2 Ak the asymptotic series of its derivatives are obtained by
differentiating term by term the asymptotic series of u. We define

A WD
\
k2N

Ak : (3.7)

That is, A is the space of those functions u W S1 � Œ0;1Œ! C all of whose derivatives to
all orders have asymptotic series of the form (3.6). We show in (3.39) that A is the inter-
section of a family of Banach spaces, from which it follows that it carries a natural Fréchet
structure given by the family of all norms of these Banach spaces. For all .�;�/ 2M, we
define the linear operator a�;� W A! C by setting, for all u,

a�;�Œu� WD a�;�; (3.8)

where a�;� is the coefficient of ei�xe��y in the asymptotic series (3.6) of u. It follows
directly from the definition of the Fréchet structure of A that, for all .�; �/, this operator
is continuous in the Fréchet sense.

In order to study solutions of (3.3), we develop a straightforward calculus for deter-
mining the asymptotic series of sums, products and compositions. Indeed, the sum of two
elements of A is trivially an element of A whose asymptotic series is given by the sums
of their asymptotic series. In Lemma 3.4.4 and the subsequent remark, we show that the
product operator defines a continuous bilinear map from A˚A to A where the asymp-
totic series of the product of two elements of A is obtained by formal multiplication of
the asymptotic series of each of these elements. In other words, A is a Fréchet algebra.
Likewise, in Lemma 3.5.4 and the subsequent remark, we show that, given any smooth
function ˆ defined in a neighbourhood of 0 such that ˆ.0/ D 0, the operator of compo-
sition by ˆ defines a map from a neighbourhood of 0 in A to A which is smooth in the
Fréchet sense, and the asymptotic series of the image of any element of this neighbour-
hood is obtained by formally substituting the asymptotic series of this element into the
MacLaurin series of ˆ.

Now let R WA!C1.S1/ denote the operator of restriction onto S1 � ¹0º. This linear
operator is trivially continuous in the Fréchet sense. The main result of this chapter is
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Theorem 3.1.1. If F.0; 0; 0/ D 0 and DF.0; 0; 0/ D 0, then the following assertions
hold:

(A) If u W S1 � Œ0;1Œ! R is a smooth solution of (3.3) such that, for some � > 0,

ju.x; t/j D O.e��t /; kDku.x; y/k D O.1/ 8k � 1; (3.9)

then u is an element of A.

(B) There exists a neighbourhood U of 0 in C1.S1/ and an operator S W U !A which
is smooth in the Fréchet sense such that, for all v 2 U ,

(1) R SŒv� D v,

(2) P SŒv� D 0.

(C) Upon reducing U if necessary, we may suppose that S is unique.

Remark 3.1.1. Part (A) of Theorem 3.1.1 follows from Lemma 3.6.4. Parts (B) and (C)
follow from Theorem 3.6.2 and the subsequent remark.

Theorem 3.1.1 applies to k-ends as follows. Let e W S1 � Œ0;1Œ! H3 be a k-end
which, for ease of presentation, we take to be of winding number 1. Up to reparametriza-
tion, we may suppose that e D ˆŒu� where ˆ is as in (2.24) and u W S1 � Œ0;1Œ! R
solves (2.43) for some suitable analytic function F . In Lemma 3.6.5 we verify that u
satisfies the hypotheses of part (A) of Theorem 3.1.1 and therefore has a well-defined
asymptotic series of the form (3.6). We will show in Chapter 4 that two well-chosen coef-
ficients of this asymptotic series are eliminated upon applying a unique translation of the
form (2.8). Expressed in geometric terms, this corresponds precisely to the existence of
the Steiner geodesic, thus proving Theorem 1.2.1.

However, Theorem 3.1.1 says a good deal more. Indeed, part (B) of this theorem
tells us that every coefficient of the asymptotic series of u locally depends only on the
restriction of this function to the boundary curve S1 � ¹0º and that, furthermore, this
dependence is smooth. Consider now a finite-type k-surface. Upon applying a suitable
cut-off, as in (1.10), we see that each of its ends has a well-defined asymptotic series.
Furthermore, the coefficients of these series, and thus, in particular, the Steiner geodesics
and Steiner points, depend locally, and in a smooth manner, only on the compact part S0
of this surface, which immediately yields the smoothness of the immersions studied in
Theorem 1.5.1.

3.2. The one-dimensional linear problem

We begin by studying the case where u is constant in x. We first recall the formalism of
weighted Hölder spaces. Let E be a Banach space. For a weight ! 2 R and for all .k; ˛/,
define the !-weighted C k;˛-norm for k-times differentiable functions u W R! E by

kuk
C
k;˛
!
WD kue!hyikCk;˛ ; (3.10)

where k � kCk;˛ denotes the standard Hölder norm (see Appendix A) and

hyi WD
p
1C y2: (3.11)
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For all! and for all .k;˛/, the Banach space of k-times differentiable functions u WR!E

with finite C k;˛! -norm will be denoted by C k;˛! .R; E/. For the sake of computations, we
observe that the C k;˛! -norm is uniformly equivalent to

kuk0
C
k;˛
!

WD

kX
iD0

ke!jyjDiukC0 C Œe
!jyjDlu�˛: (3.12)

In what follows, we will use without comment the more appropriate of these norms
depending on the context in which we are working.

For all !0 2 R, let �!0 denote the operator of multiplication by the function e�!
0hyi.

By definition, for all !, !0 and for all .k; ˛/, �!0 defines a linear isomorphism from
C
k;˛
! .R; E/ into C k;˛!C!0.R; E/. In particular, ��! defines a linear isomorphism from
C
k;˛
! .R; E/ into C k;˛.R; E/. It follows that norm estimates for any given linear opera-

tor L W C kCl;˛! .R; E/! C
k;˛
! .R; E/ are equivalent to norm estimates for the conjugate

operator ��!L�! , viewed as a linear map from C kCl;˛.R; E/ into C k;˛.R; E/. In other
words, the study of the analytic properties of families of weighted functional norms is
equivalent to the study of the analytic properties of corresponding families of conjugates
of operators. Since it is often easier to study conjugated operators than it is to study func-
tional norms, this perspective will often be used implicitly throughout the sequel.

For a real constant a, consider now the linear operator

QLau WD @2yu � a
2u: (3.13)

Lemma 3.2.1. For all a;! 2 R, QLa defines a bounded linear map from C
2;˛
! .R; E/ onto

C
0;˛
! .R; E/.

Proof. Indeed, we verify by inspection that ��! QLa�! is a second-order linear operator
with coefficients bounded in C 0;˛.R; E/. It therefore defines a bounded linear map from
C 0C2;˛.R; E/ into C 0;˛.R; E/, and the result follows.

We use potential theory to study the invertibility properties of this operator over dif-
ferent function spaces. For all a > 0, the Green’s function of QLa is

QKa.y/ WD �
1

2a
e�ajyj; (3.14)

and its Green’s operator is

QKaŒu�.y/ WD
Z 1
�1

QKa.y � z/u.z/ dz: (3.15)

Lemma 3.2.2. For all j!j < a, the operator QKa defines a bounded linear map from
C 0!.R; E/ to itself.

Proof. The exponential decay of u ensures that the integral (3.15) exists and varies con-
tinuously with y. A straightforward calculation then yields, for all u 2 C 0!.R; E/ and all
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y 2 R,

k QKaŒu�.y/e!jyjk �
1

a2 � !2
kuk0

C0!
C

!

a.a2 � !2/
e�.a�!/jyjkuk0

C0!
:

Since a � ! > 0, the coefficient of the second term is bounded and the result follows.

Lemma 3.2.3. For all j!j < a, the operator QKa defines a bounded linear map from
C
0;˛
! .R; E/ into C 2;˛! .R; E/ such that

QLa QKa D Id: (3.16)

Proof. Indeed, for all u,

QKaŒu�.y/ D �
Z y

�1

1

2a
ea.z�y/u.z/ dz �

Z 1
y

1

2a
ea.y�z/u.z/ dz:

Differentiating this equation under the integral yields, for all u,

@y QKaŒu�.y/ D
Z y

�1

1

2
ea.z�y/u.z/ dz �

Z 1
y

1

2
ea.y�z/u.z/ dz;

and differentiating a second time yields, for all u,

@2y QKaŒu�.y/ D u.y/C a
2 QKaŒu�.y/:

In particular, bearing in mind Lemma 3.2.2, for all u 2 C 0;˛! .R;E/, QKaŒu� 2 C
2;˛
! .R;E/,

and
QLa QKaŒu� D u:

However, it is straightforward to verify that there exists A1 > 0 such that, for all v 2
C
2;˛
! .R; E/,

kvk
C
2;˛
!
� A1.kvkC0! C k

QLavkC0;˛! /;

so that, by Lemma 3.2.2 again, there exists A2 > 0 such that, for all u 2 C 0;˛! .R; E/,

k QKaukC2;˛! � A2kukC0;˛!
;

and the result follows.

Theorem 3.2.4. For all 0 � ! < a, QLa defines a linear isomorphism from C
2;˛
! .R; E/

into C 0;˛! .R; E/ with inverse QKa.

Proof. Indeed, by Lemma 3.2.3, QKa defines a right inverse of QLa. By the maximum prin-
ciple, QLa is injective, and the result follows.

The preceding results adapt to the Dirichlet problem as follows. First, for all ! and
for all .k; ˛/, the Banach space C k;˛! .Œ0;1Œ; E/ is defined in the natural manner and its
closed subspace C k;˛!;0 .Œ0;1Œ; E/ is defined to consist of those functions which vanish at
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zero. We verify that the Green’s operator of QLa for the Dirichlet problem is

QKa;0Œu�.y/ WD
Z 1
0

QKa.y � z/u.z/ dz �

Z 0

�1

QKa.y � z/u.�z/ dz: (3.17)

Proceeding as before, we obtain

Theorem 3.2.5. For all 0�! <a, QLa defines a linear isomorphism fromC 2;˛!;0 .Œ0;1Œ;E/
into C 0;˛! .Œ0;1Œ; E/ with inverse QKa.

We now consider the case where the weight ! is greater than a. This setting yields
the richer structure underlying the asymptotic series described in Section 3.1. Consider a
finite vector ! WD .!0; : : : ; !m/ of real weights, where

a D !0 < � � � < !m: (3.18)

Define the spaces

QAk;˛
! WD he�!0y ; : : : ; e�!m�1yi ˚ C k;˛!m .Œ0;1Œ/;

QA
k;˛
!;0 WD ¹f 2

QAk;˛
! j f .0/ D 0º;

QAk;˛
!;� WD he

�!1y ; : : : ; e�!m�1yi ˚ C k;˛!m .Œ0;1Œ/:

(3.19)

Observe that QLa maps QA2;˛
!;0 into QA0;˛

!;�.

Theorem 3.2.6. For all ! satisfying (3.18), QKa;0 defines a bounded linear map from QA0;˛
!;�

into QA2;˛
!;0 such that

QLa QKa;0 D Id :

In particular, QLa defines a linear isomorphism from QA
2;˛
!;0 into QA0;˛

!;� with inverse QKa;0.

Proof. Indeed, we verify that, for 1 � i � m � 1,

QKa;0Œe�!iy � D �
1

!2i � a
2
e�ay C

1

!2i � a
2
e�!iy :

On the other hand, for u 2 C 0;˛!m .Œ0;1Œ/,

QKa;0Œu� D v1 C v2;

where

v1.y/ WD �
1

a
e�ay

Z 1
0

sinh.az/u.z/ dz;

v2.y/ WD �
1

a

Z 1
y

sinh.a.z � y//u.z/ dz:

We verify that ˇ̌̌̌
�
1

a

Z 1
0

sinh.az/u.z/ dz
ˇ̌̌̌
�

1

a.!m � a/
kuk0

C0!m
;

kv2k
0

C0!m
�

1

a.!m � a/
kuk0

C0!m
:
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Finally, since QLav2 D u,
kv2kC2;˛!m

� Ckuk
C
0;˛
!m

for a suitable constant C , and the result follows.

3.3. The two-dimensional linear problem

For all m 2 Z, define …m W L
2.S1/! R and Im W R! L2.S1/ by

…mŒu� WD
1

2�

Z 2�

0

u.x/e�imx dx; ImŒ�� WD �eimx : (3.20)

The operators…mŒu� and Im…mŒu� yield respectively themth Fourier coefficient of u and
the orthogonal projection of u onto the mth Fourier mode with respect to the standard L2

inner product of S1. We denote also by …m W L
2.S1 �R/! L2.R/ and Im W L2.R/!

L2.S1 �R/ the natural extensions of these operators. For all m, denote

Pm WD
X
jnj<m

In…n; P?m WD Id�Pm : (3.21)

As before, let E be a Banach space and, for all ! and for all .k; ˛/, define the !-weighted
C k;˛-norm for k-times differentiable functions u W S1 �R! R by

kuk
C
k;˛
!
WD kue!hyikCk;˛ : (3.22)

Let ! WD .!0; : : : ; !m/ be a vector of m C 1 real weights. For all .k; ˛/, define the
!-weighted C k;˛-norm by

kuk
C
k;˛
!
WD

X
jnj<m

k…nŒu�kCk;˛!jnj
C kP?m Œu�kCk;˛!m

; (3.23)

and let C k;˛! .S1 � R1; E/ denote the Banach space of k-times differentiable functions
u W S1 �R! E for which this norm is finite.

Consider now the second-order, linear partial differential operator

La u WD @2xuC @
2
yu � a

2u: (3.24)

By classical Fourier analysis (see [4]), its Green’s function is

Ka.x; y/ WD
X
m2Z

Ka;m.x; y/; (3.25)

where, for all m,

Ka;m.x; y/ WD �
1

4�
p
m2 C a2

eimxe�
p
m2Ca2 jyj; (3.26)

and its Green’s operator is

KaŒu�.x; y/ WD
Z 2�

0

Z 1
�1

Ka.x � �; y � �/u.�; �/ d� d�: (3.27)
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For all m � 0, denote
K?a;m.x; y/ WD

X
jnj�m

Ka;n.x; y/; (3.28)

and denote by K?a;m the integral operator that it defines. Trivially,

Ka;m D K?a;mC
X
jnj<m

In QKpa2Cn2…n; (3.29)

where, for each n, QKp
a2Cn2

is the operator defined in Section 3.2. It follows from ele-
mentary Fourier analysis that the function K?a;m is locally of class L2 and therefore also
locally of class L1. In addition, since the sum (3.28) is close to being a geometric series,
we obtain

Lemma 3.3.1. For all m and for all Y > 0, there exists B > 0 such that, for all jyj � Y ,

K?a;m.x; y/ � Be
�
p
m2Ca2 jyj: (3.30)

This in turn yields

Lemma 3.3.2. For all m and for all j!j <
p
m2 C a2, K?a;m defines a bounded linear

map from C
0;˛
! .S1 �R; E/ into C 2;˛! .S1 �R; E/ such that

La K?a;m D Id�
X
jnj<m

In…n: (3.31)

Proof. Indeed, using Lemma 3.3.1, we show as in Lemma 3.2.2 that K?a;m defines a
bounded linear map from C 0!.S

1 �R; E/ into C 0!.S
1 �R; E/. Differentiating under the

integral, we verify that, for all u 2 C 0!.S
1 � R; E/, K?a;mŒu� is twice differentiable and

satisfies
La K?a;mŒu� D u �

X
jnj<m

In…nŒu�:

By the interior Schauder estimates (see, for example, [10, Chapter 6]), it follows that
K?a;m defines a bounded linear map from C

0;˛
! .S1 � R; E/ into C 2;˛! .S1 � R; E/. This

completes the proof.

Lemma 3.3.3. For all ! such that, for all 0 � i � m,

j!i j <
p
a2 Cm2; (3.32)

Ka defines a bounded linear map from C
0;˛
! .S1 �R; E/ into C 2;˛! .S1 �R; E/ such that

La Ka D Id :

Proof. This follows from Lemmas 3.2.3 and 3.3.2 together with (3.29).

This yields
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Theorem 3.3.4. For all a > 0 and for all ! such that, for all 0 � i � m,

0 � !i <
p
a2 C i2; (3.33)

La defines a linear isomorphism from C
2;˛
! .S1 � R; E/ into C 0;˛! .S1 � R; E/ with

inverse Ka.

Proof. Indeed, by Lemma 3.3.3, Ka defines a right inverse of La. By the maximum prin-
ciple, La is injective, and the result follows.

We now consider the Dirichlet problem. For all ! and for all .k; ˛/, the Banach
space C k;˛! .S1 � Œ0;1Œ; E/ is defined in the natural manner, and its closed subspace
C
k;˛
!;0 .S

1 � Œ0;1Œ; E/ is defined to consist of those functions which vanish along the
boundary S1 � ¹0º. We verify that the Green’s operator of La for the Dirichlet problem is

Ka;0Œu�.x; y/ WD
Z 2�

0

Z 1
0

Ka.x � �; y � �/u.�; �/ d� d�

�

Z 2�

0

Z 0

�1

Ka.x � �; y � �/u.��; �/ d� d�: (3.34)

Proceeding as before, we obtain

Theorem 3.3.5. For all a > 0 and for all ! such that, for all 0 � i � m,

0 � !i <
p
a2 C i2; (3.35)

La defines a linear isomorphism from C
2;˛
!;0 .S

1 � R; E/ into C 0;˛! .S1 � R; E/ with
inverse Ka;0.

We now consider the case where the weight in each Fourier mode is permitted to be
greater than the corresponding constant term. Recall the subsets M0 and M of R2 defined
in Section 3.1. For .�; �/ 2M, define

u.�;�/.x; y/ WD e
i�xe��y : (3.36)

For all ! > 0 and for all .k; ˛/, define

Ak;˛
! WD hu.�;�/ j .�; �/ 2M; � < !i ˚ C k;˛! .S1 � Œ0;1Œ/;

A
k;˛
!;0 WD ¹u 2 Ak;˛

! j u.x; 0/ D 0 8xº;

Ak;˛
!;� WD hu.�;�/ j .�; �/ 2M nM0; � < !i ˚ C

k;˛
! .S1 � Œ0;1Œ/:

(3.37)

We now define

Ak;˛
WD

\
!>0

Ak;˛
! ; (3.38)

A WD
\
k;˛

Ak;˛: (3.39)
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Since Ak;˛ and A are defined as intersections of families of Banach spaces, they carry
natural Fréchet structures given by the families of all norms of these spaces. Observe, in
addition, that A is none other than the space defined in (3.7). In particular, for all .k; ˛/,
every function u 2 Ak;˛ has a unique asymptotic expansion of the form

u �
X

.�;�/2M

a�;�u�;�; (3.40)

where, for all .�; �/ 2 M, a�;� is a complex coefficient. The derivatives of all such
functions up to and including order k also have unique asymptotic expansions of the same
form, which are determined by differentiating (3.40) term by term. Finally, combining
Theorem 3.2.6 and Lemma 3.3.2 yields

Theorem 3.3.6. For all a > 0 and for all ! > 0, Ka;0 defines a bounded linear map from
A
0;˛
!;� into A

2;˛
!;0 such that

La Ka;0 D Id:

In particular, La defines a linear isomorphism from A
2;˛
!;0 into A

0;˛
!;� with inverse Ka;0.

3.4. Products

Let E1, E2 and F be Banach spaces. Let b W E1 ˚ E2 ! F be a bounded bilinear map,
and define the operator

BŒu; v�.x; y/ WD b.u.x; y/; v.x; y//: (3.41)

Let X be a manifold locally isometric to Rd � Œ0;1Œ for some d � 0. Recall (see
Appendix A) that B defines a bounded bilinear map from C k;˛.X; E1/˚ C

k;˛.X; E2/

into C k;˛.X; F /. We now extend this property to weighted spaces.

Lemma 3.4.1. (1) If !1 � !2, then the canonical embedding J!2;!2 W C
k;˛
!1 .X; E/ !

C
k;˛
!2 .X;E/ is continuous.

(2) If !i � ! for all 0 � i � m, then the canonical embedding J!;! W C
k;˛
! .X; E/!

C
k;˛
! .X;E/ is continuous.

(3) If !i � ! for all 0 � i � m, then the canonical embedding J!;! W C
k;˛
! .X; E/ !

C
k;˛
! .X;E/ is continuous.

Proof. It suffices to prove .1/ as the proofs of .2/ and .3/ are almost identical. Since
e.!2�!1/hxi is an element of C k;˛.R/, the operator �!1�!2 defines a bounded linear map
from C k;˛.X;E/ to itself. Since J!2;!1 D �!2�!1�!2��!1 , the result follows.

Lemma 3.4.2. For all !1; !2; !3 2 R such that !1 C !2 � !3, B defines a bounded
bilinear map from C

k;˛
!1 .X;E/˚ C

k;˛
!2 .X;E/ into C k;˛!3 .X; F /.

Proof. Indeed, B D J!3;.!1C!2/ �.!1C!2/ B.��!1 �; ��!2 �/, and the result follows.
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Lemma 3.4.3. If ! is such that, for all 0 � i; j � m,

!i C !j � !min.iCj;m/; (3.42)

then B defines a continuous bilinear map from C
k;˛
! .X; E1/ ˚ C

k;˛
! .X; E2/ into

C
k;˛
! .X; F /.

Proof. Indeed, for u 2 C k;˛! .X;E1/ and v 2 C k;˛! .X;E2/,

BŒu; v� D B1Œu; v�C B2Œu; v�C B3Œu; v�;

where
B1Œu; v� WD

X
ji j;jj j<m

IiCj BŒ…iu;…j v�;

B2Œu; v� WD
X
ji j<m

BŒIi …iu;P?m v�C
X
ji j<m

BŒP?m u; Ii …iv�;

B3Œu; v� WD BŒP?m u;P
?
m v�:

By definition, for all ji j < m, …i defines a continuous linear map from C
k;˛
! .X;Ei / into

C
k;˛
!i .R; Ei /, and continuity of B1 follows by Lemma 3.4.2. By Lemma 3.4.1 (2), for all
0 � ji j < m, Ii…i defines a continuous linear map from C

k;˛
! .X; Ei / into C k;˛!0 .X; Ei /.

By definition, P?m defines a continuous linear map from C
k;˛
! .X; Ei / into C k;˛!m .X; Ei /.

By Lemma 3.4.2 and (3.42), B defines a continuous bilinear map from C
k;˛
!0 .X; E1/˚

C
k;˛
!m .X;E2/ into C k;˛!m .X;F /, and continuity of B2 follows by Lemma 3.4.1 (3). Finally,

by Lemma 3.4.2, B defines a continuous bilinear map from C
k;˛
!m .X;E1/˚ C

k;˛
!m .X;E2/

into C k;˛!m .X; F /, and continuity of B3 follows by Lemma 3.4.1 (3). This completes the
proof.

A similar reasoning yields

Lemma 3.4.4. For all ! > 0, B defines a continuous bilinear map from A
k;˛
! ˚ A

k;˛
!

into A
k;˛
!0;�, where

!0 D min.2!; ! C a/: (3.43)

Remark 3.4.1. In particular, the operator B defines a bilinear map which is continuous
in the Fréchet sense from A˚A into A. Furthermore, the argument used in the proof of
Lemma 3.4.3 shows that, for any two u; v 2 A, the asymptotic series of the product uv is
obtained by formal multiplication of the asymptotic series of each of u and v.

3.5. Non-linear operators

Let E and F now be finite-dimensional vector spaces. Let � be an open subset of E. Let
ˆ W �! F be a smooth function. Let Cˆ denote the operator of composition by ˆ, that
is,

CˆŒu� WD ˆ ı u: (3.44)
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Let ! WD .!0; : : : ; !m/ be a finite vector of real weights such that, for all 0 � i; j � m,

!i C !j � !min.iCj;m/:

By Lemma 3.4.3, upon rescaling the norm of C k;˛! .S1 �R/ if necessary, we may suppose
that, for u; v 2 C k;˛! .S1 �R/,

kuvk
C
k;˛
!
� kuk

C
k;˛
!
kvk

C
k;˛
!
:

It then follows that if ˆ is analytic with radius of convergence R about 0, then Cˆ is also
analytic with the same radius of convergence about 0. This in itself would be sufficient
for our purposes since the functions of interest to us are all analytic. However, for com-
pleteness, we consider also the case where ˆ is an arbitrary smooth function. To this end,
define

Ok;˛
! .S1 �R; �/ WD

[
K��

Ok;˛
! .S1 �R; K/; (3.45)

where K varies over all compact subsets of � and, for all such K,

Ok;˛
! .S1 �R; K/ WD ¹f 2 C k;˛! .S1 �R/ j Im.f / � Kº: (3.46)

Observe that, if !0 � 0, then this set is open in C k;˛! .S1 �R;E/. It is the natural domain
over which Cˆ is defined.

Lemma 3.5.1. If !0 > 0, then for all .k; ˛/, Cˆ defines a continuous function from
O
k;˛
! .S1 �R; �/ into C k;˛! .S1 �R/.

Proof. It suffices to prove the case where E D F D R; the general case is similar. Let
M > 0 be such that

M!0 > !m:

There exists a polynomial P of orderM � 1 and a smooth function‰ W�!R such that,
for all x 2 �,

ˆ.x/ D P.x/C‰.x/xM :

In particular, for all u,
CˆŒu� D CP Œu�C C‰Œu�uM : (3.47)

Since P.0/D ˆ.0/D 0, Lemma 3.4.3 shows that CP defines a continuous function from
C
k;˛
! .S1 �R/ to itself. Recall now (see Appendix A) that C‰ defines a continuous func-

tion from C k;˛.S1 �R/ to itself. Furthermore, by Lemma 3.4.2, multiplication defines a
continuous function from C k;˛.S1 � R/˚ C k;˛!0 .S

1 � R/M into C k;˛M!0
.S1 � R/. Thus,

since
C‰Œu�uM D J!;M!0

�
.C‰ ı J0;!/Œu� J!0;! Œu�

M
�
;

the result follows by Lemma 3.4.1.
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Lemma 3.5.2. If !0 > 0, then for all .k; ˛/, Cˆ defines a differentiable function from
O
k;˛
! .S1 �R/ into C k;˛! .S1 �R/ with derivative at u 2 O

k;˛
! .S1 �R/ given by

.D CˆŒu�v/.x; y/ D CDˆŒu�.x; y/v.x; y/: (3.48)

Proof. Choose u 2 O
k;˛
! .S1 �R/. For sufficiently small v 2 C k;˛! .S1 �R/, denote

‰Œv� WD CDˆŒuC v� � CDˆŒu�:

By the fundamental theorem of calculus, for all .x; y/,

CˆŒuC v�.x; y/ � CˆŒu�.x; y/ � CDˆŒu�.x; y/v.x; y/ D
Z 1

0

‰Œsv�.x; y/ dsv.x; y/:

Choose " > 0. By Lemma 3.5.1, ‰ is continuous. Since ‰Œ0� D 0, there therefore exists
ı > 0 such that, for kvk

C
k;˛
!

< ı,

k‰Œv�k
C
k;˛
!

< ":

Furthermore, by continuity, the function s 7! ‰Œsv� is integrable as a function taking
values in the Banach space C k;˛! .S1 � R/. It follows by convexity of the norm that, for
kvk

C
k;˛
!

< ı, 



Z 1

0

‰Œsv� ds






C
k;˛
!

�

Z 1

0

k‰Œsv�k
C
k;˛
!

ds < ":

Consequently, for kvk
C
k;˛
!

< ı,

kCˆŒuC v� � CˆŒu� � CDˆŒu�vkCk;˛! < "kvk
C
k;˛
!
:

Since " > 0 is arbitrary, the result follows.

Applying Lemma 3.5.2 inductively yields

Theorem 3.5.3. If !0 > 0 andˆŒ0�D 0 then, for all .k;˛/, Cˆ defines a smooth function
from O

k;˛
! .S1 �R; �/ into C k;˛! .S1 �R; �/.

Finally, for ! > 0 and for all .k; ˛/ define

Uk;˛
! .�/ WD

[
K��

Uk;˛
! .S1 �R; K/; (3.49)

where K varies over all compact subsets of � and, for all such K,

Uk;˛
! .S1 �R; K/ WD ¹u 2 Ak;˛

! j Im.u/ � Kº: (3.50)

Repeating the proof of Theorem 3.5.3 yields

Lemma 3.5.4. (1) If ! > 0 and ˆ.0/ D 0, then Cˆ defines a smooth function from
U
k;˛
! .�/ into A

k;˛
! .

(2) If in addition Dˆ.0/ D 0, then Cˆ defines a smooth function from U
k;˛
! .�/ into

A
k;˛
!Ca;�.
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Remark 3.5.1. When ˆ.0/ D 0 and Dˆ.0/ D 0, the MacLaurin series of this function
involves only terms of quadratic or higher order, so that the stronger result of .2/ follows
from Lemma 3.4.4.

Remark 3.5.2. In particular, when ˆ.0/ D 0, Cˆ defines a map from a neighbourhood
of 0 in A into A which is smooth in the Fréchet sense. Furthermore, bearing in mind
(3.47), we see that, for any u 2 A, the asymptotic series of CˆŒu� is determined by sub-
stituting the asymptotic series of u formally into the MacLaurin series of ˆ.

3.6. The Dirichlet solution operator

Recall that R W C k;˛! .S1 � Œ0;1Œ/! C k;˛.S1/ denotes the operator of restriction onto
S1 � ¹0º.

Theorem 3.6.1. If a > 0 and ! WD .!0; : : : ; !m/ is such that, for all 0 � i � m,

0 < !i <
p
a2 C i2; (3.51)

and, for all 0 � i � m,
!i C !j � !min.iCj;m/; (3.52)

then there exists a neighbourhood U of 0 in C 2;˛.S1/ and a smooth map S W U !
C
2;˛
! .S1 � Œ0;1Œ/ such that, for all v 2 U ,

(1) R SŒv� D v,

(2) P SŒv� D 0.

Furthermore, upon reducing U if necessary, S is unique.

Remark 3.6.1. We show in the usual manner that for all k C ˇ � 2 C ˛, S maps
U \ C k;ˇ .S1/ smoothly into C k;ˇ! .S1 � Œ0;1Œ/. In addition, the same function S maps
U \ C k;ˇ .S1/ smoothly into C k;ˇ!0 .S

1 � Œ0;1Œ/ for any other !0 satisfying the hypothe-
ses of Theorem 3.6.1.

Proof of Theorem 3.6.1. Indeed, by Theorem 3.3.5, .R;La/ defines a linear isomorphism
from C

2;˛
! .S1 � Œ0;1Œ/ into the product C 2;˛.S1/ � C 0;˛! .S1 � Œ0;1Œ/. By the inverse

function theorem, there exists a neighbourhood QU of 0 in C 2;˛.S1/ � C 0;˛! .S1 � Œ0;1Œ/

and a smooth map QS such that, for all .v;w/2 QU , .R QSŒv;w�;P QSŒv;w�/D .v;w/. Existence
follows upon setting SŒv� WD QSŒv; 0� and uniqueness follows by the uniqueness part of the
inverse function theorem.

For all ! and for all .k; ˛/, let A
k;˛
! be the Banach space defined in (3.38).

Theorem 3.6.2. Let U and S be as in Theorem 3.6.1. For all ! > 0, S defines a smooth
map from U into A

2;˛
! .

Remark 3.6.2. A suitable refinement of Theorem 3.6.1 shows that, for all kC ˇ � 2C ˛
and for all !, S defines a smooth map from U \ C k;ˇ .S1/ into A

k;ˇ
! , so that S defines
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a Fréchet smooth map from U \ C1.S1/ into A. In particular, for smooth initial data,
the asymptotic series constructed by Theorem 3.6.2 are differentiable to all orders.

Proof of Theorem 3.6.2. Indeed, for ! <a, the result follows by Theorem 3.6.1. LetW �
�0;1Œ be the set of all weights for which the assertion is true. Since, for !0 < !, the
canonical embedding J W A2;˛

! ! A
2;˛
!0 is a bounded linear map, it follows that W is an

interval with lower extremity 0. Let !0 WD sup.W / and suppose that !0 < 1. Denote
! WD !0 � a=2. By Lemma 3.5.4 (2), for u 2 U

2;˛
! .�/,

CF .SŒu�;D SŒu�;D2 SŒu�/ 2 A
0;˛
!Ca;�:

By Theorem 3.3.6, .R; La/ defines a linear isomorphism from A
2;˛
!Ca into C 2;˛.S1/ ˚

A
0;˛
!Ca;�. However, for all u,

.R;La/SŒu� D .0;CF .SŒu�;D SŒu�;D2 SŒu�//;

so that S maps U smoothly into A
2;˛
!Ca. This is absurd, by definition of !0. It follows that

!0 D1, and this completes the proof.

It remains only to verify part (A) of Theorem 3.1.1. We first require the following
technical result.

Lemma 3.6.3. Let u W S1 � Œ0;1Œ! C be a smooth function whose derivatives to all
orders are bounded over S1 � Œ0;1Œ. For � > 0, if u.x; y/D O.e��y/ then, for all k � 1
and for all " > 0,

kDku.x; y/k D O.e�.��"/y/: (3.53)

Proof. It suffices to prove the result for functions defined over R � Œ0;1Œ. Let � 2
C10 .R

2/ be such that � D 1 over B1.0/ and Supp.�/ � B2.0/. For all .�; �/, define

u�;�.x; y/ WD u.x; y/�.x � �; y � �/:

Trivially, ku�;�kC0 D O.e���/ and, for all k � 1, kDku.�; �/kC0 D O.1/. By the inter-
polation inequalities of [10, Chapter 6:8], for all 0 < k < l ,

kDku.x; y/k � kDkux;ykC0 D O.kux;yk
.l�k/=l

C0
� kDlux;yk

k=l

C0
/ D O.e�.l�k/�y=l /;

and the result follows upon choosing l sufficiently large.

This yields

Lemma 3.6.4. If u W S1 � Œ0;1Œ! C is a solution of (3.3) such that, for some � > 0,

ju.x; y/j D O.e��y/; kDku.x; y/k D O.1/ 8k � 1; (3.54)

then u is an element of A.

Proof. Indeed, by Lemma 3.6.3, u 2 C 2;˛! .S1 � Œ0;1Œ/ for all 0 < ! < �. Upon truncat-
ing u to S1 � ŒY0;1Œ and reparametrizing y, we may suppose that kuk

C
2;˛
!

is as small as
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we wish so that, by Theorem 3.6.1, u is in the image of S and, by uniqueness, uD S RŒu�.
It then follows by Theorem 3.6.2 and the subsequent remark that uD S RŒu� is an element
of A, and this completes the proof.

We conclude by verifying that Theorem 3.1.1 applies in particular to k-ends.

Lemma 3.6.5. If u W S1 � Œ0;1Œ is a bounded solution of (2.43), then u satisfies the
hypotheses of part .A/ of Theorem 3.1.1.

Proof. Indeed, by (1.8) and (2.25),

u2 � u2 C u2x D O.e�2
p
1�ky/:

By [30, Theorem 1:2], for all k � 1,

kDku.x; y/k D O.1/;

and the result follows.

4. The asymptotic geometry of k-ends

4.1. Overview

By the results of the preceding section, every k-end has an asymptotic series which is
well-defined up to a choice of Weinstein coordinates. We now show how this asymptotic
series is used to study the geometry of the end. Consider first a k-end e WS1 � Œ0;1Œ!H3

which, for ease of presentation, we take for the moment to be of winding number 1.
Up to reparametrization, we may suppose that e D ˆŒu�, where ˆ is as in (2.25) and
u W S1 � Œ0;1Œ! R solves (2.43). Observe now that, for all .a; b/t 2 R2,

TŒa; b� ı e D ˆŒuC �Œa; b��; (4.1)

where TŒa; b� and �Œa; b� are respectively as in (2.8) and (2.9). In particular, uC �Œa; b�
is also a solution of (2.43), which we call the translate of u by the vector .a; b/t .

More generally, for m 2 N, we denote

mS1 WD R=2�mZ; (4.2)

and we define an abstract k-end of order m to be a smooth, exponentially decaying solu-
tion u W mS1 � Œ0;1Œ! R of the equation

kuxx C uyy � .1 � k/u D F.u;Du;D
2u/; (4.3)

where F is a smooth function of its arguments satisfying

F.0; 0; 0/ D 0; DF.0; 0; 0/ D 0;

and for all u and for all .a; b/t 2 R2,

F.uC �Œa; b�;DuCD�Œa; b�;D2uCD2�Œa; b�/ D F.u;Du;D2u/: (4.4)
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Observe that, upon substituting x0 WD x=m and y0 WD
p
ky=m, we recover (3.1) with a2D

m2.1� k/=k, and the results of Section 3 may therefore be applied. Observe, furthermore,
that, by the second condition, whenever u is an abstract k-end, so too is the function

uC �Œa; b� (4.5)

for all .a; b/t 2 R2. As before, we call (4.5) the translate of u by the vector .a; b/t .
For m 2 N, let Mm denote the subsemigroup of R2 generated by

Mm;0 WD

²
1

m

�
n;
p
n2k Cm2.1 � k/

� ˇ̌̌̌
n 2 Z

³
: (4.6)

For every weight ! > 0, define the Banach space A
k;˛
m;! as in (3.37) with Mm instead of

M and define the Fréchet space Am by

Am WD

\
!>0

\
k;˛

Ak;˛
m;! : (4.7)

By Theorem 3.1.1 (A), every abstract k-end of order m is an element of Am. Since
.0;
p
1 � k/ and .˙1; 1/ are elements of Mm;0 for all m, we define

r WD a
.0;
p
1�k/

; c WD .a.1;1/C a.�1;1/; i a.1;1/�i a.�1;1//; (4.8)

where, for all .�; �/, a�;� is as in Section 3.1. We call r and c respectively the radius
and centroid operators. In the next section, we will show that every abstract k-end has
a unique translate whose centroid vanishes. With the preceding discussion in mind, this
result, expressed in geometric terms, corresponds exactly to the existence of the Steiner
geodesic, thus proving Theorem 1.2.1. The remaining sections of this chapter will then be
devoted to deriving asymptotic expressions for various geometric quantities which will be
of use in the sequel.

4.2. Properties of the radius and centroid operators

We first observe that the radius and centroid operators are equivariant under rotations,
dilatations and translations in the sense that, for every abstract k-end u, for all �; � 2 R
and for all .a; b/t 2 R2,

rŒu.� C �; �/� D rŒu�;

cŒu.� C �; �/� D RŒ�� cŒu�;

rŒu.�; � C �/� D e�
p
1�k � rŒu�;

cŒu.�; � C �/� D e�� cŒu�;

rŒuC �Œa; b�� D rŒu�;

cŒuC �Œa; b�� D TŒa; b� cŒu�;

(4.9)

where the linear maps RŒ�� and TŒa; b� are defined by

RŒ��.x; y/ WD .cos.�/x C sin.�/y;� sin.�/x C cos.�/y/;

TŒa; b�.x; y/ WD .x C a; y C b/:
(4.10)
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Recall from Section 2.4 that, for all u 2Am, ˆŒu� defines a smooth map frommS1 �

Œ0;1Œ into H3. Since

uC uxx D rŒu�e�
p
1�ky

C o.e�
p
1�ky/; (4.11)

it follows from (2.32) that ˆŒu� is immersed for sufficiently large y provided that

rŒu� ¤ 0: (4.12)

This property will be important, above all, in the study of families of smooth deformations
of k-surfaces (see the proof of Lemma 5.2.1). In particular, we will verify in Lemma 4.3.3
that every k-end has non-vanishing radius.

We now turn our attention to the geometric meaning of the centroid operator.

Lemma 4.2.1. For all u 2 Am,Z
mS1

.a cos.x/C b sin.x//u.x;y/dx D e�ym�h.a;b/;cŒu�ie CO.e�
p
4�3ky/ (4.13)

as y ! 1. Furthermore, the coefficient of the remainder term is locally uniformly
bounded as u varies in Am.

Proof. Indeed, for all y, the Fourier series of u.�; y/ is

u.x; y/ D
1

2
˛0.y/C

1X
nD1

˛n.y/ cos
�
nx

m

�
C

1X
nD1

ˇn.y/ sin
�
nx

m

�
:

Consider now the subset X of Mm nMm;0 given by

X WD ¹.�; �/ j � D 1º;

and order the elements of this set by their y-components. Observe that the least element
of this set is obtained by adding two elements of M0 so that, by (4.6), its y-component is
equal to

y0 WD
1

m

p
n2k Cm2.1 � k/C

1

m

p
.m � n/2k Cm2.1 � k/ (4.14)

for some 0 � n � m. Observe, however, that the right-hand side of (4.14), being the sum
of two convex functions of n, is itself also convex. In addition, by symmetry, it attains its
unique minimum at n0 WD m=2, so that

y0 �
p
4 � 3k:

Finally, since u 2 Am, it follows that

˛1.y/ D c1Œu�e�y C O.e�
p
4�3ky/; ˇ1.y/ D c2Œu�e�y C O.e�

p
4�3ky/;

where c1 and c2 denote the two components of c. Furthermore, the coefficients of the
remainder terms are locally bounded as u varies in Am. The result now follows by the
Fourier integral formula.
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In particular, this yields Theorem 1.2.1.

Theorem 1.2.1. For every k-end e WmS1 � Œ0;1Œ!H3, there exists a unique unit-speed
geodesic 
 W R! H3 such that

d.
.y/; s.y// D O.e�y
p
4�3k/ as y !1. (4.15)

Proof. Choose an upper half-space parametrization of H3 such that the extremity of e
coincides with the point at1. Upon reparametrizing e, we may suppose that eDˆŒu� for
some function u WmS1 � Œ0;1Œ! R solving (2.43). There exists a unique translate of u,
namely the translate by � cŒu�, for which the first term on the right-hand side of (4.13)
vanishes. However, by (1.13), for each y, the integral on the left-hand side of (4.13) is
none other than the inner product of the vector .a; b/t with the Steiner curvature centroid
of the intersectionˆy Œu� of this end with the horosphere at height y. The vertical half-line
passing through the point .cŒu�; 1/t is therefore the desired geodesic, and this completes
the proof.

Lemma 4.2.1 also guarantees convergence of the integrals that will be studied in the
sequel. We thus conclude this section by establishing elementary conditions for the cen-
troid of a given element of Am to vanish. To this end, define

Am;� WD ¹u 2 Am j a�;�Œu� D 0 8.�; �/ 2Mm;0º;

Am;c WD ¹u 2 Am j cŒu� D .0; 0/º:
(4.16)

Observe that
Am;� � Am;c � Am;

and that both Am;� and Am;c are ideals of the multiplicative Fréchet algebra Am which
are closed under the action of differentiation.

Lemma 4.2.2. For all u 2 Am,

uC uxx 2 Am;c ; uC uy 2 Am;c : (4.17)

Proof. Indeed, the asymptotic series of uxx and uy are obtained by differentiating term
by term the asymptotic series of u. The result follows.

4.3. The geometry of k-ends

Let u W mS1 � Œ0;1Œ! R be an abstract k-end. By (4.11) we may suppose that ˆŒu�
defines a smooth immersion from mS1 � Œ0;1Œ into H3. We now use the notation of
Sections 2.4 and 2.5.

Lemma 4.3.1. The form
HŒu� dAreaŒu� � dxdy

is integrable over mS1 � Œ0;1Œ. Furthermore, its L1-norm is locally uniformly bounded
as u varies in Am.
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Proof. Indeed, by (2.30) and (2.41),

HŒu� dAreaŒu� � dxdy D fdxdy;

where f 2 Am. Since

f D rŒf �e�
p
1�ky

C o.e�
p
1�ky/;

the result follows.

Lemma 4.3.2. The length of ˆy Œu� satisfies

LŒu�.y/ D 2�m rŒu�e�
p
1�ky

C o.e�
p
1�ky/: (4.18)

Furthermore, the coefficient of the remainder term is locally uniformly bounded as u
varies in Am.

Proof. Indeed, by (2.31) and (4.11) the length element of ˆy Œu� satisfies

dlŒu� D
�
rŒu�e�

p
1�ky

C o.e�
p
1�ky/

�
dx;

and the result follows upon integrating this form over mS1.

In particular, we obtain

Lemma 4.3.3. Every k-end has non-zero radius.

Proof. Choose a half-space parametrization of H3. Let e W mS1 � Œ0;1Œ! H3 be a k-
end with respect to the Busemann function h.x; y; z/ WD � log.z/. Let I WD IŒe� denote
the first fundamental form of e and observe that this metric is complete and of constant
curvature equal to k � 1. Let Qh be a Busemann function of this cusp centred at the unique
point at infinity.

Consider now the curve


 W Œ0;1Œ! mS1 � Œ0;1Œ; y 7! .x0; y/;

for some fixed point x0 of mS1. By (2.27) and Lemma 3.6.4, the norm of @t .e ı 
/ tends
to 1 as t ! 1. Likewise, the geodesic curvature of e ı 
 tends to zero as t ! 1. It
follows that the geodesic curvature of 
 with respect to I also tends to zero as t !1.
By classical hyperbolic geometry, since 
 terminates at the unique point at infinity of
mS1 � Œ0;1Œ, for all " > 0, upon suitably modifying e and Qh, we may suppose that, for
all t > 0,

.1 � "=2/y � �. Qh ı e/.y/ � .1C "=2/y:

We may likewise suppose that, for all y, the length of the curve mS1 � ¹yº with respect
to I is less than "=2 so that, for all .x; y/,

.1 � "/y � � Qh.x; y/ � .1C "/y:
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In particular, for all y, the length of mS1 � ¹yº with respect to I is bounded below by the
length of the level set of Qh at height �.1C "/y. Consequently, for all y,

LŒejmS1�¹yº� � ce
�
p
1�k .1C"/y

for some constant c > 0. Observe now that, since Mm is discrete, the second term on the
right-hand side of (4.18) may be replaced with o.e�

p
1�k .1Cı/y/ for some ı > 0. The

result now follows upon choosing " < ı.

Lemma 4.3.4. When u has strictly positive radius, the geodesic curvature of ˆy Œu� with
respect to the normal �Œu� satisfies

�y Œu� D �
p
1 � k C o.1/: (4.19)

Furthermore, the coefficient of the remainder term is locally uniformly bounded as u
varies in Am.

Remark 4.3.1. In the case where u solves the gaussian curvature equation (2.43), the
intrinsic curvature of the immersion ˆŒu� is constant and equal to k � 1. In particu-
lar, horocircles in this surface have constant geodesic curvature equal to �

p
1 � k with

respect to their inward-pointing normals. Since ˆy Œu� is the intersection of ˆŒu� with
the horizontal horosphere at height ey , Lemma 4.3.4 confirms our expectation that the
intersections of k-ends with horoballs are asymptotic to horodisks in the surface.

Proof of Lemma 4.3.4. Indeed, by (2.44),

�y Œu� D
C.uy � uxx/

uC uxx
D �
p
1 � k C o.1/;

and the result follows.

4.4. Killing vector fields

The Möbius group SO.3; 1/ acts by orientation-preserving isometries on H3. Its Lie
algebra so.3; 1/ therefore defines a 6-dimensional family of vector fields over H3 whose
flows preserve the metric. These vector fields are known as Killing vector fields of H3. In
what follows, we will be particularly interested in the field

Xa;b WD M� a;

where M W H3 ! H3 is the orientation-reversing hyperbolic isometry given by

M x WD
x

kxk2e
; (4.20)

and a WD .a; b; 0/t is a constant horizontal vector.
The field Xa;b is given explicitly by

Xa;b.x/ D kxk
2
ea � 2hx; aiex: (4.21)
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By (2.25), (2.33) and (2.34), for all u 2 Am,

ha;ˆŒu�ig D ae
�yu cos.x/ � ae�yux sin.x/C be�yux cos.x/C be�yu sin.x/;

ha;NŒu�ig D Cae�y cos.x/C Cbe�y sin.x/;

ha; �Œu�ig D �ae�y cos.x/C �be�y sin.x/;

(4.22)

so that, by (2.37) and (2.38),

hXa;b.ˆŒu�/;NŒu�ig D a.1C f1/ey cos.x/C af2ey sin.x/

C bf3e
y cos.x/C b.1C f4/ey sin.x/; (4.23)

where f1; f2; f3; f4 2 Am: Likewise, by (2.34), (2.37), (2.38) and (4.17),

hXa;b.ˆŒu�/; �Œu�ig D �2a.uC g1/e
y cos.x/C 2a.ux C g2/ey sin.x/

� 2b.ux C g3/e
t cos.x/ � 2b.uC g4/ey sin.x/; (4.24)

where g1; g2; g3; g4 2 Am;c : This yields

Lemma 4.4.1. For every abstract k-end u, the limit

lim
T!1

Z T

0

Z
mS1
hXa;b.ˆŒu�/; N Œu�ig dAreaŒu�

exists. Furthermore, this convergence is locally uniform as u varies in Am.

Proof. Indeed, since Am;c is an ideal in Am, it follows by (2.30), (4.17) and (4.23) that

hXa;b.ˆŒu�/;NŒu�ig dAreaŒu� D .f1ey cos.x/C f2ey sin.x//dxdy;

where f1; f2 2 Am;c . The result now follows by Lemma 4.2.1.

Lemma 4.4.2. For every abstract k-end u,Z
mS1

HŒu�hXa;b.ˆŒu�/; �Œu�ig dlŒu� D �4�mh.a; b/; cŒu�ie C O.ey�
p
4�3ky/ (4.25)

as y ! 1. Furthermore, the coefficient of the remainder term is locally uniformly
bounded as u varies in Am.

Proof. Since Am;c is an ideal in Am, it follows by (2.31), (2.41) and (4.24) that

HŒu�hXa;b.ˆŒu�/; �Œu�ig dlŒu�

D �2auey cos.x/dx C 2auxey sin.x/dx � 2buxey cos.x/dx

� 2buey sin.x/dx C f1ey cos.x/dx C f2ey sin.x/dx;

where f1; f2 2 Am;c . Since

c2Œux � D � c1Œu�; c1Œux � D c2Œu�;

the result now follows by Lemma 4.2.1.
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Let @� denote the derivative in the direction of �.

Lemma 4.4.3. For every abstract k-end u,Z
mS1

@�hXa;b.ˆŒu�/; �Œu�ig dlŒu� D O.ey�
p
4�3ky/ as y !1. (4.26)

Furthermore, the coefficient of the term on the right-hand side is locally uniformly
bounded as u varies in Am.

Proof. By (2.31) and (2.36), for arbitrary f W mS1 � Œ0;1Œ! R,

@�f dlŒu� D
�
C.uC uxx/fx � C.uxy C ux/fy

�
dx:

Since Am;c is an ideal which is closed under differentiation, it follows by (4.17) that

@�f dlŒu� D .g1fx C g2fy/dx;

where g1; g2 2 Am;c . It now follows by (4.24) that

@�hXa;b.ˆŒu�/; �Œu�ig dlŒu� D g3ey cos.x/dx C g4ey sin.x/dx;

where g3; g4 2 Am;c . The result now follows by Lemma 4.2.1.

Finally, consider the form ˛1 defined over H3 by

˛1 WD �
1

2z2
dx ^ dy:

The geometric significance of this form will become clear presently. For the moment, it
will be sufficient to show

Lemma 4.4.4. For every abstract k-end u,Z
mS1

iXa;b˛1 D O.ey�
p
4�3ky/ as y !1. (4.27)

Furthermore, the coefficient of the term on the right-hand side is locally uniformly
bounded as u varies in Am.

Proof. Indeed, by (2.33), (2.34) and (5.14),

˛1.NŒu�;TŒu�/ WD 1C f1; ˛1.�Œu�;TŒu�/ WD f2;

where f1 2 Am;� and f2 2 Am. It follows by (4.23) and (4.24) that

˛1.Xa;b.ˆŒu�/;TŒu�/ D �.1C f3/aey cos.x/ � .1C f4/bey sin.x/;

where f3; f4 2 Am. Since Am;c is an ideal in Am, it follows by (2.31) and (4.17) that

˛1.Xa;b.ˆŒu�/;TŒu�/ dlŒu� D f5aey cos.x/C f6bey sin.x/;

where f5; f6 2 Am;c . The result now follows by Lemma 4.2.1.
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5. Area, generalized volume and renormalized energy

5.1. Overview

We now study the local geometry of the space �k of k-surfaces. Recall from Section 1.4
that every stratum of �k has a natural holomorphic structure given by the unordered vector
of extremities. We first determine how variations of these extremities affect the surfaces.
This is the content of Theorem 5.2.5: we show that smooth variations along the strata yield
variations of the corresponding surfaces which are smooth in the space of immersions. In
particular, given a point .x; y/ of the stratum, corresponding to the immersed surface
.S; e/, every tangent vector .a; b/ of the stratum at this point corresponds to a vector field
XŒa; b� over the immersion e which is asymptotic over every end to some Killing field.
The proof of Theorem 5.2.5 is a more or less standard application of the implicit func-
tion theorem for functions defined over Banach spaces. However, we draw the reader’s
attention to the small but important role played in the proof by the non-vanishing of the
radii of the ends, proven in Lemma 4.3.3 (see Lemma 5.2.1). Finally, having established
these preliminaries, our main results readily follow upon applying the asymptotic anal-
ysis developed in the preceding chapters. We first verify that area, generalized volume
and renormalized energy are indeed well-defined and smooth over every stratum. Next,
we verify an approximate Schläfli type formula over truncated surfaces. Finally, upon
letting the locus of truncation tend to infinity, we obtain the Schläfli-type formula of The-
orem 1.1.2, and the identity of Theorem 1.1.1 is obtained upon substituting the Killing
fields of H3 into this formula.

5.2. Perturbations of finite-type k-surfaces

Let .S; e/ be a finite-type k-surface in H3, let n denote the number of ends of this surface
and, for 1 � i � n, let mi denote the winding number of the i th end. Choose an explicit
upper half-space parametrization of H3 as in Section 2.2 and suppose that none of the
extremities z1Œe�; : : : ; znŒe� of .S; e/ lie at infinity. For all i , let hi be a Busemann function
of H3 centred on zi Œe�. As in Section 1.4, for all T 2 R and for all i , denote

ST WD ¹x 2 S j .hi ı e/.x/ � T 8iº; ST;i WD ¹x 2 S j .hi ı e/.x/ � T º: (5.1)

Upon modifying h1; : : : ; hn if necessary, we may assume that @S0 is smooth and that the
complement of its interior in S consists of n distinct k-ends, S0;1; : : : ; S0;n. For each i ,
identify S0;i with miS1 � Œ0;1Œ, let Mi be the hyperbolic isometry

Mi x WD
x

kxk2
C zi Œe�; (5.2)

and let ui 2 Ami be an abstract k-end such that

ejS0;i D Mi ıˆŒui �; (5.3)

where ˆ is the operator defined in Section 2.4.
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In order to use the asymptotic theory of the previous sections to determine the deriva-
tives of the generalized volume and the renormalized energy, we will show in this section
how nearby immersions in the stratum of .S; e/ in �k depend smoothly on their extrem-
ities. To this end, we first construct an infinite-dimensional family of perturbations of e
in C1.S;H3/. This construction is carried out in two stages. In the first, we construct a
finite-dimensional family of perturbations which are large at infinity and, in the second,
we extend this finite-dimensional family by an infinite-dimensional family of perturba-
tions which are small at infinity. The finite-dimensional family is constructed as follows.
Let Qe W R2k ! C1.S;H3/ be such that

(1) the function QeŒa; b�.p/ W R2k � S ! H3 is smooth,

(2) for all p 2 S ,
QeŒ0; 0�.p/ D e.p/;

(3) for all .a; b/ 2 R2k and for all p 2 S1,

QeŒa; b�.p/ D e.p/;

(4) for all 1 � i � n, for all .a; b/ 2 R2k and for all p 2 S0;i ,

QeŒa; b�.p/ D TŒai ; bi �e.p/;

where TŒai ; bi � is the hyperbolic isometry defined in (2.8).

For all ı > 0, let B2k
ı
.0/ denote the ball of radius ı about the origin in R2k , and choose

ı > 0 such that, for all .a; b/ 2 B2k
ı
.0/, QeŒa; b� is a complete, locally strictly convex

immersion. The function Qe is the desired finite-dimensional family.
The infinite-dimensional extension of Qe is constructed as follows. Let � W S ! Œ0; 1�

be a smooth function such that

(1) for all p 2 S0,
�.p/ D 0;

(2) for all 1 � i � n and for all p 2 S�1;i ,

�.p/ D 1:

Define G W H3 �H3 �R! H3 such that, for all x; y 2 H3 and for all t 2 R,

G .x; y; t/ WD 
.t/;

where 
 W R ! H3 is the unique geodesic such that 
.0/ D x and 
.1/ D y. Let N W
B2k
ı
.0/ ! C1.S; UH3/ be such that, for all .a; b/ and for all p 2 S , NŒa; b�.p/ is

the outward-pointing unit normal vector of the immersion QeŒa; b� at the point p. Define
Qe W B2k

ı
.0/ � C 0.S/! C 0.S;H3/ such that

(1) for all .a; b; v/ 2 B2k
ı
.0/ � C 0.S/ and for all p 2 S0,

QeŒa; b; v�.p/ WD Exp.v.p/NŒa; b�.p//; (5.4)
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(2) for all 1 � i � n, for all .a; b; v/ 2 B2k
ı
.0/ � C 0.S/ and for all p 2 S0;i ,

QeŒa; b; v�.p/ WD G .Exp.v.p/NŒa; b�.p//; .Mi ıˆŒui C v�/.p/; �.p//; (5.5)

where, for each i , Mi and ui are the hyperbolic isometry and abstract k-end given by
(5.2) and (5.3) respectively.

This yields the desired infinite-dimensional extension.
Significantly, since ui decays rapidly over Si;0 for all i , it is not clear that QeŒa; b; v� is

an immersion even when v itself has rapid decay. In particular, there is no neighbourhood
of 0 in B2k

ı
.0/ � C 2.S/ over which the extrinsic curvature operator can be meaningfully

defined. For this reason, we introduce the operator

FŒa; b; v� WD
KŒa; b; v� � k

HŒa; b; v�
; (5.6)

where, for all .a; b/ 2R2k and for all v 2 C 2.S/, KŒa; b; v� and HŒa; b; v� are respectively
the extrinsic and mean curvature functions of the immersion QeŒa; b; v�. It follows from
(2.41) and (2.42) that this operator is well-defined for all sufficiently small v even when
QeŒa; b; v� is not an immersion.

For ! > 0 and for all .k; ˛/, define the C k;˛! -norm of functions over S by

kuk
C
k;˛
!
D kujS1kCk;˛ C

nX
iD1

kujS0;i kCk;˛!
; (5.7)

and let C k;˛! .S/ denote the Banach space of k-times differentiable functions u W S ! R
whose C k;˛! -norm is finite. Observe that, for all .a; b/ 2 B2k

ı
.0/, FŒa; b; 0� is supported

in S0. It is then straightforward to show that, upon reducing ı if necessary, there exists
a neighbourhood V

2;˛
! .S/ of zero in C 2;˛! .S/ over which F defines a smooth function

taking values in C 0;˛! .S/.

Lemma 5.2.1. After reducing ı and V
2;˛
! .S/ if necessary, if .a;b;v/2B2k

ı
.0/�V

2;˛
! .S/

solves
FŒa; b; v� D 0;

then QeŒa; b; v� is a complete, locally strictly convex immersion of constant extrinsic cur-
vature equal to k.

Proof. It suffices to prove that these properties are satisfied over each end of S . However,
for 1 � i � n, over S�1;i D miS1 � Œ1;1Œ, the function ui C v is an abstract k-end. In
particular, it is an element of Ami so that, by (4.11),

.ui C v/C .ui C v/xx D rŒui C v�e�
p
1�ky

C o.e�
p
1�ky/;

where the coefficient of the remainder term is locally uniformly bounded as the k-end
varies in Am. Since r is continuous, upon reducing ı and V

2;˛
! .S/ if necessary, there exists

T < 0 such that, for every triple .a; b; v/ 2 B2k
ı
.0/�V

2;˛
! .S/ which satisfies FŒa; b; v�D

0, for all 1 � i � n, and for all p 2 ST;i ,

.ui C v/.p/C .ui C v/xx.p/ > 0;
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so that, by (2.32), QeŒa; b; v� restricts to an immersion over ST;i . Upon reducing ı and
V2k
! .S/ further if necessary, we may then suppose that, for all such .a; b; v/, QeŒa; b; v� is

an immersion over the whole of S . By a similar reasoning, for all such .a; b; v/, QeŒa; b; v�
may also be taken to be locally strictly convex so that, by (2.41) and (2.42), HŒa; b; v� and
KŒa; b; v� are well-defined positive functions over S . In particular,

KŒa; b; v� D HŒa; b; v�FŒa; b; v�C k D k;

and the result follows.

We now study the derivatives of F. Define the positive function � W S ! �0;1Œ by
setting, for all p 2 S0,

�.p/ D 1;

and for all 1 � i � n, and for all p 2 S0;i ,

�.p/ D 1C �.Ci � 1/;

where
Ci D

1p
1C .ui C ui;y/2

is the function introduced in (2.5). Let �� denote the operator of multiplication by �.
Since, for all .k; ˛/, � is an element of C k;˛.S/, by Lemma 3.4.3, for all !, the operator
�� defines a linear isomorphism from C

k;˛
! .S/ to itself.

Lemma 5.2.2. The partial derivative of F with respect to the third component at .0; 0; 0/
is given by

D3 FŒ0; 0; 0� � v D
1

H
J��v;

where H WD HŒ0; 0; 0� denotes the mean curvature function of e and J denotes the Jacobi
operator of extrinsic curvature for e.

Proof. Indeed, choose v 2 C 2.S/. Define the function w W S ! R by

w WD

�
@

@t
QeŒ0; 0; tv�

ˇ̌̌̌
tD0

;NŒe�
�
g

:

By (5.4), over S0,
w D v:

On the other hand, by (2.25) and (2.33), over each end�
@

@t
ˆŒuC tv�

ˇ̌̌̌
tD0

;NŒu�
�
g

D Cv;

so that, by (5.5),
w D ��v:
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Since the extrinsic curvature of .S; e/ is constant, the first-order variation of K only
depends on the normal component of the first-order variation of e, so that

@

@t
KŒ0; 0; tv�

ˇ̌̌̌
tD0

D Jw D J��v:

The result now follows by the product rule, since the numerator in (5.6) vanishes at
.0; 0; 0/.

In [20, Proposition 3:1:1] it is shown that the Jacobi operator of extrinsic curvature of
.S; e/ is given by

J v D
1

k
H.1 � k/v � Tr.A�1 Hess.v//; (5.8)

where A WD AŒe� is the shape operator of e and Hess.v/ is the hessian matrix of v with
respect to the metric e�g.

Lemma 5.2.3. The Jacobi operator of extrinsic curvature of .S; e/ satisfies

k

H
J� D .1 � k/v � O�v; (5.9)

where O� is the Laplace–Beltrami operator of the metric IŒe�C IIIŒe�.

Proof. Indeed, the metric IŒe�C IIIŒe� is given by

Og D .e�g/..IdC.1=k/A2/ �; �/:

Since e has constant extrinsic curvature equal to k, the Codazzi–Mainardi equations
together with the Koszul formula yield

O�v D
k

H
Tr.A�1 Hess.v//;

and the result follows.

Lemma 5.2.4. For 0 < ! <
p
1 � k, the operator L WD .1 � k/ � O� defines a linear

isomorphism from C
2;˛
! .S/ into C 0;˛! .S/.

Proof. The asymptotic properties of this operator over each end of S are studied in Sec-
tion 3.3. Together with the classical theory of elliptic operators (see [10]), these properties
show that L defines a Fredholm map from C

2;˛
! .S/ into C 0;˛! .S/. Since L is formally self-

adjoint, it has Fredholm index equal to zero. Finally, by the maximum principle, L has
trivial kernel in C 2;˛! .S/, and invertibility follows.

Lemmas 5.2.2 and 5.2.4 together with the implicit function theorem now yield

Theorem 5.2.5. Upon reducing ı if necessary, there exists a smooth function U W
B2k
ı
.0/! C

2;˛
! .S/ such that, for all .a; b/ 2 B2k

ı
.0/,

KŒa; b;UŒa; b�� D k:

Furthermore, we may suppose that U is unique.
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For all .a; b/ 2 B2k
ı
.0/, we define the immersion eŒa; b� W S ! H3 by

eŒa; b� WD QeŒa; b;UŒa; b��: (5.10)

For all .a; b/ 2 R2k , we define the vector field XŒa; b� W S ! TH3 by

XŒa; b� WD
@

@t
eŒta; tb�

ˇ̌̌̌
tD0

; (5.11)

and we define
�Œa; b� WD hXŒa; b�;NŒe�ig : (5.12)

The vector field XŒa;b� is the first-order variation of the immersion e resulting from a first-
order variation of the end point of the i th end by the vector .ai ; bi /. The function �Œa; b�
is the normal component of this first-order variation. By the preceding construction, for
all i , over S0;i ,

XŒa; b� D �i NŒe�CMi�Xai ;bi ı e; (5.13)

where �i 2 Ami , Mi is the hyperbolic isometry defined in (5.2) and Xai ;bi is the Killing
vector field defined in (4.21).

5.3. Area and generalized volume

Let .S; e/ be a finite-type k-surface in H3. We continue to use the notation of Section 5.2.
We first re-prove the following elementary result of classical surface theory, which we
believe provides a nice illustration of the estimates developed in the previous sections.

Theorem 5.3.1. The area of .S; e/ is given by

AreaŒe� D
�2��ŒS�

1 � k
;

where �ŒS� denotes the Euler characteristic of S .

Proof. Indeed, since .S; e/ has constant intrisic curvature equal to k � 1, by the Gauss–
Bonnet Theorem, for all T ,

�.1 � k/AreaŒejST �C
Z
@ST

�Œe� dlŒe� D 2��ŒS�;

where � denotes the geodesic curvature of @ST with respect to the outward-pointing unit
normal. However, by (4.18) and (4.19),

lim
T!1

Z
@ST

�Œe� dlŒe� D 0;

and the result follows.

The volume contained by .S; e/ is a slightly more subtle concept. Indeed, as .S; e/ is
not necessarily embedded, it does not necessarily have a well-defined interior. However,
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since H3 is contractible, its volume form dVol is exact so that, by Stokes’ Theorem, the
volume contained within .S; e/ can be defined by integrating primitives of dVol over this
surface. Nonetheless, since S itself is non-compact, there is no reason that two primitives
should yield the same volume or even that an arbitrary primitive should be integrable over
this surface. For this reason, we restrict attention to a special family of primitives. The
horospherical primitive of dVol centred at infinity is defined by

˛1 WD �
1

2z2
dxdy: (5.14)

Observe that, at each point, ˛1 is the pull-back under the orthogonal projection of�.1=2/
times the area form of the horizontal horosphere passing through that point. In particular,
it is invariant under the action of those isometries of H3 which preserve the point at
infinity. For any ideal point w 2 @H3, the horospherical primitive of dVol centred at w is
now defined by

˛w WD M� ˛1;

where M is any isometry of H3 sending w to1. By the preceding observation, for all w,

k˛wkg �
1
2
; (5.15)

so that, since .S; e/ has finite area, the form e�˛w has absolutely convergent integral
over S . We now verify that this integral is independent of the horospherical primitive
chosen. It suffices to compare ˛1 and ˛0.

Lemma 5.3.2. The difference between ˛1 and ˛0 is given by

˛1 � ˛0 D d log.cosh.r//d�; (5.16)

where r denotes the distance in H3 from the geodesic �0;1 and � denotes the angle
parameter of Fermi coordinates around this geodesic.

Remark 5.3.1. In fact,

d log.cosh.r//d� D
1

cosh.r/
ˇ; (5.17)

where ˇ is the pull-back through the orthogonal projection of the area form of totally
geodesic planes orthogonal to the geodesic �0;1.

Proof of Lemma 5.3.1. Indeed, let M W H3 ! H3 be the isometry given by

M x D
x

kxk2
:

Since M reverses orientation,

˛0 D �M� ˛1 D
1

2z2
dxdy �

1

2z2�2
d.�2/.xdy � ydx/;

where �2 WD x2 C y2 C z2: A straightforward calculation then yields

˛1 � ˛0 D
1

2
d log

�
z2

�2

�
^ d�:
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However, by elementary hyperbolic geometry,

cosh.r/ D �=z;

and the result follows.

Lemma 5.3.3. For all z; w 2 @1H3,Z
S

e�˛z D

Z
S

e�˛w :

Proof. Indeed, there exists a constant C > 0 such that

klog.cosh.r//d�kg � C:

It follows that, for all T ,ˇ̌̌̌Z
ST

e�.˛z � ˛w/

ˇ̌̌̌
D

Z
@ST

e� log.cosh.r// d� � C
Z
@ST

dl;

and the result now follows by Lemma 4.3.2.

The generalized volume contained by .S; e/ is defined by

VolŒe� WD
Z
S

e�˛z ; (5.18)

where z is any ideal point of @1H3 and ˛z is the horospherical primitive of dVol centred
at this point. Since the restriction of this integral to each end of .S; e/ varies smoothly
with the end, it follows that Vol restricts to a smooth function over every stratum of �k .
Finally, the reader may readily verify that when .S; e/ is embedded, VolŒe� coincides with
the volume of the convex body in H3 that this embedding bounds.

5.4. Renormalized energy

Let .S; e/ be a finite-type k-surface. As in Section 1.4, let Oe W S ! UH3 denote the unit
normal vector field over S , considered as an immersion in its own right in the total space
of UH3. The area form of the pull-back through this map of a suitable rescaling of the
Sasaki metric is

d OEŒe� WD HŒe� dAreaŒe�; (5.19)

where HŒe� W S !R denotes the mean curvature function of e. By Lemma 4.3.1, although
the area of S with respect to this form is infinite, the area of the truncated surface ST
grows linearly with the absolute value of T as T tends to �1. The residue obtained upon
subtracting this linear term yields a function over the space of k-surfaces which is well-
defined up to a constant. More precisely, the renormalized energy of .S; e/ with respect
to the Busemann functions h1; : : : ; hn is defined by

OEŒeI h1; : : : ; hn� WD lim
T!�1

Z
ST

HŒe� dAreaŒe�C 2�T
nX
iD1

mi : (5.20)
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Trivially, if h01; : : : ; h
0
n are other Busemann functions centred respectively on

z1Œe�; : : : ; znŒe�, then

OEŒeI h01; : : : ; h
0
n� � OEŒeI h1; : : : ; hn� D 2�

nX
iD1

mi .hi � h
0
i /;

which is constant since, for all i , hi � h0i is constant over H3.
The dependence of the renormalized energy on the Busemann functions is reduced

as follows. Given another Busemann function h1, the Busemann functions h1; : : : ; hn
are normalized in such a way that, for all i , the horospheres h�11 .¹0º/ and h�1i .¹0º/ meet
tangentially at a single point. Given that we are working in the upper half-space, it makes
sense to choose

h1.x/ D � log.z/;

so that, for each i , the Busemann function hi is normalized by

hi .zi Œe�; 1/ D 0:

With these normalizations we set

OEŒe� WD OEŒeI h1; : : : ; hn�; (5.21)

so that OEŒe� is uniquely defined by a choice of Busemann function at1 or, equivalently,
given an explicit upper half-space parametrization of H3. As with the generalized volume,
the renormalized energy defines a function over each end of .S; e/ which varies smoothly
with the end, so that OE restricts to a smooth function over an open, dense subset of each
stratum of �k .

5.5. The Schläfli formula

Let .S; e/ be a finite-type k-surface. LetX denote the stratum of �k in which it lies. Using
the notation of Section 5.2, for all real T , define

VolT Œe� WD
Z
ST

e�˛1: (5.22)

Using the local parametrization of X given by (5.10), we identify every tangent vector of
this stratum at .S;e/with a vector .a;b/2R2k . Since we work with an explicit upper half-
space parametrization of H3, it will be useful to recall the definition of Steiner vectors (cf.
Section 1.6). For all i , let zi Œe� and �i Œe� denote respectively the i th extremity and Steiner
point of .S; e/, and define the i th Steiner vector by

ci Œe� WD
1

x�i Œe� �xzi Œe�
: (5.23)

Lemma 5.5.1. For sufficiently large, negative T , the derivative of VolT at .S; e/ satisfies

DVolT Œe� � .a; b/ D
Z
ST

�Œa; b� dAreaŒe�C O.e
p
1�k T /: (5.24)
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Proof. Indeed, denoting X WD XŒa; b�, we have

DVolT Œe� � .a; b/ D
Z
ST

LX˛1 D

Z
ST

.iXd˛1 C diX˛1/

D

Z
ST

hX;NŒu�i dAreaŒe�C
Z
@ST

iX˛:

However, by (5.13), for 1 � i � n, over S0;i ,

X D �i NŒe�CMi�Xi ı e;

where �i 2 Ami and Xi WD Xai ;bi is the Killing vector field defined in (4.21). Since
k˛kg D 1=2,

ki�i NŒe�˛k �
1
2
j�i j;

so that, since �i 2 Ami , Z
@ST

i�i NŒe�˛1 D O.e
p
1�k T /:

On the other hand, by Lemma 4.4.4,Z
@ST

.Mi ı e/
�iMi�Xi˛1 D

Z
@ST

e�iXi˛M�1
i
1
D O.e

p
1�k T /;

and the result follows.

Theorem 5.5.2. The derivative of Vol at .S; e/ is given by

DVolŒe� � .a; b/ D lim
T!�1

Z
ST

�Œa; b� dAreaŒe�: (5.25)

Proof. By (5.13) and Lemma 4.4.1, the limit on the right-hand side of (5.25) exists and is
locally uniform as .S; e/ varies along its stratum in �k . The result follows.

For all T , define
OET Œe� WD

Z
ST

HŒe� dAreaŒe�: (5.26)

Lemma 5.5.3. For sufficiently large, negative T , the derivative of OET at .S; e/ is given
by

D OET Œe� � .a; b/ D
Z
ST

2.1C k/�Œa; b� dAreaŒe� �
Z
@ST

@��Œa; b� dlŒe�

�

nX
iD1

Z
@ST;i

T �i HŒe� dlŒe�

C

nX
iD1

Z
@ST;i

hXai ;bi .ˆŒe�/; �Œe�iHŒe� dlŒe�; (5.27)

where, for each 1 � i � n, �i and Xai ;bi are as in (5.13).
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Proof. Choose .a; b/ 2R2k . For all sufficiently small t , let et WD eŒta; tb� be as in (5.10).
For f W H3 � ��"; "Œ! R smooth and of compact support, consider the function

OEf .t/ WD
Z
S

.ft ı et /HŒet � dAreaŒet �:

Since the integrand of OEf is a smoothly varying family supported in a compact subset of S ,
the tangential component of XŒa; b� does not contribute to its derivative. We therefore
work as if it were equal to zero, so that

XŒa; b� D �Œa; b�NŒe�:

The first-order variation of the area form is given by (cf. [8])

@

@t
dAreaŒet �

ˇ̌̌̌
tD0

D HŒe��Œa; b� dAreaŒe�:

The first-order variation of the mean curvature is given by (cf. [8])

@

@t
HŒet �

ˇ̌̌̌
tD0

D .2.1C k/ � HŒe�2/�Œa; b� ���Œa; b�:

Finally, the first-order variation of ft ı et is given by

@

@t
.ft ı et /

ˇ̌̌̌
tD0

D
@f

@t
ı e C hrf0;NŒe�ig�Œa; b�:

It follows by the product rule that

@

@t
OEf

ˇ̌̌̌
tD0

D 2.1C k/

Z
S

.ft ı e/�Œa; b� dAreaŒe� �
Z
S

.ft ı e/��Œa; b� dAreaŒe�

C

Z
S

�
@f

@t

ˇ̌̌̌
tD0

ı e

�
HŒe� dAreaŒe�

C

Z
S

hr
gf0;NŒe�ig�Œa; b�HŒe� dAreaŒe�: (5.28)

Now, for all 1 � i � n, let zi;t be the i th extremity of .S; et / and let hi;t W H3 ! R be a
Busemann function centred on zi;t and normalized in such a way that, for all t ,

hi;t .zi;t ; 1/ D 0:

By definition, for all 1 � i � n,

@

@t
zi;t

ˇ̌̌̌
tD0

D .ai ; bi /:

Define f W H3 � ��"; "Œ! R by

ft .x/ D

´
1 if hi;t .x/ � T 8i;

0 otherwise:

Observe that f is an element of BVloc.H3 � ��"; "Œ/, the space of functions of locally
bounded total variation over H3 � ��"; "Œ (cf. [29]). By approximating f by smooth,
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compactly supported functions, we find that (5.28) continues to hold with the derivatives
of f now being interpreted in the distributional sense. In particular,Z
S

�
@f

@t

ˇ̌̌̌
tD0

ı e

�
HŒe� dAreaŒe� D

nX
iD1

Z
@ST;i

C�1hXai ;bi .ˆŒe�/;r
ghi;0 ı eig HŒe� dlŒe�;

and Z
S

hr
gf0;NŒe�ig�Œa; b�HŒe� dAreaŒe�

D �

nX
iD1

Z
@ST;i

C�1hNŒe�;rghi;0 ı eig�Œa; b�HŒe� dlŒe�;

where, for each i , rghi;0 denotes the gradient with respect to g of the function hi;0. Since

r
ghi;0 ı e D �C�Œe�C � NŒe�;

the result now follows upon substituting these relations into (5.28) and applying Stokes’
Theorem.

Lemma 5.5.4. For all sufficiently large, negative T , the derivatives of VolT and OET at
.S; e/ are related by

2.1C k/DVolT Œe� � .a; b/ �D OET Œe� � .a; b/

D

nX
iD1

4�mi h.ai ; bi /; ci Œe�ie C O.e
p
1�k T /; (5.29)

where, for each i ,mi denotes the winding number of the i th end of .S;e/ and ci Œe� denotes
its Steiner vector given by (5.23).

Proof. It suffices to analyse the last three terms of (5.27) over each end. Choose 1� i � k.
By (5.13), over ST;i ,

XŒa; b� D � NŒe�CMi�Xai ;bi ı e;

where � 2 Ami and Xai ;bi is the vector field given in (4.21). Since � 2 Ami , by (2.5),
(2.31), (2.36) and (2.41),Z

@ST;i

@��i dlŒe� D O.e2
p
1�k T /;

Z
@ST;i

HŒe���i dlŒe� D O.e2
p
1�k T /;

by Lemma 4.4.3, Z
@ST;i

@�hXai ;bi ;NŒe�i dlŒe� D O.e�TC
p
4�3k T /;

and, by Lemma 4.4.2,Z
@ST;i

HŒe�ChX; �Œe�i dlŒe� D �4�mi h.ai ; bi /; ci Œe�i C O.e�TC
p
4�3k T /:

The result follows.
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Theorem 5.5.5. The derivatives of Vol and OE at .S; e/ are related by

2.1C k/DVolŒe� � .a; b/ �D OEŒe� � .a; b/ D
nX
iD1

4�mi h.ai ; bi /; ci Œe�ie; (5.30)

where, for each i ,mi denotes the winding number of the i th end of .S;e/ and ci Œe� denotes
its Steiner vector given by (5.23).

Remark 5.5.1. Theorem 1.1.2 follows immediately upon expressing (5.30) in Möbius
invariant form.

Proof. The formula follows immediately from (5.29) since convergence here is locally
uniform as .S; e/ varies along its stratum in �k .

Theorem 5.5.6. The extremities and Steiner vectors of .S; e/ satisfy

nX
iD1

mi ci Œe� D 0; (5.31)

nX
iD1

mi ci Œe�xzi Œe� D �
1

2

nX
iD1

mi ; (5.32)

nX
iD1

mi ci Œe�xzi Œe�2 D �
nX
iD1

mixzi Œe�; (5.33)

where, for each i , mi denotes the winding number of the i th extremity of .S; e/.

Remark 5.5.2. Theorem 1.1.1 follows immediately upon expressing (5.31)–(5.33) in
Möbius invariant form.

Proof. The above relations are obtained by applying Killing vector fields to the Schläfli
formula (5.30). It suffices to prove the real part of (5.32), as the proofs of the remaining
formulae are identical. Consider the family of hyperbolic isometries given by

Mt x D e
tx:

The Killing vector field of this family is

X.x/ D x:

Consequently,
@

@t
zi ŒMt ı e�

ˇ̌̌̌
tD0

D zi Œe�;

@

@t
VolŒMt ı e�

ˇ̌̌̌
tD0

D 0;

@

@t
OEŒMt ı e�

ˇ̌̌̌
tD0

D 2�

nX
iD1

mi :
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Substituting these values into (5.30) yields the real part of (5.32). The imaginary part
is obtained in the same manner using rotations. Translations yield (5.31), and parabolic
transformations about the origin yield (5.33). This completes the proof.

Appendix A. Smooth functions over Hölder spaces

For the reader’s convenience, we review the smoothness properties of composition opera-
tors over Hölder spaces. Although similar properties are studied in [12, 34], it is not clear
to us where a straightforward treatment of the difficulties particular to the Hölder space
case may be found in the literature. Let X be a metric space and let E be a Banach space.
For ˛ 2 Œ0; 1�, the ˛-Hölder seminorm of a function f W X ! E is defined by

Œf �˛ WD sup
x¤y

kf .x/ � f .y/k

d.x; y/˛
: (A.1)

Observe that the 1-Hölder seminorm is the Lipschitz seminorm whilst the 0-Hölder semi-
norm is the total oscillation. The C 0;˛-norm is then defined by

kf kC0;˛ WD kf kC0 C Œf �˛: (A.2)

More generally, when X is a riemannian manifold, which for convenience we take to be
locally isometric to Rm for some m, for all .k; ˛/, the C k;˛-norm of a k-times differen-
tiable function f W X ! E is defined by

kf kCk;˛ WD

kX
iD0

kDif kC0 C ŒD
kf �˛: (A.3)

Observe, in particular, that for all k � 1,

kf kCk;˛ D kf kC0 C kDf kCk�1;˛ : (A.4)

This recurrence relation will be useful for the induction arguments that we will invoke
presently. For all .k; ˛/, let C k;˛.X;E/ denote the Banach space of functions with finite
C k;˛-norm. We readily obtain

Lemma A.1.1. For f; g 2 C 0;˛.X;E/,

kfgkC0;˛ � kf kC0;˛kgkC0;˛ : (A.5)

An induction argument, starting with Lemma A.1.1 and using (A.4), then yields

Lemma A.1.2. For all f; g 2 C k;˛.X;E/,

kfgkCk;˛ � .2
kC1
� 1/kf kCk;˛kgkCk;˛ : (A.6)

Now let � be an open subset of E. Define

Ok;˛.X;�/ WD
[
">0

Ok;˛
" .X;�/; (A.7)
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where, for all " > 0,

Ok;˛
" .X;�/ WD ¹f 2 C k;˛.X;E/ j d.f .x/;�c/ � " 8xº; (A.8)

Observe that Ok;˛.X;�/ is an open subset of C k;˛.X; E/. Given another Banach space
F and a suitably regular function ˆ W � ! F , define the composition operator Cˆ W
Ok;˛.X;�/! C k;˛.X; F / by

CˆŒf � WD ˆ ı f: (A.9)

Smoothness of composition operators over Hölder spaces is subtle for low regularity.
First, we have

Lemma A.1.3. If ˆ 2 C 1;1.�; F /, then Cˆ defines a continuous function from
O0;˛.X;�/ into C 0;˛.X; F /.

Proof. Without loss of generality, we may suppose that � is convex. Then, for all
f; f C g 2 O0;˛.X;�/, and for all x 2 X ,

CˆŒf C g�.x/ � CˆŒf �.x/ D
Z 1

0

CDˆŒf C sg�.x/g.x/ dx:

Thus, for all x; y 2 X ,

jCˆŒf C g�.x/ � CˆŒf �.x/ � CˆŒf C g�.y/C CˆŒf �.y/j

D

ˇ̌̌̌Z 1

0

CDˆŒf C sg�.x/g.x/ � CDˆŒf C sg�.y/g.y/ ds
ˇ̌̌̌

�

Z 1

0

ŒCDˆŒf C sg�g�˛ ds d.x; y/˛

�

Z 1

0

.ŒDˆ�1Œf C sg�˛kgkC0 C kDˆkC0 Œg�˛/ ds d.x; y/
˛;

so that
ŒCˆŒf C g� � CˆŒf ��˛ � kˆkC1;1.Œf �˛ C Œg�˛/kgkC0;˛ :

Since
kCˆŒf C g� � CˆŒf �kC0 � kˆkC0;1kgkC0 ;

continuity now follows.

Lemma A.1.4. Ifˆ 2C 2;1.�;F /, then Cˆ defines a continuously differentiable function
from O0;˛.X;�/ into C 0;˛.X; F / with derivative given by

.D CˆŒf �g/.x/ D CDˆŒf �.x/g.x/: (A.10)

Proof. Without loss of generality, we may suppose again that � is convex. Define ‰ W
O0;˛.X;�/2 ! C 0;˛.X; F / by

‰Œf; g� WD CDˆŒg� � CDˆŒf �:
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By Lemma A.1.3, ‰ is continuous. By the fundamental theorem of calculus, for all
f; f C g 2 O0;˛.X;�/ and for all x 2 X ,

CˆŒf C g�.x/ � CˆŒf �.x/ D
Z 1

0

CDˆŒf C sg�.x/ ds g.x/

D

Z 1

0

‰Œf; f C sg�.x/ ds g.x/C CDˆŒf �.x/g.x/:

By continuity, the curve s 7! ‰Œf; f C sg� is integrable as a curve taking values in the
Banach space C 0;˛.X; F /. Furthermore, by convexity of the norm,



Z 1

0

‰Œf; f C sg� ds






C0;˛
�

Z 1

0

k‰Œf; f C sg�kC0;˛ ds � sup
s2Œ0;1�

k‰Œf; f C sg�kC0;˛ :

Since ‰ vanishes when g D f , this tends to 0 as g tends to f , and the result now follows
by Lemma A.1.1.

Lemma A.1.5. If ˆ 2 C kC1;1.�; F /, then Cˆ defines a continuous function from
Ok;˛.X;�/ into the space C k;˛.X; F /.

Proof. We prove this by induction on k. By Lemma A.1.3, the result holds when k D 0.
Moreover, by the chain rule, for all f 2 OkC1;˛.X;�/,

D.CˆŒf �/ D CDˆŒf �Df:

It follows by Lemma A.1.2 and the induction hypothesis that the operator f 7! D CˆŒf �
defines a continuous function from OkC1;˛.X; E/ into C k;˛.X; Lin.Rn; F //. Since Cˆ
trivially defines a continuous function from OkC1;˛.X;E/ into C 0.X;F /, the result now
follows by (A.4).

In the same manner, we obtain

Lemma A.1.6. If ˆ 2C kC2;1.�;F /, then Cˆ defines a continuously differentiable func-
tion from Ok;˛.X;�/ into C k;˛.X; F / with derivative given by (A.10).

Finally, by induction on l , we obtain

Lemma A.1.7. If ˆ 2 C kClC1;1.�;F /, then Cˆ defines a C l function from Ok;˛.X;�/

into C k;˛.X; F /.

We leave the reader to verify that when k � 1, a more straightforward argument shows
that Cˆ is of class C l whenever ˆ is of class C kCl;ˇ for some ˇ > ˛. Furthermore,
this condition is sharp in the sense that there exist functions ˆ, of class C kCl;˛ , for
which Cˆ is not l-times continuously differentiable. However, when k D 0, we do not
know whether the hypotheses of Lemma A.1.3 may be relaxed or whether the technical
arguments of this appendix may be bypassed. This merely formal concern is moot for
geometric applications where we rarely, if ever, are concerned with functions which are
not smooth. That said, when studying curvature problems, it is generally more elegant to
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work with functions of class C 2;˛ , being the minimal Hölder regularity required to apply
analytic techniques. The arguments presented in this appendix then become necessary
when the curvature problems in question involve totally non-linear, second-order, partial
differential operators, since the second derivatives of such functions are of class C 0;˛ and
compositions of these derivatives by smooth functions could not otherwise be assumed to
define smooth operations over function spaces. There is not a single situation we know
of where this subtlety cannot be easily bypassed by working with functions of greater
regularity. Nevertheless, it is clearly important to be formally correct.
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