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Abstract. In this paper, we focus on the following question. Assume � is a discrete Gaussian
free field (GFF) on ƒ � 1

nZ2 and that we are given eiT� , or equivalently � .mod 2�=T /. Can
we recover the macroscopic observables of � with o.1/ precision? We prove that this statistical
reconstruction problem undergoes the following Kosterlitz–Thouless type phase transition:

� If T < T�rec , one can fully recover � from the knowledge of � .mod 2�=T /. In this regime our
proof relies on a new type of Peierls argument which we call annealed Peierls argument and
which allows us to deal with an unknown quenched ground state.

� If T > TCrec, it is impossible to fully recover the field � from the knowledge of � .mod 2�=T /.
To prove this result, we generalize the delocalization theorem by Fröhlich–Spencer to the case of
integer-valued GFF in an inhomogeneous medium. This delocalization result is of independent
interest and we give an application of our techniques to the random-phase sine-Gordon model
in Appendix B. Also, an interesting connection with Riemann theta functions is drawn along the
proof.

This statistical reconstruction problem is motivated by the two-dimensional XY and Villain models.
Indeed, at low temperature T , the large scale fluctuations of these continuous spin systems are
conjectured to be governed by a Gaussian free field. It is then natural to ask if one can recover the
underlying macroscopic GFF from the observation of the spins of the XY or Villain model.

Another motivation for this work is that it provides us with an “integrable model” (the GFF)
that undergoes a KT transition.
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1. Introduction

1.1. Main result

We work on the graph
ƒn WD Œ�1; 1�

2
\
1

n
Z2
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and for functions f; g W ƒn ! R, we denote

hf; gi WD
X
x2ƒn

f .x/g.x/: (1.1)

For each n � 1, �n will denote a GFF1 on ƒn. Recall that for any smooth function f W
Œ�1; 1�2 ! R,

1

n2
h�n; f i ! .ˆ; f / in law as n!1; (1.2)

where ˆ is a continuous GFF in Œ�1; 1�2, and .ˆ; f / “WD
R
ˆ.x/f .x/ dx”. This tells

us that the macroscopic observables related to �n are random variables of the form
n�2h�n; f i.

Fig. 1. If you are given the values of a function f modulo 1 (left), can you reconstruct what f is
(right)? If f is smooth as in this example, surely you can. But what if f is an instance of a 2d
Gaussian free field? Analyzing this statistical reconstruction problem is the aim of this paper.

The main focus of this paper is to understand when we can recover the full macro-
scopic information on �n by just knowing exp.iT�n/, or equivalently �n .mod 2�=T /.
In Section 1.3 we will give several motivations which lead us to consider this problem. We
now state our main result which shows that this statistical reconstruction problem under-
goes a phase transition as T varies, which is reminiscent of the Berezinskii–Kosterlitz–
Thouless transition .KT transition/ (see Section 2.3).

Theorem 1.1. Let �n be a GFF on ƒn with Dirichlet boundary condition. Then there
exist 0 < T �rec � T

C
rec <1 with the following properties:

(a) If T < T �rec, then there exists a .deterministic/ reconstruction function FT such that
for any continuous function f W Œ�1; 1�2 ! R and any " > 0,

P Œjn�2hFT .exp.iT�n// � �n; f ij � "�! 0 as n!1:

1With either free or Dirichlet boundary condition. We introduce all the relevant definitions in
Section 2.



Statistical reconstruction of the GFF and KT transition 641

Furthermore, uniformly in n there exist constants C; QC > 0 such that for any x; y in
ƒn � Œ�1; 1�

2,

E
��
FT .exp.iT�n//.x/ � �n.x/

�2�
� C; (1.3)

E
��
FT .exp.iT�n//.x/ � �n.x/

��
FT .exp.iT�n//.y/ � �n.y/

��
� e�

QCkx�ykn:

(1.4)

(b) If T > TCrec, then for any .deterministic/ function F and any continuous non-zero
function f there exists ı > 0 such that

lim inf
n!1

P Œjn�2hF.exp.iT�n// � �n; f ij � ı� > 0:

Also, for any x 2 .�1; 1/2, there exists c D c.T; x/ > 0 such that for any F ,

lim inf
n!1

E
��
F.exp.iT�n//.x/ � �n.x/

�2�
� c.T; x/ logn: (1.5)

Let us remark that the recovery function FT from the theorem refers to a non-local
function of the whole field �. In fact, it is completely non-local, that is, for any x 2 ƒn,
FT .exp.iT�n//.x/ depends on all vertices ƒn. It is an interesting question to try to find
the recovery function that minimizes this dependence.

The same result holds for a free-boundary GFF.

Theorem 1.2. Let �n be a GFF on ƒn WD Œ�1; 1�2 \ 1
n

Z2 with free boundary condition
and rooted at a vertex x0 2 ƒn. Then there exist 0 < T �rec � T

C
rec <1 with the following

properties:

(a) If T < T �rec, then there exists a reconstruction function FT such that for any smooth
function f with zero mean .i.e.,

R
Œ�1;1�2

f D 0/ and any " > 0,

P
�ˇ̌
n�2

�
FT .exp.iT�n// � �n; f

�ˇ̌
� "

�
! 0 as n!1:

(b) If T > TCrec, then for any function F and any smooth non-zero function f with zero
mean there exists ı > 0 such that

lim inf
n!1

P
�ˇ̌
n�2

�
F.exp.iT�n// � �n; f

�ˇ̌
� ı

�
> 0:

In fact, in the case of free boundary condition, one also has the equivalent statement
of (1.3) and (1.5). However, there is an important difference between both boundary con-
ditions. We do not expect the equivalent of (1.4) to be true for the free case. The main
reason is that the conditional law of �n given eiT�n may be decomposed as a convex
combination of the laws of �kn for k 2 Z, where for each of the fields �kn one has (1.4).
However, the law of �kn is not centered (see Remark 3.8).

We now state two corollaries of the above theorems. The first one rephrases this phase
transition in terms of the continuum GFF. The second one (which will give support to
Conjectures 3 and 4 in Section 6) shows that one can recover macroscopic interfaces from
� .mod 2�=T / when T < T �rec.
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Corollary 1.3. Let �n be a sequence of GFFs in ƒn such that, in probability, �n tends to
a continuum GFF ˆ in Œ�1; 1�2. If T < T �rec, then the function FT .eiT�n/ converges in
probability to ˆ. Furthermore, if T > TCrec there is no deterministic function F such that
F.eiT�n/! ˆ.

Corollary 1.4. Let �n be a sequence of GFFs in ƒn, and let �.n/ be the Schramm–
Sheffield level line2 of �n. Then there exists a deterministic function LT such that
the Hausdorff distance between LT .exp.iT�n// and �.n/ is o.1/. In particular,
LT .exp.iT�n// converges in law to an SLE4.

Our work naturally belongs to the class of statistical reconstruction problems which
have been the subject of an intense activity recently. For example, it shares similarities
with the statistical reconstruction problems analyzed in [1, 25, 35]. In particular, in [1],
the authors analyze the following problem: Imagine that each site x 2 Zd carries a spin
or an element �x of a compact group S (for example ¹˙1º or O.n/). The question they
are interested in is the following: what macroscopic information on ¹�xºx2Zd can be
recovered from the knowledge of

¹�i�
�1
j C noiseºi�j; edges of Zd

where observations of neighboring spins �i��1j are subjected to a small noise? Our setting
is very similar in flavor, as we also have access to �n.i/ � �n.j / when i � j except that
the noise term is replaced in our case by the modulo operation, .mod 2�=T /. Similarly
to adding a noise term, applying .mod 2�=T / also reduces the information we have on
�n.i/� �n.j /, and it cannot be analyzed as a convolution effect. Another difference with
[1] is that our spins belong to R instead of a compact group S.

1.2. Fluctuations for integer-valued fields

Our present statistical reconstruction problem is intimately related to a generalization
of the integer-valued Gaussian free field which plays a key role in the proof of the KT
transition for the Villain and XY models in [21]. Let us briefly recall the classical integer-
valued GFF before introducing its generalization.

For simplicity, in this subsection as well as in Sections 2.3, 4 and Appendix A, we will
consider an arbitrary finite subsetƒ�Z2, instead of the scaled boxƒnD 1

n
Z2 \ Œ�1;1�2.

This matches the setup in [21, 27].

Definition 1.5. Let ƒ � Zd be a finite domain.3 An integer-valued GFF (IV-GFF) on ƒ
with Dirichlet boundary condition, i.e. 0 on @ƒ, and inverse temperature ˇ is a ˇ-GFF
¹�.i/ºi2ƒ conditioned on the singular event ¹�.i/ 2 Z; 8i 2 ƒº. Equivalently, it is the

2For the definition and the context used in this corollary see Section 6.2.
3Again, the GFF as well as the graph notations @ƒ etc. are defined in Section 2.
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probability measure P IV
ˇ;ƒ

on Zƒ defined as follows:

P IV
ˇ;ƒ.d�/ WD

1

Z

X
m2ZƒWmj@ƒD0

ım.d�/ exp
�
�
ˇ

2
hr�;r�i

�
(1.6)

or also, to avoid any possible confusion, for any m 2 Zƒ with zero boundary condition,
we have P IV

ˇ;ƒ
.� D m/ D 1

Z
exp.�ˇ

2
hrm;rmi/.

An IV-GFF with free boundary condition is defined in the same manner except that
we replace mj@ƒ � 0 by m.x0/ D 0 for any choice of root vertex x0 2 ƒ.

This integer-valued field undergoes a roughening-phase transition as T increases (i.e.
as ˇ decreases), as proved by Fröhlich–Spencer [21] (see also the very useful survey [27]).
Fröhlich–Spencer proved this striking phase transition for periodic and free boundary
conditions on large square boxesƒ and explained in [21, Appendix D] how to adapt their
proof to the case of the Dirichlet boundary condition. Very recently, Wirth has written
carefully in [45, Appendix A] the details of this extension to the Dirichlet boundary con-
dition. We will come back to it later in Section 2.3. (See also Figure 2 for an illustration
of the IV-GFF for d D 1.)

Fig. 2. Left: An instance of an IV-GFF for d D 1 on a unit interval ¹0; : : : ; nº with Dirichlet
boundary condition. For d D 2, the proof of the roughening phase transition for the IV-GFF in [21]
(and [45] for the extension to the Dirichlet boundary condition) easily generalizes to certain shifts
and scaled versions on the vertical fibers Z as illustrated in the other pictures. Middle: Some fibers
are Z, some others are 2Z and one may also add fibers with arbitrarily fine meshes 2�kZ along
the interval. Right: Some fibers are Z for while some others are 1

2 C Z. It is easy to check that for
d D 2, any of these can be handled with the techniques from [21].

Theorem 1.6 (Fröhlich–Spencer [21]). There exist4 0 < ˇC � ˇ� <1 such that for any
squareƒ � Z2, if we consider an IV-GFF with free boundary condition rooted at x0 2 ƒ
then we have the following dichotomy:

� (Delocalized (rough) regime) If ˇ < ˇC, then for any f Wƒ!R with
P
i2ƒ f .i/D 0,

E IV
ˇ;ƒŒe

h�;f i� � e
1
4ˇ
hf;.��/�1f i:

4The choice ˇC � ˇ� is made to highlight that these are inverse temperatures related to
T�rec � T

C
rec.
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.It is not hard to extract, from this Laplace transform estimate, fluctuation bounds
such as E IV

ˇ;¹�n;:::;nº2; x0D0
Œ�2.x/� � c

ˇ
log kxk2 for any x 2 ¹�n; : : : ; nº2; see for

example [27]./

� (Localized regime) If ˇ > ˇ�, then for any x 2 ƒ,

E IV
ˇ;ƒ;x0

Œ�2.x/� � C=ˇ:

The relationship between our statistical reconstruction problem and integer-valued
fields is due to the following explicit structure of the conditional law of a GFF given
its values modulo 2�=T . We stick for simplicity to the case of the Dirichlet boundary
condition. Let us fix a 2 Œ0; 1/ƒ satisfying aj@ƒ � 0. We will see in Lemma 2.8 that the
conditional law of the GFF � on ƒ given � .mod 2�=T / D 2�

T
a is a multiple of the

following generalized integer-valued GFF with ˇ D ˇT WD .2�/2 T �2 (see Lemma 2.8
for a precise statement).

Definition 1.7. Let ˇ > 0 and a D ¹aiºi2ƒ with aj@ƒ � 0 be any collection of real num-
bers. We define an a-IV-GFF on ƒ to be a GFF ¹�.i/ºi2ƒ (with Dirichlet boundary
condition) conditioned to take its values in the shifted fibers ¹ai C Zºi2ƒ for any i 2 ƒ.
It corresponds to the following discrete probability measure on fields:

P a;IV
ˇ;ƒ

Œd�� WD
1

Z

X
m2ZƒWmj@ƒ�0

ımCa.d�/ exp
�
�
ˇ

2
hr.�/;r.�/i

�
:

Equivalently, for any m 2 Zƒ with mj@ƒ � 0,

P a;IV
ˇ;ƒ

Œ� D mC a� D
1

Z
exp

�
�
ˇ

2
hr.mC a/;r.mC a/i

�
: (1.7)

Notice that if a 2 Zƒ, then the a-IV-GFF is nothing but the standard IV-GFF. See Figures
2 and 3. Finally, this definition extends readily to the free boundary condition in which
case a 2 Rƒ with ax0 D 0.

The proof of Fröhlich–Spencer [21] readily extends to some specific choices of the
shift a which are sufficiently symmetric (i.e. any a 2 ¹0; 1=2ºƒ). See Figure 2 for an
illustration (for d D 1 only) of the cases which can be analyzed using the techniques
from [21] and Figure 3 for the cases which need further analysis. See also Remark 2.7.
Our main result on such integer-valued fields is the following extension of the above
theorem of Fröhlich and Spencer [21].

Theorem 1.8. There exists ˇIV
c >0 and a constantC > 0 such that for any square domain

ƒ � Z2, any ˇ < ˇIV
c , uniformly5 in a 2 Rƒ, if �a � P a;IV

ˇ;ƒ
.with either Dirichlet or free

bondary condition/ we have:

5With aj@ƒ � 0 for Dirichlet boundary condition and ax0 D 0 for free boundary condition.
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x 7→ 1
3x

k 7→ k
3 + Z

Fig. 3. As opposed to the examples in Figure 2, these choices of fibers do not satisfy the sufficient
symmetries to be readily analyzed by the techniques from [21]. The simplest such example is the
picture on the left where Z fibers are shifted by ¹0; 1=3; 2=3º (here a WD .k=3/k2Z). In such a case,
sin.k�/ functions appear in the Fourier transform of the periodic distribution

P
i21=3CZ ıi and

this breaks the parity. For such linear shifts, Wirth [45] obtained some related bounds using a nice
symmetrization trick (however, even in this linear case, these bounds give different control from the
one we need here, see Remark 2.7). A key property used in [45] is that x 7! ax has to be harmonic
in ƒ n @ƒ. Otherwise the symmetrization technique breaks down and one cannot rely anymore on
Jensen’s inequality, a key step in the proof of [21]. For example the picture on the right where fibers
are shifted by a quadratic curve requires an additional analysis beyond [21].

� For any function f 2 Rƒ,

VarŒh�a; f i� �
C

ˇ
hf; .��/�1f i;

where the inverse of the Laplacian is taken according to the boundary conditions

� If ƒ D ¹�n; : : : ; nº2 with Dirichlet boundary condition, the variance of the field �a at
the origin satisfies

VarŒ�a.0; 0/� �
C

ˇ
logn:

The analogous statement also holds for the free boundary condition.

Remark 1.9. We wish to stress that the low-temperature regime (ˇ � 1) happens to
be much less universal in the choice of the shift a. Indeed, when ƒ D ¹�n; : : : ; nº2 is
equipped with the Dirichlet boundary condition, and if �a � P a;IV

ˇ;ƒ
, then we expect that the

following different scenarios may happen .by tuning suitably a in each case/ as n!1
(see for example Figure 5 for scenario .1/):

(1) EŒ�a.0; 0/� � 0:49n.

(2) VarŒ�a.0; 0/� � .0:49/2n.

(3) VarŒ�a.0; 0/� � O.1/ and CovŒ�a.x/; �a.y/� � e�cnkx�yk2 .

Remark 1.10. Let us note that we do not obtain a lower bound on the Laplace transform
of the integer-valued GFF, i.e., on

Ea;IV
ˇ;ƒ

Œeh�
a;f i�:
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We only obtain bounds on the L2 behavior of h�a; f i. These bounds are, in fact, suf-
ficient to detect localization vs. delocalization. This is also the case in the recent works
mentioned below on localization/delocalization of integer-valued random surfaces.

As we will see in Section 4 and particularly in Appendix A, our proof of Theorem 1.8
involves an exact identity (Proposition 4.1) which is closely related to the modular invari-
ance identity for Riemann theta functions (see also [2] for another use of such identities
in probability). We briefly mention this connection here as it is interesting in its own right
and it allows us to rephrase the Fröhlich–Spencer Theorem as well as our Theorem 1.8
easily in terms of those Riemann theta functions.

Indeed, the following function of a 2 Rƒn@ƒ:

Q�ƒ.a/ WD
X

m2Zƒn@ƒ

exp
�
�
ˇ

2
hm; .��/mi

�
exp.�ˇm � a/

can be easily written in terms of the classical Riemann theta function �.z j�/ (see (A.4)).
Furthermore, one can check that for any f W ƒ! R and if �a � P a;IV

ˇ;ƒ
, we have

VarŒh�a; f i� D Œ� � ra � � ra� log Q�ƒ;

where � WD 1
ˇ
.��/�1f . This expression clarifies the effect of the shift vector a 2 Rƒ

and reveals that it plays the role of an exterior magnetic field. We may now rephrase
Fröhlich–Spencer as well as our main result from this section as follows:

� (Theorem 1.6) If ˇ is small enough, then uniformly in ƒ D ¹�n; : : : ; nº2,

Œ� � ra � � ra�a�0 log Q�ƒ �
C

ˇ
hf;���1f i:

� (Theorem 1.8) If ˇ is small enough, then uniformly in ƒ D ¹�n; : : : ; nº2,

inf
a2Rƒn@ƒ

� � ra� � ra.log Q�ƒ/ �
C

ˇ
hf;���1f i:

Finally, let us point out that over the last few years, there have been several important
works which analyzed the roughening phase transition (i.e. localization/delocalization)
for other natural models of integer-valued random fields, such as the square-ice model
and the uniformly chosen Lipschitz functions Z2 ! Z; see in particular the recent works
[13, 17, 18, 24]. These works do not rely on the Coulomb-gas techniques from [21] but
rather on geometric techniques such as RSW.

1.3. Motivations behind the statistical reconstruction problem

As we will see below, one of the main reasons which lead us to consider this statistical
reconstruction problem on the GFF has to do with the statistical analysis of the XY and
Villain models for d D 2. These are celebrated models with continuous O.2/-symmetry.
We briefly define them and refer the reader to [10, 20, 21, 27] for useful background.



Statistical reconstruction of the GFF and KT transition 647

Definition 1.11 (Villain and XY models). Let us fix a finite graph ƒ � Z2 and ˇ > 0

to be the inverse temperature. Both models are Gibbs measures on the state space .S1/ƒ.
Let us parametrize this spin space via its canonical identification with Œ0; 2�/ƒ.

� XY model (or plane rotator model):

dP XY
ˇ Œ¹�xºx2ƒ� /

Y
i�j

exp.ˇ cos.�i � �j //
Y

d�i : (1.8)

� Villain model:

dP Villain
ˇ Œ¹�xºx2ƒ� /

Y
i�j

X
m2Z

exp
�
�
ˇ

2
.2�mC �i � �j /

2

� Y
d�i :

We may now list the main motivations which guided our work.

(1) Extracting macroscopic random structures from XY and Villain spins. For spin sys-
tems such as the Ising model, Potts models or percolation, which all have discrete symme-
tries, it is clear how to associate natural macroscopic fluctuating objects such as interfaces
which may then converge to suitable SLE� as the mesh goes to zero. On the other hand, for
spin systems with continuous symmetry such as XY or Villain models, given a realization
of the Gibbs measure, say ¹�xºx2ƒ with �x 2 S1, it is much less clear what macroscopic
objects one may assign to ¹�xº.

One consequence of our present statistical reconstruction problem is that it gives
strong evidence to the fact that it is possible to extract a macroscopic GFF �n from the
observation of the spins ¹�xºx2¹�n;:::;nº2 (up to small microscopic errors).

Indeed, at least in the case of the Villain model, it has been conjectured by Fröhlich–
Spencer [22, Section 8.1] that at low temperature (ˇ � 1), up to “microscopic errors”,
one should have

¹�xºx2¹�n;:::;nº2 � P Villain
ˇ

law
�

²
exp

�
i
1p
ˇ0
�n.x/

�³
x2¹�n;:::;nº2

;

where ˇ0 D ˇ0.ˇ/ satisfies jˇ0 � ˇj � e�Cˇ and where �n is a GFF on ¹�n; : : : ; nº2 with
either free or zero boundary condition.

Once one realizes that one may extract a GFF out of the spins ¹�xºx2ƒn , it is natural
to extract level lines and flow lines from this GFF studied in [16,30,40]. Corollary 1.4 is a
realization of this idea. We discuss this further in Section 6.2 where we highlight how our
work led us to conjecture that when ˇ is high enough, the natural interface for the Villain
model pictured in Figure 4 should converge to an SLE.4; �/ process.

(2) A different interpretation of the KT transition. The classical way of understanding the
KT transition for spin systems such as the XY model is to notice that vortices (� discrete
2-forms) come into the energy balance when analyzing the Gibbs measure (1.8). The
present work gives the following different interpretation of the role of the S1-geometry
within the KT transition which does not explicitly involve vortices. When the temperature
T is low, spins wiggle slowly around S1 and one should be able to recover a macroscopic
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Fig. 4. Conjectures 3 and 4 in Section 6.2 predict that at low temperature, the level lines of a
Villain model with ei=10 on the right boundary and e�i=10 on the left boundary should converge
to SLE.� D 4; �/ processes. Furthermore, the set of all interfaces should converge to the so-called
ALE (see Conjecture 6). These conjectures are supported by the present statistical reconstruction
problem as well as by the techniques we have used.

GFF as we have seen in item (1) above. If instead the temperature T is large, the spins
start wiggling too quickly around S1 so that one cannot extract the whole macroscopic
fluctuating Gaussian field � which lives on the top of the spin field. Hence, one may
interpret the KT transition in the case of the GFF as the sudden absence of a statistical
estimator to recover the macroscopic field �. Also, as the true XY field is not exactly
given by the complex exponential of a GFF, this statistical reconstruction problem gives
a new example which belongs to the KT universality class (at least conjecturally, as we
have not proved anything regarding the behavior of a suitable notion of correlation length
for this problem).

(3) An integrable model for integer-valued GFF. The main tool we use for the regime
T > TCrec is the proof of delocalization for the generalized IV-GFF �a � P a;IV

ƒ from Defi-
nition 1.7. We think of a as the random vector ¹aiºi2ƒ 2 Œ0; 1/ƒ defined by

ai WD
T

2�
�i .mod 1/; 8i 2 ƒ;

where � is a GFF in ƒ. Hence, we may view the random measure P a;IV
ƒ as a quenched

measure on (shifted) integer-valued fields. Interestingly, these highly non-trivial quenched
measures have (by construction) a very simple annealed measure. Indeed, Lemma 2.8
readily implies that Z

P IV;a
ˇT ;ƒ

Œd�� PT .da/ D P GFF
ˇT

Œd��; (1.9)

where we denote by PT .da/ the law of the above random shift a and ˇT D .2�/2=T 2.
If one now assumes that some properties (such as fluctuations) are not very sensitive to a,
this identity gives a “useful laboratory” to analyze the classical integer-valued GFF (i.e.
a � 0). A first illustration of this is given in Section 5 where we provide a new insight on
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the " D ".ˇ/ correction in the bound of Fröhlich–Spencer. A second illustration is given
in the item below.

(4) Random-phase sine-Gordon model. As pointed out to us by Tom Spencer, our work
is closely related to the random-phase sine-Gordon model. This is a model of random
interface with quenched disorder which has been studied extensively in physics and which
is conjectured to exhibit a striking super-roughening behavior at low temperature (see for
example [12, 29]). As we shall explain in Appendix B, our proof of Theorem 1.8 easily
extends to the setting of the random-phase sine-Gordon model and allows us to prove
logn fluctuations in the high-temperature phase of this model (see Theorem B.3).

(5) Imaginary multiplicative chaos. In this work we focus on lattice fields � W ƒ! R or
ƒn ! R, but the question in the continuum is also interesting. Namely, given a Gaussian
free field ˆ on Œ�1; 1�2 with zero boundary condition, can one recover ˆ from Wei˛ˆW?
This is the complex analog of the reconstruction procedure WeˆW 7! ˆ studied in [11].
We discuss this further in Section 6.1, where we show that the existence of a continuous
reconstruction process in the imaginary case implies the existence of a discrete recon-
struction process. However, let us highlight that even if this continuum process does exist,
the discrete reconstruction process coming from it will converge much slower (o.1/) than
the one we obtain in Theorem 1.1 using statistical mechanics (i.e. O.1=n2/, see Propo-
sition 3.9). Also, as opposed to the discrete setting where a transition arises, we do not
expect in the continuum a regime where Wei˛ˆW exists and yet the statistical reconstruc-
tion of ˆ breaks down. (After the first version of this work appeared, the reconstruction
problem in the continuum was solved in the beautiful recent work [5] using completely
different tools.)

1.4. Idea of the proof

The first choice one needs to make in the proof is the reconstruction function FT . We have
essentially two natural choices here (see Figure 5 for an illustration of both).

(1) First, if a WD T
2�
.� .mod 2�=T //, then there is an a.s. unique ground state6 for P a;IV

ˇ

which we may call

Om.exp.iT�// D Om.exp.2i�a//

WD argminm2Zƒ exp
�
�
ˇ

2
hmC a;��.mC a/i

�
:

It is reasonable to guess that when T is small, the field � should not fluctuate much
around Om.exp.iT�//.

(2) A second natural choice is to consider instead the conditional expectation of the field
given exp.iT�/.

6From the point of view of the statistical reconstruction, the ground state should be read as the
maximum-likelihood estimator.
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β1

β2

β = ∞

Fig. 5. Here ak WD k=3 on the LHS of the picture and then the slope is �k=3. It is easy to check
that the ground state Om for the GFF conditioned to have its values in these shifted fibers is given by
the purple curve ˇ D 1. Then, as ˇ decreases, the expectation x 7! E a;IV

ˇ
Œ�a.x/� can be seen to

decrease to 0.

The quenched groundstate Om.exp.iT�// does not have enough symmetries to apply clas-
sical tools from Peierls theory and we are too far from the perturbative regime where
Pirogov–Sinai theory can be used (see [20, Chapter 7]).

Therefore, for the low-temperature regime in the proofs of Theorems 1.1 and 1.2, we
will recover the GFF given its phase via the second choice, i.e.,

FT .exp.iTˆ//.x/ WD EŒ�.x/ j exp.iT�/�:

It is not easy to study this function F directly. However, for any test function f we can
use Markov’s inequality to see that

P
�
jh� � FT .exp.iTˆ//; f ij � "

�
�

E
�
VarŒh�; f i j exp.iT�/�

�
"2

: (1.10)

This implies that to understand how well F approximates � it is enough to bound the
conditional variance of h�; f i given exp.iT�/. Working with the conditional variance is
much easier than to work with F directly. This is because one can study it by coupling two
GFFs .�1; �2/ such that exp.iT�1/D exp.iT�2/ in such a way that they are conditionally
independent given exp.iT�/ (see Definition 3.1). This is useful because

E
�
VarŒh�; f i j exp.iT�/�

�
D

1
2
EŒh�1 � �2; f i

2�: (1.11)

As this function does not involve any estimate of the function F , and both �1 and �2
have the law of a GFF, we set up an appropriate annealed Peierls argument to show in
Section 3 that (1.11) is small when T is small.

The second part of Theorems 1.1 and 1.2 also follows from similar ideas with a “sta-
tistical flavor”. In fact, we are going to show that for any f there exists an " > 0 such that
for all n large enough,

E
�
VarŒh�; f i j exp.iT�/�

�
� "VarŒh�; f i�: (1.12)
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This, together with some basic tension argument, implies that the probability that h�1; f i
is macroscopically different from h�2; f i is uniformly positive.

To obtain (1.12), we need to modify the work of Fröhlich and Spencer [21]. In this
seminal paper, the authors showed that the integer-valued GFF has variance similar to that
of the GFF when the temperature is high enough. In our case, in Section 4 we will prove
a result with a similar taste (Theorem 1.8) that will uniformly show that when T is high
enough, for any realization of exp.iT�/,

VarŒh�; f i j exp.iT�/� � "VarŒh�; f i�: (1.13)

This can be read, in the context of [21], as the study of integer-valued GFF in an inhomo-
geneous medium.

2. Preliminaries

2.1. Discrete differential calculus

We start by discussing the basics of discrete differential calculus. As the only graph we
work with in this paper is ƒn WD Œ�1; 1� \ 1

n
Z2 with its canonical edge set, we only

discuss the needed results in this framework. For simplicity we identifyƒn with its vertex
set and we denote by Eƒn its edge set. For a deeper discussion of discrete differential
calculus, we refer the reader to [14].

In this section, we study two types of functions: functions on vertices, S W ƒn ! R,
and functions on directed edges, A W EE ! R. Functions on vertices can take any values,
while functions on directed edges have to always satisfy

A.�!xy/ D �A.�!yx/: (2.1)

Let us now present two canonical differential operators

rS.�!xy/ D S.y/ � S.x/; (2.2)

r � A.x/ D
X
�!
xy

A.�!xy/: (2.3)

Then one can write the Laplacian of S as follows:

�S.x/ D r � rS.x/ D
X
y�x

S.y/ � S.x/: (2.4)

Furthermore, we say that a function S W ƒn ! R is harmonic over a set A � ƒn if for
any x 2 A, �S.x/ D 0.

For a pair of functions S1; S2 W V ! R on vertices, or A1; A2 W EE ! R on edges, we
define

hS1; S2i WD
X
x2V

S1.x/S2.x/; hA1; A2i WD
1

2

X
�!
xy

A1.
�!xy/A2.

�!xy/:

Furthermore, we define
hS1; S2ir D hrS1;rS2i:
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Let us remark that the differentials r and �r� are dual to each other, i.e.,

hrS;Ai D hS;�r � Ai: (2.5)

Thanks to this, we can easily see that �� is a positive definite operator.

Definition 2.1 (Inverse of the Laplacian). We fix a subset @ƒn � ƒn and we call it the
boundary. If @ƒn¤;, then for any function S1 Wƒn n @ƒn!R there is a unique function
S2 W ƒn ! R such that

��S2.x/ D S1.x/; 8x 2 V n @ƒn;

S2.x/ D 0; 8x 2 @ƒn:

In this case, we call S2 WD .���1/S1.

The inverse of the Laplacian operator can be understood thanks to the Green’s function

G.x; �/ D ���1.1x/: (2.6)

When necessary, we will add a superscript to make explicit the boundary conditions ofG.
Let us recall a classical result for the Green’s function in dimension 2.

Proposition 2.2. For the graph ƒn and for both free and zero boundary condition and
for any x; y 2 ƒn,

G.x; x/ D C log.d.x; @ƒn//CO.1/; (2.7)

where C does not depend on any other parameter.

2.2. The Gaussian free field

In this subsection, we introduce the GFF and some of the properties we use throughout
the paper. For a more detailed discussion of the GFF, we refer the reader to [41, 42].

Let us fix a boundary set @ƒn. A GFF with zero boundary condition on @ƒn is a
random function � W V ! R such that

P ..�.v/ 2 dxv/v2ƒn/ / exp
�
�
h�; �ir

2

� Y
v2ƒnn@ƒn

dxv
Y
v2@ƒn

ı0.dxv/:

We say that � is a GFF with free boundary condition if @ƒnD ¹x0º for some x0 2ƒn.
We say that � is a GFF with zero (or Dirichlet) boundary condition if

@ƒn WD ¹x 2 ƒn W jRe.x/j D 1 or jIm.x/j D 1º;

in other words, the points in ƒn that are on the boundary of Œ�1; 1�2. Here, we interpret
ƒn as a subset of the complex plane C.

An important equivalent characterization of the GFF is as the centered Gaussian pro-
cess with covariance

EŒ�.x/�.y/� D G.x; y/;
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where the boundary values of the Green’s function are associated with the boundary val-
ues of the GFF.

A key property to understand the GFF is its Markov property.

Proposition 2.3 (Weak Markov property). Let � be a GFF in ƒn with zero boundary
condition in @ƒn. Furthermore, let B be a subset of the vertices of ƒn. Then there are
independent random functions �B and �B such that � D �B C �B and

(1) �B is harmonic in ƒn n B;

(2) �B is a GFF in ƒn with zero boundary condition on @ƒn [ B .

Let us now define a white noise on the edges of ƒn.

Definition 2.4 (White noise). A white noise is a function on the directed edges of ƒn
such that W.Ee/ is a standard normal random variable independent of all other W.Ee0/ with
e ¤ e0.

The discrete gradient of the GFF has an interesting relationship to white noise. This
result can be found in [4] for this setting as well as in [3] for the same decomposition in
the continuous case.

Proposition 2.5. Let � be a GFF in ƒn. Then there exists a Gaussian process �.Ee/ inde-
pendent of � and such that

W WD r� C �

is a white noise in E. Furthermore,

� D ��1r �W:

2.3. Integer-valued Gaussian free field and the KT transition

In this section, we briefly explain how Fröhlich and Spencer proved their delocalization
Theorem 1.6, because we will rely on the technology they developed (an expansion into
Coulomb charges) later in Section 4. We refer the reader to the excellent review [27] from
which we borrow the notations. See [27] for the relevant definitions.

For simplicity, we fix a square domain ƒ � Z2 and we consider the case of free
boundary condition rooted at some vertex v 2 ƒ.

The proof by Fröhlich–Spencer can essentially be decomposed into the following suc-
cessive steps:

The first step is to view the singular conditioning ¹�i 2 2�Z;8i 2 ƒº using Fourier
series7 thanks to the identity

2�
X
m2Z

ı2�m.�/ � 1C 2

1X
qD1

cos.q�/:

7It is slightly more convenient to consider the GFF conditioned to live in .2�Z/ƒ rather
than Zƒ. Following [21, 27], we will stick to this convention here as well as in Section 4 and
Appendix A.
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To avoid dealing with infinite series, proceeding as in [27], we consider the approximate
IV-GFF

Pˇ;ƒ;vŒd�� WD
1

Zˇ;ƒ;v

Y
i2ƒ

�
1C 2

NX
qD1

cos.q�.i//
�
P GFF
ˇ;ƒ;vŒd��:

In fact, more general measures are considered in [21, 27]: they fix a family of trigono-
metric polynomials �ƒ WD .�i /i2ƒ attached to each vertex i 2 ƒ. These trigonometric
polynomials are parametrized as follows: for each i 2 ƒ,

�i .�/ D 1C 2

NX
qD1

O�i .q/ cos.q�.i//:

Now given a family of trigonometric polynomials �ƒ, they define

Pˇ;ƒ;�ƒ;vŒd�� WD
1

Zˇ;ƒ;;�ƒ;v

Y
i2ƒ

�i .�.i//P
GFF
ˇ;ƒ;vŒd��:

We mention this degree of generality to keep the same notations as in [21,27] and also so
that the reader will not get confused when consulting those references. Also, this degree
of generality will be useful later in Appendix B. Yet, in the present case, we will stick to
the case where O�i .q/ D 1 for all i 2 ƒ and 1 � q � N .

The second step in the proof is to fix a test function f W ƒ! R such that
P
i2ƒ f .i/

D 0 and to consider the Laplace transform of h�;f i, E
ˇ;ƒ;�ƒ;v

Œeh�;f i�. AsN !1, with
our choice of trigonometric polynomials,8 this will converge to the Laplace transform
E IV
ˇ;ƒ

Œeh�;f i�.
By a simple change of variables, this Laplace transform can be rewritten as

Eˇ;ƒ;�ƒ;vŒe
h�;f i� D

1

Zˇ;ƒ;�ƒ;v
exp

�
1

2ˇ
hf;���1f i

�
E GFF
ˇ;ƒ;v

hY
i2ƒ

�i .�.i/C�.i//
i
;

where the function � D �f will be used throughout and marked with a different color in
the computations. It is defined by

� WD
1

ˇ
Œ����1f: (2.8)

The main difficulty in the proof in [21] is in some sense to show that the shift � does
not have a dramatic effect compared to the exponential term exp. 1

2ˇ
hf;���1f i/ so that

ultimately,

E IV
ˇ;ƒŒe

h�;f i� � exp
�

1

2ˇ.1C "/
hf;���1f i

�
:

8Note that, in this section, instead of conditioning the GFF to be in Zƒ as in Definition 1.5, we
condition it to be in .2�Z/ƒ. Besides changing constants, this does not make much difference.
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From such a lower bound on the Laplace transform, one can easily extract delocalization
properties of the IV-GFF.

The third (and by far most difficult) step is to control the effect of the shift � via a
highly non-trivial expansion into Coulomb charges which enables us to rewrite the parti-
tion function as follows:

Zˇ;ƒ;�ƒ;v D
X

N2F

cN

Z Y
�2N

Œ1C z.ˇ; �;N / cos.h�; N�i/� d�GFF
ˇ;ƒ;v.�/:

We refer to [21, 27] for the notations used in this expression and in particular for the
concept of charges (i.e. � Wƒ!R), ensembles (i.e. sets N of mutually disjoint charges �)
etc.

One important feature of this expansion into charges is that under some (very general)
assumptions on the growth of the Fourier coefficients j O�i .q/j (see [21, (5.35)]), it can be
shown that the effective activities z.ˇ; �;N / decay fast, namely (see [27, (1.14)]),

jz.ˇ; �;N /j � exp
�
�
c

ˇ
.k�k22 C log2.diam.�/C 1//

�
:

Hence at high temperature, the partition function corresponds to a sum of positive mea-
sures. (Also the weights cN are positive and such that

P
cN D 1.)

Remark 2.6. In [27], the authors have introduced a slightly different definition of GFF
with free boundary conditions which makes the analysis behind this decomposition into
charges more pleasant (their definition handles the presence of non-neutral charges � very
easily). One can switch to their more convenient definition in our setting since in the limit
N !1, both give the same integer-valued GFF.

This crucial third step allows us to rewrite the Laplace transform E
ˇ;ƒ;�ƒ;v

Œeh�;f i� as
follows:

e
1
2ˇ
hf;���1f i

P
N2F cN

R Q
�2N Œ1C z.ˇ; �;N / cos.h�; N�i C h�; �i/� d�GFF

ˇ;ƒ;v
.�/P

N2F cN

R Q
�2N Œ1C z.ˇ; �;N / cos.h�; N�i/� d�GFF

ˇ;ƒ;v
.�/

:

We now rewrite this ratio as (thus defining ZN .�/ and ZN .0/)

Eˇ;ƒ;�ƒ;vŒe
h�;f i� D e

1
2ˇ
hf;���1f i

P
N2F cNZN .�/P
N2F cNZN .0/

:

The fourth step is an analysis, for each fixed ensemble N 2 F , of the above ratio
ZN .�/
ZN .0/

. Trigonometric inequalities are used here in order to obtain, for each N ,

ZN .�/

ZN .0/
� exp

h
�D4

X
�2N

jz.ˇ; �;N /jh�; �i2
i

�

Z
eS.N ;�/

ZN .0/

Y
�2N

Œ1C z.ˇ; �;N / cos.h�; N�i/� d�GFF
ˇ;ƒ;v.�/;
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where

S.N ; �/ WD �
X
�2N

z.ˇ; �;N / sin.h�; N�i/ sin.h�; �i/
1C z.ˇ; �;N / cos.h�; N�i/

: (2.9)

Two crucial observations are made at this stage:

(1) The functional � 7! S.N ; �/ is odd in �.

(2) The measure
Q
�2N Œ1 C z.ˇ; �; N / cos.h�; N�i/�d�GFF

ˇ;ƒ;v
.�/ is invariant under

� 7! ��.

Altogether this simplifies the above lower bound tremendously, since by using Jensen,
one obtains readily

ZN .�/

ZN .0/
� exp

h
�D4

X
�2N

jz.ˇ; �;N /jh�; �i2
i
:

From this lower bound together with the specific construction of the ensembles of
charges N , it is then not particularly difficult to conclude the proof with the desired lower
bound

Eˇ;ƒ;�ƒ;c Œe
h�;f i� � exp

�
1

2ˇ.1C "/
hf;���1f i

�
:

As we will see in Section 4, the effect of shifting the Z fibers by a 2 Rƒ will translate
as follows:

E a
ˇ;ƒ;�ƒ;v

Œeh�;f i� D e
1
2ˇ
hf;���1f i

�

P
N2F cN

R Q
�2N Œ1C z.ˇ; �;N / cos.h�; N�i C h� � a; �i/� d�GFF

ˇ;ƒ;v
.�/P

N2F cN

R Q
�2N Œ1C z.ˇ; �;N / cos.h�; N�i � ha; �i/� d�GFF

ˇ;ƒ;v
.�/

:

The difficulty for us will be that, generically, a is much less regular than � (defined
in (2.8)), which thus makes the Dirichlet energy hr.� � a/;r.� � a/i typically huge.
Therefore, we will not be able anymore to rely on the two symmetries above (in particular
the use of Jensen is no longer possible except for very specific choices of a; see the
discussion after Definition 1.7). We will come back to this in Section 4.

Remark 2.7. The case of Dirichlet boundary condition has been outlined in Appendix D
of [21] and the details of the proof appeared very recently in [45, Appendix]. The proof
structure highlighted above for the free boundary condition still holds except that the
decomposition into charges needs to be adapted to take into account the presence of a
boundary. See [45, Appendix].

We also point out that the nice symmetrization argument used in [45] does not apply
to our case (as a is far from being harmonic) and also because the symmetrized measure
in most cases does not provide information on the fluctuations we need.
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2.4. Link with the a-shifted integer-valued GFF

In this section, we specify the link between our statistical reconstruction problem and the
a-shifted IV-GFF introduced earlier (in Definition 1.7).

Lemma 2.8. Let ƒ � Z2, T > 0 and a 2 Rƒ with aj@ƒ � 0. If � is a 0-boundary GFF
.with inverse temperature ˇ D 1/ on ƒ, then its conditional law given � .mod 2�=T / D
2�
T

a is given by 2�
T
 , where  � P a;IV

ˇT ;ƒ
and the T -dependent inverse temperature ˇT is

given by
ˇT WD .2�/

2=T 2:

Equivalently, for any functional F W Rƒ ! R,

EŒF .�/ j eiTˆ D e2�ia� D E a;IV
ˇDˇT ;ƒ

�
F

�
2�

T
 

��
:

Proof. Recall from Definition 1.7 that

P a;IV
ˇ;ƒ

Œd�� WD
1

Z

X
m2ZƒWmj@ƒ�0

ımCa.�/ exp
�
�
ˇ

2
hr.mC a/;r.mC a/i

�
:

Now, by disintegration, for any continuous9 functional F W Rƒ ! R, one has

EŒF .�/ j eiTˆ D e2�ia�

D

P
m2Zƒ exp.�1

2
h
2�
T
.aCm/; .��/2�

T
.mC a/i/F.2�

T
.mC a//P

m2Zƒ exp.�1
2
h
2�
T
.aCm/; .��/2�

T
.mC a/i/

D

P
m2Zƒ exp

�
�
.2�/2

2T 2
h.aCm/; .��/.mC a/i

�
F.2�

T
.mC a//P

m2Zƒ exp
�
�
.2�/2

2T 2
h.aCm/; .��/.mC a/i

�
D E a;IV

ˇDˇT ;ƒ

�
F

�
2�

T
�

��
;

where we have made the slightly unusual choice ˇT WD .2�/2 T �2 (in order to avoid
dealing with

p
T in most of the introduction).

3. Localization regime

In this section, we prove the first part of Theorems 1.1 and 1.2. That is, we show that one
can recover a GFF knowing exp.iT�/, in fact the recovery function is fairly straightfor-
ward:

F.exp.iT�//.x/ WD EŒ�.x/ j exp.iT�/�:

9We work with continuous functionals because they characterize the law.
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To show that this is the right function, we need to recall (1.10). It says that to prove
the first part of Theorems 1.1 and 1.2, it is enough to show that if � is a GFF in ƒn and
f a fixed smooth function in ƒn, then

E
�
VarŒh�; f i j eiT� �

�
D o.n4/: (3.1)

Let us note that this approach may not look useful at first glance, as to bound this
conditional variance we need to compute the conditional expectation, which is a non-
trivial function of exp.iT�/. To circumvent this issue, we write the conditional variance
as follows:

VarŒh�; f i j eiT h� D E
�
.h�; f i � EŒh�; f i j eiT h�/2

ˇ̌
eiT�

�
D

1
2
EŒ.h�1; f i � h�2; f i/

2
j eiT� �;

where �1; �2 are conditionally independent given eiT� . Let us be more explicit about this
law.

Definition 3.1. Let � be a GFF in ƒn with any given boundary. Let .�1; �2/ be a pair of
GFFs in ƒn with the same boundary condition such that a.s. eiT�1 D eiT�2 D eiT� and
�1 is conditionally independent of �2 given eiT� . In other words,

P Œ.d�1; d�2/ j e
iT� � /

Y
iD1;2

�
e�

1
2 h�i ;�i ir

Y
x2ƒnn@ƒn

�X
k2Z

ı2�k=TC�.x/.d�i .x//
��
:

To prove (3.1), we use an averaged Peierls argument.

3.1. Large gradients are costly for a GFF

The first stage to implement a Peierls argument is to show that it is costly for a GFF to
have many edges with large gradients. To do this we are going to use the Markov property,
i.e. Proposition 2.3. In fact, for a given deterministic set B � ƒn, we need to understand
what is the law of the norm of �B .

Lemma 3.2. In the context of Proposition 2.3 with B \ @ƒn D ;,

(1) the law of k�Bk2r is that of a �2 with jBj degrees of freedom;

(2) the law of k�Bk2
r

is that of a �2 with jƒn n .@ƒn [ B/j degrees of freedom.

Proof. We start by defining Harm.B/ as the set of functionsƒn!R that are harmonic in
ƒn n .B [ @ƒn/ and take value 0 on @ƒn. In fact, �B is the orthogonal projection of � to
Harm.B/ under the inner product h�; �ir (see for example [41, Section 2.6]). One can now
check that the subspace Harm.B/ has dimension jBj, from which (1) follows. As �B is
the orthogonal projection to Harm.B/?, (2) follows by a similar reasoning, as the space of
functions with zero boundary condition onB [ @ƒn has dimension jƒn n .@ƒn [B/j.

We can now use this proposition to obtain the basic input we need for a Peierls argu-
ment.
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Lemma 3.3. Let � be a GFF in ƒn with either zero or free boundary condition. Then
there exist constants ˛; C; u0 > 0 independent of ƒn such that for any finite set F of
edges and all u > u0,

P Œj�.x/ � �.y/j � u;8xy 2 F � � Ce�˛u
2jF j:

Proof. We use the Markov property of the GFF (Proposition 2.3) with the subset of ver-
tices B such that x 2 B if there exists xy 2 F . Let us note that jBj � 2jF j. We see
that

k�Bk
2
r D

X
xy2E

.�B.y/ � �B.x//
2
�

X
xy2F

.�.y/ � �.x//2 (3.2)

has the law of a �2 with jBj degrees of freedom. Thanks to Proposition 2.3 (1), we know
that �B.y/ � �B.x/ is equal to �.y/ � �.x/. Thus, using jBj � 2jF j,

P .j�.x/ � �.y/j � u;8xy 2 F / � P .k�Bk
2
r � u

2
jF j/

� P .k�Bk
2
r � u

2
jBj=2/:

We can now use Lemma 3.2 (1) to continue and see that when u is large enough,

P .j�.x/ � �.y/j � u;8xy 2 F / � C exp.�4˛u2jBj/ � C exp.�˛u2jF j/; (3.3)

where we have used jF j � 4jBj.

3.2. The GFFs �1 and �2 agree on a dense percolating set

3.2.1. The 0-boundary case. Let � be a 0-boundary GFF inƒn and assume we are given
an instance of eiT� . Let us sample two conditionally independent copies �1; �2 given
eiT� as in Definition 3.1. Let us now introduce the following definition.

Definition 3.4. We denote by I WD I.�1; �2/ the connected component of the random set
¹x 2 ƒn W �1.x/ D �2.x/º connected to the boundary @ƒn.

Recall that by definition, �1; �2 are GFFs with zero boundary conditions and so
�1 � �2 on @ƒn.

Our goal in this subsection is to show via an annealed Peierls argument that with high
probability when T is small, the random set I is percolating inside ƒn. To study this, for
any x 2 ƒn we define O.x/ as the empty set if x 2 I and as the connected component
containing x of ƒ n I if x … I .

Our main observation is that having an edge connecting O.x/ to ƒn nO.x/ is costly
in the sense that it forces either jr�1.e/j or jr�2.e/j to be larger than �=T . Indeed, the
values of �1 and �2 are fixed modulo 2�T , in other words for any x 2 ƒn and i 2 ¹1; 2º,

�i .x/ 2 �.x/C
2�

T
Z:

This way, if �1; �2 agree at x but disagree at y � x, this means that either j�1.x/� �1.y/j
> �=T or j�2.x/ � �x.y/j > �=T . We then have the following proposition.
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Proposition 3.5. Using the definitions introduced above, for all T small enough there
exist $.T / > 0 and C > 0 such that

P .diam.O.x// � L/ � C exp.�$.T /L/:

Proof. Let us note that if diam.O.x// � L there is a subset � of edges of length at least L
such that its dual is a connected path surrounding x and for every e 2 � either jr�1.e/j �
�=T or jr�2.e/j � �=T . This implies that

P .diam.O.x// � L/

�

X
j�j�L

� surrounds x

P
�
jr�1.e/j � �=T or jr�2.e/j � �=T;8e 2 �

�
: (3.4)

Let us fix � and suppose that for all e 2 �, either jr�1.e/j ��=T or jr�2.e/j ��=T . This
implies that there exist F � � and i 2 ¹1; 2º such that for all e 2 F we have jr�i .e/j �
�=T and jF j � bj�j=2c. This implies that

P
�
jr�1.e/j � �=T or jr�2.e/j � �=T ;8e 2 �

�
� 2

j�jX
jDbj�j=2c

X
F��
jF jDj

P .jr�.e/j � �=T ;8e 2 F /

� 2j�jC1
j�jX

jDbj�j=2c

exp.�2 Q̨j=T 2/;

where we have used Lemma 3.3 and the fact both �1 and �2 have the law of a GFF in ƒ.
Additionally, Q̨ WD ˛�2=2 . Thus, (3.4) is less than or equal to

C
X
k�L

X
j�jDk

� surrounds x

2k exp
�
�
Q̨

T 2
k

�
� C

X
k�L

exp.�k. Q̨T �2 � log 2 � log 3//

� QC exp.�L. Q̨T �2 � log 2 � log 3//;

where we have used the fact that the number of �’s such that j�j D k and � surrounds x is
less than C � 3k and that

Q̨T �2 � log 6 > 0:

3.2.2. The free-boundary case. In order to analyze the free-boundary case, we need to
modify the above definitions significantly. We assume the free-boundary GFF is rooted
at some vertex x0 2 ƒn. As in the Dirichlet case, .�1; �2/ will denote two conditionally
independent copies of the GFF given eiT� .

The main difference with the Dirichlet case is that when T is small, it is no longer
true that with high probability, �1 and �2 will agree on a large percolating set. Instead, we
will find a large set, which we will call I again, together with a random integer mI 2 Z
such that

�1.x/ D �2.x/CmI
2�

T
; 8i 2 I:
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Now, for each m 2 Z, let

OIm WD largest connected component of
²
x 2 ƒn W �1.x/ D �2.x/Cm

2�

T

³
:

If there are two of the same size, we choose one in a deterministic way. From these
subsets OIm, we define the set I and the connected components ¹O.x/ºx2ƒn as follows:

� If there is a unique m0 2 Z such that OIm0 has (graph) diameter larger than n=2, then
we define

I WD OIm0 ;

and for any x 2 ƒn, we define O.x/ to be empty if x 2 I and to be the connected
component of x in ƒn n I otherwise.

� If on the other hand, one can find two integersm1;m2 such that both OIm1 and OIm2 have
diameter greater than n=2, then we define

I WD ; and O.x/ WD ƒn; 8x 2 ƒn:

� Furthermore, if there is no m 2 Z such that OIm has diameter larger than n=2, we take
I D ;. In this caseO.x/ is the connected component of Imx containing x wheremx D
T .�1.x/ � �2.x//=2� .

We can now state the analogue of Proposition 3.5 for the free boundary condition.

Proposition 3.6. Let �1; �2 two free-boundary GFF such that exp.iT�1/ D exp.iT�2/
and conditionally independent given exp.iT�1/. Then using the above definitions .for the
free boundary condition/, for all T small enough there exist $.T / > 0 and C > 0 such
that for all x 2 ƒn,

P .diam.O.x// � L/ � C exp.�$.T /L/: (3.5)

Proof. The proof follows the same lines as in the Dirichlet case, as Lemma 3.3 does not
care about the boundary conditions. The only difference is that we need to deal with the
dichotomy entering into the definition of the set I (which does not exist for the Dirichlet
case). For this, note that in order to have two sets OIm1 ; OIm2 with m1 ¤ m2 and both of
diameter � n=2, there must exist at least one path � in the dual graph .Z2/� which has
diameter greater than n=2 and which satisfies the constraint that for any e 2 �, either
jr�1.e/j � �=T or jr�2.e/j � �=T . By Lemma 3.3 and the same argument as in the
Dirichlet case, this can only happen with probability less than O.n/ exp.� Q̨

10T 2
n/. Note

that the same argument implies that there is at most one connected component of the set
¹x 2 ƒn W �1.x/ D �2.x/Cm

2�
T
º with diameter at least n=2.

Note that after defining I , the argument of Proposition 3.5 implies that for any point x
the set O.x/ can only be huge with exponentially decaying probability in the diameter n.
Now, note that (3.5) is obviously true as long as L > 2n, and thus for L � 2n we have

P .diam.O.x// � L/ � P .diam.O.x// � L; I ¤ ;/C P .I D ;/

�
C

2
e�$.T /L C

C

2
e�

$.T/
2 n
� Ce�$.T /L:
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3.3. The conditional variance is small for 0-boundary GFF

We will now prove (3.1) for a 0-boundary GFF. Let us now study the law of .�1; �2/
conditionally on I and the values of �1 on I . We fix eiT� , I , and the values of �1 on I
and take .'1; '2/ to be a possible value of .�1; �2/ that satisfy the conditioning. Note that
to check whether .'1; '2/ is a possible realization, one just needs to check that .'1/jI D
.'2/jI D .�1/jI , and that for any connected component O of ƒn n I , the pair .'1; '2/
restricted to O locally satisfies the conditions, i.e.

'1.x/ D '2.x/ D �.x/ .mod 2�=T / for all x 2 O:

Furthermore, if we define NO to be the graph induced by all the edges in ƒn that have at
least one vertex in O , we have

P
�
.�1; �2/ D .'1; '2/ j e

iT� ; I; .�1/jI
�
/

Y
O

e�
1
2 .h.'1/j NO ;.'1/j NO irCh.'2/j NO ;.'2/j NO ir /:

(3.6)

As a consequence of (3.6), under this conditioning ifO ¤ O 0 then the law of .�1; �2/
restricted to O is independent of the law of O 0. Thus, EŒh�1 � �2; f i2� is equal toX
x;y2ƒn

f .x/f .y/EŒ.�1 � �2/.x/.�1 � �2/.y/1O.x/DO.y/�

�

X
x;y2ƒn

jf .x/j jf .y/jEŒ.�1 � �2/
2.x/.�1 � �2/

2.y/�1=2P .1O.x/DO.y//1=2

�

X
x;y2ƒn

jf .x/j jf .y/j
�
EŒ.�1 � �2/

4.x/�C EŒ.�1 � �2/
4.y/�

�1=2
P .1O.x/DO.y//1=2:

(3.7)

We can now just bound

EŒ.�1 � �2/
4.x/� � 16EŒ�41.x/� D 48G

2
n.x; x/:

Note that on the event O.x/ D O.y/ the diameter of O.x/ is at least dƒn.x; y/. Thus,
there exists an absolute constant C and $.T / > 0 such that

P ŒO.x/ D O.y/� � C exp.�$.T /kx � yk/:

From the fact that exp.�$.T /kx � yk/ decreases exponentially as kx � yk goes to
infinity, we find that

EŒh�1 � �2; f i
2� � Ckf k21 sup

x
Gn.x; x/n

2
� Ckf k21n

2 logn; (3.8)

which proves (3.1) and gives in fact a more quantitative rate of convergence.

3.4. The conditional variance is small enough for free-boundary Gaussian free field

We will now prove (3.1) for a free-boundary GFF. The proof is very similar to that for
the zero boundary condition so we are going to sketch the proof only, highlighting the
differences with the Dirichlet boundary case.
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Let .�1; �2/ be a pair of GFFs with zero boundary condition in ¹x0º coupled as in
Definition 3.1. By Proposition 3.6, there exist a (random) set I and a (random) integer
mI such that for all y 2 I , ˆ1.y/ D ˆ2.y/ C 2�mI=T , and furthermore for any x if
we define O.x/ as the connected component of ƒn n I containing x, we have the same
conditional independence property of islands in this setting,

P .diam.O.x// � L/ � exp.�$.T /L/: (3.9)

Let us note that the same argument as in Section 3.3 together with the estimate of
Proposition 3.7 implies that for any smooth function f W Œ�1; 1�2 ! R we have

EŒh�1 � �2 � 2�mI=T ; f i
2� � Ckf k21n

2 logn:

Now note that for any continuous function f with
R
f D 0, we have

Of WD jƒnj
�1
hf; 1i D kf k1o.1/:

Thus, defining Qf as f � Of and noting that hmI ; Qf i D 0 we have

EŒh�1 � �2; f i
2� � E

��
�1 � �2 C

2�mI

T
; Qf

�2�
C

�
hf; 1i

jƒnj

�2
EŒh�1 � �2; 1i

2�

� Ckf k21n
2 lognC Ckf k1o.1/n4; (3.10)

which finishes the proof.

3.5. The conditional variance at a given point is bounded

In this subsection, we are going to improve the result of (3.8) for f D 1x .

Proposition 3.7. Let �1 and �2 be two 0-boundary .or free-boundary/ GFFs coupled as
in Definition 3.1. Then for all T small enough there existK; QK > 0 such that for all n 2N
and all x; y 2 ƒn,

EŒ.�1 � �2/
2.x/� � K; (3.11)

EŒ.�1 � �2/.x/.�1 � �2/.y/1O.x/DO.y/� � Ke�
QKdƒn .x;y/: (3.12)

Proof. We start by proving (3.11) for � a 0-boundary GFF as in Section 3.3. Let  be a
horizontal edge path connecting @Œ�1; 1�2 to x in ƒn. We say that the edge e belongs to
 \O.x/ if e 2  and e \O.x/ ¤ ;. We then have

.�1 � �2/.x/ D
X

e2\O.x/

r.�1 � �2/.e/: (3.13)

Thus,

.�1 � �2/
2.x/ �

X
e;e02E

r.�1 � �2/.e/r.�1 � �2/.e
0/1e;e02O.x/\ :
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We can now upper bound EŒ.�1 � �2/2.x/� byX
e;e02E

EŒr.�1 � �2/.e/r.�1 � �2/.e
0/1e;e02O.x/\ �

� K sup
e

EŒ.r.�1 � �2/.e//
4�1=2

X
e;e02

P Œe; e0 2 O.x/�1=2:

We conclude (3.11) by first noting that Var.r.�1 � �2/.e//� 4 thanks to Proposition 2.5,
and by the fact that

P Œe; e0 2 O.x/� � exp
�
�!.T /max ¹dƒn.e; x/; dƒn.e

0; x/º
�
:

We now prove (3.11) in the free-boundary case with 0 value at z. In this case, one
needs to take an edge path  going from x to z that only makes one turn (so thatP
e;e02 P Œe; e0 2 O.x/�1=2 is bounded). The same argument as before shows that

EŒ.�1 � �2/
2.x/� � C C 2EŒm2I �;

where mI WD 0 if I D ;, while if I ¤ ; then mI WD .�1 � �2/.x
0/=.2�T / at a point

x0 2 I (recall that this value is a constant in I ).
To bound the variance of n, we note that we can take an edge path  starting from z

and such that it always hits I when I ¤ ;, and it only makes four turns (again so thatP
e;e02 P Œe; e0 2 O.z/�1=2 is bounded). By the same argument as before, one sees that

EŒm2I � � C:

We now prove (3.12). Note that this directly follows from

EŒ.�1 � �2/
2.y/1O.x/DO.y/� � K exp

�
�
$.T /

2
dƒn.x; y/

�
: (3.14)

This can be done exactly as before by choosing an appropriate path  .

Remark 3.8. Proposition 3.7 hides an important fact. There is a difference regarding
the behavior of the (conditional) correlation function between the two different types of
boundary condition we study.

To be more precise, in the case of a 0-boundary GFF, one has

EŒ.�1 � �2/.x/.�1 � �2/.y/1O.x/DO.y/� D EŒ.�1 � �2/.x/.�1 � �2/.y/�;

which proves (1.4). However, in the case of free boundary conditions, one has

EŒ.�1 � �2/.x/.�1 � �2/.y/�

D EŒ.�1 � �2/.x/.�1 � �2/.y/1O.x/DO.y/�C EŒm2I1O.x/¤O.y/�:

As we do not expect that EŒm2I � goes to 0 as n!1, one can see that the (conditional)
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correlations do not decrease to 0 as dƒn.x; y/!1. However, it is also interesting to
note that these correlations do decay exponentially to 0 if we condition not only on eiT� ,
but also on the value of mI . In fact, this seems to be closely related to the large-scale
correlations which arise for Coulomb gases in 2d with free boundary conditions; see for
example [19].

Note that Proposition 3.7 improves the result of (3.1) and (3.8).

Proposition 3.9. For T small enough one has

E

�
Var

�
1

n2
h�; f i

ˇ̌̌̌
eiT h

��
� K
kf k21
n2

: (3.15)

Proof. The proof follows the same lines as the proof of (3.8). The main difference is that
we now use (3.14).

4. Delocalization regime

We start by proving the roughening transition for generalized integer-valued fields (The-
orem 1.8) and then, as a corollary, extract the delocalization regime for our statistical
reconstruction problem.

4.1. Proof of Theorem 1.8

In this proof, we focus on the case of the free boundary condition (as in [21, 27]); how-
ever, following [21, Appendix D] or the recent [45] (see Remark 2.7), our proof works in
exactly the same way in the Dirichlet case.

Recall from Section 2.3 and from [27, (1.13)] the following series expansion for the
Laplace transform of discrete GFFs with periodic weights �ƒ D .�j /j2ƒ (we assume the
same hypothesis as in [27, Theorem 1.6]):

Eˇ;ƒ;�ƒ;vŒe
h�;f i�

D e
1
2ˇ
hf;���1f i

P
N2F cN E GFF

ˇ;ƒ
Œ
Q
�2N Œ1C z.ˇ; �;N / cos.h�; N�i C h�; �i/��P

N2F cN

R Q
�2N Œ1C z.ˇ; �;N / cos.h�; N�i/� d�GFF

ˇ;ƒ;v
.�/

D e
1
2ˇ
hf;���1f i

P
N2F cNZN .�/P
N2F cNZN .0/

:

We denote by Ea
ˇ;ƒ;�ƒ;v

or �a
ˇ;ƒ;�ƒ;v

the discrete GFF whose periodic weights are
shifted by a:

d�a
ˇ;ƒ;�ƒ;v

.�/ WD
1

Za
ˇ;ƒ;�ƒ;v

Y
j2ƒ

�j .�j � aj / d�
GFF
ˇ;ƒ;v.�/: (4.1)
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The shift by a easily translates into the following expression for the Laplace transform
under �a

ˇ;ƒ;�ƒ;v
:

E a
ˇ;ƒ;�ƒ;v

Œeh�;f i�

D e
1
2ˇ
hf;���1f i

�

P
N2F cN

R Q
�2N Œ1C z.ˇ; �;N / cos.h�; N�i C h� � a; �i/� d�GFF

ˇ;ƒ;v
.�/P

N2F cN

R Q
�2N Œ1C z.ˇ; �;N / cos.h�; N�i � ha; �i/� d�GFF

ˇ;ƒ;v
.�/

D e
1
2ˇ
hf;���1f i

P
N2F cNZN .� � a/P

N2F cNZN .�a/
: (4.2)

As the shift a is fixed once and for all in this proof, let us introduce the shifted partition
functions ¹Za

N
.�/ºN ;� . For any � W ƒ! R and any collection N 2 F of charges,

Za
N .�/ WD ZN .� � a/ D

Z Y
�2N

Œ1C z.ˇ; �;N / cos.h�; N�i C h� � a; �i/� d�GFF
ˇ;ƒ;v.�/:

(4.3)

Following the same analysis as in [27, Section 3] (or in [21, Section 5]), we obtain the
following lower bound on the ratio of partition functions:

Za
N
.�/

Za
N
.0/
� exp

h
�D4

X
�2N

jz.ˇ; �;N /jh�; �i2
i

�

Z
eS.N ;a;�/

Za
N
.0/

Y
�2N

Œ1C z.ˇ; �;N / cos.h�; N�i � ha; �i/� d�GFF
ˇ;ƒ;v.�/; (4.4)

where

S.N ; a; �/ WD �
X
�2N

z.ˇ; �;N / sin.h�; N�i � ha; �i/ sin.h�; �i/
1C z.ˇ; �;N / cos.h�; N�i � ha; �i/

: (4.5)

As mentioned in Section 2.3, one major observation in [21] is that S.N ; �/ WD

S.N ; a � 0; �/ D �S.N ;��/. Indeed, this property together with the fact that the prob-
ability measure

dPN .�/ WD
1

ZN .0/

Y
�2N

Œ1C z.ˇ; �;N / cos.h�; N�i/ d�GFF
ˇ;ƒ;v.�/

is invariant under � 7! �� avoids controlling terms such as exp.S.N ; �// using Jensen:

ZN .�/

ZN .0/
� exp

h
�D4

X
�2N

jz.ˇ; �;N /jh�; �i2
i
�

Z
eS.N ;�/dPN .�/

� exp
h
�D4

X
�2N

jz.ˇ; �;N /jh�; �i2
i
� exp

�Z
S.N ; �/ dPN .�/

�
D exp

h
�D4

X
�2N

jz.ˇ; �;N /jh�; �i2
i
:
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Claim 3.2 in [27] then shows that when ˇ is sufficiently small,

ZN .�/

ZN .0/
� exp

�
�

"ˇ

2.1C "/

X
j�l

.�j � �l /
2

�
D exp

�
�

"

2.1C "/ˇ
hf;���1f i

�
; (4.6)

which ended the proof in [21, 27].
In our present setting, the functional � 7! S.N ; a; �/ introduced in (4.5) is no longer

an odd functional of �. Furthermore, the lower bound (4.4) suggests introducing the a-
reweighted probability measure

dP a
N .�/ WD

1

Za
N
.0/

Y
�2N

Œ1C z.ˇ; �;N / cos.h�; N�i � ha; �i/ d�GFF
ˇ;ƒ;v.�/;

which is no longer invariant under � 7! ��. This lack of symmetry does not allow us to
rely on Jensen and we are left with analyzing the quantityZ

eS.N ;a;�/ dP a
N .�/:

We will not succeed in controlling the full Laplace transform but will instead extract
bounds on the first and second moments from the series expansion near ˛ � 0 of the
Laplace transform ˛ 7! E a

ˇ;ƒ;�ƒ;v
Œe˛h�;f i�.

For any ˛ 2R (which will be colored for clarity), we have (recall (4.2), (4.4) and (4.6))
the lower bound

E a
ˇ;ƒ;�ƒ;v

Œe˛h�;f i� D e
˛2

2ˇ
hf;���1f i

P
N2F cNZ

a
N
.˛�/P

N2F cNZ
a
N
.0/

� e
˛2

2ˇ
hf;���1f i

�

P
N2F cNZ

a
N
.0/e�

"˛2

2.1C"/ˇ
hf;���1f i

R
eS˛.N ;a;�/ dP a

N
.�/P

N2F cNZ
a
N
.0/

;

(4.7)

where now

S˛.N ; a; �/ D �
X
�2N

z.ˇ; �;N / sin.h�; N�i � ha; �i/ sin.˛h�; �i/
1C z.ˇ; �;N / cos.h�; N�i � ha; �i/

D �˛
X
�2N

z.ˇ; �;N / sin.h�; N�i � ha; �i/h�; �i
1C z.ˇ; �;N / cos.h�; N�i � ha; �i/

CO.˛3/: (4.8)

This Taylor expansion holds first because we are in the regime where ˇ can be chosen
small enough so that the denominators are uniformly � 1=2 (see [21, 27]), and second
because our parameters ƒ;ˇ etc. are fixed as ˛ ! 0.
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First order analysis. At first order in ˛, we find combining (4.7) and (4.8) that for any
f W ƒ! R and as ˛ ! 0,

1C ˛E a
ˇ;ƒ;�ƒ;v

Œh�; f i�CO.˛2/

� .1CO.˛2//

P
N2F cNZ

a
N
.0/

R
Œ1C S˛.N ; a; �/CO.˛2/� dP a

N
.�/P

N2F cNZ
a
N
.0/

D 1 � ˛

P
N2F cNZ

a
N
.0/E a

N

�P
�2N

z.ˇ;�;N / sin.h�; N�i�ha;�i/h�;�i
1Cz.ˇ;�;N / cos.h�; N�i�ha;�i/

�P
N2F cNZ

a
N
.0/

CO.˛2/:

In particular, identifying order 1 terms (and recalling that � WD 1
ˇ
.��/�1f , see (2.8)),

we thus have, for any f W ƒ! R,

E a
ˇ;ƒ;�ƒ;v

Œh�; f i�

� �

P
N2F cNZ

a
N
.0/E a

N

�P
�2N

z.ˇ;�;N / sin.h�; N�i�ha;�i/h 1
ˇ
.��/�1f;�i

1Cz.ˇ;�;N / cos.h�; N�i�ha;�i/

�P
N2F cNZ

a
N
.0/

:

The key observation at this stage is that for each collection N of charges, the func-
tional

f 7! OS.N ; a; �; f / WD �
X
�2N

z.ˇ; �;N / sin.h�; N�i � ha; �i/h 1
ˇ
.��/�1f; �i

1C z.ˇ; �;N / cos.h�; N�i � ha; �i/

is linear in f . Obviously, the functional f 7! E a
ˇ;ƒ;�ƒ;v

Œh�; f i� is linear as well. Now
by using this linearity and plugging �f into the above inequality, we obtain a rather
surprising exact expression for the mean value of h�; f i under the measure �a

ˇ;ƒ;�ƒ;v
.

We state this exact identity as a proposition below and we call it modular invariance
identity for reasons which will be explained in Appendix A.

Proposition 4.1 (Modular invariance identity). For any function f and any weights �ƒD
.�i /i2ƒ satisfying the same hypothesis as in [21, (5.35)] .or equivalently in [27, (1.9)]/,
we have

E a
ˇ;ƒ;�ƒ;v

Œh�; f i�

D �

P
N2F cNZ

a
N
.0/E a

N

�P
�2N

z.ˇ;�;N / sin.h�; N�i�ha;�i/h 1
ˇ
.��/�1f;�i

1Cz.ˇ;�;N / cos.h�; N�i�ha;�i/

�P
N2F cNZ

a
N
.0/

D

P
N2F cNZ

a
N
.0/E a

N
Œ OS.N ; a; �; f /�P

N2F cNZ
a
N
.0/

: (4.9)

Remark 4.2. This exact identity, as we shall see below, is a key step in our proof. Because
it is so central and since it does not look like anything familiar, we added Appendix A to
give a longer but more natural second derivation of this identity. It should not come as
a surprise that our second derivation is longer, since above one relies in fact on several
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key parts of the proof of Fröhlich–Spencer [21]. Appendix A gives a complementary
interpretation/explanation of the origin of such an identity. In particular, in Appendix A,
we shall view the shift vector a D ¹axºx2ƒ as an exterior magnetic field and we will
also explain why we call this identity “modular invariance” due to a relationship to the
functional equation for Riemann theta functions.

Second order analysis. The above identity for the first moment will be instrumental in
bounding from below the desired second moment as we shall now see.

Again by combining (4.7) and (4.8), we find that

1C ˛E a
ˇ;ƒ;�ƒ;v

Œh�; f i�C 1
2
˛2E a

ˇ;ƒ;�ƒ;v
Œh�; f i2�CO.˛3/

� e
˛2hf;���1f i
2.1C"/ˇ

P
N2F cNZ

a
N
.0/Ea

N
ŒeS˛.N ;a;�/�P

N2F cNZ
a
N
.0/

� e
˛2hf;���1f i
2.1C"/ˇ

P
N2F cNZ

a
N
.0/Ea

N

�
1CS˛.N ; a; �/C 1

2
ŒS˛.N ; a; �/�2CO.˛3/

�P
N2F cNZ

a
N
.0/

� e
˛2hf;���1f i
2.1C"/ˇ

�

P
N2F cNZ

a
N
.0/Ea

N

�
1C˛ OS.N ; a; �; f /C ˛2

2
Œ OS.N ; a; �; f /�2CO.˛3/

�P
N2F cNZ

a
N
.0/

D 1C˛

P
N2F cNZ

a
N
.0/E a

N
Œ OS.N ; a; �; f /�P

N2F cNZ
a
N
.0/

C
˛2

2

�
1

.1C"/ˇ
hf;���1f iC

P
N2F cNZ

a
N
.0/E a

N

�
Œ OS.N ; a; �; f /�2

�P
N2F cNZ

a
N
.0/

�
CO.˛3/:

The first order terms are equal by Proposition 4.1 and from the second order terms, we
extract the following lower bound:

E a
ˇ;ƒ;�ƒ;v

Œh�; f i2�

�
1

.1C "/ˇ
hf;���1f i C

P
N2F cNZ

a
N
.0/E a

N

�
Œ OS.N ; a; �; f /�2

�P
N2F cNZ

a
N
.0/

�
1

.1C "/ˇ
hf;���1f i C

�P
N2F cNZ

a
N
.0/E a

N
Œ OS.N ; a; �; f /�P

N2F cNZ
a
N
.0/

�2
D

1

.1C "/ˇ
hf;���1f i C E a

ˇ;ƒ;�ƒ;v
Œh�; f i�

2 (4.10)

by first applying the Cauchy–Schwarz inequality to a suitable probability measure on the
coupling .N ; �/, and then using Proposition 4.1 for the last equality, i.e. the modular
invariance identity (4.9). This ends our proof.

4.2. Non-recovery phase .T > TCrec/

In this subsection, we handle the non-recovery phases of Theorems 1.1 and 1.2.
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As in Definition 3.1, let .�1; �2/ be two conditionally independent instances of �
given � .mod 2�=T / D .2�=T /a. By Lemma 2.8, the law of .�1; �2/ is given by
.2�=T /. 1;  2/ where  1;  2 are independently sampled according to P a;IV

ˇTD.2�/2=T 2
.

Thanks to this and Theorem 1.8 with C D 1=.1 C "/, for any continuous function
f W Œ�1; 1�2 ! R,

EŒh�1 � �2; f i
2� D

�
2�

T

�2
E
�
EIV;a
.2�/2=T 2;ƒ

Œh 1 �  2; f i
2�
�

�
2

1C "
hf; .��/�1f i: (4.11)

Furthermore, since both �1 and �2 are GFFs, we have

EŒh�1 � �2; f i
4� � 12EŒh�1; f i

2�2 D 12hf; .��/�1f i2:

Therefore, using the Paley–Zygmund inequality we obtain

P
�
h�1 � �2; f i

2
� hf; .��/�1f i

�
�

1

24.1C "/
> 2�5:

Now, we use the fact that for any deterministic function F depending only on
exp.iT�/, we have F.exp.iT�1// D F.exp.iT�2//. Using this we can compute

2�5 � P
�
h�1 � �2; f i

2
� hf; .��/�1f i

�
� P

�
hF.exp iT�1/ � �i ; f i2 � 1

2
hf; .��/�1f i; for some i 2 ¹1; 2º

�
� 2P

�
hF.exp iT�1/ � �1; f i2 � 1

2
hf; .��/�1f i

�
: (4.12)

We conclude by noting that for any continuous non-zero function f , we have
hf; .��/�1f i � Cn4.

To finish, let us show (1.5). We start by noting that

EŒ.�1.x/ � �2.x//
2� D

�
2�

T

�2
E
�
EIV;a
.2�/2=T 2;ƒ

Œ. 1.x/ �  2.x//
2�
�

�
2

1C "
G.x; x/ � 2c.T; x/ logn:

Here, recall that G represents the Green’s function. Note also that c.T; x/ depends on T
as " did depend on T .

We now see that

2EŒ.�1.x/ � F.�1/.x//
2� D EŒ.�1.x/ � F.�1/.x//

2
C .�2.x/ � F.�1/.x//

2�

� EŒ.�1.x/ � �2.x//
2� � 2c.T; x/ logn:

We now complete this section by proving Corollary 1.3.

4.3. Proof of Corollary 1.3

Let us take �n ! ˆ in probability for the topology of the space of generalized functions.
Let us now analyze the two regimes T � 1 and T � 1.
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4.3.1. Small T . First, we see that .FT .eiT�n//n2N is tight in the Sobolev space H�3�".
This is because FT .�/ is obtained via a conditional expectation and supn2N EŒk�nk2H�3 �
< 1 (see for example the proof of [7, Corollary 4.5].10) We now note that thanks to
Theorem 1.1 (a), for any smooth function f (with zero mean if we are in the free boundary
case) we have

1

n2
hFT .e

iT�n/; f i D
1

n2

�
h�n; f i C hFT .e

iT�n/ � �n; f i
�
! .ˆ; f /:

From this we see that FT .eiT�n/ also converges in probability to ˆ.

4.3.2. Big T . Taking any deterministic (recovery) function F , we know from Theorems
1.1 and 1.2 that for any function (with zero mean if we are in the free boundary case)
f W Œ0; 1�! ƒ,

lim inf
n!1

P Œjn�2.F.exp.iT�n// � �n; f /j � ı� > 0:

This implies that F.exp.iT�n// cannot converge to ˆ because n�2.�n; f /! .ˆ; f /.

5. There is always information left

The objective of this section is to prove that for any T > 0, exp.iT�/ gives non-trivial
(macroscopic) information about �. More precisely, in this section we quantify how much
information is preserved under the operation � 7! � .mod 2�=T /.

Theorem 1.8 implies that for all possible values of exp.iT�/ and for all T large
enough there exists ".T / such that

VarŒh�; f i j exp.iT�/� � .1 � ".T //EŒh�; f i2�:

At the same time, it is clear that

E
�
VarŒh�; f i j exp.iT�/�

�
� EŒh�; f i2�:

Let us remark that it is not clear whether this ".T / is a technical constant coming
from the proof or whether it is telling us something meaningful about the model. In the
following proposition we show that in the average case the existence of this ".T / is not
technical. In fact, in Remark 5.2 below we give its interpretation. See also Remark 5.5 for
the link with the " D ".T / correction in Fröhlich–Spencer.

Proposition 5.1. Let T > 0 and � be a GFF with either free or zero boundary condition
in ƒn. Then there exists "0.T / > 0 such that

EŒVar
�
h�; f i2 j exp.iT�/�

�
� .1 � "0.T //EŒh�; f i2�: (5.1)

Furthermore, when T � 1, we have

"0.T / � .1C o.1//2T 2e�T
2

: (5.2)

10In that case, it is proven for the Sobolev space H�1, as the authors dilute the values of the
discrete GFF in a given vertex, but the same argument holds forH�3 when this value is not diluted.
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Remark 5.2. Proposition 5.1 should be interpreted in the following way:

� The field exp.iT�n/ gives non-trivial information on the GFF �n.

Indeed, if the statement of the proposition were not true, for any continuous function
f W Œ�1; 1�2 ! R we would have

n�4 VarŒh�n; f i j exp.iT�n/�!
“
Œ�1;1�2�Œ�1;1�2

f .x/G.x; y/f .y/ dx dy

D lim
n!1

n�4EŒh�n; f i�;

where G is the continuous Green’s function in Œ�1; 1�2. In the statistics world, we would
say that Proposition 5.1 means that exp.iT�/ explains at least "0.T / of the variance of �.

Proof of Proposition 5.1. Let us write F.x/ WD EŒ�.x/ j exp.iT�n/� and � D �n. We are
going to prove that

EŒhF; f i2� � "EŒh�; f i2�: (5.3)

This suffices because

E
�
VarŒh�; f i j exp.iT�/�

�
D EŒhF � �; f i2�

D EŒh�; f i2� � EŒhF; f i2�:

To prove (5.3), let W D r� C � be as in Proposition 2.5. Then

EŒhF; f i2� D E
�
EŒh�; f i j exp.iT�/�2

�
D E

h
E
�
EŒh�; f i j exp.iT�/; exp.iT �/�2 j exp.iT W /

�i
� E

�
EŒh�; f i j exp.iT W /�2

�
;

where we have used Cauchy–Schwarz and the fact that exp.iT �/ is independent of the
pair .h�; f i; exp.iT�//. Hence, it only remains to show that

E
�
EŒh�; f i j exp.iT W /�2

�
� "EŒh�; f i2�: (5.4)

Now, recall from Proposition 2.5 that � D ��1r �W and compute

EŒh�; f i j exp.iT W /� D EŒhW;�r��1f i j exp.iT W /�

D �
1

2

X
Ee2 EE

EŒW.Ee/ j exp.iT W /�r��1f .Ee/

D �
1

2

X
Ee2 EE

EŒW.Ee/ j exp.iT W.Ee//�r��1f .Ee/;

where the last line comes from the independence of the values of W on different edges,
and the fact that W.Ee/ D �W. Ee/. The equality of this last line may seem innocent but it
is the main reason why the problem simplifies when we work with the white noise.
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Let us note that the random variable EŒW.Ee/ j exp.iT W.Ee//� is centered and has the
same law for all Ee. Furthermore, it is independent for all e ¤ e0. Let us define

�.T / D Var
�
EŒW.Ee/ j exp.iT W.Ee//�

�
> 0: (5.5)

We can now compute

E
�
EŒh�; f i j exp.iT W /�2

�
D 2��.T /hr��1f .e/;r��1f .e/i

D 2��.T /hf;���1f i D �.T /EŒh�; f i�;

from which we obtain (5.1).
To obtain (5.2), we remark that we set "0.T /D �.T /. When T � 1, one can get (5.2)

by estimating (5.5) using (A.1). This is the subject of our next lemma.

Lemma 5.3. As T !1,

�.T / D Var
�
EŒW.Ee/ j exp.iT W.Ee//�

�
D 2T 2 e�T

2

C o.e�T
2

/: (5.6)

Remark 5.4. Equivalently, if Z � N .0; ˇ/, then as ˇ !1,

Var
�
EŒZ j Z .mod 1/�

�
D 2.2�/2 ˇe�.2�/

2ˇ
C o.e�.2�/

2ˇ /: (5.7)

This straightforward rewriting of the lemma will happen to be useful in [23].

Proof of Lemma 5.3. LetZ �N .0;ˇ�1T / with ˇT WD .2�/2=T 2 as in Lemma 2.8 so that

Z
.d/
D

T
2�
W . Then

�.T / D Var
�
EŒW.Ee/ j exp.iT W.Ee//�

�
D Var

�
EŒW.Ee/ j W.Ee/ .mod 2�=T /�

�
D ˇTVar

�
EŒZ j Z .mod 1/�

�
D ˇTE

�
EŒZ j Z .mod 1/�2

�
: (5.8)

Notice that

EŒZ j Z .mod 1/ D a� D

P
n2Z exp.�ˇT

2
.nC a/2/ � .nC a/P

n2Z exp.�ˇT
2
.nC a/2/

:

As ˇT ! 0, it will be convenient to rely on the Jacobi identity (A.1) which plays the
role of a temperature inversion. Below, we start by slightly rewriting this identity via a
straightforward change of variable, so that it matches integer-valued fields (as opposed to
fields in 2�Z). The following three identities are equivalent:P

n2Z exp.�ˇ
2
.2�nC 2�a/2/ � .2�nC 2�a/P

n2Z exp.�ˇ
2
.2�nC 2�a/2/

D

1
ˇ

P
q2Z e

�
q2

2ˇ sin.q � 2�a/ � qP
q2Z e

�
q2

2ˇ cos.q � 2�a/
;
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P
n2Z exp.� .2�/

2ˇ
2

.nC a/2/ � .nC a/P
n2Z exp.� .2�/

2ˇ
2

.nC a/2/
D

1
2�ˇ

P
q2Z e

�
q2

2ˇ sin.q � 2�a/ � qP
q2Z e

�
q2

2ˇ cos.q � 2�a/
;

P
n2Z exp.�ˇT

2
.nC a/2/ � .nC a/P

n2Z exp.�ˇT
2
.nC a/2/

D

2�
ˇT

P
q2Z e

�
q2.2�/2

2ˇT sin.q � 2�a/ � qP
q2Z e

�
q2.2�/2

2ˇT cos.q � 2�a/
:

This rewriting of (A.1) implies the following useful expression for the conditional expec-
tation:

EŒZ j Z .mod 1/ D a� D
2�
ˇT

P
q2Z e

�
q2.2�/2

2ˇT sin.q � 2�a/ � qP
q2Z e

�
q2.2�/2

2ˇT cos.q � 2�a/
:

This readily implies

�.T / D ˇTE
�
EŒZ j Z .mod 1/�2

�
D ˇT

.2�/2

ˇ2T
E

��
2 sin.2�a/e�

.2�/2

2ˇT C 4 sin.4�a/e�
.2�/2

ˇT

�2�
1C 2 cos.2�a/e�

.2�/2

2ˇT

�2 C o
�
e
�
.2�/2

ˇT

��
D
.2�/2

ˇT
E
�
4 sin2.2�a/e�

.2�/2

ˇT C o
�
e
�
.2�/2

ˇT

��
D 2

.2�/2

ˇT
C o

�
e
�
.2�/2

ˇT

�
D 2T 2e�T

2

C o.e�T
2

/;

where we relied on the convenient abuse of notation a for the random variable Z .mod 1/
throughout.

Remark 5.5. Proposition 5.1 is one of the reasons why this model is a laboratory for
IV-GFF, especially with quenched disorder. In this case, it allows us to obtain explicit
lower bounds on the ".T /-correction between the GFF and the integer-valued GFF with
quenched disorder a given by a GFF (at inverse temperature ˇ�1T ) modulo 1. We will
discuss such explicit bounds in more detail in [23].

6. Conjectures on Trec and the interfaces of the models

The main focus of this section is to state several conjectures. However, we also prove
some intermediate results which are interesting on their own and which will give support
to each of these predictions. As such, this section has more mathematical content than a
list of open questions.

6.1. Lower bound on the value of T �rec

The objective of this part is to justify the following conjecture:

Conjecture 1. We have T �rec � 2
p
� .



Statistical reconstruction of the GFF and KT transition 675

We have two reasons to believe this conjecture, both related to the continuum Gaussian
free field. The first reason concerns the so-called imaginary chaos and the second one is
related to the flow lines of the continuum GFF.

6.1.1. Reason 1: Imaginary chaos. We will not introduce all the definitions here. We refer
to [26,28] for context and the definition. Let ˆ be a 0-boundary continuum Gaussian free
field in a domain D � C and let �x" be the uniform measure on @B.x; "/. We normalize
ˆ so that if d.x; y/ � " then

EŒ.ˆ; �x" /.ˆ; �
y
" /� D GD.x; y/:

Note that in our normalization GD.x; y/ � 1
2�
jlog kx � ykj.

Fix ˛ 2 R and define V˛ as the imaginary chaos associated with ˛,

V˛
D V˛.ˆ/ WD lim

"!0
exp

�
i˛�".�/C

˛2

2
EŒ�2" .�/�

�
:

Here the limit is taken in the space of distributions, and it is only non-trivial in the case
˛ < 2

p
� . Note that our normalization is different from the one in [26, 28], in which our

˛ corresponds to Q̨ D
p
2.

We can now prove the following result.

Proposition 6.1. Assume

(H1) there exists Ǫ such that for all ˛ < Ǫ the GFF ˆ can be measurably recovered
from V˛.ˆ/, i.e., there exists a deterministic measurable function F such that a.s.
F.V˛/ D ˆ.

Then T �rec � Ǫ .

Remark 6.2. After the first version of this work appeared, hypothesis (H1) was proved
up to Ǫ D 2

p
� in the recent work [5]. Let us emphasize that the imaginary case is more

subtle than the same question for the real chaos analyzed in [11] as one needs to control
the local fluctuations all the way to the boundary.

To prove Proposition 6.1, we need to show that the discrete imaginary chaos converges
to the continuous one.

Proposition 6.3. Let �.n/ be a discrete 0-boundary GFF in ƒn and let

V˛
n .�/ WD exp

�
i˛�.n/.�/C

˛2

2
EŒ.�.n//2.�/�

�
:

Then for all ˛ < 2
p
� , as n!1,

.�.n/;V˛
n /! .ˆ;V˛.ˆ// in law;

for the topology of generalized functions. Here ˆ is a 0-boundary GFF in Œ�1; 1�2.
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As this section is concerned mostly with conjectures, we will only sketch the proof of
this result. The main input is [26, Theorem 1.3] which states that .ˆ;V˛.ˆ// is charac-
terized by its moments.

Proof of Proposition 6.3. By [26, Theorem 1.3], the field .ˆ;V˛.ˆ// is characterized by
its moments, that is, by

E
h�Y

i

.ˆ; f 1i /
��Y

j

.V˛; f 2j /
��Y

k

.V˛; f 3
k
/
�i

D

Z �Y
i

f 1i .xi /dxi

��Y
j

f 2j .yj /dyj

��Y
k

f 3
k
.zk/dzk

�
C..xi /i ; .yj /j ; .zk/k/; (6.1)

where all f `� are smooth functions in Œ�1; 1�2 (with zero mean if ˆ is a free-boundary
GFF). The function C.�; �; �/ is called the correlation function of this model. By a simple
(but lengthy) computation one can see that (6.1) also comes from the discrete setting

E
h�Y

i

n�2h�n; f
1
i i

��Y
j

n�2hV˛
n ; f

2
j i

��Y
k

n�2hV˛
n ; f

3
k
i

�i
!

Z �Y
i

f 1i .xi /dxi

��Y
j

f 2j .yj /dyj

��Y
k

f 3
k
.zk/dzk

�
C..xi /i ; .yj /j ; .zk/k/;

(6.2)

at least when all the functions f have disjoint supports. This can be proven by noting that
C is obtained only from the Green’s function and that the discrete Green’s function con-
verges to the continuum one [15, Corollary 3.11]). To finish, one needs to show that (6.2)
is true for all possible f s. This can be done using the dominated convergence theorem.
To see that the sum coming from the LHS of (6.2) is uniformly dominated, one applies
[15, Theorem 2.5], i.e.,

G.x; y/ D �.2�/�1 log
�
kx � yk

n

�
CO.1/;

and uses the same techniques as in [26, Section 3.2].

We can now prove Proposition 6.1.

Proof of Proposition 6.1. Let �.n/1 and �.n/2 be two 0-boundary GFFs coupled as in Defi-
nition 3.1. Thanks to Proposition 6.3, the 4-tuple

.�
.n/
1 ;V˛

1;n; �
.n/
2 ;V˛

2;n/

is tight. Let .ˆ1;V˛
1 ; ˆ2; ˆ2;V

˛
2 / be any accumulation point of the sequence and note

that because for all n 2 N, a.s. V˛
1;n D V˛

2;n, we have V˛
1 D V˛

2 . This equality implies,
thanks to assumption (H1), that a.s. ˆ1 D ˆ2. Then, as all accumulation points are the
same, we have in fact, as n!1,

.�
.n/
1 ;V˛

1;n; �
.n/
2 ;V˛

2;n/! .ˆ1;V
˛
1 ; ˆ1;V

˛
1 / in distribution:
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Let us now take any smooth function f . For j 2 ¹1; 2º we have

sup
n

E

��
1

n2
h�
.n/
j ; f i

�4�
< K;

which implies that

E

��
1

n2
h�
.n/
1 � �

.n/
2 ; f i

�2�
! EŒ.ˆ1 �ˆ1; f /

2� D 0:

As this implies that EŒVar h�.n/1 ; f i j exp.i˛�.n/1 /� D o.n4/, we conclude as at the begin-
ning of Section 3.

Remark 6.4. Note that even if assumption (H1) is proven, this only shows that
EŒVar h�.n/1 ; f i� D o.n4/, which is a weaker result than EŒVar h�.n/1 ; f i� D O.n2/ estab-
lished in Proposition 3.9.

6.1.2. Reason 2: Flow lines. Flow lines of Gaussian free fields were introduced in [16,
40] and were studied in depth in [30–33]. Informally, a flow line can be described as the
curve which is the solution of

�0.t/ D ei.
p
2� ˆ=�Cu/; �.0/ D z 2 @D;

whereˆ is a GFF in a simply connected domainD and u is a harmonic function. For us it
is important to note that the curve � should only be determined by ei.

p
2� ˆ=�/. This will

motivate assumption (H2) below.
Flow lines can be defined using the concept of local sets [39, 44]. In other words, � is

a flow line of a GFF ˆ if for any stopping time � of the natural filtration of � we have

ˆ D ˆ�� C h�� ;

where �� D �.Œ0; ��/, ˆ�� has the law of a GFF ofD n �� and h�� is a harmonic function
inD n �� . Let us remark that in this case the function h�� is, in fact, a measurable function
of �� . In fact, it can be found in [30, Theorem 1.1].

A generalization of flow lines is given by the angle-varying flow lines defined in [30,
Section 5.2], which can be roughly described as running a flow line with initial angle �1
until a stopping time11 �1, and then continue with an angle �2 until a stopping time �w ,
and continue until finitely many iterations. These lines are called ��1:::�`

�1:::�`
and they are a

measurable function of ˆ, the GFF they are coupled with (see [30, Lemma 5.6]).
In fact, [30, Proposition 5.9] shows that if � � 1=

p
2, there exists a countable set of

angle-varying flow lines
�
�
�k
1
:::�k
`k

�k
1
:::�k
`k

�
k2N

such that a.s.

[
n

�
�k
1
:::�k
`k

�k
1
:::�k
`k

11With respect to the natural filtration of �.
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is dense (because SLE8 is a space-filling curve). Now, define Fn as the � -algebra gener-

ated by �
�
`n
1
:::�n
`n

�
`n
1
:::�n
`n

. The discussion in the paragraph before and the fact that h
�
�
`n
1
:::�n
`n

�
`n
1
:::�n
`n

is a

measurable function of the set �
�
`n
1
:::�n
`n

�
`n
1
:::�n
`n

implies that F D
W
n Fn is equal to the � -algebra

generated by ˆ (see for example [6, Lemma 2.3]). In other words, ˆ is a deterministic

function of
�
�
�
`n
1
:::�n
`n

�
`n
1
:::�n
`n

�
n2N

.

This allows us to show the following proposition.

Proposition 6.5. Let �n be a 0-boundary GFF in ƒn, and assume

(H2) there exists O� � 1=
p
2 such that for all � > O� and for any angle-varying flow

line ��1:::�`
�1:::�`

, there exists an approximate angle-varying flow line �.n/ depending

on exp.i
p
2� �n=�/ such that .�n; �.n// converges in law to .ˆ; ��1:::�`

�1:::�`
.ˆ//.

Then T �rec �
p
2�=�.

Before proving the proposition, let us recall that it is expected that the flow lines
related to the discrete GFF converge to the flow lines of the continuum GFF, as this is
already the case for � D 1, the SLE4 case [38]. If this were the case, Proposition 6.5
implies that T �rec � 2

p
� .

Proof of Proposition 6.5. Let ˆ be a continuous GFF with zero boundary condition.
Thanks to assumption (H2), we can define �.n/

k
such that as n!1,

.�n; �
.n/

k
/!

�
ˆ; �

�k
1
:::�k
`k

�k
1
:::�k
`k

.ˆ/
�

(6.3)

in law. We then have

.�n; .�
.n/

k
/k2N/!

�
ˆ;
�
�
�k
1
:::�k
`k

�k
1
:::�k
`k

.ˆ/
�
k2N

�
(6.4)

in law for the product topology. Indeed, (6.3) implies that .�n; .�
.n/

k
/k2N/ is tight for the

product topology. We can then check, again thanks to (6.3), that any accumulation point
.ˆ; .�1

k
/k2N/ has to be such that

.ˆ; �1k / D
�
ˆ; �

�k
1
:::�k
`k

�k
1
:::�k
`k

.ˆ/
�
:

As a consequence,

.ˆ; .�1k /k2N/ D
�
ˆ;
�
�
�k
1
:::�k
`k

�k
1
:::�k
`k

.ˆ/
�
k2N

�
;

which implies (6.4).
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We can now conclude in a similar way to Proposition 6.1. We take .�1; �2/ coupled
as in Definition 3.1 and we study the 4-tuple�

�
.n/
1 ; .�nk.�

.n/
1 //k2N ; �

.n/
2 ; .�nk.�

.n/
2 /k2N

�
:

Again, this 4-tuple is tight and any accumulation point is of the form�
ˆ1;

�
�
�k
1
:::�k
`k

�k
1
:::�k
`k

.ˆ1/
�
k2N

; ˆ2;
�
�
�k
1
:::�k
`k

�k
1
:::�k
`k

.ˆ2/
�
k2N

�
:

Since for all n; k 2 N, we have �n
k
.�
.n/
1 / D �n

k
.�
.n/
2 /, we find that at this accumulation

point, a.s.,

�
�k
1
:::�k
`k

�k
1
:::�k
`k

.ˆ1/ D �
�k
1
:::�k
`k

�k
1
:::�k
`k

.ˆ2/:

As ˆi is a function of this
�
�
�k
1
:::�k
`k

�k
1
:::�k
`k

.ˆi /
�
k2N

, we see that ˆ1 D ˆ2, which implies

that .�.n/1 ; �
.n/
2 / converges in law to .ˆ1; ˆ1/. By the same reasoning as at the end

of the proof of Proposition 6.1 we conclude that for any continuous function f ,
EŒVarŒh�.n/; f i j e

p
2��.n/=��� D o.n4/.

6.2. Interfaces of exp.iT�/

In this section, we discuss the possible scaling limit of certain interfaces naturally appear-
ing in exp.iT�/ and how they may relate to the interfaces of the GFF �.

6.2.1. Level lines of exp.iT�/. In [38], the authors showed that the level line of a zero
boundary GFF with a special boundary condition converges in law to an SLE4. We believe
a similar story holds for both exp.iT�/, and more importantly for the Villain model. Let
us be more explicit.

We define un as the bounded harmonic function in ƒn n @ƒn with boundary value
� D

p
�=8 in @ƒn \ ¹x W Re.x/ � 0º and �� D �

p
�=8 in @ƒn \ ¹x W Re.x/ < 0º. It is

shown in [38] that if �n is a GFF in ƒn with zero boundary condition and � the level line
of � C un, then �.n/.�/ is a path in the dual of ƒn that has the following properties (see
Figure 6):

� It goes from the dual of the edge .�i � 1=n;�i/ to the dual of the edge .i C 1=n; i/.

� The primal edge associated to a dual edge in the path is such that �n is negative to its
left and positive to its right.

Theorem 1.4 of [38] states that �.n/.�/ parametrized by capacity converges in the uni-
form topology to an SLE4. This result is improved in [39] by showing that as n!1,

.�n; �
.n//! .ˆ; �/ in law.

Here ˆ is a GFF in Œ�1; 1� and � is the so-called level line of the continuous GFF. More
precisely, � is a measurable function of ˆ and the law of ˆ conditioned on � is such that

ˆC u1 D ˆ
L
CˆR;
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−λ

−λ
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−λ

−λ λ

λ

λ

> 0

> 0

> 0
0 >

0 >

0 >

Fig. 6. Left: The boundary values of the harmonic function un. Right: The level line of � C un;
note that � C un takes positive values to the left and negative to the right.

where ˆL, resp. ˆR, is a GFF in the domain to the left, resp. right, of � with ��, resp. �,
boundary condition (see Figure 7).

−λ

−λ

−λ λ

λ

λλ

−λ

Fig. 7. The image shows how the limiting curve � separates the domain into two different domains,
the left where the GFF has �� boundary condition and the right where its boundary condition is �.

We now have the tools to prove Corollary 1.4.

Proof of Corollary 1.4. We assume that �n converges to a continuum GFF ˆ and define
L.n/ D L

.n/
T .exp.iT�n// as a set parametrized by q, where

L.n/.q/ D EŒ�.n/.q/ j exp.iT�/�:

Let us now prove that the set L.n/ converges in probability to the level line � of �. To do
this, it is enough to show that for all q, L.n/.q/ converges in probability to �.q/. Thanks
to [38, Theorem 1.4] we know that �.n/.q/ converges in law to �.q/; now it suffices to
show that as n!1,

VarŒ�.n/.q/ j exp.iT�/�! 0 in probability. (6.5)

To do this, we use the same trick as always. Let .�.n/1 ; �
.n/
2 / be two GFFs coupled as in

Definition 3.1. We know that thanks to Theorem 1.1 (a), .�.n/1 ; �
.n/
1 ; �

.n/
2 ; �

.n/
2 / converges

in law to .ˆ; �; ˆ; �/. Here the topology on the curves is that of the uniform distance for
continuous curves. As a consequence of the convergence we find that for any q 2 Q,

P .k�.n/1 .q/ � �
.n/
2 .q/k � ı/! 0 as n!1:
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Since ƒn is bounded, we conclude that

EŒk�.n/1 .q/ � �
.n/
2 .q/k2�! 0 as n!1:

This concludes the proof, as it proves (6.5).

Corollary 1.4 gives an explicit way to recover the level line of the GFF given eiT�n .
However, this recovery process does not locally depend on the field. We also believe that
it is possible to recover the level line via an explicit local function of eiT .�nCun/, its own
level line.

Now, we let T be small enough such that T � < � ; then the imaginary part of
exp.iT un.x// has the same as sign as the real part of x. We also define �.n/;T .�/, the
level line of the imaginary part exp.iT .�n C un//. We conjecture the following.

Conjecture 2. There exists a small enough Tc such that for all T < Tc , �.n/;T converges
in law to an SLE4. Furthermore, �.n/ and �.n/;T converge to the same limit.

Apart from Corollary 1.4, we have two other reasons to believe in this conjecture. The
first one is the fact that the gradient of �n on its level line �.n/ is, in mean, upper and
lower bounded (see [38, Lemma 3.1]). Thus, one could expect that most edges in � have
corresponding primal edges for which Im.exp.iT�n// is negative on its left vertex and
positive on the right one.

The second reason is that level lines do not get close to each other, nor to themselves.
This can be seen in [38, Sections 3.4 and 3.5], or by understanding their scaling limit as
in [43, Remark 1.5].

As we said before, we conjecture that there is a similar result for the Villain model.
In fact, Fröhlich and Spencer conjectured that the Villain model at low temperature T is
close to the imaginary exponential of a GFF with a slightly different temperature TVil WD

TVil.T / > T (see [22, Section 8.1]). This allows us to interpret Conjecture 2 as follows.

Conjecture 3. Let T be small enough and let  n be a Villain model in ƒn with tem-
perature T and boundary values exp.�i�

p
T 0Vil/ in the left side of the boundary, i.e.

@ƒn \ ¹x W Re.x/ < 0º, and exp.i�
p
T 0Vil/ in @ƒn \ ¹x W Re.x/� 0º. Let �.n/ be the level

line of the imaginary part of  . Then �.n/ converges in law to an SLE4 .see Figure 8/.

In fact, the result should hold for more general boundary values.

Conjecture 4. Let T be small enough and let  n be a Villain model in ƒn with tem-
perature T and boundary values exp.�ia/ in @ƒn \ ¹x W Re.x/ < 0º, and exp.ia/ in
@ƒn \ ¹x W Re.x/ � 0º. Let �.n/ to be the level line of the imaginary part of  . Then for
a small enough, �.n/ converges in law to an SLE4.�/ with � D a=.�

p
t / � 1.

6.2.2. Full set of interfaces. Instead of studying a single interface of a GFF, one could
also study the whole set of interfaces arising from a 0-boundary GFF. These sets are called
ALEs, and were introduced in [9] and further studied in [6, 8, 36].
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Fig. 8. Left: The boundary values of the Villain model. Right: The level line of the imaginary part
of this Villain model. We believe that this line converges in law to an SLE4 when the temperature
of the system is low enough.

ALEs are characterized as the only random set A��;� such that a continuum GFF ˆ
can be written as

ˆ WD
X
O

ˆO C �O�; (6.6)

where the sum is over connected components O of the complement of A��;�, i.e.,
Œ�1; 1�2 n A��;�. Furthermore, �O 2 ¹�1; 1º and conditionally on A��;�, ˆO is a
0-boundary GFF in O (conditionally) independent of .ˆO0/O0¤O . The existence and
uniqueness of such a set was proven in [9]. Furthermore, as shown in [8, Lemma 3.6],
this set can be thought of as the union of the 0-level lines of the continuum GFF ˆ.

In fact, for this discussion it is useful to define the 0-level line � of a discrete GFF
going between x 2 @ƒn and y 2 @ƒn; � is then a dual path connecting an edge containing
x to an edge containing y such that for all vertices in ƒn n @ƒn to the left of �, one has
�n.x/ < 0, and for all vertices to the right of �, �n.x/ > 0 (except maybe for points in
the boundary12). Furthermore, let us define the discrete ALE An

��;�
as the union over all

starting points and end points of the associated 0-level lines.
The 0-level line is known to converge for the Hausdorff topology by [38, Theo-

rem 1.3], and furthermore the techniques of [39] allow us to see that it converges to
the 0-level line of a continuum GFF. These techniques, together with [8, Lemma 3.6]
mentioned above, allow one to show that An

��;�
converges for the Hausdorff topology to

the ALE.13

We can now discuss similar results to those for the level lines. In particular, as before
we have

12Note furthermore that such a line is not always unique. This should not be a problem as it is
not a problem in [38].

13The exact argument is not written anywhere, even though this proof has been known to a small
community. As the main focus of this section is not this result, but rather to shed light on this
interesting direction, we will not formalize this result further here.
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Proposition 6.6. For T < T �rec, there exists a deterministic function AT .�/ such that when
�n ! ˆ, we have AT .eiT�n/! A��;�.

The problem, as before, is that we do not know whether this function AT can be taken
to be the discrete ALE associated to the imaginary part of eiT�n . This is the content of the
next conjecture.

Conjecture 5. Let T be small enough and �n a 0-boundary GFF converging to ˆ. Then
the ALE associated to the imaginary part of eiT�n converges to A��;�.

Fig. 9. Left: The boundary values of the Villain model for this case. Right: The ALE associated to
the imaginary part of this Villain model. We believe that this set converges in law to the ALE A��;�
when the temperature of the system is low enough. A striking consequence of this conjecture is that
the law of the limiting set does not depend on the temperature, as long as the system is cold enough.

An even more daring conjecture is that the same is true for a Villain model at small
enough temperature.

Conjecture 6. Let T be small enough and let  n be a Villain model in ƒn. Then as
n!1 the discrete ALE associated to the imaginary part of  n converges to A��;�.

It is interesting to note that we expect that the interfaces of the Villain model at low
temperature resemble each other a lot for various ˇ. That is, this geometry will not distin-
guish the temperature from which the ALE arises. However, we expect that the law inside
each connected component of the complement of this ALE will look pretty different. To
be more precise, we expect that the boundary conditions generated by this ALE get closer
and closer to 1 D ei0 as the temperature goes to 0.

6.3. Upper bound on of TCrec

In fact, the analysis of level lines of the GFF makes us believe in the following conjecture.

Conjecture 7. We have TCrec � 2
p
2� .
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Let us note that 2
p
2� is the smallest value of T so that exp.iT �/D exp.�iT �/. That

is, it is the value for which we could not expect to recognize the macroscopic difference
between the left and the right side of the level line � introduced in Section 6.2.

The level line � is fundamental in recovering the GFF. This is shown, for example, in
the construction of the free-boundary GFF given in [36].

There is another reason why we believe that one cannot recover � when T D 2
p
2� .

It has to do with the level set of the GFF.
Although the GFF is not a function, one can still define A�a;b . This is, informally, the

(connected component connected to the boundary of the) preimage of Œ�a; b�. These sets
were introduced14 in [6, 9] and their existence is conditional on the size of the interval
Œ�a; b�:

� The set A�a;b exists if and only if a; b > 0 and aC b � 2�.

The case aC b D 2� is special. These are the values such that exp.�iTa/ D exp.iT b/.
Furthermore, in [8], it is shown that these are the only values of a and b such that the
following happens:

� Fix two points x; y 2 Œ�1; 1�2 and let O.x/ and O.y/ be the connected components of
Œ�1; 1�2 n A�a;b containing x and y respectively. Then there is a positive probability
that O.x/ ¤ O.y/ and @O.x/ \ @O.y/ is a continuous curve.

This property implies that the places where the GFF takes value �a and the ones where
it takes value b are mesoscopically separated, i.e. they are not macroscopically far apart.
As the function x 7! exp.i2

p
2� x/ cannot distinguish between �a and b, we believe

it is not possible to recover A�a;b just by knowing exp.i2
p
2� �/. This would make it

impossible to recover all the macroscopic information on the GFF.

Appendix A. Viewing the shift a D ¹ai ºi 2ƒ as an exterior magnetic field

The goal of this appendix is to provide a different proof of Proposition 4.1. The idea of this
proof was inspired to us by an inspection of this exact identity in the simplest possible
case of a Gaussian free field on a single point ¹xº with Dirichlet boundary condition,
namely a Gaussian N .0; 1=ˇ/. The appendix is organized as follows: first we investigate
the case of one point, then we make a link with Riemann theta functions (thus explaining
the name modular invariance) and finally we give a second proof of Proposition 4.1.

A.1. Warm up: GFF with one point and Jacobi theta function

Let us consider the GFF on a graph with two points ¹x; yº with zero boundary condition
at y. The partition function of the a-shifted integer-valued field (here the vector a is just

14See [37] to better understand the relationship between A�a;b and the imaginary chaos.
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one parameter which we call a) reads as follows:

Z.ˇ; a/ D

Z �X
n2Z

ı2�nCa.�/
� 1p

2�=ˇ
e�

ˇ
2 �
2

d�

D
1p
2�=ˇ

X
n2Z

exp
�
�
ˇ

2
.2�nC a/2

�
:

In the limiting case where we plug the infinite Fourier series

1C 2

1X
qD1

cos.q.� � a// � 2�
X
n2Z

ı2�nCa.�/

into the Fröhlich–Spencer expansion at one point, it can be checked that the identity (4.9)
readsP

n2Z exp.�ˇ
2
.2�nC a/2/ � .2�nC a/P

n2Z exp.�ˇ
2
.2�nC a/2/

D

1
ˇ

P
q2Z e

�
q2

2ˇ sin.q � a/ � qP
q2Z e

�
q2

2ˇ cos.q � a/
; (A.1)

which is correct for any ˇ > 0 and any real a 2 .��; �/. (Note interestingly that it is
degenerate for the LHS as ˇ ! 0 but not for the RHS!)

One way to prove this identity is to notice its link with Jacobi’s theta function. Indeed,
the latter is classically defined as follows (see for example [34]):

�.z j �/ WD
X
n2Z

exp.i�n2� C 2i�nz/

for all z 2 C; � 2 H. Now if we plug

z WD iˇa; � WD 2i�ˇ

into � , we find

�.z j �/ D e
ˇ
2 a
2
X
n2Z

exp
�
�
ˇ

2
.2�nC a/2

�
:

Jacobi’s first modular identity states that

�

�
z

�

ˇ̌̌̌
�1

�

�
D ˛�.z j �/; (A.2)

where ˛ D .�i�/1=2 exp.�
�
iz2/ D

p
2�ˇ exp.�ˇ

2
a2/. This identity givesX

q2Z

e�
q2

2ˇ cos.qa/ D
p
2�ˇ

X
n2Z

exp
�
�
ˇ

2
.2�nC a/2

�
D
p
2�ˇ Z.ˇ; a/;

from which one can prove the identity (A.1) by taking the log-derivative in a. Note that
one may also avoid using Jacobi’s identity and re-prove things using a Poisson summation
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formula. We indicate the link here as our shift-parameter a which is central to our work
is naturally associated to the first argument z of the theta function � (while the second
argument � is related to the inverse temperature).

The argument we have just outlined bares some resemblance to the fact that, in an
Ising model with an exterior magnetic field h, one can compute the average magnetization
as a derivative with respect to h of the free energy logZ. In our context, we have used the
fact that P

n2Z exp.�ˇ
2
.2�nC a/2/ � .2�nC a/P

n2Z exp.�ˇ
2
.2�nC a/2/

D �
1

ˇ
@a log.Z.ˇ; a//:

This suggests that our key identity (4.9) for a general domain ƒ � Z2 should be rem-
iniscent of recovering the average magnetic field of the Ising model from the derivative
in h of its free energy logZ. We implement this idea in the rest of the appendix by viewing
the vector shift aD ¹aiºi2ƒ acting as an external magnetic field. We prove Proposition 4.1
along these lines in two steps:

Section A.2: First, as in the case of one point, we work in the limiting case of infinite
Fourier series at each vertex x 2 ƒ. This makes the analogy with the Ising model clearer
and makes a connection with the modular invariance of certain Riemann theta functions.
From the intuition gathered here, we notice that the key identity (4.9) is an appropriate
log-derivative with respect to a, namely �h�;ra logZi D �h 1

ˇ
.��/�1f;ra logZi.

Section A.3: In the second part, we work in the finite cut-off case. Here it is not so clear
how to recognize the integral against hf; �i on the RHS of the identity (4.9). The rea-
son is that expansion into charges from [21] (and particularly the effect of the complex
translation under spin waves) somehow obfuscates the readability of E a

ˇ;ƒ;�ƒ;v
Œh�; f i�.

To end the proof, we first get around the blurring effect caused by the expansion into
charges from [21] (using the matching of partition functions before and after expansions
into charges) and then connect with an actual average of h�; f i by Gaussian integration
by parts.

A.2. Riemann theta function and a-shifted integer-valued GFF

In this section, we implicitly rely on expansions into infinitely many charge configurations
in [21, 27] by attaching to each vertex i 2 ƒ the infinite trigonometric series

�i .�i / D 1C 2

1X
kD1

cos.k.�i � ai //:

We will not properly justify here that these series are well defined as our goal is to justify
properly in the next section the key identity (4.9) which holds in the finite cut-off case

�i .�i / D 1C 2

NX
kD1

cos.k.�i � ai //;

with N large.
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Let us introduce the following two partition functions in the general case of ƒ � Z2

with, say, Dirichlet boundary condition:

Z.ˇ; a/ WD
1p

.2�ˇ�1/jƒj det.��/�1

X
m2Zƒ

exp
�
�
ˇ

2

X
i�j

�
2�.mi �mj /C ai � aj

�2�
QZ.ˇ; a/ D

X
N2F

cNZ
a
N .0/

D

X
N2F

cN

Z Y
�2N

Œ1C z.ˇ; �;N / cos.h�; N�i � ha; �i/� d�GFF
ˇ;ƒ;v.�/:

(As hinted above, F must be an infinite set of charge configurations here.)
The expansion from Fröhlich–Spencer (in this limiting case) reads as follows: for all

ˇ < ˇ0 and a 2 Rƒ,

Z.ˇ; a/ D QZ.ˇ; a/: (A.3)

Inspired by the analogy with Ising, we now compute, for any g W ƒ! R,

hg;ra logZ.ˇ; a/i D
X
i2ƒ

gi@ai logZ.ˇ; a/

D �ˇ

P
i2ƒ gi

P
m2Zƒ e

�
ˇ
2

P
i�j .2�.mi�mj /Cai�aj /

2P
i�j .2�.mi �mj /C ai � aj /P

m2Zƒ e
�
ˇ
2

P
i�j .2�.mi�mj /Cai�aj /

2

D ˇ

P
i2ƒ

P
m2Zƒ e

�
ˇ
2

P
i�j .2�.mi�mj /Cai�aj /

2
Œ�.2�mC a/�igiP

m2Zƒ e
�
ˇ
2

P
i�j .2�.mi�mj /Cai�aj /

2

D ˇ

P
m2Zƒ e

�
ˇ
2

P
i�j .2�.mi�mj /Cai�aj /

2
hg;�.2�mC a/iP

m2Zƒ e
�
ˇ
2

P
i�j .2�.mi�mj /Cai�aj /

2
:

Choose (as in [21, 27])

g D � WD
1

ˇ
���1f:

This gives

h�;ra logZ.ˇ; a/i D �
P
m2Zƒ e

�
ˇ
2

P
i�j .2�.mi�mj /Cai�aj /

2
hf; 2�mC aiP

m2Zƒ e
�
ˇ
2

P
i�j .2�.mi�mj /Cai�aj /

2

D �E IV
ˇ;ƒ;aŒh�; f i�:

Now, from (A.3), we know that for any function g W ƒ! R,

hg;ra logZ.ˇ; a/i D hg;ra log QZ.ˇ; a/i:

This implies, with g D � , the following formula for E IV
ˇ;ƒ;aŒh�; f i�:

E IV
ˇ;ƒ;aŒh�; f i� D �h�;ra log QZ.ˇ; a/i:
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Let us then compute ra and check that it gives the desired identity:

h�;ra log QZ.ˇ; a/i

D
1

QZ.ˇ; a/

X
i

�i
X

N2F

cN 1i2�D�i2N

Z
z.ˇ; �;N /Œ� sin.h�; N�i � ha; �i/��i �

�

Y
�2N n¹�i º

Œ1C z.ˇ; �;N / cos.h�; N�i � ha; �i/� d�GFF
ˇ;ƒ;v.�/

D
1

QZ.ˇ; a/

X
N2F

cN

Z �X
�2N

z.ˇ; �;N / sin.h�; N�i � ha; �i/h�; �i
1C z.ˇ; �;N / cos.h�; N�i � ha; �i/

�
�

Y
�2N

Œ1C z.ˇ; �;N / cos.h�; N�i � ha; �i/� d�GFF
ˇ;ƒ;v.�/

and we thus recover the RHS of (4.9) in the limiting case of infinite trigonometric poly-
nomials at each site.

Let us briefly highlight now the link with Riemann theta functions which we believe
illustrates what is beneath the identity (4.9). It is not hard to rewrite the partition function

Z.ˇ; a/ D
1p

.2�ˇ�1/jƒj det.��/�1

X
m2Zƒ

exp
�
�
ˇ

2

X
i�j

.2�.mi �mj /C ai � aj /
2

�
as a theta function in several variables (i.e., a Riemann theta function). The latter gener-
alized theta functions may be defined as follows (see for example [34]): for any g � 1,
z D .z1; : : : ; zg/ 2 Cg and a symmetric g � g complex matrix � whose imaginary part
is positive definite, set

�.z j �/ WD
X

m2Zg

exp.�i mT�mC 2i� m � z/: (A.4)

The Riemann theta functions therefore match exactly our model when

z WD iˇ.��/a; � WD 2i �ˇ.��/:

We claim that the identity (4.9) is reminiscent of the suitable log-derivative (i.e. taking
F.a/ 7! �h�;raF.a/i) of the modular invariance identity for Riemann theta functions
(see for [34, Example 5.1]) which states that

�.��1z j ���1/ D
p

det.�i�/ exp.i�zT��1z/�.z j �/: (A.5)

A.3. Blurring effect of the decomposition into charges

In this subsection, we work with finite cut-off Fourier series (and therefore do not need to
worry about convergence of series) and we end our alternative proof of Proposition 4.1.

By the same computation as the one outlined above for the infinite trigonometric
series, the RHS in (4.9) is given by

�h�;ra log QZN .ˇ; a/i
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where QZN .ˇ; a/ denotes the rewriting by Fröhlich–Spencer of the finite cut-off partition
function (i.e. QZN .ˇ;a/D

P
N2F cNZ

a
N
.0/). The key point here is that it is not clear how

to recognize the expectation E a
ˇ;ƒ;�ƒ;v

Œh�; f i� from the above log-derivative. To make
that identification easier, one should rely instead on an easier expression of QZN .ˇ; a/.
Indeed, we will instead work with the initial expression of the partition function before
subtle expansions into charges are made. Namely, we consider

OZN .ˇ; a/ WD
Z Y

x2ƒ

�
1C 2

NX
kD1

cos.k.�x � ax//
�
dP GFF

ˇ;ƒ

and we then compute

� h�;ra log QZ.ˇ; a/i D �h�;ra log OZN .ˇ; a/i

D �

X
i2ƒ

�i
E GFF
ˇ

Œ2.
PN
kD1 k sin.k.�i � ai ///

Q
x2ƒni .1C 2

PN
kD1 cos.k.�x � ax///�

OZN .ˇ; a/
:

We now wish to compare this with an expression for E a
ˇ;ƒ;�ƒ;v

Œh�; f i�:

E a
ˇ;ƒ;�ƒ;v

Œh�; f i� D E GFF
ˇ;ƒ

hY
x2ƒ

�
1C 2

NX
kD1

cos.k.�x � ax//
�
h�; f i

i
D

X
i2ƒ

fiE
GFF
ˇ;ƒ

hY
x2ƒ

�
1C 2

NX
kD1

cos.k.�x � ax//
�
�i

i
D

X
i2ƒ

fi
X
j2ƒ

h�i�j i
GFF
ˇ E GFF

ˇ;ƒ

h
@j
Y
x2ƒ

�
1C 2

NX
kD1

cos.k.�x � ax//
�i
;

by Gaussian integration by parts. Continuing, this gives us

E a
ˇ;ƒ;�ƒ;v

Œh�; f i� D �
X
i2ƒ

fi
1

ˇ
.��/�1.i; j /‰.j /;

where

‰.j / WD 2E GFF
ˇ;ƒ

h NX
kD1

sin.k.�j � aj //k
Y

x2ƒnj

�
1C 2

NX
kD1

cos.k.�x � ax//
�i
:

Hence

E a
ˇ;ƒ;�ƒ;v

Œh�; f i�D �
X
i2ƒ

fi
1

ˇ
Œ���1�‰.i/D �

1

ˇ
hf; .���1/‰i D �

�
1

ˇ
.���1/f;‰

�
D �

X
i2ƒ

�iE
GFF
ˇ;ƒ

h
2

NX
kD1

sin.k.�i � ai //k
Y
x2ƒni

�
1C 2

NX
kD1

cos.k.�x � ax//
�i
;

which ends our proof because we have obtained, as desired, the same expression as for
�h�;ra log OZN .ˇ; a/i.



C. Garban, A. Sepúlveda 690

Appendix B. Link with the random-phase sine-Gordon model

As pointed out to us by Tom Spencer, our work turns out to be closely related to the
random-phase sine-Gordon model which has been studied extensively in the physics lit-
erature [12, 29] and which we now introduce.

Definition B.1. Letƒ � Z2 be a finite domain. Let z 2 Œ0;1� (this is called the activity)
and a D ¹aiºi2ƒ be a quenched disorder on the vertices given by i.i.d. random variables
ai uniform in Œ0; 2�/.

We equip the domain ƒ with either Dirichlet or free boundary conditions. The
random-phase sine-Gordon model is the following quenched disorder probability mea-
sure on fields ¹�iºi2ƒ:

P a-SG
ˇ;z;ƒŒd�� WD

1

Za-SG
ˇ;z;ƒ

exp
�
z
X
i2ƒ

cos.�i � ai /
�
P GFF
ˇ;ƒ Œd��:

Remark B.2. (1) Note that if we let z ! 1, the measure P a-SG
ˇ;ƒ

converges to the a-
shifted IV-GFF on ƒ .with a 2 Œ0; 2�/ƒ/.

(2) If z !1 and if the disorder a, instead of being uniform in Œ0; 2�/ƒ, is sampled as
follows:

a WD ' .mod 2�/ with ' � P GFF
ˇ ;

then the annealed law
R

P .da/P a-SG
ˇ;1;ƒ

Œd�� is very simple and is given by P GFF
ˇ

Œd��.

When the disorder a is uniform, it turns out that the annealed law is very different
from the law of a GFF. Indeed, in a series of works including [12, 29], the following
roughening/super-roughening phase transition has been predicted:

� If the temperature is high enough, then on large domains ƒn WD ¹�n; : : : ; nº2, it is
predicted that the random phase sine-Gordon model will fluctuate as a GFF, namely for
any fixed z 2 Œ0;1� and ˇ small enough,

Ea
�
E a�SG
ˇ;z;ƒn

Œ�2.0/�
�
�n!1 logn:

� On the other hand, if the temperature is low enough, fluctuations are predicted to be
larger! The following super-roughening behavior is predicted (see [12, 29]): for any
fixed positive activity z 2 .0;1� (note that here z > 0 is required) and ˇ high enough,

Ea
�
E a�SG
ˇ;z;ƒn

Œ�2.0/�
�
�n!1 .logn/2:

Our present work does not allow us to investigate the more surprising low temperature
phase with expected .log n/2 variances (see for example Remark 1.9). Yet, it enables us
to prove rigorously that the fluctuations for the random-phase sine-Gordon model in the
high temperature regime are at least as large as for a GFF. (Note that with the quenched
disorder a, one cannot rely on classical correlation inequalities such as Ginibre.) Namely,
a very mild generalization of the proof of Theorem 1.8 yields the following result (which
also clarifies the link between high enough temperature and the choice of activity z).
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For simplicity, we state our result for zero boundary conditions around ƒn .but the
analogous statement also holds for free boundary conditions by considering �.a/ � �.b/
for two distant points a; b in the bulk/.

Theorem B.3. There exists ˇ0 such for all ˇ < ˇ0 and all z 2 Œ0;1�, uniformly in the
disorder a 2 Œ0; 2�/ƒn , we have

Vara-SG
ˇ;z;ƒn

Œ�.0/� � �.1/ logn:

This implies in particular the following lower bound for the fluctuations of random phase
sine-Gordon .i.e. with a quenched disorder a � i.i.d./ when ˇ < ˇ0:

Ea
�
E a-SG
ˇ;z;ƒn

Œ�2.0/�
�
� �.1/ logn:

Sketch of proof. Since Theorem 1.8 is stated uniformly in the disorder a, it implies the
limiting case z D 1. It remains to notice that the proof also handles the case of finite
activities z 2 Œ0;1/ using the following minor modifications. Indeed, recall that we wrote
the proof of Theorem 1.8 for general trigonometric polynomials

�i .�/ D 1C 2

NX
qD1

O�i .q/ cos.q�.i//;

where the set of weights �ƒ D .�i /i2ƒ is assumed to satisfy the same hypothesis as in
[21, (5.35)] (or equivalently [27, (1.9)]).

In our present setting, at any site i 2 ƒ, we need to work with the following periodic
function:

�i 7! ez cos.�i�ai / D
X
q2Z

˛.q/ cos.q.�i � ai //

with

˛.q/ D
1

2�

Z 2�

0

e�iq�ez cos � d�:

It is sufficient to notice that 0 < ˛.0/ � ez and j˛.q/j � ˛.0/ for each q 2 Z. Indeed, we
may rewrite our periodic function as follows:

ez cos.�i�ai / D ˛.0/
�
1C 2

X
q�1

O�.q/ cos.q.�i � ai //
�
;

where j O�.q/j � 1. Since the conditions on O�.q/ in [21, 27] are conditions on the growth
of these coefficients, it is immediate to see that this “sine-Gordon” trigonometric poly-
nomial satisfies the conditions required to run the same proof as for Theorem 1.8. To
fully match the setup in that proof, one can absorb the multiplicative constant ˛.q/ in
the trigonometric polynomial into the partition function without any impact on the fluc-
tuations. Also, we wrote the proof as in [27], with a cut-off N on large frequencies (i.e.
looking at 1 C 2

PN
qD1
O�.q/). The same limiting argument N ! 1 as in [27] applies

here. The rest of the proof (in particular the analysis of the first and second moments in
Section 4.1) is identical in this setting. This ends this extension of Theorem 1.8 to the case
of the random-phase sine-Gordon model.
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