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Abstract. We prove a sharp stability result for the Brunn—Minkowski inequality for A, B C R2.
Assuming that the Brunn—Minkowski deficit § = |4 + B|Y/2/(|4|}/2 + | B|'/2) — 1 is sufficiently

small in terms of 1 = |A|1/2/(|A|1/2 + |B|1/2), there exist homothetic convex sets K4 O A and
Kp DO B such that % + % < Cr~1/281/2 The key ingredient is to show for every

g,t > 0, if § is sufficiently small then [co(A + B) \ (A + B)| < (1 + &)(|co(A) \ A| + |co(B) \ B]).

Keywords. Brunn—Minkowski, stability, planar

1. Introduction

Given measurable sets A, B C R”, the Brunn—Minkowski inequality says
|A + B|1/n > |A|1/n + |B|1/n,

with equality for homothetic convex sets A = co(A4) and B = co(B) (less a measure 0
set). Here A+ B ={a+ b |a € A, b € B} is the Minkowski sum, and | - | refers to the
outer Lebesgue measure. Stability results for the Brunn—Minkowski inequality quantify
how close A, B are to homothetic convex sets K4, Kp in terms of

1/ . . .

e §=0(A,B):= % — 1, the Brunn—Minkowski deficit, and
|A[L/7 : :

et =1t(A, B):= TAT /B the normalized volume ratio.

Throughout the paper, § and ¢ will refer to the above quantities.
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The sharp stability question for the Brunn—Minkowski inequality, Question 1.1 below,
is one of the central open problems in the study of geometric inequalities, and has
been studied intensely in recent years by Barchiesi and Julin [1], Carlen and Maggi [3],
Christ [4], Figalli and Jerison [5-7], Figalli, Maggi and Mooney [8], Figalli, Maggi and
Pratelli [9, 10], and the present authors [12]. We provide a more detailed history of the
problem in Section 1.1.

Question 1.1. For n > 1 do there exist exponents a,, b, such that the following is true,

and if so what are the optimal exponents (prioritized in this order)? There is a constant C,,

and constants d,(t) > 0 for t € (0, %] such that whenever A, B C R” are measurable

sets with ¢ € [t,1 — 7] and § < d,(7), there exist homothetic convex sets K4 D A and
Kg D B such that

|Ka\ 4] | |Kp\ B]

|A] |B|
Prioritizing the exponents a,, b, in this order means that if the inequality holds for
(an, by), then it also holds for (a),, b)) whenever a, > a,, by taking d; (v) sufficiently

n>~n

< Cprbngan,

small.

For planar regions, taking A = [0,¢] x [0,7(1 + ¢)] and B = [0, (1 — #)(1 + ¢)] x
[0, 1 — ¢] shows that ay, < % and by > % Our main result, Theorem 1.2, solves the sharp
stability question for planar regions 4, B C R2, showing that the optimal exponents are

(@2,b2) = (3. 3)-

Theorem 1.2. There are computable constants C,d(t) > 0 such that if A, B C R? are
measurable sets with t € [t,1 — t] and § < d(t), then there are homothetic convex sets
K4 D Aand Kg D B such that

|Ka\ A | |Kp\ B|
4] |B|
Our key result in proving Theorem 1.2 is a strong generalization to arbitrary sets
A, B of a conjecture [7] of Figalli and Jerison for A = B that |co(A) \ 4| = O(§) for §
sufficiently small. The original conjecture was recently proved by the present authors [12].
The generalization we now prove involves a completely different analysis to [12], and we
are unaware of a similar approach used previously in the literature.

< Ccr/2812,

Theorem 1.3. For all e, t > 0 there is a computable constant d.(¢) > 0 such that the
following is true. Suppose that A, B C R? are measurable sets with t € [t,1 — 1] and
8 < d.(¢e). Then

lco(A + B) \ (A + B)| = (1 +¢&)(|co(A) \ 4] + |co(B) \ BJ).

Taking A = B = [0, 1]> U {(0, 1 + 1)} shows that 1 + o(1) is optimal. By taking
& = t/2, we will deduce in Section 12 the following corollary, used to prove Theorem 1.2.

Corollary 1.4. There is a constant C' such that

lco(A)\ Al [eo(B)\ B| _

IA] i3] <C't7'8 and Seony 1= 8(co(A),co(B)) < §(A, B).
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We make a note on how we apply Corollary 1.4 to deduce Theorem 1.2. We will
estimate

|Ka\ 4| | |Kp\ B|
|A] | B
_ |Kq\co(A)| [co(A)] |Kp\co(B)| [co(B)| |co(4)\ 4| [co(B)\ B
© eo(4)] |4 |co(B)| | B |A] | B
< O V2812 4 clrls < Com /2812,

conv

where the first estimate uses [10], and separately [6] to show
lco(A)| |A]™Y =1 asé — 0.

In particular, the error in approximating A and B with their convex hulls is quadratically
smaller than the error in approximating co(A4) and co(B) with homothetic convex sets.

In order to deduce Theorem 1.2 from Theorem 1.3, even for T = % it is insufficient
to take say 1 4+ ¢ = 100. In fact, with such a large ¢ the proof of Theorem 1.3 would
be substantially easier. Showing the result for a suitably small ¢ is the primary challenge
which we are able to overcome.

Example 1.5. We note that Theorem 1.3 with R? replaced with R” is false for any fixed
e > 0. To do this, we will give an example in R* with equal volume sets A, B with § arbi-
trarily small and with |co(4 + B) \ (A 4+ B)| > (1 + €)(|co(A) \ A| + |co(B) \ B]).
Let T be the triangle with vertices (0, 0, 0), (1,0, 1), (2,0, 0), and let I4, Ip be the
intervals connecting (0, 0, 0) to v4 = (—n, 1,0) and vp = (7, 1, 0) respectively. Let
T'=(T\{z>1-1})U(1,0,1), and define

A=T’+IA, BZTI-I—IB.

Note that § — O0asA,n — 0. Also, A+ B =(T'+T') + (I4 + Ip) where T' + T’ =
2T \{z =2—2A}U(2,0,2) and I4 + Ip is a parallelogram in the xy-plane determined
by the vectors v4, vp. Then

|co(4) \ A| + |co(B) \ B| = 2A?

and
|co(A+ B)\(A+ B)| = |Iq4 + Ip|- A =2nA.

N LN N

co(A) co(B) co(A + B)

Fig. 1
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Therefore, choosing n > (1 + €)A, we obtain

lco(A + B)\ (A + B)| = 2nx > (1 + £)222 = (1 + &)(|co(A) \ 4| + |co(B) \ B]).

1.1. Background

In the literature, two measures for quantifying how close A, B are to homothetic convex
sets have been introduced. The Fraenkel asymmetry index is defined to be

A A (s-co(B) + x)|

A, B) = inf ,
o(4.B) = inf, IA|
where s satisfies | 4| = |s - co(B)|. The other measure introduced by Figalli and Jerison
in [6] is
Kq\A| |Kg\ B
w(A,B) = min ax [Ka \ |,| 3\ B .
K4DA,KpDB |A| | B

K 4,K g homothetic convex sets

Providing an upper bound for w is stronger than providing an upper bound for « as we
always have o < 2w. We note that in R2 when A, B are both convex and § is bounded,
there is a reverse inequality (see Appendix A).

In a landmark paper, Figalli and Jerison [6, Theorem 1.3] showed the most general
stability result for the Brunn—Minkowski inequality, with computable suboptimal expo-
nents on t and §, and with the exponent of § depending on 7 (which we rephrase for the
convenience of the reader).

Theorem 1.6 (Figalli and Jerison [6, Theorem 1.3]). There exist computable constants
a, (1), by such that the following is true. There are computable constants C, and
dy(t) > 0 such that whenever A, B C R" witht € [t,1 — 1] and § < d, (), there exist
homothetic convex sets K4 D A and Kg D B such that

|Ka\Al | |Kp\B| _

< Gy g,
|A] |B| "

This naturally gives rise to Question 1.1, asking for the optimal exponents of § and t,
prioritized in this order. This question, with A, B restricted to various subclasses of geo-
metric objects, is the subject of a large body of literature. Our main result, Theorem 1.2,
proves sharp stability in the case n = 2 for arbitrary measurable A4, B.

Prior to [6], Christ [4] had proved a non-computable non-polynomial bound involving
8 and 7 via a compactness argument. When A and B are convex, the optimal inequality
axa<C, 1~ 1/2§1/2 was obtained by Figalli, Maggi, and Pratelli [9,10]. When B is a ball and
A is arbitrary, the optimal inequality « < C,7~'/2§1/2 was obtained by Figalli, Maggi,
and Mooney [8]. We note that this particular case is intimately connected with stability
for the isoperimetric inequality. When just B is convex the (non-optimal) inequality o <
Cpr~+3/9§1/4 was obtained by Carlen and Maggi [3]. Finally, Barchiesi and Julin [1]
showed that when just B is convex, we have the optimal inequality o < C,z~1/2§1/2,
subsuming these previous results.
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Before their general result for distinct sets A, B in [6], Figalli and Jerison [5] had
considered the case A = B and gave a polynomial upper bound @ < C,8%". Later, in [7],
they conjectured the sharp bound w < C,§ when A = B, and proved it in dimensions 2
and 3 using an intricate analysis which unfortunately does not extend to higher dimen-
sions. Afterwards, Figalli and Jerison suggested a stronger conjecture that < C,7~!§
for A, B homothetic regions, which was proved by the present authors [12].

Finally, we note that the planar stability inequalities we consider are not Bonneson-
style inequalities relating mixed volumes of planar convex K, L to the L-inradius and
L-circumradius of K. See e.g. [2, Section 5] and separately [11] for an extensive survey
of such inequalities.

1.2. Outline of paper

In Section 2, we give a reformulation of Theorem 1.3, make some simplifications and
general observations, and give definitions which will be used throughout the remainder
of the paper. The simplifications include assuming A, B are finite unions of polygonal
regions so the vertices of d co(A4), d co(B) are contained in A, B respectively, and that
they are translated in a specific way so that co(A) and co(B) contain the origin o.

In Section 3, by an averaging argument we show that (1 — 47! /y) co(A + B) C
A+ B, where y = |co(A) \ A| + |co(B) \ B|, i.e. for every x € d co(4 + B), we have
(1—4r71 /y)ox C A+ B.

In Section 4, we introduce a partition of d co(A + B) into good arcs and bad arcs. We
think of good arcs as being the parts of the boundary of co(A + B) which are straight (or
close to straight). We show that a very small part of the boundary d co(A + B) is covered
by bad arcs.

In Section 5, we show that for x in a good arc of d co(4 + B), we can in fact guar-
antee that (1 — &,/y)ox lies in A 4+ B for any small § (provided d is small). Thus
co(A + B) \ A + B lies in a thickened boundary A of d co(A + B), which is thinner
near the good arcs.

In Sections 6 and 7, we set up the following method for proving |co(A+ B)\ (4 + B)|
< (I+e¢)(|co(A) \ A[ + |co(B) \ B]).

The edges of d co(A + B) are precisely the edges of d co(A) and d co(B) attached
one after the other ordered by slope. Moreover, every edge of d co(A + B) is the
Minkowski sum of an edge of d co(A) with a vertex of d co(B) or vice versa. We sub-
divide d co(A + B) into tiny straight arcs ¢, and partition these arcs into collections A
and B accordingly. We note that the arcs of # can be reassembled to d co(A4) and the arcs
of B can be reassembled to d co(B), in the same orders as they appear in d co(A + B).

We erect on each arc g € ¢ a parallelogram R, pointing roughly towards the origin
such that these parallelograms cover the thickened boundary A. We ensure that we use
a constant number of directions (1000 suffices) such that the R,s with the same direc-
tions occur in contiguous arcs of d co(A + B). The heights of the parallelograms will be
roughly on the order of ,/y if g lies in a bad arc, and &,/ if g lies in a good arc. Each
parallelogram R, with g € + is the Minkowski sum of a parallelogram R, 4 erected on
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the corresponding segment of d co(A) with a vertex pq p € dco(B) N B. Similarly for
g € B.

This construction allows us to cover the thickened boundary A of d co(4 + B) with
translates of small regions erected on d co(A) and d co(B) as follows:

A C | JRea+ pas) U | (Pa,a + Ra,B).
qEA qEB

Therefore, we can cover co(4 + B) \ (4 + B) as follows:

co(A+B)\ (A+ B) C | J(Rg.a\ A) + pa.8) U | J (pa.a + (R, \ B)).
qEA qEB

If we have subsets 4’ C A and B’ C B such that {Rq_4}qe.4’ are disjoint and contained
in co(A) and analogously {Rq, 4 }4e 8’ are disjoint and contained in co(B), then we obtain
an inequality

co(A+ B)\ (A + B)| < |co(A) \ A + [co(B)\ Bl+ > |Rqal+ Y. [Rqsl.
GEA\A qEB\B’

Hence to prove Theorem 1.3, it suffices to show that we can find such A’ and 8’ with

D [Raal+ D [Rqp| <e(co(4)\ Al +[co(B) \ Bl).
qEA\ A qeB\B’
In Section 8 we show that bad arcs of d co(A + B) are close in angular distance to the
corresponding arcs in d co(A4) and d co(B). This result is crucial for Sections 9 and 10
where we bound the areas of the parallelograms we have to remove to create A’ and B’.

In Section 9, we use Section 8 to show that parallelograms Rq 4 Zco(A) and Rq g ¢ B
have g on a good arc. This is then used to show that the area of parallelograms not con-
tained in co(A) or co(B) is bounded roughly by £2y.

In Section 10 we use Section 8 to show that parallelograms R, 4 and R, 4 that inter-
sect non-trivially have at least one of g and r on a good arc. This allows us to remove only
good parallelograms to ensure disjointness. We conclude that the area of parallelograms
we need to remove is bounded by roughly £y.

In Section 11 we complete the proof of Theorem 1.3 by combining our bounds to
deduce the final inequality. In Section 12 we show how Theorem 1.3 implies Theorem 1.2.
Finally, we add an appendix with the proof that the measures & and @ are commensurate
for small §.

2. Setup

In this section, we collect together the preliminaries we need to start proving Theorem 1.3.
In Section 2.1 we introduce an equal area reformulation of Theorem 1.3. In Section 2.2
we apply a preliminary affine transformation to R? and collect facts about the result-
ing lengths and areas. In Section 2.3 we collect the main definitions which will be used
throughout the body of the paper. Finally, in Section 2.4 we collect general observations
which we will use frequently throughout.
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2.1. Equal area reformulation

We will primarily work with the equivalent equal area reformulation of Theorem 1.3 in
Theorem 2.2.

Definition 2.1. For A, B C R? measurable sets and ¢ € [0, 1], define
D;=tA+ (1—-1)B.

Theorem 2.2. Fort € (0, %] there are constants d; = d.(g) > 0 such that the following
is true. Let A, B C R? be measurable sets with |A| = |B| =V, let t be a parameter
satisfying t € [z, %] and suppose that |D;| < (1 + d.(¢))?V. Then

lco(D:) \ De| < (1 + &) (t%[co(4) \ A] + (1 —1)*|co(B) \ B]).

In Theorem 2.2, ¢ is a free parameter, which we note is the normalized volume ratio
of tA and (1 — ¢) B. Given the sets A, B in Theorem 1.3, A/t and B/(1 — t) have equal
volumes, and Theorem 1.3 is equivalent to Theorem 2.2 applied with these equal volume
sets.

In the equal area reformulation, we let K be the smallest convex set such that K con-
tains a translate of 4 and B. We assume from now on that A, B C K. By approximation, '
we may assume that A, B, K are unions of polygons.

2.2. Preliminary affine transformation

Let T C K be the maximal area triangle, and let o be the barycenter (which we will
always take to be the origin). This maximal area triangle 7' has the property that T C
K C —2T =: T’, and by applying an affine transformation, we may assume that 7" is a
unit equilateral triangle whose vertices are contained in K.

Fig. 2

It is easy to show that for any fixed d (¢) we must have A, B bounded. Now, approximate A, B
from the inside by nested sequences of compact subsets A1y C A C -+ and By C By C ---. Then
for each A;, B; approximate the pair from the outside by finite unions of polygons.
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Observation 2.3. ¢ We have |T| = ‘/Tg, |T’| = /3, |A], |B| € (0, /3] and |K]| €
(42, V3],
e For p € T'\ T we have |op| € [ﬁ, %], and this in particular holds for p € 0K.

2.3. Definitions
We now collect the definitions we will use for the remainder of the paper.
Definition 2.4. We define

y = 1?co(A) \ A| + (1 = 1)*|co(B) \ BI.

Definition 2.5. In a convex set C containing o, we say that a point p € dC is (6, £)-
bisecting if the unique isosceles triangle T, (6, £) with angle 6 at p and equal sides £ such
that po internally bisects the corresponding angle is contained inside C.

Fig. 3

Definition 2.6. Given a convex set C and a point p € dC, we say that p is (6, £)-good
if there are points ¢, r € C such that | pq|, |pr| > £ and Zgpr > 180° — 6. Any point in
dC which is not (0, £)-good is (6, £)-bad.

Definition 2.7. Given a point p and a set E with o € co(FE), we denote by pg the inter-
section of the ray op with d co(E).

2.4. General observations

Observation 2.8. Suppose we have subsets R4 C co(A4), Rp C co(B), and z € R?. Let
H = H_(1_;);:,, denote the negative homothety of ratio —(1 —¢)/¢ through z. Then if
|R4 N H(Rp)| > t~2y, or equivalently |H~'(R4) N Rg| > (1 —t)~2y, then we have
yANS] Dt.z

ZNote that 12y = |co(4) \ 4| + |co(H(B)) \ H(B)|, so there is at least one x in
R4 N H(Rp) C co(A) N H(co(B)) which is not in (co(A4) \ A) U (co(H(B)) \ H(B)). Thus
xe€ ANH(B),andz =tx + (1 —t)H 1(x) € D;.
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Observation 2.9. For sets A, B with common volume V', Figalli and Jerison showed (see
Theorem 1.6) that for fixed = we have |K \ A|V™1,|K\ B|V™! = 0as |D;|V™! - 1.
In particular, as V' € (0, «/5] by Observation 2.3, we have

|[K\ A|,|K \ B|,|co(A)\ A],|co(B)\ B|,y =0 asd, — 0.

2.5. Constants and their dependencies

Fix 7 and ¢. For the convenience of the reader, we describe roughly our choice of param-
eters throughout. First, we take M = 1000 € 2N to be a universal constant and o =
720° < 1°. Next, we take £ such that e > (¢ + (1 — 1)?)(25t' M£2 + 16000t "' M £).
Next, we take 6 < %o such that %52 sin(28°)%/sin(46) > 1, and we take £ such that
(% + 3)4(1 + 100171 (10 /12 - “;—00 < %a. Finally, take d; sufficiently small to
make various statements true along the way.

3. Initial structural results

In this section, we will show three preliminary propositions which quantify how close we
may assume A, B are to K, and how much of co(D;) we can guarantee is covered by D,
without resorting to a finer analysis of the boundaries of the various regions.

e In Proposition 3.1 we show that for any constant 1 € (0, 1), if d; is sufficiently small
in terms of 7 then
(1=n)K C co(A),co(B),co(D;) C K.

e In Proposition 3.3 we show that if d; is sufficiently small, then for every z € dK the
points z, z4, zp, zp, are (59°, %)-bisecting.

e Finally, in Proposition 3.5 we show that if d; is sufficiently small, then

(1—4t7' /y)co(D;) C Dy.

3.1. Showing co(A),co(B), co(D;) contain a large scaled copy of K

Proposition 3.1. For any fixed n € (0, 1), if d; is sufficiently small in terms of 1, then
(1—=n)K C co(A),co(B),co(D;) C K.

To prove Proposition 3.1, we need Lemma 3.2 which guarantees that 0K behaves well
under the notion of (6, £)-bisecting from Definition 2.5.

Lemma 3.2. Every point p € 9K is (60°, %)-bisecting.

Proof. Note that the statement is trivially true if p is a vertex of 0T (since then 7,(60°,1)
= T C K), so assume otherwise. Let x, y, z be the vertices of T and x’ = —2x,
/ p—

y' = =2y, z/ = —2z the corresponding vertices of 7’. Let p = p, be in the triangle
xyz'.Let p, € xy'z and p, € x’yz be the point p, rotated by 120° and 240° clockwise
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X

Fig. 4

around o respectively. Note that py py p; is an equilateral triangle with centre o such that
Zop; py = 30°. Let p’ be the intersection of the segments xz and p; py.
Note that pp’ C K. We will show that | pp’| > % Note that the points o, p, p’, x are
concyclic as Zoxp’ = 30° = ZLopp'. We have £ pxp’ € [60°,120°], so by the law of sines,
1

_ Il - 2 ’ . . . L. 1
2r =57y = ﬁ|pp |, where r is the circumradius of this circle. But 2r > |ox| = 75

so |pp’| = % By showing a similar result for p, px, we conclude that 7, (60°, %) lies
in K. [

Proof of Proposition 3.1. We prove this for co(A4); the identical proof works for co(B)
and then because co(D;) = t co(A) + (1 — t) co(B) we deduce the final containments.

By Observation 2.9, we can take d; sufficiently small in terms of 1 so that |[K \ A| <

‘3/—63772. Let p € K, let p’ € op be such that | pp’| = n|op|, and suppose for the sake of

contradiction that p’ ¢ co(A). Then as |op| € [ﬁ, %] by Observation 2.3, we have
|pp’| € [J%’ f/—’%] = [(3n)h, ($n)h] where h = ‘/TE is the height of 7,,(60°, 1). A line
separating p from co(A) through p’ cuts off from T}, (60°, %) an area of at least

min(%, (%n)z)}Tp(60°, 2| = gnz

on the p-side, which lies in K \ A, contradicting |K \ 4| < «3/_6§n2. L]

3.2. Showing points in 0K, d co(A), dco(B), dco(D;) are (59°, %)-bisecting

Proposition 3.3. For d; sufficiently small, for every z € 9K the points z,z4,zp. zp, are
(59°, %)-bisecting.
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Proof. By Proposition 3.1 we can take d; sufficiently small so that
(1—-n)K Cco(A),co(B) C K

with 7 = 107°. Let C be one of K, co(A), co(B), co(D;). We have T (60°, %) C K. Let
x, y denote the other two vertices of the triangle, and let x’ = (1 — n)x, y' = (1 — n)y.
Note that x’, y’ € (1 —n)K c C.

Fig. 5

Note Figure 5 is symmetric about 0z. Let m be the midpoint of xy and m’ be the
midpoint of x’y’. Then |x'm’| = %(1 -n),

3 2
Im'zc| < Imzc| + Imm'| < |mz| + nlom| < — +n—

4 NE)
by Observation 2.3, and similarly |m’z¢ | > |mz|—|zzc|—|m'm| > |mz|—n(loz| + |om])

> JT§ - 277‘/15 (these are true even if o is inside the triangle xyz). Thus, by inspecting the

right triangles x’m’z¢ and y’'m’z¢, because
V3 2 1 1 NE] 2 1
tan(29.5°)| — — )< =-(1- d ———(—-2n—) > -,
an( )( ;T ﬁ) gU=m and 595 ( 4 "ﬁ) 3
the vertices of T, (59°, %) lie in the triangle x’y’z¢ C C. [

Corollary 3.4. Let C be K, co(A), co(B) or co(Dy). For d; sufficiently small, given
z € 0C and a supporting line [ to C at z, we have ZI,zo € (29°,180° — 29°).

3.3. Showing D, contains a large scaled copy of co(D;)

Proposition 3.5. For d; sufficiently small, we have

(1 -4t /y)co(D;) C D;.
In particular, if z € dco(D;) and p € oz has |pz| > SI_lﬁ, then p € Dy.

To show Proposition 3.5, we need the following lemma.
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Lemma 3.6. Forevery n e (0,1) and d; sufficiently small in terms of 1, we have (1 — n) K
C Dy.

Proof We may assume that 7 < 10™°. We take d; sufficiently small in terms of 7 such that
= 77/21(' C co(A), co(B) by Proposition 3.1, and t 2y < 71(100 1n)? by Observation 2.9.
First, we show that for every k € K we have

B((l —nk, l(l)_On) C co(A), co(B).

We show the co(A) containment; the other containment’s proof is identical.
Write k = Ak’ with k¥’ € 0K and A € [0, 1]. Because £’ is (60°, %)—bisecting we see

that
B(( )k’ WiT sm(30°)) C Tr (60°, 1) C K.,

as |ok’| = —= by Observation 2.3. Thus

V12
r N I 1_77 Ui . o
Bl (1—nk',— B| (1—n)k —— 30
(( n) ,20)C (( n) "1=4/22 _1251n( ))
l1—n
K A
Cl—n/2 C co(A),

and so B((1 — n)k, & 50 C co(A) If A > , then B((1 —n)k, T%On) C co(A), as desired.
Otherwise, assume A < z By Observatlon 2.3 we have |[k'| < % so it follows that

[(1—n) 1Ookl + 55 99 < f the distance from o to 97", and so B((1 — 1) 1Ook, 919) cT.

Hence, B((1 — n)k, 100) C 100T C co(A). Thus we always have B((1 — n)k, llmn) C
co(A) as desired.

Letk € K. To check that z = (1 — )k =t(1 —n)k + (1 —t)(1 — n)k € D,, in the
notation of Observation 2.8 we take R4 = Rp = B((1 — n)k, ﬁn) C co(A),co(B). Then
|[Ra N H_(1—1)/1,z(RB)| = |R4| = N(ﬁﬂ)z > t~2y. Hence, we conclude by Observa-
tion 2.8 that z € D;. [

Proof of Proposition 3.5. Let n = 107°, and take d sufficiently small so that Propo-

sition 3.3 and Lemma 3.6 apply, and that y < % by Observation 2.9. Define
z=tx+ (1—1t)y € dco(D;) where x € dco(A) and y € d co(B). We will show that

7= (1—4A71 /y)z liesin D, forall A € [1, 4f]
By Proposition 3.3 the points x, y are (59°, ) -bisecting. Define x’, y’ analogously
toz’, andnotethattx +(1=1)y'=z"and |xx'|, |yy| |zz’ |€[—At‘1ﬁ, —At_lf]

|oz| < == by Observation 2.3. Because —|xx’| 4|yy | < |zz’| if either |xx'| or |yy'| is

f

at least —+ 100,

then |zz/| > 25, which by Lemma 3.6 implies

/ |zz| V3
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Assume now that |xx'|, |yy’| < 1%, so that the altitudes from x (resp. y) of T (59°, %

(resp. T, (59°, % ) exceed 2|xx’| (resp. 2|yy’]). Because A > 1 we have

4VY, - [y
xx'|,|yy'| = =A™ > 1.001: 71, [~ /5in(29.5°).
X[, [yy'] Nt \ 7 /5in(295%)
Together the last two sentences show that B(x’, 1.001t =1 \/y/m) C T (59°, %) C co(A4),
and B(y',1.001:7/y/7) C Ty(59°,1/3) C co(B). By applying Observation 2.8 with
Ry =B(x',1.001t~'\/y/m)and Rg = B(y’,1.001~1\/y/m), we conclude that z’ € D;.

WY

Fig. 6

Finally, |zz'| = 4171 /y|oz| < %t‘lﬁ <|pzl|,so p € Dy. "

4. Decomposing d co(D;) into good arcs, and bad arcs of small total angular size

720°

Recall that M € 2N be some universal constant (1000 suffices), and set o« = 5~ < 1°.

Definition 4.1. For any s, we denote by 4°%4(6, £) the collection of arcs formed by the
set of all points in d co(D;) within Euclidean distance s of a (6, £)-bad point (which
is a union of arcs). We let 4£°°(6, £) denote the remaining arcs in d co(D;), which we
subdivide into arcs of angular length at most %oz.

Proposition 4.2. For d; sufficiently small, there exists an increasing function £ = £(0) for
0 < 180° such that the union of arcs | ) 4% (0, £) has total angular size at most %a.

1001=1¢
Proof. Take d; sufficiently small so that %K C co(D;) by Proposition 3.1.

Choose a point on d co(D;), and form a polygon P inscribed in d co(D;) by travelling
around clockwise and picking the first vertex at distance £ from the previous vertex, all
the way until the polygon would self-intersect, and then simply join the first and last
vertex with an edge. Then all sides are of length £ except one side of possibly smaller
size. Moreover, each vertex of the polygon is within distance £ of every point of the next
subtended arc of d co(D;).

We let $2°°¢ be the collection of arcs of co(D;) which arise as the arc subtended
by mym3, where my, my, ms3, my4 are four consecutive vertices of the polygon P, with
|mimsy| = |mamsz| = |mamg| = € and Lmimoms, Zmomzmy4 > 180° — 6/2. We claim
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that every point s € g € §2°°¢ is (6, £)-good. To see this, note that the angle condition in

particular implies that Zmymyms, Zmamzmy > 90°, so the rays mm, and m4ms3 meet
at a point r as shown in Figure 7 below.

Fig. 7

We now show that m,m4 realize s as a (6, £)-good point. First, note that |mqs| > £ =
|m1msy| because Zmymops > 90°. Similarly |mg4s| > £ = |m3my|. Finally, Zmism4 >
Zmirmy > 180° — 6, where the first inequality follows as s lies inside the triangle
myrmy, and the second as Zrmoms, Lrmzm, < 6/2.

Let $°% be the collection of remaining arcs of d co(D;) subtended by sides of P
which are not in §2°°9. As the sum of the exterior angles of P is 360°, the number of
interior angles which are strictly less than 180° — /2 is at most 720°/6. Thus, |§"| <
1440°/6 + 3 (we add 3 for the arc subtended by the last side of the polygon and the two
adjacent arcs). Note that every (6, £)-bad point is contained in an arc in §°%.

For each arc g € §° let x4 denote its clockwise starting point and I := dco(D;) N
B(xq, (1 4+ 100771)¢) the set of all points of d co(D,) within Euclidean distance at most
(1 + 10071 of Xg. This includes the points within Euclidean distance at most 100t ~1¢
of . Let I :=|J I, so that [ J 4% 6,0 cl.

100~ 1¢

Recall that %K C co(Dy), sothat dco(Dy) C T\ %T and thus |oxq| > %J%

by Observation 2.3. Because I, C B(xq, (1 + 1007 71)¢), the angular size of I, is at most

100 100 180°
2sin” (1 + 1001—1)6)5«/12 < 4(1 + 100;‘1)65\/12- )
T

We conclude that | Jll’gdo —1¢(0.€) C I has angular size at most

1440° 100 180°
( + 3)4(1 + 1001—1)55\/12. ,
s

0

which we can make smaller than %a by choosing £ sufficiently small. ]

Definition 4.3. We will always denote by £ = £(0) the increasing function of 6 produced
by the lemma above.
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Observation 4.4. Every point in an arc in fOOd (0, £) has distance at least s to all (0, £)-
bad points in d co(D;), and we have the partition (up to a finite collection of endpoints)

|—| J§ood(9’€) U I_l J?dd(e’e) = dco(Dy).

5. Replacing 5¢~1,/y with & /7 on arcs in Jg2(2°d(0, 0)

This section is devoted to proving the following proposition.

Proposition 5.1. For every £ € (0, 1) there exists 6 > 0 such that for d sufficiently small
in terms of € the following is true. For every p € q € Ji(fd(e, ) (recalling £ = £(0)) and
p' € op with |pp'| > &£./y, we have p’ € D,.

We outline the proof of Proposition 5.1. Suppose first that p is the #-weighted average
of points x4 and yg” which are a distance at most £ apart. Then xp,, yp, are both close
enough to p that by definition of @“"(9, 0), xp, is (0, £)-good in co(A) and yp, is (6, £)-
good in co(B), which by Lemma 5.4 implies x4, yp are (26, £/2)-good, yielding certain
angular regions at x4 and yp lying in co(A) and co(B) respectively.

If instead the distance is at least £, then the triangles ox4y4 and oygxp serve as the
large angular regions at x4 and yp respectively.

In either case, the fact that p € d co(D;) implies the angular regions are in suitable
directions so that Lemma 5.5 applies, showing in either case these regions are suitable for

an application of Observation 2.8, and we conclude.

Lemma 5.2. [f we perturb the endpoints of a line segment of length £ each by an amount
r < £/2, then the newly created line segment is rotated by at most sin~' (2r /().

Proof. Consider two circles of radius r around the two endpoints of the segment; then the
maximally rotated segment is one of the interior bitangents to these circles. ]

Lemma 5.3. In a triangle with vertices a, b, c, suppose that Zacb € (28°, 180° — 28°).
Then the distance from c to ab is at least sin(14°) min(|ac|, |bc|).

Proof. Let z be the foot of the perpendicular from ¢ to the line ab. We have either Zacz <
90° — 14° or Lbcz < 90° — 14°, say the former. Then

lcz| = (cos Zazc)lac| > sin(14°)|ac]. "

Lemma 5.4. For d. sufficiently small in terms of 0, if xp, (vesp. yp,) is (0, £)-good in
co(Dy), then x4 is (20, £/2)-good in co(A) (resp. yp is (20, £/2)-good in co(B)).

3Here and in the proofs of Propositions 5.1 and 8.1 we will be writing for example Xp, =
(x4)p, even if no point x has been defined.
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Proof. We prove the statement for x4; the statement for yp is proved identically. Let n =
fé sin(6/2) (recall £ is defined to be a function of 8), and take d, sufficiently small so
that (1—=n)K C co(A),co(B),co(D;) C K by Proposition 3.1. Let w, z be the other two
points in co(Dy) realizing xp, as (6, £)-good. Because (1 — n)K C co(A4),co(D;) C K,
we have |xp, x4| < '7[ Defining w’ = (1 —n)w € co(4) and z’ = (1 — )z € co(B) we
have |ww’|,|zz'| < ’7[ Thus by Lemma 5.2, as sin l( ) < 6/2 we have Zw'x4z" >
180° — 26. As |xp, x4| + |[ww’| < f/’% < £/2, by the trlangle inequality [xqw’| > £/2.
Similarly |x4z'| > £/2, so we see that w’, z’ realize x4 as (26, £/2)-good. [

Lemma 5.5. Let m,n be two points and let 1}, 12 and 1} 12 be pairs of rays originating at
m, n, respectively and label u, v, x, y as shown in Figure 8. Assume further that Zunv =
Zymu > 28°. Denote Znum = 6 and |mn| = r. Then we have the area lower bound
luvxy| > 1r?sin(28°)%/sin(6).

Fig. 8
Proof. First, we note that
oyl = fevyl = fumn |- L2 P21
lum| |un|
By the law of sines, |[um| = r sin(Zunm)/sin(0) and |un| = r sin(Lumn)/sin(6).

We have Zunm, Zumn > 28°, so as the sum of the angles of the triangle umn is 180°,
we have Zunm, Zumn € [28°,180° — 28°]. Therefore

lumn| = 2|um| |un|sin(f) = —r 2 sin(ZLunm) sin(ZLumn)/sin(0)
> Erz sin(28)2 /sin(6).
Next, we have

[uv[  funv]  [nv| sin(Lunv)  sin(ZLumn) sin(Zunv)

lum|  |unm|  |nm| sin(Zunm)  sin(Znvm) sin(Zunm)

> sin(Zumn) sin(Zunv) > sin(28°)2,
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and by a symmetric argument, % > sin(28°)2. Multiplying the bounds, we obtain

luvxy| > 1r?sin(28°)%/sin(6) as desired. n
Proof of Proposition 5.1. We choose parameters as follows:

e 0 < %o such that %%‘2 sin(28°)%/sin(46) > 1 and £ = £(9) < %

e Next, take n = ‘/TEE sin(6) (with this choice of n we have (1 — n)/+/12 > £/2).

e Next, take Yo such that 5t72, /Vo < 2£0 sin(46).

e Finally, take d = d; sufficiently small so that

y < Yo by Observation 2.9,
(1=n)K C co(A),co(B),co(D;) C K by Proposition 3.1,
p' € D, if |pp'| > 5t! /yo by Proposition 3.5,

Corollary 3.4 and Lemma 5.4 apply.

By our choice of d; we may assume that |pp’| € [£./y. 5t /y]. Write p = tx4 +
(1 —1t)yp with x4 € dco(A), yp € dco(B). Construct

AT = A+X4p. B =B+ ygp.

ot =o0+X4p. o =o0+ysp.

Fig. 9

Note that 0 = o™ + (1 — t)o™ and hence p’ is a point in the triangle 0™ po™ such
that |pp’| € [£/y.5t71/y]. It is enough to show that for any such p’ we have p’ €
tAT+ (1 —1)B™.

Because p € d co(D;), there is a supporting line / at p to co(D;), and because
co(Dy) is the Minkowski semisum ¢ co(A4) + (1 — ¢) co(B), this line also leaves
co(A™"),co(B™) on this same side as well. By Corollary 3.4 we have 21, po™, ZI, po™ €
(29°, 180° — 29°).

Our goal will be to produce points g+ € co(A™1), g~ € co(B™) with |gV p|. |g” p| >
£/10 as in Figure 10 where the horizontal line is /, the points appear counterclockwise in
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Fig. 10

the order g+, o™, p’,07, g~ , and furthermore p gJr is rotated 260 counterclockwise from /
about p, pg~ is rotated 26 clockwise from [ about p, and Zg~, po~, Zg*t, po™ > 28°.

Claim 5.6. If such points g, g~ exist then p’ € D,.

Proof. Note that [0 p| = |oxq| = (1 —1)//12>€/2 > E/IO by Observation 2.3, and
similarly |0~ p| > £/10. Furthermore, |pp’| < 5t~ /Yo < sm(49)

Let S~ denote the triangle g~ po™ and ST denote the trlangle g po™. Let H denote
the negative homothety H = Hp _(1—)/¢ of ratio —(1 — )/t at p’. Note that the inverse
homothety H ™! is a negative homothety with ratio —¢ /(1 — t) about p’.

First, we show that

1
|HY(ST)NnS™| > 2(1—|pp’|2 sin(28°)®/sin(40).

— 1)2
This will be seen to follow from Lemma 5.5, applied with angle 46, m = p,
=H Y(p), 1} =pg=. 12 =po~, I} =H Y (pgT)andl? = H ' (po™). Letu, v, x
and y be defined as in Lemma 5.5 such that Znum = 46.
In order to apply Lemma 5.5, we need to check that the intersection of the triangles
H~!(S5") and S~ contains the quadrilateral uvxy.
Indeed, we have

14 t
lun| = sm(Lupn) lm (4é) < — 0 1=
because [mn| = |pp | < z(1 RULE Sm(w)e 1 and similarly
up| < 14 t
u —
Pl=%0"1=1
Then the triangle inequality shows that |nv|, |py| < L —— as well, and we conclude

Lot

from the fact that |H =Y (o™ p)|, |H (0™ p)|, |2 T p|. |g p| > 1—0 T
Next, because |pp’|? > £2y, by our choice of 8y this implies that

|H7Y(STH NS> (1 -1y
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Fig. 11

Thus as
2 + + + o~ N :
2
— (lt_—t)2|co(A) \ 4| + |co(B) \ B|
=(1-02y <|HY(SH NS,

co(AT) \ AT| + |co(BT) \ B

a suitable modification of Observation 2.8 shows p’ € tA™ + (1 —)B~ and hence p’ €
tA+ (1—1)B. |

Returning to the proof of the proposition, we note that exactly as at the start of the
proof of Claim 5.6 we have | po™ |, |po~| > £/2. We now distinguish two cases.

Case 1: |x4yp| = £. Recall the definitions of xg and y4 from Definition 2.7. By Obser-
vation 2.3, we have |x4xp|, |[yaye| < n% < {£/4 and hence by the triangle inequality

|xayal. [xByB| = €/2.
We also have Zx4y4,xpyp < Sinfl(%) < 6 by Lemma 5.2.

Define y;l" ‘= yA+X4p € A+,xE = xp + ypp € B~. We have
\pyi| = |xayal. |pxgl=lxpyzl,

and these are all > £/2 by the above discussion. Furthermore, /£ y;f DXp = Z£XAYA, YBXB
> 7 — 6, and the line [ through p has y+, ot, po , Xp on one side, appearing in this
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Fig. 12

order counterclockwise above /. To see this, note that as p lies on the segment x4 yp,
x4 p lies on the same side of the line 0x4 as y4 does, so 0 & £ y} po;;. In particular, this
implies that /I, py;f, Zl, pxg < 0.

Because Z[, po™, ZI, po~ > 29° and 26 < 29°, we have ZI, py¥ <26 < ZI, po*
and ZI, pxp <20 < ZI, po™. These imply the existence of points

gt eyfot Cco(4?) and g~ €xgzo” Cco(B")
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such that ZI, pg™ = /I, pg~ = 26. Because /I, py;f, Zl,pxg <6 and 20 < 1°, we
have
ZgTpot, LgT pom > 29° — 26 > 28°.

It is clear from the construction that g*, 0™, p’,07, g~ also appear in this order coun-
terclockwise above [. Finally, recall |pot| > £/2, so by Lemma 5.3 as Zo™ py;l'" €
(28°, 180° — 28°) we have

|pg™| = min(|py |, |po™|) sin(14°) = £/10,
and similarly |pg~| > £/10.

Case 2: |xqayp| < €. Then |x4pl,|ypp| < ¢, and we have |xp, x4, [yp, ya| < %n <t

by Observation 2.3. Thus by the triangle inequality |xp, p|, |yp, p| < %E < 2{. By def-

inition of Jg(fd(e,ﬁ), since p € g € Jiz()d(ﬁ,ﬁ), the points xp,, yp, are (6, £)-good. By

Lemma 5.4 we see that x4 € co(A), yp € co(B) are (260, £/2)-good. Therefore, there exist
e1,ep €co(A) and f1, f> € co(B)
such that
Leixqes, Zf1yp fo > 180° —20 and |eixal.leaxal,|f1y8l. | f2yB| = £/2.

Let

+ — + —
e =e;+x4p, e, =ex+Xx4p,

T =f+Y8D. fo = fo+VBD
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such that ei”, e;' € co(A™) and f;7, f5 € co(B~). With this notation we find that
Zef ped . Zf pfy = 180° =26 and |ef pl. le pl. | /7 pl. | f5 p| = £/2. Recall that
Zl, po™, Zl, po~ € (29°,180° — 29°).

Notice that the line / through p leaves ei", e;’ I f2_0+, o~, p’ on one side, and
that up to relabelling the points, e;' ,oT, p’ 0™, f appear in this order counterclockwise
above /. Note that ZI, e;'p, Zl, fi" p < 20. Construct points

gt eefot Cco(A™) and g € fi o~ Cco(B7)

such that ZI, pg™*, Zl, pg~ = 26 and note that Zg T po™, Zg~ po~ >28°as 20 < 1°. We
can see from the construction that the points g+, o™, p’,0™, g~ also appear in this order
counterclockwise above /. Finally, recall | po™| > £/2, so by Lemma 5.3 as Zo™ peS €
(28°, 180 — 28°), we have

|pg™| = min(|pe |, | poT]) sin(14°) > £/10,

and similarly |pg~| > £/10. L]

6. Covering d co(D,) with parallelograms

From now on, we let 6, £ depend on & € (0, 1) as in Proposition 5.1, and always assume
that d is sufficiently small so that the conclusion of Proposition 5.1 holds. We will fix
& in terms of &, so when we say to take d; sufficiently small, we implicitly will take it
sufficiently small in terms of our choice of £.

In this section, we construct a partition (6, £) of d co(D;) into small straight arcs q,
and parallelograms R, which have one side on g such that

co(DH)\D; C | ) R
4€4(6.0)

Recall that in Proposition 3.5 we showed that for d sufficiently small, D; contains
all points at radial distance 5¢~! /7 from 0 co(D;). Furthermore, in Proposition 5.1 we
improved the bound to & ./ for points in d co(D;) that belong to arcs in Jg(fd(O, 0).

For the remainder of the paper we will be using 45°°(6), £), 4t
s = 2£,3£,100t~1¢. Note that

(0, £) exclusively for

45500, 0) C 95540, 0) C I3 (0. 0),

JE240.0) D 95 (0.0) D JE L (0.0).

Thus Proposition 5.1 also applies to points that belong to arcs in JiZOd(G, ¢) and

Jf([,%d,_l (0. 0), and Proposition 4.2 also shows that the total angular size of arcs in

Jg}d(e, £) and ngd (0, £) is at most %a. We remark in what follows that we use
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. Ji(é(’d(e, Hu Jg%d (6, £) to determine the heights of the R,, and

o J%g‘;ﬂ,l (6,0 Ut | (6, £) to determine directions of the parallelograms R.

6.1. Definitions

We first refine the partitions 45°(6, ) U 429(0, £) of 3 co(D,) for s = 2¢,3¢,100¢ "¢
into small straight segments.

Definition 6.1. Let £(6, ) be a partition of d co(D;) formed as a common refinement to
all of the sets of arcs from the partitions

IE20.0) U 50,0, 95°40.0 U IS0, 0), 4500 (0.0 UM L (0.0)

of d co(D;) into straight line segments of length at most § ,/y. For s € {2¢,3¢,100: ¢},
define the partition g£°°°(6, £) U 240, £) of g(6. £) by setting ¢ € J£°(6, £) if and
onlyif g C g’ € 45°°U(6, 0).

We will now in Definition 6.2 choose the vectors vq for g € $(0, £) with direction

vectors 0 determined by the partition 4% _, (6, £) U Jf;%i,l /(0. 0), and with lengths

determined by 454(6, £) U JiZOd(Q, ¢). Then in Definition 6.3 we form parallelograms R,
with sides q and vq.

Definition 6.2. For an arc q € §(0, £), we define a vector v, as follows.

e We choose the direction vector Vg of vq as follows. Let ¢ C ¢ € J'f?)% 1 6(9’ ) U

Jfg%i_l ((6.0).If ¢’ is contained inside an angular interval [ma, (m + 1)a], we take the
direction vector U, to be the inward pointing direction at angle (m + %)a. Otherwise
(recalling that " € 4% _, (6,€) U J‘fg%i_le(e, ¢) has angular length at most 3a),
q’ overlaps a unique angle mo, and we take U4 to be the inward pointing vector at

angle mo.

e We choose the length of v4 to be
15y g e ghie. 0,
||Uq ” - good
V7. aedy (0.0).
For p € dco(D;), we denote v, = vg, Where p € q € £(6, ).
Definition 6.3. For q € §(6.£), let R be a parallelogram with one side g and one side vq.

By construction, the directions of each of the v, for p € dco(D;) are one of M =
47 /o directions, and the directions of the vectors are constant on arcs of d co(D;) from
bad good
JlOOt_lﬁ(e’g) U Jlooz—li(e’e)'

Observation 6.4. For every point p € d co(D;) we have Zpo, v, < %Ol.
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6.2. Covering d co(D;) with parallelograms
Now are able to state the main result of this section.

Proposition 6.5. For d; sufficiently small, we have

co(Dy)\ D; C U Ry.
q€4 (6,0

We need the following observation about the unit direction vectors U of v,.

Lemma 6.6. Let p € dco(D;), and p’ € op. Then there exists r € dco(Dy), with U, = U,
and this is parallel to rp’.

Proof. Let z be the unique point on d co(D,) with zo in the direction of v,,. By Observa-
tion 6.4, the angle between U, and zo (which is in the direction ) is strictly less than %a.
As the U angles occur in multiples of %oc, this implies 0, = 0.

Let r be the unique point on d co(D;) with rp’ in the direction of v,. Then r lies on
the arc pz, so U, = ¥y is parallel to rp’. [

Proof of Proposition 6.5. Assume that d; is sufficiently small so that we may apply
Propositions 3.3 and 3.5. Given a point p € d co(D;), define the interval

Sp(0.L:8) = pp',

where p’ € op is such that

lpp| = {SI, p € C 30,0,
- ood

By Propositions 3.5 and 5.1 we have (co(D;) \ D;) Nop C S,(0,£,§) for all p €
d co(Dy). Thus denoting by

AO.L:6) = ] S,(0.4:8).

pedco(Dy)

we have
co(Dy)\ Dy C A(B,4;§).

Fix a point p € dco(D;), and let p’ € S,(6,£; &) = op N A(6, £; £). It suffices to

show that
p e U R,.
g€ (6,0

Note that by Lemma 6.6 there exists a point 7’ € d co(D;) such that r’p’ is parallel to
U = Up. Let r be the intersection of the line extended from the segment g and the
ray p'r’.

Note that Zrpp’ € (29°,180° — 29°) by Corollary 3.4, and Zpp'r < %a by Observa-
tion 6.4, so Zprp' € (29° — %a, 180° — 29°). Thus by the law of sines,

sin(Zrpp’)

= pp'| < 3Ipp).
Sin(@rp/)lppl_ lpp’|

lr'p'l <|rp| =
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Fig. 15

Ifg € glg(é"d(O,E), then |pp’| < &./7,s0|r'p'| < 3&./y, and letting r’ € r € (6, 0)
we have pl € Rt‘ C qug(al) Rq.

Alternatively if ¢ € $549(6, €) then |pp’| < 5./y. Note that |pr'| < |pp'| + |rp'| <
4|pp’| <L, sor’isinanarc r € g5%4(6, £). Hence, |r'p’| < 15./y, implying p’ € R, C
Useg0.0 Ra- u

7. Preimages of the R associated to A and B

By Proposition 6.5, for d; sufficiently small we have

co(Dy)\ D; C U (Rq \ Dy).

q€d(6.6)

The boundary of co(D;) is composed of translates of edges from d co(A4) scaled by a
factor of ¢ and of edges from d co(B) scaled by a factor of 1 — ¢. If an edge of co(A) is
parallel to an edge of co(B) then there is an ambiguity in how we do this; we fix one such
decomposition from now on.

Definition 7.1. Let (6,{) = A U B be the partition defined as follows. For every arc
q € 4(0,¢) (which is straight by construction), we let ¢ € 4 if g is on a translated ¢-
scaled edge from d co(A), and we let ¢ € B if g is on a translated (1 — ¢)-scaled edge
from d co(B).

Definition 7.2. For g € s, let pq,g € dco(B) and R, 4 C R? be the parallelogram with
edge g4 C dco(A) such that

Rq = l‘Rq,A —+ (1 —l‘)pq,B.

Similarly, for g € B, let pq,4 € dco(A) and Ry, g C R? be the parallelogram with edge
qp C dco(B) such that
Ry =tpg,a+ (1 —1)Rq B.
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Remark 7.3. The parallelogram R4 4 (resp. Rq,p) may not be entirely contained inside
co(A) (resp. co(B)), and the various Ry 4 with ¢ € # (respectively Ry p with g € B)
may not be disjoint.

Proposition 7.4. For d; sufficiently small, we have

lco(D)\ Dyl <12 " [Rqa\ Al + (1 —1)* > |Rq5\ B|.

GEA qeB

Proof. Assume d is sufficiently small that the conclusion of Proposition 6.5 holds. Then

co(Dy)\ D; C U (Rq \ Dy).

qed (6,0
The result then follows from the fact that
o if g € Athen [Rq \ D¢| < |[Rg \ (tA + (1 = 1) pg,p)| = 1?|Rg,a \ A,
e ifq € Bthen Ry \ Di| < |Rq \ (tpg,a + (1 —1)B)| = (1 —1)*|Rq,5 \ B|. n

From Proposition 7.4, we see that if the preimages in A, B of these regions were dis-
joint and contained in co(A) and co(B), then we would immediately obtain |co(D;) \ D;|
< ?Jco(4) \ A| + (1 = 1)?|co(B) \ B|.

Our goal will be to remove certain Ry 4 and R4 p to ensure that all the remaining
parallelograms are disjoint and are entirely contained in co(A4) and co(B), so that the
total area of the R4, 4 with g € »4 that were removed is at most £|co(A) \ A[, and the total
area of the R, p with ¢ € B that were removed is at most g|co(B) \ B|. This will imply
Theorem 2.2.

8. Far away weighted averages in d co(D;) lie in (‘,l§‘2°d(0, 0)

We now show that points on the d co(D;) which are the 7-weighted averages of points

from 9 co(A), d co(B) that are at distance at least 201 lie in arcs from ;’520(1(9, 0).
The main application will be to show that for parallelograms R, with g € gz';;d(e, ?),

we know that the point and parallelogram or parallelogram and point in co(A4) and co(B)

whose 7-weighted average gives R are close to each other.

Proposition 8.1. For d; sufficiently small, if p € dco(D;) with p = txg + (1 —t)yp,
good

where x4 € dco(A), yp € dco(B) and |xqyp| > 20171, then p € g € §35,°°(6.0).
Proof. Let = min(10+/3 sin( %), ‘/—EZ). Assume d is sufficiently small so that the con-
clusion of Corollary 3.4 holds, and (1 — 7)K C co(A4), co(B),co(D;) C K by Proposi-
tion 3.1. We will first show that xp, and yp, realize p as a (%9, 19£)-good point.

For the angle, note that by Observation 2.3 we have

. _1( |xaxp,] . _1( nloxal .1 n 0
ZXp pX4 < SIn 1(— < sin < sin _— | < -
' Ix4pl 201~1¢ 10/3¢t71¢) ~ 4
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lyByD,|
lyB Pl

nlox4| < ‘/T§€|OXA| < £ and similarly |yp, ya| < £, so by the triangle inequality we have

and similarly Zyp, pyp < sin_l( ) < %. For the lengths, notice that |xp,x4| <

|pxp,| = |pxal — |xp,xal = (1 = 1)|xayB| — |xDp,xa| = 20¢ — £ = 19¢,
|pyp,| = |pyB| — |yp, Bl = t|xayB| — |yD, y4| = 20 — € = 19¢.

Now, we show that p € q € g‘;"g“d(e, £) by showing that if p’ € d co(D,) and
|pp’| < 3¢, then p’ is (6, £)-good. Denote by [ the supporting line to co(D;) at p,
and note by Corollary 3.4 that ZI, op € (29°, 180° — 29°). The line / intersects either
the interior of the angle Zxp, px4 or Zyp, pyg, so since we have already shown that
Zxp, pXxa, Lyp, pyp < 0/4, we find that x4 yp makes an angle of at most 6/4 with /. In
particular, Zopx4, Zopyp € (29° — 6/4,180° —29° + 6/4) C (28°,180° — 28°). Thus
we may apply Lemma 5.3 to the triangles x4 po and yp po to conclude that the distance
from p to the lines ox4 and oyp is at least

sin(14°) min(| px4|, | pol, |pyg|) > sin(14°)20¢ > 3£.

Because oxp, pyp, C co(D;), we conclude that p’ lies outside of the angle xp, pyp,
(and because p’ € co(Dy;), it lies on the same side of / as xp,, yp,).

Let z; be in the ray xp, p extended past p such that |z, p| = |z1yp,|. Note that as
pz1yp, is isosceles, Zpzyyp, > m — 6, and note that Lyp, pz; < 6/2. Analogously
let z, be the point at pyp, which has |z,xp,| = |z2p], so that Zpzxp, = 7 — 0 and
Zxp, pz> < 0/2. Finally, let m; be the midpoint of pyp,, and let m, be the midpoint of
pxp,,sothat Zpmyzy = Lpmyzy = 90°.

We claim that p’ € pmizy U pmyz,. First, note that by the above, p’ lies in either the
angular region Zm pz; or Zm, pz,. Thus as pmyzy, pm,z, are right triangles, it suffices
to note that |pm |, |pma| > 12—95 > 3{. Therefore, p’ € pmiz1 U pmyzy C pyp,z1 U
pxp,z2. Hence, Zyp,p’xp, > m — 6 and p’ is (0, £)-good since |p'xp,|, |p'yp,| =
19¢ — 3¢ > £ by the triangle inequality. L]
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9. Bound on parallelograms jutting out of co(A4), co(B)

We will now show that the Ry 4 and Rq, g which are not entirely contained in co(A4) and
co(B) have negligible total area.

Proposition 9.1. For d; sufficiently small, we have

> |Rq.a| <2507 ME?y, > |Rq.5| <2517 ME?y.
qEA, Ry, 4Zco(A) GEB, Rq, pZco(B)

To prove this proposition, we first use Proposition 8.1 to show that for such parallelo-

grams we have q € gEZOd(Q, 0).

Lemma 9.2. For d; sufficiently small, if either g € A and Rq 4 ¢ co(A), or @ € B and
Ry, ¢ co(B), then g € $5°4(6, 0).

Proof. The cases g € 4 and g € B are proved identically, so we will now suppose that
q € . Assume d; is sufficiently small so that Propositions 3.3 and 8.1 are true. Recall
that we defined p,,p € dco(B) and g4 C co(A) such that @ = tqq + (1 — 1) pq,B.

We first show that there exists a point pgq € q4 such that Zpgo0, vq > 29°. Indeed,
by Proposition 3.3 we know that every point in x € g4 is (59°, %)-bisecting in co(A).
For x € gg,letx’ = x + t_lvq, which lies on the opposite side of dRq 4 to x. Note that
lxx'| < L, soif Zox, vg < 29°, then xx’ C Tx(58°, %). Hence, as Ry 4 = Uxqu xx' ¢

10°
co(4) but | J Tx(58°, %) C co(A), we find a point py € g4 with Zpgo,vq > 29°.

X€q4

x/
4
)
X
A

Eo) Numm\

Fig. 17

Letz =tpg + (1 —1t)pq,B € . By Observation 6.4, Zz0,vq < %a. Hence Zpg0z >

29° — %a > 28°, 50 | paz| = sin(28°)|oz| > T%o’ so as z lies on the segment p4 pq. B,

we have |p4apq,B| > T%O' Note that by definition of £ = £(8) in Definition 4.3, we have

20t~ < T%O' Therefore, by Proposition 8.1 applied with x4 = p4 and yp = pq B, We

have z € g € $5°(0, 0). n

We now know that parallelograms R4 4 and R4 p which escape co(A) and co(B)
have small height, since they are supported on arcs from gz§;°d (0, ¢). By showing that such
arcs with a constant direction v, have small total length, we will obtain Proposition 9.1

(recalling M is the number of distinct vp).
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Proof of Proposition 9.1. The proof below works for the co(B) inequality verbatim, so
we focus on proving the co(A) inequality. Take d; sufficiently small so that the conclusion
of Proposition 3.3 holds, and so that 113§ ./y < L5in(1°) by Observation 2.9.

By Lemma 9.2, all ¢ € A with Rq 4 ¢ co(A) are in 3§z°d(9, {). Fix one of the < M
vectors v with |[v| = 3£ . /y. It suffices to show

2 [Ry,al < 251718y,
GEA, vq=V, R4, 4Zco(A4)

Recall that by construction v was chosen not parallel to any edge of co(A). Let/, !’ be
the two lines in the direction v which are tangent to co(A4), and let y and y’ be the points
of contact with co(A). Note that every line in the direction v between y and y’ intersects
each of the arcs d co(A) \ {y, ¥’} exactly once. As co(A) is convex, the cross-sectional
slices in the v-direction satisfy unimodality. Hence there are exactly two pairs (x1, x3)
and (x7, x5) of points in the two different arcs of d co(A4) \ {y, y’} such that we have the
equality of vectors x1x, = xjx5 = 1~ 'v — we let (x1, x2) be the pair closer to .

We will show that the lengths of the two minor arcs in co(A) between x;x, and
between x| x5 are both of length at most 24171 J/V- We show this for x;x; as the other
case will be identical.

Note that 7}, (56°, %) C Ty (59°, %) C co(A). Let z € oy be such that |yz| =t 713§ /y
< % sin(1°) and denote by zy, z» the intersections of the extensions of the arms of
T, (56°, }T) with the line through z with direction vector v. We will show that the line
X1X2 is closer to y than the line z;z, by showing that |z;25| > |x1x3| and applying uni-
modality.

Note that Zz;yz = 28° and Zzizy € (29°, 180° — 29°). Hence Zyziz €
(1°,180° — 57°) so sin Lyz;z > sin(1°). Thus by the law of sines,

sinlzlzy| Sl < |yz]

1
lyz1| = =7

sin Zyzyz “ sinl®
Hence z; € T, (56°, %) and by a similar argument we obtain z, € 7),(56°, % .
Now,
sin 28°

2125| > |z12] = ———|yz| > sin(28%)|yz| = '3 = |x1x2].

|z122] = | 212 51n4yzlz|y|_ (28%)lyz| EVY = [x1x2
Thus by unimodality, the line x;x; is closer than the line zyz, to y, so denoting x =
oy N x1x, we see that x lies in the segment yz. Hence

lyx| < |yz| = 17136y

Note that there are up to two arcs g4 which contain one of the points x, x’l, and as
each arc in { (6, £) has length at most £ ,/y by construction, the total length of these arcs
is at most 21 71£ /7.

If v, = v and R4 4 ¢ co(A), then g4 is contained in the arc of d co(A4) \ {y, ¥’}
containing xl,xi, and g4 intersects either the minor arc subtended by x;y or the one
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Fig. 18

subtended by x| y’. Indeed, let I be the supporting line of . Then for any point p € g, by
Proposition 3.3 we have Z po, Ie (29°,180° — 29°), and by Observation 6.4, Zpo,vq <
a/2. Hence vq lies on the same side of I as co(D;). Therefore vq lies on the same side of
the supporting line Iy to a4 as co(A), so g4 lies in the arc of co(A) \ {y, y’} that contains
X1, x’l . Now, if g4 does not intersect the minor arc x; y or x'1 y’, then by unimodality, the v
cross-sectional lengths of co(A) on the arc g4 exceed 3¢~ /y = ||t~ 1v||, which implies
Rq , is contained inside co(A).

Hence, the total width (measured in the direction v) of such parallelograms R, 4
in direction v which are not contained in co(A4) is at most 2 -t 713§ /y + 2t71E Sy =
8t71E /7.

Because all of the arcs @ we are considering lie in giZOd(Q, {), the total area of such
parallelograms is then at most

Bt EVYIBEVY) = 2417 €%y n

10. Bounding overlapping parallelograms

We will now show that the Ry 4 and R4, p which we remove to guarantee non-overlapping
have negligible area.
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Proposition 10.1. For d; sufficiently small, if q,q’ € gg;d(e, £) N A, then we have
|Rq,A N Rq/,A| =0, and ifq,q’ [S 5(22“(9,6) N B, then |Rq’B N Rq/,3| =0.

Because of Proposition 10.1, it will suffice to bound overlaps between parallelograms

supported on arcs in § §Z°d (0, £) with all other parallelograms.

Proposition 10.2. For d; sufficiently small, we have
> |Rq,a| < 160006 MEy
a€ g5y (0.0N A and 3g’ € A\{g} with | Rq, 4NRy7_4|>0
and similarly with B and 8.
Proof of Proposition 10.1. The proof we give works verbatim for B and B, so we focus
on A and A. We take d; sufficiently small such that the implications in Proposition 8.1
hold, and such that ,/y < £ by Observation 2.9. Because q,q’ € 5(22‘1(9, £), we have

lvg | = llvg’ | = 15,/7. Consider the arcs v, " € 4% _, (6,£) such thatq C vand g’ Cv'.
If r = v/ then v = vy’ 80 |Rg,4 N Ry, 4] = 0.

Fig. 19

Assume now that r # 1. In this case, the distance between q and q is at least 97¢ 1 £.
Indeed, otherwise there exist points p € q and p’ € q’ such that |pp’| < 97t~'4. Let x
be a (6, £)-bad point such that |xp| < 3¢. Then B(x, 100¢~'£) contains p, and by the
triangle inequality it also contains p’. This implies p, p’ are contained in the same arc of
J;’?)%t—le(e’ £), sor = 1/, a contradiction.

Assume for the sake of contradiction that |Rq 4 N Rg/ 4| > 0. Then there exists a
point z € Rq 4 N Ry 4. Since z is within distance 1 ™! [|vg || = 157 ./ of q4 and within
distance 1! ||vg/|| = 1571 \/y of q/,, we see by the triangle inequality that the distance
between g4 and g/, is at most 30ty <307 L.

By the above, either there exist p € q and z4 € q4 such that | pz4| > 33t ', or there
exist p’ € q’ and z/; € ¢/, such that | p'z/;| > 33¢7'£. Suppose without loss of generality
the first case holds. Then p = tx4 + (1 — ¢)yp for some x4 € q and yp = pq, B, and
|xaza| < &17' /7 since this is an upper bound for the length of g4. Therefore,

IxayB| = |xap| = |pz| — |xaz| = 20t 7",

so by Proposition 8.1, p € g € g§;§°d(9, {), a contradiction. n
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Proof of Proposition 10.2. The proof we give works verbatim for B and B, so we focus
on A and 4. Assume d- is sufficiently small so that the conclusion of Corollary 3.4 is true,
and such that 100K C co(A),co(B),co(D;) C K by Proposition 3.1. Fix one of the M
directions v. Consider all arcs g € §(8,£) N 4 with direction vector U, = v. Let r4 be
the union of the corresponding arcs g4. Note that r4 forms a connected arc of d co(A).
Let x and x’ be the endpoints of this arc.

For any point z € r4, we claim that |xz| < ) dist(z, 0x). Indeed, by Lemma 5.3,

sm(l
since |xz| < 9]oz| (this follows as the diameter of co(4) C 7' is at most 2/+/3 by
Observation 2.3, and |oz| > WT) it suffices to show that Zozx € (28°, 180° — 28°).
By Corollary 3.4, we know that the supporting lines I, [, to co(A) at x, z make an
angle of at most 180° — 29° with ox, oz respectively. Therefore, we have Lozx oxz <
180° — 29°. By Observation 6.4, ox, oz each make an angle of at most a with v.
Therefore, Zxoz < a. Because the sum of the angles in xoz is 180°, this unphes that
Zozx € (29° —«a, 180° — 29°) C (28°,180° — 28°).

Every y outside of r4 is either on the opposite side of ox or on the opposite side of
0y to r4. This implies that min(zx, zx’) < m| yz| as y lies either on the other side
of ox or on the other side of ox’ to z.

We claim that if Rq 4 with g4 C r4 intersects some Rgy/ 4 in positive area, then
q4.ay C (B(x,1200:7! /y) U B(x’,1200: 7! . /y)). Indeed, first note that if g/, C r4,
then Uy = ¥y, forbidding a positive area intersection. Hence g4 lies outside of r4. Note
that if |[Rq,4 N Rg/, 4] > 0, then the distance between g4 and g, is at most 30¢7! vV by
the triangle inequality (as the heights of these parallelograms are each at most 157! V)
From this, we conclude that

9
min(dist(q4, x), dist(a4, x)) < —
sin(14°)

3067y < 119971 .

Because

1 1

lgal <&ty <t v,

the conclusion follows.

The length of d co(A) N (B(x, IZOOI_IW) U B(x/, 1200t_1ﬁ)) is at most
48007¢~! /v, the sum of the perimeters of the two balls. Hence for each direction v
we have

Z |Rq,A| < 48007‘[t_lﬁ. Sﬁ — 160001‘_15% .

6€957° (6,0 A, 53 =v,
3q’eA\{q} with [Rq. ANRg/ 41>0

11. Proofs of Theorems 1.3 and 2.2

With all the machinery in place, we are now ready to tackle Theorem 2.2. We note that
Theorems 1.3 and 2.2 are formally equivalent by replacing A with %A and B with ﬁB.
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Proof of Theorem 2.2. Fix ¢ > 0 and choose £ such that
e> (12 + (1 —1)>) (5 ' ME? 4+ 160001 ' ME).

Choose 6 depending on ¢ given by Proposition 5.1. Choose £ depending on 6 given by
Proposition 4.2. Recall that M, o are universal constants chosen above. Finally, take d;
sufficiently small so that the conclusions of Propositions 4.2, 7.4, 9.1, 10.1 and 10.2 hold.
Recall by Proposition 7.4 that

oD\ Di| <12 ) [Rea \ Al +(1=1)> D" |Re,5 \ Bl

qEA qeB

We split the first summand on the right into three parts: one for those q such that Rq 4 ¢

co(A) (collect them in a set X4), one for those q € g§2°d(9, £) such that R, 4 intersects

non-trivially Rq 4 for some g’ # q (collect them in a set Y4), and all the other g (collect
them in a set Z4). Note that the Rq_ 4 in the last sum are disjoint by Proposition 10.1 and
contained in co(A), so qu 7, |Rg,a \ A| = |co(A) \ A]. Combining Propositions 9.1
and 10.2 we find

D IRgaNAI< Y [Rqal+ Y |Rgal+ D |Rgu\ A4

GEA qeX4 q€eYy GE€EZ4
<25t ME2y + 16000t ' M Ey + |co(A) \ A|.

We similarly obtain

> |Rq.p \ Bl <2517 M£*y 4 16000t "' Mgy + |co(B) \ BI.
qEeB

Hence, (recalling y = t?|co(A4) \ 4| + (1 —t)?|co(B) \ B|), we have

lco(D;) \ D;| < (12 + (1 —1)*) (25t M E% + 16000t ' M &)y
+ t%|co(A) \ A| + (1 —1)?|co(B) \ B
< (1 +¢)(t*|co(A) \ A| + (1 —1)*|co(B) \ B). "

12. Proof that Theorem 1.3 implies Theorem 1.2

Finally, what remains is to deduce Theorem 1.2. Note that we now return to A and B with
unequal areas. Along the way, we will show Corollary 1.4.

Proof that Theorem 1.3 implies Theorem 1.2. By [9, 10] and Appendix A, there is a con-
stant C such that

|Ka\co(A)| |Kp\co(B)| _~ _yi/5 ;
|co(A)] |co(B)| = Ceom” ¥ deony:
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_ [co(A+B)|!/2
where Scony = |c0(Ac)(\)1/2+|co(B)|l/2 —1, and
|co(A)|['/2
feonv = € [Tconv, I— Tconv]-

lco(A)[1/2 + |co(B)|'/2

Also, by Theorem 1.6 by taking d; sufficiently small, we may assume that |[co(A)|/|A4],
|co(B)|/|B|, and |co(A + B)|/|A + B| are as close to 1 as we like, so in particular we
may assume that 7.} < 277!, Thus it suffices to prove that

o)\ 4| | [oB\ B _ i o

Scony <0 and <
[co(A)] |co(B)|

‘We have

|A|Y/2 + |B|'/?
conv Z 5_5c0nv
lco(A4)[1/2 + [co(B)|[1/2
= C(|co(A)|"2=|A|"? +|co(B)|'/?~|B|'/2 ~(|co(A + B)|'/>—~| A+ B|'/?))

]

|co(A)\ 4] |co(B)\B| ~ |co(A+B)\(4+ B)|
lco(A)|Y/2+ A2 |co(B)|V/2+|B|Y/2  |co(A+ B)|Y/2+|A+ B|/2
- C co(A)\ 4] lco(B)\B|  (1+¢)(|co(A)\ A[+]|co(B)\ BJ)
~ \Jco(A)|V2+|A|1/2 " |co(B)|1/2+|B|1/2 |co(A+ B)|'Y/24|A+ B|!/2
with C = |co(A)|1/241r\co(B)|1/2' Suppose ¢ < 1/2 and take ¢ = /2. We can write the last
line as my |C|(’C(()“(l34\)“4l + mp |Crc(olz})3\)f | with
‘C ( 1 1 1+ s)t)
my =1Cy - :
leo(A)[1/2 lco(A+B)|1/2 146
1 B 1 (149)
_— ( 1 1 3)
>1Cy - C
lco(A)|1/2 lco(A+B)|1/2 4
a2 1 ArBI/Z T 1
; — leo(4)] |4]'/2+|B|'/2
with Cq = AT Teoth 7410 B)72 and
1 1 (1+e—-1)
mp=(1-— t)CB( - .
lco(B)[1/2 lco(A+B)|1/2 146
S 1 S + 1 (1+8)
1 1 T
e ] (-2)
|co(B)[1/2 co(A+B)|!/2 2
e T e T
: — leo®| _ |A]'2+|B|'/2 1 i is suf-
with Cp = B ool H o B72 Both of these are at least zt assuming d is suf

ficiently small. Thus we get

55 >lt(|C°(A)\A| |CO(B)\B|)
=5\ Jeo(A)] co(B)]

which shows (). ]
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Appendix A. Equivalence of the measures » and «

In this appendix, we show that in two dimensions the measures @ and « are commensurate
for convex sets when d is sufficiently small. Recall from the introduction that we always
have ¢ < 2w.

Proposition A.1. For all T € (0, %] there exists a d; > 0 such that the following holds.
IfE,F C R? are convex with t (E, F) € [t,1 —t]and §(E, F) < d, then

w(E, F) <21a(E, F).

Proof. Let d; be sufficiently small so that by [9], «(E, F) < %. We never use any other
property of §(E, F) or t(E, F). The quantitites w, « are invariant under affine transfor-
mations of E and F separately, so by applying these transforms we can take E, F to have
equal volumes, translated so that «(E, F) = |E A F|/|E|. After a further affine transfor-
mation, we may assume that the maximal triangle 7 C E N F is a unit equilateral triangle.
Note that because T is maximal, we have T C E N F C —2T. Take K = co(E U F).
Note that [E A F| < |ENF| < k| —2T| < 1.

First, we claim that £, F C 10C. Indeed, if any point x € E lies in 9107 then
|[E A F|>|co(xUT)\ (=2T)| > 1, a contradiction.

To show w(E, F) < 11a(E, F), it suffices to prove

(K \ (AU B))| < 10]4 A BI.
Indeed, if this is true, then

|E|-w(E, F) < |[K\E|+|K\ F|=2[K\(EUF)|+|E A F]|
<21|E A F| = |E|-21a(E, F).

We consider the triangle opg with p, g consecutive vertices of K. These triangles
partition the area of K, so it suffices to show for each such triangle that

[(K\ (EUF))Nopq| <10|(E A F)Nopq|.

To see this, we note that if p,g € E or p,q € F then the left-hand side is zero and the
inequality holds. Suppose now that p € E and g € F (the other case is identical). Then
there must be a point i € d co(A) N d co(F) which lies in the triangle opgq. Let g’ be the
intersection of the ray pi with the segment oq, and let p’ be the intersection of the ray
qi with op. Because o, p € E we also have p’ € E, and similarly ¢’ € F. We note that
E, F C 10C implies |op’| > 11—0|0q| and |oq’| > %|0q|.

If any point x in the strict interior (giq’)° lies in E, then i lies in the strict interior of
xpo C E, contradicting that i lies on dE. Also, giq’ C oqi C F.Thus (qiq’)° CE A F.
Similarly (pip’)° C E A F. Finally, we note that (K \ (E U F)) Nopg C pigq, so it
suffices to show that

Ipiql < 10(|pip’| + lqiq’)).
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p q
q/
p/
o
Fig. 20
To show this, suppose without loss of generality that |oig| < |oip|. Then kgfgf =
lpip’|
loip’]» 50
, loiq] |oip| lop|
|piq| = Iplpl| |_I I| i Iplpl| /|_10|plpl .
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