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Kęstutis Česnavičius · Michael Neururer · Abhishek Saha

The Manin constant and the modular degree

Received June 24, 2020; revised September 25, 2022

Abstract. The Manin constant c of an elliptic curve E over Q is the nonzero integer that scales
the differential !f determined by the normalized newform f associated to E into the pullback
of a Néron differential under a minimal parametrization �WX0.N /Q � E. Manin conjectured
that c D ˙1 for optimal parametrizations, and we prove that in general c j deg.�/ under a minor
assumption at 2 and 3 that is not needed for cube-free N or for parametrizations by X1.N /Q.
Since c is supported at the additive reduction primes, which need not divide deg.�/, this improves
the status of the Manin conjecture for many E. Our core result that gives this divisibility is the
containment !f 2 H0.X0.N /; �/, which we establish by combining automorphic methods with
techniques from arithmetic geometry; here the modular curveX0.N / is considered over Z and� is
its relative dualizing sheaf over Z. We reduce this containment to p-adic bounds on denominators
of the Fourier expansions of f at all the cusps of X0.N /C and then use the recent basic identity for
the p-adic Whittaker newform to establish stronger bounds in the more general setup of newforms
of weight k on X0.N /. To overcome obstacles at 2 and 3, we analyze nondihedral supercuspidal
representations of GL2.Q2/ and exhibit new cases in which X0.N /Z has rational singularities.

Keywords. Admissible representation, cusp, elliptic curve, "-factor, Fourier coefficient, Gauss
sum, Manin constant, modular degree, modular parametrization, newform, rational singularity,
Whittaker model

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
2. p-adic properties of Gauss sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
3. p-adic properties of local Whittaker newforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
4. p-adic valuations of Fourier coefficients at cusps . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Kęstutis Česnavičius: CNRS, UMR 8628, Laboratoire de Mathématiques d’Orsay,
Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France; kestutis@math.u-psud.fr

Michael Neururer: Fachbereich Mathematik, Technische Universität Darmstadt,
64289 Darmstadt, Germany; neururer@mathematik.tu-darmstadt.de

Abhishek Saha: School of Mathematical Sciences, Queen Mary University of London,
London E1 4NS, UK; abhishek.saha@qmul.ac.uk

Mathematics Subject Classification (2020): Primary 11G05; Secondary 11F11, 11F30, 11F70,
11F85, 11G18, 11L05

https://creativecommons.org/licenses/by/4.0/
mailto:kestutis@math.u-psud.fr
mailto:neururer@mathematik.tu-darmstadt.de
mailto:abhishek.saha@qmul.ac.uk
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1. Introduction

By the Shimura–Taniyama conjecture settled in [Wil95,TW95,BCDT01], for every ellip-
tic curveE over Q of conductorN and every subgroup �1.N /� � � �0.N / of GL2.yZ/,
there is a surjection

�W .X�/Q � E from the modular curve .X�/Q:

Most commonly, � is �0.N / or �1.N /, so thatX� isX0.N / orX1.N /, but for different �
different E may be more canonical within the same isogeny class: for instance, X1.11/Q
and X0.11/Q are distinct isogenous elliptic curves. The multiplicity one theorem ensures
that the �-pullback of a Néron differential !E is a nonzero multiple of the differential
!f 2H

0..X�/Q;�
1/ associated to the normalized newform f whose Hecke eigenvalues

agree with the Frobenius traces of E:

��.!E / D c� � !f for a unique c� 2 Q�;

and one knows that 1 c� 2 Z (we abuse notation: !E is nonunique, so � determines only
˙c�). For fixed � and E there are many �, so it is common to normalize � to be optimal,
that is, deg.�/ to be the least possible asE varies in its isogeny class and � is fixed (any �
factors through an optimal one: see the proof of Lemma 6.5 and use multiplicity one). For
optimal �, Manin conjectured that

c�
‹
D ˙1;

see [Man71, Section 10.3].2 From the theoretical point of view, the natural approach to
the Manin conjecture is to argue that p − c� for every prime p: geometrically, this p-adic
statement translates to studying the arithmetic properties of the “reduction modulo p” of
the parametrization �. This is not so in the computational approach, where for explicit E
one computes with modular symbols to check “directly” that c� D ˙1: indeed, Cremona
used the computational approach to prove in [Cre22] that the Manin conjecture holds
whenever N � 500000. The divergence of the two approaches gives this overwhelming
computational evidence for the Manin conjecture even more weight.

1It seems that the integrality of c� was first noticed by Gabber during his PhD studies. To
establish it, one reduces to the case � D �1.N / and then uses q-expansions; see Lemma 6.5 and its
proof.

2Manin considered � D �0.N /, and this implies the general case by Lemma 6.5. In [Ste89],
Stevens argued that minimal degree parametrizations by X1.N /Q are the most natural ones, and he
conjectured that c� D ˙1 for them.
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The initial theoretical results on the Manin conjecture were based on exactness prop-
erties of Néron models and showed that p − c� for those p > 2 at which E has semistable
reduction (see [Maz78] and [AU96, ARS06] for some sharpenings). By passing to a min-
imal extension K of Qp over which E acquires semistable reduction and analyzing a
stable integral model of X0.N /Qp , Edixhoven was able to extend this approach to some
primes p at whichE has additive reduction: in [Edi91, Theorem 3], he showed that p − c�
for any prime p � 11 at which E does not have an additive potentially ordinary reduc-
tion of Kodaira type II, III, or IV.3 In these geometric approaches, the key input to the
required exactness properties is Raynaud’s result from [Ray74] on uniqueness of com-
mutative, finite, flat group schemes with a fixed generic fiber over a complete discrete
valuation ring of mixed charcateristic .0; p/ and absolute ramification index e < p � 1.
Raynaud’s results were later subsumed into integral p-adic Hodge theory but the require-
ment e < p � 1 for exactness properties persisted, so there seems to be little hope that
this approach is the “right” one for the Manin conjecture.

The conclusion p − c� was established in [Čes18] for all primes p of semistable
reduction for E by a different method. The key novelty was to analyze the Hecke module
structure of the Lie algebra of the Néron model of J0.N / using a multiplicity one result in
characteristic p, and this showed that automorphic rather than purely algebro-geometric
techniques that were tried previously may be better suited for the Manin conjecture. The
latter is most interesting in the remaining case of a prime p of additive reduction for E,
since then the relevant arithmetic geometry is the most delicate.

In this article, we combine automorphic methods with those of arithmetic geometry to
settle a subconjecture of the Manin conjecture, reviewed as (?) below. We then show that
this subconjecture has the following divisibility consequences for the Manin constant.

Theorem 1.1 (Corollary 7.3). For an elliptic curve E over Q of conductor N , every
surjection

�WX1.N /Q � E satisfies c� j deg.�/:

Theorem 1.2 (Theorem 7.2). For an elliptic curve E over Q of conductor N , and for a
level � with �1.N / � � � �0.N /, every surjection

�W .X�/Q � E satisfies c� j 6 � deg.�/;

and if N is cube-free (that is, if 8 − N and 27 − N ), then even

c� j deg.�/:

More precisely, under these assumptions, for every prime p we have

valp.c�/ � valp.deg.�//

C

8̂̂<̂
:̂
1 if p D 2 with val2.N / � 3 and there is no p0 jN with p0 � 3 mod 4,

1 if p D 3 with val3.N / � 3 and there is no p0 jN with p0 � 2 mod 3,

0 otherwise,

(1.2.1)

3In the unfinished manuscript [Edi01], he attempted to remove this assumption on Kodaira types
(still for p � 11).
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and, more generally, if for some � � � 0 � �0.N / the singularities of .X�0/Z.p/ are
rational, then

valp.c�/ � valp.deg.�//:

The modular degree deg.�/ is often even, for instance, if � D �0.N / and � fac-
tors through some Atkin–Lehner quotient, but otherwise it is somewhat mysterious. In
particular, for many E this degree is coprime with N , so that the new upper bound
valp.c�/ � valp.deg.�// supplied by Theorems 1.1 and 1.2 eliminates4 some additive
primes that could divide c� for optimal �.

To illustrate, in the figure below we plotted in green the fraction of those isogeny
classes of E over Q of conductor N � 300000 that have an odd additive prime p but for
which no such p divides deg �, where � is the optimal parametrization by X0.N /Q; if
p D 3 with val3.N / � 3, then we also require that there exist a p0 jN with p0 � 2 mod 3.
Theorem 1.2 shows that the Manin constant for such E is a power of 2 (the semistable
primes are eliminated by earlier results, as reviewed above). Furthermore, we plotted in
yellow the fraction of those isogeny classes as above for which some odd p of additive
reduction does not divide deg.�/ and some other does, with the same caveat for p D 3,
so that Theorem 1.2 eliminates at least one odd additive prime. Even though in all of
these small conductor cases the full Manin conjecture is known by Cremona’s verification
[Cre22], the figure shows the scope of the improvement supplied by Theorems 1.1 and 1.2.

4The bounds in Theorems 1.1 and 1.2 hold for any parametrization �, although it is only for
optimal � that the Manin constant c� is conjectured to equal˙1 (and known to be divisible only by
primes of additive reduction). For example, when E equals the elliptic curve with Cremona label
11a3, which is a model of X1.11/Q, and �WX0.N /Q � E is the isogeny of least degree, one has
c� D deg.�/ D 5, which is consistent with our bounds.
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The key input to Theorems 1.1 and 1.2 and the core result of this article is the follow-
ing integrality property of !f that follows from the Manin conjecture. Namely, we argue
in Theorem 5.15 that

!f lies in the Z-lattice H 0.X0.N /;�/ � H
0.X0.N /Q; �

1/; (?)

where the modular curve X0.N / is over Z and � is its relative dualizing sheaf over Z.
In addition to being implied by the Manin conjecture, the containment (?) is actually
necessary for attacking it: except for unforeseen radically new approaches, all indications
point to (?) being used in future work on the remaining cases of the Manin conjecture.

The containment (?) is straightforward in the semistable case, that is, for square-
free N , thanks to q-expansions and the Atkin–Lehner involution. More generally, since
the formal completion of X0.N / along1 is Spf.ZJqK/, the weaker containment

!f 2 H
0.X0.N /

1; �1/

amounts to the integrality of the Fourier expansion of f at1, where X0.N /1 � X0.N /
is the (Z-smooth) open complement of those Z-fibral irreducible components that do not
meet the Z-point given by the cusp 1. Similarly, (?) amounts to certain bounds on the
p-adic valuations of the denominators of the Fourier coefficients of f at all the cusps
of X0.N /C—at least up to difficulties caused by the lack of a modular interpretation
of the coarse space X0.N / that we overcome in Section 5 by exploiting the Deligne–
Mumford stack X0.N / and its “relative dualizing” sheaf �. We compute the precise
required bounds in Proposition 5.14, and an important step for this is to compute the
differents of the extensions of discrete valuation rings obtained by localizing the finite flat
cover X0.N /! X .1/ at the generic points of the Fp-fiber of X0.N /, which we do in
Proposition 5.12.

To show that the required bounds are met, we use automorphic methods to establish
the following stronger bounds. In Example 4.8 we show that these bounds are sharp in
the case of newforms associated to elliptic curves (and p � 11) and we discuss their
computational potential.

Theorem 1.3 (Theorem 4.6 and Lemma 5.13). For a prime number p, a cuspidal, nor-
malized newform f of weight k on �0.N /, an isomorphism C ' Qp , the resulting
valpWC ! Q [ ¹1º with valp.p/ D 1, and a cusp c 2 X0.N /.C/ of denominator L
(see Section 4.1), the Fourier coefficients af .r I c/ satisfy

valp.af .r I c// � �
k

2
valp

�
N

gcd.L2; N /

�

C

8̂̂̂̂
<̂
ˆ̂̂:
0 if valp.gcd.L;N=L// D 0;

0 if valp.gcd.L;N=L// D 1; valp.N / > 2;

�
1
2

if valp.L/ D 1
2

valp.N / D 1;

1 � 1
2

valp.gcd.L;N=L// otherwise,



K. Česnavičius, M. Neururer, A. Saha 578

as well as the following stronger bounds in the case p D 2:

val2.af .r I c// � �
k

2
val2

�
N

gcd.L2; N /

�

C

8̂̂̂̂
<̂
ˆ̂̂:
0 if val2.L/ D 1

2
val2.N / D 1;

k
2

if val2.L/ D 1
2

val2.N / 2 ¹2; 3; 4º;
k
2
C 1 � 1

4
val2.N / if val2.L/ D 1

2
val2.N / > 4;

0 if val2.gcd.L;N=L// D 3; val2.N / > 6:

Moreover, minr .valp.af .r I c/// only depends on f and L, and not on the cusp c with
denominator L.

To argue the above bounds we pass to the automorphic side by expressing the “p-part”
of af .r I c/ in terms of the local Whittaker newform Wf;p of the irreducible, admissible
representation �f;p of GL2.Qp/ determined by f (see Lemma 4.5 and its proof). Thus,
Theorem 1.3 hinges on the p-adic analysis of the values of Wf;p , which is a purely local
question about �f;p . To access these values, we use the local Fourier expansion of Wf;p
and analyze the resulting local Fourier coefficients ct;`.�/ with the help of the recent
“basic identity” (reviewed in Section 3.5) that was derived by the third-named author
in [Sah16] from the GL2 local functional equation of Jacquet–Langlands [JL70].

The coefficients ct;`.�/ 2 C are indexed by characters �WZ�p ! C� (the relevant t
and ` are determined by N , L, and r), and reasonably explicit formulas for the ct;`.�/
were worked out in special cases in [Sah16] and appeared in general in the recent work
of Assing [Ass19]. These formulas involve the Jacquet–Langlands GL2 local "-factors,
which for p ¤ 2 can be expressed in terms of the GL1 local "-factors of Tate, equiva-
lently, in terms of Gauss sums of characters of F � for at most quadratic extensions F=Qp .
In effect, p-adically bounding the values of Wf;p , which is a problem on GL2, reduces
to p-adically bounding Gauss sums of characters, which is an approachable problem
on GL1. We study the latter in Section 2 and then bound the values of Wf;p in the
key Theorems 3.14 and 3.15. Their most delicate case p D 2 uses a classification of
nondihedral supercuspidal representations of GL2.Q2/ derived via the local Langlands
correspondence (see Proposition 3.9) and, to go beyond the naïve bounds, takes into
account cancellations between the ct;`.�/. Thanks in part to this additional attention to
p D 2, we obtain the integrality result (?) without any exceptions.

In a more restrictive setting and by a different method, bounds on p-adic valuations
of Fourier expansions were investigated by Edixhoven in Section 3 of his unfinished
manuscript [Edi01]. There he also hoped for a more conceptual approach that would be
based on studying the Kirillov model of �f;p , and the work of our Sections 2–4 realizes
this prediction (we use the Whittaker model instead).

The automorphic approach to (?) seems much sharper and more natural than those
based on arithmetic geometry alone. For instance, as explained in Conrad’s [BDP17,
Appendix B], one may use intersection theory on the regular stacky arithmetic surface
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X0.N / to bound the denominator of !f with respect to the lattice

H 0.X0.N /;�/ Š H
0.X0.N /;�/

(see Corollary 5.4 for this identification). The bounds obtained in this way are far from
those needed for (?), but the intersection-theoretic approach is not specific to !f —in
essence it bounds the exponent of the finite group

H 0.X0.N /
1; �1/=H 0.X0.N /;�/:

The reference [BDP17] carries it out5 for the line bundle !˝k in place of �.
Turning back to Theorem 1.2, the only role of its rational singularity assumption is

to ensure that Pic0X0.N/=Z is the Néron model J0.N / of the Jacobian J0.N / (here we
chose � 0 D �0.N / to simplify), and so to deduce from (?) that !f lies in an even a
priori smaller latticeH 0.J0.N /;�

1/ that seems otherwise inaccessible. We do not know
any N for which this assumption fails, in fact, for a prime p we show in Theorem 6.12
that X0.N /Z.p/ has rational singularities in the following cases:

(i) if p � 5; or

(ii) if p D 3 and either valp.N / � 2 or there is a prime p0 jN with p0 � 2 mod 3; or

(iii) if p D 2 and either valp.N / � 2 or there is a prime p0 jN with p0 � 3 mod 4.

The bulk of this rational singularity criterion is due to Raynaud [Ray91], but we used low
conductor instances of the Manin conjecture to add the cases p � 3 with valp.N / D 2.
The technique we develop for this also reduces the desired divisibility c� j deg.�/ in its
few still outstanding cases to a finite computational problem (albeit not one we know how
to solve completely); see Remark 6.13.

1.4. Notation and conventions

For a prime p, we let valpWQp!Q[ ¹1º be the p-adic valuation with valp.p/D 1. For
a nonarchimedean local field F , we let OF be its integer ring, mF � OF the maximal
ideal, $F 2 mF a uniformizer, FF WD OF =mF the residue field, qF WD #FF its order,
and WF � Gal.F =F / the Weil group. We normalize local class field theory by letting
geometric Frobenii map to uniformizers (see [BH06, Section 29.1]). We normalize the
absolute value j�jF on F by j$F jF D

1
qF

. We set �F .s/ WD 1
1�q�s

F

, for which we only
need the values

�F .1/ D
qF
qF�1

; �F .2/ D
q2
F

q2
F
�1
: (1.4.1)

For a (continuous) character �WF � ! C�, we let a.�/ be the conductor exponent: the
smallest n > 0 with �.1Cmn

F / equal to 1 if �.O�F / ¤ ¹1º and to 0 if �.O�F / D ¹1º (in

5Unfortunately, beyond the case valp.N / D 1 treated in [DR73, Chapitre VII, Section 3.19,
Proposition 3.20], the explicit bounds stated in [BDP17, Theorem B.3.2.1] suffer from a typo
in the values of the multiplicities of the components of X0.N /Fp stated in [BDP17, Theorem
B.3.1.3] (by [KM85, Section (13.5.6)], the correct multiplicity of the .a; b/-component for a; b > 0
is pmin.a;b/�1.p � 1/). Consequently, the asymptotic behavior in p of the stated bounds differs
from the case valp.N / D 1.
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which case � is unramified). For a nontrivial additive character  WF ! C�, we let c. /
be the smallest6 n 2 Z with  .mn

F / D ¹1º.
For an open subgroup � � GL2.yZ/, we let X� be the level � modular Deligne–

Mumford Z-stack defined in [DR73, Chapitre IV, Définition 3.3] via normalization, and
X� its coarse moduli space, so that X� is the usual projective modular curve over Z of
level � and, whenever � is small enough, X� D X� (see [Čes17, Section 4.1 and Section
6.1 up to Proposition 6.3] for a basic review of these objects). We let

GL2.yZ/ � �0.N / be the preimage of ¹. � �0 � /º � GL2.Z=NZ/; X0.N / WDX�0.N/I

GL2.yZ/ � �1.N / be the preimage of
®�
1 �
0 �

�¯
� GL2.Z=NZ/; X1.N / WDX�1.N/I

GL2.yZ/ � �.N/ be the preimage of
®�
1 0
0 1

�¯
� GL2.Z=NZ/; X .N / WDX�.N/:

We write X0.N /, X1.N /, X.N/ for the coarse spaces and use the j -invariant to identify
X.1/ with P1Z (see [DR73, Chapitre VI, Théorème 1.1, Section 1.3]). For a schemeX , we
letX reg �X be the set of x 2X with OX;x regular. IfX is over a base S , we letX sm �X

be the open locus of S -smoothness. We let�1
X=S

denote the Kähler differentials. We let x
be a geometric point over x and let Osh

X;x or Osh
X;x denote the resulting strict Henselization.

We also use analogous notation when X is merely a Deligne–Mumford stack.
We let Z be the integral closure of Z in C, set �n WD e2�i=n, and let Z.p/ be the

localization of Z at the prime .p/. We let �.m/ WD #..Z=mZ/�/ be the Euler totient func-
tion. For a field, a “finite extension” means a finite field extension. Rings are assumed
to be commutative. Both � and � allow equality. We write Š for canonical isomor-
phisms (identifications), ' for noncanonical ones, ,! for monomorphisms,� for epi-
morphisms, and ��! for isomorphisms (in categories in question). Our representations and
characters are continuous and over C, and 1 is the trivial character.

2. p-adic properties of Gauss sums

Our ultimate source of p-adic properties of coefficients of q-expansions of newforms at
cusps is the p-adic properties of Gauss sums of characters, equivalently, of "-factors of
GL.1/. Thus, we begin by explicating the latter in this section, especially, in Proposi-
tion 2.3 and Theorem 2.6.

2.1. Local field Gauss sums

For a finite extension F=Qp , a multiplicative character �WF �!C�, a nontrivial additive
character  WF ! C�, the Gauss sum of � with respect to  is defined by

G .x;�/ WD

Z
O�
F

�.y/ .xy/d�y for x2F �; with the normalization
Z

O�
F

d�yD1:

6In terms of the notation n. / used in [Tat79, Section (3.2.6)] or [Del73b, Section 3.4], we have
c. / D �n. /.
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Since G .x;�/ only sees �jO�
F

, it does not change when � is multiplied by an unramified
character, so we lose no generality if we assume that � lies in the set

X WD ¹continuous characters �WF � ! C� with �.$F / D 1º

Š Homcont.O
�
F ;C

�/:

Characters in X are unitary and of finite order, and we also consider subsets of fixed
conductor exponent:

X�k WD ¹� 2 X j a.�/ � kº; Xk WD ¹� 2 X j a.�/ D kº

(to stress the underlying field, we also write XF , XF;�k , and XF;k). The Gauss sum
G .x; �/ is related to the GL.1/-epsilon factors ".s; �;  / defined by Tate (see [Tat79,
Section (3.2)] or [Sch02, Section 1.1]): under the common normalization c. / D 0, by
[CS18, Lemma 2.3], for every � 2 X, we have

G .x; �/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
1 if a.�/ D 0 and valF .x/ � 0;

�
1

qF�1
if a.�/ D 0 and valF .x/ D �1;

q
1�a.�/=2
F

qF�1
".1
2
; ��1;  /�.x�1/ if a.�/ > 0 and valF .x/ D �a.�/;

0 otherwise.
(2.1.1)

We will use this together with properties of "-factors: for instance, for a multiplicative
character �WF � ! C�, a nontrivial additive character  WF ! C�, and any s 2 C, by
[Sch02, Section 1.1], we have

".s; �;  / D ".1
2
; �;  /q

.c. /�a.�//.s�1=2/
F ;

".1
2
; �; a / D �.a/".1

2
; �;  / for a 2 F �;

(2.1.2)

where a W F ! C� is the character x 7!  .ax/. In particular, there is little harm in
restricting to s D 1

2
and assuming the common normalization c. / D 0, under which, by

loc. cit., we have

".1
2
; ��0;  /D�0.$F /

a.�/".1
2
; �;  /; ".1

2
; �0;  /D1 whenever a.�0/D0; (2.1.3)

".1
2
; �;  /".1

2
; ��1;  / D �.�1/; j".1

2
; �;  /j D 1 if � is unitary: (2.1.4)

Due to (2.1.1), the only case in which the study of the p-adic properties of G .x; �/

has substance is when � is ramified and valF .x/ D �a.�/. Moreover, by a change of
variables,

G .xu; �/ D �.u
�1/G .x; �/ for u 2 O�F ;

so it suffices to consider G .$
�a.�/
F ; �/. We will analyze the latter below, and we begin

in Proposition 2.3 with the case a.�/ D 1, a case whose study reduces to that of classical
Gauss sums of multiplicative characters of finite fields.
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2.2. Finite field Gauss sums

For a finite extension F=Fp , a character � W F�! C�, and a nontrivial additive character
 W F ! C�, the classical Gauss sum of � (with respect to  ) is

g .�/ WD �
X
a2F�

�.a/ .a/; so that g .�/ 2 ZŒ�#F�1; �p�:

By, for instance, [Was97, Lemma 6.1], we have

g .1/ D 1; g .�/g .�/ D #F for � ¤ 1;

so the prime ideals of Q.�#F�1; �p/ that divide g .�/ all lie above p and

if �2 D 1; then g .�/
2
D �.�1/ � #F : (2.2.1)

We will be interested in valp.g .�// for the p-adic valuation valp determined by a choice
of an isomorphism �WQp ' C. Via Teichmüller representatives, the latter determines a
character !F W F� ! C� of order #F � 1 such that !F .a/ � a mod p. Thus, every
� W F� ! C� is of the form � D !

�˛.�/
F for a unique 0 � ˛.�/ < #F � 1, and we set

s.�/ WD

ŒF WFp ��1X
iD0

ai ; where ˛.�/ D

ŒF WFp ��1X
iD0

aip
i ; 0 � ai � p � 1;

is the base-p expansion (s.�/ and ˛.�/ depend on the implicitly fixed �; abusively, we
also extend this notation to characters z�W F � ! C� with a.z�/ � 1, where F=Qp is a
finite extension with residue field F ). Certainly,

0 � s.�/ � .p � 1/ŒF W Fp� with s.�/D

´
0 if and only if � D 1,
.p�1/ŒF WFp �

2
if p is odd, �2 D 1; � ¤ 1:

(2.2.2)
By [Was97, Lemma 6.11, Proposition 6.13], we have

s.��0/ � s.�/C s.�0/ mod p � 1; 0 � s.��0/ � s.�/C s.�0/: (2.2.3)

In particular, since, for every finite extension F 0=F , we have both !F 0 jF D !F and
!F ı NormF 0=F D

QŒF 0WF��1
iD0 !

.#F/i

F 0 , it follows that for �WF 0� ! C�,

s.�jF�/ � s.�/ mod p � 1; s.� ı NormF 0=F / � ŒF
0
W F �s.�/ mod p � 1: (2.2.4)

By a special case of Stickelberger’s congruence, that is, by [Was97, Proposition 6.13 and
before Lemma 6.11],

valp.g .�// D
s.�/

p � 1
;

and this key identity gives the following result.
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Proposition 2.3. For a finite extension F=Qp , a multiplicative character �WF � ! C�

with a.�/ � 1, an additive character  WF ! C� with c. / D 0, an x 2 $�1F O�F , and
an isomorphism C ' Qp ,

valp.G .x; �// D
s.�/

p � 1
;

and .qF � 1/G .x;�/ is an algebraic integer in Q.�qF�1; �p/ that is a unit away from p.

Proof. Since a.�/ � 1, we may view � as a nontrivial character of F�F . Moreover,
since c. / D 0, the character  defines a nontrivial additive character  W F ! C�

by  .t mod mF / WD  .$�1F t /. The definitions reviewed in Sections 2.1–2.2 give

G .$
�1
F ; �/ D �

g .�/

qF�1
, so Section 2.2 gives the claims.

A similar analysis of G .$
�a.�/
F ; �/ for a.�/ � 2 in Theorem 2.6 will use the fol-

lowing lemmas whose goal is to express this Gauss sum more or less explicitly.

Lemma 2.4. For a finite extension F=Qp , a multiplicative character �WF � ! C� with
a.�/ � 2, and an additive character  WF ! C� with c. / D 0, there is a u 2 O�F such
that

(i) if a.�/ is even, then

�.1C$
a.�/=2
F x/ D  .u$

�a.�/=2
F x/ for all x 2 OF I

(ii) if a.�/ is odd, then

�.1C$
.a.�/C1/=2
F x/ D  .u$

�.a.�/�1/=2
F x/ for all x 2 OF I

(iii) if both p and a.�/ are odd, then

�.1C$
.a.�/�1/=2
F x/D  

�
u

�
$
�.a.�/C1/=2
F x �

$�1F x2

2

��
for all x 2 OF :

Proof. We set � WD 0 if a.�/ is even and � WD 1 if a.�/ is odd, so that the map
x 7! �.1C$

.a.�/C�/=2
F x/ is an additive character � WF ! C� satisfying the condition

c.�/ D .a.�/ � �/=2. All such characters have the form x 7!  .u$
�.a.�/��/=2
F x/ for

some u 2 O�F (see [BH06, Section 1.7, Proposition]), so (i) and (ii) follow.
For (iii), letU �O�F be a set of representatives of O�F =.1Cm

.a.�/C1/=2
F / and consider

the maps
�uW 1Cm

.a.�/�1/=2
F ! C� for u 2 U

defined by

�u.1C$
.a.�/�1/=2
F x/ WD  

�
u

�
$
�.a.�/C1/=2
F x �

$�1F x2

2

��
D  

�
u$
�a.�/
F

�
$
.a.�/�1/=2
F x �

.$
.a.�/�1/=2
F x/2

2

��
:
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Thanks to the power series expansion z � z2=2C � � � of log.1C z/, the function �u is
a multiplicative character that is trivial on 1Cm

a.�/
F but not on 1Cm

a.�/�1
F . Moreover,

since the characters .u /j
m
�.a.�/C1/=2
F

are pairwise distinct (cf. the proof of [BH06, Sec-

tion 1.7, Proposition]), so are the �u. Thus, since #U D q
.a.�/�1/=2
F .qF � 1/, the �u

exhaust the set of those multiplicative characters on .1Cm
.a.�/�1/=2
F /=.1Cm

a.�/
F / that

are nontrivial on 1Cm
a.�/�1
F . Consequently, �D �u for some u, as desired, and certainly

this u is also a valid choice for part (ii).

Lemma 2.5. For a finite extension F=Qp , a multiplicative character �WF � ! C� with
a.�/ � 2, an additive character  W F ! C� with c. / D 0, and a u 2 O�F as in
Lemma 2.4,

(i) if a.�/ is even, then

G .$
�a.�/
F ; �/ D

q
1�a.�/=2
F

qF � 1
 .�u$

�a.�/
F /�.�u/:

(ii) if a.�/ is odd, then

G .$
�a.�/
F ; �/ D

q
�.a.�/�1/=2
F

qF � 1
 .�u$

�a.�/
F /

�

X
t2OF =mF

�.�u � ut$
.a.�/�1/=2
F / .�ut$

�.a.�/C1/=2
F /

where we sum over coset representatives (their choice does not affect the summands).

Proof. We again set � WD 0 if a.�/ is even and � WD 1 if a.�/ is odd. Letting d�y and dy
be the Haar measures on F � and F normalized by

R
O�
F
d�y D 1 and

R
OF

dy D 1, we
then have

G .$
�a.�/
F ; �/ D

Z
y2O�

F

 .$
�a.�/
F y/�.y/ d�y

D

X
v2O�

F
=.1Cm

.a.�/C�/=2
F

/

�.v/

Z
y2.1Cm

.a.�/C�/=2
F

/

 .$
�a.�/
F vy/�.y/ d�y

where the sum is over some fixed coset representatives v 2 O�F . The integral in this sum
equals

qF

qF � 1

Z
y2.1Cm

.a.�/C�/=2
F

/

 .$
�a.�/
F vy/�.y/ dy

D
q
1�.a.�/C�/=2
F

qF � 1
 .$

�a.�/
F v/

Z
y2OF

 .$
�.a.�/��/=2
F vy/�.1C$

.a.�/C�/=2
F y/ dy

2.4
D
q
1�.a.�/C�/=2
F

qF � 1
 .$

�a.�/
F v/

Z
y2OF

 .$
�.a.�/��/=2
F .v C u/y/ dy:
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The latter vanishes unless the integrand defines the trivial additive character of OF , that
is, unless, v � �u mod m

.a.�/��/=2
F . If a.�/ is even, this happens precisely when v is

in the coset �u.1 C m
a.�/=2
F /, and (i) follows. If a.�/ is odd, then the same happens

precisely when v is in a coset of the form .�uC t$
.a.�/�1/=2
F /.1Cm

.a.�/C1/=2
F / with

t 2 OF , and two such cosets are distinct if and only if the corresponding t are distinct
modulo mF . Thus, by choosing coset representatives t for OF =mF and readjusting our
choices of coset representatives v, for odd a.�/ we obtain

G .$
�a.�/
F ; �/

D
q
1�.a.�/C1/=2
F

qF � 1

X
t2OF =mF

�.�uC t$
.a.�/�1/=2
F / .$

�a.�/
F .�uC t$

.a.�/�1/=2
F //:

To conclude (ii), it remains to adjust the representatives t by replacing them by �ut .
Finally, by Lemma 2.4 (ii), the summands in (ii) are independent of the coset representa-
tives for OF =mF .

Theorem 2.6. For a finite extension F=Qp , a multiplicative character �WF �! C� with
a.�/ � 2, and an additive character  WF ! C� with c. / D 0,

q
�1Ca.�/=2
F .qF � 1/G .x; �/ is a root of unity for every x 2 $�a.�/F O�F :

Proof. The case of an even a.�/ follows from Lemma 2.5 (i) (with (2.1.1) to replace x
by $�a.�/F ). Thus, we assume that a.�/ is odd, choose a u 2 O�F as in Lemma 2.4, and,
by Lemma 2.5 (ii), need to show that q�1=2F T is a root of unity where

T WD
X

t2OF =mF

F.t/ with F.t/ WD �.1C t$
.a.�/�1/=2
F / .�ut$

�.a.�/C1/=2
F /;

so that F.t/ only depends on the class in OF =mF of the representative t . For odd p, by
Lemma 2.4 (iii),

T D
X

t2OF =mF

 

�
�
ut2$�1F

2

�
:

Consequently, for odd p, letting  0W FF ! C� be the nontrivial additive character
t 7!  .�ut$�1F =2/ and �0WF�F ! C� the unique nontrivial quadratic character, we have

T D 1C
X
t2F�

F

 0.t2/ D 1C
X
t2F�

F

.�0.t/C 1/ 0.t/ D �g 0.�
0/:

Thus, (2.2.1) shows that q�1=2F T is a root of unity for odd p.
In the remaining case p D 2, we instead let  0WFF ! ¹˙1º � C� be the nontrivial

additive character t 7! �.1C t$
a.�/�1
F / and seek to conclude by showing that q�1F T 2 is

a root of unity. For this, we first note that, since F.2t/ D F.0/ D 1, the identity

F.t/F.t 0/ D �.1C .t C t 0/$
.a.�/�1/=2
F C t t 0$

a.�/�1
F / .�u.t C t 0/$

�.a.�/C1/=2
F /

D F.t C t 0/ 0.t t 0/
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applied in the case t D t 0 shows that each F.t/ is a fourth root of unity. We obtain

T 2 D
X

t;t 02FF

F.t/F.t 0/ D
X

t;t 02FF

F.t C t 0/ 0.t t 0/ D
X
s2FF

�
F.s/

X
t2FF

 0.t2 C ts/

�
;

where, since t 7! t2 is an automorphism of FF and 0 is nontrivial, the inner sum vanishes
for s D 0. For s ¤ 0, the kernel of the F2-linear map FF ! FF given by t 7! t2 C ts is
¹0; sº, so its image is an F2-hyperplaneHs � FF , and hence the inner sum also vanishes if
Hs ¤ Ker. 0/ and else equals qF . Thus, we are reduced to showing that there is a unique
s 2 FF n ¹0º with Hs D Ker. 0/ or, since the total number of F2-hyperplanes in FF is
qF � 1, that the Hs exhaust all such hyperplanes.

Scaling by a fixed r 2 F�F is an F2-linear automorphism of FF , and the nonzero orbits
of this automorphism all have the same order equal to the order m of r in the group F�F .
Thus, scaling by r fixes no F2-hyperplane H � FF unless r D 1: else m would divide
the consecutive integers #.H n ¹0º/ and #.FF nH/. Consequently, by scaling, F�F acts
transitively on the set of F2-hyperplanes H � FF and it remains to note that scaling by
an r 2 F�F brings Hs D ¹t2 C st j t 2 FF º to another hyperplane of this form, namely,
to Hr 0s for the unique r 0 2 FF with r 02 D r .

The above analysis of Gauss sums G .x; �/ gives the following consequence for
"-factors of GL.1/.

Corollary 2.7. For a finite extension F=Qp , a multiplicative character �WF � ! C� of
finite order, and a nontrivial additive character  WF ! C�, we have

".1
2
; �;  / 2 Z

�
1
p

��
: (2.7.1)

Moreover, for any isomorphism C ' Qp ,

(i) if a.�/ D 1, then, with the notation of Section 2.2,

valp.".12 ; �;  // D �
ŒFF W Fp�

2
C
s.��1/

p � 1
I

(ii) if �2 D 1 or a.�/ > 1, then ".1
2
; �; / is a root of unity, and so valp.".12 ; �; //D 0.

Proof. By (2.1.2), we may assume that c. / D 0. The twist by an unramified character
formula (2.1.3) then settles the case a.�/ D 0 and allows us to assume that �.$F / D 1,
that is, that � 2 X. In the remaining case of a � 2 X with a.�/ > 0, by (2.1.1), we have

".1
2
; �;  / D

qF � 1

q
1�a.�/=2
F

G .$
�a.�/
F ; ��1/�.$

a.�/
F /:

In particular, Proposition 2.3 and Theorem 2.6 give ".1
2
; �; / 2 ZŒ 1

p
�� as well as (i) and

the a.�/ > 1 case of (ii). The remaining �2 D 1 case of (ii) follows from (2.1.4).

We conclude the section with an explicit analysis of the "-factors of quadratic charac-
ters of Q�2 . This will be useful for studying the 2-adic properties of Fourier expansions of
newforms.
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2.8. Quadratic characters of Q�2

There are eight characters ˇWQ�2 ! C� with ˇ2 D 1:

X
quad
Q2
WD ¹1; ˇ0; ˇ2; ˇ0ˇ2; ˇ3; ˇ0ˇ3; ˇ2ˇ3; ˇ0ˇ2ˇ3º;

where 1 is the trivial character, ˇ0 is nontrivial and unramified, the conductor exponents
of ˇ2 and ˇ0ˇ2 are 2, and those of ˇ3, ˇ0ˇ3, ˇ2ˇ3, and ˇ0ˇ2ˇ3 are 3. To normalize
for the sake of concreteness: via local class field theory, ˇ0 corresponds to the exten-
sion Q2.

p
5/=Q2 and satisfies ˇ0.2/ D �1, whereas ˇ2 corresponds to the extension

Q2.
p
�1/ and satisfies ˇ2.2/ D 1, and ˇ3 corresponds to Q2.

p
2/=Q2 and satisfies

ˇ3.2/ D 1 (so ˇ2ˇ3 corresponds to Q2.
p
�2/=Q2). In the notation of Section 2.1,

XQ2;1 D ;; XQ2;2 D ¹ˇ2º; XQ2;3 D ¹ˇ3; ˇ2ˇ3º:

Lemma 2.9. For an additive character WQ2!C� with c. /D 0, there is an a 2Z�2
with

".1
2
; ˇ2;  / D ˇ2.a / � i; ".1

2
; ˇ3;  / D ˇ3.a /; ".1

2
; ˇ2ˇ3;  / D .ˇ2ˇ3/.a / � i:

Proof. The collection of  with c. / D 0 is a Z�2 -torsor via the action .a /.x/ WD
 .ax/ (see [BH06, Section 1.7, Proposition]), so the "-factor transformation formula
(2.1.2) reduces the problem to treating a single  . We then choose the following  with
c. / D 0 for which we will argue the claim with a WD 1:

 .x/ WD exp.2�i�.x// where �WQ2� Q2=Z2 ,! Q=Z Š
M

prime p

Qp=Zp:

With the shorthand �n WD e2�i=n, we obtain

G .
1
4
; ˇ2/ D

1
2

�
�4 � ˇ2.1/C �

3
4 � ˇ2.3/

�
D

1
2
.i C i/ D i;

G .
1
8
; ˇ3/ D

1
4

�
�8 � ˇ3.1/C �

3
8 � ˇ3.3/C �

5
8 � ˇ3.5/C �

7
8 � ˇ3.7/

�
D

1
4
.�8 � �

3
8 � �

5
8 C �

7
8/ D

1

21=2
;

G .
1
8
; ˇ2ˇ3/ D

1
4
.�8 � .ˇ2ˇ3/.1/C � � � C �

7
8 � .ˇ2ˇ3/.7// D

1
4
.�8 C �

3
8 � �

5
8 � �

7
8/

D
1

21=2
i:

Thus, (2.1.1) gives the desired

".1
2
; ˇ2;  / D i; ".1

2
; ˇ3;  / D 1; ".1

2
; ˇ2ˇ3;  / D i:

3. p-adic properties of local Whittaker newforms

As we will see in Section 4, the theory of Whittaker models translates the study of p-
adic properties of Fourier expansions of newforms f at cusps into the study of p-adic
properties of the values of the Whittaker newform of the p-component of the associated
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cuspidal automorphic representation �f . This transforms a global problem into a purely
local one, and in this section we place ourselves in the resulting local setting. Namely,
we use the theory of local Fourier expansions of the Whittaker newform W�; of an irre-
ducible, admissible, infinite-dimensional representation � of GL2.Qp/, the recent basic
identity (reviewed in Section 3.5) that explicates the resulting local Fourier coefficients,
the work of Section 2 on Gauss sums, and the classification of � to derive in Theo-
rems 3.14 and 3.15 explicit lower bounds on the p-adic valuations of values of W�; .
We begin by reviewing the local Whittaker newform W�; in Section 3.2 and its Fourier
expansions in Section 3.5.

3.1. Representations of GL2.F / and their conductors

Let p be any prime, F=Qp a finite extension and � an irreducible, admissible, infinite-
dimensional, complex representation of GL2.F / with central character !� and contra-
gredient z� . For a character �WF � ! C�, the twist �� is the complex representation of
GL2.F / given by g 7! �.det.g//˝C �.g/, so that, for instance, !�1� � ' z� (see [Del73a,
équation (3.2.2.2)]). For n � 0, we consider the subgroup

K1.n/ WD
®�
a b
c d

�
2 GL2.OF /

ˇ̌
c 2 $n

FOF ; a 2 1C$
n
FOF

¯
� GL2.OF /:

There is the smallest a.�/ � 0, the conductor exponent of � , such that the space of
K1.a.�//-fixed vectors in � is nonzero, and so necessarily is one-dimensional (see
[Del73a, Théorème 2.2.6, Définition 2.2.7]). To compute a.��/, we will use [CS18,
Lemma 2.7]: for � and � as above with !� D 1, we have

a.��/ � max.a.�/; 2a.�// (3.1.1)

with equality if either a.�/ ¤ a.�/=2 or � is twist-minimal in the sense that

a.�/ D min
�
a.��/;

so that, in particular, a � with !� D 1 is twist-minimal whenever a.�/ is odd.
For a nontrivial additive character  W F ! C�, similarly to Section 2.1, we let

".s; �;  / 2 C� be the local "-factor of � (see [Sch02, Section 1.1] for its review) and
abbreviate to ".s; �/ when  satisfies c. / D 0 (see Section 1.4). This minor abuse is
harmless when !� is unramified because, by loc. cit., we have

".s; �;  / D ".1
2
; �;  /q

.2c. /�a.�//.s�1=2/
F ;

".1
2
; �; a / D !�.a/".

1
2
; �;  / for a 2 F �

(compare with (2.1.2)). With the common normalization c. /D 0, we also have (loc. cit.)

".s; j � jt�; / D q
�a.�/t
F ".s; �;  / for t 2 C;

".s; �;  /".1 � s; !�1� �; / D !�.�1/; (3.1.2)

so ".1
2
; �;  / D ˙1 whenever !� D 1.
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3.2. The Whittaker newform of �

For a nontrivial additive character  WF ! C�, we set

W WD
®
locally constant W WGL2.F /! C with

W
��
1 x
1

�
g
�
D  .x/W.g/ for x 2 F; g 2 GL2.F /

¯
:

The group GL2.F / acts on the C-vector space W by .g0W /.g/ WD W.gg0/ and, by
[Del73a, before Proposition 2.2.3], each � as in Section 3.1 is isomorphic to the unique
subspace W .�/ � W , the Whittaker model of � . The normalized Whittaker newform
of � is the unique K1.a.�//-invariant element

W�; 2 W .�/ such that W�; .1/ D 1:

For an unramified multiplicative character �WF � ! C�, we have7

W��; .g/ D �.det.g//W�; .g/ for all g 2 GL2.F /: (3.2.1)

3.3. The coset representatives gt;`;v

The values of the Whittaker newform W�; on the double coset Z.F /U.F /gK1.a.�//,
where Z � GL2 is the center and U � GL2 the “upper right” unipotent subgroup, are
determined by W�; .g/. We choose the representatives g as follows: we set

gt;`;v WD
�
$ t
F
1

� �
1

�1

� �
1 v$�`

F
1

�
D

�
$ t
F

�1 �v$�`
F

�
2GL2.F / for t; `2Z and v 2O�F

and recall from [Sah16, Lemma 2.13] that, letting v range over the indicated coset repre-
sentatives,8

GL2.F / D
G

0�`�n

G
v2O�

F
=.1Cm

min.`;n�`/
F

/

G
t2Z

Z.F /U.F /gt;`;vK1.n/:

7The map ��WW 7! .g 7! �.det.g//W.g// is a C-linear automorphism of W such that

�.det.g0//.��.g0W // D g0.��.W // for g0 2 GL2.F /:

Thus, �� induces a GL2.F /-isomorphismz��WW 
�
�! ��1W , so that ��.W .�//DW .��/ and

��.W�; / D W��; .
8One argues the decomposition as follows. For the upper triangular Borel B � GL2, the

valuative criterion of properness for BnGL2 and the vanishing H1.OF ; B/ D ¹�º show that
GL2.OF /� .BnGL2/.F /, and so give the Iwasawa decomposition GL2.F / D B.F /GL2.OF /,
which one refines to GL2.F /D

�
Z.F /U.F /

�
¹$a
F
ºa2Z 0

0 1

��
GL2.OF /. The advantage of the refine-

ment is that the group encoding the nonuniqueness of the decomposition shrinks from

B.OF / D B.F / \ GL2.OF / to Z.OF /U.OF / D
®�
z u
0 z

� ˇ̌
z 2 O�F ; u 2 OF

¯
:

This group acts on the primitive vectors
� x
y

�
with entries in OF =m

n
F

by left multiplication:��
z u
0 z

�
;
� x
y

��
7!
�
zxCuy
zy

�
. The orbits are indexed by both the “valuation” 0 � ` � n of y and,

with the subsequent normalization y D $`
F

, the class x of x in OF =.1 C m
min.`;n�`/
F

/. Since
K1.n/ is the stabilizer of

�
1
0

�
for the similar transitive left multiplication action of GL2.OF /,
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This decomposition reduces the problem to studying the values W�; .gt;`;v/, and the
following Atkin–Lehner relation that results from [Sah16, Proposition 2.28]9 and (3.1.2)
halves the range of the ` that one needs to consider: if !� D 1 and c. / D 0, then, for
0 � ` � a.�/, there is a p-power root of unity � with

W�; .gt;`;v/ D ˙� W�; .gtC2`�a.�/;a.�/�`;�v/: (3.3.1)

As we now illustrate, this relation is useful for deducing a description of the p-adic
valuations of the elements W�; .gt;`;v/ with ` 2 ¹0; a.�/º.

Proposition 3.4. For a finite extension F=Qp , an irreducible, admissible, infinite-dimen-
sional representation � of GL2.F / with a.�/ � 1 and !� D 1, an additive character
 WF ! C� with c. / D 0, a t 2 Z, an ` 2 ¹0; a.�/º, and a v 2 O�F , there is a p-power
root of unity � such that

W�; .gt;`;v/ D

8̂̂<̂
:̂
˙�q

�.1CtC`/
F if a.�/ D 1 and t C ` � �1;

˙� if a.�/ > 1 and t C ` D �a.�/;

0 otherwise.

Proof. Since (3.3.1) swapsW�; .gt;0;v/ andW�; .gt�a.�/;a.�/;�v/, we may assume that
` D a.�/. Then, in terms of the description in footnote 8, both the matrices gt;a.�/;v and

g WD
�
$
tC2a.�/
F

1

��
v�1

v�1

�
have the same invariants, soW�; .gt;a.�/;v/ andW�; .g/

agree up to a factor that is a value of  , that is, up to a p-power root of unity. It then
remains to recall from [CS18, Lemma 2.10] that

W�; .g/ D W�; .
�
$r
F
1

�
/ D

8̂̂<̂
:̂
˙q�rF if a.�/ D 1; r � 0;

1 if a.�/ > 1; r D 0;

0 otherwise.

these orbits correspond to the double cosets Z.OF /U.OF /nGL2.OF /=K1.n/. In conclusion,
Z.F /U.F /nGL2.F /=K1.n/ is indexed by invariants `, x, and a as above, and it remains to note
that for the element gt;`;v these invariants are `, v�1, and t C 2`, respectively: indeed, the matrix�
v�1

$`
F
v

�
in GL2.OF / sends

�
1
0

�
to the primitive vector

� v�1
$`
F

�
(so its x and ` invariants are v�1

and `, respectively) and can be written in the Bruhat decomposition as�
v�1

$`
F
v

�
D

�
�$�`

F
�v�1

�$`
F

� �
1

�1

� �
1 v$�`

F
1

�
D

�
�$`

F

�$`
F

��
$�t�2`
F

1

� �
1 v�1$

tC`
F

1

�
gt;`;v ;

which gives the sufficient gt;`;v 2 Z.F /U.F /
�
$
tC2`
F

1

� �
v�1

$`
F
v

�
.

9The proof of this relation does not use the blanket assumption of [Sah16, Section 2] that � be
unitarizable.
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3.5. The Fourier expansion of W�; .gt;`;v/

In Section 3.3, for fixed t 2 Z and ` � 0, the function O�F 3 v 7! W�; .gt;`;v/ descends
to the quotient O�F =.1Cm`

F /, so, by Fourier inversion, there are constants ct;`.�/ 2 C
for � 2 X�` (see Section 2.1) such that

W�; .gt;`;v/ D
X
�2X�`

ct;`.�/�.v/ for every v 2 O�F : (3.5.1)

To make use of this local Fourier expansion, it is key to explicate the Fourier coef-
ficients ct;`.�/ 2 C. This may be done in terms of "-factors of representations of the
product GL2 � GL1 by using the basic identity of [Sah16, Proposition 2.23 and before
Remark 2.22]:10 if c. / D 0 and !� D 1, then, for 0 � ` � a.�/ and � 2 X�`,

".1
2
; ��/

L.s; ��/

X
t2Z

q
.tCa.��//.1=2�s/
F ct;`.�/

D
1

L.1 � s; ��1�/

X
r�0

q
�r.1=2�s/
F G .$

r�`
F ; ��1/W�; 

��
$r
F
1

��
as Laurent polynomials in qsF with the Gauss sums G as in Section 2.1. This method for
accessing the numbers ct;`.�/ was carried out in [Ass19, Section 2], and we will cite the
resulting formulas below. For a discussion of related unpublished approaches of Templier
and Hu, see [CS18, Remark 2.20].

3.6. Classification of ramified � with !� D 1

Our analysis of the Fourier coefficients ct;`.�/ will rest on the following well-known
classification of the irreducible, admissible, infinite-dimensional, representations � of
GL2.F / that are ramified (that is, a.�/ � 1) and whose central character is trivial (that
is, !� D 1). We refer to [JL70, Sections 2–3] and [Sch02, Section 1.2] (or [BH06,
Section 9.11]) for its justification, and when possible we also give formulas for a.�/,
L.s; ��/ and ".s; ��/ with � 2 X.

(1) � is supercuspidal. In this case, a.�/ � 2 and L.s; ��/ D 1 (see [Cas73, before
Lemma on p. 303 and middle of p. 304] and [BH06, Section 24.5]).

(1a) � is dihedral supercuspidal. Such a � is associated, via the Weil representation,
to a character �WE� ! C� of a quadratic extension E=F such that � does not
factor through NormE=F ; see [JL70, Section 4] or [Bum97, Theorem 4.8.6].
Equivalently, under the local Langlands correspondence [BH06, Sections 33.4
and 34.4] such a � corresponds to IndWFWE � where � becomes a character of the
Weil group WE via class field theory. By [JL70, Theorem 4.7 (ii)], for such a �

10The cited claims do not use the blanket assumption of [Sah16, Section 2] that � be unitarizable.
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we have !� D �jF ��E=F , where �E=F is the quadratic character associated to
E=F . In particular, !� D 1 forces

�jIm.NormWE�!F �/ D 1; while, by assumption, �jKer.NormWE�!F �/ ¤ 1;
(3.6.1)

so � is of finite order. By [JL70, Theorem 4.7 (i, iii) and p. 8] the representation
�� is also dihedral supercuspidal, associated to �.� ı NormE=F /WE

� ! C�,
and11

".s; ��/ D ".s; �.� ı NormE=F /;  ı TraceE=F / for some  2 ¹˙1;˙iº:
(3.6.2)

With dE=F being the valuation of the discriminant of E=F , by [Sch02, Theo-
rem 2.3.2],

a.�/ D ŒFE W FF �a.�/C dE=F : (3.6.3)

(1b) � is nondihedral supercuspidal. For such a � , we have char.FF / D 2 as well
as a.�/ > 2 (see [Del73a, Proposition 3.1.4] and [Tun78, Proposition 3.5]), but
there seems to be no simple expression for ".s; ��/. For F D Q2, we describe
such � in Proposition 3.9 below.

(2) � ' �St is the twist of the Steinberg representation by an unramified character �
with �2 D 1. In this case, a.�/ D 1, and, by [Bum97, Section 4.7, equation (7.10)]
and [JL70, Proposition 3.6], we have

L.s; ��/ D

8<: 1

1��.$F /q
�1=2�s
F

if � D 1;

1 otherwise;

".s; ��/ D

´
��.$F /q

1=2�s
F if � D 1;

".s; �/2 otherwise.

(3) � ' �St is the twist of the Steinberg representation by a ramified character � with
�2D 1. In this case, by [Bum97, Section 4.7, equation (7.10)] and [JL70, Proposition
3.6], we have a.�/ D 2a.�/ � 2 and

L.s; ��/ D

8<: 1

1�.��/.$F /q
�1=2�s
F

if a.��/ D 0;

1 otherwise,

".s; ��/ D

´
�.��/.$F /q

1=2�s
F if a.��/ D 0;

".s; ��/2; otherwise.

11By [JL70, Lemma 1.2] and (2.1.1) with (2.1.3)–(2.1.4), we have  D ".12 ; �E=F /, and so also
2 D �E=F .�1/.
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(4) � ' �j�j�F � �j�j
��
F with � ¤ ˙1

2
is a principal series where the character � 2 X is

ramified with �2 D 1. In this case, by [JL70, Proposition 3.5], we have a.�/D 2a.�/
and

L.s; ��/ D

´
1

.1�q���s
F

/.1�q��s
F

/
if � D �;

1 otherwise,

".s; ��/ D

´
1 if � D �;

".s; ��/2 otherwise.

(5) � '�j�j�F ��
�1j�j��F is a principal series where the character � 2X is ramified with

�2 ¤ 1. In this case, by the same reasoning as in the previous case, a.�/ D 2a.�/
and

L.s; ��/ D

8<: 1

1�q˙�
F

if � D �˙1;

1 otherwise,

".s; ��/ D q
�.a.���1/�a.��//
F ".s; ��/".s; ���1/:

We refer to these cases as � being of Type 1a, 1b, 2, 3, 4, or 5 (this numbering is not
standard). Type 2 will not concern us much because our focus is the case a.�/ � 2, and
Types 1a, 3, 4, 5 are in some sense similar, for instance, ".s;�/ in these cases is expressed
in terms of "-factors of characters. Type 1b is the most subtle one, but it benefits from
the more precise classification recorded in Proposition 3.9 that uses the following lemma,
which further explicates conductor exponents.

Lemma 3.7. For a supercuspidal representation � of GL2.Q2/with a.�/�2 and !�D1
(Type 1), any twist-minimal twist �0 of � satisfies

a.�0/

8̂̂<̂
:̂
D a.�/ if a.�/ is odd or if a.�/ D 2;

� a.�/ � 1 if a.�/ is even and a.�/ � 4;

2 ¹a.�/ � 2; a.�/ � 1º if a.�/ is even and a.�/ � 8:

Proof. A twist of a supercuspidal representation is supercuspidal, and hence has con-
ductor exponent � 2 (compare with Section 3.6), so the first case follows from (3.1.1).
The second case may be deduced from [AL78, Theorem 4.4 and the remark after it] by
globalization, but we give a direct argument.

Suppose, for the sake of contradiction, that a.�/ is even with � twist-minimal and
a.�/ � 4. By [Tun78, Proposition 3.5], such a � is dihedral, associated to some � W
E�! C� with E=Q2 unramified quadratic. By (3.6.3), we have a.�/D a.�/=2 > 1, so,
by [BH06, Section 18.1, Proposition], for any �2XQ2;a.�/ also a.� ıNormE=Q2/D a.�/.
In particular, both � and � ı NormE=Q2 are nontrivial on the group

.1C 2a.�/�1OE /=.1C 2
a.�/OE / ' .Z=2Z/

2: (3.7.1)

But � ı NormE=Q2 is trivial on its subgroup .1C 2a.�/�1Z2/=.1C 2a.�/Z2/ ' Z=2Z,
and so is �: indeed, (3.6.1) gives �jIm.NormWE�!Q�

2
/ D 1, whereas

NormE=Q2 W 1C 2
a.�/�1OE � 1C 2a.�/�1Z2
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(see [Ser79, Chapter V, Section 2, Proposition 3 a)]). It follows that � and � ı NormE=Q2

agree on the group (3.7.1), so that a.�.��1 ıNormE=Q2// < a.�/, and hence, by (3.6.3),
also a.��1�/ < a.�/, a contradiction.

Finally, suppose that a.�/ is even with a.�/ � 8 and write � ' ��0, so that (3.1.1)
and the established inequality a.�0/ � a.�/ � 1 give a.�/ D 2a.�/. Since !� D 1,
the central character of �0 is ��2, so that a.�0/ � 2a.�2/ by [Tun78, Proposition 3.4].
Since a.�/ � 4 and we are dealing with Q2, we have a.�2/ D a.�/ � 1, and the desired
a.�0/ � a.�/ � 2 follows.

Remark 3.8. In contrast, for an odd prime p and a finite extension F=Qp , every super-
cuspidal representation � of GL2.F / with !� D 1 is twist-minimal; see, for instance,
[HNS19, Lemma 2.1].

Proposition 3.9. Up to isomorphism, there are 16 nondihedral supercuspidal (that is,
Type 1b) representations � of GL2.Q2/ with !� D 1. Letting X

quad
Q2

be as in Section 2.8,
such � are listed as

¹ˇ�3 W ˇ 2 X
quad
Q2
º t ¹ˇ�7 W ˇ 2 X

quad
Q2
º

with the following conductor exponents:

a.�3/ D a.ˇ0�3/ D 3; a.ˇ2�3/ D a.ˇ0ˇ2�3/ D 4;

a.ˇ3�3/ D a.ˇ2ˇ3�3/ D a.ˇ0ˇ3�3/ D a.ˇ0ˇ2ˇ3�3/ D 6;

a.�7/ D a.ˇ0�7/ D a.ˇ2�7/ D a.ˇ0ˇ2�7/ D a.ˇ3�7/

D a.ˇ2ˇ3�7/ D a.ˇ0ˇ3�7/ D a.ˇ0ˇ2ˇ3�7/ D 7:

In contrast, no dihedral supercuspidal representation � 0 of GL2.Q2/ with !� 0 D 1 has
a.� 0/ 2 ¹3; 7º.

Proof. Via the local Langlands correspondence [BH06, Section 33.4], our supercuspidal
� corresponds to an irreducible, smooth representation � WWQ2 ! GL2.C/, which has
its associated projectivization � WWQ2 ! PGL2.C/. Since !� D 1, we have det.�/ D 1,
so �.WQ2/ is a subgroup of SL2.C/ that is necessarily finite (see [BH06, Section 28.6,
Proposition]). Since � is nondihedral, � is not induced from a subgroup. The projective
image �.WQ2/must be the symmetric group S4: the only other finite, solvable subgroups
of PGL2.C/ are cyclic, dihedral, and A4, and the first two cannot occur because � is
irreducible and not induced from a quadratic extension (compare with [Wei74, Section
13]), whereas Weil proved in [Wei74, Sections 34–35] that �.WQ2/ 6' A4 (more pre-
cisely, �.WQ2/ 6' A4 because A4 has no irreducible, two-dimensional representation,
and �.WQ2/ is not a central extension of A4 by Z=2Z because the “Condition C with
respect to A4” of [Wei74, Section 21] fails for Q2; see also [BR99, Section 8]).

Up to conjugation, there is a unique embedding of S4 into PGL2.C/ (compare with
[Wei74, Section 14]), so we fix one such and, in the notation of op. cit., let �0� S4
be the central extension by ¹˙1º obtained by the preimage in SL2.C/. Since S4 has
no faithful, irreducible, two-dimensional representations, by conjugating we may assume
that �.WQ2/ D �0. In particular, the S4-extension K=Q2 cut out by � extends to a
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�0-extension zK=Q2. Thus, by [Wei74, Section 24 (with Sections 16 and 21)] (“Con-
dition C with respect to �0” is equivalent to “Condition C with respect to �00”), this
extension also extends to a �00-extension zK 0=Q2 with �00 WD GL2.F3/ inside GL2.C/
(note that GL2.F3/=¹˙1º ' S4). By [Wei74, Section 36] and [BR99, Section 8], this
means that K is one of the two S4-extensions of Q2 that extend to GL2.F3/-extensions
of Q2. In particular, since any two lifts of � to a z� WWQ2 ! GL2.C/ are twists by a char-
acter (compare with [Koc77, Section 1]), we have isolated two distinct families of twists
of two-dimensional, irreducible, smooth representations of WQ2 that could contain � .

By [Cal78, Theorem 5], there exist representations �3 and �7 of GL2.Q2/, each either
supercuspidal or a twist of Steinberg, such that !�3 D !�7 D 1 and a.�3/D 3, a.�7/D 7.
To conclude it then suffices to argue that these �c are nondihedral supercuspidal: indeed,
they will be twist-minimal by Lemma 3.7, the representation � will be of the form ˇ�c
with ˇ 2 X

quad
Q2

, all the latter will be pairwise distinct by [BH06, Section 51.5], and the
formulas for the a.ˇ�c/ will follow from (3.1.1).

The formulas for the conductor exponents in Section 3.6 show that �c is not a twist
of Steinberg. Thus, we assume that �c is dihedral supercuspidal, associated to a quadratic
extension E=Q2 and a character �WE� ! C� subject to (3.6.1). By [Tun78, Proposi-
tion 3.5], the extension E=Q2 is ramified, so that a.�/ D c � dE=Q2 2 ¹c � 2; c � 3º
(see Section 3.6 and Section 2.8). For c D 3, this is already a contradiction: indeed, since
FE Š F2, the inequality a.�/� 1 gives a.�/D 0, which contradicts (3.6.1). For c D 7, if
dE=Q2 D 2, equivalently, if a.�/D 5, then, by (3.6.1) and [Ser79, Chapter IV, Section 1,
Proposition 4 and Chapter V, Section 3, Corollary 3], we have �j1C4Z2 D 1, so the inclusion
1Cm4

EOE � .1C 4Z2/.1Cm5
EOE / contradicts a.�/D 5. In the remaining case c D 7

with dE=Q2 D 3, we have a.�/D 4, so again �j1C4Z2 D 1, which, since �jQ�
2
D�E=Q2 (see

Section 3.6), contradicts the conductor-discriminant formula a.�E=Q2/D dE=Q2 D 3.

Remark 3.10. As we learned from Ralf Schmidt, the main assertion of Proposition 3.9
is due to Neklyudova [Nek75] who obtained it by analyzing the Hecke algebra (see also
[Nob78]). With the local Langlands correspondence, it could also be deduced from results
in [Zin79] or [Hen79].

To prepare for a p-adic study of the values of W�; , we begin by exhibiting a general
integrality away from p property of these values in Proposition 3.12. Its argument rests
on the following lemma.

Lemma 3.11. For a finite extensionE=Qp , anm> 0, a Haar measure dx on the additive
group Em with

R
Om
E
dx 2 ZŒ 1

p
�, and a function f W .O�E /

m ! Z that is right multi-
plication invariant by .1 C $n

EOE /
m for some n > 0 (that is, f .x/ D f .xy/ for all

y 2 .1C$n
EOE /

m), we have Z
.O�
E
/m
f .x/ dx 2 Z

�
1
p

�
I (3.11.1)

for a Haar measure d�x on the multiplicative group .E�/m with
R
.O�
E
/m
d�x 2 ZŒ 1

p
�,

instead
1

�E .1/m

Z
.O�
E
/m
f .x/ d�x 2 Z

�
1
p

�
: (3.11.2)
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Proof. Due to (1.4.1), the first display implies the second one. For the former,Z
.O�
E
/m
f .x/ dx D

X
x02.O

�
E
/m=.1C$n

E
OE /m

f .x0/ vol..1C$n
EOE /

m/

D

R
Om
E
dx

qmnE

X
x02.O

�
E
/m=.1C$n

E
OE /m

f .x0/;

and it remains to note that f takes values in Z.

Proposition 3.12. For a finite extension F=Qp , an irreducible, admissible, infinite-
dimensional representation � of GL2.F / such that a.�/ � 1 and !� D 1, an additive
character  WF ! C� with c. / D 0, and a g 2 GL2.F /,

W�; .g/ 2 Z
�
1
p

�
if � is

´
dihedral supercuspidal (Type 1a) or a twist of St (Types 2, 3), or

principal series �j�j�F � �
�1j�j��F (Types 4, 5) with q˙�F 2 ZŒ 1

p
�:

In addition, if � is nondihedral supercuspidal (Type 1b) and F D Q2, then

W�; .g/ 2

´
1

21=2
Z if a.�/ D 6; ` D 3; t 2 ¹�3;�4º;

Z otherwise.
(3.12.1)

Proof. By Section 3.3, we may assume that g D gt;`;v for a t 2 Z, a 0 � ` � a.�/, and a
v 2O�F . For the first assertion, by Proposition 3.4, we may assume that � is not of Type 2,
and, to conclude, we claim that W�; .gt;`;v/ is a ZŒ 1

p
�-linear combination of products of

quantities
R
.O�
E
/m
f .x/ dx with f and dx as in Lemma 3.11 for a finite extension E=F .

This will follow from formulas for W�; .gt;`;v/ derived by Assing [Ass19, Section 3].
For later use, we recall from (3.1.2) that

".1
2
; Q�/ D ".1

2
; �/ D ˙1

and from (2.7.1) that ".1
2
; �;  / 2 ZŒ 1

p
�� for a character �WF � ! C� of finite order.

Namely, [Ass19, Lemma 3.1] gives the desired description for � of Type 1a (with
E=F quadratic andmD 1; by (3.6.2), the quantity  there lies in ¹˙1;˙iº). To similarly
treat � ' �St of Type 3, we first twist by a finite order unramified character and use
(3.2.1) to assume that �.$F / D 1, and then apply [Ass19, Lemma 3.3]12 (now E D F

and m 2 ¹1; 2º; in the case of loc. cit. that involves Salié sums, we use (3.11.2) instead

12Even though the case ` D a.�/ D 1 is omitted from the cited statement, it is treated in the
proof: as is observed at the beginning of the argument there, the subcase t ¤ �2 reduces to [Ass19,
Lemma 2.1], whereas the subcase t D �2 is addressed before the phrase “If l D 1 D a.�/, we will
leave this expression as it is.”
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of (3.11.1)). Finally, for � of Type 4 or 5, we combine the assumption q˙�F 2 ZŒ 1
p
� with

[Ass19, Lemma 3.6] (now E D F and m 2 ¹1; 2º).
For the remaining (3.12.1), we assume that � is of Type 1b with F D Q2 and use

(3.3.1) with Proposition 3.4 to reduce to 0 < ` � a.�/=2. By the classification in Propo-
sition 3.9, we have a.�/ � 7, so the bound is 1 � ` � 3. We will use the local Fourier
expansion

W�; .gt;`;v/
(3.5.1)
D

X
�2X�`

ct;`.�/�.v/

and the following formulas for the ct;`.�/ derived in [Ass19, Section 2.1] from the basic
identity of Section 3.5:

ct;`.�/ D

8̂̂<̂
:̂
�".1

2
; �/ if ` D 1; t D �a.�/; � D 1;

21�`=2".1
2
; �/".1

2
; ��1�/ if t D �a.��/; � 2 X`;

0 otherwise:

Since 1 � ` � 3, the appearing � are quadratic (see Section 2.8), so ".1
2
; �/, ".1

2
; �/,

and ".1
2
; ��1�/ are all roots of unity (see (2.1.4) and (3.1.2)). Thus, since 21�`=2 2 Z for

` � 2, we reduce to `D 3 when a.�/ 2 ¹6; 7º and, in the notation of Section 2.8, the only
appearing � are ˇ3 and ˇ2ˇ3. If a.�/ D 6, then for these �, by Proposition 3.9, we have
a.��/ 2 ¹3; 4º, and the claim follows. In the remaining case a.�/ D 7, we likewise have
a.��/ D 7, so we only need to consider the value

W�; .g�7;3;v/ D
1

21=2

�
".1
2
; ˇ3/".

1
2
; ˇ3�/ˇ3.v/C ".

1
2
; ˇ2ˇ3/".

1
2
; ˇ2ˇ3�/ˇ2ˇ3.v/

�
:

Lemma 2.9 gives ".1
2
;ˇ3/D˙1 and ".1

2
;ˇ2ˇ3/D˙i , and (3.1.2) gives ".1

2
;ˇ3�/D˙1

and ".1
2
; ˇ2ˇ3�/ D ˙1. Thus, W�; .g�7;3;v/ lies in ¹˙ 1Ci

21=2
;˙ 1�i

21=2
º, and so is a root of

unity in Z.

A final preparation for Theorems 3.14 and 3.15 is the following vanishing result that
draws heavily on [CS18], which studied the phenomenon of exceptional vanishing of the
values of W�; .

Proposition 3.13. For a finite extension F=Qp , an additive character  WF ! C� with
c. / D 0, an irreducible, admissible, infinite-dimensional representation � of GL2.F /
with a.�/ � 2 and !� D 1, a twist-minimal twist �0 of � , an ` with 0 � ` � a.�/, and
a v 2 O�F , we have

W�; .gt;`;v/ D 0 if

8̂̂̂̂
<̂
ˆ̂̂:
t < �max.a.�/; 2`/; or

t > �max.a.�/; 2`/; ` ¤ a.�/=2; or

t > �a.�0/; � is supercuspidal (Type 1); or

t ¤ �max.a.�/; 2`/; p is odd, � is supercuspidal (Type 1):



K. Česnavičius, M. Neururer, A. Saha 598

Moreover, in the caseF DQ2 we have the following additional vanishing for `D a.�/=2:

W�; .gt;a.�/=2;v/ D 0 if8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

t � �a.�/; � is supercuspidal (Type 1) with a.�0/ � a.�/ � 1, or

t � �a.�/C 1; � is supercuspidal (Type 1) with a.�0/ � a.�/ � 2, or

t � �a.�/C 1; � is a ramified twist of St (Type 3), or

t � �a.�/C 1; � ' �j�j�F � �j�j
��
F with � ¤ ˙1

2
, �2 D 1 (Type 4), or

t � �a.�/C 2; � ' �j�j�F � �
�1j�j��F with �2 ¤ 1 (Type 5):

Proof. The additional vanishing statements for `D a.�/=2 follow from the rest and from
[CS18, Theorem 2.14] (with Section 2.8 and (3.1.1); for instance, for Type 5, one uses
a.�/ � 4, so that also a.�2/ D a.�/ � 1).

For the main statement, its last case follows from the rest: indeed, by Remark 3.8, if p
is odd and � is supercuspidal, then a.�0/D a.�/. Moreover, its case t <�max.a.�/;2`/
follows from [Sah17, Proposition 2.10(1)],13 so we assume that t � �max.a.�/; 2`/.
In the remaining cases, we use the Atkin–Lehner relation (3.3.1), which replaces t by
t C 2` � a.�/ and ` by a.�/ � `, to reduce to 0 � ` � a.�/=2, and we will conclude
from (3.5.1) by arguing that

ct;`.�/ D 0 for all � 2 X�`:

For this, we will use the basic identity reviewed in Section 3.5. By inspecting Sec-
tion 3.6, in the remaining cases in question we find that L.s; ��/ D 1, and, by [CS18,
Lemma 2.10],

W�; 

��
$r
F
1

��
D

´
1 if r D 0,

0 if r > 0.

In effect, the basic identity in the cases in question is the equality

".1
2
; ��/

X
t2Z

q
.tCa.��//.1=2�s/
F ct;`.�/ D G .$

�`
F ; ��1/

of Laurent polynomials in qsF . When ` < a.�/=2, by (3.1.1), we have a.��/ D a.�/,
so that the ct;`.�/ indeed vanish for t ¤ �a.�/. In the remaining case when � is super-
cuspidal, we have a.��/ � a.�0/, and the ct;`.�/ still vanish for t > �a.�0/ � �a.��/,
as desired.

When a.�/ � 2, for clarity, we split the sought bounds on valp.W�; .gt;`;v// into the
case of an odd p (Theorem 3.14) and that of F DQ2 (Theorem 3.15). To avoid additional
technical complications, we do not attempt to treat the case of a general finite extension
of Q2.

13The proof does not use the assumption of [Sah17, Section 2.2] that � be unitarizable; compare
with [CS18, Proposition 2.11].
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Theorem 3.14. For a finite extension F=Qp with p odd, an irreducible, admissible,
infinite-dimensional representation � of GL2.F / with a.�/ � 2 and !� D 1, an addi-
tive character  WF ! C� with c. / D 0, an isomorphism C ' Qp , a t 2 Z, an ` with
0 � ` � a.�/, and a v 2 O�F , we have

valp.W�; .gt;`;v//

�

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

0 if ` 2 ¹0; a.�/º;

0 if ` 2 ¹1; a.�/ � 1º; a.�/ > 2;

ŒFF W Fp�
�
1 � min.`;a.�/�`/

2

�
if ` … ¹0; 1; a.�/=2; a.�/ � 1; a.�/º;

�ŒFF W Fp�Cmin
� ŒFF WFp �

2
; 1
2
C

1
p�1

�
if ` D 1; a.�/ D 2; t D �2;

ŒFF W Fp�.1 � a.�/=4/ if ` D a.�/=2; a.�/ > 2; t D �a.�/;

and, for ` D a.�/=2 and an even a.�/, the following additional bounds (see also Propo-
sition 3.13):

(i) if � is supercuspidal (Type 1) with a.�/ D 2, then

valp.W�; .gt;1;v// � �ŒFF W Fp�C
1

2
C

1

p � 1
I

(ii) if � is a twist of Steinberg by a ramified quadratic character (Type 3), then a.�/D 2
and

valp.W�; .gt;1;v// � �
t C 4

2
ŒFF W Fp�Cmin

�
�ŒFF W Fp�

�
t C 1

2

�
;
1

2
C

1

p � 1

�
I

(iii) if � is a principal series �j�j�F � �j�j
��
F with �2 D 1 (Type 4), then a.�/ D 2 and

valp.W�; .gt;1;v//

� �ŒFF W Fp� � .t C 2/jvalp.q�F /j Cmin
�
�ŒFF W Fp�

�
t C 1

2

�
;
1

2
C

1

p � 1

�
I

(iv) if � is a principal series �j�j�F � �
�1j�j��F with �2 ¤ 1 (Type 5), then

valp.W�; .gt;a.�/=2;v//

�

´
�
ŒFF WFp �.tC4/

2
C

1
2
C

1
p�1
� .t C 2/jvalp.q�F /j if a.�/ D 2;

�
ŒFF WFp �max.tCa.�/;a.�/=2�2/

2
� .t C a.�//jvalp.q�F /j if a.�/ > 2:

Theorem 3.15. For an irreducible, admissible, infinite-dimensional, representation � of
GL2.Q2/ with a.�/ � 2 and !� D 1, an additive character  WQ2! C� with c. /D 0,
an isomorphism C ' Q2, a t 2 Z, an ` with 0 � ` � a.�/, and a v 2 Z�2 , we have

val2.W�; .gt;`;v// �

8̂̂<̂
:̂
0 if ` 2 ¹0; 1; a.�/ � 1; a.�/º;

1 � min.`;a.�/�`/
2

if ` … ¹0; 1; a.�/=2; a.�/ � 1; a.�/º;

0 if ` 2 ¹3; a.�/ � 3º; a.�/ > 6;
(3.15.1)
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and, for ` D a.�/=2 and an even a.�/ > 2, the following additional bounds (see also
Proposition 3.13):

(i) if � is supercuspidal (Type 1), then

val2.W�; .gt;a.�/=2;v// � 1 � a.�/=4

and, for a.�/ 2 ¹6; 8º,

val2.W�; .g�a.�/C1;a.�/=2;v// � 0I

(ii) if � is a twist of Steinberg by a ramified quadratic character (Type 3), then we have
a.�/ 2 ¹4; 6º and

val2.W�; .gt;a.�/=2;v// D

8̂̂̂̂
<̂
ˆ̂̂:
�.t C 3/ if t � �2; a.�/ D 4;

�.t C 7
2
/ if t � �2; a.�/ D 6;

�
1
2

if t D �4; a.�/ D 6;

1 otherwiseI

(iii) if � is a principal series �j�j�Q2 � �j�j
��
Q2

with �2 D 1 (Type 4), then a.�/ 2 ¹4; 6º
and

val2.W�; .gt;a.�/=2;v//

8̂̂̂̂
<̂
ˆ̂̂:
� �

tC4
2
� .t C 2/jval2.2� /j if t � �2; a.�/ D 4;

� �
tC5
2
� .t C 2/jval2.2� /j if t � �2; a.�/ D 6;

D �
1
2

if t D �4; a.�/ D 6;

D1 otherwiseI

(iv) if � is a principal series �j�j�Q2 ��
�1j�j��Q2

with �2 ¤ 1 (Type 5), then a.�/ � 8 and

val2.W�; .gt;a.�/=2;v//

�

8̂̂<̂
:̂
1�t�a.�/

2
� .t C a.�/ � 2/jval2.2� /j if t � �a.�/=2;

4�a.�/
4
� .t C a.�/ � 2/jval2.2� /j if �a.�/C 2 < t < �a.�/=2;

1 if t � �a.�/C 2:

3.16. Proof of Theorems 3.14 and 3.15. Even though we have separated the cases of an
odd p and of p D 2 with F D Q2 into separate statements, we will prove them simul-
taneously. For ` 2 ¹0; a.�/º, the assertion is that valp.W�; .gt;`;v// � 0, which follows
from Proposition 3.4. Each of the assertions that involves ` > a.�/=2 allows any t 2 Z.
Thus, we may use the Atkin–Lehner relation (3.3.1) to switch ` and a.�/ � ` if needed
to assume from now on that

(1) 1 � ` � a.�/=2 and (by also using Proposition 3.13) if ` < a.�/=2, then t D�a.�/.

Moreover, � is not of Type 2 because a.�/ � 2 (see Section 3.6). If � is of Type 1b (so
that p D 2), then the sought bounds follow from Proposition 3.9 and (3.12.1). Thus, we
assume from now on that

(2) � is not of Type 1b or Type 2.
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Our basic strategy is as follows: by the local Fourier expansion (3.5.1), we have

W�; .gt;`;v/ D
X
�2X�`

ct;`.�/�.v/; so valp.W�; .gt;`;v// � min
�2X�`

valp.ct;`.�//;

(3.16.1)

and we will bound valp.ct;`.�// individually for each representation in the classification
of Section 3.6 (in exceptional cases individual bounds will not suffice and we will consider
the full sum). Below we omit our fixed  from the notation when forming "-factors with
respect to it.

The case when � is of Type 1a. Such a � is associated to a character �WE� ! C� for a
quadratic extension E=F . By [Ass19, Section 2.1], for 1 � ` � a.�/=2 and � 2 X�`,

ct;`.�/ D

8̂̂<̂
:̂
�

1
qF�1

".1
2
; �/ if t D �a.�/; ` D 1; � D 1;

1
qF�1

q
1�`=2
F ".1

2
; �/".1

2
; ��1�/ if t D �a.��/; � 2 X`;

0 otherwise.

(3.16.2)

In particular, ct;`.1/D 0 unless t D�a.�/ and `D 1, in which case valp.c�a.�/;1.1//D 0
(see (3.1.2)), and ct;`.�/ D 0 for � 2 X�` n ¹1º unless � 2 X`. Since all the required
bounds are nonpositive for Type 1a when ` D 1, this reduces the problem to � 2 X` with
t D �a.��/.

We begin with the case a.�/D 2, when `D 1 and, since � 2X1, also F ¤Q2 (so that
p is odd) and t D �a.��/D �2 (see (3.1.1)). By Section 3.6, the representation ��1� is
dihedral supercuspidal associated to �.��1 ı NormE=F /WE

� ! C�. By [Tun78, Propo-
sition 3.5], we may assume that E=F is unramified, so that a.�.��1 ı NormE=F // D 1

by (3.6.3). Thus, by (3.6.2) and Corollary 2.7 (i),

valp.".12 ; �
�1�// D valp

�
".1
2
; �.��1 ı NormE=F /;  ı TraceE=F /

�
D �ŒFF W Fp�C

s.��1.� ı NormE=F //

p � 1
:

Consequently, (3.16.2) and Corollary 2.7 (i) give

valp.c�2;1.�// D �ŒFF W Fp�C
s.��1/C s.��1.� ı NormE=F //

p � 1
:

By (3.6.1), we have �jO�
F
D 1, so (2.2.3) and (2.2.4) give

p � 1 j 2s.��1/C s.��1.� ı NormE=F //:

Since s.��1/ and s.��1.� ıNormE=F // are positive, it follows that we have the inequal-
ity s.��1/C s.��1.� ı NormE=F // �

p�1
2
C 1. In conclusion, for a.�/ D 2, we obtain

the sufficient bound

valp.c�2;1.�// � �ŒFF W Fp�C
1

2
C

1

p � 1
:
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We next turn to the case when a.�/ > 2 with 1 � ` < a.�/=2, and � 2 X` with
t D �a.��/ as above. By (3.1.1), we have a.�/ D a.�˙1�/, so that, by (3.6.3), also
a.�.�˙1 ı NormE=F // D a.�/. In addition, a.�/ > 1: indeed, otherwise, by (3.6.1), we
would have a.�/ D 1 and, since, by (3.6.3),

ŒFE W FF �a.�/C dE=F D a.�/ > 2;

the quadratic extensionE=F would be ramified (so that FE Š FF ), we would have p D 2
because dE=F � 1 for odd p (see [Ser79, Chapter III, Section 6, Proposition 13]), and the
simultaneous FE Š F2 and a.�/ D 1 would give a contradiction. Thus, (3.16.2) together
with Corollary 2.7 and (3.6.2) gives

valp.c�a.�/;`.�//

´
�

1
p�1

if ` D 1;

D ŒFF W Fp�.1 � `=2/ if ` > 1:

These bounds suffice in all cases with a.�/ > 2 and ` < a.�/=2 except when p D 2 with
a.�/ > 6 and ` D 3, when instead we seek to show that val2.W�; .g�a.�/;`;v// � 0 and
bounding each valp.ct;`.�// does not suffice. Instead, in the notation of Section 2.8, in
this case (3.16.1) and (3.16.2) give

W�; .g�a.�/;3;v/

D
1

21=2

�
".1
2
; ˇ3/".

1
2
; ˇ3�/ˇ3.v/C ".

1
2
; ˇ2ˇ3/".

1
2
; ˇ2ˇ3�/.ˇ2ˇ3/.v/

�
: (3.16.3)

Since ˇ22 D ˇ
2
3 D 1, Lemma 2.9 and (3.1.2) then give the sufficient

W�; .g�a.�/;3;v/ 2

²
˙
1C i

21=2
;˙
1 � i

21=2

³
:

We turn to the remaining case when a.�/ > 2 with ` D a.�/=2, and � 2 X` with
t D�a.��/ as above. If a.��1�/ > 2 (for instance, if p is odd, see Remark 3.8), then, as
above, (3.6.3) gives a.�.��1 ı NormE=F // > 1, so that, by (3.6.2), (3.16.2), and Corol-
lary 2.7 (ii),

valp.ct;a.�/=2.�// D ŒFF W Fp�.1 � a.�/=4/: (3.16.4)

If, in contrast, a.��1�/ D 2, then p D 2, Lemma 3.7 and Section 2.8 give �2 D 1 and so
also !��1� D 1, and (3.16.4) follows from (3.1.2), (3.16.2), and Corollary 2.7 (ii).

The equality (3.16.4) suffices for the desired bounds unless p D 2 and a.�/ 2 ¹6; 8º,
when we seek to show the additional bound val2.W�; .g�a.�/C1;a.�/=2;v// � 0. In this
final case, by Lemma 3.7 and (3.1.1), the minimal conductor twist �0 of � ' �0�0 sat-
isfies a.�0/ � a.�/ � 1 and a.�0/ D a.�/=2. Moreover, we may assume that we have
a.�0/ D a.�/ � 1 because otherwise W�; .g�a.�/C1;a.�/=2;v/ D 0 by Proposition 3.13.
Then E=Q2 is ramified by [Tun78, Proposition 3.5] and, for any � 2 Xa.�/=2, we have
a.��0/ � a.�0/ � 1 D a.�/=2 � 1 < a.�0/=2, so also

a.��/ D a..��0/�0/ D a.�0/ D a.�/ � 1

(see (3.1.1)). Consequently, by (3.16.1) and (3.16.2),

W�; .g�a.�/C1;a.�/=2;v/ D 21�a.�/=4
X

�2XQ2;a.�/=2

".1
2
; �/".1

2
; ��1�/�.v/: (3.16.5)
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If a.�/ D 6, then, just as after (3.16.3), Lemma 2.9 gives the sufficient inclusion
W�; .g�5;3;v/ 2 ¹˙

1Ci

21=2
;˙ 1�i

21=2
º. If a.�/ D 8, then, letting ˇ4 2 XQ2;4 be nonquadratic

with ˇ4.�1/ D �1, we have

XQ2;4 D ¹ˇ4; ˇ2ˇ4; ˇ
�1
4 ; ˇ2ˇ

�1
4 º with ˇ2 2 XQ2;2; ˇ2.�1/ D �1

as in Section 2.8. In this notation, (3.1.2) gives ".1
2
; ˇ�14 �/".1

2
; ˇ4�/ D 1 and

".1
2
; ˇ2ˇ

�1
4 �/".1

2
; ˇ2ˇ4�/ D 1, so, with

x WD ".1
2
; ˇ4/".

1
2
; ˇ�14 �/ˇ4.v/ and x0 WD ".1

2
; ˇ2ˇ4/".

1
2
; ˇ2ˇ

�1
4 �/.ˇ2ˇ4/.v/;

by (2.1.4) and (3.16.5), we have

W�; .g�7;4;v/ D
1
2
.x � x�1 C x0 C x0�1/: (3.16.6)

The characters ˇ�14 and ˇ2ˇ�14 agree on 1C 4Z2, so they satisfy Lemma 2.4 (i) with the
same u 2 Z�2 . Thus, Lemma 2.5 (i) gives G .

1
16
; ˇ�14 / D ˙G .

1
16
; ˇ2ˇ

�1
4 /, so that, by

(2.1.1), also
".1
2
; ˇ4/ D ˙".

1
2
; ˇ2ˇ4/; (3.16.7)

where, by Corollary 2.7 (ii), both sides are roots of unity. By Section 3.6, the represen-
tations ˇ�14 � and ˇ2ˇ�14 � of conductor exponent 7 (see before (3.16.5)) are dihedral
supercuspidal associated to �.ˇ�14 ı NormE=Q2/ and �.ˇ2ˇ�14 ı NormE=Q2/, respec-
tively. Thus, since E=Q2 is ramified quadratic, and hence dE=Q2 2 ¹2; 3º, we deduce
from (3.6.3) that

a.�.ˇ�14 ı NormE=Q2// D a.�.ˇ2ˇ
�1
4 ı NormE=Q2// 2 ¹4; 5º:

Since these two characters agree on 1C$2
EOE D 1C 2OE , we conclude as in (3.16.7),

but now also using (3.6.2) (with (2.1.2)) and the odd conductor exponent cases of Lem-
mas 2.4 and 2.5, that

".1
2
; ˇ�14 �/ D ˙".1

2
; ˇ2ˇ

�1
4 �/; where both sides are roots of unity.

Thus, x and x0 are roots of unity, x D ˙x0, and (3.16.6) gives

W�; .g�7;4;v/ 2 ¹x;�x
�1
º; so also val2.W�; .g�7;4;v// � 0:

The case when � is of Type 3. Such a � is �St for a ramified character � with �2 D 1,
and a.�/ D 2a.�/. We twist by the unramified quadratic character if needed to assume
that �.$F /D 1: by (3.1.1) and (3.2.1), this changes neither a.�/ nor valp.W�; .gt;`;v//.
By [Ass19, Lemma 2.1] and (1.4.1), for 1 � ` � a.�/=2 and � 2 X�`,

ct;`.�/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
".1
2
; ��1�/2G .$

�`
F ; ��1/ if � ¤ �; t D �2a.��/;

1
qF

G .$
�`
F ; ��1/ if � D �; t D �2;

�
q2
F
�1

q
3Ct
F

G .$
�`
F ; ��1/ if � D �; t � �1;

0 otherwise:
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By then using formula (2.1.1) for G .$
�`
F ; ��1/ together with (2.1.4), we obtain

ct;`.�/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1
qF�1

q
1�`=2
F ".1

2
; ��1�/2".1

2
; �/ if � … ¹1; �º; t D �2a.��/; ` D a.�/;

�
1

qF�1
�.�1/ if � D 1; t D �2a.�/; ` D 1;

1
qF�1

q
�`=2
F ".1

2
; �/ if � D �; t D �2; ` D a.�/;

�.qF C 1/q
�.tC2C`=2/
F ".1

2
; �/ if � D �; t � �1; ` D a.�/;

0 otherwise:
(3.16.8)

We begin with the case of p odd, when necessarily a.�/ D 1, so that a.�/ D 2, and
` D 1. Since �2 D 1, from (2.2.2) and (2.2.3) we obtain p�1

2
j s.��1�/C s.�/, so, for

� … ¹1; �º, also

2s.��1�/C s.�/ �
p � 1

2
C 1:

Since �2 D 1, Corollary 2.7 and (3.16.8) then give the sufficient

valp.ct;`.�// �

8̂̂̂̂
<̂
ˆ̂̂:
�ŒFF W Fp�C

1
2
C

1
p�1

if � … ¹1; �º; t D �2;
0 if � D 1; t D �2;
�ŒFF W Fp�.t C

5
2
/ if � D �; t � �2;

1 otherwise.

(3.16.9)

For the remaining F D Q2, in the notation of Section 2.8, we have � 2 ¹ˇ2; ˇ3; ˇ2ˇ3º,
so a.�/ D 4 if � D ˇ2, and a.�/ D 6 if � 2 ¹ˇ3; ˇ2ˇ3º. It then suffices to use (3.16.1),
the values (3.16.8), and Lemma 2.9 to compute the only possible nonzero W�; .gt;`;v/
for 1 � ` � a.�/:

W�; .gt;1;v/ D ��.�1/ 2 ¹˙1º if t D �a.�/;

W�; .gt;2;v/ D

8̂̂<̂
:̂
1
2
".1
2
; ˇ2/ˇ2.v/ 2 ¹˙

i
2
º if � D ˇ2; t D �2;

�
3

2tC3
".1
2
; ˇ2/ˇ2.v/ 2 ¹˙

3i
2tC3
º if � D ˇ2; t � �1;

".1
2
; ˇ2�/

2".1
2
; ˇ2/ˇ2.v/ 2 ¹˙iº if � 2 ¹ˇ3; ˇ2ˇ3º; t D �6;

W�; .gt;3;v/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1

21=2
".1
2
; ˇ2/

2".1
2
; ˇ2�/.ˇ2�/.v/ 2 ¹˙

1

21=2
;˙ i

21=2
º

if � 2 ¹ˇ3; ˇ2ˇ3º; t D �4;
1

23=2
".1
2
; �/�.v/ 2 ¹˙ 1

23=2
;˙ i

23=2
º if � 2 ¹ˇ3; ˇ2ˇ3º; t D �2;

�
3

2tC7=2
".1
2
; �/�.v/ 2 ¹˙ 3

2tC7=2
;˙ 3i

2tC7=2
º

if � 2 ¹ˇ3; ˇ2ˇ3º; t � �1:

The case when � is of Type 4. Such a � is �j�j�F � �j�j
��
F for � ¤ ˙1

2
and a ramified

� 2 X with �2 D 1, and a.�/D 2a.�/. By [Ass19, Lemma 2.2] and (1.4.1), for 1 � ` �
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a.�/=2 and � 2 X�`, we have

ct;`.�/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

".1
2
; ��1�j�j��F /".1

2
; ��1�j�j�F /G .$

�`
F ; ��1/ if �¤�; t D�2a.��/;

1
qF

G .$
�`
F ; �/ if �D�; t D�2;

�
qF�1

q
3=2
F

G .$
�`
F ; �/.q��F C q

�
F / if �D�; t D�1;

�
qF�1

q
2Ct=2
F

G .$
�`
F ; �/

�
1

q
�.tC2/
F

C q
�.tC2/
F �

Pt
mD0

qF�1

q
�.2m�t/
F

�
if �D�; t � 0;

0 otherwise.

By then using formula (2.1.1) for G .$
�`
F ; ��1/ and formulas (2.1.3)–(2.1.4), we obtain

ct;`.�/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

1
qF�1

q
1�`=2
F ".1

2
; ��1�/2".1

2
; �/ if � … ¹1; �º; t D �2a.��/; ` D a.�/;

�
1

qF�1
�.�1/ if � D 1; t D �2a.�/; ` D 1;

1
qF�1

q
�`=2
F ".1

2
; �/ if � D �; t D �2; ` D a.�/;

�q
�.`C1/=2
F ".1

2
; �/.q��F C q

�
F / if � D �; t D �1; ` D a.�/;

�".
1
2
;�/

q
.tC`C2/=2
F

�
1

q
�.tC2/
F

C q
�.tC2/
F �

Pt
mD0

qF�1

q
�.2m�t/
F

�
if � D �; t � 0; ` D a.�/;

0 otherwise.

If p ¤ 2, then a.�/ D 1, so a.�/ D 2 and ` D 1, and, similarly to (3.16.9), we get the
sufficient

valp.ct;`.�// �

8̂̂̂̂
<̂
ˆ̂̂:
�ŒFF W Fp�C

1
2
C

1
p�1

if � … ¹1; �º; t D �2;
0 if � D 1; t D �2;
�
tC3
2
ŒFF W Fp� � .t C 2/jvalp.q�F /j if � D �; t � �2;

1 otherwise.

In the remaining case F DQ2, similarly to Type 3, in the notation of Section 2.8, we have
� 2 ¹ˇ2; ˇ3; ˇ2ˇ3º, and we combine the above formulas for the ct;`.�/ with (3.16.1)
and Lemma 2.9 to find the following sufficient formulas for the only possible nonzero
W�; .gt;`;v/ in the range in question:

W�; .gt;1;v/ 2 ¹˙1º if t D �a.�/;

W�; .gt;2;v/ 2

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

¹˙
i
2
º if � D ˇ2; t D �2;

¹˙
i

23=2
.2�� C 2� /º if � D ˇ2; t D �1;®

˙
i

22Ct=2

�
1

2�.tC2/
C 2�.tC2/ �

Pt
mD0

1

2�.2m�t/

�¯
if � D ˇ2; t � 0;

¹˙iº if � 2 ¹ˇ3; ˇ2ˇ3º; t D �6;
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W�; .gt;3;v/ 2

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

¹˙
1

21=2
;˙ i

21=2
º if � 2 ¹ˇ3; ˇ2ˇ3º; t D �4;

¹˙
1

23=2
;˙ i

23=2
º if � 2 ¹ˇ3; ˇ2ˇ3º; t D �2;

¹˙
1
4
. 1
2�
C 2� /;˙ i

4
. 1
2�
C 2� /º if � 2 ¹ˇ3; ˇ2ˇ3º; t D �1;

1

2.tC5/=2

�
1

2�.tC2/
C 2�.tC2/ �

Pt
mD0

1

2�.2m�t/

�
� ¹˙1;˙iº

if � 2 ¹ˇ3; ˇ2ˇ3º; t � 0:

The case when � is of Type 5. Such a � is �j�j�F � �
�1j�j��F for a ramified � 2 X with

�2 ¤ 1, and a.�/ D 2a.�/. By applying [Ass19, Lemma 2.2],14 (1.4.1), and (2.1.3), for
1 � ` � a.�/=2 and � 2 X�`, we have

ct;`.�/ D8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

".
1
2
;��1��1/�.

1
2
;��1�/

q
�.a.���1/�a.��//
F

G .$
�`; ��1/ if �¤¹�˙1º; tD�a.��/ � a.���1/;

�q
� 12˙�.a.�

2/�1/

F ".1
2
; ��2/G .$

�`; ��1/ if �D�˙1; tD�a.�2/ � 1;
.qF�1/

2

q
2C t

2
��.tC2a.�2//

F

G .$
�a.�2/; �˙2/G .$

�`; ��1/

if �D�˙1; t��a.�2/;

0 otherwise.

By then using formula (2.1.1) for the appearing Gauss sums as well as (2.1.4), we obtain

ct;`.�/ D8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

�
�.�1/
qF�1

if � D 1; t D �2a.�/; ` D 1;

". 12 ;�
�1��1/".

1
2
;��1�/".

1
2
;�/

.qF�1/q
`=2�1C�.a.���1/�a.��//
F

if � … ¹1; �˙1º; t D �a.��/ � a.���1/; ` D a.�/;

�
".
1
2
;��2/".

1
2
;�˙1/

.qF�1/q
.`�1/=2˙�.1�a.�2//
F

if � D �˙1; t D �a.�2/ � 1; ` D a.�/;

".
1
2
;��2/".

1
2
;�˙1/

q
.tC`Ca.�2//=2��.tC2a.�2//
F

if � D �˙1; t � �a.�2/; ` D a.�/;

0 otherwise.

We begin with a.�/ D 2, when ` D 1 and a.�/ D 1, so p is odd and, since �2 ¤ 1, also
a.�2/ D 1. By (2.2.3), both s.��1��1/C s.��1�/C 2s.�/ and s.��2/C 2s.�˙1/ are
divisible by p � 1, so

s.��1��1/C s.��1�/C s.�/ �
p � 1

2
C 1 and s.��2/C s.�˙1/ �

p � 1

2
C 1:

14We corrected a slight mistake in [Ass19, Lemma 2.2] (see also [Ass19e]): when �1jO� ¤
�2jO� , in the case “if a.��j / ¤ a.��i / D 0 for ¹j; iº D ¹1; 2º and t � �a.��j /” of the formula
for ct;l .�/ one should instead have

“�F .1/�2q�
t
2 �i .$

tCa.��j //�j .$
�a.��j //G.$�a.��j /; ��j /G.$

�l ; ��1/.”
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These inequalities, the formulas for the ct;`.�/, and Corollary 2.7 (i) imply the sufficient
bound

valp.ct;1.�// � �
4C t

2
ŒFF W Fp�C

1

2
C

1

p � 1
� .t C 2/jvalp.q�F /j for � 2 X�1:

In the case a.�/ > 2, that is, a.�/ > 1, we begin with 1 � ` < a.�/ D a.�/=2, so that
t D �a.�/ by (1). In this case, the formulas above for the ct;`.�/ and Corollary 2.7 give

valp.c�a.�/;`.�// D

´
s.��1/
p�1

if ` D 1;

ŒFF W Fp�.1 � `=2/ if 1 < ` < a.�/=2;

which reduces the problem further to the last setting of (3.15.1), in which, in addition,
F D Q2 and ` D 3. In the notation of Section 2.8, the formulas above for the ct;`.�/ and
(3.16.1) then give

W�; .g�a.�/;3;v/ D
1

21=2

X
ˇ2¹ˇ3;ˇ2ˇ3º

�
".1
2
; ˇ/".1

2
; ˇ�/".1

2
; ˇ��1/ˇ.v/

�
:

Since ".1
2
;ˇ�/".1

2
;ˇ��1/D .ˇ�/.�1/ 2 ¹˙1º by (2.1.4), Lemma 2.9 gives the sufficient

W�; .g�a.�/;3;v/ 2

²
˙
1C i

21=2
;˙
1 � i

21=2

³
:

The remaining case is a.�/ > 2, that is, a.�/ > 1, with ` D a.�/=2 D a.�/, in which
the above formulas for the ct;`.�/ allow us to restrict to � with a.�/ D a.�/. For odd p,
since a.�/ > 1, we have a.�2/ D a.�/, so if also a.��˙1/ < a.�/, then

a.���1/ D a.��˙1 � ��2/ D a.�/:

Thus, for odd p, the above formulas for the ct;`.�/ combine with Corollary 2.7 to give
the sufficient bounds

valp.ct;a.�/.�// �8̂̂̂̂
<̂
ˆ̂̂:
�ŒFF W Fp�.

a.�/
2
�1/�j.a.���1/�a.��//valp.q�F /j

if a.��/; a.���1/ > 1; t D �a.��/�a.���1/;
ŒFF WFp �.1�a.�//

2
C
s.��˙1/
p�1

�j.a.�/�1/valp.q�F /j if a.��˙1/ D 1; t D �a.�/�1;

�ŒFF W Fp�.
t
2
Ca.�//�j.tC2a.�//valp.q�F /j if � D �˙1; t � �a.�/�1:

We are left with F D Q2, when �2 ¤ 1 gives a.�/ � 4 (see Section 2.8), so a.�/ � 8
and a.�2/ D a.�/ � 1. If � … ¹�˙1º, then, since a.�/ D a.�/, exactly one of a.��/
and a.���1/ equals a.�/ � 1, and the other one lies in Œ2; a.�/ � 2� (compare with
[CS18, Lemma 2.2]). Thus, for such � we have

�a.��/ � a.���1/ � �a.�/ � 1



K. Česnavičius, M. Neururer, A. Saha 608

and, furthermore,

ja.���1/ � a.��/j D 2a.�/ � 2 � a.��/ � a.���1/:

Thus, the formulas above for the ct;`.�/ and Corollary 2.7 give the sufficient final bounds

val2.ct;a.�/.�//

�

8̂̂<̂
:̂
1 � a.�/

2
� .t C 2a.�/ � 2/jval2.2� /j if � ¤ �˙1; t D �a.��/ � a.���1/;

1�a.�/
2
� .a.�/ � 2/jval2.2� /j if � D �˙1; t D �a.�/;

1�t
2
� a.�/ � .t C 2a.�/ � 2/jval2.2� /j if � D �˙1; t � �a.�/C 1:

4. p-adic valuations of Fourier coefficients at cusps

We turn to global consequences of the local analysis of the preceding section, more
precisely, to Theorem 4.6 that p-adically bounds the Fourier expansions at cusps of holo-
morphic newforms on �0.N /. For this, we begin by reviewing notions that concern cusps
and Fourier expansions.

4.1. Cusps

The group SL2.R/ acts by Möbius transformations on the extended upper half-plane

H� WD H [ P1.Q/ with H WD ¹z 2 C j Im.z/ > 0º

and, for an N � 1, the set of cusps of �0.N / is the orbit space

cusps.�0.N // WD .�0.N / \ SL2.Z//nP1.Q/:

Since SL2.Z/ acts transitively on P1.Q/ and the stabilizer of1 2 P1.Q/ is
®
˙
�
1 �
1

�¯
,

we have
cusps.�0.N // Š .�0.N / \ SL2.Z//nSL2.Z/=

®
˙
�
1 �
1

�¯
;

and the latter is the global analogue of the local double coset set ZU nGL2.F /=K1.n/ of
Section 3.3. Via the complex uniformization of X0.N /, that is, via the identification of
Riemann surfaces

X0.N /.C/ Š .�0.N / \ SL2.Z//nH� (4.1.1)

(see [Roh97, Section 1.10, Proposition 7]), the cusps are the complement of the elliptic
curve locus of X0.N /C .

Concretely, each cusp c of �0.N / is represented by an m=L 2 Q � P1.Q/ with
gcd.m; N / D 1 and a uniquely determined denominator L j N of c (compare with
[DS05, Proposition 3.8.3]). For c D

�
a b
c d

�
1, we have L D gcd.c; N /. The cusp 1

is the unique one of denominator N and there are �.gcd.L; N=L// cusps of denom-
inator L (see loc. cit.). The width of a cusp c is the smallest w.c/ 2 Z>0 such that

�
1 w.c/
0 1

�
�1 2 �0.N / for any fixed  2 SL2.Z/ with c D 1, explicitly,

w.c/ D N=gcd.L2; N /:



The Manin constant and the modular degree 609

4.2. Fourier expansions

For a function f W H ! C, a k 2 Z>0, and a  D
�
a b
c d

�
2 GLC2 .R/, the function

f jk WH! C is defined by

.f jk/.z/ WD det./k=2
1

.cz C d/k
f

�
az C b

cz C d

�
:

If the ideal
®
h 2Z j f D f jk

�
1 h
1

�¯
�Z is nonzero, generated by a uniquew 2Z>0, then

f descends along the map H� C� given by z 7! e2�iz=w to a function f0WC� ! C.
If then f0 extends to a holomorphic function at 0, then f is holomorphic at 1 and we
obtain its Fourier expansion at1:

f .z/ D
X
n�0

af .n/e
2�inz=w : (4.2.1)

We say that such an f is cuspidal at1 if af .0/ D 0.
For a subgroup �1.N / � � � GL2.yZ/ and a k 2 Z>0, a modular form (resp., a cusp-

form) of weight k on � is a holomorphic function f WH! C such that both f jk D f
for  2 � \ SL2.Z/ and f jk 0 is holomorphic (resp., cuspidal) at1 for  0 2 SL2.Z/.
A cuspform f on � is normalized if af .1/ D 1. For instance, for � D �0.N /, choosing
 D

�
�1
�1

�
gives f .z/ D .�1/kf .z/, so k is even or f D 0.

For every modular form f of weight k on �0.N / and every cusp c D 1 such that
 2 SL2.Z/, we have .f jk/jk. 1 w.c/1 / D f jk , so (4.2.1) gives the Fourier expansion
of f at c:

.f jk/.z/ D
X
n�0

af .nI /e
2�inz=w.c/;

which depends not only on c but also on —explicitly, for any  0 2 SL2.Z/with cD  01,

af .nI / D e
2�int=w.c/af .nI 

0/ for some t 2 Z that depends on  0�1:

In particular, for any isomorphism Qp ' C and its p-adic valuation valpWC!Q[ ¹1º,

valp.f jc/ WD inf
n�0

valp.af .nI // depends only on f and c, and not on  . (4.2.2)

4.3. The representation �f

For a normalized newform f on �1.N / (see [Li75, p. 294]),15 the Fourier coefficients
af .n/ are algebraic integers that generate a number field Kf (see [DI95, Corollary
12.4.5]). In particular, for a normalized newform f on �0.N / and every prime p, we have
valp.f j1/ D 0. For such an f , the Fourier coefficients af .nI / at any cusp c D 1 of
denominator L lie in Kf .�N=L/ (see [BN19, Theorem 7.6], which even exhibits the pos-
sibly smaller number field generated by the af .nI /), and to study them p-adically we
will use the adelic viewpoint.

15Here and throughout the paper, a “newform” is implicitly assumed to be a (holomorphic) cusp-
form.
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Namely, for a newform f on �1.N /, we let �f be the cuspidal, irreducible, admis-
sible, automorphic GL2.AQ/-representation spanned by the GL2.AQ/-translates of the
adelic newform associated to f (see [Gel75, Theorem 5.19]). In the resulting factoriza-
tion (compare with [Fla79, Theorem 3])

�f Š �f;1 ˝
O0

p<1

�f;p

each �f;p is an irreducible, admissible, infinite-dimensional representation of GL2.Qp/ of
conductor exponent valp.N /. If f is on �0.N /, then !�f;p D 1, and if also valp.N / � 2,
then �f;p is of Type 1, 3, 4, or 5 in the classification of Section 3.6. In the last two cases,
we have the following refinement.

Lemma 4.4. For a prime p and a newform f of weight k on �0.N / with valp.N / � 2,
if the GL2.Qp/-representation �f;p is of Type 4 or 5, that is, if

�f;p ' �j�j
�
Qp
� ��1j�j��Qp

for a ramified � 2 XQp such that � ¤ ˙1
2

when �2 D 1;

then � 2 iR and p˙�C
k�1
2 2 Z, so that jvalp.p� /j � k�1

2
.

Proof. By the Ramanujan–Petersson conjecture at all finite places (see, e.g., [Bla06, The-
orem 1 and Remark on p. 46]), the characters �j�j�Qp and ��1j�j��Qp

are unitary, so � 2 iR.

By complex conjugation, it then remains to show that p��C
k�1
2 2 Z. For this, we first

globalize � to a finite order character z�WA�Q=Q
� ! C� (compare with [AT09, Chap-

ter X, Section 2, Theorem 5]), set z� WD z��f , and let zf be the normalized newform of
weight k on �1. zN/ for which � zf ' z� (see [Gel75, Theorem 5.19]), so that a zf .p/ 2 Z
(see Section 4.3).

If �f;p is of Type 4, then

� zf ;p ' j�j
�
Qp
� j�j

��
Qp

with � ¤ ˙1
2
;

so [CS18, equation before (30)] gives

a zf .p/ D p
k=2W� zf ;p ; p .

�
p
1

�
/

[PSS14, (121)]
D p

k�1
2 .p� C p�� /;

where pWQp!C� is an additive character with c. p/D 0 andW� zf ;p ; p is the normal-
ized Whittaker newform of � zf ;p (see Section 3.2). Checking prime by prime, we obtain

the sought p��C
k�1
2 2 Z.

If �f;p is of Type 5, then

� zf ;p ' �
2
j�j
�
Qp
� j�j

��
Qp

with �2 ¤ 1;

so [CS18, equation (30)] gives

a zf .p/ D p
k=2W� zf ;p ; p

��
p
1

�� Y
qj zN;q¤p

W� zf ;q ; q
��
p
1

��
with  q and W� zf ;q ; q as before. Since

�
p
1

�
D
�
p 0
0 p

� � 1
p�1

�
, the factors for q ¤ p

are all roots of unity (see Section 3.2), so [PSS14, equation (121)] now directly implies
the sought p��C

k�1
2 2 Z.
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The following key lemma uses the adelic point of view to link the global p-adic val-
uation valp.f jc/ to the local p-adic valuations valp.W�f;p ; p .gt;`;v// that were bounded
in Theorems 3.14 and 3.15.

Lemma 4.5. For a prime p, a normalized newform f of weight k on �0.N /, and a cusp c

in X0.N /.C/ of denominator L,

if p − N; then valp.f jc/ � 0: (4.5.1)

If, in contrast, p jN , then, setting � WD �f;p for brevity (see Section 4.3), for any additive
character  WQp ! C� with c. / D 0, with the notation of Sections 3.2–3.3, we have

valp.f jc/ � �
k

2
valp

�
N

gcd.L2; N /

�
C min
�2Z�0; v2Z�p

�
k�

2
C valp.W�; .g��max.valp.N/;2valp.L//;valp.L/;v//

�
:

Proof. We included (4.5.1) because it follows from the argument below, though [DI95,
Remark 12.3.5] gives it, too. We fix additive characters  q WQq ! C� with c. q/ D 0
for each prime q jN such that  p D  in the case p jN , we fix a  D

�
m b
L d

�
2 SL2.Z/

with c D 1, and we consider a variable Fourier coefficient af .r I /. By [CS18, Propo-
sition 3.3], there are vq 2 Z�q (that depend on r) such that

af .r I / D af .r0/e
2�ird
w.c/L

�

Y
qjN

q
k
2 .valq.r/�valq.N= gcd.L2;N///W�f;q ; q .gvalq.r/�max.valq.N/;2valq.L//;valq.L/;vq /;

where r0 WD
Q
q−N q

valq.r/. Since af .r0/ 2 Z (see Section 4.3) andW�f;q ; q takes values
in ZŒ 1

q
� (see Proposition 3.12 with Lemma 4.4), it remains to take p-adic valuations and

let r vary.

We are ready to bound the p-adic valuations of Fourier expansions of newforms at
cusps.

Theorem 4.6. For a prime p, a cuspform f that is a Z-linear combination of normal-
ized newforms of weight k on �0.N /, a cusp c 2 X0.N /.C/ of denominator L, and an
isomorphism C ' Qp ,

valp.f jc/ � �
k

2
valp

�
N

gcd.L2; N /

�

C

8̂̂̂̂
<̂
ˆ̂̂:
0 if valp.gcd.L;N=L// D 0;

0 if valp.gcd.L;N=L// D 1; valp.N / > 2;

�
1
2

if valp.L/ D 1
2

valp.N / D 1;

1 � 1
2

valp.gcd.L;N=L// otherwise,
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as well as the following stronger bounds in the case p D 2:

val2.f jc/ � �
k

2
val2

�
N

gcd.L2; N /

�

C

8̂̂̂̂
<̂
ˆ̂̂:
0 if val2.L/ D 1

2
val2.N / D 1;

k
2

if val2.L/ D 1
2

val2.N / 2 ¹2; 3; 4º;
k
2
C 1 � 1

4
val2.N / if val2.L/ D 1

2
val2.N / > 4;

0 if val2.gcd.L;N=L// D 3; val2.N / > 6:

Proof. We lose no generality by assuming that f is a normalized newform of weight k on
�0.N /, so we set � WD �f;p (see Section 4.3) and fix an additive character  WQp ! C�

with c. / D 0.
The case valp.N /D 0 follows from (4.5.1). If valp.N /D 1, we have valp.L/ 2 ¹0; 1º

and a.�/ D 1, and Lemma 4.5 reduces the problem to showing that

k�=2C valp.W�; .g��max.1;2valp.L//;valp.L/;v// � 0

for every � 2 Z�0 and v 2 Z�p , which follows from the first case of Proposition 3.4.
In the remaining case valp.N / � 2, by Section 4.3, the representation � is of Type

1, 3, 4, or 5 with a.�/ D valp.N /, and Lemma 4.5 reduces the task to showing that for
� 2 Z�0 and v 2 Z�p the quantity

k�=2C valp.W�; .g��max.valp.N/;2valp.L//;valp.L/;v// (4.6.1)

is at least the summand split into different cases in the desired inequalities. If, in addition,
valp.L/¤ valp.N /=2, then this is immediate from Theorems 3.14 and 3.15, so we assume
from now on that

valp.L/ D valp.N /=2:

For � of Type 3, if p is odd, then Theorem 3.14 (ii) shows that valp.N / D 2 and
gives the conclusion (after plugging in the bounds from Theorem 3.14 (ii), the expression
(4.6.1) becomes linear in � , so its extrema are at the endpoints of the range for � ), and if
p D 2, then Theorem 3.15 (ii) (with Section 2.8) shows that val2.N / 2 ¹4; 6º and gives
the conclusion. For � ' �j�j�Qp ˚ �

�1j�j��Qp
of Type 4 or 5, Lemma 4.4 shows that

jvalp.p� /j �
k � 1

2
;

so Theorems 3.14 and 3.15 likewise give the conclusion.
In the remaining case when � is of Type 1, for p odd, by Proposition 3.13, we may

restrict to � D 0, and then conclude by Theorem 3.14. In contrast, for p D 2, we combine
Lemma 3.7 and Proposition 3.13 to reduce either to a.�/D 2 with � D 0 or to � > 0, and
then use Theorem 3.15.

We explicate the weight 2 case of Theorem 4.6 because it is the most relevant one for
our goals.
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Corollary 4.7. For a prime p, a Z-linear combination f of normalized newforms of
weight 2 on �0.N /, a cusp c2X0.N /.C/ of denominatorL, and an isomorphism C'Qp ,

valp.f jc/ � �valp.N=L/

C

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

0 if valp.L/ 2 ¹0; valp.N /º;

max.1
2
; 1
p�1

/ if valp.L/ D 1; valp.N / D 2;

1 if valp.L/ 2 ¹1; valp.N / � 1º; valp.N / > 2;

1C 1
2

val2.N / if p D 2; val2.L/ D 1
2

val2.N / 2 ¹2; 3; 4º;

2C 1
4

val2.N / if p D 2; val2.L/ D 1
2

val2.N / > 4;

3 if p D 2; val2.L/ 2 ¹3; val2.N / � 3º; val2.N / > 6;

1C 1
2

valp.gcd.L;N=L// otherwise.

Example 4.8. In Tables 4.8.1 and 4.8.2, for newforms f associated to elliptic curves of
conductor N , we used the SageMath algorithm16 described in [DN18, Section 6] to com-

Newform f Level Label val2.f j1=2/ val2.f j1=4/ val2.f j1=8/ val2.f j1=16/

q�2q3�q5C2q7Cq9CO.q10/ 22�5 20a 0

q�q3�2q5Cq9CO.q10/ 23�3 24a �1

qCq3�2q5Cq9CO.q10/ 24�3 48a �2 1

q�2q5�3q9CO.q10/ 25 32a �3 �1

qC2q5�3q9CO.q10/ 26 64a �4 �2 1

q�2q3C2q5C4q7Cq9CO.q10/ 27 128b �5 �3 �1

qC4q5�3q9CO.q10/ 28 256c �6 �4 �2 1

Tab. 4.8.1. p-adic valuations of Fourier expansions for p D 2 and small levels

Newform f p Level Label valp.f j1=p/ valp.f j1=p2/

qCq2�q4�q5�3q8CO.q10/ 3 p2�5 45a �1=2

q�2q4�q7CO.q10/ 3 p3 27a �1

qCq2Cq4C3q5�4q7Cq8CO.q10/ 3 2�p4 162d �2 0

q�2q4C5q7CO.q10/ 3 p5 243b �3 �1

qCq2Cq3�q4Cq6�3q8Cq9CO.q10/ 5 3�p2 75b �1=2

q�q2C2q3Cq4�2q6�q8Cq9CO.q10/ 7 2�p2 98a �1=2

qC2q2�q3C2q4Cq5�2q6C2q7�2q9CO.q10/ 11 p2 121d �1=2

Tab. 4.8.2. p-adic valuations of Fourier expansions for 3 � p � 11 and small levels

16Available at https://github.com/michaelneururer/products-of-eisenstein-series. A faster and
more general pari/gp algorithm for algebraically computing Fourier expansions at cusps is based
on [Coh19], but we did not use it because it is heuristic: to convert the numerically approximated
Fourier coefficients to algebraic numbers, it uses a heuristic application of the LLL-algorithm. Our
denominator bounds could help make this algorithm rigorous.

https://github.com/michaelneururer/products-of-eisenstein-series
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pute the valuations valp.f j1=p`/ for 0 < ` � 1
2

valp.N / (the restriction to this range is
natural due to the Atkin–Lehner involutions). The resulting examples illustrate the sharp-
ness of Corollary 4.7.

5. The differential determined by a newform lies in the Z-lattice H 0.X0.N/; �/

Any cuspform f of weight 2 on �0.N / that has a rational Fourier expansion determines a
differential form !f onX0.N /Q. The goal of this section is to use the results of Section 4
to show in Theorem 5.15 that, in particular, if such an f is a normalized newform (which
then corresponds to an isogeny class of elliptic curves over Q), then !f is integral in the
sense that it lies in the Z-lattice

H 0.X0.N /;�/ � H
0.X0.N /Q; �

1/;

where � is the relative dualizing sheaf. For arguing this, it is convenient to work with the
regular stack X0.N / that has both a modular interpretation and line bundles of modu-
lar forms instead of the possibly singular scheme X0.N / whose scheme-theoretic points
lack a clear modular description. Thus, we begin by reviewing the definition of the “rel-
ative dualizing” sheaf in the stacky case. Some material of this section overlaps with the
appendix of the unpublished manuscript [Čes18].

5.1. “Relative dualizing sheaves” of Deligne–Mumford stacks

Let X ! S be a flat, locally finitely presented morphism of schemes with Cohen–
Macaulay fibers. By [SP, Lemma 02NM], the scheme X is a disjoint union of
clopen subschemes whose relative dimension over S is constant. Thus, the theory of
Grothendieck duality, specifically [Con00, bottom halves of pp. 157 and 214], supplies
relative dualizing OX -module �X=S that is quasi-coherent, locally finitely presented, S -
flat, and of formation compatible with base change in S . For instance, ifX!S is smooth,
then �X=S is simply the top exterior power of the vector bundle �1

X=S
. The formation of

�X=S is compatible with étale localization onX : for every étale S -morphism f WX 0! X

one has a canonical isomorphism

�f Wf
�.�X=S /

�
�! �X 0=S (5.1.1)

supplied by [Con00, Theorem 4.3.3 and bottom half of p. 214]. Moreover, if f 0WX 00!X 0

is a further étale S -morphism, then [Con00, equation (4.3.7) and bottom half of p. 214]
supply the following compatibility:

�f ıf 0 D �f 0 ı ..f
0/�.�f //W .f

0/�.f �.�X=S //
�
�! �X 00=S : (5.1.2)

Let now X ! S be a flat morphism, locally of finite presentation, of Deligne–Mumford
stacks with Cohen–Macaulay fibers. By working étale locally on S , the compatibili-

https://stacks.math.columbia.edu/tag/02NM
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ties (5.1.2) ensure17 that the OX -modules �X=S for étale morphisms X ! X from a
scheme X glue to a quasi-coherent, locally finitely presented, S -flat OX -module �X =S ,
the relative dualizing sheaf of X ! S , whose formation is compatible with base change
in S (see [Con00, Theorem 4.4.4 and bottom half of p. 214] for the base change aspect).
If X ! S is smooth, then �X =S is the top exterior power of �1X =S

.
The quasi-coherent OX -module �X =S has full support and is S -fiberwise Cohen–

Macaulay: indeed, this reduces to the case when S is the spectrum of a field and X is a
scheme, and in this case, by [Har66, Remark, p. 291], the stalks of �X =S are dualizing
modules for the corresponding stalks of OX and hence, by [SP, Lemma 0AWS], are
Cohen–Macaulay of full support. Similarly, by [SP, Lemma 0DW9], the module �X =S

is a line bundle if and only if the S -fibers of X are Gorenstein.
We draw attention to the case when X ! S is proper and X is not a scheme, in

which we do not claim any dualizing properties of the OX -module �X =S constructed
above.

5.2. The case of modular curves

For us, the key case is when S D Spec Z and X is either the modular stack X� or
its coarse space X� for an open subgroup � � GL2.yZ/ (see Section 1.4). The resulting
X ! S is flat, of finite presentation, with Cohen–Macaulay fibers (the latter by the nor-
mality of X and [EGA IV4, Corollaire 6.3.5 (i)]), so the discussion of Section 5.1 applies.
Normality of X and [EGA IV4, Corollaire 6.12.6 (i)] ensure that X reg is the comple-
ment of finitely many closed points of X , and hence contains XQ and is Z-fiberwise
dense in X . Since X reg is also Z-fiberwise Gorenstein (see [Liu02, Chapter 6, Exam-
ple 3.18]), the coherent, Z-flat, Cohen–Macaulay OX -module �X reg=Z of Section 5.1 is
a line bundle. In addition, �X =Z agrees with the line bundle �1U =Z over any Z-smooth
open U � X , for instance, over XZŒ1=N� � X for an N � 1 with �.N/ � � (see
[DR73, Chapitre IV, Théorème 6.7] and [Čes17, Proposition 6.4 (a)]).

The key advantages of �X =Z over the OX -module �1X =Z are its aforementioned
pleasant properties at the nonsmooth points. The following comparison relates�X�=Z to
the more concrete �X�=Z.

Proposition 5.3. For an open subgroup � � GL2.yZ/, anN � 1 with �.N/� � , and the
coarse space morphism X�

�
�! X� , we have an isomorphism of line bundles

�1.X� /ZŒ1=N�=ZŒ1=N�
�
�! .�ZŒ1=N�/�.�

1
.X� /ZŒ1=N�=ZŒ1=N�

/ (5.3.1)

and for any open U �X� such that U WD ��1.U /
�
�!U is étale over a Z-fiberwise dense

open of U ,

H 0.U;�/ � H 0.UQ; �
1/ is identified by (5.3.1) with H 0.U ; �/ � H 0.UQ; �

1/:

17See [LMB00, Lemme 12.2.1] for a discussion of analogous compatibilities and their relevance
for glueing.

https://stacks.math.columbia.edu/tag/0AWS
https://stacks.math.columbia.edu/tag/0DW9
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Proof. The second assertion implies the first: indeed, for every open U � .X�/ZŒ1=n�, the
map ��1.U /! U is étale over the complement of j D 0 and j D 1728 (see [Čes17, last
paragraph of the proof of Proposition 6.4]). For the same reason, away from j D 0 and
j D 1728 the pullback map

�1.X� /Q=Q ! .�Q/�.�
1
.X� /Q=Q

/ (5.3.2)

is an isomorphism: there it is the �1
.X� /Q=Q

-twist of the coarse space isomorphism
OX�

�
�! ��.OX�

/. To conclude that (5.3.2) is an isomorphism, we claim that so is its
base change to the completion yOsh

.X� /Q;x
of the strict Henselization of .X�/Q at any

x 2 X�.Q/. We have

yOsh
.X� /Q;x

' QJtK under which .�1.X� /Q=Q/ yOsh
.X�/Q;x

' QJtK � dt;

and also, using the identification X�.Q/ ŠX�.Q/ to view x in X�.Q/,

yOsh
.X� /Q;x

' QJ�K under which .�1.X� /Q=Q
/ yOsh
.X�/Q;x

' QJ�K � d�:

Taking into account the action of the automorphism group of x 2X�.Q/, we have, com-
patibly,

yOsh
.X� /Q;x

Š . yOsh
.X� /Q;x

/G ; ..�Q/�.�
1
.X� /Q=Q

// yOsh
.X�/Q;x

Š ..�1.X� /Q=Q
/ yOsh
.X�/Q;x

/G

for some finite group G acting faithfully on yOsh
.X� /Q;x

(see [DR73, Chapitre I, Section
(8.2.1)] or [Ols06, Theorem 2.12]). Since the ramification of �Q is tame, the faithfulness
of the action implies by Galois theory that G ' �#G.Q/ with, at the cost of changing the
uniformizer � above, t D �#G and � 2 �#G.Q/ acts by � 7! � � � (see [Ser79, Chapter IV,
Section 2, Proposition 8]). The desired QJtK � dt ��! .QJ�K � d�/G follows.

To conclude the sought identification H 0.U;�/ Š H 0.U ; �/, we let U 0 � U with
preimage U 0 � U be a Z-fiberwise dense open over which � is étale. The OX� -module
�X�=Z has depth 2 at the points in U n .U 0 [ UQ/ (see Section 5.2), and similarly for
�X�=Z, so, by [EGA IV4, Théorème 5.10.5], we have

H 0.U;�/ D H 0.U 0; �/ \H 0.UQ; �
1/ inside H 0.U 0Q; �

1/;

H 0.U ; �/ D H 0.U 0; �/ \H 0.UQ; �
1/ inside H 0.U 0Q; �

1/:

Therefore, the isomorphism (5.3.2) reduces the problem to the case when U D U 0. Simi-
larly, neitherH 0.U;�/ norH 0.U ;�/ changes if we remove finitely many closed points
from U , so we assume further that U and U are regular, so that�U=Z and�U =Z are line
bundles (see Section 5.2). Then .�jU /�.�U=Z/ Š �U =Z by the étaleness of U ! U

(see (5.1.1)), so that there is a pullback map

�U=Z ! .�jU /�.�U =Z/ that is the �U=Z-twist of OU
�
�! .�jU /�.OU /;

and so is an isomorphism. The sought identification follows by taking global sections.
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We conclude that the Z-lattice determined in the Q-spaceH 0.X0.N /Q;�
1/ of cusp-

forms by the relative dualizing sheaf � on the stack X0.N / agrees with its coarse space
counterpart:

Corollary 5.4. For anN � 1 and the map X0.N /
�
�!X0.N /, we have an OX0.N/-module

isomorphism �X0.N/=Z
�
�! ��.�X0.N/=Z/ that over Q is the pullback of Kähler differ-

entials. In particular,

H 0.X0.N /;�/ D H
0.X0.N /;�/ inside H 0.X0.N /Q; �

1/ Š H 0.X0.N /Q; �
1/:

(5.4.1)

Proof. The map � is étale (even a Z=2Z-gerbe) over a Z-fiberwise dense open ofX0.N /,
for instance, over the complement of j D 0 and j D 1728; see [Čes17, proof of Theo-
rem 6.7]. Thus, in the case � D �0.N /, Proposition 5.3 applies to every open U �X0.N /
and gives the claim.

Due to the abstract nature of �, the lattice H 0.X0.N /; �/ is a priori inexplicit.
To remedy this, in particular, to relate this lattice to the integrality properties of Fourier
expansions studied in Section 4, we will use an integral version of the Kodaira–Spencer
isomorphism presented in Proposition 5.6.

5.5. The line bundle !

The cotangent space at the identity section of the universal generalized elliptic curve
gives a line bundle ! on X .1/, which pulls back to a line bundle ! on X� for every
open subgroup � � GL2.yZ/. We write “cusps” for the reduced complement of the elliptic
curve locus of X� , so that “cusps” restricts to a Weil divisor on the regular locus X

reg
� ,

which contains .X�/Q and is Z-fiberwise dense in X� (see Section 5.2). By [Del71,
Section 2], for every k 2 Z>0 and every � � �1.N /, the space H 0..X�/C; !

˝k/ (resp.,
H 0..X�/C; !

˝k.�cusps//) is canonically identified with the C-vector space of modular
forms (resp., cuspforms) of weight k on � reviewed in Section 4.2, so H 0.X� ; !

˝k/

(resp., H 0.X� ; !
˝k.�cusps// if X� is regular) is a Z-lattice in this C-vector space.

Thanks to this algebraic description, one enlarges the scope of the definitions: in the
rest of this article, by a modular form (resp., cuspform) of weight k on � over a scheme S
we mean an element ofH 0..X�/S ;!

˝k/ (resp.,H 0..X�/S ;!
˝k.�cusps//; we will use

the latter only when X� is regular).

Proposition 5.6. For an open subgroup � � GL2.yZ/, letting y range over the generic
points of the Fp-fibers of X� for the set of primes p that divide every (equivalently, the
smallest) N � 1 with �.N/ � � , and letting dy denote the valuation of the different
ideal of the extension Osh

X� ;y
=Osh

X .1/;y
of discrete valuation rings (see Section 1.4 for the

notation), we have
�X

reg
�
=Z Š !

˝2

X
reg
�

�
�cuspsC

P
y dy¹yº

�
:
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Proof. It is indeed equivalent to consider the smallest N with �.N/ � �: if p jN but
p − M for some �.M/ � � , then, for N 0 WD N=pvalp.N/, every element of �.N 0/ is
congruent modulo pvalp.N/ to an element of �.M/, so �.N 0/ � �.MN 0/�.N / � � ,
contradicting the minimality of N .

For the main assertion, since both sides are line bundles (see Section 5.1) and X�

is normal, by [EGA IV4, Théorème 5.10.5], it suffices to exhibit the desired isomor-
phism over the slightly smaller open U �X

reg
� that is the preimage of the open of X .1/

obtained by removing the images of the singular points of X� . We will bootstrap the
claim from its case for X .1/ supplied by [Kat73, Section (A1.3.17)]:

�1X .1/=Z Š !
˝2
X .1/

.�cusps/: (5.6.1)

By working étale locally on X .1/ and using [Con00, Theorem 4.3.3, equation (4.3.7),
bottom of p. 206], we get

�U =Z Š �U =X .1/ ˝OU ���X .1/=Z; (5.6.2)

where � WU ! X .1/ is the forgetful map. Since � is finite locally free over �.U /,
by [Con00, bottom half of p. 31 and pp. 137–139, especially, compatibility (VAR6)
on p. 139], the OU -module �U =X .1/ reviewed in Section 5.1 is identified with
HomO�.U /

.��.OU /;O�.U //. Thus, since � is generically étale, the element

trace 2 HomO�.U /
.��.OU /;O�.U // Š �.U ; �U =X .1//;

via the correspondence [SP, Lemma 01X0] (with [SP, Lemma 0AG0]), gives rise to the
identification

�U =X .1/ Š OU

�P
x2jX� j

.1/ dx¹xº
�
; (5.6.3)

where the sum is over the height 1 points x of X� and dx is the order of vanishing of
“trace”’ at Osh

X� ;x
. By considering the fractional multiples of “trace”’ that still map Osh

X� ;x

into Osh
X .1/;x

, we see that dx is the valuation of the different ideal of Osh
X� ;x

=Osh
X .1/;x

(see [Ser79, Chapter III, Section 3]). Thus, dx D 0 whenever this extension is étale, so
each x that contributes to the sum either lies on the cusps of .X�/Q or is the generic
point of an irreducible component of an Fp-fiber of X� ! Spec Z such that p jN for
every �.N/ � � (see [DR73, Chapitre IV, Définition 3.2]). At the former, ramification
is tame and dx D ex � 1, where ex is the ramification index of Osh

X� ;x
=Osh

X .1/;x
(see

[Ser79, Chapter III, Section 6, Proposition 13]). Thus, since

��.!˝2X .1/
.�cusps// Š !˝2U

�
�
P
x2cusps ex¹xº

�
;

by (5.6.1)–(5.6.3) we obtain the desired

�U =Z Š !
˝2
U

�
�cuspsC

P
y dy¹yº

�
:

Variant 5.7. For an open subgroup � � GL2.yZ/ and the forgetful map � WX� ! X.1/,
letting y range over the height 1 points of X� and letting d 0y denote the valuation of the

https://stacks.math.columbia.edu/tag/01X0
https://stacks.math.columbia.edu/tag/0AG0
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different ideal of the extension OX� ;y=OX.1/;�.y/ of discrete valuation rings, we have

�X reg
�
=Z Š .�

��1
X.1/=Z/jX

reg
�

�P
y2X

.1/
�

d 0y¹yº
�
:

Proof. The proof is similar to (but simpler than) that of Proposition 5.6. Namely,
X.1/ Š P1Z is Z-smooth, so �X.1/=Z Š �1X.1/=Z, and, similarly to there, one may restrict
to the preimage U � X� of X.1/ n �.X� n X

reg
� / and then conclude by using the ana-

logues of (5.6.2) and (5.6.3).

For general � , it is tricky to directly compute the dy that appear in the integral
Kodaira–Spencer formula of Proposition 5.6 because the extension Osh

X� ;y
=Osh

X .1/;y

involves imperfect residue fields and may be wildly ramified. For �0.N /, we will com-
pute the dy in Proposition 5.12, and for this we first argue that only the level at p matters
and then describe X0.p

valp.N// along the cusps.

Lemma 5.8. For open subgroups �; � 0 � GL2.yZ/ with �.N/ � � and �.N 0/ � � 0, a
generic point y�\�0 of the Fp-fiber of X�\�0 with p − N 0, and its image y� in X� , in
Proposition 5.6 we have

dy�\�0 D dy� :

Proof. By [DR73, Chapitre IV, Construction 3.8, Proposition 3.9], the stack X�\�0

agrees with the normalization18 of X� �X .1/ X�0 . Thus, since the assumption p − N 0
ensures that the map X�0!X .1/ is étale at the image of y�\�0 (see [DR73, Chapitre IV,
Définition 3.2 onwards]), the map X�\�0 !X� is étale at y�\�0 . In particular, letting y
be a geometric point above y�\�0 , we have Osh

X�\�0 ;y
�
�! Osh

X� ;y
, so that dy�\�0 D dy� ,

as desired.

5.9. The components of X0.N /Fp

We recall from [KM85, Theorem 13.4.7] that the irreducible components of X0.N /Fp
correspond to pairs .a; b/ of integers a;b � 0with aC b D valp.N / in such a way that on
the .a; b/-component the p-primary part of the cyclic subgroup that is part of the modular
interpretation of X0.N / is generically an extension of an étale group of order pb by the
a-fold relative Frobenius kernel. The ramification index e.a;b/ of the strict Henselization
of X0.N / at the generic point of the .a; b/-component of X0.N /Fp was determined in
[KM85, Section (13.5.6)]:

e.a;b/ D �.p
min.a;b//: (5.9.1)

If p jN , then the forgetful map X0.N /Fp !X0.N=p/Fp sends each .a; b/-component
with b > 0 to the .a; b � 1/-component, and the .a; 0/-component to the .a � 1; 0/-
component.

18Note that for [DR73, Chapitre IV, équation (3.9.1)] to hold, one needs to take the normalization
of its left side; see [Čes17, Example 4.5.3].
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Lemma 5.10. For a prime p and an n � 0, the base change of the forgetful map
X0.p

n/ ! X .1/ along the map Spec.ZJqK/ ! X .1/ given by the Tate generalized
elliptic curve over ZJqK is

X0.p
n/ �X .1/ ZJqK

Š

G
aCbDn
a�b�0

Spec.ZŒ�pb �JqK/ t
G

aCbDn
0�a<b

Spec..ZŒ�pa �JqK/ŒX�=.Xp
b�a

� �paq//;

where, without explicating the ZJqK-algebra structure, the last term is ZŒ�pa �JXK. After
base change to Fp , the term indexed by .a; b/ in this decomposition maps to the .a; b/-
component of X0.p

n/Fp .

Proof. By [DR73, Chapitre VII, Corollaire 2.2], the finite, flat ZJqK-scheme
X0.p

n/ �X .1/ ZJqK is the normalization of ZJqK in the finite Z..q//-scheme
X0.p

n/�X .1/ Z..q//. The latter parametrizes cyclic (in the sense of Drinfeld) subgroups
of order pn of the Tate elliptic curve over Z..q//, so, by [KM85, Theorem 13.6.6], it is

Spec.Z..q/// t Spec.Z..q1=p
n

/// t
G

aCbDn
a;b>0

Spec
�

Z..q//ŒX�=

�
p̂

�
Xp

b�1

qp
a�1

���

where p̂.Z/ WDZ
p�1C � � � CZC 1 is the p-th cyclotomic polynomial. More explicitly,

if a � b � 1, then X=qp
a�b

is a pb-th root of unity in the source of the surjection

Z..q//ŒX�=

�
p̂

�
Xp

b�1

qp
a�1

��
! ZŒ�pb �..q// given by X 7! �pbq

pa�b

that must also be injective because its source and target are free Z..q//-modules of rank
pb�1.p � 1/. Similarly, if 1 � a � b, then Xp

b�a
=q is a pa-th root of unity in the source

of the isomorphism

Z..q//ŒX�=

�
p̂

�
Xp

b�1

qp
a�1

��
�
�! .ZŒ�pa �..q///ŒX�=.X

pb�a
� �paq/:

To conclude the claimed description of X0.p
n/ �X .1/ ZJqK, it remains to note that

both ZŒ�pb �JqK for a � b and .ZŒ�pa �JqK/ŒX�=.Xp
b�a
� �paq/ Š ZŒ�pa �JXK for a � b

are normal (even regular). The claim about the .a; b/-component follows from [KM85,
Proposition 13.6.2 and proof of Theorem 13.6.6].

Before proceeding to the promised formula for the dy in Proposition 5.12, we record
the following consequence of Lemma 5.10 that relates the present section to the analytic
considerations of Section 4.

Lemma 5.11. For L jN and a prime p, every cusp of X0.N /C of denominator L (see
Section 4.1 and use X0.N /.C/ D X0.N /.C/) reduces to the .valp.L/; valp.N=L//-
component of X0.N /Fp (see Section 5.9).
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Proof. Points of X0.N / and of its coarse space X0.N / valued in algebraically closed
fields agree and every cusp is a Q-point, so the statement makes sense. Moreover, the com-
plex uniformizations (4.1.1) are compatible with forgetting some of the level, so we may
assume that N D pn. For LD N , the only cusp of X0.N / of denominator L is1 and its
punctured analytic neighborhood parametrizes pairs .C�=qZ; he2�i=N i/ with q D e2�iz

and Im z � 0 (see [Roh97, Section 1.10, Proposition 7]). Thus, by the algebraic theory
of the Tate curve with its canonical subgroup �N (see [DR73, Chapitre VII, Section 1,
especially, équation (1.12.3)]), this cusp factors through the .n; 0/-term of the right side
decomposition of Lemma 5.10, and hence reduces to the .n; 0/-component. For the other
cusps, we induct on n, so we suppose that n > 0 and consider a cusp c of denominator p`

with ` � n � 1. By induction, the image of c reduces to the .`; n � ` � 1/-component
of X0.p

n�1/Fp . Thus, if n � ` � 1 > 0, then c must reduce to the .`; n � `/-component
of X0.p

n/Fp (see Section 5.9). To bootstrap the remaining �.pmin.n�1;1// cusps with
` D n � 1 (see Section 4.1), it now remains to note that, by Lemma 5.10, there are pre-
cisely �.pmin.n�1;1// cusps that reduce to the .n � 1; 1/-component of X0.p

n/Fp .

Proposition 5.12. For an N � 1, a prime p, the generic point y of the .a; b/-component
of X0.N /Fp (see Section 5.9), and the valuation d.a;b/ of the different of the extension
Osh

X0.N/;y
=Osh

X .1/;y
,

d.a;b/ D

8̂̂<̂
:̂
b if a D 0,

pmin.a;b/�1.pb � b � 1/ if a; b � 1,

0 if b D 0.

(5.12.1)

Proof. By Lemma 5.8 and Section 5.9, we may forget level away from p to assume that
N D pn. As in the proof of Proposition 5.6, the different of a finite, generically sep-
arable extension R0=R of discrete valuation rings is the annihilator of the R0-module
HomR.R

0; R/=.traceR0=R/. The formation of this annihilator commutes with flat base
change in R (after which R and R0 may cease being discrete valuation rings). We will
apply this to Osh

X0.N/;y
=Osh

X .1/;y
, the valuation d.a;b/ of whose different we wish to com-

pute. Namely, by [DR73, Chapitre VII, Théorème 2.1], the map Spec.ZJqK/ ! X .1/

given by the Tate generalized elliptic curve over ZJqK realizes its source as an étale dou-
ble cover of the formal completion of X .1/ along the cusps, and the flat base change map
we will use is the resulting Osh

X .1/;y
! ZJqKsh

.p/
, where the latter strict Henselization is at

the generic point of the Fp-fiber of ZJqK. In this notation, by Lemma 5.10, the resulting
base change of Osh

X0.N/;y
is

ZŒ�pb �JqK
sh
.p/ if a � b; and ..ZŒ�pa �JqK/ŒX�=.Xp

b�a

� �paq//
sh
.p/ if a � b:

These are discrete valuation rings, and the extension ZŒ�pb �JqKsh
.p/
=ZJqKsh

.p/
is a flat base

change of ZŒ�pb �
sh
.p/
=Zsh

.p/
. Thus, the a � b case of (5.12.1) follows from the ramification

theory of cyclotomic fields [Was97, Proposition 2.1]. To similarly treat the a � b case,
we will use the subextension

ZJqKsh
.p/ � ZŒ�pa �JqKsh

.p/ � ..ZŒ�pa �JqK/ŒX�=.X
pb�a

� �paq//
sh
.p/ (5.12.2)
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and the tower formula for the different [Ser79, Chapter III, Section 4, Proposition 8]
(which, notably, does not require residue field extensions to be separable—an assumption
not met here). Namely, letting zd.a;b/ be the valuation of the different of the top extension,
[Was97, Proposition 2.1] now gives

d.a;b/ D zd.a;b/ C

´
pa�1.pa � a � 1/ if a � 1,

0 if a D 0.

To compute zd.a;b/, we note that the top subextension in (5.12.2) is of degree pb�a, does
not change the uniformizer 1� �pa , induces a purely inseparable residue field extension of
degree pb�a, and, as a module, is generated by powers of X . Since X;X2; : : : ; Xp

b�a�1

have trace 0 in this extension, we conclude that d D .b � a/�.pa/. The desired formula
in the remaining case a � b follows.

With the integral version of the Kodaira–Spencer isomorphism (Proposition 5.6) and
the explicit formulas for the dy (Proposition 5.12) in hand, we are ready to characterize
the Z-lattice H 0.X0.N /; �/ in terms of the p-adic properties of Fourier expansions at
all cusps in Proposition 5.14.

Lemma 5.13. For a prime number p, an f 2 H 0.X0.N /Qp ; !
˝k/ with k � 1, a

cusp c 2 X0.N /.Qp/ of denominator L, and an isomorphism �WQp ' C, the valuation
v WD valp.�.f /j�.c// defined as in (4.2.2) (see also Section 5.5) after pullback19 to a cusp
zc 2 X.N zN/.C/ above c for a sufficiently divisible zN depends only on f and valp.L/
but not on c, �, zN , or zc: letting U � X0.N /Zp denote the open complement of those
irreducible components of X0.N /Fp that do not meet the reduction of c,

v is the largest rational number such that p�vf 2 H 0.UZp
; !˝k/: (5.13.1)

Proof. By Lemma 5.11, the irreducible component of X0.N /Fp that contains the reduc-
tion of c depends only on valp.L/, so the same holds for U and it suffices to establish
(5.13.1). Moreover, by scaling f , we may assume that vD 0. By the normality of X0.N /,
the forgetful map

� WX .N zN/!X0.N / satisfies OX0.N/
�
�! .��.OX .N zN///

�0.N/=�.N zN/

and this persists after flat base change, such as to Zp . Thus, �0.N /=�.N zN/ acts transi-
tively on the cusps zc 2 X.N zN/.C/ above c and, letting zU �X .N zN/Zp be the comple-
ment of those irreducible components of X .N zN/Fp that do not meet the reduction of a
fixed zc, the task is reduced to showing that

no v0 2 Q>0 satisfies p�v
0

f jX .N zN/Qp
2 H 0. zUZp

; !˝k/: (5.13.2)

19The only role of the auxiliary level is to ensure that X .N zN/C is a scheme and hence admits
a complex uniformization analogous to the one discussed in (4.1.1).
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In addition, limit arguments eliminate the artificial non-Noetherian aspects: they allow us
to replace Qp and Zp by a variable sufficiently large finite extension F=Qp and its ring
of integers OF .

For sufficiently divisible zN , the stack X .N zN/ is a scheme (already 15 j zN suffices,
see [KM85, Corollary 2.7.2]) and, by [KM85, Theorem 10.9.1], the formal completion of
X .N zN/OF along the closure of zc is OF Jq1=.N zN/K. Under a trivialization of the pullback
of!˝k to this formal completion, the pullback of f is described by its q-expansion, which
is an element of F Jq1=.N zN/K that, via �, agrees with the analytic Fourier expansion of f
at zc constructed as in Section 4.2 (see [DR73, Chapitre VII, Section 4.8]). Consequently,
$a
F f with a 2 Z extends to a section of !˝k over a neighborhood of the closure of
zc in X .N zN/OF if and only if a=eF � 0, where eF is the absolute ramification index
of F . The complement in zUOF of the union of such a neighborhood with X .N zN/F is
of codimension � 2, so, since X .N zN/OF is Cohen–Macaulay, [EGA IV4, Théorème
5.10.5] ensures that$a

F f extends to a neighborhood of the closure of zc in X .N zN/OF if
and only if$a

F f 2H
0. zUOF ;!

˝k/. As F grows, this achieves the promised (5.13.2).

Proposition 5.14. For a prime p and a cuspform f 2 H 0.X0.N /Qp ; !
˝2.�cusps//,

the differential !f 2 H 0.X0.N /Qp ; �
1/ lies in the Zp-lattice

H 0.X0.N /Zp ; �/ Š H
0.X0.N /Zp ; �/

if and only if for every 0� `� valp.N / and some (equivalently, any) cusp c2X0.N /.Qp/

whose denominator L satisfies ` D valp.L/ and some (equivalently, any) isomorphism
�WQp ' C, we have

valp.�.f /j�.c// �

8̂̂<̂
:̂
�valp.N / if valp.L/ D 0;

�valp.N=L/C 1
p�1

if 0 < valp.L/ < valp.N /;

0 if valp.L/ D valp.N /:

(5.14.1)

For such a cuspform f defined over a number field K with ring of integers OK , we have
!f 2H

0.X0.N /OK ;�/ if and only if (5.14.1) holds for all primes p and all embeddings
K ,! Qp .

Proof. The last assertion follows from the rest because any finite free OK-module M
(such as H 0.X0.N /OK ; �/ Š H

0.X0.N /; �/˝Z OK , see Section 5.1) coincides with
the set of m 2 M ˝OK K whose image in M ˝OK Qp lies in M ˝OK Zp for every
prime p and every embedding K ,! Qp . For (5.14.1) itself, we begin by recalling the
integral Kodaira–Spencer isomorphism of Propositions 5.6 and 5.12: letting y range over
the generic points of the irreducible components of X0.N /Fp , with dy as there, we have

�X0.N/Zp =Zp
Š !˝2

�
�cuspsC

X
y

dy¹yº
�
:

Consequently, the characterization of valp.f jc/ given in Lemma 5.13 together
with [EGA IV4, Théorème 5.10.5] (applied as in the preceding proof) shows that
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!f 2 H
0.X0.N /Zp ; �/ if and only if for every y and some cusp c that reduces mod-

ulo p on ¹yº, we have dy=ey � �valp.�.f /j�.c// where ey is the absolute ramification
index of the discrete valuation ring Osh

X0.N/;y
. By Lemma 5.11, a cusp c of denominator

L reduces to the .valp.L/;valp.N=L//-component of X0.N /Fp for which, by (5.9.1), the
corresponding ey is �.pmin.valp.L/;valp.N=L///. To arrive at (5.14.1), it then remains to use
(5.12.1).

We are ready for our main integrality result for normalized newforms.

Theorem 5.15. For a number field K and an f 2 H 0.X0.N /K ; !
˝2.�cusps// whose

base change along some K ,! C is a Z-linear combination of normalized newforms on
�0.N / (see Section 5.5),

!f 2 H
0.X0.N /OK ; �/ Š H

0.X0.N /OK ; �/

inside H 0.X0.N /K ; �
1/ Š H 0.X0.N /K ; �

1/ (identification by flat base change and
(5.4.1)), and, more generally, for any �1.N / � � � �0.N /,

!f 2H
0..X�/OK ;�/�H

0..X�/K ;�
1/; !f 2H

0..X�/OK ;�/�H
0..X�/K ;�

1/:

Proof. A Galois conjugate of a newform is still a newform (see [DI95, Corollary 12.4.5]),
so the assumption on f does not depend on the choice of an embedding K ,! C. For the
first assertion, by Proposition 5.14, we need to check that for every prime p, every embed-
ding �WK ,!Qp , every 0 � ` � valp.N /, some cusp c 2 X0.N /.C/ whose denominator
L satisfies valp.L/D `, and some isomorphism �WQp ' C, the valuation valp.�.�.f //jc/
satisfies the bound (5.14.1). This, however, follows from Corollary 4.7.

To deduce that !f 2 H 0..X�/OK ; �/ for an arbitrary � , since �.X� /OK =OK is a
Cohen–Macaulay O.X� /OK -module of full support (see Section 5.1), by [EGA IV4,
Théorème 5.10.5], it suffices to show the containment !f 2 H 0..X

reg
� /OK ; �/. Thus,

Variant 5.7 and the settled case � D �0.N / reduce our task to showing that for every
height 1 point y 2 X� with images y0 2 X0.N / and y00 2 X.1/, the extensions

OX.1/;y00 �OX0.N/;y0 �OX� ;y of discrete valuation rings satisfy dy=y00 � ey=y0dy0=y00

where d� (resp., e�) is the valuation of the different (resp., the ramification index) of
the indicated subextension. This inequality is immediate from the tower formula for the
different [Ser79, Chapter III, Section 4, Proposition 8]. To likewise deduce that we also
have !f 2 H 0..X�/OK ; �/, one uses Proposition 5.6 instead.

Remark 5.16. For a normalized cuspform f of weight 2 on �0.N /, if !f lies in
H 0.X0.N /; �/, then it is a primitive (that is, not divisible by any m > 1) element of
this Z-lattice. In fact, then it is primitive even in the Z-lattice H 0.X sm

� ; �
1/ for every

�1.N /� � � �0.N /. Indeed, the finite mapsX1.N /!X�!X0.N / are flat away from
finitely many closed points (see [EGA IV4, Proposition 6.1.5]), so they restrict to maps
X1.N /

sm! X sm
� ! X0.N /

sm away from these points. By [EGA IV4, Théorème 5.10.5],
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removing finitely many closed points has no effect on H 0..�/sm; �1/, so we obtain the
inclusions

H 0.X0.N /
sm; �1/ � H 0.X sm

� ; �
1/ � H 0.X1.N /

sm; �1/; (5.16.1)

which reduce primitivity to the case � D �1.N / settled as in [Ste89, proof of Theorem
1.6] via q-expansions.

6. Rational singularities of X0.N/

For studying the Manin constant, the Z-lattice H 0.J0.N /; �
1/ given by the global dif-

ferentials on the Néron model J0.N / of the modular Jacobian J0.N / WD Pic0X0.N/Q=Q
is more convenient than the a priori larger H 0.X0.N /; �/ because it is functorial with
respect to both a modular parametrization J0.N /� E and its dual E ! J0.N /. Thanks
to this functoriality, the Manin conjecture implies that the differential !f associated to the
normalized newform f determined byE should lie inH 0.J0.N /;�

1/, and we show this
unconditionally in Corollary 6.14 whenever X0.N / has rational singularities. We show in
Theorem 6.12 that this assumption holds in a vast number of cases.

6.1. Rational singularities

We recall from [Lip69, Definition 1.1] that a Noetherian, normal, two-dimensional, local
domain R has rational singularities if H 1.Z;OZ/ D 0 for some proper, birational mor-
phism Z ! Spec.R/ with Z regular. In this case, by [Lip69, Proposition 1.2], we have
H 1.Z;OZ/ D 0 for every proper, birational Z ! Spec.R/ with Z merely normal, and
any such Z also has rational singularities.

The following result summarizes the relevance of rational singularities for our pur-
poses.

Proposition 6.2. For an excellent discrete valuation ring R with fraction field K and
residue field k, a normal, proper, flat relative curve X over R such that X xK is irreducible
and X sm \Xk ¤ ;, the Jacobian J WD Pic0XK=K , and its Néron model J over R, the map
Pic0X=R ! J0 is an isomorphism if and only if the inclusion

H 0.J;�1/,!H 0.X;�/ is an equality inside H 0.J;�1/ŠH 0.XK ;�
1/; (6.2.1)

which happens if and only if X has rational singularities; more generally, letting
� WZ� X be a proper, birational morphism with Z regular,

H 0.X;�/=H 0.J; �1/ ' H 0.X;R1��.OZ//:

Proof. We have R ��! H 0.X;OX / because this finite morphism of normal domains (see
[SP, Lemma 0358]) is, by checking over xK, an isomorphism. Thus, since X sm \Xk ¤ ;,
by [Ray70, Théorème 8.2.1], the map X ! SpecR is cohomologically flat and Pic0X=R

https://stacks.math.columbia.edu/tag/0358
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is a separated, smooth R-group scheme (see also [BLR90, Section 8.4, Proposi-
tion 2]). In particular, the Néron property supplies the map Pic0X=R ! J. Moreover,
the deformation-theoretic [BLR90, Section 8.4, Theorem 1] gives the identification
H 1.X;OX /Š Lie.Pic0X=R/ of finite freeR-modules. Consequently, by the Grothendieck–
Serre duality (see [Con00, Theorem 5.1.2]),

H 0.Pic0X=R;�
1/DHomR.Lie.Pic0X=R/;R/DH

0.X;�/ in H 0.J;�1/ŠH 0.XK ;�
1/:

(6.2.2)

Thus, there is the claimed inclusionH 0.J;�1/ ,!H 0.X;�/, which, since all the global
differentials on J are translation invariant (see [BLR90, Section 4.2, Propositions 1 and
2]), is an equality if Pic0X=R Š J0. Conversely, if the inclusion is an equality, then the
separated morphism Pic0X=R ! J0 is an isomorphism on Lie algebras, that is, it is étale
(see [EGA IV2, Corollaire 17.11.2]), and hence, by checking the triviality of its kernel
over K (see [EGA IV2, Théorème 18.5.11 c)]), even an isomorphism.

By Lipman’s [SP, Theorem 0BGP], a desingularization � WZ� X exists (ensuring
this is the only role of the excellence of R). Moreover, by the above and the proof of
[BLR90, Section 9.7, Theorem 1], the map ��WH 1.X;OX /! H 1.Z;OZ/ is identified
with the map Lie.Pic0X=R/ ,! Lie.J/. By forming duals, the finite length cokernel of the
latter is isomorphic toH 0.X;�/=H 0.J;�1/. On the other hand, Grothendieck’s theorem
on formal functions [EGA III1, Corollaire 4.1.7] shows that H 2.X;OX / D 0. The above
and the spectral sequence H i .X;Rj��.OZ//) H iCj .Z;OZ/ then give the claimed

H 0.X;�/=H 0.J; �1/ ' H 1.Z;OZ/=�
�.H 1.X;OX // Š H

0.X;R1��.OZ//:

SinceR1��.OZ/ is supported at the singular points ofX and vanishes if and only ifX has
rational singularities (see Section 6.1), the latter happens if and only if (6.2.1) holds.

Example 6.3. Proposition 6.2 applies to R D Z.p/ and X D .X�/Z.p/ for every prime p
and every �1.N / � � � �0.N /. Indeed, X1.N /sm \ X1.N /Fp ¤ ; by [KM85, Section
(13.5.6)], so, since, by [EGA IV4, Proposition 6.1.5], the finite map X1.N /� X� is flat
away from finitely many points, also X sm

� \ .X�/Fp ¤ ;. More generally, it also applies
to any .X�\ zH /Z.p/ with � as before and �diag.M/ � zH � GL2.yZ/ the preimages of
subgroups ®�

x1
x2

� ˇ̌
xi 2 .Z=MZ/�

¯
� H � GL2.Z=MZ/

for someM coprime toN : indeed, the identity
�
0 1
M 0

��
a b
c d

��
0 1
M 0

��1
D

�
d c=M
Mb a

�
gives�

0 1
M 0

�
�0.M

2/
�
0 1
M 0

��1
D �diag.M/;

so, by [DR73, Chapitre IV, Proposition 3.19 and (3.14.1)], we obtain an isomorphism

X�\�0.M2/ ' X�\�diag.M/;

so that we may now instead use the resulting finite flat map

X�\�0.M2/ ' X�\�diag.M/� X�\ zH

https://stacks.math.columbia.edu/tag/0BGP
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to conclude that
X sm
�\ zH

\ .X�\ zH /Fp ¤ ;: (6.3.1)

By Proposition 6.2, controlling the lattice H 0.J0.N /; �
1/ relevant for the Manin

constant hinges on positively answering the pertinent cases of the following question con-
sidered by Raynaud [Ray91].

Question 6.4. Does X0.N / have rational singularities for every N � 1?

We know of no N for which the answer is negative, in fact, we exhibit a positive one
for a large class of N in Theorem 6.12, which subsumes [Ray91, Théorème 2]. The new
cases in Theorem 6.12 will come by bootstrapping from Proposition 6.6, whose proof
uses the following lemma.

Lemma 6.5. For �1.N / � � � � 0 � �0.N /, the Jacobians J� and J�0 of .X�/Q and
.X�0/Q, and isogenous newform elliptic curve quotients20 � WJ��E and � 0WJ�0�E 0,
if Ker.�/ and Ker.� 0/ are connected, then there is an isogeny eWE ! E 0 such that the
Manin constants c� and c� 0 satisfy

c� 0 D c� � # Coker.Lie E
Lie e
��! Lie E 0/

where E and E 0 are the Néron models of E and E 0. Moreover, c� 2 Z for any newform
elliptic curve quotient � WJ� � E (regardless of Ker.�/).

Proof. Everything was settled in [Čes18, Lemma 2.12] except for the assertion that c� 2
Z in the case when Ker.�/ is nonconnected. To reduce the latter to the case when Ker.�/
is connected, it suffices to consider the factorization J�� J�=.Ker.�/0/�E of � .

Proposition 6.6. For the following � � GL2.yZ/, the modular curve X� has rational
singularities:

(i) any �1.N / � � � �0.N / such that .X�/Q has genus � 1;

(ii) � D �0.9/ \ zC3 with zC3 � GL2.yZ/ being the preimage of the cyclic subgroup
C3 � GL2.Z=2Z/ ' S3.

Proof. We will use Proposition 6.2, which applies thanks to Example 6.3 (note that
�diag.2/ D �.2/), so we let J be the Néron model over Z of the Jacobian of .X�/Q.
In particular, we may assume that the genus of .X�/Q is positive: indeed, in the genus 0
case the spaces in (6.2.1) vanish. Then the genus of .X�/Q is 1: indeed, for (ii), the genus
of X0.36/Q is 1, so, due to the surjection

X0.36/
(6.3.1)
���! X�0.9/\ zC3 ; (6.6.1)

that of .X�0.9/\ zC3/Q is � 1 (in fact, it is 1, but we will not digress to show this).

20We say that a surjection of abelian varieties � W J� � E is a newform quotient of J� if
J�=.Ker.�/0/ is associated to a newform on � via the Eichler–Shimura construction (compare,
for instance, with [Roh97, Section 3.7] or [DS05, Definition 6.6.3]). We call such an E a newform
elliptic curve quotient if, in addition, E is an elliptic curve.
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In (i), the map .X�/Q ! X0.N /Q is then an isogeny of elliptic curves over Q (see
[Sch09, Corollary 1.2 (i)]), so that N < 50 (compare with Example 6.7 below). By,
for instance, Lemma 6.5 and Cremona’s [ARS06, Theorem 5.2], the Manin conjecture
holds for the optimal parametrization of the elliptic curve .X�/Q by the modular curve
.X�/Q: the differential !f associated to the unique normalized newform on �0.N / lies
in H 0.J; �1/. However, by Theorem 5.15 and Remark 5.16, this !f is also a primitive
element of the lattice H 0.X sm

� ; �
1/. Since H 0.J; �1/ � H 0.X� ; �/ � H

0.X sm
� ; �

1/

(see (6.2.1)), these Z-modules are then all generated by !f , so Proposition 6.2 gives (i).
In (ii), we have reduced to the Q-fiber of the map (6.6.1) being an isogeny of elliptic

curves of degree 3 (compare with [DS05, bottom of p. 66]). Thus, by [LMFDB, elliptic
curve 36a1], it must be the unique degree 3 isogeny with source X0.36/Q. By [LMFDB,
elliptic curve 36a3], the Manin constant of the resulting nonoptimal modular parametriza-
tion of the elliptic curve .X�0.9/\ zC3/Q is 1, so the pullback of the Néron differential
!J is the differential !f associated to the unique normalized newform on �0.36/. In
particular, by Theorem 5.15 and Remark 5.16, this pullback is a primitive element of
H 0.X0.36/

sm; �1/ and, to conclude in the same way as for (i), we use the inclusions

H 0.J; �1/
(6.2.1)
� H 0.X�0.9/\ zC3 ; �/ � H

0.X sm
�0.9/\ zC3

; �1/ � H 0.X0.36/
sm; �1/;

the last one of which is obtained as (5.16.1) by using the map X0.36/! X�0.9/\ zC3 .

Example 6.7. The Z-curve X0.N / has rational singularities for N D 1; : : : ; 21; 24; 25;
27; 32; 36; 49: these are theN for whichX0.N /Q has genus� 1, that is, for which Propo-
sition 6.6 (i) applies.

To upgrade the finite list of Proposition 6.6 to infinite families, in Proposition 6.10 we
develop general criteria for rational singularities of X0.N /. For this, we use the following
lemmas.

Lemma 6.8. For an action of a finite group G on a ring R, if both R and RG are com-
plete, two-dimensional, Noetherian, normal, local domains (when #G is invertible in R,
it suffices to assume this for R) and R has rational singularities, then, for every proper
birational Z ! Spec.RG/ with Z normal, #G kills H 1.Z;OZ/, in particular, RG also
has rational singularities when #G 2 R�.

Proof. We may assume that G acts faithfully and begin with the parenthetical claim, in
which #G 2 R� and we consider the RG-linear operator RW r 7! 1

#G

P
g2G gr that fixes

each a 2 RG . By applying R to any equality a D
P
riai with a; ai 2 RG and ri 2 R, we

get RG \ IR D I for any ideal I � RG . In particular, RG inherits the ascending chain
condition, so is a Noetherian domain. The zero-dimensional localizationR˝RG KG ofR
is the fraction fieldK ofR, so, by Galois theory, it is a finite extension of the fraction field
KG of RG . We choose a KG-basis r1; : : : ; rn 2 R for K and consider the RG-module
mapR!

Ln
iD1R

G given by r 7! .R.rri //
n
iD1. This map is injective because the version

http://www.lmfdb.org/EllipticCurve/Q/36a1/
http://www.lmfdb.org/EllipticCurve/Q/36a3/
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of R forK cannot kill
Pn
iD1 rriK

G D rK unless r D 0. Thus,R is a finiteRG-module,21

so RG ,! R is a finite, local map of Noetherian local domains that splits via R as a map
ofRG-modules, and henceRG is a complete, two-dimensional, Noetherian, normal, local
domain.

Returning to general G, for Z as in the statement we let zZ ! SpecR be the proper
birational map obtained by normalizing the base change ZR in K WD Frac.R/ (the finite
type of zZ over R follows from [EGA IV4, Proposition 7.8.6 (ii)]). The G-action on R
induces a compatible G-action on zZ, for which the integral map � W zZ ! Z is equivari-
ant (with G acting trivially on Z). Thus, since Z is normal, � induces an isomorphism
zZ=G

�
�! Z. Consequently, the trace map s 7!

P
g2G gs defines an OZ-linear morphism

��.O zZ/! OZ whose postcomposition with OZ ! ��.O zZ/ is multiplication by #G on
OZ . The rational singularities assumption gives H 1.Z; ��.O zZ// D 0 (see Section 6.1),
so the induced maps on H 1.Z;�/ show that #G kills the RG-module H 1.Z;OZ/, as
claimed. In particular, if #G is a unit in R, so also in RG , then H 1.Z;OZ/ D 0. By
choosing a Z that is regular (see Lipman’s [SP, Theorem 0BGP]), we then conclude that
RG indeed has rational singularities.

Lemma 6.9. For a prime p, we have p − #.Aut.x/=¹˙1º/ for each x 2 X0.N /.Fp/
whenever

(i) p � 5; or

(ii) p D 3 and there is a prime p0 jN with p0 � 2 mod 3; or

(iii) p D 2 and there is a prime p0 jN with p0 � 3 mod 4.

Proof. By [Čes17, proof of Theorem 6.7], for cuspidal x we have Aut.x/ D ¹˙1º, so we
may assume that x corresponds to an elliptic curve E over Fp equipped with a cyclic (in
the sense of Drinfeld) subgroup C � E of order N . Thus, since Aut.x/ � Aut.E/ and
#Aut.E/ j24 (see [KM85, Corollary 2.7.2]), we have (i). For (ii) and (iii), we consider the
action of Aut.x/ on EŒp0�.Fp/. Firstly, if p0 is odd (resp., p0 D 2), then this action (resp.,
the induced action of Aut.x/=¹˙1º) is faithful; see [KM85, Corollary 2.7.2]. Thus, since
it also preserves both the Weil pairing and the cyclic subgroup C 0 WD C \EŒp0�� EŒp0�,
any p-Sylow subgroup G of Aut.x/ (resp., of Aut.x/=¹˙1º) acts semisimply on EŒp0�
and embeds into Aut.C 0/ Š .Z=p0Z/�. In particular, #G j p0 � 1, so that G D 1 in (ii)
and G D ¹˙1º in (iii).

Proposition 6.10. For a prime p, an N 2 Z>0, and n WD valp.N /, if

(i) p � 5; or

(ii) p D 3 and there is a p0 jN with p0 � 2 mod 3; or

(iii) pD 3 and eitherX0.3n � 7/Z.3/ or .X�0.3n/\ zC3/Z.3/ has rational singularities where

the subgroup zC3�GL2.yZ/ is the preimage of the cyclic subgroup C3�GL2.Z=2Z/;
or

21Finite generation of R as an RG -module holds much more generally, even for noncommuta-
tive R; see [Mon80, Corollary 5.9].

https://stacks.math.columbia.edu/tag/0BGP
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(iv) p D 2 and there is a p0 jN with p0 � 3 mod 4; or

(v) p D 2 and X0.2n � 5/Z.2/ has rational singularities and N ¤ 2n; or

(vi) pD 3 (resp., pD 2) and for the level �0.pn/ universal deformation ringR of .E;C /,
where E=Fp is the elliptic curve with j D 0 and C � E the cyclic (in the sense of
Drinfeld) subgroup of order pn, and for every subgroup G0 � G WD Aut.E/=¹˙1º
of p-power order, RG

0

has rational singularities (resp., same, but if N ¤ 2n, then
we may restrict to cyclic G0),

then X0.N /Z.p/ has rational singularities.

Proof. Since X0.N /Z.p/ is regular away from the Fp-points x with j D 0 or j D 1728
(see [Čes17, Theorem 6.7]), we need to show that OX0.N/;x has rational singularities
for every such x. By Lipman’s [SP, Theorem 0BGP], there exists a proper birational
map Z ! Spec.OX0.N/;x/ with Z regular and, by [EGA IV4, Corollaire 6.4.2, Scholie
7.8.3 (v)] (see also [Gre76, Corollary 5.6]), the yOsh

X0.N/;x
-base change of Z is regular.

Thus, by checking the vanishing H 1.Z;OZ/ D 0 after flat base change, OX0.N/;x has
rational singularities if and only if so does yOsh

X0.N/;x
. However, by [DR73, Chapitre I,

Section (8.2.1)] (or [Ols06, Theorem 2.12]), we have

yOsh
X0.N/;x

Š . yOsh
X0.N/;x

/Aut.x/=¹˙1º; (6.10.1)

and yOsh
X0.N/;x

is regular by [KM85, Theorem 6.6.1]. Thus, (i), (ii), and (iv) follow from
Lemmas 6.8 and 6.9.

In (vi), the uniqueE is supersingular, C is the kernel of the pn-fold relative Frobenius
(see [KM85, Lemma 12.2.1]) and hence is preserved by Aut.E/, and x maps to .E; C /.
Moreover,EŒN=pn� is étale, so its subgroups C 0 �EŒN=pn� deform uniquely, and hence
R Š yOsh

X0.N/;x
by the modular interpretation of X0.N /. Since G injects into (in fact,

equals) SL2.F3/=¹˙1º if p D 2 and SL2.F2/ if p D 3 (see [KM85, Corollary 2.7.2],
also [Del75, Proposition 5.9 (IV)–(V), Section 7.4]), its p-Sylow subgroup G.p/ � G is
normal. Thus, the same holds forH WDAut.x/=¹˙1º �G, so thatRH Š .RH

.p/
/H=H

.p/
.

The assumption of (vi) ensures that RH
.p/

has rational singularities, so, by Lemma 6.8,
so does RH Š yOsh

X0.N/;x
(see (6.10.1)). To conclude (vi), we note that H is cyclic when

p D 2 and N ¤ 2n; then the preimage ofH in Aut.E/ lies in the cyclic group .Z=p0Z/�

for an odd prime p0 jN (see the proof of Lemma 6.9).
To show that (iii) and (v) follow from (vi), we set � WD �0.3n � 7/ or � WD �0.3n/\ zC3

in (iii) and � WD �0.2n � 5/ in (v) and, in view of the above, especially the analogue of
(6.10.1) for X� and the insensitivity of the universal deformation ring R of .E;C / in (vi)
to tame level, we need to show that every cyclic subgroupG0 �Aut.E/=¹˙1º of p-power
order is Aut.z/=¹˙1º for some z 2X�.Fp/. For p D 3, the unique G0 of 3-power order
is Z=3Z and its preimage zG0 � Aut.E/ is Z=6Z. Since F7 contains sixth roots of unity,
the action of zG0 on EŒ7� is diagonalizable and either of the resulting zG0-stable F7-lines
C 0 � EŒ7� is the 7-primary part of a level structure that determines the desired z for
� D �0.3

n � 7/. Similarly, the faithful action of G0 on EŒ2� determines a zC3-structure,
and so a desired z for � D �0.3

n/ \ zC3. For p D 2, the argument is analogous: now

https://stacks.math.columbia.edu/tag/0BGP
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G0 is Z=2Z but is no longer unique (the 2-Sylow of SL2.F3/=¹˙1º is Z=2Z � Z=2Z),
its preimage zG0 is Z=4Z, and one can diagonalize the action of zG0 on EŒ5� because F5
contains fourth roots of unity.

Remark 6.11. By the preceding proof, if N ¤ 2n, then the p-Sylow subgroup of the
exceptional automorphism group at each Fp-point of X0.N / is normal and either trivial
or Z=pZ (the latter can occur only for p D 2 and p D 3). In particular, Lemma 6.8 and
the preceding proof show that for any proper birational � WZ� X0.N / with Z normal,
the OX0.N/-module R1��.OZ/ is killed by 6.

A big portion of the following partial positive answer to Question 6.4 appeared in
[Ray91, Théorème 2]: our main improvement is the inclusion of the cases valp.N / D 2
for p � 3.

Theorem 6.12. For a prime p, the modular curve .X0.N //Z.p/ has rational singularities
whenever

(a) p � 5; or

(b) p D 3 and either valp.N / � 2 or there is a prime p0 jN with p0 � 2 mod 3; or

(c) p D 2 and either valp.N / � 2 or there is a prime p0 jN with p0 � 3 mod 4.

Proof. Thanks to Proposition 6.10, it suffices to check that X0.7/, X0.21/, and
X�0.9/\ zC3 , as well as X0.5/, X0.10/, X0.20/, X0.1/, X0.2/, and X0.4/, have rational
singularities. We have already done this in Proposition 6.6 (see also Example 6.7).

Remark 6.13. The method would show that X0.N / has rational singularities for every
N ¤ 2n equal to a conductor of an elliptic curve over Q if one knew that X�0.27/\ zC3 ,
X�0.81/\ zC3 , and X�0.243/\ zC3 (or, if one prefers, X0.27 � 7/, X0.81 � 7/, and X0.243 � 7/),
as well as X0.8 � 5/, X0.16 � 5/, X0.32 � 5/, X0.64 � 5/, X0.128 � 5/, X0.256 � 5/, X0.64/,
X0.128/, and X0.256/ have rational singularities (for well-known conductor exponent
bounds for an elliptic curve over Q, see [Pap93, Corollaire du Théorème 1]).

Corollary 6.14. For a normalized newform f 2 H 0.X0.N /Q; !
˝2.�cusps// (see Sec-

tion 5.5) and the Néron model J0.N / over Z of the Jacobian J0.N / of X0.N /Q,

6 � !f 2 H
0.J0.N /;�

1/; where !f is the differential associated to f ;

if X0.N / has rational singularities, then even !f 2 H 0.J0.N /;�
1/.

Proof. The Manin conjecture for the quotient � W J0.N /� E with connected Ker.�/
determined by f predicts that !f is the pullback of a Néron differential !E of the elliptic
curve E. By the functoriality of Néron models, this pullback lies in H 0.J0.N /; �

1/,
so, by, for instance, Cremona’s [ARS06, Theorem 5.2] that verified the Manin conjecture
for small N , we may assume that N ¤ 2n. By Proposition 6.2, there is an inclusion
H 0.J0.N /; �

1/ ,! H 0.X0.N /; �/ that is an isomorphism if and only if X0.N / has
rational singularities and, by Remark 6.11, in general its cokernel is killed by 6. Thus, it
remains to recall from Theorem 5.15 that !f 2 H 0.X0.N /;�/.
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7. A relation between the Manin constant and the modular degree

Our final goal is to use the work above to establish Theorems 1.1 and 1.2. The following
basic fact is the underlying source of the relationship between the modular degree and the
Manin constant.

Lemma 7.1. For a field k, a proper, smooth k-curve X with Jacobian J WD Pic0X=k , a k-
surjection �WX� E onto an elliptic curve, a point P 2 X.k/ with �.P /D 0, the closed
immersion iP WX ,! J given by Q 7! OX .Q � P /, and the homomorphism � W J � E

obtained from � by the Albanese functoriality of J , the composition � ı �_WE! J !E

is multiplication by deg�.

Proof. The existence of � implies that X has genus > 0, and the map � WJ ! E is char-
acterized by OX .Q � P / 7! �.Q/; see [Mil86, Proposition 6.1]. Moreover, by [Mil86,
Lemma 6.9 and Remark 6.10 (c)], the map Pic0.iP / is the negative of the inverse of the
canonical principal polarization of J , and the canonical principal polarization of E sends
a Q 2 E.k/ to OE

k
.Œ0� � ŒQ�/ (see also [Con04, Example 2.5]). In particular, the map

Pic0.�/ D Pic0.iP / ı �_ sends such a Q to OX
k
.Œ��1.0/� � Œ��1.Q/�/ and, by taking

into account the canonical principal polarization of J , we find that � ı �_ sends Q to
deg� �Q.

Theorem 7.2. For an elliptic curve E over Q of conductor N , a Néron differential
!E 2 H

0.E; �1/, the normalized newform f determined by E, its associated differ-
ential !f 2 H 0.X0.N /Q; �

1/, a subgroup �1.N / � � � �0.N /, and a prime p, if for
some subgroup � � � 0 � �0.N / the curve .X�0/Z.p/ has rational singularities (see The-
orem 6.12), then every surjection �W .X�/Q � E satisfies

valp.c�/ � valp.deg.�// with c� 2 Z defined by ��.!E / D c� � !f :

Without the rational singularities assumption, we still have

valp.c�/ � valp.deg.�//

C

8̂̂<̂
:̂
1 if p D 2 with val2.N / � 3 and there is no p0 jN with p0 � 3 mod 4,

1 if p D 3 with val3.N / � 3 and there is no p0 jN with p0 � 2 mod 3,

0 otherwise.

Proof. By Theorem 5.15, we have !f 2 H 0.X�0 ; �/. Thus, by Proposition 6.2, the
rational singularity assumption ensures that !f 2 H 0..J�0/Z.p/ ; �

1/ where J�0 is the
Néron model of the Jacobian J�0 of .X�0/Q. We choose a P 2 X�.Q/, for instance, a
rational cusp, and consider the resulting embeddings .X�/Q ,! J� and .X�0/Q ,! J�0 .
By the Albanese functoriality of the Jacobian, the map X� ! X�0 induces a morphism
J� ! J�0 , and we conclude by pullback that

!f 2 H
0..J�/Z.p/ ; �

1/ (7.2.1)
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(here we use the compatibility of the identification H 0..X�0/Q; �
1/ Š H 0.J�0 ; �

1/

obtained by pullback along .X�0/Q ,! J�0 with its counterpart obtained by
Grothendieck–Serre duality as in (6.2.2); see [Con00, Theorem B.4.1]). By postcom-
posing with a translation, we may assume that �.P / D 0, and we then let � W J� � E

be the map that � induces via the Albanese functoriality. Lemma 7.1 ensures that
� ı �_WE ,! J� � E is multiplication by deg.�/, so the same holds for the induced
E ! J� ! E on Néron models. Thus, by pullback,

deg.�/ � !E D c� � .�_/�.!f /:

Since c� 2 Z by Lemma 6.5 and

.�_/�.!f / 2 H
0.EZ.p/ ; �

1/ Š Z.p/ � !E

by (7.2.1), we obtain the sought

valp.c�/ � valp.deg.�//:

Without the rational singularities assumption, by Corollary 6.14 and the Albanese func-
toriality as above, we still have 6 � !f 2 H 0.J� ; �

1/, so the same argument gives
valp.c�/ � valp.deg.�//C valp.6/. In particular, by also using Theorem 6.12, we obtain
the claimed last display in the statement.

Since X1.N / almost always agrees with the regular X1.N /, we now show that
the above minor hypothetical exceptions to the divisibility c� j deg.�/ cannot occur for
parametrizations by X1.N /Q.

Corollary 7.3. For an elliptic curve E over Q of conductor N , a Néron differential
!E 2H

0.E;�1/, the normalized newform f determined by E, and its associated differ-
ential !f 2 H 0.X1.N /Q; �

1/, every surjection �WX1.N /Q � E satisfies

c� j deg.�/ with c� 2 Z defined by ��.!E / D c� � !f :

Proof. By Theorem 7.2, we have valp.c�/ � valp.deg.�// for every prime p � 5. For
the remaining p D 2 and p D 3, Theorem 7.2 applied with � D � 0 D �1.N / gives the
same as long as X1.N /Z.p/ is regular. By [KM85, Corollary 2.7.3, Theorem 5.5.1] and
[Čes17, Lemma 4.1.3, Theorem 4.4.4], this happens whenever p0 jN for a prime p0 � 5.
Thus, we may assume thatN D 2a � 3b , in fact, by the last statement of Theorem 7.2, even
thatN D 2a orN D 3b (so a � 8 and b � 5; see [Pap93, Corollaire du Théorème 1]). For
any isogeny  WE 0 ! E, since the composition with the dual isogeny is multiplication
by deg. /, we have  �.!E / D c � !E 0 for some c 2 Z with c j deg. /. Thus, we
may assume that � does not factor through any such  . For low conductor curves, by
Cremona’s [ARS06, Theorem 5.2], the Manin constant of such optimal parametrizations
by X0.N /Q is˙1. Thus, Lemma 6.5 allows us to conclude the same for parametrizations
by X1.N /Q with N D 2a and N D 3b , so that indeed valp.c�/ � valp.deg.�//.
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