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A free discontinuity approach to optimal profiles
in Stokes flows

Dorin Bucur, Antonin Chambolle, Alessandro Giacomini, and
Mickaël Nahon

Abstract. In this paper we study obstacles immersed in a Stokes flow with Navier boundary condi-
tions. We prove the existence and regularity of an obstacle with minimal drag, among all shapes of
prescribed volume and controlled surface area, taking into account that these shapes may naturally
develop geometric features of codimension 1. The existence is carried out in the framework of free
discontinuity problems and leads to a relaxed solution in the space of special functions of bounded
deformation (SBD). In dimension two, we prove that the solution is classical.
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1. Introduction

Consider an obstacleE �Rd (d D 2;3 in real applications) contained in a (finite) channel
� in which a fluid with viscosity coefficient � > 0 is flowing. Assume that the flow
is stationary and incompressible, and that the associated velocity field u is equal to a
constant vector V1 on the walls of the channel. The obstacleE experiences a force, whose
component in the direction of V1 will be denoted by Drag.E/ and is usually called the
drag force. If we further assume that the velocity of the fluid satisfies the Stokes equation
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in � n E and obeys the Navier boundary conditions on @E, the expression of the drag
force turns out to be given (up to a multiplicative constant) by

Drag.E/ D 2�
Z
�nE

je.u/j2 dx C ˇ

Z
@E

juj2 dHd�1; (1.1)

where e.u/ WD 1
2
.DuC .Du/�/ denotes the symmetrized gradient of u and ˇ > 0 is the

friction coefficient (we refer to Section 3.2 for details).
We are interested in minimizing the drag force among all obstacles E with a pre-

scribed volume and controlled surface area. Precisely, we look for the existence of such
an optimal obstacle and for its qualitative properties. The existence question is not very
relevant as soon as one imposes strong geometric constraints on the admissible obstacles
(e.g. convexity and uniform cone conditions) since this may hide some specific features
which would naturally occur. Indeed, letting the geometry of the obstacle be completely
free, some qualitative behavior (blocked by rigid geometric constraints) can be observed.
This is the case for our problem, where the optimal obstacle (that we prove to exist without
imposing any geometric or topological constraint) may be composed, roughly speaking,
as the union of a body with the prescribed volume and pieces of surface of dimension
d � 1. These surfaces do not have volume, but count for the total surface area Hd�1.@E/

and of course have a strong influence on the flow.
Penalizing the surface area and the volume, the model problem we are interested in

can be written as
min
E

®
Drag.E/C cHd�1.@E/C f .jEj/

¯
;

where c > 0 and f W .0; j�j/! R [ ¹C1º is a lower-semicontinuous function. Roughly
speaking, the terms involving perimeter and volume can be thought as the price to pay to
build the obstacle E, and we can give the two relevant choices of function f :

f .m/ D C11¹m¤m0º for some m0 2 .0; j�j/; or f .m/ D ��m for some � > 0:

Many similar optimization problems have been considered under the “no-slip” boundary
condition, meaning flows for which u D 0 at @E. Under volume constraint and an a pri-
ori symmetry hypothesis around an axis parallel to the flow, the minimal drag question
has been studied in [36] on smooth surfaces. In [31], still under symmetry hypotheses,
it was conjectured that the optimal profile in three dimensions is a prolate spheroid with
sharp ends of angle 120 degrees. In the same symmetry context, let us also mention the
slender body approximation of [35]. We also refer the reader to S̆verák [32] who, in two
dimensions, proves the existence of an optimal obstacle under topological hypotheses,
namely that the obstacle has at most a given number of connected components (in partic-
ular this number can be equal to 1). The proof is genuinely two-dimensional and cannot
be extended to higher dimensions.

The Navier boundary condition gives many new challenges, namely the possible
appearance of lower-dimensional structures in the obstacle that minimize the drag, some-
thing which was absent under the no-slip condition. The Navier boundary condition may
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be seen as a partial adherence to the boundary of the obstacle, and it may be asymptot-
ically obtained as a limit of flows with perfect slip on an obstacle with rough boundary.
More precisely, a periodic microstructure with the right scaling on the boundary is mod-
eled at the limit by a Navier boundary condition, as was proved in [14]. In dimensions
higher than two it is also necessary to take into account more complex geometries for the
microstructure, which at the limit produce an anisotropic factor that favors certain direc-
tions of the flow. Moreover, infinitesimal boundary perturbations can dramatically modify
the solution of the Stokes equation with Navier boundary conditions, while in the pres-
ence of no-slip boundary conditions the solution remains stable. We refer the reader to [8]
for an analysis of these phenomena and for a discussion of the pertinence of the Navier
boundary conditions in physical models.

For a fixed obstacleE, the minimization of the drag with respect to the friction param-
eter ˇ of the Navier conditions (meaning, from a physical point of view, with respect to
the microstructure on the boundary) has been studied in [5], for both Stokes and Navier–
Stokes flows. While for Stokes flows the drag is increasing with the friction parameter, an
important observation which occurs for the Navier–Stokes equation is that the monotonic-
ity of the drag with respect to the parameter ˇ does not hold. This is a reason for which
the results we give in this paper for the Stokes flows are not expected to hold, as such, for
the Navier–Stokes equation.

Since the stationary velocity field associated to a Lipschitz obstacle E turns out to be
characterized variationally as the minimizer of the right hand side of (1.1) in the class of
admissible velocities

V
reg
E;V1

.�/ D
®
u 2 H 1.� nEIRd / W divu D 0; uj@E � �E D 0; uj@� D V1

¯
(see (3.4) in Section 3.1 for more details), we can conveniently rephrase the minimization
problem by also letting the velocity fields intervene explicitly in the form

min
E;u2V

reg
E;V1

.�/

²
2�

Z
�nE

je.u/j2dxCˇ

Z
@E

juj2dHd�1
C cHd�1.@E/C f .jEj/

³
: (1.2)

The first main goal of the paper is to find suitable relaxations of problem (1.2) for
which we can prove the existence of minimizers without any a priori constraint on the
regularity or the topology of the sets E.

In order to avoid unnatural geometric restrictions on the obstacle E, it is natural in
view of the third term appearing in (1.2) to let it vary within the class of sets of finite
perimeter (see Section 2.2), and replace the topological boundary with a reduced one
@�E.

In order to properly describe obstacles with very narrow spikes which in the limit
degenerate to .d � 1/-surfaces and that cannot be taken into account through the reduced
boundary, it is convenient to consider admissible velocity fields which can be discontinu-
ous outsideE (see Section 3.3). Since the symmetrized gradient e.u/ is involved explicitly
in (1.2), a natural family for the admissible velocities is given by the space of functions
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of bounded deformation SBD. The natural relaxation of the energy takes the form (see
Remark 4.11 for further comments)

J.E; u/ WD 2�

Z
�nE

je.u/j2 dx C ˇ

Z
@�E

juCj2 dHd�1

C ˇ

Z
Jun@�E

ŒjuCj2 C ju�j2� dHd�1

C cHd�1.@�E/C 2cHd�1.Ju n @
�E/C f .jEj/; (1.3)

where u is set equal to zero a.e. in E, while Ju denotes the discontinuity set of u and
u˙ are the traces of u on @�E and Ju (the trace u� vanishes on @�E by the choice of
orientation, while uC is on the outward side).

Within this framework the global obstacle is given by E [ Ju, so that it also contains
lower-dimensional parts, namely Ju n @�E: roughly speaking, for the optimal velocity
these discontinuous regions generate .d � 1/-surfaces which correspond to volumeless,
lower-dimensional subsets of the optimal obstacle.

Admissible velocities must be tangent to the obstacles, meaning that not only is u
tangent to @�E, but also the two traces u˙ are orthogonal to the normal �u along the
jump set Ju. The contribution of the Navier surface term naturally takes into account the
contribution from both sides given by u˙. Concerning the perimeter term, we count the
lower-dimensional parts twice because we see the relaxed obstacle as a limit of regular
obstacles, such that points of Ju n @�E correspond to thin parts of the regular obstacle
that collapse on a lower-dimensional structure. We could also see the perimeter term as
the price to pay to construct the obstacle and just keep Hd�1.@�E [ Ju/ instead, and the
main results of the paper would not be affected.

The relaxed optimization problem can be seen as a minimization problem on the pairs
.E; u/ which has the features of classical geometrical problems for E coupled with a free
discontinuity problem for u, with a surface term depending on the traces which are subject
to suitable tangency constraints and boundary conditions.

The first main result of the paper (Theorem 4.8) concerns the existence of minimizers
for the relaxed functional J in (1.3) among the class of admissible configurations (see
Definition 4.1 for the precise definition).

The main difficulties we have to face in order to prove that the problem is well posed
are the following:

(a) the closure of the non-penetration constraint for the velocity on @�E [ Ju under
the natural weak convergence of the problem;

(b) the lower semicontinuity of energies of the formZ
Ju

ŒjuCj2 C ju�j2� dHd�1 (1.4)

associated to the Navier conditions.
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Point (a) is a consequence of a lower-semicontinuity result for the energyZ
Ju

ŒjuC � �uj C ju
�
� �uj� dHd�1;

which is proved in Theorem 5.2 by resorting to recent lower-semicontinuity results for
functionals on SBD by Friedrich, Perugini and Solombrino [28].

The energy of point (b) naturally appears in a scalar setting when dealing with shape
optimization problems involving Robin boundary conditions (see e.g. [10–13]), and it is
easily seen to enjoy lower-semicontinuity properties by working with sections. The lower-
semicontinuity result in the vectorial SBD setting is given by Theorem 5.4 and cannot rely
on an easy argument by sections, which instead would yield the lower semicontinuity of
an energy of the form Z

Ju

ŒjuC � �j2 C ju� � �j2�j� � �uj dHd�1

with � 2 Rd with j�j D 1: the optimization in � in order to recover (1.4) does not seem
feasible in dimension d � 3. We thus follow a different strategy based on a blow-up argu-
ment in which we reconstruct the vector quantities u˙ by controlling them in a sufficiently
high number of directions (see Section 5.3 for details): in this way we can deal with more
general energy densities of the form �.uC/C �.u�/, where � is a lower-semicontinuous
function.

The second main result of the paper (see Theorem 4.10) concerns the regularity of the
relaxed minimizers of (1.3). Provided that the volume penalization function f is Lipschitz
and that we are in two dimensions, we prove that for a minimizer .E; u/ of J, the optimal
obstacle E [ Ju is a closed set, while the optimal velocity u is a smooth Sobolev func-
tion outside the obstacle, recovering somehow the classical setting of the problem. More
precisely, we show that

H1.� \ @�E [ Ju n .@
�E [ Ju// D 0; (1.5)

so that the optimal obstacle can be described as the closed set obtained by the complement
of the connected components of � n @�E [ Ju on which u does not vanish identically.

The technical ideas to prove (1.5) stem from the pioneering result of De Giorgi, Car-
riero and Leaci on the Mumford–Shah problem [24, 30], where the key of the proof is
a decay estimate obtained by a contradiction/compactness argument. For vectorial prob-
lems, a similar strategy, but definitely more involved, was used for the Griffith fracture
problem in [19] (for the two-dimensional case) and in [16] (for higher dimensions). In the
fracture problem, the key compactness result relies on the possibility of approximating
a field u 2 SBD.Œ�1; 1�d / with a small jump set by a Sobolev function which is locally
controlled in H 1 (via the classical Korn inequality).

In our case, we follow a similar approximation procedure, but we have to handle two
additional constraints: incompressibility and non-penetration at the jumps. From a tech-
nical point of view, this is problematic since the bound in [19] is not strong enough to
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stay in divergence-free vector fields and the method in [16] creates new jumps on which
the non-penetration constraint is not a priori verified. However, when restricted to two
dimensions, the method of [16] leads to a stronger result, so that both constraints can be
handled.

The paper is organized as follows. In Section 2 we fix the notation and recall some
basic facts concerning sets of finite perimeter, functions of bounded deformation and
Hausdorff convergence of compact sets. Section 3 is devoted to the precise exposition
of the drag optimization problem. In Section 4 we detail the relaxation of the problem
in the family of obstacles of finite perimeter and with velocities of bounded deformation,
and formulate the main results of the paper concerning the existence of minimizers (in
any dimension) and their regularity in dimension two. The proof of the existence of min-
imizers is given in Section 6, and it is based on some technical results for SBD functions
collected in Section 5, while the regularity result is proved in Section 7.

2. Notation and preliminaries

2.1. Basic notation

If E � Rd , we denote by jEj its d -dimensional Lebesgue measure, and by Hd�1.E/

its .d � 1/-dimensional Hausdorff measure: we refer to [25, Chapter 2] for a precise def-
inition, recalling that for sufficiently regular sets, Hd�1 coincides with the usual area
measure. Moreover, we denote by Ec the complementary set of E, and by 1E its charac-
teristic function, i.e. 1E .x/ D 1 if x 2 E, 1E .x/ D 0 otherwise. In addition, we say that
E1 b E2 if E1 � E2. Finally, we denote by Qx;r � Rd the cube of center x and side r :
when x D 0, we simply write Qr .

If A � Rd is open and 1 � p � C1, we denote by Lp.A/ the usual space of
p-summable functions on A with norm indicated by k � kp . We denote by W 1;p.A/

the Sobolev space of functions in Lp.A/ whose gradient in the sense of distributions
belongs to Lp.AIRd /. Finally, given a finite-dimensional unitary space Y , we denote by
Mb.AIY / the space of Y -valued Radon measures on A, which can be identified with the
dual of Y -valued continuous functions on A vanishing at the boundary.

We denote by M d�m the set of d � m matrices with values in R: when d D m we
denote by Md�d

sym the subspace of d � d symmetric matrices. For a 2 Rd and b 2 Rm we
denote by a˝ b the element of M d�m such that

.a˝ b/ij D aibj ;

while if a; b 2 Rd we denote by aˇ b the matrix in Md�d
sym such that

.aˇ b/ij D
aibj C aj bi

2
:
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Given � 2Rd with j�j D 1, we denote by �? the hyperplane through the origin orthog-
onal to � . If E � Rd , we set

E� WD ��?.E/; (2.1)

where � denotes the orthogonal projection, and for y 2 �? we set

E�y WD ¹t 2 R W y C t� 2 Eº:

2.2. Functions of bounded variation and sets of finite perimeter

If � � Rd is open, we say that u 2 BV.�IRm/ if u 2 L1.�IRm/ and its derivative
in the sense of distributions is a finite Radon measure on �, i.e. Du 2Mb.�IM

d�m/.
The space BV.�IRm/ is called the space of functions of bounded variation on � with
values in Rm and it is a Banach space under the norm kukBV.�IRm/ WD kukL1.�IRm/ C

kDukMb.�IM
d�m/. We call jDuj.�/ WD kDukMb.�IM

d�m/ the total variation of u. We
refer the reader to [2] for an exhaustive treatment of the space BV.

We say that u 2 SBV.�IRm/ if u 2 BV.�IRm/ and its distributional derivative can
be written in the form

Du D rudx C .uC � u�/˝ �uHd�1
bJu;

where ru 2 L1.�IM d�m/ denotes the approximate gradient of u, Ju denotes the set of
approximate jumps of u, uC and u� are the traces of u on Ju, and �u.x/ is the normal to
Ju at x.

Note that if u 2 SBV.�IRm/, then the singular part of Du is concentrated on Ju
which is a countably Hd�1-rectifiable set: there exists a set E with Hd�1.E/ D 0 and a
sequence .Mi /i2N of C 1-submanifolds of Rd such that Ju � E [

S
i2N Mi .

We say that E � Rd , with jEj < C1, has finite perimeter if 1E 2 BV.Rd /. The
perimeter of E is defined as

Per.E/ D jD1E j.Rd /:

It turns out that

D1E D �EHd�1
b@�E; Per.E/ D Hd�1.@�E/;

where @�E is called the reduced boundary of E, and �E is the associated inner approxi-
mate normal (see [2, Section 3.5]). We have that @�E � @E, but the topological boundary
can in general be much larger than the reduced one. If A � Rd is open and bounded with
Hd�1.A/ < C1, then A has finite perimeter with Per.A/ � Hd�1.@A/.

2.3. Functions of bounded deformation

If � � Rd is open, we say that u 2 BD.�/ if u 2 L1.�IRd / and its symmetric gradient
Eu WD DuC.Du/�

2
in the sense of distributions is a finite Radon measure on �, i.e. Eu 2

Mb.�IMd�d
sym /. The space BD.�/ is called the space of functions of bounded deformation

on �. We refer the reader to [33, 34] for the main properties of the space BD.
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We make use of a subspace of BD.�/ called the space of special functions of bounded
deformation introduced in [1]. We say that u2 SBD.�/ if u2BD.�/ and its symmetrized
distributional derivative can be written in the form

Eu D e.u/ dx C .uC � u�/ˇ �uHd�1
bJu;

where e.u/ 2 L1.�IMd�d
sym / denotes the approximate symmetrized gradient of u, Ju

denotes the set of approximate jumps of u, uC and u� are the traces of u on Ju, and
�u.x/ is the normal to Ju at x. As in the case of functions of bounded variation, Ju is an
Hd�1-countably rectifiable set.

We use the following compactness and lower-semicontinuity result proved in [3].

Theorem 2.1. Let � � Rd be open, bounded and with a Lipschitz boundary, and let
.un/n2N be a sequence in SBD.�/ such that

sup
n

�
jEunj.�/C kunkL1.�IRd / C ke.un/kLp.�IMd�d

sym / CHd�1.Jun/
�
< C1

for some p > 1. Then there exists u 2 SBD.�/ and a subsequence .unk /k2N such that

unk ! u strongly in L1.�IRd /;

e.unk / * e.u/ weakly in Lp.�IMd�d
sym /;

Hd�1.Ju/ � lim inf
k!C1

Hd�1.Junk /:

We will need also some properties of the sections of SBD-functions. If � � Rd is
open and u 2 SBD.�/, let us consider the scalar function on ��y given by

Ou�y.t/ WD u.y C t�/ � �

and the set
J �u WD

®
x 2 Ju W .u

C.x/ � u�.x// � � 6D 0
¯
: (2.2)

The following result holds true (see [1]).

Theorem 2.2 (One-dimensional sections of SBD-functions). Let��Rd be open, � 2Rd

with j�j D 1 and let u 2 SBD.�/. Then for Hd�1-a.e. y 2 �� we have

Ou�y 2 SBV.��y/;

with
. Ou�y/

0.t/ D .e.u/� � �/.y C t�/ for a.e. t 2 ��y

and
J
Ou
�
y
D .J �u /

�
y :
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3. Obstacles in Stokes fluids and drag minimization

In this section we explain the drag problem for an obstacle immersed in a stationary flow.

3.1. The flow around the obstacle

Let � � Rd be an open bounded set with Lipschitz boundary, and let V 2 C 1.Rd IRd /
be a divergence-free vector field. Given E b� open and with a Lipschitz boundary, let us
consider the stationary flow for a viscous incompressible fluid around E with boundary
conditions on @� given by V , and with Navier boundary conditions on @E. More pre-
cisely, if uW� n E ! Rd is the velocity field, we require that the following items hold
true:

(a) Incompressibility: divu D 0 in � nE.

(b) Boundary conditions: we have

u D V on @� and the non-penetration condition u � � D 0 on @E;

where � denotes the exterior normal to E.

(c) Equilibrium: considering the stress

� WD �pId C 2�e.u/; (3.1)

where � > 0 is a viscosity parameter, e.u/ is the symmetrized gradient of u (also
denoted by D.u/) and p is the pressure, we require

div � D 0 in � nE: (3.2)

(d) Navier conditions on the obstacle: we have

.��/� D ˇu on @E;

where ˇ > 0 is a friction parameter, and .��/� denotes the tangential component
of force ��.

Stationary flow has the following variational characterization: u is the minimizer of the
energy

E.u/ WD 2�

Z
�nE

je.u/j2 dx C ˇ

Z
@E

juj2 dHd�1 (3.3)

among the class of (sufficiently regular) admissible fields

V
reg
E;V .�/ WD

®
v 2 H 1.� nEIRd / W v satisfies points (a) and (b)

¯
; (3.4)

where Hd�1 stands for the .d � 1/-dimensional Hausdorff measure, which reduces to the
area measure on sufficiently regular sets. Indeed, if u is a minimizer, and ' is an admissible
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variation, so that ' D 0 on @�, we get

0 D 2�

Z
�nE

e.u/ W e.'/ dx C ˇ

Z
@E

u � ' dHd�1

D 2�

Z
�nE

e.u/ W r' dx C ˇ

Z
@E

u � ' dHd�1

D �2�

Z
�nE

div e.u/ � ' dx C
Z
@E

Œ�2�e.u/� C ˇu� � ' dHd�1:

In particular, choosing ' with compact support in � nE we have

2� div e.u/ D rp

for some pressure field p: as a consequence � WD �pId C 2�e.u/ satisfies (3.2) of con-
dition (c).

Since the admissible functions ' are tangent to @E, the optimality condition reduces
to

0 D

Z
@E

Œ�2�e.u/� C ˇu� � ' dHd�1
D

Z
@E

Œ��� C ˇu� � ' dHd�1: (3.5)

Notice that every tangential vector field � on @E can be extended to a divergence-free
vector field on� nE which vanishes on @�, hence it is the trace of an admissible variation
': indeed, any extension W which vanishes on @� has a divergence with zero mean, so
that consideringW1 with divW1D divW withW1D 0 on @� and on @E (whose existence
is guaranteed, for example by [6, Theorem IV.3.1])), the required extension is given by
W �W1. We conclude that the optimality condition (3.5) yields the Navier condition of
point (b).

3.2. The drag force

Assume now that the external vector field V is equal to a constant V1 2 Rd n ¹0º, i.e.
the obstacle E is immersed in a uniform flow. The flow is perturbed near E, assuming the
value u, and the obstacle experiences a force which has a component in the direction V1
which is given by

Drag.E/ WD
Z
@E

�� �
V1

jV1j
dHd�1;

which is called the drag force on E in the direction of the flow.
We claim that

Drag.E/ D
1

jV1j
E.u/; (3.6)

where E.u/ is the energy defined in (3.3). Using the facts that � is symmetric and with
zero divergence (so that also the vector field �V1 is divergence-free), and that u D V1
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on @�, we may writeZ
@E

�� � V1 dHd�1
D

Z
@E

�V1 � � dHd�1
D

Z
@�

�V1 � � dHd�1

D

Z
@�

�u � � dHd�1

D

Z
�nE

div.�u/ dx C
Z
@E

�u � � dHd�1

D

Z
�nE

� W rudx C

Z
@E

�� � udHd�1: (3.7)

Using again that � is symmetric and that u is divergence-free, together with the con-
stitutive equation (3.1), we haveZ

�nE

� W rudx D

Z
�nE

� W e.u/ dx D

Z
�nE

.�pId C 2�e.u// W e.u/ dx

D

Z
�nE

.�p divuC 2�je.u/j2/ dx D 2�
Z
�nE

je.u/j2 dx;

while in view of the Navier conditions on @E and the fact that u is tangent to the obstacle,Z
@E

�� � udHd�1
D

Z
@E

.��/� � udHd�1
D ˇ

Z
@E

juj2 dHd�1:

Inserting into (3.7), we get that (3.6) follows.

3.3. The optimization problem

Let c > 0 and let f W .0; j�j/! R [ ¹C1º be a lower-semicontinuous function that is
not identically equal toC1. We are concerned with the following optimization problem:

min
E

®
Drag.E/C cHd�1.@E/C f .jEj/

¯
:

We are thus interested in finding the optimal shape of an obstacle which minimizes the
drag force, under a penalization involving its perimeter and its volume.

In view of the energetic characterization of the drag force established in Section 3.2,
we can formulate the problem as a minimization problem among the pairs .E; u/, where
u is a velocity field belonging to the family V

reg
E;V1

.�/ defined in (3.4):

min
E;u2V

reg
E;V1

.�/

²
2�

jV1j

Z
�nE

je.u/j2dxC
ˇ

jV1j

Z
@E

juj2dHd�1
C cHd�1.@E/Cf .jEj/

³
:

Setting all the constants equal to 1, and replacing V1 by a given divergence-free velocity
vector field V as in Section 3.1, the drag minimization problem above is a particular case
of the following shape optimization problem:

min
E;u2V

reg
E;V .�/

²Z
�nE

je.u/j2 dx C

Z
@E

juj2 dHd�1
CHd�1.@E/C f .jEj/

³
: (3.8)
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If we want to apply the direct method of the calculus of variations to the problem, i.e.
if we want to recover a minimizer by looking at minimizing sequences .En; un/n2N , the
following considerations are quite natural:

(a) Since the problem involves the perimeter ofE, the sequence .En/n2N is relatively
compact in the family of sets of finite perimeter (see Section 2).

(b) Concerning the velocities, it turns out naturally that it is convenient to also con-
sider discontinuous vector fields. Indeed, if un ! u in some sense, and @En
collapses in some parts generating a surface � outside the limit set E, the limit
velocity field u can present, in general, discontinuities across � .

En E

�

We thus expect an extra term in the surface integral related to the Navier condi-
tions, which amounts at least toZ

�n@E

ŒjuCj2 C ju�j2� dHd�1;

where u˙ are the two traces from both sides of � .

The previous considerations yield a relaxed version of problem (3.8) in whichE varies
among the family of sets of finite perimeter contained in�, while the family of associated
admissible velocity fields u is naturally contained in the space of special functions of
bounded deformation SBD.�/ (see Section 2).

In Section 4 we will give a precise formulation of the problem in this weak setting,
which guarantees existence of optimal solutions, describing in particular how the bound-
ary conditions on @� and on the obstacle have to be rephrased in this context.

4. A relaxed formulation of the shape optimization problem and
statements of the main results

Let��Rd be open, bounded and with a Lipschitz boundary, and let V 2 C 1.Rd IRd / be
a divergence-free vector field. In order to deal conveniently with the boundary conditions,
let us consider �0 � Rd open and bounded such that � b �0.

The following definition deals with the family of admissible configurations in the
relaxed setting.
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Definition 4.1 (The class A.V / of admissible obstacle-velocity configurations). We say
that .E; u/ is an admissible configuration for the external velocity V , and we write
.E; u/ 2 A.V /, if E � � is a set of finite perimeter, while

u 2 SBD.�0/ \ L2.�0IRd /

is such that u D 0 a.e. on E and the following conditions are satisfied:

(a) The flow is divergence-free: divu D 0 in the sense of distributions in �0.

(b) External boundary conditions: u D V a.e. on �0 n x�.

(c) Non-penetration condition on the obstacle:

u˙ � � D 0 on @�E [ Ju;

where � denotes the normal to the rectifiable set @�E [ Ju.

Remark 4.2. The crucial difference between admissible velocities in the present frame-
work and those of the family V

reg
E;V .�/ introduced before (see (3.4)) is that they may have

discontinuities outside E. Within the new setting, the global obstacle is given by

E [ Ju;

i.e. it may contain .d � 1/-dimensional parts.
Given .E; u/ 2 A.V /, concerning the traces of u on @�E, we denote by uC the trace

in the direction of the external normal �E , so that u� D 0 Hd�1-a.e. on @�E.
Concerning the non-penetration constraint, notice that it suffices to require it only

on Ju, since it is then automatically verified also on @�E. Indeed, for Hd�1-a.e. x 2
@�E n Ju, we have u�.x/ D uC.x/ D 0 and the constraint is verified, while for Hd�1-
a.e. x 2 Ju \ @�E, the two rectifiable sets Ju and @�E share the same normal vector.

Remark 4.3. The space SBD.�0/ is naturally a subspace of L1.�0IRd /: we require for
admissibility that u 2L2.�0IRd / to ensure that the velocity field has finite kinetic energy.
It will turn out that velocities in SBD.�0/ which are interesting for our problem (i.e. with
finite energy) are automatically elements of L2.�0IRd / (see Theorem 5.1).

Remark 4.4 (On the boundary condition). If .E; u/ 2 A.V /, then u 2 SBD.�0/ with
u D V a.e. on �0 n x�, so that

Ju \ @� D
®
x 2 @� W 
.u/.x/ 6D V.x/

¯
;

where 
.u/ is the trace of u on @� coming from � (i.e. the usual trace of u seen as an
element of SBD.�/). We conclude that within the present framework, the boundary con-
dition is somehow relaxed: a possible mismatch between u and V on @� is admitted, but
then the zone is counted as a jump part of the velocity field, and consequently as a part of
the obstacle @�E [ Ju, and will carry a contribution for the energy (see (4.2) below). Such
a relaxation of the boundary condition is a feature which is common to several applications
of functions of bounded variation to problems in continuum mechanics (see for example
[23, 27] in connection with fracture mechanics or [22] for problems in plasticity).
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Remark 4.5. Given .E; u/ 2 A.V /, the obstacle E [ Ju may touch @� only on those
parts where V is tangent to �: this is due to the fact that on .@�E [ Ju/ \ @�, the two
sets share Hd�1-a.e. the same normal, and uC D V (if the orientation is suitably chosen).

Remark 4.6. Let E b � be open and with a Lipschitz boundary. Then we can find W 2
H 1.� n EIRd / such that W D V on @�, W D 0 on @E and divW D 0. Indeed, if ' 2
C1.Rd / is such that ' D 1 on a neighborhood of Rd n� and ' D 0 on a neighborhood of
E, we can consider the vector field V1 WD 'V , whose divergence has zero mean on� nE
(by the Gauss theorem). Then we can find V2 2 H 1

0 .� nEIR
d / such that divV D divV1

(see [6, Theorem IV.3.1]), so that the field W WD V1 � V2 is an admissible choice. In
particular, we get that .E; W / 2 A.V /, so that the class of admissible configurations is
not empty.

Let

f W Œ0; j�j�! R [ ¹C1º be lower semicontinuous, not identically equal toC1. (4.1)

For every .E; u/ 2 A.V /, let us set (normalizing to 1 the constants involved in the drag
force problem)

J.E; u/ WD

Z
�0
je.u/j2 dx C

Z
@�E

juCj2 dHd�1

C

Z
Jun@�E

ŒjuCj2 C ju�j2� dHd�1

CHd�1.@�E/C 2Hd�1.Ju n @
�E/C f .jEj/: (4.2)

Remark 4.7. Concerning the volume integral in J.E; u/, the density e.u/ is equal to
e.V / a.e. on �0 n x� and equal to 0 a.e. on E: as a consequence we could replace it with
an integral on � nE without affecting the minimization of J.

Concerning the Navier energy and the surface penalization for @�E [ Ju, notice that
it counts also for the possible mismatch at the boundary between u and V as pointed out
in Remark 4.4: the mismatch is thus “penalized” by the energy of the problem.

The previous observations show that the larger domain �0 plays only an instrumental
role in the problem, as it can be replaced by any open domain strictly containing �.

The first main result of the paper is the following.

Theorem 4.8 (Existence of optimal obstacles). Let � � Rd be a bounded open set with
Lipschitz boundary, V 2 C 1.Rd IRd / a divergence-free vector field, and f a function
satisfying (4.1). Let the family of admissible configurations A.V / be given by Definition
4.1 and let J be the functional defined in (4.2). Then the problem

min
.E;u/2A.V /

J.E; u/ (4.3)

admits a solution.
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Remark 4.9. We recover the original drag minimization problem when V is a constant
non-zero vector V1, and in the functional we properly restore the physical constants �
and ˇ, together with the perimeter penalization constant c.

The second main result of the paper concerns the regularity of minimizers in the two-
dimensional setting.

Theorem 4.10 (Regularity in dimension two). Let � � R2 be a bounded open set with
Lipschitz boundary, V 2 C 1.R2IR2/ a divergence-free vector field and f W Œ0; j�j� !
Œ0;C1Œ a Lipschitz function. Let .E; u/ 2 A.V / be a solution to (4.3) according to The-
orem 4.8. Then

H1
�
� \ .Ju [ @�E n .Ju [ @

�E//
�
D 0;

and u 2 C1.� n Ju [ @�EIR2/.

Theorem 4.8 will be proved in Section 6, on the basis of some technical results estab-
lished in Section 5. The proof of Theorem 4.10 will be addressed in Section 7.

Remark 4.11. In order to prove that the functional J.E;u/ is the relaxation of the energy
appearing in the original problem (3.8) in the sense of the lower-semicontinuous enve-
lope of the calculus of variations, we need to approximate in energy any .E; u/ 2 A.V /

through “regular” configurations .En; un/ 2A.V /, whereEn has Lipschitz boundary and
un 2H

1.� nEnIRd /. This resembles the situation studied in [7], which can be extended
to the case of energies involving only the symmetrized gradient, like in the study of mate-
rial voids in linearly elastic materials (in this direction, see for example [20]). However,
the constraints of our problem make the analysis very hard to carry out: more specifi-
cally, admissibility requires the divergence-free condition div un D 0 and the tangency
constraint un ? @En, and it is not clear how to enforce them within the currently available
approximation procedures.

5. Some technical results in SBD

In this section we collect some technical properties concerning the space SBD that will
be fundamental in the proof of Theorem 4.8. In particular, in Theorem 5.1 we will prove
that admissible velocity vector fields enjoy higher summability properties (indeed they
belong to L

2d
d�1 ). In Theorem 5.3 we will prove that velocity fields u with u˙ tangent to

the discontinuity set Ju form a closed set under the natural convergence of minimizing
sequences for the main optimization problem. Finally, in Theorem 5.4 we will prove a
lower-semicontinuity result for surface energies depending on the traces, which entails in
particular the lower semicontinuity of the term associated to the Navier conditions.

5.1. An immersion result

The following embedding result holds true.
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Theorem 5.1. Let� � Rd be a bounded open set, and let u 2 SBD.Rd / be supported in
� such that

E.u/ WD

Z
�

je.u/j2 dx C

Z
Ju

ŒjuCj2 C ju�j2� dHd�1 < C1:

Then u 2 L
2d
d�1 .�/ with

kuk 2d
d�1
� C

p
E.u/;

where C depends on d and diam.�/ only.

Proof. It suffices to follow the strategy of the proof of the classical embedding of BD into
Ld=d�1 explained in [33], but concentrating on the square of the components.

Let us consider the unit vector

� WD
1
p
d
.1; 1; : : : ; 1/ 2 Rd :

Employing the characterization by sections recalled in Section 2, for Hd�1-a.e. y 2 �?

we have
Ou�y 2 SBV.��y/

with Z
�
�
y

j. Ou�y/
0
j
2 dt C

X
t2J

Ou
�
y

Œj. Ou�y/
C.t/j2 C j. Ou�y/

�.t/j2� < C1:

Then we can write for a.e. t 2 R,

k Ou�yk
2

L1.�
�
y/
� jD. Ou�y/

2
j.��y/

D

Z
�
�
y

2j Ou�y. Ou
�
y/
0
j dt C

X
t2J

Ou
�
y

ˇ̌
j. Ou�y/

C.t/j2 � j. Ou�y/
�.t/j2

ˇ̌
�
1

2
k Ou�yk

2

L1.�
�
y/
C 2j��y j

Z
�
�
y

j. Ou�y/
0
j
2 dt

C

X
t2J

Ou
�
y

�
j. Ou�y/

C.t/j2 C j. Ou�y/
�.t/j2

�
: (5.1)

Let us set

g�.x/ WD

Z
�
�
y

j. Ou�y/
0
j
2 dt C

X
t2J

Ou
�
y

Œj. Ou�y/
C.t/j2 C j. Ou�y/

�.t/j2�;

where y WD ��?.x/, i.e. the projection of x on the hyperplane �?, and g�.x/ only depends
on the projection of x on �? andZ

�?
g� dHd�1

D

Z
�

je.u/� � �j2 dx C

Z
Ju

ŒjuCj2 C ju�j2�j� � �j dHd�1

� C

�Z
�

je.u/j2 dx C

Z
Ju

ŒjuCj2 C ju�j2� dHd�1

�
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where C depends only on d . Thanks to (5.1) we have

j� � uj2 � Cg� a.e. on �; (5.2)

where C depends on the diameter of �, and from now on all the constants C that appear
depend on n, diam.�/. For every k D 1; : : : ; d � 1, we can write

� D
1
p
d
ek C

r
d � 1

d
hk ;

where ek is the kth vector of the canonical base, and hk is the unit vector in the direction
p
d� � ek . Reasoning as above on the decomposition

� � u D

r
d � 1

d
hk � uC

1
p
d
ek � u;

we obtain a similar estimate

j� � uj2 � C.ghk C gek /: (5.3)

Multiplying inequality (5.2) with inequalities (5.3) for k D 1; : : : ; d � 1, we obtain, rea-
soning as in [33, Chapter II, Theorem 1.2],

k.� � u/2k d
d�1
� C

�Z
�

je.u/j2 dx C

Z
Ju

ŒjuCj2 C ju�j2� dHd�1

�
:

Since this estimate does not depend on the particular choice of the basis and hence holds
for any � with norm 1, the theorem is proved.

5.2. Closure of the non-penetration constraint

In the context of equi-Lipschitz boundaries, the preservation of the non-penetration prop-
erty for a sequence of Sobolev functions converging weakly, comes rather directly via the
divergence theorem (we refer the reader, for instance, to [8]). However, in the case of col-
lapsing boundaries, so that the limit function lives on both sides of a surface and in the
absence of any smoothness of the limit set, this technique does not work. The proof of the
non-penetration preservation requires different technical arguments that we handle in the
SBD context.

Let us start with the following lower-semicontinuity result.

Theorem 5.2. Let � � Rd be a bounded open set, and let .un/n2N be a sequence in
SBD.�/ such that

sup
n

�Z
�

je.un/j
2 dx CHd�1.Jun/

�
< C1

with
un ! u in measure
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for some u 2 SBD.�/. ThenZ
Ju

ŒjuC � �uj C ju
�
� �uj� dHd�1

� lim inf
n!C1

Z
Jun

ŒjuCn � �un j C ju
�
� �un j� dHd�1:

Proof. Let us consider a countable set of functions ¹'h W h 2 Nº which is dense with
respect to k � k1 inside the set®

f 2 C 0c . �0;C1Œ / W
R C1
0

f dt D 0 and kf k1 � 1
¯
:

Given " > 0, let us consider

gh;k.x/ WD

Z 1
2 jx�xk j

2

0

'h.t/ dt;

where ¹xk W k 2 Nº is a countable and dense set in B".0/ � Rd with x0 D 0. Clearly,
gh;k 2 C

1
c .R

d / with

Gh;k.x/ WD rgh;k.x/ D 'h

�1
2
jx � xkj

2
�
.x � xk/:

We have that Gh;k is a continuous conservative vector field with compact support on Rd .
Let us set for .i; j / 2 Rd �Rd and � 2 Rd with j�j D 1,

f".i; j; �/ WD sup
h;k

.Gh;k.i/ �Gh;k.j // � �:

By construction, f" is a symmetric jointly convex function according to [28, Definition
3.1]. We claim that for i 6D j ,

ji � �j C jj � �j � f".i; j; �/ � ji � �j C jj � �j C 2": (5.4)

In view of the lower-semicontinuity result [28, Theorem 5.1] we have

lim inf
n!C1

Z
Jun

f".u
C
n ; u

�
n ; �un/ dHd�1

�

Z
Ju

f".u
C; u�; �u/ dHd�1:

We can thus write

lim inf
n!C1

�Z
Jun

ŒjuCn � �un j C ju
�
n � �un j� dHd�1

C 2"Hd�1.Jun/

�
� lim inf
n!C1

Z
Jun

f".u
C
n ; u

�
n ; �un/ dHd�1

�

Z
Ju

f".u
C; u�; �u/ dHd�1

�

Z
Ju

ŒjuC � �uj C ju
�
� �uj� dHd�1;

so that the result follows taking into account the bound on Hd�1.Jun/ and letting "! 0.
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In order to complete the proof, we need to show claim (5.4). The estimate from above
follows from

ŒGh;k.i/ �Gh;k.j /� � � � j.i � xk/ � �j C j.j � xk/ � �j � ji � �j C jj � �j C 2"

since k'hk1 � 1 and jxkj < ". Let us prove the estimate from below. We select xkn ! 0

such that ji � xkn j 6D jj � xkn j (which is always possible in view of the density of ¹xk W
k 2 Nº inside B".0/ and since i 6D j ) and then 'hn such that for n!C1,

'hn

�1
2
ji � xkn j

2
�
!

i � �

ji � �j C �
and 'hn

�1
2
jj � xkn j

2
�
! �

j � �

jj � �j C �
;

where � > 0. By definition of f" we infer that

f".i; j; �/ � ji � �j C jj � �j � 2�;

so that the estimate from below follows by sending �! 0.

We are now in a position to prove the main result of the section.

Theorem 5.3 (Closure of the non-penetration constraint on the jump set). Let�� Rd be
a bounded open set, and let .un/n2N be a sequence in SBD.�/ such that

sup
n

�Z
�

je.un/j
2 dx CHd�1.Jun/

�
< C1

and
un ! u in measure

for some u 2 SBD.�/. If

u˙n � �un D 0 Hd�1-a.e. on Jun ;

then
u˙ � �u D 0 Hd�1-a.e. on Ju:

Proof. By Theorem 5.2 we may writeZ
Ju

ŒjuC � �uj C ju
�
� �uj� dHd�1

� lim inf
n!C1

Z
Jun

ŒjuCn � �un j C ju
�
� �un j� dHd�1

D 0;

so that the result follows.

5.3. A lower-semicontinuity result for surface energies in SBD

In this section we deal with the lower semicontinuity of the surface term of the functional
J in (4.2) connected with the Navier conditions on the obstacle. The following lower-
semicontinuity result holds true.
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Theorem 5.4. Let � � Rd be an open set, un; u 2 SBD.�/ such that

un ! u strongly in L1.�IRd /

and

sup
n

�Z
�

je.un/j
2 dx CHd�1.Jun/

�
< C1:

Then if �WRd ! Œ0;C1� is a lower-semicontinuous function, we haveZ
Ju

Œ�.uC/C �.u�/� dHd�1
� lim inf
n!C1

Z
Jun

Œ�.uCn /C �.u
�
n /� dHd�1:

This applies in particular to �.u/ D juj2 and �.u/ D 1¹u¤0º, which will be of interest
to us.

Proof of Theorem 5.4. Notice first that � may be supposed to be continuous. Indeed, for
any lower-semicontinuous non-negative �, by considering a sequence of continuous non-
negative functions �k % � we getZ

Ju

Œ�.uC/C �.u�/� dHd�1
D sup

k

Z
Ju

Œ�k.u
C/C �k.u

�/� dHd�1

� sup
k

lim inf
n!C1

Z
Jun

Œ�k.u
C
n /C �k.u

�
n /� dHd�1

� lim inf
n!C1

Z
Jun

Œ�.uCn /C �.u
�
n /� dHd�1:

Through a now-standard blow-up argument (see Remark 5.6), we can reduce the prob-
lem to the following lower-semicontinuity result. LetQ1 �Rd be the unit square centered
at 0, and let us set

H WD Q1 \ ¹xd D 0º and Q˙1 WD Q1 \ ¹xd ? 0º:

Given u˙ 2 Rd with uC 6D u� and un 2 SBD.Q1/ with

un ! u WD uC1QC1
C u�1Q�1 strongly in L1.Q1IRd /; (5.5)

sup
n

Hd�1.Jun/ < C1 (5.6)

and
e.un/! 0 strongly in L1.Q1IM d�d

sym /; (5.7)

then
�.uC/C �.u�/ � lim inf

n!C1

Z
Jun

Œ�.uCn /C �.u
�
n /� dHd�1: (5.8)

We now divide the proof into several steps, and we employ the characterization by sections
of SBD functions explained in Section 2.
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Step 1. Let " > 0 be given. We fix ı > 0 and N 2 N with N > d : these numbers will be
subject to several constraints that will appear during the proof.

Let us fix N unit vectors ¹�iº1�i�N such that

jed � �i � 1j < ı (5.9)

and such that any subset of d of them forms a basis of Rd . Moreover, we may assume in
addition that

.uC � u�/ � �i 6D 0 (5.10)

for every i D 1; : : : ; N .
Thanks to (5.5) and (5.6), we can fix a > 0 small such that settingH˙ WDH � ¹˙aº D

H ˙ aed , we have

.un/jH˙ ! u˙ strongly in L1.H˙IRd /

and
8n 2 N W Hd�1.Jun \H

˙/ D 0: (5.11)

Step 2. We claim that, up to a subsequence, we can find H�" � H
� with

Hd�1.H� nH�" / < " (5.12)

such that for every i D 1; : : : ; N , for every y 2 H�" and for every n 2 N,

H�" \ Jun D ;; (5.13)

and
H0..Jun/

�i
y / < C1; H0..Jun/

�i
y \RC/ � 1: (5.14)

Moreover, setting
b.un/�iy WD un.y C t�i / � �i ;

for every y 2 H�" we have

b.un/�iy 2 SBV..Q1/�iy /;

Jb.un/�iy D .Jun/
�i
y (5.15)

(cf. notation (2.2)),

kŒb.un/�iy �0kL1 ! 0 uniformly for y 2 H�" ; (5.16)

and
.un/jH� ! u� uniformly on H�" : (5.17)

Indeed, if the number ı appearing in (5.9) is small enough, we can find A�" � H
� with

Hd�1.H� n A�" / <
"

2
(5.18)
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and such that for every y 2 A�" the lines ¹y C t�i W t 2 Rº intersect HC for every i D
1; : : : ;N . In view of (5.5), (5.6) and (5.7), and since pointwise convergence implies almost
uniform convergence, we can find N" � A�" with

Hd�1.N"/ <
"

2
(5.19)

and such that, up to a subsequence,

kb.un/�iy � Ou�iy kL1 ! 0 uniformly for y 2 A�" nN"; (5.20)

kŒb.un/�iy �0kL1 ! 0 uniformly for y 2 A�" nN"; (5.21)

.un/jH� ! u� uniformly on A�" nN"; (5.22)

and for every y 2 A�" nN",
H0..Jun/

�i
y / < C1: (5.23)

Notice that for n large enough and for every y 2 A�" nN" we have

.Jun/
�i
y 6D ;: (5.24)

Indeed, otherwise, we would get for nk ! C1 the existence of yk 2 A�" n N" with
1.unk /�iyk 2 W 1;1..Q1/

�i
yk /, and (5.22) together with (5.21) would yield

k1.unk /�iyk � u�k1 ! 0

against (5.20) (recall that by the choice (5.10) of the �i , the functions Ou�iy have a jump).
The claim follows by setting

H�" WD A" n

�
N" [

[
n

.Jun \H
�/

�
:

Indeed, (5.12) follows from (5.18), (5.19) and (5.11), while (5.13) is clearly satisfied.
Relation (5.14) follows by (5.23) and (5.24), while relation (5.16) follows from (5.21).
Finally, relation (5.17) follows from (5.22).

Step 3. For every i D 1; : : : ; N , let us consider the set J i;�n given by the first point of
intersection (with t > 0) of the line ¹y C t� i W t 2 Rº with the jump set Jun as y varies
in the set H�" defined in Step 2 (recall (5.14) and (5.15)). In view of (5.16) and (5.17), we
can find �n ! 0 such that for every x 2 J i;�n with �un � �i > 0,

ju�n .x/ � �i � u
�
� �i j < �n: (5.25)

Step 4. We claim that, for ı small enough and N large enough, up to a subsequence, we
can find QJ�n � Jun with

Hd�1. QJ�n / � 1 � c"; (5.26)
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where c" ! 0 as "! 0, and such that for every x 2 QJ�n ,

x 2 J i;�n for d different indices i 2 ¹1; : : : ; N º;

where J i;�n is defined in Step 3. Moreover, we can orient �un on QJ�n in such a way that

ed � �un > 0 and �i � �un > 0 for every i D 1; : : : ; N : (5.27)

Intuitively speaking, the points in QJ�n are seen from H�" under d different directions:
moreover, the associated lines cut the jump transversally, from the “lower” to the “upper”
part.

Indeed, in view of the definition of �i (which forms a very small angle with ed as
ı! 0) and of the area formula (cf. for instance [26, Sec. 3.2]), we can assume that ı is so
small that for every i D 1; : : : ; N ,

Hd�1.J i;�n / �

Z
J
i;�
n

j�un � �i jdHd�1
DHd�1..H�" /

�i / D
1

1C Ocı
Hd�1.H�" /; (5.28)

where the notation .H�" /
�i is defined in (2.1) and where Ocı ! 0, so that, taking into

account (5.12), for small ı we have

Hd�1.J i;�n / � 1 � 2": (5.29)

By Lemma 5.5 below (with X D Jun , � D Hd�1 and M given by the family of Borel
sets), if N is large enough we can find an index Ni such that

Hd�1

�
J
Ni ;�
n n

[
i1<i2<���<id
ihD1;:::;N

.J i1;�n \ J i2;�n \ � � � \ J id ;�n /

�
< ": (5.30)

Intuitively speaking, most of the points in J
Ni ;�
n are seen fromH�" at least under d different

directions: we call this set QJ�n , i.e.

QJ�n WD J
Ni ;�
n \

[
i1<i2<���<id
ihD1;:::;N

.J i1;�n \ J i2;�n \ � � � \ J id ;�n /: (5.31)

In view of (5.29) and (5.30) we get

Hd�1. QJ�n / � 1 � 3": (5.32)

Finally, if we set

Gn;" WD
®
x 2 QJ�n W j�un � �Ni j > "

¯
and Bn;" WD QJ

�
n nGn;";

coming back to (5.28) we have

Hd�1.Gn;"/C "
2Hd�1.Bn;"/ > 1 � 3";
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so that
Hd�1.Gn;"/ > 1 � 3" � "

2C;

where C WD supn Hd�1.Jun/ < C1. Finally, we orient the normal �un on Gn;" in such
a way that

�un � �Ni > ":

The inequalities (5.27) then also hold true on Gn;" if ı is small enough thanks to (5.9).
Reducing QJ�n to Gn;" if necessary, the full claim follows, taking into account (5.31) and
(5.32).

Step 5. Let QJ�n � Jun be the set given by Step 4. Since the points of this set are seen from
H�" under d different directions, in view of (5.25) we infer that there exists Q�n ! 0 such
that for every x 2 QJ�n ,

ju�n .x/ � u
�
j < Q�n:

Reasoning in a similar way starting from the upper part HC" , and employing the opposite
directions ¹��i W i D 1; : : : ; N º, we can construct QJCn � Jun with �un oriented such that
again

ed � �un > 0 and �i � �un > 0 for every i D 1; : : : ; N ;

such that
Hd�1. QJCn / � 1 � c" (5.33)

with c" ! 0 as "! 0, and such that for every x 2 QJCn ,

juCn .x/ � u
C
j < Q�n:

Notice that for x 2 QJ�n \ QJ
C
n , the orientation chosen is compatible with that of (5.27), so

that indeed u�n .x/ and uCn .x/ are the two traces of un at x.
We can thus write, in view of the continuity of �,Z

Jun

Œ�.uCn /C �.u
�
n /� dHd�1

�

Z
QJCn \ QJ

�
n

Œ�.uCn /C �.u
�
n /� dHd�1

C

Z
QJCn � QJ

�
n

Œ�.uCn /C �.u
�
n /� dHd�1

�

Z
QJCn \ QJ

�
n

Œ�.uCn /C �.u
�
n /� dHd�1

C

Z
QJCn n QJ

�
n

�.uCn / dHd�1
C

Z
QJ�n n QJ

C
n

�.u�n / dHd�1

�

Z
QJCn

�.uCn / dHd�1
C

Z
QJ�n

�.u�n / dHd�1

� Œ�.uC/ � QQ�n�H
d�1. QJCn /C Œ�.u

�/ � QQ�n�H
d�1. QJ�n /;
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where QQ�n ! 0, so that, taking into account (5.26) and (5.33),

lim inf
n!C1

Z
Jun

Œ�.uCn /C �.u
�
n /� dHd�1

� Œ�.uC/C �.u�/�.1 � 2c"/:

The conclusion follows by letting "! 0.

In the proof of Theorem 5.4 we made use of the following abstract lemma.

Lemma 5.5. Let .X;M; �/ be a finite measure space. Let " > 0 and d � 2. Then there
exists N 2 N that only depends on �.X/, ", d such that if ¹EiºiD1;:::;N is a family of sets
in M, we can find Ni such that

�

�
ENi n

[
j1<j2<���<jd

.Ej1 \Ej2 \ � � � \Ejd /

�
< ":

Proof. Up to dividing " by �.X/ we suppose without loss of generality that �.X/ D 1.
It is enough to prove that for any d � 2, " > 0, there is some N.d; "/ � 1 such that any
family of N � N.d; "/ of sets .Ei /1�i�N there is some i that verifies

�

�
Ei n

[
J�Œ1;N �n¹iº
jJ jDd�1

\
j2J

Ej

�
< ";

meaning that there is some i such that every point of Ei outside a set of measure less than
" is in (at least) d � 1 other sets Ej (for j ¤ i ).

We prove it by recursion. If d D 2, let N WD Œ1
"
�, where Œ�� denotes the integer part.

Given .Ei /1�i�N , let us consider the sets .Ei n
S
1�j�N;j¤i Ej /1�i�N . These are dis-

joint and �.X/ D 1, so there is some i such that

�

�
Ei n

[
1�j�N;j¤i

Ej

�
�
1

N
� ";

which proves the initialization.
Assume now that the result is true for d and let us check it for d C 1. Let

N WD N
�
d;
"

2

�
and M WD

h2
"

i
;

and let us consider N � M sets that we classify into N groups of M sets, written
.Ek;i /1�k�N;1�i�M . For every k 2 Œ1;N �, the sets .Ek;i n

S
1�j�M;j¤i Ek;j /1�i�M are

disjoint, so there is some ik such that

�

�
Ek;ik n

[
1�i�M;i¤ik

Ek;i

�
�

1

M
�
"

2
:
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Considering the sets .Ek;ik /1�k�N , since N D N.d; "
2
/ we find some Nk such that

�

�
E Nk;i Nk

n

[
K�Œ1;N �n¹ Nkº
jKjDd�1

\
k2K

Ek;ik

�
�
"

2
:

This means that outside a set of measure at most "
2

, every point of E Nk;i Nk
is in d � 1 sets

of the form Ek;ik for k ¤ Nk, and similarly every point outside a set of measure at most
"
2

is also in one set of the form E Nk;i for some i ¤ i Nk . We conclude that outside a set of
measure at most ", every point of E Nk;i Nk

belongs to d other sets, meaning N.d C 1; "/ is

well defined and N.d C 1; "/ � N.d; "
2
/Œ2
"
�.

Remark 5.6. Let us detail the blow-up argument used in the proof of Theorem 5.4. If we
set

�n WD Œ�.u
C
n /C �.u

�
n /�H

d�1
bJun

and assume that (up to a subsequence)

�n
�
* � weakly* in Mb.�/

for some Radon measure � on �, the conclusion follows if we show that

� � Œ�.uC/C �.u�/�Hd�1
bJu as measures on �:

With this aim it is sufficient to show that

d�

dHd�1
.x/ � Œ�.uC.x//C �.u�.x//� for Hd�1-a.e. x 2 Ju; (5.34)

where d�

dHd�1 denotes the Radon–Nikodym derivative of �with respect to Hd�1 (restrict-
ed to Ju).

Let us assume (up to subsequences) that

�n WD Hd�1
bJun

�
* � weakly* in Mb.�/;

and that
je.un/j dx

�
* f dx weakly* in Mb.�/;

where f 2 L1.�/ (this is possible since .e.un//n2N is bounded in L2).
Let x 2 Ju be such that

d�

dHd�1
.x/ D lim

r!0

�.Qx;r /

rd�1
; lim

r!0

�.Qx;r /

rd�1
< C1; lim

r!0

1

rd�1

Z
Qr .x/

jf j dx D 0;

and (having chosen the axis so that �u.x/ D ed ), for r ! 0C,

u.x C r �/! uC.x/1QC1
C u�.x/1Q�1 strongly in L1.Q1IRd /:
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Since Hd�1-a.e. x 2 Ju satisfies these properties, it suffices to concentrate on such points
to prove inequality (5.34).

Let rk ! 0 be such that

�.@Qx;rk / D �.@Qx;rk / D 0:

Since by weak convergence and the relation above we have �n.Qx;rk /! �.Qx;rk /, and
similarly for �, we can choose nk %C1 such that

�.Qx;rk / � �nk .Qx;rk / �
rd�1
k

k
; �.Qx;rk / � �nk .Qx;rk / �

rd�1
k

k

and Z
Qx;rk

jf j dx �

Z
Qx;rk

je.unk /j dx �
rd�1
k

k
:

Moreover, setting vk.y/ WD unk .x C rky/ we can also assume

vk ! uC.x/1QC1
C u�.x/1Q�1 strongly in L1.Q1IRd /:

We getZ
Q1

je.vk/j dx D
1

rd�1
k

Z
Qx;rk

je.unk /j dx �
1

rd�1
k

Z
Qx;rk

jf j dx C
1

k
! 0

and

Hd�1.Jvk / D
1

rd�1
k

Hd�1.Junk \Qx;rk / D
�nk .Qx;rk /

rd�1
k

�
�.Qx;rk /

rd�1
k

C
1

k
! c < C1;

so that, using the lower semicontinuity (5.8) concerning functions on the unit square (and
to which the proof of the theorem has been reduced),

d�

dHd�1
.x/ D lim

k!C1

�.Qx;rk /

rd�1
k

� lim inf
k!C1

�nk .Qx;rk /

rd�1
k

D lim inf
k!C1

Z
Jvk

Œ�.vC
k
/C �.v�k /� dHd�1

� �.uC.x//C �.u�.x//

and (5.34) follows.

6. Existence of minimizers: Proof of Theorem 4.8

We are now in a position to prove the first main result of the paper.
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Proof of Theorem 4.8. Let .En; un/n2N be a minimizing sequence: since the function f
is not identically equal toC1, and in view of Remark 4.6, there exists C > 0 such that

J.En; un/ � C:

Since un D 0 a.e. on En we may writeZ
@�En

juCn j
2 dHd�1

C

Z
Junn@

�En

ŒjuCn j
2
C ju�n j

2� dHd�1
D

Z
Jun

ŒjuCn j
2
C ju�n j

2� dHd�1

so that we infer

Hd�1.@�En/ � C

and Z
�

je.un/j
2 dx CHd�1.Jun/C

Z
Jun

ŒjuCn j
2
C ju�n j

2� dHd�1
� C:

Notice that

jE.un/j.�
0/ D

Z
�0
je.un/j dx C

Z
Jun

juCn � u
�
n j dHd�1

�

Z
�0n�

je.V /j dx C

Z
�

je.un/j dx C

Z
Jun

ŒjuCn j C ju
�
n j� dHd�1

�

Z
�0n�

je.V /j dx C
1

2

�
j�j C

Z
�

je.un/j
2 dx C 2Hd�1.Jun/

C

Z
Jun

ŒjuCn j
2
C ju�n j

2� dHd�1

�
� zC ;

for some zC > 0. Moreover, thanks to Theorem 5.1 applied to u � V we may assume also
that

kunk
L

2d
d�1 .�0/

� zC : (6.1)

By the compactness result in SBD (see Theorem 2.1), there exist a subsequence .unk /k2N

and u 2 SBD.�0/ with u D V on �0 n� and such that

unk ! u strongly in L1.�0IRd /; (6.2)

e.unk / * e.u/ weakly in L2.�0IM d�d
sym /; (6.3)

Hd�1.Ju/ � lim inf
k!C1

Hd�1.Junk /:

Concerning the sets Enk , we may assume, up to a further subsequence if necessary, that
there exists a set of finite perimeter E � � such that

1Enk ! 1E strongly in L1.Rd / (6.4)
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with
Hd�1.@�E/ � lim inf

k!C1
Hd�1.@�Enk /:

In particular, we get
f .jEj/ � lim inf

n!C1
f .jEnj/: (6.5)

Let us prove that
.E; u/ 2 A.V /: (6.6)

In view of (6.1) we infer that u 2 L
2d
d�1 .�0IRd / so that in particular u 2 L2.�0IRd /.

Moreover, u D V on �0 n�, while u D 0 a.e. on E thanks to (6.2) and (6.4).
Since the divergence constraint is intended in the sense of distributions on �, this

passes easily to the limit thanks to (6.2). Moreover, in view of Theorem 5.3 we deduce

u˙ ? �u on Ju:

In particular, this entails
uC ? �E on @�E \�;

since for x 2 @�E we have either x 2 Ju or uC.x/ D 0. We conclude that the non-
penetration constraint for the velocity field holds on @�E and on Ju n @�E, so that (6.6)
holds true.

Let us prove the pair .E; u/ is a minimizer for the problem. Thanks to (6.3) we getZ
�0
je.u/j2 dx � lim inf

k!C1

Z
�0
je.unk /j

2 dx;

while in view of Theorem 5.4 we haveZ
Ju

ŒjuCj2 C ju�j2� dHd�1
� lim inf
k!C1

Z
Junk

ŒjuCnk j
2
C ju�nk j

2� dHd�1;

which entailsZ
@�E

juCj2 dHd�1
C

Z
Jun@�E

ŒjuCj2 C ju�j2� dHd�1

� lim inf
k!C1

�Z
@�Enk

juCnk j
2 dHd�1

C

Z
Junk

n@�Enk

ŒjuCnk j
2
C ju�nk j

2� dHd�1

�
(6.7)

since u D 0 a.e. on E and unk D 0 a.e. on Enk .
Let us prove that

2Hd�1.Ju n @
�E/CHd�1.@�E/

� lim inf
k!C1

.2Hd�1.Junk n @
�Enk /CHd�1.@�Enk //: (6.8)
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Let us choose h 2 Rd such that

Hd�1
�®
x 2 @�E [ Ju W u

C.x/ D h
¯�
D Hd�1

�®
x 2 @�E [ Ju W u

�.x/ D h
¯�

D Hd�1
�®
x 2 @�Enk [ Junk W u

C
nk
.x/ D h

¯�
D Hd�1

�®
x 2 @�Enk [ Junk W u

�
nk
.x/ D h

¯�
D 0:

This is possible because, for example, the sets ¹x 2 @�E [ Ju W uC.x/ D hº are disjoint
as h varies, and similarly for the other sets. In particular, setting

vh WD uC h1E and vhnk WD unk C h1Enk

we have

Jvh D Ju [ J1E D @
�E [ Ju and Jvhnk

D Junk [ J1Enk
D @�Enk [ Junk

up to Hd�1-negligible sets. If we apply Theorem 5.4 with the choice �h.s/ D 1¹s¤hº to
the sequence .vhnk /k2N we get

Hd�1.@�E/C 2Hd�1.Ju n @
�E/ D

Z
J
vh

Œ�h..v
h/C/C �h..v

h/�/� dHd�1

� lim inf
k!C1

Z
J
vhnk

Œ�h..v
h
nk
/C/C �h..v

h
nk
/�/� dHd�1

D lim inf
k!C1

ŒHd�1.@�Enk /C 2H
d�1.Junk n @

�Enk /�

so that (6.8) holds true.
Gathering (6.3), (6.7), (6.5) and (6.8), we deduce

J.E; u/ � lim inf
k!C1

J.Enk ; unk /

so that, taking into account (6.6), the pair .E;u/ is a minimizer of the main problem (4.3),
and the proof is concluded.

7. Regularity of two-dimensional minimizers: Proof of Theorem 4.10

This section is devoted to the proof of Theorem 4.10 concerning the regularity of mini-
mizers in dimension two.

As mentioned in the introduction, the general strategy used by De Giorgi, Carriero
and Leaci for the Mumford–Shah problem in [24] faces the new difficulties given by the
vectorial context, considered in [16, 19] in connection with the Griffith fracture problem,
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and also by extra conditions proper to our problem, that is, incompressibility and non-
penetration for the velocity fields. We follow the main lines of [16,19]: however, technical
difficulties allow us to deal only with dimension two (see point (a) below).

Since our drag problem involves pairs .E; u/ as admissible configurations, and some
points of @�E may not be jump points of u, it will be useful to deal with pairs .J; u/,
where J is a rectifiable set and u is a function whose jumps are contained (up to H1-
negligible sets) in J and satisfy the constraints of zero divergence and non-penetration.
More precisely, we formulate the following definition.

Definition 7.1 (The class V ). Let � � R2 be an open set. We say that .J; u/ 2 V.�/

if J � � is a rectifiable set, and u 2 SBD.�/ is such that div u D 0 in the sense of
distributions in �, H1.Ju n J / D 0 and u˙

jJ
� �J D 0 H1-a.e. on J .

The structure of the section is the following:

(a) In Section 7.1 we prove a fundamental approximation lemma (smoothing Lemma
7.2), which allows us to approximate every .J; u/ 2 V.Q1/ with H1.J / small
by a configuration .J nQr ; v/ 2 V.Q1/, where v is a Sobolev function in the
slightly smaller squareQr with a control on the energy. The idea is that the jumps
of u in Qr are “smoothed out”, giving rise to the function v which preserves the
divergence-free constraint together with the non-penetration condition. This result
is inspired by [16], and it is here that the dimension two is fundamental.

(b) In Section 7.2 we prove regularity for local minimizers of a Griffith functional

G.J; u/ WD

Z
�

je.u/j2 dx CH1.J /;

defined on pairs .J; u/ 2 V.�/. The kind of local minimality considered is very
weak, and inspired by the kind of competitors that can be constructed thanks to
the smoothing Lemma 7.2. The key result to get regularity is given by the decay
estimate contained in Proposition 7.7.

Regularity for minimizers of the Griffith energy is then used in Section 7.3
to prove Theorem 4.10, that is, to show the regularity of minimizers of the drag
problem.

(c) Finally, motivated by the regularity result of Theorem 4.10, in Section 7.4 we
describe a different relaxation of the drag problem which involves topologically
closed obstacles and Sobolev velocities: the regularity result can be used to prove
that such a formulation is well posed in dimension two.

7.1. The smoothing lemma

We fix a standard radial, smooth, non-negative mollifier � with support in a disc of radius
1=8 and denote

�ı.x/ WD ı
�2�

�x
ı

�
:
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The main result of the section is the following smoothing lemma which is in the spirit
of [16].

Lemma 7.2 (Smoothing lemma). There exist C; � > 0 such that for any .J; u/ 2 V.Q1/

with H1.J / < �, then letting ı WDH1.J /
1
2 there exist r 2 �1� ı

1
2 ; 1Œ and v 2 SBD.Q1/\

H 1.Qr / such that the following items hold true:

(a) H0.J \ @Qr / D 0 and for every 0 < s < r ,

H1.J \ .Qr nQr�s// � Cı
3
2 s:

(b) ¹v ¤ uº � Qr and .J nQr ; v/ 2 V.Q1/.

(c) It holds that
ke.v/kL2.Q1/ � .1C Cı

1
6 /ke.u/kL2.Q1/:

(d) There exists a cut-off function ' 2 C1.Qr ; Œ0; 1�/ with ' D 0 on Qr n Qr�ı ,
' D 1 on Qr�4ı , and such that

ke.v/ � '�ı � e.u/kL2.Qr / � Cı
1
6 ke.u/kL2.Q1/:

Proof. The proof follows the strategy introduced in [16], and some parts will be referred
directly to that paper. However, since our conclusion is slightly different, we prefer to
develop some computations in detail. We use the notation a . b when a � Cb for some
dimensional constant C .

We divide the proof into several steps.

Step 1: Subdivision into small squares. Let us set

N WD 1C ŒH1.J /�
1
2 �;

where Œ�� denotes the integer part. In the following we assume that H1.J / is arbitrar-
ily small, so that N is arbitrarily large. For convenience in the construction, we set ı D
1=N � H1.J /

1
2 , which (mildly) differs from the choice of the statement: yet since ı is

asymptotically equivalent to H1.J /
1
2 , the mismatch does not affect the validity of the

conclusion.
For r 2 �1 � ı

1
2 ; 1Œ and each k � �2, let us set

ık WD
ır

2k
and rk D

�
N �

1

2k

�
ı:

Then we consider a partition (up to a negligible set) of Qr into cubes obtained by filling
Qr0 with cubes of side ı0 and denoted by . Qq0;j /j , and then each Qrk nQrk�1 with cubes
of side ık and denoted . Qqk;j /j (note that there is only one way to do this).

For any square q D z C Œ�t; t �2, we write

q0 WD z C
h
�
8

7
t;
8

7
t
i2

and q00 WD .q0/0:
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We set
qk;j WD . Qqk;j /

0:

We may notice that with our choices,

8k � 1 W q00k;j b QrkC1 nQrk�2 ; (7.1)

and ¹q00
k;j
ºk;j is a covering ofQr with a fixed finite number of overlaps: indeed, each q00

k;j

meets at most 8 neighbors q00p;i , and they all verify jk � pj � 1, meaning ık=ıp 2 ¹12 ; 1; 2º.
This is because the factor 8

7
above is chosen such that .8

7
/3 < 3

2
.

Step 2: Choice of the square Qr . We now make a convenient choice of r such that the
density of J near @Qr is small, following an approach similar to [18, Theorem 2.1].

We claim that there exist C; � > 0 such that for ı < � we can choose r 2 �1 �
p
ı; 1Œ

with H0.J \ @Qr / D 0,

8 s 2 �0; rŒW H1.J \ .Qr nQr�s// � Cı
3
2 s (7.2)

and Z
QrnQr�2

je.u/j2 dx < Cı
1
2

Z
Q1

je.u/j2 dx: (7.3)

Consider indeed the measure � on Œ0; 1� defined as

�.E/ WD
H1.J \QE /

H1.J /
C

R
QE
je.u/j2 dxR

Q1
je.u/j2 dx

;

where QE WD
S
r2E @Qr is the cubic shell associated to E � Œ0; 1�. It suffices to prove

that we can find r 2 �1 � ı
1
2 ; 1Œ such that

H0.J \ @Qr / D 0; (7.4)

and, denoting I sr WD Œr � s; rŒ for 0 < s < r ,

�.I sr / �
yCı�

1
2 s; (7.5)

where yC > 0 is a suitable constant which we fix below. Indeed, if ı is small enough this
implies that (recall that H1.J / behaves like ı2)

H1.J \ .Qr nQr�s// � H1.J /�.I sr / �
yCı

3
2 s

and Z
QrnQr�4ır

je.u/j2 dx � yCı�
1
2 .4ır/

Z
Q1

je.u/j2 dx � 4 yCı
1
2

Z
Q1

je.u/j2 dx;

so that (7.2) and (7.3) follow by choosing C WD 4 yC .



D. Bucur, A. Chambolle, A. Giacomini, and M. Nahon 34

Let I1 be the union of all intervals that do not satisfy (7.5). If .I siri / is a Vitali covering
of I , then

2 D �.Œ0; 1�/ �
X
i

�.I siri / >
yCı�

1
2

X
i

jI siri j D
yCı�

1
2

5

X
i

j5I siri j �
yCı�

1
2

5
jI1j;

hence jI1j < 10
yC
ı
1
2 .

Let I2 WD �x.J /[ �y.J /, where �x , �y denote the projection on the coordinate axis:
we have asymptotically jI2j � 2ı2. If C > 10, this implies that for ı small enough,

�1 �
p
ı; 1Œn.I1 [ I2/ 6D ;;

which yields the existence of r , which verifies claims (7.4) and (7.5).

Step 3: A first approximation. In view of (7.2) and of (7.1), for every k � 1 we have

H1.Ju \ q
00
k;j / . ı

3
2 ık ;

while if ı is small enough (recall that H1.J / behaves like ı2 and r 2 �1 � ı
1
2 ; 1Œ)

H1.Ju \ q
00
0;j / � H1.Ju/ . ıı0:

This means that the jump set of u in every cube of the constructed subdivision is arbitrarily
small compared to its sides.

Thanks to [15, Proposition 3], and taking into account the preceding inequalities , for
every .k; j / there is a set !k;j � q0k;j and an affine function ak;j with e.ak;j / D 0, such
that

j!k;j j . ıkH1.Ju \ q
00
k;j / . ıı2k ; (7.6)Z

q0
k;j
n!k;j

ju � ak;j j
4 dx .

�
ık

Z
q00
k;j

je.u/j2 dx

�2
; (7.7)

and the function vk;j WD uC .ak;j � u/1!k;j verifiesZ
qk;j

je.�ık � vk;j / � �ık � e.u/j
2 dx .

�H1.Ju \ q
00
k;j
/

ık

� 1
3

Z
q00
k;j

je.u/j2 dx

. ı
1
3

Z
q00
j;k

je.u/j2 dx (7.8)

(see [15, p. 1389]), where � is the mollifier defined at the beginning of the section.
Notice that in view of our construction (namely the choice of r), we have

j!k;j j � jqk;j j; (7.9)

and this is where we most use the fact that we are in two dimensions.
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We now let .'k;j / be a partition of unity associated to the covering .qk;j / of Qr and
such that jr'k;j j . 1

ık
. Let us set

w WD 1Q1nQruC 1Qr

X
k;j

'k;jwk;j ; where wk;j WD �ık � vk;j :

We claim that

w 2 SBD.Q1/ \H 1.Qr /; ¹w 6D uº � Qr ; H1.Jw n J / D 0; (7.10)



e.w/ �X
k;j

'k;j�ık � e.u/






L2.Qr /

. ı
1
6 ke.u/kL2.Q1/ (7.11)

and
the trace of w and u on @Qr coincide: (7.12)

We postpone the proof of these claims to Step 5.
Let us set

' WD
X

.0;j /2K

'0;j ;

where K denotes the set of indices such that q0;j has a distance greater than 2ır from
@Qr . Since r 2 �1 � ı

1
2 ; 1Œ, in view of the definition of the set of indices K , we get that

the function ' vanishes on Q nQr�ı and it is equal to 1 on Qr�4ı .
We can write

e.w/ �
X
k;j

'k;j�ık � e.u/ D Œe.w/ � '�ı � e.u/� �
X

.k;j /62K

'k;j�ık � e.u/:

Thanks to (7.3) we have



 X
.k;j /62K

'k;j�ık � e.u/





2
L2.Qr /

D





 X
.k;j /62K

'k;j�ık � e.u/





2
L2.QrnQr�2ır /

.
X

.k;j /62K

k'j;k�ık � e.u/k
2
L2.Q1nQr�2ır /

. ke.u/k2
L2.Q1nQr�3ır /

. ı
1
2 ke.u/k2

L2.Q1/
;

so that in view of (7.11) we conclude

ke.w/ � '�ı � e.u/kL2.Qr / . ı
1
6 ke.u/kL2.Q1/: (7.13)

Moreover, we may write

ke.w/kL2.Qr / � k'�ı � e.u/kL2.Qr / C ke.w/ � '�ı � e.u/kL2.Qr /

D k'�ı � e.u/kL2.Qr�ı / C ke.w/ � '�ı � e.u/kL2.Qr /

� ke.u/kL2.Q1/ C ke.w/ � '�ı � e.u/kL2.Qr /;
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so that taking into account (7.13) we deduce

ke.w/kL2.Q1/ � .1C Cı
1
6 /ke.u/kL2.Q1/; (7.14)

where C > 0.

Step 4: Enforcing the divergence-free constraint. By admissibility, u is divergence-free
in the sense of distributions in Q1, so that the trace of e.u/ is zero in Q1, whileZ

@Qr

u � � dH1
D 0; (7.15)

where � is the outward normal vector of Qr , and u denotes the trace on @Qr (J does not
intersect @Qr by construction).

Recalling that w 2 H 1.Qr /, we may write thanks to (7.13),

kdivwkL2.Qr /DkTr.e.w//kL2.Qr /DkTr.e.w/� '�ı � e.u//kL2.Qr / . ı
1
6 ke.u/kL2.Q1/:

By (7.12) the trace of u on @Qr coincides with that of w, so that from (7.15) we deduceZ
Qr

divw dx D 0:

Using a classical result (recorded at the end of this proof in Lemma 7.3), there exists a
vector field q 2 H 1

0 .Qr / such that

div q D divw and krqkL2.Qr / . kdivwkL2.Qr / . ı
1
6 ke.u/kL2.Q1/: (7.16)

Let

v WD

´
w � q in Qr ;

u in Q1 nQr ;

and let us check that v satisfies the conclusions of the lemma.
The choice of r given by Step 2 immediately yields point (a). Clearly, v 2 SBD.Q1/\

H 1.Qr / with ¹v 6D uº � Qr . Moreover, since the trace of w � q and u coincide on @Qr ,
we get div v D 0 in the sense of distributions in Q1, so that point (b) is proved. Points (c)
and (d) follow from the corresponding properties for w (see (7.13) and (7.14)) taking into
account that the correction term q has a small gradient norm of the order ı

1
6 as estimated

in (7.16).

Step 5: Proof of the claims (7.10), (7.11) and (7.12). In order to conclude the proof, we
need to check the claims on the function w contained in Step 3.

Let us start by noticing that the oscillation of the maps ak;j on intersecting squares
can be estimated. Indeed, as soon as qk;j and qp;i intersect, then

jqk;j \ qp;i j & max.jqk;j j; jqp;i j/;
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and since (see (7.9))

j.q0k;j \ q
0
p;i / \ .!k;j [ !p;i /j � jq

0
k;j \ q

0
p;i j

and aj;k , ai;p are affine, then using [16, Lemma 3.4] and (7.7) we deduce

kak;j � ap;ikL4.q0
k;j
\q0p;i /

. kak;j � ap;ikL4..q0
k;j
\q0p;i /n.!k;j[!p;i //

� kak;j � ukL4.q0
k;j
n!k;j /

C kap;i � ukL4.q0p;in!p;i /

. ı
1
2

k
ke.u/kL2.q00

k;j
/ C ı

1
2
p ke.u/kL2.q00p;i /

. ı
1
2

k
ke.u/kL2.q00

k;j
[q00p;i /

; (7.17)

as ık and ıp are comparable.
Let us come to the claims. Clearly,

e.w/ D
X
k;j

'k;j e.wk;j /C
X
k;j

r'k;j ˇ wk;j ;

so that

e.w/ �
X
k;j

'k;j�ık � e.u/

D

X
k;j

'k;j Œe.wk;j / � �ık � e.u/�C
X
k;j

r'k;j ˇ wk;j : (7.18)

For the first term of the right-hand side, we have, thanks to (7.8),



X
k;j

'k;j Œe.wk;j / � �ık � e.u/�





2
L2.Qr /

.
X
k;j





'k;j Œe.wk;j / � �ık � e.u/�



2
L2.Qr /

�

X
k;j

ke.wk;j / � �ık � e.u/k
2
L2.qk;j /

� ı
1
3

X
k;j

ke.u/k2
L2.q00

k;j
/

. ı
1
3 ke.u/k2

L2.Qr /
; (7.19)

where we used the finite overlapping of the squares q00
k;j

for the first and last estimates.
Let us estimate the second term on the right-hand side of (7.18). Notice that we may

write X
k;j

r'k;j ˇ wk;j D
X

qk;j\qp;i¤;

r'k;j ˇ .wk;j � wp;i / on qp;i

since
P
k;j r'k;j D 0.
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(a1) If q00p;i b Qr�1 , then qj;k \ qi;p ¤ ; means that ık D ıp D ı, k D p D 0, and
we may rewrite the term asX

q0;j\q0;i¤;

r'0;j ˇ .w0;j � w0;i /:

We get 



 X
q0;j\q0;i¤;

r'0;j ˇ .w0;j � w0;i /





2
L2.q0;i /

.
X

q0;j\q0;i¤;

1

ı2
kw0;j � w0;ik

2
L2.q0;j\q0;i /

: (7.20)

Now

kw0;j � w0;ikL2.qo;j\q0;i / D k�ı � .v0;j � v0;i /kL2.q0;j\q0;i /

� kv0;j � v0;ikL2.q00;j\q
0
0;i /
:

Since

kv0;j � v0;ikL2.q00;j\q
0
0;i /
� k.a0;j � a0;i /1!0;j[!0;i kL2.q00;j\q

0
0;i /

C k.u � a0;j /1!0;i kL2.q00;j n!0;j /

C k.u � a0;i /1!0;j kL2.q00;in!0;i /

� k.a0;j � a0;i /kL4.q00;j\q
0
0;i /
j!0;j [ !0;i j

1
4

C k.u � a0;j /kL4.q00;j n!0;j /j!0;i j
1
4

C k.u � a0;i /kL4.q00;in!0;i /j!0;j j
1
4 ;

recalling (7.6), (7.7) and (7.17) we get

kw0;j �w0;ikL2.qo;j\q0;i / �kv0;j � v0;ikL2.q00;j\q
0
0;i /
� ı1C

1
4 ke.u/kL2.q000;j[q

00
0;i /
:

Coming back to (7.20) we infer



X
k;j

r'k;j ˇ wk;j





2
L2.q0;i /

�





 X
q0;j\q0;i¤;

r'0;j ˇ .w0;j � w0;i /





2
L2.q0;i /

. ı
1
2

X
q0;j\q0;i¤;

ke.u/k2
L2.q000;j[q

00
0;i /
: (7.21)

(a2) If qp;i ª Qr�1 , then for qk;j \ qp;i 6D ;, we decompose

wp;i � wk;j D �ıp � .vp;i � ap;i / � �ık � .wk;j � ak;j /C .ap;i � ak;j /:
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Notice the crucial step that �ık � ak;j D ak;j due to the fact that ak;j is harmonic
(since it is affine). Then we have, thanks to (7.7) and (7.17),

k�ık � .vp;i � ap;i /kL2.qk;j\qp;i / � kvp;i � ap;ikL2.q0p;i / . ıpke.u/kL2.q00i;p/;

k�ık � .vk;j � ak;j /kL2.qk;j\qp;i / � kvk;j � ak;j kL2.q0k;j /
. ıpke.u/kL2.q00

k;j
/;

kap;i � ak;j kL2.qk;j\qp;i / . ı
1C 1

4
p ke.u/kL2.q00

k;j
[q00p;i /

;

where we also used the fact that ıp and ık differ by at most a factor 2. And so,
with the same computations as in the previous point, we obtain



X

k;j

r'k;j ˇ wk;j





2
L2.qp;i /

�

X
qk;j\qp;i¤;

ke.u/k2
L2.q00

k;j
[q00p;i /

: (7.22)

Gathering (7.21) and (7.22), and in view of the choice of r which satisfies (7.3), we
deduce



X

k;j

r'k;j ˇ wk;j





2
L2.Qr /

�

X
p;i





X
k;j

r'k;j ˇ wk;j





2
L2.qp;i /

. ı
1
2 ke.u/k2

L2.Qr1 /
C ke.u/k2

L2.QrnQr�2 /

. ı
1
2 ke.u/k2

L2.Q1/
: (7.23)

Coming back to (7.18), in view of (7.19) and (7.23) we deduce that



e.w/ �X
k;j

'k;j�ık � e.u/






L2.Qr /

. ı
1
6 ke.u/kL2.Q1/;

so that claim (7.11) follows.
In particular, we get also thatw 2H 1.Qr /. Claim (7.12) concerning the traces follows

by the construction which involves convolutions whose radii become finer and finer as we
approach @Qr as detailed in [16]. Finally, we deduce that w 2 SBD.Q1/, and that claim
(7.10) holds true.

In the proof of Proposition 7.2 we made use of the following lemma due to Nečas (see
[6, Theorem IV.3.1], or also [4]).

Lemma 7.3. Let � be a bounded, connected open set with Lipschitz boundary, and let
L20.�/ be the set of zero-average L2-functions. Then there is a continuous linear map
ˆWL20.�/! H 1

0 .�IR
d / such that div ıˆ D IdL20.�/.

7.2. Regularity for quasi minimizers of the Griffith energy

Let � � R2 be an open set. In all the following, we will consider the Griffith functional

G.J; u; B/ WD

Z
B

je.u/j2 dx CH1.J \ B/;

where B � � is a Borel set.
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We consider the following (very weak) notion of local minimality.

Definition 7.4 (Quasi minimizers). Let ƒ; Nr > 0. We say that .J; u/ 2 V.�/ (recall Def-
inition 7.1) is a .ƒ; Nr/ quasi minimizer of G on V.�/ if G.J; u; !/ < C1 for any open
set ! b �, and for any square Qx;r b � with r 2 .0; Nr/, H0.J \ @Qx;r / D 0 and

lim sup
s!0C

1

s
H1.J \ .Qx;r nQx;r�s// < 1;

and for any function v 2 H 1.Qx;r IR2/ with div v D 0 and v D u on @Qx;r , we haveZ
Qx;r

je.u/j2 dx CH1.J \Qx;r / �

Z
Qx;r

je.v/j2 dx Cƒr2: (7.24)

Remark 7.5. Notice that under the assumption of the previous definition, we have .J n
Qx;r ; v/ 2 V.�/, where we extended v to the entire � by setting v D u in � nQx;r , and
inequality (7.24) may be written as

G.J; u;Qx;r / � G.J nQx;r ; v;Qx;r /Cƒr
2:

The local minimality property involves thus a comparison between .J; u/ and very
special competitors: the Sobolev function v is obtained by “smoothing out” the jumps of
u inside suitable squares Qx;r , so that it can be paired with the rectifiable set J nQx;r ,
yielding the admissible pair .J nQx;r ; v/. Such competitors are provided by the smooth-
ing Lemma 7.2, for which the dimension two is essential. A somehow related weak notion
of minimality involving Sobolev competitors, still in dimension two, has been investi-
gated in [9] (minimality with respect to its own jump set) for the (scalar) Mumford–Shah
functional.

Remark 7.6. The notion of minimality is weak enough to include any local minimizer of
a functional of the form

F.u;A/ WD

Z
A

je.u/j2 dx C

Z
Ju\A

‚.�u; u
C; u�/ dH1;

where ‚ is a measurable function such that inf.‚/ � 1 (or inf.‚/ > 0 up to scaling).

The following result is the key ingredient for obtaining regularity.

Proposition 7.7 (Decay estimate). Letƒ > 0. There exists a universal constant N� 2 .0; 1/
such that for every � 2 .0; N�/ there exist " D ".�/ and Nr D Nr.�/ with the property that for
any .ƒ; Nr/-quasi minimizer .J; u/ of G on V.�/, if for r < Nr ,

G.J; u;Qr / � r
3=2 and H1.J \Qr / � "r;

then
G.J; u;Q� r / � �

3=2G.J; u;Qr /:
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Proof. By contradiction assume that for � sufficiently small there exist "n ! 0, Nrn ! 0,
0 < rn < Nrn, and a sequence .Kn; wn/ of .ƒ; Nrn/-minimizers such that for every n,

G.Kn; wn;Qrn/ � r
3=2
n ; H1.Kn \Qrn/ � "nrn;

G.Kn; wn;Q� rn/ > �
3=2G.Kn; wn;Qrn/:

Let

gn WD G.Kn; wn;Qrn/; Jn WD
Kn

rn
and un.x/ WD

wn.rnx/
p
gn

:

Then .Jn; un/ is a .ƒ
p
rn; 1/-minimizer of Gn.�; �;Q1/, where

Gn.J; u; A/ WD

Z
A

je.u/j2 dx C
rn

gn
H1.J \ A/;

with

Gn.Jn; un;Q1/ D 1; Gn.Jn; un;Q� / > �
3=2 and H1.Jn \Q1/ D "n: (7.25)

Let us apply the smoothing Lemma 7.2: if ın D "
1
2
n , let Qsn with 1 � ı

1
2
n < sn < 1

be the square on which the jumps of un are smoothed out giving rise to the function vn,
associated to an admissible pair .J nQsn ; vn/ 2 V.Q1/. In particular,

ke.vn/kL2.Q1/ � .1C Cı
1
6
n /ke.un/kL2.Q1/ with ke.un/kL2.Q1/ � 1; (7.26)

and
ke.vn/ � 'n�ın � e.u/kL2.Qsn / � Cı

1
6
n ke.un/kL2.Q1/; (7.27)

where C > 0 is independent of n and 'n 2 C1.Qsn ; Œ0; 1�/ is such that 'n D 0 on Qsn n
Qsn�ın , 'n D 1 on Qsn�4ın . Since vn is divergence-free and Sobolev on Qsn we haveZ

@Qsn

vn � � dH1
D 0: (7.28)

By the classical Korn inequality on Qsn there is an antisymmetric affine function an
such that

R
Qsn

.vn � an/ dx D 0 andZ
Qsn

jr.vn � an/j
2 dx � C1

Z
Qsn

je.vn/j
2 dx

for some C1 > 0 independent of n. We infer that .vn � an/ is bounded inH 1.Qsn/. Since
sn ! 1, we can assume, up to extracting a further subsequence,

vn � an * w weakly in H 1
loc.Q1IR

2/ (7.29)

for some w 2 H 1.Q1/. Since every vn � an has zero divergence, then so does w. More-
over, ke.w/kL2.Q1/ � 1.
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Let  2 C1c .Q1IR
2/ have zero divergence, and let � 2 C1c .Q1; Œ0; 1�/ be a cut-off

function such that ¹ ¤ 0º b ¹� D 1º. Let us consider

zn WD

´
PQsn Œ.1 � �/vn C �.an C w C  /� in Qsn ;

un in Q1 nQsn ;

where PQsn denotes the projection on divergence-free H 1.Qsn/ vector fields which pre-
serves the trace obtained according to Lemma 7.3 by considering

PQsn .u/ WD u �ˆQsn .divu/

for any u 2 H 1.Qsn IR
2/ with a zero mean divergence. Note that zn is well defined as

.1 � �/vn C �.an C w C  / D vn on @Qsn

for n large enough, and so its divergence has zero mean thanks to (7.28).
Since .Jn n @Qsn ; zn/ is an admissible competitor for .Jn; un/ according to Definition

7.4, we obtain

Gn.Jn; un;Qsn/ � ke.PQsn Œ.1 � �/vn C �.an C w C  /�/k
2
L2.Qsn /

Cƒ
p
rn

�
�
ke..1 � �/vn C �.an C w C  //kL2.Qsn /

C Ck div..1 � �/vn C �.an C w C  //kL2.Qsn /
�2
Cƒ
p
rn

�
�
ke..1 � �/vn C �.an C w C  //kL2.Qsn /

C Ckr� � .w C an � vn/kL2.Qsn /
�2
Cƒ
p
rn:

Since
kr� � .w C an � vn/kL2.Qsn / ! 0

and (recall that ¹ 6D 0º b ¹� D 1º)

ke..1 � �/vn C �.an C w C  //kL2.Qsn /

D k.1 � �/e.vn/C �e.w C  /Cr�ˇ .w C an � vn/kL2.Qsn /

� k.1 � �/e.vn/C �e.w C  /kL2.Qsn / C on;

where on ! 0, we infer thanks to (7.26) (and since e.an/ D 0),

Gn.Jn; un;Qsn/ � k.1 � �/e.vn � an/C �e.w C  /k
2
L2.Qsn /

C on: (7.30)

Now, still using (7.26) we may writeZ
Qsn

je.vn � an/j
2 dx � .1C Cı

1
6
n /
2

Z
Qsn

je.un/j
2 dx

� .1C Cı
1
6
n /
2Gn.Jn; un;Qsn/C on;
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and so coming back to (7.30) we deduce

ke.vn � an/k
2
L2.Qsn /

� k.1 � �/e.vn � an/C �e.w C  /k
2
L2.Qsn /

C on:

This yieldsZ
Qsn

.1 � .1 � �/2/je.vn � an/j
2 dx

�

Z
Qsn

.2�.1 � �/e.vn � an/ W e.w/C �
2
je.w C  /j2/ dx C on;

so that in view of (7.29),Z
Q1

.1 � .1 � �/2/je.w/j2 dx � lim sup
n!1

Z
Q1

.1 � .1 � �/2/je.vn � an/j
2 dx

�

Z
Q1

.2�.1 � �/e.w/ W e.w/C �2je.w C  /j2/ dx:

Notice that by choosing  D 0 and letting � localize on characteristic functions of open
sets, we infer that

e.vn � an/! e.w/ strongly in L2loc.Q1IM
2�2
sym /: (7.31)

In particular, we get Z
Q1

je.w/j2 dx �

Z
Q1

je.w C  /j2 dx;

which means thatw is a local minimizer of the energy z 7! ke.z/k2
L2.Q1/

onH 1 functions
with zero divergence. This yields �w D rp for some p 2 L2.Q1/. Using Lemma 7.8
below, we have Z

Q�

je.w/j2 dx �
1

2
�
3
2

Z
Q1

je.w/j2 dx �
1

2
�
3
2 :

Taking into account (7.31) we deduce

ke.vn/k
2
L2.Q�Cın /

�
1

2
�
3
2 C on: (7.32)

By minimality we have

G.un; Jn;Qsn/ � ke.vn/k
2
L2.Qsn /

Cƒ
p
rn

D ke.vn/k
2
L2.Q�Cın /

C ke.vn/k
2
L2.QsnnQ�Cın /

Cƒ
p
rn;

while thanks to (7.27),

ke.vn/kL2.QsnnQ�Cın / � ke.vn/ � 'n�ın � e.un/kL2.QsnnQ�Cın /

C k'n�ın � e.un/kL2.QsnnQ�Cın /

� on C k�ın � e.un/kL2.Qsn�ınnQ�Cın /

� on C ke.un/kL2.QsnnQ� /:
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In view of (7.32) we infer

G.un; Jn;Qsn/ � ke.vn/k
2
L2.Q�Cın /

C Œon C ke.un/kL2.QsnnQ� /�
2
Cƒ
p
rn

�
1

2
�
3
2 C Qon C ke.un/k

2
L2.QsnnQ� /

so that
G.un; Jn;Q� / �

1

2
�
3
2 C Qon:

In conclusion, taking into account (7.25), if n is large enough we get

�
3
2 < G.un; Jn;Q� / �

1

2
�
3
2 C Qon;

which is a contradiction.

In the preceding proof, we made use of the following result.

Lemma 7.8. There exists a constant C0 > 0 such that for any divergence-free vector field
u 2 H 1.Q1IR2/ such that �u D rp for some pressure p 2 L2.Q1/, we have

8� 2 .0; 1=2� W

Z
Q�

je.u/j2 dx � C0�
2

Z
Q1

je.u/j2 dx:

In particular, for any 0 < � � N� WD 1

4C 20
^
1
2

we haveZ
Q�

je.u/j2 dx �
1

2
�3=2

Z
Q1

je.u/j2 dx:

Proof. Notice that e.u/ is invariant by the addition of an asymmetric affine function a.
Up to a translation by such a function, Korn’s inequality tells us thatZ

Q1

u2 dx � C

Z
Q1

je.u/j2 dx:

The equations verified by u are equivalent to the existence of ' 2 H 2.Q1/ such that
'.0/ D 0, u D r?', and �2' D 0. By elliptic regularity there is a constant C 0 such that

sup
Q1=2

jr
2'j2 � C 0

Z
Q1

jr'j2 dx

and so for any � � 1=2,Z
Q�

je.u/j2 dx � 4jQ� j sup
Q1=2

jr
2'j2 � 4CC 0jQ1j�

2

Z
Q1

je.u/j2 dx:

The decay estimate can be iterated as follows.
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Lemma 7.9 (Iteration of the decay). Let ƒ > 0 and, according to Proposition 7.7, let �0
be small enough such that the decay estimate applies with "0 D ".�0/ and Nr0 D Nr.�0/, and
let �1 2 .0; "20/ be small enough that the decay property applies with "1, Nr1. Finally, let

Nr WD min
�
Nr0; Nr1; "

2
0�
2
1 ;
"20�

3
0

�1

�
:

Suppose that .J; u/ is a .ƒ; Nr/-quasi minimizer of G on V.�/ and G.J; u;Qx;r / � "1r
for some r 2 .0; Nr/. Then for all k 2 N,

G.J; u;Qx;�k0 �1r
/ � "0�

3
2k

0 �1r:

Proof. Let us prove the statement by induction on k. In the following, we write g.r/ D
G.J; u;Qx;r /, so that we need to check that if g.r/ � "1r , then for every k 2 N,

g.�k0 �1r/ � "0�
3
2k

0 �1r: (7.33)

The inequality is true for k D 0. Indeed, we have the following alternatives:

(a) If g.r/ > r3=2 then g.�1r/ � �
3=2
1 g.r/ �

p
�1�1"1r � "0�1r by definition of �1.

(b) If g.r/ � r3=2, then g.�1r/ � g.r/ � r3=2 � "0�1r by definition of Nr .

Assume now that (7.33) holds. Notice that by definition of G we have (since �0 < 1)

H1.J \Q�k0 �1r
/ � g.�k0 �1r/ � "0�

3
2k

0 �1r � "0�
k
0 �1r;

so the decay property of Proposition 7.7 may be applied. Again we have two alternatives:

(a) If g.�k0 �1r/ > .�
k
0 �1r/

3=2, by the decay property we have, using (7.33),

g.�kC10 �1r/ � �
3=2
0 g.�k0 �1r/ � "0�

3
2 .kC1/

0 �1r:

(b) If g.�k0 �1r/ � .�
k
0 �1r/

3=2 then by the definition of Nr ,

g.�kC10 �1r/ � g.�
k
0 �1r/ �

s
�1r

"20�
3
0

"0�
3
2 .kC1/

0 �1r � "0�
3
2 .kC1/

0 �1r:

In both cases, (7.33) follows for the choice k C 1, so that the induction step is proved.

If we want to draw some conclusions on the regularity of quasi minimizers .J; u/, we
need somehow to bound the freedom connected to the choice of J : notice indeed that any
pair .J�N; u/ with H1.N / D 0 is essentially equivalent to .J; u/, where A�B denotes
the symmetric difference of sets.

We set
JC WD

®
x 2 � W lim supr!0

H1.J\Qx;r /

r
> 0

¯
; (7.34)

where JC is a sort of normalized version of J , where points of density zero have been
erased.
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By standard properties of rectifiable sets we have

H1.J�JC/ D 0:

As a consequence if .J; u/ 2 V.�/, then also .JC; u/ 2 V.�/ with G.J; u; A/ D

G.JC; u; A/ for every Borel set A � �.

Proposition 7.10. Given ƒ > 0, there exist "; Nr > 0 such that of any .ƒ; Nr/-quasi mini-
mizer .J; u/ of G on V.�/, if G.J; u;Qx;r / � "r for some Qx;r b � with r < Nr , then
JC \Qx; r2 D ;.

Proof. Let "0, "1, �1, �2, Nr be given according to Lemma 7.9. Notice that if G.J; u;Qx;r /
� "1r with r < Nr , then for any � 2 .0; r/,

G.J; u;Qx;�/ � C0r
� 12 �

3
2 ; where C0 WD max

®
"1�
� 32
1 ; "0�

� 12
0 �

� 12
1

¯
: (7.35)

Let us set " WD 1
2
"1, and assume G.J; u;Qx;r / � "r . Notice that for any y 2 Qx; r2 , we

have
G.J; u;Qy; r2 / � G.J; u;Qx;r / � "r D "1

r

2
;

so that from (7.35),

0 D lim
�!0C

G.J; u;Qy;�/

�
� lim sup

�!0C

H1.J \Qy;�/

�
;

which yields JC \Qx; r2 D ;.

Proposition 7.11 (Regularity for quasi minimizers). Let ƒ; Nr > 0. Then for any .ƒ; Nr/-
quasi minimizer .J; u/ of G on V.�/ we have that JC (see (7.34)) is essentially closed
in �, i.e.

H1.� \ .JC n JC// D 0;

while u 2 C1.� n JC/.

Proof. Since the functional G coincides with a volume integral outside J , there exists an
H1-negligible set N � � n J such that for every x 2 � n .J [N/ we have

lim
�!0

G.J; u;Qx;�/

�
D 0:

Thanks to Proposition 7.10 we infer

� \ JC � J [N � JC [ .J n JC/ [N:

Since the last two sets are H1-negligible, we infer H1.� \ .JC n JC// D 0.
Since

H1.Ju n JC/ � H1.J n JC/ D 0;

we get that u is locally H 1 on � n JC (thanks to Korn’s inequality): smoothness then
follows from the regularity theory for solutions to Stokes equation (see e.g. [6, Theorem
IV.5.8]).
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7.3. Proof of Theorem 4.10

We are now in a position to prove the regularity result given by Theorem 4.10.
Let .E; u/ be a minimizer of J and let us set

ƒ WD 4Lip.f / and J WD Ju [ @
�E:

We also assume (up to multiplying u by c�
1
2 ) that the constant c of (4.2) is 1.

We first prove that .J; u/ is a .ƒ; 1/ quasi minimizer of the Griffith functional G on
V.�/ according to Definition 7.4. Indeed, let Qx;r b � with r < 1 be a square as in
Definition 7.4, with associated competitor .J nQx;r ; v/. We claim that either

H1.@Qx;r nE
.1// D 0 or H1.@Qx;r nE

.0// D 0: (7.36)

In the first case, from the minimality inequality

J.E; u/ � J.E; u1�nQx;r /

we deduce u D 0 a.e. on Qx;r and H1.@�E \Qx;r / D 0, so that the inequality to check
for quasi minimality is trivially satisfied. Notice that admissibility of .E; u1�nQx;r / for
the main problem follows from the fact that the trace of u on @Qx;r is zero, that boundary
being composed of points of density 1 of the set E on which u vanishes.

If the second possibility in (7.36) holds true, then the relations (see [29, Theorem 16.3]
and recall that H0.@Qx;r \ @

�E/ D 0 by the properties of Qx;r )

J.E; u/ � J.E nQx;r ; v/ and @�.E nQx;r / D @
�E nQx;r D @

�E nQx;r

yield in particularZ
Qx;r

je.u/j2 dx CH1.J \Qx;r / �

Z
Qx;r

je.v/j2 dx Cƒr2;

so that the quasi minimality of .J; u/ follows.
By Proposition 7.11, we get that the normalized set JC (see (7.34)) is essentially

closed in �, i.e.
H1.� \ .JC n JC// D 0;

and u is smooth on � n JC, so that

� \ Ju � JC:

On the other hand, in view of the general properties of the reduced boundary of sets of
finite perimeter (see [2, Theorem 3.59] or [29, Theorem 15.5]) we have @�E � JC. Taking
into account that H1.JC�J/D 0 (where� denotes the symmetric difference of sets) we
infer

H1.� \ Ju [ @�E n .Ju [ @
�E// � H1.� \ JC n J /

� H1.� \ JC n JC/CH1.JC n J / D 0;

so that the conclusion follows.
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In order to complete the proof, we need to check claim (7.36).
Assume by contradiction that the claim is false. Then there exists p 2 E.1/ \ @Qx;r

and q 2 E.0/ \ @Qx;r that are not in one of the corners. Without loss of generality we
suppose p; q 2 ¹x � re2 CRe1º, with p1 < q1, the case when both are in different sides
being analogous. For s > 0 small, we let

• Cp WD p C Œ�s; 0� � Œ0; s� and Cq WD q C Œ0; s�2,

• gs W Œp1 � s; q1 C s�! Œ0; 1� be zero at the extremes, affine on Œp1 � s; p1� and Œq1;
q1 C s� and equal to 1 on Œp1; q1�,

• fs 2 C
1
c . �0; sŒ/ with 0 � fs � 1,

• 's.x/ D gs.x1/fs.x2 C r/.

Then

H1.J \ .Qx;r nQx;r�s// �

Z
@�E

's.�E /1 dH1
D

Z
E

@1's dH1

D
1

s

Z
E\Cp

fs.y2 C r/ dy �
1

s

Z
E\Cq

fs.y2 C r/ dy;

so that, letting fs % 1 we get

H1.J \ .Qx;r nQx;r�s//

s
�
jE \ Cpj

jCpj
�
jE \ Cqj

jCqj
:

Since as s ! 0C, by assumption on the density properties of p and q, we have

jE \ Cpj

jCpj
! 1 and

jE \ Cqj

jCqj
! 0;

we infer

lim sup
s!0

H1.J \ .Qx;r nQx;r�s//

s
� 1;

which is against the assumption on r in Definition 7.4 of quasi minimality. The proof is
thus concluded.

7.4. Some remarks on a “strong” formulation of the problem

In this section we elaborate on a different relaxation of the drag minimization problem
which involves topologically closed (but not necessarily regular) obstacles F in the chan-
nel � and velocity vector fields which are H 1

loc on � n F .
Within this perspective, given � � Rd open and bounded, it is natural to start with

pairs .F; u/ such that

F � � is relatively closed; � \ @F is rectifiable; Hd�1.� \ @F / < C1 (7.37)

and

u 2 H 1
loc.� n F IR

d /; divu D 0 in � n F ; e.u/ 2 L2.� n F IM d�d
sym /: (7.38)
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Notice that, as for the relaxation studied in the previous sections, @F may contain “lower-
dimensional” parts. The set � n F is open, so that the space H 1

loc.� n F IR
d / is well

defined.
It is not clear how to talk about traces on @.� n F /, which are fundamental in for-

mulating the tangency constraint, as the set is in general not regular. It turns out that
velocities admit a well-defined trace at Hd�1-almost every point of @F , even if this set is
not assumed to be only rectifiable and not regular. This is a consequence of the following
result, which involves the space GSBD of generalized functions of bounded deformations
introduced in [21]. Let us set

Qu WD

´
u in � n F ;

0 in F :
(7.39)

Lemma 7.12. Let��Rd be a bounded open set, and assume that the pair .F;u/ satisfies
(7.37) and (7.38). Then Qu 2 GSBD.�/ with Hd�1.J Qu n @F / D 0.

Proof. Since Hd�1.� \ @F / <1, for every " > 0 we may find some covering of @F
through a finite union of balls of radius less than ", denoted .B"i /1�i�N " , such that

N "X
iD1

�diam.B"i /
2

�d�1
� C

for some C > 0 that does not depend on ". Let B" be the union of these balls – which
is a Lipschitz set up to a small perturbation of the radii – and let u" WD u1�nB" . Then
u" 2 SBD.�/ with

Eu" D e.u/ dxb.� n .F [ B"//C uHd�1
b@B":

Moreover,
u" ! Qu a.e. in �

with
lim sup
"!0

Z
�

je.u"/j2 dx CHd�1.Ju"/ < C1:

We apply [17, Theorem 1.1] to .u"/: since Qu is finite almost everywhere, we directly
identify Qu with the limit that is obtained, and we infer Qu 2 GSBD.�/; moreover, up to an
Hd�1-negligible set, J Qu � @F by construction, and the result follows.

Coming back to configurations .F; u/ satisfying (7.37) and (7.38), up to a choice of
orientation of the rectifiable set � \ @F , there is no ambiguity in defining the traces u˙

j@F

of u on Hd�1-almost all points of � \ @F .
In addition to the previous items, we thus also require for .F; u/ the non-penetration

condition
u˙
j@F � �@F D 0 Hd�1-a.e. on � \ @F : (7.40)
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Given an admissible configuration .F; u/, we can consider the following energy (all
the constants have been normalized to 1):

J.F; u/ WD

Z
�nF

je.u/j2 dx C

Z
�\@eF

juCj2 dHd�1

C

Z
�\F .0/\F

ŒjuCj2 C ju�j2� dHd�1

CHd�1.� \ @eF /C 2Hd�1.� \ F .0/ \ F /C f .jF j/;

where @eF denotes the measure-theoretical boundary of F , and f is the penalization
function introduced in the previous sections (see (4.1)).

Configurations with finite energy are linked to admissible configurations of our main
relaxed problem by the following result.

Lemma 7.13. Let � � Rd be open and bounded, and let .F; u/ satisfy (7.37) and (7.38)
with J.F; u/ < C1. Then the function Qu defined in (7.39) is such that Qu 2 SBD.�/.

Proof. It suffices to note that for every direction � 2 Sd�1 we have

J.F;u/ �

Z
�?

�Z
�
�
y

j. Qu�y/
0.t/j2 dt C

X
t2J

Qu
�
y

.1C j. Qu�y/
C.t/j2C j. Qu�y/

�.t/j2/

�
dH1.y/:

Dealing with boundary conditions yields the same problem highlighted in our main
relaxation. Assume � has a Lipschitz boundary, and let us simply write u in place of Qu.
We have that u 2 SBD.�/ so that the trace on @� is well defined. Given a divergence-free
vector field V 2 C 1.Rd IRd /, we can deal with the relaxation of the boundary condition
by considering the set

�u;V WD
®
x 2 @� W u.x/ 6D V.x/

¯
;

and enforcing the non-penetration constraint leading to

u � �@� D 0 and V � �@� D 0 Hd�1-a.e. on �V;@�: (7.41)

So for a configuration .F; u/ satisfying (7.37), (7.38), (7.40) and (7.41), we can consider
the energy

Jstrong.F; u/ WD J.F; u/C 2Hd�1.�u;V /C

Z
�u;V

ŒjV j2 C juj2� dHd�1:

The minimization of Jstrong on admissible configurations is a different possible relaxation
of the original drag minimization problem. We clearly have

min
.E;u/2AV .�/

J.E; u/ � inf
.F;u/

Jstrong.F; u/:

Equality is reached in dimension two thanks to the regularity result given by Theorem
4.10. Indeed, if .E; u/ is a minimizer for J, we know that @�E [ Ju is essentially closed,
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so that an admissible relatively closed set F arises by considering the complement of the
union of the connected components of � n @�E [ Ju on which u does not vanish identi-
cally. The function u is smooth outside F , so that the pair .F; u/ is strongly admissible
with Jstrong.F; u/ D J.E; u/. As a consequence, in dimension two the relaxed problem

min
.F;u/

Jstrong.F; u/

is indeed well posed.
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