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Splittings of triangle Artin groups

Kasia Jankiewicz

Abstract. We show that a triangle Artin group ArtMNP , where M � N � P , splits as an amalga-
mated product or an HNN extension of finite rank free groups, provided that eitherM > 2 orN > 3.
We also prove that all even 3-generator Artin groups are residually finite.

A triangle Artin group is given by the presentation

ArtMNP D ha; b; c j .a; b/M D .b; a/M ; .b; c/N D .c; b/N ; .c; a/P D .a; c/P i;

where .a; b/M denote the alternating word aba : : : of length M . Squier showed that the
Euclidean triangle Artin group, i.e., Art236, Art244 and Art333, split as amalgamated prod-
uct or an HNN extension of finite rank free groups along finite index subgroups [25].
We generalize that result to other triangle Artin groups.

Theorem A. Suppose that M � N � P , where either M > 2 or N > 3. Then the Artin
group ArtMNP splits as an amalgamated product or an HNN extension of finite rank free
groups.

The assumptions of the above theorem are satisfied for all triples of numbers except
for .2; 2; P / and .2; 3; P /. An Artin group is spherical, if the associated Coxeter group
is finite. A 3-generator Artin group ArtMNP is spherical exactly when 1

M
C

1
N
C

1
P
> 1,

i.e., .M;N; P / D .2; 2; P / or .2; 3; 3/, .2; 3; 4/, .2; 3; 5/. None of 3-generator spherical
Artin groups splits as a graph of finite rank free groups (see Proposition 2.10). The remain-
ing cases are .2; 3; P /, where P � 6. The above theorem holds for triple .2; 3; 6/ by [25].
It remains unknown for .2; 3; P / with P � 7. The cases where M > 2 were considered
in [18, Theorem B], and it was proven that they all split as amalgamated products of finite
rank free groups.

Graphs of free groups form an important family of examples in geometric group the-
ory. Graphs of free groups with cyclic edge groups that contain no Baumslag–Solitar
subgroups are virtually special [15], and contain quasiconvex surface subgroups [27].
Graphs of free groups with arbitrary edge groups can exhibit various behaviors. For exam-
ple, an amalgamated product A �C B of finite rank free groups, where C is malnormal
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inA andB , is hyperbolic [1], and virtually special [16]. On the other hand, there are exam-
ples of amalgamated products of finite rank free groups that are not residually finite [2,28],
and even simple [8]. The last two arise as lattices in the automorphism group of a product
of two trees.

By further analysis of the splitting, we are also able to show that some of the consid-
ered Artin groups are residually finite.

Theorem B. The Artin group Art2MN , whereM;N � 4 and at least one ofM ,N is even,
is residually finite.

An Artin group ArtMNP is even if all M , N , P are even. The above theorem com-
bined with our result in [18] (and the fact that Art22P D Z � ArtP is linear) gives us the
following.

Corollary C. All even Artin groups on three generators are residually finite.

All linear groups are residually finite [21], so residual finiteness can be viewed as
testing for linearity. Spherical Artin groups are known to be linear ([3, 19] for braid
groups, and [9, 11] for other spherical Artin groups). The right-angled Artin groups are
also well known to be linear, but not much more is known about linearity of Artin groups.
In last years, a successful approach in proving that groups are linear is by showing that
they are virtually special. Artin groups whose defining graphs are forests are the fun-
damental groups of graph manifolds with boundary [7, 14], and so they are virtually
special [20, 23]. Many Artin groups in certain classes (including 2-dimensional, or 3-
generator) are not cocompactly cubulated even virtually, unless they are sufficiently simi-
lar to RAAGs [12, 17]. In particular, the only (virtually) cocompactly cubulated 3-genera-
tor Artin groups are Art22M D Z � ArtM , ArtMN1, where M and N are both even,
ArtM11 D Z �ArtM , and Art111 D F3. Some triangle-free Artin groups act properly
but not cocompactly on locally finite, finite-dimensional CAT(0) cube complexes [13].

In [18], we showed that ArtMNP are residually finite when M;N; P � 3, except for
the cases where .M; N; P / D .3; 3; 2p C 1/ with p � 2. Few more families of Artin
groups are known to be residually finite, e.g., even FC type Artin groups [5], and certain
triangle-free Artin groups [4].

Organization

In Section 1, we provide some background. In Section 2, we prove Theorem A as Propo-
sition 2.5 and Corollary 2.9. We also show that the only irreducible spherical Artin groups
splitting as graph of finite rank free groups are dihedral. In Section 3, we recall a crite-
rion for residual finiteness of amalgamated products and HNN extensions of free groups
from [18] and prove Theorem B.
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1. Background

1.1. Graphs

Let X be a finite graph with directed edges. We denote the vertex set of X by V.X/ and
the edge set of X by E.X/. The vertices incident to an edge e are denoted by eC and e�.
A map of graphs f WX1 ! X2 sends vertices to vertices, and edges to concatenations
of edges. A map f is a combinatorial map if single edges are mapped to single edges.
A combinatorial map f is a combinatorial immersion if given two edges e1, e2 such that
e�1 D e

�
2 , we have f .e1/D f .e2/ (as oriented edges) if and only if e1 D e2. Consider two

edges e1, e2 with e�1 D e
�
2 . A fold is the natural combinatorial map X ! xX , where

V. xX/ D V.X/=eC1 � e
C
2 and E. xX/=e1 � e2:

Stallings showed that every combinatorial map X ! X 0 factors as X ! xX ! X 0, where
X ! xX is a composition of finitely many folds, and xX ! X 0 is a combinatorial immer-
sion [26]. We refer to X ! xX as a folding map.

1.2. Maps between free groups

Let H , G be finite rank free groups. Let Y be a bouquet of n D rkG circles. We can
identify �1Y ' Fn with G by orienting and labeling edges of Y with the generators of G.
Every homomorphism 'WH ! G can be represented by a combinatorial immersion of
graphs. Indeed, start with a map of graphs X ! Y , where X is a bouquet of m D rkH
circles. We think of each circle in X as subdivided with edges oriented and labeled by
the generators of G, so that each circle is labeled by a word from a generating set of H .
By Stallings, the map X ! Y factors as X ! xX ! Y , where X ! xX is a folding map,
and xX ! Y is a combinatorial immersion. Indeed, xX is obtained by identifying two edges
with the same orientation and label that share an endpoint.

Note that the rank of '.H/ is equal to rk�1 xX D 1� �. xX/, where � denotes the Euler
characteristic. In particular, a homomorphism ' is injective if and only if the folding map
X ! xX is a homotopy equivalence. In that case, xX is a precover of Y which can be
completed to a cover of Y corresponding to the subgroup H of G via the Galois corre-
spondence. In particular, every subgroup of G is uniquely represented by a combinatorial
immersion .X; x/! .Y; y/, where y is the unique vertex of Y , and X is a folded graph
with basepoint x. We refer to [26] for more details.

1.3. Intersections of subgroups of a free group

Let Y be a graph, and let �i W .Xi ; xi / ! .Y; y/ be a combinatorial immersion for i D
1; 2. The fiber product of X1 and X2 over Y , denoted by X1 ˝Y X2 is a graph with the
vertex set

V.X1 ˝Y X2/ D ¹.v1; v2/ 2 V.X1/ � V.X2/W �1.v1/ D �2.v2/º;
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and the edge set

E.X1 ˝Y X2/ D ¹.e1; e2/ 2 E.X1/ �E.X2/W �1.e1/ D �2.e2/º:

The graphX1˝Y X2 often has several connected components. There is a natural combina-
torial immersionX1˝Y X2! Y , and it induces an embedding �1.X1˝Y X2; .x1;x2//!
�1.Y; y/. We have the following.

Theorem 1.1 ([26, Theorem 5.5]). LetH1,H2 be two subgroups ofGD�1Y , and for i D
1; 2, let .Xi ; xi /! .Y; y/ be a combinatorial immersion of graphs inducing the inclusion
Hi ,!G. The intersectionH1 \H2 is represented by a combinatorial immersion .X1˝Y
X2; .x1; x2//! .Y; y/.

In particular, when Y is a bouquet of circles with �1Y D G, and .X; x/! .Y; y/ is
a combinatorial immersion inducing H D �1X ,! G, then for every pair of (not nec-
essarily distinct) vertices x1; x2 2 X , the group �1.X ˝Y X; .x1; x2// is an intersection
Hg1 \Hg2 for some g1;g2 2G. In fact, every non-trivial intersectionH \Hg is equal to
�1.X ˝Y X;.x1;x2//, where x1D x, and x2 is some (possibly the same) vertex inX . The
connected component of X ˝Y X containing .x; x/ is a copy of X , which we refer to as
a diagonal component. The group �1.X ˝Y X; .x; x// is the intersection H \Hg D H ,
i.e., where g 2H . A connected component of X ˝Y X that has no edges is called trivial.

1.4. Graph of groups and spaces

We recall the definitions of a graph of groups and a graph of spaces, following [24].

A graph of spaces consists of

• a graph � , called the underlying graph,

• a collection of CW-complexes Xv for each v 2 V.�/, called vertex spaces,

• a collection of CW-complexes Xe for each e 2 E.�/, called edge spaces,

• a collection of continuous �1-injective maps f.e;˙/WXe ! Xe˙ for each e 2 E.�/.

The total space X.�/ is defined as

X.�/ D
G

v2V.�/

Xv t
G

e2E.�/

Xe � Œ�1; 1�=�;

where .x;˙1/ � f.e;˙/.x/ for x 2 Xe .

Similarly, a graph of groups consists of

• the underlying graph � ,

• a collection of vertex groups Gv for each v 2 V.�/,

• a collection of edge groups Ge for each e 2 E.�/,

• a collection of injective homomorphisms '.e;˙/WGe ! Ge˙ for each e 2 E.�/.
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The fundamental group of a graph of groups is defined as the fundamental group of the
graph of spaces X.�/, where Xv DK.Gv; 1/ for each v 2 V.�/, Xe DK.Ge; 1/ for each
edge e 2 E.�/, and f.e;˙/ induces homomorphism '.e;˙/ on the fundamental groups.
Note that the fundamental group �1� is a subgroup of G.

1.5. HNN extensions and doubles

We will denote the HNN extension of A relative to ˇWB ! A, where B � A, by A�B;ˇ ,
that is,

A�B;ˇ D hA; t j t
�1xt D ˇ.x/ for all x 2 Bi:

The generator t is called the stable letter. Note that A�B;ˇ can be viewed as a graph of
group G.�/, where � is a single vertex v with a single loop e, Gv D A, Ge D B , '.e;�/
is the inclusion of B in A, and '.e;C/ D ˇ.

A double ofA alongC twisted by an automorphism ˇWC!C , denoted byD.A;C;ˇ/,
is an amalgamated product A �C A, where C is mapped to the first factor via the standard
inclusion, and to the second via the standard inclusion precomposed with ˇ. As usual,
D.A;C; ˇ/ depends only on the outer automorphism class of ˇ, and not a particular rep-
resentative. A double D.A; C; ˇ/ can be viewed as a graph of groups G.�/, where � is
a single edge e with distinct endpoints, Ge˙ D A, Ge D C , and '.e;�/ is the inclusion
of C in A, and '.e;C/ is the inclusion precomposed with ˇ. Note that an amalgamated
product A �C B with ŒB W C � D 2 has an index 2 subgroup D.A; C; ˇ/. The homomor-
phism ˇWC ! C is conjugation by some (any) representative g 2 B of the non-trivial
coset of B=C .

In both situations where there is unique edge in the underlying graph � , we will skip
the label e and denote '.e;˙/ simply by '˙. Similarly, in a graph of spaces with a unique
edge e, we will write f˙ instead of f.e;˙/.

1.6. Triangle groups

A triangle (Coxeter) group is given by the presentation

WMNP D ha; b; c j a
2; b2; c2; .ab/M ; .bc/N ; .ca/P i:

The group WMNP acts as a reflection group on

• the sphere if 1
M
C

1
N
C

1
p
> 1,

• the Euclidean plane if 1
M
C

1
N
C

1
p
D 1,

• the hyperbolic plane if 1
M
C

1
N
C

1
p
< 1.

Hyperbolic triangle groups are commensurable with the fundamental groups of nega-
tively curved surfaces, and therefore they are locally quasiconvex, virtually special, and
Gromov-hyperbolic. A von Dyck triangle group is an index 2 subgroup of WMNP with
the presentation

hx; y j xM ; yN ; .x�1y/P i

obtained by setting x D ba and y D bc.
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2. Splittings

The goal of this section is to prove Theorem A. In [18], we proved the following.

Theorem 2.1 ([18, Theorem B]). The Artin group ArtMNP withM;N;P � 3 splits as an
amalgamated product or an HNN extension of finite rank free groups.

The remaining cases in Theorem A are Art2MN , where M;N � 4. The case where
M , N are both even is Proposition 2.5, and the other case is Corollary 2.9. We start
with considering a non-standard presentation of Art2MN . In the next two subsections,
we construct the splittings. Then we show that the only spherical Artin groups that split as
graphs of free groups are dihedral Artin groups. Spherical Artin groups on three generators
ArtMNP correspond to one of the following triples: .2; 2; P / for any P � 2, .2; 3; 3/,
.2; 3; 4/ or .2; 3; 5/. For completeness, in the last subsection we include the proof that the
3-generator Artin groups with at least one1 label admit splittings as HNN extensions or
amalgamated products of finite rank free groups.

The Artin group Art236 splits as F3 �F7 F4 by Squier [25]. The only remaining 3-
generator Artin groups are Art23M , whereM � 7, and the following remains unanswered.

Question 2.2. Does the Artin group Art23M , whereM � 7, splits as a graph of finite rank
free groups?

We conjecture that the answer is positive. More generally, we ask the following.

Question 2.3. Do all 2-dimensional Artin groups split as a graph of finite rank free
groups?

2.1. Presentations of Art2MN

Here is the standard presentation of Artin group Art2MN :

ha; b; c j .a; b/M D .b; a/M ; .b; c/N D .c; b/N ; ac D cai:

Let xD ab and y D cb, and consider a new presentation of Art2MN with generators b,
x, y. The relation .a; b/M D .b; a/M is replaced by bxmb�1 D xm when M D 2m, and
by bxmb D xmC1 when M D 2m C 1. We denote this relation by rM .b; x/. Note that
yx�1D ca�1, so relation acD ca can be replaced by yx�1D bx�1yb�1. See Figure 1(a).

This gives us the following presentation:

Art2MN D hb; x; y j rM .b; x/; rN .b; y/; bx�1yb�1 D yx�1i: (�)

Let X2MN be the presentation complex associated to presentation (�). Let XA be the
bouquet of two loops labeled by x and y. The complex X2MN can be viewed as a union
of the graph XA and for each relation in (�), a cylinder (for relations bx�1yb�1 D yx�1

and each rM .b; x/ with M even) or a Möbius strip (for each relation rM .b; x/ with M
odd) with boundary cycles are glued to XA. We can metrize them so that the height of
each cylinder/Möbius strip equals 2.
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(a) b

x x

x x

b b

x x

x x

b b

x y

y x

b
p

1

0

1

(b)

b

b� bC b� bC

Figure 1. (a) The relation RM .b; x/, where M is even (left) and odd (middle), and the relation
bx�1yb�1 D yx�1 (right) with the projection p of the cells onto the interval Œ0; 1�. The horizontal
graphs XA, XB , XC are the preimages p�1.1/, p�1.0/, p�1.12 /, respectively. (b) Graphs XA, XB
and two versions of XC depending on whether M , N are both odd (left green), or one of M , N is
even (right green).

We now define a map pWX2MN ! Œ0; 1� by describing the restriction of p to each
cylinder/Möbius strip of X2MN . Each point of the cylinder/Möbius strip is mapped to its
distance from the center circle of that cylinder/Möbius strip. In particular, the center circle
of each cylinder or Möbius strip is mapped to 0, and the boundary circles of the cylinder
or Möbius strip are mapped to 1. See Figure 1 (a).

We can identify XA with the preimage p�1.1/. We define a graph XB as the union of
all the center circles, i.e., the preimage p�1.0/. We also define a subgraph XC of X2MN
as the preimage p�1.1

2
/. The graphs XA, XB and XC are illustrated in Figure 1(b). The

graph XC has two vertices, which are its intersections with the edge b. We denote them
by b�, bC, so that b�, the midpoint of the edge b, bC are ordered consistently with the
orientation of the edge b. WhenM , N are both even, then the graph XC is not connected.
Indeed, each of its connected components is a copy of XB . We denote the connected
component containing the vertex b� by X�B , and the component containing the vertex bC
by XCB . Otherwise, if at least one M , N is odd, then XC is a connected double cover
of XB . In the next two sections, we describe the graph of spaces decomposition of X2MN
associated to the map p, and the induced graph of groups decomposition of Art2MN . We
consider separately the case where M , N are both even, and the case where at least one
of them is odd.

2.2. Both even

In the case where bothM ,N are even and� 4, presentation (�) of Art2MN is the standard
presentation of an HNN-extension.

Proposition 2.4. Let M D 2m, N D 2n and both � 4. Then Art2MN splits as an HNN-
extension A�B;ˇ , where AD hx; yi ' F2 and B D hxm; yn; x�1yi ' F3, and ˇWB ! A

is an injective homomorphism given by ˇ.xm/D xm, ˇ.yn/D yn and ˇ.x�1y/D yx�1.
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Proposition 2.4 follows from the following.

Proposition 2.5. Let M D 2m, N D 2n and both � 4. Then X2MN is a graph of spaces
X.�/, where � is a single vertex with a single loop. The vertex space is the graph XA, the
edge space is the graph XB , and the two maps XB ! XA are given in the Figure 2.

Proof. Indeed, the map p factors as

X2MN
zp
�! S1 D Œ�1; 1�=.�1 � 1/! Œ0; 1�;

where the second map is the absolute value, and where zp sends the loop b isometrically
onto S1 and is extended linearly. By construction, the preimage zp�1.t/ is homeomorphic
to XB when t 2 .�1; 1/, and to XA when t D 1. In particular, X2MN can be expressed
as a graph of spaces, induced by zp, where the cellular structure of S1 consists of a single
vertex v D 1 and a single edge e. Indeed,

X2MN D XA [XB � Œ�1; 1�=.x;�1/ � f�.x/; .x; 1/ � fC.x/;

where f�; fCWXB ! XA are the two maps obtained by “pushing” the graph XB in Fig-
ure 1 (a) “upwards” and “downwards”, respectively. See Figure 2 for f�, fC expressed as
a composition of Stallings fold and a combinatorial immersion.

Remark 2.6. The subgroups B and ˇ.B/ are conjugate. See Figure 2. Indeed, the graphs
xX�B and xXCB are identical (but have different basepoints).

Example 2.7 (Group Art244). In the case where M D N D 4, Proposition 2.5 provides
the splitting of Art244 D A�B;ˇ , where

A D hx; yi and B D hx2; y2; x�1yi;

and ˇWB ! B is given by ˇ.x2/ D x2, ˇ.y2/ D y2, ˇ.x�1y/ D yx�1. In particular,
B has index 2 in A. This splitting was first proven by Squier [25].

m n

m n

m � 1 n � 1

m � 1 n � 1

Figure 2. The map f�WXB ! X�
B
! xX�

B
! XA (top), and the map fCWXB ! XC

B
! xXC

B
! XA

(bottom).
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2.3. At least one odd

We now assume that at least one M , N is odd. We have the following description of the
complex X2MN .

Proposition 2.8. The complex X2MN is a graph of spaces whose underlying graph is
an interval, the vertex spaces are graphs XA and XB , and the edge space is XC . The
attaching map XC ! XB is a double cover, and the attaching map XC ! XA factors as
XC ! xXC ! XA, illustrated in Figure 3, where the first map is a homotopy equivalence
and the second map is a combinatorial immersion.

Proof. Indeed, X2MN can be obtained as a union of XA, XB and XC � Œ0; 1�, where
XC � ¹1º is glued toXA, andXC � ¹0º is glued toXB . Note that the preimage p�1.Œ0; 1

2
�/

is a union of cylinders and Möbius strips, and its boundary is the graphXC . The projection
onto the center circle of the boundary of each cylinder or Möbius strip is a (connected or
not) double cover of the center circle. It follows thatXC !XB is a double cover. The map
XC ! XA is induced by “pushing” XC “downwards” and “upwards” onto XA, and it can
be described by the labeling of the right graphs in Figure 3. The factorization XC ! xXC
is obtained by performing Stallings folds. Note that the middle graphs in Figure 3 are
fully folded, provided that m � 1; n � 1 > 0, which is equivalent to the condition that
M;N � 4. It follows that the map xXC ! XA is a combinatorial immersion. Since the
ranks of �1XC and �1 xXC are both equal to 5, the folding map is a homotopy equiva-
lence.

Corollary 2.9. Suppose at most one ofM , N is even andM;N � 4. Then Art2MN splits
as a free product with amalgamation A �C B , where A D F2 and B D F3, and C D F5.

Proof. This directly follows from Proposition 2.8. We get that

Art2MN D �1X2MN D A �C B;

where A D �1XA, B D �1XB and C D �1XC . From Figure 1, we see that rkA D 2,
rkB D 3 and rkC D 5.

(a)

mC 1

m

n

nC 1

n

m

n � 1

m � 1

(b)

m

mC 1n

n

m � 1

n � 1 n � 1

m

Figure 3. The mapsXC ! xXC !XA when (a):M D 2mC 1,N D 2nC 1; and (b):M D 2mC 1,
N D 2n.
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2.4. Splittings of spherical Artin groups

All spherical Artin groups have non-trivial center and their cohomological dimension is
equal to the number of standard generators [6, 10]. We now give a characterization of
graph of finite rank free groups with non-trivial center. This allows us to deduce that the
only spherical Artin groups that split as graphs of finite rank free groups are the dihedral
Artin groups (i.e., on two generators).

Proposition 2.10. The only irreducible spherical Artin groups that split as non-trivial
graphs of free groups are the dihedral Artin groups and Z.

Proof. Clearly, Z is an HNN-extension of a trivial group. Let ArtM be a dihedral Artin
group with the presentation ha; b j .a; b/M D .b; a/M i. Let M D 2m, and let x D ab.
Then ArtM ' ha; x j axma�1 D xmi. In particular, ArtM D hxi�hxmi D Z�Z. Now if
M D 2mC 1, let x D ab and y D .a; b/M . Then ArtM ' hx; y j xM D y2i. In particu-
lar, ArtM ' hxi �hxM i hyi D Z �Z Z. Conversely, non-trivial graphs of free groups have
cohomological dimension at most 2 since the corresponding graphs of spaces are aspher-
ical. The only irreducible spherical Artin groups of cohomological dimension at most 2
are dihedral Artin groups and Z.

2.5. Splittings of 3-generator Artin groups with 1 labels

To complete the picture, we prove that the remaining 3-generator Artin groups, i.e., those
with at least one1 label, also split as graphs of finite rank free groups. The Artin group
Art111 is the free group on three generators. The group ArtM11 D ArtM � Z can be
described as

hx; ci �xMDy2 hyi D F2 �Z Z;

where x D ab and y D .a; b/M . Finally, for the Artin group ArtMN1, we can use pre-
sentation (�) skipping the relation bx�1yb�1 D yx�1, i.e.,

ArtMN1 D hx; y; b j rM .b; x/; rN .b; y/i:

We get that ArtMN1 splits as

• A�B;ˇ , where A D hx; yi ' F2, B D hxm; yni ' F2, ˇ D idC , when M D 2m

and N D 2n,

• A �C B , where A D hx; yi ' F2, B ' F2 and C ' F3, when at least one of M , N
is odd. The splitting is obtained in the same way as in the case of Art2MN .

3. Residual finiteness

In the section, we prove Theorem B. We do so separately in the case whereM ,N are both
even (Theorem 3.6), and where exactly one of M , N is odd (Theorem 3.7). We start with
recalling a criterion for residual finiteness of amalgamated products and HNN extensions
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of finite rank free groups, proven in [18], which relies on Wise’s result on residual finite-
ness of algebraically clean graphs of free groups [29]. In Section 3.2, we compute the
intersections of conjugates of the amalgamating subgroup in the factor groups. Finally,
we give proofs of the main theorems.

We start with a motivating example.

Example 3.1 (Group Art244). By Example 2.7, the group Art244 fits in the short exact
sequence of groups

1! C ! Art244 ! Z=2Z � Z! 1:

In particular, Art244 is a (finite rank free group)-by-(virtually free group), and so it is
virtually (finite rank free group)-by-(free group). The residual finiteness of Art244 follows
from the fact that every split extension of a finitely generated residually finite group by
residually finite group is residually finite [22].

3.1. Criteria for residual finiteness

Recall that a subgroup C is malnormal in a group A, if C \ g�1Cg D ¹1º for every g 2
A�C . Similarly, C is almost malnormal inA, if jC \ g�1Cgj<1 for every g 2A�C .
More generally, a collection of subgroup ¹Ciºi2I is an almost malnormal collection, if
jCi \ gCjg

�1j <1 whenever g … Ci or i ¤ j .
Assume that the inclusion of free groups C ! A is induced by a map f WXC ! XA

of graphs, and the automorphism ˇW C ! C is induced by some graph automorphism
XC ! XC . The following theorem was proven in [18].

Theorem 3.2 ([18, Theorem 2.9]). Let yf W yXC ! yXA be a map of 2-complexes that re-
stricted to the 1-skeletons is equal to f , and let � WA! yA be the natural quotient induced
by the inclusion XA ,! yXA of the 1-skeleton. Suppose that the following conditions hold:

(1) yA is a locally quasiconvex, virtually special hyperbolic group.

(2) �.C / D �1 yXC and the lift of yf to the universal covers is an embedding.

(3) �.C / is almost malnormal in yA.

(4) ˇ projects to an isomorphism �.C /! �.C /.

Then D.A;C; ˇ/ is residually finite.

The theorem above is a combination of Theorem 2.9 and Lemma 2.6 from [18]. Con-
dition (2) in the statement of [18, Theorem 2.9] is that �.C / is malnormal in yA. However,
the proof is identical when we replace it with almost malnormal. Indeed, the Bestvina–
Feighn combination theorem [1], as well as the Hsu–Wise combination theorem [16] only
require almost malnormality.

We now state a version for HNN extension. Similarly as above, combining Theo-
rem 2.12 and Lemma 2.6 from [18], we obtain the following.

Theorem 3.3 ([18, Theorem 2.12]). Let yf�; yfCW yXB ! yXA be two maps of 2-complexes
that restricted to the 1-skeletons are equal to f�, fC, respectively, and let � WA ! yA
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be the natural quotient induced by the inclusion XA ,! yXA. Suppose that the following
conditions hold:

(1) yA is a locally quasiconvex, virtually special hyperbolic group.

(2) �.B/ D yf��.�1 yXB/, and �.ˇ.B// D yfC�.�1 yXB/ and the lifts of yf�, yfC to the
universal covers are both embeddings.

(3) The collection ¹�.B/; �.ˇ.B//º is almost malnormal in yA.

(4) ˇWB ! ˇ.B/ projects to an isomorphism �.B/! �.ˇ.B//.

Then A�B;ˇ is residually finite.

3.2. Intersection of the conjugates of the amalgamating subgroup

Let G D Art2MN , where M;N � 4 and at least one of them is odd. Let A, B , C be free
groups of ranks 2, 3, 5, respectively, provided by Corollary 2.9. In this section, we describe
intersections C \ g�1Cg, where g 2 A.

Proposition 3.4. Let M D 2m C 1 be odd, N D 2n even, and let A, B , C be as in
Corollary 2.9. Let g 2 A � C . Then the intersection C \ g�1Cg is one of the sets:
hx2mC1; yn; x�1yi, hx2mC1; yn; yx�1i, hx2mC1; yni, hx2mC1i, hyni.

Proof. LetXA, xXC be as in Figure 3 (b). By Theorem 1.1, the conjugates C \ g�1Cg can
be represented by the connected components of the fiber product xXC ˝XA xXC . Let x1, x2,
x3, x4 be the four vertices of valence 4 in xXC such that x1, x2 belong to the same y-
cycle and x3, x4 belong to the same y-cycle, and so that the ordering of the indices is
consistent with the order of the vertices on the x-cycle. Then the connected component
of xXC ˝XA xXC containing one of .xi ; xj / is

• the graph in Figure 4 (a), if ji � j j D 2, in which caseC\g�1Cg is hx2mC1;yn;x�1yi
or hx2mC1; yn; yx�1i, or

• a bouquet of two circles, labeled by x2mC1 and yn otherwise, in which case C \
g�1Cg is hx2mC1; yni.

Every other non-diagonal connected component of xXC ˝XA xXC is either trivial or a single
circle, which is labeled by either x2mC1 or yn, in which case C \ g�1Cg is hx2mC1i
or hyni, respectively.

(a)

n � 1

2mC 1

(b)

n

m

n

m

Figure 4. A connected component of xXC ˝XA xXC when (a): M D 2m C 1, N D 2n , and (b):
M D 2mC 1, N D 2nC 1.
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We finish with the following observation regarding the case where M and N are
both odd.

Remark 3.5. Let M D 2mC 1, N D 2nC 1, and let A, B , C be as in Corollary 2.9.
Let g 2 A � C . Then the intersection C \ g�1Cg is one of the sets: hx2mC1; yn; x�1yi,
hx2mC1; yni, hx2mC1i, hyni. Let XA, xXC be as in Figure 3. Let x1, x2, x3, x4 be the
four vertices of valence 4 in xXC ordered consistently with the orientation of the x-cycle
such that x1 and x4 are at distance m in the x-cycle. Then the connected component of
xXC ˝XA

xXC containing vertices .x1; x3/, .x2; x4/, .x4; x1/ (or vertices .x3; x1/, .x4; x2/,
.x1; x4/) looks like the graph in Figure 4 (b).

3.3. Proof of residual finiteness

We now use Theorem 3.3 to prove that Art2MN , where M , N are even and at least 4, is
residually finite.

Theorem 3.6. Let M D 2m, N D 2n and both � 4. Then Art2MN is residually finite.

Proof. The case where M D N D 4 is proven in Example 3.1, so we assume that at least
one ofM ,N , sayM , is at least 6. By Proposition 2.5, Art2MN splits as an HNN-extension
A�B;ˇ , where AD hx;yi and B D hxm; yn; x�1yi, and ˇWB! A is given by xm 7! xm,
yn 7! yn and x�1y 7! yx�1. We deduce residual finiteness of Art2MN from Theorem 3.3.
We now check that all its assumptions are satisfied.

Let yA D hx; y j xm; yn; .x�1y/pi, where p � 7, and let yXA be the presentation com-
plex of yA. Let � WA! yA be the natural quotient. Sincem � 3, the group yA is a hyperbolic
von Dyck triangle group, and in particular, condition (1) of Theorem 3.3 is satisfied.

The image �.B/ is a finite cyclic group Z=p of order p generated by x�1y, and the
image �.ˇ.B// is a copy of Z=p generated by yx�1. Since �.B/, �.ˇ.B// are finite
groups, they form an almost malnormal collection in yA, so condition (3) in Theorem 3.3 is
satisfied. Let yXB be obtained fromXB by attaching a 2-cell to each of the left and the right
loop of XB (left and right in Figure 2) via a 1-to-1 map (corresponding to the relations
xm, yn), and one 2-cell to the middle loop via a p-to-1map (corresponding to the relation
.x�1y/p). It is immediate that conditions (2) and (4) of Theorem 3.3 hold. See Figure 5.
The proof is complete.

Similarly, we use Theorem 3.2 to prove that Art2MN , where one of M , N is odd, is
residually finite.

Theorem 3.7. Let M D 2mC 1 and N D 2n be both � 4. Then Art2MN is residually
finite.

Proof. By Corollary 2.9, Art2MN splits as A �C B , and therefore Art2MN has an index 2
subgroup D.A;C; ˇ/. We use Theorem 3.2 to prove that D.A;C; ˇ/ is residually finite.

Let yA D hx; y j x2mC1; yn; .x�1y/pi, where p � 6, is even, and let yXA be its pre-
sentation 2-complex. Since n � 2 and 2mC 1 � 5, the group yA is a hyperbolic von Dyck
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m n

m n

m � 1 n � 1

m � 1 n � 1

Figure 5. The maps yf�W yXB !
yxX�
B
! yXA (top) and yfCW yXB !

yxXC
B
! yXA (bottom). White nodes

are contained in the 2-cells whose boundary is mapped p-to-1.

m

mC 1n

n

m � 1

n � 1 n � 1

m

Figure 6. The maps yXC !
yxXC ! yXA. White nodes are in the 2-cells whose boundary is mapped

p-to-1.

triangle group, and in particular, yA satisfies condition (1) of Theorem 3.2. Let � WA! yA be
the natural quotient. Let yxXC be a 2-complex obtained from xXC by attaching five 2-cells:
one along the unique cycle labeled x2mC1, one along each of the two cycles labeled by yn,
and one along each of two cycles xy�1 via a p-to-one map. See Figure 6. In Lemma 3.8
(below), we verify that condition (2) of Theorem 3.2 is satisfied.

By Proposition 3.4, the intersection of distinct conjugates of �.C / in yA is either Z=p
or trivial. In particular, �.C / is almost malnormal in yA, so condition (3) of Theorem 3.2
is satisfied. Finally, we note that the 2-cells of yxXC can be pulled back via XC ! xXC ,
and are preserved under the (unique) non-trivial deck transformation of XC ! XB . See
Figure 6. Condition (4) of Theorem 3.2 follows. This proves thatD.A;C;ˇ/, and therefore
Art2MN , is residually finite.

Lemma 3.8. The image �.C / is isomorphic to Z=p �Z=p. In particular, �.C /D �1 yXC .
Moreover, yf lifts to an embedding in the universal covers.

Proof. For simplicity, we set z D xy�1. The image �.C / is generated by z, and z0 D
xmzx�m. The universal cover of the complex yXA can be identified with the hyperbolic
plane. Consider the tiling of H2 by a triangle with angles �

2mC1
, �
n

, �
p

. Each vertex of the
tiling is a fixed point of a conjugate of one of x, y, z, and the action of yA preserves the
type of a vertex (i.e., whether it is fixed by a conjugate of x, y or z). We abuse the notation
and identify each vertex v with the conjugate xg , yg or zg which generates the stabilizer
of v (where g is some element of yA). The tiling is the dual of the universal cover of the
complex yXA, in the way that the vertices of types x, y, z correspond to the 2-cells with
boundary words x2mC1, yn, .xy�1/p , respectively.
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��

⩾ �⩾ �

⩾ � ⩾ �

y3

z3

x4

z5

y5

x6

x2

y1

x0

z1

: : :

:::

: :
:

: : :

x0 y1 x2 y3 x4 y5 x6

z1 z3 z5

s0 s1 s2 s3 s4 s5q1 q3 q5q0 q2 q4 q6

: : : : : : : : : : : : : : :

Figure 7. The vertices z1, z5 are �.C /-conjugates of z, and the vertex z3 is a �.C /-conjugate of z0.
Thick edges are in the image of the tree T . Odd vertices q1, q3, q5 are either green or red, depending
on parity of n. Even vertices q0, q2, q4, q6 are either blue or red, depending on parity of m. Note
that the orange segments are not necessarily edges in the tiling.

Consider the Bass–Serre tree T of the free product Z=p � Z=p, i.e., a regular tree
of valence p, where each vertex is stabilized by a conjugate of one of two Z=p factors.
In order to prove that �.C / splits as a free product and that yf lifts to embedding of the
universal covers, we show that there is Z=p � Z=p-equivariant embedding of T in H2

where the action of Z=p � Z=p on H2 is the action of the group hz; z0i.
First consider the union of the orbits of z and z0 under the action of �.C /. Note that

it is a collection of vertices of type z. We join zg and .z0/g by a path consisting of two
edges of the tiling meeting at a vertex of type x. See Figure 7. Note that the image of the
orbits of z and z0 under the action of subgroup hzp=2; .z0/p=2i ' Z=2 � Z=2 is contained
in a geodesic line in H2 (which is the line stabilized by hzp=2; .z0/p=2i).

The map from T to H2 is locally injective at every vertex. In order to see that T is
embedded in H2, we verify that any bi-infinite path  always turning rightmost in the
image of T never crosses itself. Indeed, if T were not embedded, then a closed path in
the image of T could be tracked by following a path turning rightmost in T . In Figure 7,
a part of that path is presented as the path with vertices x0, z1, x2, z3, x4, z5, x6. We
will construct another path  0 (whose part is labeled by q0; s0; q1; s1; : : : ; q5; s5; q6 in
Figure 7) that stays at a finite distance from  . We will think of  0 as an oriented path
(where q0 arises before q1 etc.). By construction (describe below),  0 never intersects the
image of T . Since the image of T contains a geodesic line and lies in the region on the
left side of  0 with respect to its orientation, the region of H2 on the left side of  0 is
unbounded. It suffices to show that the region of H2 on the right side of  0 is unbounded.
We will do it by showing that the region on the right side of  0 is a union of halfspaces.

Let us explain how the vertices qi , si are defined. The vertex si with odd i is the unique
vertex other than zi that forms a triangle with yi and xiC1. The vertex si with even i is
the unique vertex other than ziC1 that forms a triangle with xi and yiC1. In particular,
vertices si are always of type z. The vertices qi with odd i are images of a zi under the
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�-rotation at yi , i.e., the vertex yi is a midpoint of the segment Œzi ; qi �. The vertices qi
with even i are chosen so that the angles ∠si�1xiqi and ∠sixiqi are equal. The path  0

is obtained by joining each pair si�1, qi and qi , si be a geodesic segment (which are not
necessarily edges of the tiling).

The vertices si�1, qi , si are not necessarily distinct. If n D 2, then si�1 D qi D si for
each odd i . Also, if 2mC 1D 5, then si�1 D qi D si for i D 4kC 2. In that extreme case,
 0 is a geodesic line, as long as p � 6. In more general case, the “left-side” angle between
the segments of  0 at each vertex qi or si (i.e., the angle of the sector containing yi or xi
depending on the parity of i ) is always at most � . Thus the “right-side” angle at each
vertex qi , si is always at least � . Consequently, the subspace of H2 bounded by  0 which
is on the right side of  0 is a union of halfspaces. This proves our claim.

Our approach in the last two theorems fails in the case where M D 2m C 1, N D
2nC 1. Indeed, the fiber product xXC ˝XA xXC is too “large”. The fiber product was
computed in Remark 3.5. After attaching 2-cells along x2mC1, y2nC1 and .x�1y/p , the
resulting 2-complex has fundamental group Z � Z=p.

3.4. Summary of residual finiteness of 3-generator Artin groups

To summarize, the only 3-generator Artin groups that are not known to be residually finite
are Art33.2mC1/ for m � 2, Art2.2mC1/.2nC1/ for m C n � 4 and Art23.2m/ for m � 4.
Indeed, if at least one label is 1, then the defining graph is a tree, and hence virtually
special [7, 14, 20, 23]. Artin groups Art22M for any M � 2, and Art23M , where M 2
¹3; 4; 5º are spherical, and so linear [9, 11]. The cases .3; 3; 3/, .2; 4; 4/ and .2; 3; 6/
follow from [25]. The cases where M;N;P � 3, except the case of .3; 3; 2mC 1/, were
covered by [18].
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