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On the continuity of the growth rate on the space of
Coxeter systems

Tomoshige Yukita

Abstract. Floyd showed that if a sequence of compact hyperbolic Coxeter polygons converges, then
so does the sequence of the growth rates of the Coxeter groups associated with the polygons. For the
case of the hyperbolic 3-space, Kolpakov discovered the same phenomena for specific convergent
sequences of hyperbolic Coxeter polyhedra. In this paper, we show that the growth rate is a contin-
uous function on the space of Coxeter systems. This is an extension of the results due to Floyd and
Kolpakov since the convergent sequences of Coxeter polyhedra give rise to that of Coxeter systems
in the space of marked groups.

1. Introduction

Let G be a group and S D .s1; : : : ; sn/ be an ordered generating set of G. The pair .G;S/
is called an n-marked group. Two n-marked groups .G; S/ and .H; T / are isomorphic if
the bijection �WS ! T which maps si to ti extends to a group isomorphism fromG toH .
The set Gn of all isomorphism classes of n-marked groups is called the space of n-marked
groups. The set Gn has a natural topology which makes Gn a compact totally disconnected
space [12]. The word length jxjS of an element x 2 G is defined by

jxjS D min¹n � 1 j x D s1 : : : sn; si 2 S [ S�1º;

and this gives rise to the word metric dS on G. We adopt the convention that j1G jS D 0,
where 1G is the identity element of G. We denote by B.G;S/.m/ the ball of radius m
centered at 1G . Then the growth function of .G; S/, denoted by s.G;S/.m/, is defined to
be the number of the elements of B.G;S/.m/, that is,

s.G;S/.m/ D #¹x 2 G j jxjS � mº:

The growth rate !.G; S/ is given by !.G; S/ D limm!1
m
p
s.G;S/.m/.

A group G is called a Coxeter group of rank n if there exists an ordered generating set
S D .s1; : : : ; sn/ such that G has the following presentation:

G D hs1; : : : ; sn j s
2
1 D � � � D s

2
n D 1; .sisj /

mij D 1 for 1 � i ¤ j � ni:
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Such a generating set S is called a Coxeter generating set of G. We call the pair .G; S/
a Coxeter system of rank n.

In the hyperbolic geometry, Coxeter groups arise from the geometry of polyhedra as
follows. Let Hd denote the hyperbolic d -space. A hyperbolic polyhedron P � Hd is
the intersection of finitely many closed half-spaces. If dihedral angles of P are of the
form �=m .m � 2/, then P is called a hyperbolic Coxeter polyhedron. The group gen-
erated by the reflections in the bounding hyperplanes of P , denoted by GP , is a Coxeter
group. We call GP the hyperbolic Coxeter group associated with P .

Concerning the study of the growth rates of hyperbolic Coxeter groups, we mention
the results due to Floyd and Kolpakov. Let us write�.a1; : : : ; an/ for a hyperbolic Coxeter
n-gon whose interior angles are �=a1; : : : ; �=an. We say that�k D �.a1.k/; : : : ; an.k//
converges to � D �.a1; : : : ; an/ as k ! 1 if limk!1 ai .k/ D ai for any i . In [9],
Floyd showed that limk!1 !.Gk/ D !.G/ if limk!1 �k D �, where Gk and G are
the hyperbolic Coxeter groups associated with�k and�, respectively. For the case of the
hyperbolic 3-space, Kolpakov investigated a convergence of hyperbolic Coxeter polyhedra
in [13] and proved that if a sequence Pk of hyperbolic Coxeter polyhedra converges, then
so does the sequence !.Gk/ of the growth rates, whereGk is the hyperbolic Coxeter group
associated with Pk .

The set of all Coxeter systems of rank n, denoted by Cn, is called the space of Coxeter
systems of rank n. We consider the space Cn as a subspace of Gn (see Definition 3.3).
In this paper, we show the following theorem as an extension of the results due to Floyd
and Kolpakov (see Sections 3 and 4).

Theorem. The growth rate !WCn ! R is a continuous function.

We mention that for hyperbolic groups, Fujiwara and Sela studied growth rates with
respect to all of its finite generating sets and showed the continuity of the growth rates
(see [10]).

2. The space of marked groups and the growth rates

In this section, we recall the space of marked groups (see [5, 12] for more details). For
readability, we give proofs for some known facts.

Definition 2.1. For a group G and its ordered generating set S D .s1; : : : ; sn/, the pair
.G;S/ is called an n-marked group. Two n-marked groups .G;S/ and .H;T / are said to be
isomorphic if the bijection from S to T that maps si to ti extends to a group isomorphism.
The set of all isomorphism classes of n-marked groups is denoted by Gn, and is called the
space of n-marked groups.

In the sequel, we fix an ordered generating set X D .x1; : : : ; xn/ of the free group Fn
of rank n. For any n-marked group .G;S/, let us denote the epimorphism from Fn onto G
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that maps xi to si by �.G;S/. It is easy to see that two n-marked groups .G;S/ and .H;T /
are isomorphic if and only if Ker�.G;S/ D Ker�.H;T /.

Definition 2.2. Let .G; S/ be an n-marked group. For any x 2 G, the word length of x
with respect to S , denoted by jxjS , is defined by

jxjS D min¹n � 0 j x D s1 : : : sn; si 2 S [ S�1º:

We denote by B.G;S/.R/ the ball of radius R centered at 1G , that is,

B.G;S/.R/ D ¹x 2 G j jxjS � Rº:

For abbreviation, we write B.R/ instead of B.Fn;X/.R/. We define a metric d on Gn as
follows. For two n-marked groups .G; S/ and .H; T /, let us denote by v..G; S/; .H; T //
the maximum radius of the balls centered at 1Fn where Ker�.G;S/ D Ker�.H;T /, that is,

v..G; S/; .H; T // D max¹R � 0 j B.R/ \ Ker�.G;S/ D B.R/ \ Ker�.H;T /º:

Then the metric d on Gn is defined by

d..G; S/; .H; T // D e�v..G;S/;.H;T //:

It is known that the metric space .Gn; d / is compact.

The Cayley graph Cay .G; S/ of an n-marked group .G;S/ is an edge-labeled directed
graph defined as follows. The vertex set is G, and two vertices x, y are joined by an
oriented edge from x to y labeled with i if x�1y D si . We consider the ball B.G;S/.R/ as
a subgraph of Cay .G; S/.

Lemma 2.3. For two n-marked groups .G; S/; .H; T / 2 Gn and R � 1, the distance
satisfies that d..G; S/; .H; T // � e�.2RC1/ if and only if there exists an orientation- and
label-preserving graph isomorphism from B.G;S/.R/ to B.H;T /.R/ that maps the identity
element of G to that of H .

Proof. Suppose that d..G;S/; .H;T // � e�.2RC1/. By the definition of the metric on Gn,
we have

B.2RC 1/ \ Ker�.G;S/ D B.2RC 1/ \ Ker�.H;T /: (2.1)

We define a map ˛WB.G;S/.R/! B.H;T /.R/ as follows. For g D s"1i1 : : : s
"k
ik

, k � R,

˛.s
"1
i1
: : : s

"k
ik
/ D t

"1
i1
: : : t

"k
ik
:

First we show that the map ˛ is well defined. For that, suppose that an element g 2
B.G;S/.R/ has two expressions as follows:

g D s
"1
i1
: : : s

"k
ik
D s

ı1
j1
: : : s

ıl
jl
;
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x y ˛.y/ ˛.x/

ik
˛ ik

Figure 1. The oriented edge from x to y labeled with ik .

where 0 � k, l � R. Then the element w D x
"1
i1
: : : x

"k
ik
x
�ıl
jl

: : : x
�ı1
j1

of Fn belongs to
B.2RC 1/ \ Ker�.G;S/. By (2.1), we see that �.H;T /.w/ D 1H , and hence the map ˛ is
well defined. It is easy to see that the map ˛ is an orientation- and label-preserving graph
homomorphism. In the same manner, the map ˇWB.H;T /.R/! B.G;S/.R/ is defined by

ˇ.t
"1
i1
: : : t

"k
ik
/ D s

"1
i1
: : : s

"k
ik
:

Since ˇ D ˛�1, ˛ is the desired graph isomorphism.
Conversely, suppose that there exists an orientation- and label-preserving graph iso-

morphism ˛WB.G;S/.R/! B.H;T /.R/ such that ˛.1G/ D 1H . We claim that

˛.s
"1
i1
: : : s

"k
ik
/ D t

"1
i1
: : : t

"k
ik
: (2.2)

The proof is carried out by induction on k. It is clear for the case k D 0. Set x D
s
"1
i1
: : : s

"k�1
ik�1

and y D xsik . Then the vertices x and y are joined by the oriented edge
from x to y labeled with ik ; so are the vertices ˛.x/ and ˛.y/ (see Figure 1).

By the inductive hypothesis, we have ˛.x/ D t
"1
i1
: : : t

"k�1
ik�1

. Since the terminal ver-
tex of the oriented edge labeled with ik emanating from t

"1
i1
: : : t

"k�1
ik�1

is t"1i1 : : : t
"k�1
ik�1

tik ,
we obtain ˛.y/ D t"1i1 : : : t

"k�1
ik�1

tik . By applying similar arguments to the case where x D
s
"1
i1
: : : s

"k�1
ik�1

s�1ik and y D s
"1
i1
: : : s

"k�1
ik�1

, we have ˛.s"1i1 : : : s
"k�1
ik�1

s�1ik / D t
"1
i1
: : : t

"k�1
ik�1

t�1ik .
Therefore, we obtain (2.2). Fix an element w D x"1i1 : : : x

"k
ik
2 B.2RC 1/ \ Ker�.G;S/.

Let us denote by pw the closed path in Cay .G; S/ corresponding to w. We write u for
the farthest vertex of pw from 1G . If jujS � RC 1, then the length of pw must be greater
than or equal to 2.RC 1/. Therefore, the closed path pw belongs to B.G;S/.R/. By equal-
ity (2.2), the closed path of Cay .H; T / corresponding to w is ˛.pw/, and this implies
.B.2RC 1/\Ker�.G;S// � .B.2RC 1/\Ker�.H;T //. Replacing ˛ by ˛�1, we obtain
.B.2RC 1/ \ Ker�.H;T // � .B.2RC 1/ \ Ker�.G;S//.

For any n-marked group .G; S/ 2 Gn, the growth function s.G;S/.m/ is defined to be
the number of elements of G whose lengths are at most m, that is,

s.G;S/.m/ D #¹x 2 G j jxjS � mº:

Since s.G;S/.m/ is submultiplicative, we have

lim
m!1

m

q
s.G;S/.m/ D inf

m�0

m

q
s.G;S/.m/:

We define the growth rate !.G; S/ to be limm!1
m
p
s.G;S/.m/. We say that an n-marked

group .G; S/ has exponential growth rate if !.G; S/ > 1.
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3. The space of Coxeter systems

In this section, we give the definitions of Coxeter groups, Coxeter matrices, and the
space Cn of Coxeter systems of rank n. Then we prove that Cn is a compact subspace
of Gn. The general reference here is [4].

Definition 3.1. Let us denote the set of the natural numbers with 1 by bN. An n � n
matrix M D .mij / over bN is called a Coxeter matrix if it is symmetric and satisfies the
conditionmij D 1 if and only if i D j . We denote the set of all Coxeter matrices of n � n
size by CMn, and define a metric D on CMn as follows:

D.M;M 0/ D max
1�i; j�n

ˇ̌̌ 1

emij
�

1

em
0
ij

ˇ̌̌
;

where M D .mij /, M 0 D .m0ij /.

Since CMn is closed subset of the product space bNn2 , CMn is compact. It is easy to
see that any convergent sequence ¹m.k/ºk�1 of bN is either eventually constant or con-
verges to1. Thus we have the following.

Lemma 3.2. Let ¹Mk D .mij .k//ºk�1 be a sequence of Coxeter matrices. ThenMk con-
verges to a Coxeter matrixM D .mij / if and only if for any positive integerL, there exists
KL � 0 such that for k � KL,´

mij .k/ � L if mij D1;

mij .k/ D mij if mij <1:

Definition 3.3. Any n � n size Coxeter matrix M D .mij / determines a group G.M/

with the presentation

G.M/ D hs1; : : : ; sn j .sisj /
mij D 1 for 1 � i � j � ni:

A group G having such a presentation is called a Coxeter group and the pair .G; S/
is called a Coxeter system. The cardinality of the generating set S is called the rank
of .G; S/. We denote the set of all Coxeter systems of rank n by Cn � Gn. The sub-
space Cn is called the space of Coxeter systems of rank n.

In order to prove that CMn and Cn are homeomorphic, we will show that Cn is closed
in Gn.

Theorem 3.4 ([4, p. 18, Theorem 1.5.1]). Let G be a group and S be its generating set.
Suppose that every element of S is of order 2. Then the followings are equivalent:

(i) The pair .G; S/ is a Coxeter system.

(ii) Let x D si1 : : : sil be a reduced word in G, and let s 2 S . If jsxjS < jxjS , then
sx D si1 : : : ysim : : : sil .
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Lemma 3.5. The space of Coxeter systems Cn is closed in Gn.

Proof. Suppose that a sequence ¹.Gk ; Sk/ºk�1 of Coxeter systems of rank n converges to
an n-marked group .G; S/. We prove that .G; S/ is a Coxeter system of rank n. By Lem-
ma 2.3 and the assumption limk!1.Gk ; Sk/ D .G; S/, for any R � 0, there exists an
integer k D k.R/ � 1 such that the balls B.Gk ;Sk/.R/ and B.G;S/.R/ are isomorphic. By
taking R D 2, we see that every element of S is of order 2. Fix a reduced word x D
si1 : : : sil in G and s 2 S . Then the expression si1 : : : sil gives rise to the shortest path
from 1G to x. Fix an integer R � 0 such that x, sx 2 B.G;S/.R/. Let us denote the graph
isomorphism from B.G;S/.R/ to B.Gk ;Sk/.R/ by ˛. The assumption that x D si1 : : : sil is
a reduced word implies that ˛.x/ D ˛.si1/ : : : ˛.sil / is a reduced word in Gk . Since Gk is
a Coxeter group, by Theorem 3.4, if jsxjS < jxjS , then

˛.sx/ D ˛.s/˛.x/ D ˛.si1/ : : :
1̨.sim/ : : : ˛.sil / D ˛.si1 : : : ysim : : : sil /:

Therefore, we obtain sx D si1 : : : ysim : : : sil .

Theorem 3.6. The map ˆWCMn ! Cn that maps M to G.M/ is a homeomorphism.

Proof. It is trivial thatˆ is a bijection. If we prove thatˆ�1 is continuous, the fact that Gn
is compact together with Lemma 3.5 implies that ˆ�1 is a homeomorphism, since any
continuous bijection from a compact space to a Hausdorff space is homeomorphism.
Let .Gk ; Sk/ and .G; S/ be Coxeter systems of rank n and write Mk D .mij .k// and
M D .mij / for the Coxeter matrices corresponding to .Gk ; Sk/ and .G; S/, respectively.
Suppose that limk!1.Gk ; Sk/ D .G; S/. Fix a defining relation r D .sisj /mij of G. The
relation r corresponds to the cycle of length 2mij in Cay .G; S/ labeled with i and j
alternately. For the case mij < 1, by Lemma 2.3, the ball B.Gk ;Sk/.mij / must con-
tain the cycle of length 2mij labeled with i and j alternately for sufficiently large k.
Therefore, limk!1mij .k/ D mij . Consider the case mij D 1. In order to obtain a con-
tradiction, suppose that there exists an integer R � 0 such that mij .k/ � R for any k.
Since B.G;S/.2R/ does not contain the cycle labeled with i and j alternately, we see that
the balls B.G;S/.2R/ and B.Gk ;Sk/.2R/ are not isomorphic for any k. This contradicts to
Lemma 2.3. Therefore, we obtain limk!1mij .k/Dmij for any i , j , that is, the mapˆ�1

is continuous.

Definition 3.7. Let .G; S/ be a Coxeter system of rank n and M D .mij / be the Coxeter
matrix corresponding to .G; S/. The Gram matrix Gram .G; S/ D .gij / is a symmetric
matrix of n � n size defined as follows:

gij D

´
1 if i D j;

� cos �
mij

if i ¤ j:

If Gram .G; S/ is positive definite (resp. positive semidefinite), the Coxeter system .G;S/

is said to be elliptic (resp. affine) (see [19] for more details). We call .G; S/ a non-affine
Coxeter system if .G; S/ is neither elliptic nor affine.
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Lemma 3.8. The set of all elliptic or affine Coxeter systems of rank n is closed in Cn.

Proof. Suppose that a sequence ¹.Gk ; Sk/ºk�1 of elliptic or affine Coxeter systems of
rank n converges to a Coxeter system .G; S/ of rank n. Let us write Mk D .mij .k//

and M D .mij / for the Coxeter matrices corresponding to .Gk ; Sk/ and .G; S/, respec-
tively. By Theorem 3.6, we have limk!1 gij .k/ D gij , where gij .k/ and gij denote the
.i; j /-th entries of Gram .Gk ; Sk/ and Gram .G; S/, respectively. Therefore, the eigen-
values �1.k/; : : : ; �n.k/ of Gram .Gk ; Sk/ converge to the eigenvalues �1; : : : ; �n of
Gram .G; S/ (see [3, Section VI]), which proves the assertion.

The growth type of a Coxeter system .G; S/ is as follows:

(i) If .G; S/ is elliptic, then G is finite, so !.G; S/ D 1 (see [6, 19]).

(ii) If .G; S/ is affine, then G must contain a free abelian subgroup of finite index,
so !.G; S/ D 1 (see [6, 19]).

(iii) If .G; S/ is non-affine, then G must contain a free subgroup of rank at least 2,
so !.G; S/ > 1 (see [7]).

Corollary 3.9. A Coxeter system .G; S/ is non-affine if and only if !.G; S/ > 1.

There is a partial ordering � on Cn defined in [14] as follows:

.G; S/ � .G0; S 0/ , mij � m
0
ij for 1 � i; j � n:

Since any convergent sequence of bN is eventually constant or converges to1, we obtain
the following.

Lemma 3.10. Let .Gk ; Sk/ be a Coxeter system of rank n that converges to .G; S/. We
writeMk D .mij .k// andM D .mij / for the Coxeter matrices corresponding to .Gk ; Sk/
and .G; S/, respectively. Suppose that the sequence .Gk ; Sk/ is not eventually constant.
Then some of mij ’s are infinity and the sequence contains an increasing subsequence.

The following theorem due to Terragni is of fundamental importance for this paper.
For an n-marked group .G; S/, we define the function a.G;S/.m/ to be the number of
elements of G whose word lengths with respect to S are equal to m, that is,

a.G;S/.m/ D #¹x 2 G j jxjS D mº:

We also call the function a.G;S/.m/ the growth function of .G; S/.

Theorem 3.11 ([18, p. 607, Theorem A]). Let .G; S/ and .G0; S 0/ be Coxeter systems of
rank n. If .G; S/ � .G0; S 0/, then a.G;S/.m/ � a.G0;S 0/.m/ for m � 0.

Since s.G;S/.m/D a.G;S/.0/C � � � C a.G;S/.m/ if Coxeter systems .G;S/ and .G0;S 0/
satisfy .G; S/ � .G0; S 0/, we have s.G;S/.m/ � s.G0;S 0/.m/ for any m � 0.

Corollary 3.12. The set of all non-affine Coxeter systems of rank n is closed in Cn.
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Proof. Suppose that a sequence ¹.Gk ; Sk/ºk�1 of non-affine Coxeter systems of rank n
converges to a Coxeter system .G; S/. We prove that .G; S/ is non-affine. It is trivial for
the case that the sequence is eventually constant. For the other case, by Lemma 3.10, there
exists an increasing subsequence ¹.Gkl ; Skl /ºl�1 of non-affine Coxeter systems of rank n.
Theorem 3.11 implies that

!.G; S/ � !.Gk1 ; Sk1/ > 1;

and hence G is non-affine by Corollary 3.9.

Steinberg’s formula is fundamental to compute the growth rates of Coxeter systems.

Definition 3.13. For a Coxeter system .G;S/ and a subset T � S , the subgroup generated
by T , denoted by GT , is called a parabolic subgroup of G. The pair .GT ; T / itself is
a Coxeter system. We denote by F .G; S/ the set of all subsets of S generating finite
parabolic subgroups, that is,

F .G; S/ D ¹T � S j #GT <1º:

The growth series f.G;S/.z/ is defined by

f.G;S/.z/ D

1X
mD0

a.G;S/.m/z
m:

Let us now recall the classification of finite Coxeter groups. In order to do that, we
need the notion of Coxeter diagram.

Definition 3.14. For a Coxeter system .G; S/, the Coxeter diagram X.G; S/ of .G; S/ is
constructed as follows: its vertex set is S . If mij � 4, we join the pair of vertices by an
edge and label it with mij . If mij D 3, we join the pair of vertices by an edge without any
label. For any L 2 bN, we denote by FL.G; S/ the set of all elements of F .G; S/ whose
Coxeter diagrams have edges labeled with L, that is,

FL.G; S/ D ¹T 2 F .G; S/ j X.GT ; T / has edges labeled with Lº:

A Coxeter system .G; S/ is said to be irreducible if the Coxeter diagram X.G; S/ is
connected. Irreducible finite Coxeter systems of rank n are classified as in Table 1 (see [4]).
For integers m1; : : : ; mk � 1, the polynomial Œm1I : : : Imk � is defined by

Œm1I : : : Imk � D .1C � � � C z
m1�1/ � � � .1C � � � C zmk�1/:

The growth series of irreducible finite Coxeter systems are determined by Solomon’s for-
mula (see [16] for details). Table 1 shows the list of the growth series of irreducible finite
Coxeter systems of rank n. Note that the growth series of irreducible finite Coxeter sys-
tems are products of cyclotomic polynomials.
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Coxeter group Diagram Growth series

An Œ2I 3I : : : InC 1�

Bn
4

Œ2I 4I : : : I 2n�

Dn Œ2I 4I : : : I 2n � 2In�

E6 Œ2I 5I 6I 8I 9I 12�

E7 Œ2I 6I 8I 10I 12I 14I 18�

E8 Œ2I 8I 12I 14I 18I 20I 24I 30�

F4
4

Œ2I 6I 8I 12�

H3
5

Œ2I 6I 10�

H4
5

Œ2I 12I 20I 30�

I2.m/
m

Œ2Im�

Table 1. The classification of irreducible finite Coxeter systems of rank n and their growth series.

For a Coxeter system .G; S/, we denote the vertex sets of connected components of
X.G; S/ by S1; : : : ; Sk . Let G1; : : : ; Gk be the Coxeter groups generated by S1; : : : ; Sk .
The following hold for .G; S/:

G D G1 � � � � �Gk ; S D S1 t � � � t Sk :

Then we say that .G; S/ is the product of .G1; S1/; : : : ; .Gk ; Sk/.

Lemma 3.15. Let .G; S/ be a Coxeter system. If .G; S/ is the product of irreducible
Coxeter systems .G1; S1/; : : : ; .Gk ; Sk/, then the growth series satisfies

f.G;S/.z/ D f.G1;S1/.z/ � � � f.Gk ;Sk/.z/:

By Lemma 3.15 and the fact that the growth series of irreducible finite Coxeter systems
are products of cyclotomic polynomials, we see that the growth series f.G;S/.z/ of a finite
Coxeter system .G; S/ has the following property:

zdegf.G;S/ � f.G;S/.z
�1/ D f.G;S/.z/: (3.1)

The growth series of infinite Coxeter systems are written as rational functions.
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Theorem 3.16 (Steinberg’s formula [17]). Let G D .G; S/ be an infinite Coxeter system.
The following identity holds for the growth series f.G;S/.z/:

1

f.G;S/.z�1/
D

X
T2F .G;S/

.�1/#T

f.GT ;T /.z/
: (3.2)

Substituting (3.1) into Steinberg’s formula (3.2), we obtain

1

f.G;S/.z/
D

X
T2F .G;S/

.�1/#T
zdT

f.GT ;T /.z/
; (3.3)

where dT D deg f.GT ;T /.z/ for T 2 F .G; S/. Set F.G;S/.z/ D 1=.f.G;S/.z//. Since the
growth series f.GT ;T /.z/ is a product of cyclotomic polynomials, F.G;S/.z/ is a rational
function and all of those poles lie on the unit circle. Therefore, F.G;S/.z/ is holomorphic
on the unit open disk.

Lemma 3.17. Let .G; S/ be an infinite Coxeter system. The reciprocal of the growth rate
!.G;S/ is the zero of F.G;S/.z/ whose modulus is minimum among all zeros of F.G;S/.z/.

Proof. Since G is infinite, we have !.G; S/ D lim supm!1 m
p
a.G;S/.m/ (see [8, Sec-

tion VI.C, p. 182]). Let us denote the radius of convergence of the series f.G;S/.z/ by R.
By the Cauchy–Hadamard formula,

R D
1

lim supm!1 m
p
a.G;S/.m/

D !.G; S/�1:

Since infm�0 m
p
a.G;S/.m/ D !.G; S/, we obtain a.G;S/.m/ � !.G; S/m (see [8, p. 183,

Proposition 56]), and hence the series f.G;S/.!.G; S/�1/ diverges, which proves our
assertion.

Proposition 3.18. Let .G; S/ be a non-affine Coxeter system of rank n and write M D
.mij / for the Coxeter matrix corresponding to .G; S/. For any l � 6, define the Coxeter
matrix M.l/ D .mij .l// of n � n size as follows:

mij .l/ D

´
l if mij D1;

mij if mij <1:

The Coxeter system defined by M.l/ is denoted by .G.l/; S.l//. Then the meromorphic
function F.G.l/;S.l//.z/ converges normally to F.G;S/.z/ on the unit open disk.

Proof. By Lemma 3.8, the set of non-affine Coxeter systems is open in Cn. Therefore, the
Coxeter system .G.l/;S.l// is non-affine for sufficiently large l . From now on, we assume
that .G.l/; S.l// is non-affine. Since the ordering on the generating set S.l/ of G.l/
is defined by the Coxeter matrix M.l/, we identify S.l/ with S by the correspondence
si .l/ 7! si . For example, we may consider that any subset T of S does not only generate
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changing all labels
from1 to l

l l GT .l/

1 1 GT

Figure 2. Coxeter diagrams X.GT ; T / and X.G.l/T ; T /.

the parabolic subgroupGT of G but also generates the parabolic subgroupG.l/T ofG.l/.
For any T � S , the Coxeter diagram X.G.l/T ; T / is obtained from the Coxeter diagram
X.GT ; T / by changing all labels from1 to l (see Figure 2 for an example). Therefore,
the underlying graph structure of X.G.l/T ; T / is the same as that of X.GT ; T /. In this
proof, we use the following notations:

F D F .G; S/ D ¹T � S j #GT <1º;

FL D FL.G; S/ D ¹T 2 F j X.GT ; T / has edges labeled with Lº;

F .l/ D F .G.l/; S/ D ¹T � S j #G.l/T <1º;

FL.l/ D FL.G.l/; S/ D ¹T 2 F .l/ j X.G.l/T ; T / has edges labeled with Lº:

First, we show that Fl .l/ D Fl 0.l
0/ for any l; l 0 � 6. The classification of irreducible

finite Coxeter systems implies that if T 2 Fl .l/, then every component of the Coxeter
diagram X.G.l/T ; T / having at least one edge labeled with l must be I2.l/. Hence
G.l/T generated by T 2 Fl .l/ can be expressed as the product of the finite Coxeter
group HT and I2.l/’s, where the Coxeter diagram of HT has no edges labeled with l
(see Figure 3 for an example). Since the Coxeter diagram X.G.l 0/T ; T / is obtained from
X.G.l/T ; T / by changing the labels l into l 0, G.l 0/T is the product of HT and I2.l 0/0s.
Therefore, T 2 Fl 0.l

0/ for any T 2 Fl .l/. By interchanging the roles of l and l 0, we have
Fl .l/ D Fl 0.l

0/.

HT product of I2.l/’s

G.l/T

Figure 3. Decomposition of X.G.l/T ; T / into HT and I2.l/’s.
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Given T 2 Fl .l/, we write kT and I2.l/T for the number of the edges ofX.G.l/T ; T /
labeled with l and the parabolic subgroup of G.l/T generated by T nHT , respectively.
Note that the number kT does not depend on l � 6. By Lemma 3.15 and the fact that
.G.l/T ; T /D .HT ; T \HT /� .I2.l/T ; I2.l/T \ T /, we have the following equality for
T 2 Fl .l/:

f.G.l/T ;T /.z/ D f.HT ;T\HT /.z/f.I2.l/T ;I2.l/T\T /.z/ D f.HT ;T\HT /.z/Œ2I l �
kT : (3.4)

For l � 6 and T 2 Fl .l/, let us denote the degrees of the polynomials f.G.l/T ;T / and
f.HT ;T\HT / by dT .l/ and hT .l/, respectively. By equality (3.4),

dT .l/ D hT .l/C kT l:

Then the identity (3.3) for F.G.l/;S/.z/ is rewritten as

F.G.l/;S/.z/

D

X
T2F .l/

.�1/#T
zdT .l/

f.G.l/T ;T /.z/

D

X
T2F .l/nFl .l/

.�1/#T
zdT .l/

f.G.l/T ;T /.z/
C

X
T2Fl .l/

.�1/#T
zdT .l/

f.G.l/T ;T /.z/

D

X
T2F .l/nFl .l/

.�1/#T
zdT .l/

f.G.l/T ;T /.z/
C

X
T2Fl .l/

.�1/#T
zhT .l/CkT l

f.HT ;T\HT /.z/ � Œ2I l �
kT

D

X
T2F .l/nFl .l/

.�1/#T
zdT .l/

f.G.l/T ;T /.z/
C

X
T2Fl .l/

.�1/#T
zhT .l/

f.HT ;T\HT /.z/
�
zkT l

Œ2I l �kT
:

If l tends to1, any parabolic subgroupG.l/T generated by T 2Fl .l/ becomes an infinite
Coxeter group. This observation implies

F D F .l/ n Fl .l/:

Since the degree dT .l/ D deg f.G.l/T ;T /.z/ does not depend on l for T 2 F .l/ n Fl .l/,
we obtain X

T2F .l/nFl .l/

.�1/#T
zdT .l/

f.G.l/T ;T /.z/
D

X
T2F

.�1/#T
zdT

f.G.l/T ;T /.z/
D F.G;S/.z/;

and hence

F.G.l/;S/.z/ D F.G;S/.z/C
X

T2Fl .l/

.�1/#T
zhT .l/

f.HT ;T\HT /.z/
�
zkT l

Œ2I l �kT
: (3.5)

Now we are in a position to show that F.G.l/;S/.z/ converges normally to F.G;S/.z/ on
the unit open disk. Let us regard 0 < � < 1 as fixed and write D� for the closed disk
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of radius � centered at 0. Since f.HT ;T\HT /.z/ is a product of cyclotomic polynomials,
there are no zeros inD�, and hence zhT .l/=.f.HT ;T\HT /.z// is continuous on the compact
set D�. Since Fl .l/ D Fl 0.l

0/ for l; l 0 � 6, then we may take a positive constant M large
enough that for any l � 6, T 2 Fl .l/ and z 2 D�,ˇ̌̌ zhT .l/

f.HT ;T\HT /.z/

ˇ̌̌
< M: (3.6)

By multiplying .1 � z/kT to the denominator and numerator of zkT l=.Œ2I l �kT /, we have

zkT l

Œ2I l �kT
D

� 1 � z
1C z

�kT
�

zkT l

.1 � zl /kT
: (3.7)

Since the function .1 � z/=.1C z/ is continuous on D�, there exists a positive con-
stant M 0 such that for any l � 6, T 2 Fl .l/ and z 2 D�,ˇ̌̌� 1 � z

1C z

�kT ˇ̌̌
< M 0: (3.8)

By the triangle inequality,

j1 � zl j � 1 � �l for l � 6; z 2 D�:

This observation together with the equality and inequalities (3.5), (3.6), (3.7), and (3.8)
give the following inequality for z 2 D�:

jF.G.l/;S/.z/ � F.G;S/.z/j �
X

T2Fl .l/

MM 0
�L

.1 � �L/kT
:

Since the cardinality of the set Fl .l/ is constant and finite for l � 6,

lim
l!1

sup
z2D�

jF.G.l/;S/.z/ � F.G;S/.z/j D 0;

and this is precisely the assertion of Proposition 3.18.

Corollary 3.19. Under the same assumption as in Proposition 3.18, the growth rate
!.G.l/; S.l// converges to !.G; S/.

Proof. Since the Coxeter system .G.l/; S.l// is non-affine for sufficiently large l , we
may assume that .G.l/; S.l// is non-affine. In order to obtain a contradiction, suppose
that !.G.l/; S.l// does not converge to !.G; S/. Fix " > 0 such that the closed disk
D.!.G; S/�1; "/ of radius " centered at !.G; S/�1 does not contain !.G.l/; S.l//�1 for
any l . Since !.G;S/�1 is a zero of F.G;S/.z/, by Proposition 3.18 and Hurwitz’s theorem
(see [11, p. 231, Theorem]), the disk D.!.G; S/�1; "/ contains at least one zero zl of
F.G.l/;S.l//.z/ for sufficiently large l . By the triangle inequality,

jzl j � jzl � !.G; S/
�1
j C j!.G; S/�1j < "C !.G; S/�1: (3.9)
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By Theorem 3.11, !.G; S/�1 < !.G.l/; S.l//�1 for any l . The assumption

!.G.l/; S.l//�1 62 D.!.G; S/�1; "/

implies
!.G.l/; S.l//�1 > !.G; S/�1 C ": (3.10)

By inequalities (3.9) and (3.10), zl is a zero of F.G.l/;S.l//.z/ whose modulus is smaller
than !.G.l/; S.l//�1. This contradicts to Lemma 3.17.

Theorem 3.20. The growth rate !WCn ! R�1 is a continuous function.

Proof. Let ¹.Gk ; SK/ºk�1 be a convergent sequence of Coxeter systems of rank n and
write .G; S/ for the limit. We shall show that limk!1 !.Gk ; Sk/ D !.G; S/. The proof
is divided into two cases; one is the case that .G; S/ is either elliptic or affine, and the
other is the case that .G; S/ is non-affine.

Suppose that .G; S/ is either elliptic or affine. By Corollary 3.12, the set of all elliptic
or affine Coxeter systems is open in Cn. This implies that .Gk ; Sk/ is either elliptic or
affine for all but finitely many k, and hence

lim
k!1

!.Gk ; Sk/ D 1 D !.G; S/:

Consider the case that .G; S/ is non-affine. Let us denote the Coxeter matrices cor-
responding to .Gk ; Sk/ and .G; S/ by Mk D .mij .k// and M D .mij /, respectively.
The assertion is trivial for the case that the sequence .Gk ; Sk/ is eventually constant. We
assume that .Gk ; Sk/ is not eventually constant. We denote by .G.l/; S.l// the Coxeter
system defined by the following Coxeter matrix M.l/ D .mij .l// for l � 0:

mij .l/ D

´
l if mij D1;

mij if mij <1:

By Theorem 3.11 and Corollary 3.19, for any " > 0, there exists L � 0 such that

!.G; S/ � !.G.L/; S.L// < ":

By Lemma 3.2 and Theorem 3.6, there exists KL 2 N such that for k � KL,´
mij .k/ � L if mij D1;

mij .k/ D mij if mij <1:

Theorem 3.11 implies that for k � KL,

!.G; S/ � !.Gk ; Sk/ � !.G; S/ � !.G.L/; S.L// < ";

and this proves our assertion.
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4. An application to hyperbolic geometry

4.1. The growth rates of hyperbolic Coxeter polygons of finite volume

We recall the result due to Floyd. Let � be a hyperbolic n-gon and v1; : : : ; vn be the
vertices of � in cyclic order. We call � a hyperbolic Coxeter n-gon if the interior angles
of� are of the form �=a, a � 2. If� is a hyperbolic Coxeter n-gon, then the n reflections
along the edges of� generates the Coxeter groupG.�/ of rank n. We write�.a1; : : : ; an/
for a hyperbolic Coxeter n-gon whose interior angle at vi equals �=ai , ai � 2. A sequence
¹�.a1.k/; : : : ; an.k//ºk�1 of hyperbolic Coxeter n-gons converges to �.a1; : : : ; an/ if
limk!1 ai .k/ D ai for any i .

Theorem 4.1 ([9, p. 476, Theorem]). Let a sequence ¹�.a1.k/; : : : ; an.k//ºk�1 of hyper-
bolic Coxeter n-gons converge to �.a1; : : : ; an/. Then

lim
k!1

!.a1.k/; : : : ; an.k// D !.a1; : : : ; an/;

where !.a1.k/; : : : ; an.k// and !.a1; : : : ; an/ are the growth rates of the Coxeter groups
associated with �.a1.k/; : : : ; an.k// and �.a1; : : : ; an/, respectively.

We give another proof of Theorem 4.1.

Proof. Let us denote the Coxeter group associated with �.a1; : : : ; an/ by G.a1; : : : ; an/,
and writeM.a1; : : : ; an/ for the Coxeter matrix of G.a1; : : : ; an/. By the definition of the
convergence of hyperbolic Coxeter n-gons, we have

lim
k!1

M.a1.k/; : : : ; an.k// DM.a1; : : : ; an/:

Therefore, the assertion follows from Theorem 3.20.

4.2. The growth rates of hyperbolic Coxeter polyhedra of finite volume

We recall the edge contraction of hyperbolic Coxeter polyhedra (see [13] for more details).
A hyperbolic Coxeter polyhedron P is called a hyperbolic Coxeter polyhedron if all dihe-
dral angles are of the form �=m, m � 2. Let P be a hyperbolic Coxeter polyhedron of
finite volume. For any edge e whose the endpoints are trivalent vertices, we call e an edge
of type hk1; k2; n; l1; l2i if the edges incident to e has dihedral angles as in Figure 4.

�=k2 �=l2

�=k1 �=l1

�=n

Figure 4. The picture of an edge e whose the endpoints are trivalent vertices.
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Suppose that a hyperbolic Coxeter polyhedronP of finite volume has an edge e of type
h2; 2;N; 2; 2i. By Andreev’s theorem [1] and its application [13], there exist a hyperbolic
Coxeter polytopes Pk for N � k � 1 of finite volume satisfying the followings:

(i) For N � m <1, Pm has the same combinatorial type as P .
(ii) The polytope Pm has the same dihedral angles as P except for the edge e and

the dihedral angle �=m at e.
(iii) The combinatorial type of P1 is obtained from P by contracting the edge e

of P to a four-valent vertex.
(iv) The polytope P1 has the same dihedral angles as P except for the edge e.

This gives us the sequence ¹Pmºm�N of hyperbolic Coxeter polyhedra converging to P1
(see Figure 5).

Pm
�=m

P1

Figure 5. An example of a convergent sequence of hyperbolic Coxeter polyhedra of finite-volume.
The red colored edge of Pm is contracted to the red colored vertex of P1 as m!1.

We call an edge P of type h2; 2;N; 2; 2i a contractible edge.

Theorem 4.2 ([13, p. 1717, Proposition 3]). Let P be a hyperbolic Coxeter polyhedron
of finite volume and e be an edge of P of type h2; 2;N; 2; 2i. Then

lim
m!1

!.Gm/ D !.G1/;

where Gm and G are the Coxeter groups associated with Pm .m � N/ and P1.

We give another proof of Theorem 4.2.

Proof. Let us denote by Mm and M the Coxeter matrices of Gm and G, respectively.
Since the dihedral angle �=m converges to 0 and the other dihedral angles are constant,
we have

lim
m!1

Mm DM:

Therefore, the assertion follows from Theorem 3.20.
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4.3. The arithmetic nature of the limiting growth rates

Let us recall Salem numbers and Pisot numbers (see [2] for details). A real algebraic inte-
ger ˛ bigger than 1 is called a Salem number if ˛�1 is a Galois conjugate of ˛ and all
other Galois conjugates lie on the unit circle. The set of all Salem numbers is denoted
by T . Parry showed that the growth rates of the Coxeter groups associated with compact
hyperbolic Coxeter polygons and polyhedra are Salem numbers [15]. A real algebraic
integer ˛ bigger than 1 is called a Pisot number if all Galois conjugates of ˛ have mod-
ulus less than 1. The set of all Pisot numbers is denoted by � . Salem numbers and Pisot
numbers are closely related as follows.

Theorem 4.3 ([2, p. 111, Theorem 6.4.1]). The set � is contained in the closure of T

in R.

Floyd showed that the growth rates of the Coxeter groups associated with hyperbolic
Coxeter polygons of finite volume are Pisot numbers [9], and Kolpakov proved that the
growth rates of the Coxeter groups associated with hyperbolic Coxeter polyhedra with
single four-valent ideal vertex are Pisot numbers [13]. The fact that a hyperbolic Coxeter
polygon and polyhedron of finite-volume are the limits of compact hyperbolic Coxeter
polygons and polyhedra is of fundamental importance for their proofs.

Theorem 4.4. Let P be a hyperbolic Coxeter polyhedron of finite volume whose the ideal
vertices are valency 4. Then the growth rate !.G/ of the Coxeter group G associated
with P is a Pisot number.

Note that Kolpakov proved Theorem 4.4 for the case that P has only one ideal vertex.

Proof. Suppose that P has N ideal vertices. By opening the ideal vertices to edges and
giving sufficiently small dihedral angles �=ai , 1 � i � N , we construct a compact hyper-
bolic Coxeter polyhedron P.a1; : : : ; aN / whose the dihedral angles are the same as P
other than �=a1; : : : ; �=aN . By the result due to Kolpakov (see [13, p. 1721, Theo-
rem 5]), the growth rate !.1; a2; : : : ; aN / is a Pisot number. Since the set � is closed
(see [2, p. 102, Theorem 6.1]) and !.1; a2; : : : ; aN / converges to !.1;1; a3; : : : ; aN /
by Theorem 3.20, the growth rate !.1;1; a3; : : : ; aN / is a Pisot number. Repeating this
argument together with the equation !.G/ D !.1; : : : ;1/ leads to our assertion.
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