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Globally stable cylinders for hyperbolic CAT(0)
cube complexes

Nir Lazarovich and Michah Sageev

Abstract. Rips and Sela (1995) introduced the notion of globally stable cylinders and asked if all
Gromov hyperbolic groups admit such. We prove that hyperbolic cubulated groups admit globally
stable cylinders.

Globally stable cylinders. Rips and Sela [6] introduced the notion of globally stable
cylinders in their work on solutions of equations over groups. In the context of a ı-hyper-
bolic group, the idea is as follows. Given two points x and y in a ı-hyperbolic space X ,
one can choose a geodesic Œx; y� joining them. Then given three vertices x, y and z,
one has that the two geodesics Œx; y� and Œx; z� “fellow travel” (i.e., are within ı of each
other) up to some median point from which they diverge. The idea of stable cylinders is to
thicken the geodesics into “cylinders” which are not just close to one another, but actually
agree for most of the time they fellow travel.

More precisely, let � � 0. A � -cylinder C.x; y/ of x; y 2 X is a subset that satisfies
Œx; y� � C.x; y/ � N� .Œx; y�/ for every geodesic Œx; y� connecting x, y.

A choice of � -cylinders C WX �X ! 2X for every x; y 2 X is called globally stable
if there exist k;R � 0 such that

(1) inversion invariance: C.x; y/ D C.y; x/ for all x; y 2 X ,

(2) .k; R/-stability: for all x; y; z 2 X there exist k R-balls B1; : : : ; Bk in X such
that

.C.x; y/ \ B.x; �// �

k[
iD1

Bi D .C.x; z/ \ B.x; �// �

k[
iD1

Bi ; (�)

where � D .y:z/x D 1
2
.d.x; y/C d.x; z/ � d.y; z// is the Gromov product (see

Figure 1).

Let G be a hyperbolic group. The group G admits globally stable cylinders if some
geodesic hyperbolic space X on which G acts properly cocompactly admits globally sta-
ble cylinders which are G-invariant, i.e., C.gx; gy/ D gC.x; y/ for all x; y 2 X and
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Figure 1. .k; R/-uniformly stable cylinders.

g 2 G. For completeness, we show in Proposition 11 that this is a group property, and
does not depend on the space X .

Rips and Sela [6] showed that hyperbolic C 0.1=8/-small cancellation groups have
globally stable cylinders. In fact, they show that such groups are .1; R/-stable. They also
asked if all hyperbolic groups admit globally stable cylinders. Recently, Kharlampovich
and Sklinos [4] used the globally stable cylinders of C 0.1=8/-small cancellation groups to
study the first-order theory of random groups. Globally stable cylinders are also used by
the first author [5] to study the connection between complexity and volume of hyperbolic
groups.

In this paper, we prove the existence of globally stable cylinders for hyperbolic cubu-
lated groups.

Theorem. Let X be a hyperbolic d -dimensional CAT.0/ cube complex. Then, X admits
globally stable cylinders which are Aut.X/-invariant. In particular, every hyperbolic
cubulated group admits globally stable cylinders.

Remark 1. (1) Note that in the theorem, X is not required to be locally finite. More-
over, the parameters k and R in (�) depend only on the hyperbolicity constant ı and the
dimension d of X .

(2) Since all ı-hyperbolic C 0.1=8/-small cancellation groups are cubulated [7], the
theorem above provides a new proof of the result of Rips and Sela [6]. While their proof
constructs 2ı-cylinders which are .2;R/-stable by considering points which lie on certain
quasigeodesics, the proof below makes use of the hyperplane structure of CAT(0) cube
complexes and produces .k; R/-stable cylinders with k > 2.

Preliminaries on CAT(0) cube complexes. We briefly recall standard material on CAT(0)
cube complexes, as well as introducing some new definition which we will employ. For
a more extensive discussion on CAT(0) cube complexes see, e.g., [1]. Let X be a hyper-
bolic d -dimensional CAT(0) cube complex. Let yH .X/ be its set of hyperplanes. Every
hyperplane yh separates X into two components. In each component there is a unique
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maximal subcomplex h of X which we call a halfspace bounded by yh. The halfspaces
of X are convex, and the collection of all of them is denoted by H .X/. The set H .X/

has a natural involution h 7! h� mapping a halfspace to its complementary halfspace.
Moreover, we denote byyWH .X/! yH .X/ the map h 7! yh that assigns to a halfspace its
bounding hyperplane. For x; y 2 X .0/, define the set of halfspaces separating x from y as

EH .x; y/ D ¹k 2 H .X/ j x … k 3 yº;

and its corresponding set of hyperplanes by

yH .x; y/ D ¹yk j k 2 EH .x; y/º:

All other hyperplanes are called peripheral to x, y, and the set of peripheral halfspaces is
defined as

MH .x; y/ D ¹h 2 H .X/ j x; y 2 h�º:

The interval between x and y is the union of all `1 geodesics between x and y. It turns
out that the interval is also the intersection of all the halfspaces that contain both x and y.
That is, it is the set

I.x; y/ D ¹z 2 X j d.x; y/ D d.x; z/C d.z; y/º D
\

h2 MH.x;y/

h�;

where d denotes the `1-metric on X . The interval I.x; y/ is a convex subcomplex of X ,
and is isomorphic to the dual cube complex to H .I.x; y//, the pocset of halfspaces asso-
ciated to the set of hyperplanes in EH .x; y/. The nearest-point projection �I.x;y/WX !
I.x;y/ can be expressed using the language of ultrafilters as �I.x;y/.v/D v\H .I.x;y//.

Observation 2. Note that in the case that X is ı-hyperbolic, any two `1-geodesics be-
tween x and y are contained in ı-neighborhoods of one another. Thus the interval I.x; y/
is contained in the ı-neighborhood of any `1-geodesic joining x and y.

The medianm.x;y;z/ of x;y;z inX is the unique point in I.x;y/\ I.y;z/\ I.x;z/.
Alternatively, m.x; y; z/ is the vertex �I.x;y/.z/.

We write yh t yk if the hyperplanes yh; yk 2 yH .X/ intersect. A nested sequence of half-
spaces h1 < � � � < hn is called a pencil of halfspaces and the corresponding sequence of
bounding hyperplanes will be called a pencil of hyperplanes.

We now want to refine the notion of peripheral hyperplanes and halfspaces to those
that do not run too long parallel to a given interval. For a subset K � H and a halfspace
h 2 H , define their intersection number as the maximal size of a pencil of hyperplanes
in K that intersect yh, i.e.,

i.h;K/ D max¹n j 9k1 < � � � < kn 2K such that yh t yki 81 � i � nº:

Note that i.h;K/ may be infinite. We then define the following subset of MH .x; y/:

MHD.x; y/ D ¹h 2 MH .x; y/ j i.h; EH .x; y// � Dº;
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We call these the D-peripheral halfspaces of Œx; y�, and correspondingly,

ID.x; y/ D
\

h2 MHD.x;y/

h�:

Observation 3. If h 2 MHD.x; y/, then diam.�I.x;y/h/ �Dd . Otherwise, there are points
u; v 2 �I.x;y/.h/ at distance > Dd . By the pigeonhole principle, out of the Dd C 1
hyperplanes separating u, v, there are D C 1 hyperplanes satisfying k1 < � � � < kDC1 2
EH .x;y/. But, by the properties of the nearest point projection, yk1; : : : ; ykDC1 are transverse

to yh, contradicting the assumption that h 2 MHD.x; y/.

Henceforth, we will assume that X is a ı-hyperbolic CAT(0) cube complex of dimen-
sion d . A grid of size m is a pair of pencils of hyperplanes yh1; : : : ; yhm and yk1; : : : ; ykm
such that yhi t ykj for all 1 � i; j � m.

Lemma 4. There exists a maximal number D such that X contains a grid of size D.
Moreover, D � 2ı.

Proof. Assume h1 < � � � < hD 2 H and k1 < � � � < kD 2 H satisfy yhi t ykj for all 1 �
i; j � D. Let v1, v2, v3, v4 be vertices of X in hD \ kD , h�1 \ kD , h�1 \ k

�
1 , hD \ k�1 .

Consider a geodesic quadrilateral v1v2v3v4. Both pairs of opposite sides are separated by
at least D hyperplanes. Since X is ı-hyperbolic, every quadrilateral has to be 2ı-slim.
Thus, D � 2ı.

Remark 5. In fact, a CAT(0) cube complex X is hyperbolic if and only if it is finite-
dimensional and there is a global bound on the size of grids.

Henceforth, letD be as in the Lemma 4. Our goal is to prove that the choice C.x;y/D
ID.x; y/ for all x;y 2X is a .k;R/-uniformly stable choice of � -cylinders for some fixed
k, R, � that depend only on X (in fact, only on d and D).

We begin by showing that ID.x; y/ are � -cylinders. First note, that by Observation 2,
I.x; y/� Nı.Œx; y�/ for any geodesic Œx; y�. Thus, to prove that ID.x; y/ are � -cylinders,
it suffices to prove the following lemma.

Lemma 6. Let � D Dd . Then I.x; y/ � ID.x; y/ � N� .I.x; y//.

Proof. By definition, I.x; y/ � ID.x; y/. To prove the second inclusion, assume for con-
tradiction that there exists a vertexw 2 ID.x;y/ for which the distance d.w;I.x;y// > � .
Since I.x; y/ is a convex subcomplex, this means that w is separated by more than
� D Dd hyperplanes from I.x; y/. By the pigeonhole principle, there are D C 1 half-
spaces h1 < � � � < hDC1 such that I.x; y/ � h1 and w … hDC1. By definition of ID.x; y/,
the hyperplane hDC1 is not in MHD.x; y/, and thus there exist k1 < � � � < kDC1 2 EH .x; y/

such that yhDC1 t ykj for all 1 � j �D. Since each yki intersects I.x; y/, and yhi separates
I.x; y/ from yhDC1, it follows that yhi t ykj for all 1 � i; j � D C 1. A contradiction to
the choice of D.
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Let
MHD;�.x; y/ D ¹h 2 MHD.x; y/ j dmax.x; �I.x;y/.h// < �º;

where dmax.x; A/ D max¹d.x; a/ j a 2 Aº. Roughly speaking, this is the collection of
D-peripheral halfspaces whose projection to I.x; y/ is �-close to x.

The key step in proving the existence of globally stable cylinders is to bound the
number of projections of D-peripheral halfspaces for Œx; y� which are not D-peripheral
for Œx; z�. More precisely, we have the following.

Proposition 7. There exists M DM.ı; d/ � 0 such that for all x; y; z 2 X ,

j¹�I.x;y/.h/ j h 2 MHD;��Dd .x; y/ � MHD.x; z/ºj �M;

where � D .y:z/x .

Proof. First, we show that MHD;��Dd .x; y/ is contained in the full peripheral set of hyper-
planes for the pair .x; z/.

Claim 8. MHD;��Dd .x; y/ � MH .x; z/.

Proof. Note that � D d.x; m/, where m D m.x; y; z/ is the median of x, y, z in X .
Assume for contradiction that h 2 MHD;��Dd .x; y/ � MH .x; z/. It follows that x 2 h� but
the hyperplane yh separates x, z, so z 2 h. Whence

m D �I.x;y/.z/ 2 �I.x;y/.h/:

But then
� D d.x;m/ < dmax.x; �I.x;y/.h// < � �Dd;

a contradiction.

To prove the proposition, we will assume that the number of projections �I.x;y/.h/
of halfspaces in h 2 MHD;��Dd .x; y/ � MHD.x; z/ is large. Our strategy will be to con-
struct a grid of hyperplanes of size greater than D which contradicts the hyperbolicity
of X . In carrying out this strategy, we will need to make use of the following two techni-
cal “pigeonhole claims", which ensure that our objects of interest are disjoint. We abuse
notation and let Rd denote the standard cubulation of Rd .

Claim 9. For allm,R, d , there existsN1 DN1.m;R;d/ such that for allN1 distinct sub-
complexes of Rd of diameter�R, there is a subcollection ofm subcomplexesA1; : : : ;Am
and a pencil ofm� 1 halfspaces s1< � � �<sm�1 such thatAi � s�i�1 \ si for all 1� i <m.

Proof. Let K D K.d;R/ be the number of subcomplexes in Œ0; R�d . Set

N1 D m.RC 1/
2dK:

Let A be a collection of N1 distinct subcomplexes of Rd of diameter � R. Projecting the
subcomplexes to each of the standard axes , we get intervals of length at most R. Thus,
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at mostK subcomplexes in A can have the same projections on all axes. By the pigeonhole
principle, there exists a standard axis ` such that N1

dK
D m.RC 1/2 of them have distinct

projections to `. Since each projection is an interval of length � R, at least m.RC1/
2

.RC1/2
D m

of A have disjoint projections to `. These projections are separated bym� 1midpoints of
edges in `, and the subcomplexes are thus separated by the pencil of m � 1 hyperplanes
perpendicular to ` at those midpoints, as required.

Claim 10. Let .P;�/ be a partially ordered set such that at most d elements are pair-
wise incomparable. For all m, there exists N2 D N2.m; d/ such that every sequence of
length N2 of elements in P has a subsequence of length m which is strictly monotonic or
constant.

Proof. Set N2 D dm3. By Dilworth’s theorem [3], P can be partitioned to d linearly
ordered subsets. By the pigeonhole principle, there is a subsequence of length m3 whose
elements are totally ordered. If at leastm of them are equal, we are done. Thus, we can pass
to a further subsequence of length m2 of distinct elements. A standard application of the
pigeonhole principle shows that one can now find a strictly monotonic subsequence.

Returning to the proof of Proposition 7, recall that we will need to apply the pigeon-
hole claims to a collection of M halfspaces to obtain a disjointness property for large
enough M . Specifically, let L D 2D C 2, let

T D N2.N2.: : : .N2.L; d/ : : : ; d /; d/

be the D C 1 fold application of N2, and finally, let M D N1.T;Dd; d/.
Let h1; : : : ; hM be halfspaces in MHD;��Dd .x; y/� MHD.x; z/ with distinct projections

�I.x;y/.h
i /. By [2], the interval I.x; y/ is isomorphic to a subcomplex of Rd . By Obser-

vation 3, the projections �I.x;y/.hi / to I.x; y/ have diameter � Dd . Thus, by Claim 9,
we can find T halfspaces among h1; : : : ; hM , without loss of generality h1; : : : ; hT ,
which have pairwise disjoint projections to I.x; y/ and which are separated by a pen-
cil of hyperplanes. That is, there exist s1 < � � � < sT�1 in EH .x; y/ \ EH .x; z/ such that
�I.x;y/.h

i / � si \ .si�1/�. This is equivalent to .hi /� < si < hiC1 for all 1 � i < T .
For each 1 � i � T , the halfspace hi is in MH .x; z/ by Claim 8, but not in MHD.x; z/

by assumption. Hence there exist ki1 < � � � < k
i
DC1 2

EH .x; z/ such that yhi t ykij for all
1 � j � D C 1. But since hi 2 MHD.x; y/, at least one of ki1 < � � � < k

i
DC1 is not in

EH .x; y/. Namely, ki1 2 H .y; z/ for all 1 � i � T .
By D C 1 applications of Claim 10, we can pass to a subsequence of length L, which

by abuse of notation we will simply denote h1; : : : ; hL, for which the sequences of half-
spaces kij are constant or strictly monotonic in i . That is, for each 1 � j � D C 1, either

k1j < � � � < k
L
j ; k1j > � � � > k

L
j ; or k1j D � � � D k

L
j :

Let us show by induction on j that (up to changing the halfspaces kij if necessary)
we may assume that k1j D � � � D k

L
j for all 1 � j � D C 1 in addition to the properties

ki1 < � � � < k
i
DC1 and yhi t ykij .
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Figure 2. The hyperplane arrangement for the proof of Proposition 7.

For the base of the induction, let us show that k11 D � � � D k
L
1 . Assume for contradiction

that k11 ; : : : ; k
L
1 are distinct. Since each ki1 intersects hi on the one hand, and separates y

and z on the other, it must intersect si
0�1 for all i 0 < i . SinceL> 2DC 1, this gives a grid

of hyperplanes of sizeDC 1 which contradicts the definition ofD. Thus, k11 D � � � D k
L
1 .

For the induction step, let 1 � j � D and assume that k1j D � � � D k
L
j . Let us prove

that we may choose kijC1 such that k1jC1 D � � � D k
L
jC1. Assume that k1jC1 < � � � < k

L
jC1.

Then kij D k
1
j < k

1
jC1 < k

i
jC1. It follows that

ki1 < � � � < k
i
j < k

1
jC1 < k

i
jC2 < � � � < k

i
DC1

and yhi t yk1jC1 (since kij < k
1
jC1 < k

i
jC1 and both ykij t yhi t ykijC1). This means that we

can replace kijC1 for all 1 � i � L by k1jC1, and get k1jC1 D � � � D k
L
jC1 as desired. Sim-

ilarly, if k1jC1 > � � � > k
L
jC1, we can replace kijC1 for all 1 � i � L by kLjC1 and get

k1jC1 D � � � D k
L
jC1 as desired.

This shows that we may assume k1j D � � � D k
L
j DW kj for all 1 � j � D C 1. How-

ever, since yk1; : : : ; ykDC1 intersect all the hyperplanes yh1; : : : ; yht , they must intersect also
the separating hyperplanes ys1; : : : ; yst�1. As L > D C 2 the sets k1 < � � � < kDC1 and
s1 < � � � < st�1 form a grid of size D C 1 which contradicts the definition of D.

Proof of Theorem. Define C WX �X ! 2X by C.x; y/ WD ID.x; y/.
By Lemma 6 and Observation 2, C.x; y/ are � -cylinders for � D Dd C ı. It is clear

from the definition that this choice of cylinders is Aut.X/-invariant and inversion invari-
ant. It remains to show that it is .k; R/-uniformly stable.

Set R D 5Dd . Let

P D ¹mº [ .[�I.x;y/.h//;

where m D m.x; y; z/, and the union ranges over all h 2 MHD;��Dd .x; y/ � MHD.x; z/.
By Observation 3 and Proposition 7, the set P has at most k D k.d; ı/ points. Let B DS
p2P B.p;R/ be the union of the R-balls with centers in P . By symmetry, it suffices to

show that C.x; z/ � C.x; y/ \ B.x; �/ � B.
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Assume w 2 .C.x; z/ � C.x; y// \ B.x; �/ � B , where B D B.m;R/ is the ball of
radius R around m. Let Œx; z� be a geodesic passing through m. Since C.x; z/ is a � -
cylinder, there exists a point w0 2 Œx; z� such that d.w; w0/ � � . Since w 2 B.x; �/ and
w …B.m;R/, we have that d.x;w0/� ��RC � , and in particular,w0 belongs toC.x;y/.

Let w00 D �I.x;y/.w/. Since w0 2 C.x; y/, we have d.w;w00/ � d.w;w0/ � � , and it
follows that d.x;w00/ � d.x;w0/C d.w0; w/C d.w;w00/ � � �RC 3� .

Now, there exists h 2 MHD.x; y/ � MHD.x; z/ such that w 2 h. By Observation 3,
diam.�I.x;y/.h// � Dd . Since w00 2 �I.x;y/.h/,

dmax.x; �I.x;y/.h// � d.x;w
00/CDd � � �RC 3� CDd � � �Dd:

Hence h 2 MHD;��R.x; y/ � MHD;�.x; z/ and w00 2 P . Since d.w; w00/ � � D Dd � R,
we get that w 2 B.w00; R/ � B as desired.

Stable cylinders for cubulated groups. As discussed in the introduction, stability of
cylinders does not depend on the space on which G acts properly and cocompactly.

Proposition 11. Let G be a hyperbolic group. Let X , X 0 be graphs on which G acts
properly and cocompactly. The space X admits G-globally stable cylinders if and only
if X 0 does.

Proof. Assume X has G-globally stable cylinders.
Let F be a finite fundamental domain for G Õ X . Define the map 'WX ! 2X

0

by
sending each x 2 F to a non-empty set '.x/ of diameter diam.'.x// � D stabilized by
the finite group StabG.x/, and extend to X G-equivariantly. By the Švarc–Milnor lemma,
the coarse map ' is a quasi-isometry. By replacing '.x/ by Nr .'.x// for some large
enough r , we assume that ' is “surjective” on X 0 in the sense that for all x0 2 X 0 there
exists x 2 X such that x0 2 '.x/.

By the Morse lemma for X 0, let R be the constant such that NR.'.Œx; y�// con-
tains any geodesic between x0 2 '.x/ and y0 2 '.y/. Define the cylinder C 0.x0; y0/ for
x0; y0 2 X 0 by

C 0.x0; y0/ D NR.[¹'.z/ 2 X
0
j 8x; y; z; x0 2 '.x/; y0 2 '.y/; z 2 C.x; y/º/:

It is straightforward to verify that C 0.x0; y0/ are G-invariant globally stable cylinders
for X 0.
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