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On virtual indicability and property (T) for outer
automorphism groups of RAAGs

Andrew Sale

Abstract. We give a condition on the defining graph of a right-angled Artin group, which implies
that its automorphism group is virtually indicable, that is, it has a finite index subgroup that admits
a homomorphism onto Z. We use this as a part of a criterion that determines precisely when the outer
automorphism group of a right-angled Artin group defined on a graph with no separating intersection
of links has property (T). As a consequence, we also obtain a similar criterion for graphs in which
each equivalence class under the domination relation of Servatius generates an abelian group.

1. Introduction

Kazhdan’s property (T) is a rigidity property for groups with many wide-ranging applica-
tions, as discussed in the introduction to [2]. A group is said to have property (T) if every
unitary representation with almost invariant vectors has invariant vectors. It is notoriously
challenging to prove that a group has property (T), however there are certain obstructions
to it that can more readily be demonstrated. One such obstruction is that of virtual indicab-
ility, which occurs for a group when it has a finite index subgroup that admits a surjection
onto Z.

Recall that a right-angled Artin group (RAAG) is defined by a presentation usually
determined by a simplicial graph � . The vertex set of � provides the generating set for
this presentation, while the defining relators come from commutators between all pairs of
adjacent vertices in � . The RAAG associated to the graph � is denoted by A� .

In the universe of finitely presented groups, the outer automorphism groups of RAAGs
provide a bridge between the groups GL.n; Z/ and Out.Fn/, the outer automorphism
groups of the non-abelian free groups. At each head of the bridge we understand the
groups’ behaviours with regards to property (T). For n� 3, it is well known that GL.n;Z/
has property (T), while GL.2;Z/ does not; at the other end, for n � 5, computer-aided
proofs of Kaluba, Kielak, Nowak and Ozawa [19,20] tell us Aut.Fn/ (and hence Out.Fn/
since property (T) is inherited by quotients) have property (T), while Out.F2/ and Out.F3/
do not [14]. A recent preprint of Nitsche has extended the proof of property (T) for
Aut.Fn/ to n D 4 [22].
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Besides property (T), there are many characteristics that are shared by both GL.n;Z/
and Out.Fn/, such as finite presentability, residual finiteness, finite virtual cohomological
dimension, satisfying a Tits alternative, or being of type VF. All these mentioned proper-
ties hold in fact for Out.A�/ for all RAAGs A� [7–9,12,17]. Other properties hold at both
ends of the bridge, but somewhere in between they may fail. For example, Out.Fn/ and
GL.n;Z/ are of course infinite groups (for n � 2), and both contain non-abelian free sub-
groups, but there are non-cyclic RAAGsA� for which Out.A�/ is finite (for example, take
the defining graph � to be a pentagon), or which are infinite but do not contain free sub-
groups [11]. Another example is having a finite outer automorphism group of Out.A�/.
Both Out.Out.Fn// and Out.GL.n;Z// are finite [4, 18], but this is not always true for
Out.Out.A�// [3].

In this paper, we address the following.

Question 1. For which � does Out.A�/ satisfy Kazhdan’s property (T)?

Beyond the above results for GL.n;Z/ and Out.Fn/, there are a number of partial
answers to this question. For example, Aramayona and Martínez-Pérez give conditions
(see Theorem 2 below) that imply virtual indicability, and hence deny property (T) [1].
We can also describe precisely when Out.A�/ is finite (and so has property (T)), and when
it is infinite virtually nilpotent (and so it does not have property (T)) [11]. See Section 1.1
for more details on what is known and what is open.

The objective of this paper is to definitively answer Question 1 whenever � contains
no separating intersection of links (SILs). These occur when all paths from some vertex z
of � to either of a non-adjacent pair x, y must pass through a vertex that is adjacent to
both x and y, i.e., the path hits the intersection of the links of x and y, lk.x/ \ lk.y/ (see
Definition 2.3).

Having a SIL is precisely the condition required for Out.A�/ to contain two non-
commuting partial conjugations (automorphisms defined by conjugating certain vertices
in � by a given vertex, see Section 2.2). One way to interpret the meaning of a SIL is
that its absence pushes Out.A�/ to behave more like GL.n;Z/. If A� D Fn for n � 3,
then any three vertices of � form a SIL, while if A� D Zn, then � has no SIL. For the
latter, all partial conjugations are clearly trivial, while for the former they play a crucial
role in the structure of Out.Fn/. This interpretation is strengthened with the following
two observations. With no SIL, a finite index subgroup of Out.A�/ admits a quotient by
a finite-rank free abelian subgroup that is a block-triangular matrix group with integer
entries. This quotient is from the standard representation of Out.A�/, obtained by acting
on the abelianisation of A� . The second observation is that, again with no SIL, a finite
index subgroup of Out.A�/ admits a quotient by a finitely generated nilpotent group that
is a direct product of groups SL.ni ;Z/, for various integers ni [15, Theorem 2].

We highlight also a second feature of � that affects the automorphism group of the
corresponding RAAG. The domination relation of Servatius [24] determines when a trans-
vection Rvu, defined for vertices u, v of � by sending u to uv and fixing all other vertices,
is an automorphism of A� . We say u is dominated by v, and write u � v, if any vertex
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adjacent to u is also adjacent or equal to v (i.e., the link of u is contained in the star
of v: lk.u/ � st.v/). We have that u � v if and only if Rvu 2 Aut.A�/. The relation of
domination is a preorder and therefore determines equivalence classes of vertices.

The following is the aforementioned criteria of Aramayona and Martínez-Pérez to
deny property (T).

Theorem 2 (Aramayona–Martínez-Pérez [1]). Consider the following properties of a
graph �:

(A1) If u, v are distinct vertices of � such that u� v, then there exists a third vertexw
such that u � w � v.

(A2) If v is a vertex such that � n st.v/ has more than one connected component, then
there exists a vertex u such that u � v.

Let � be any simplicial graph. If either property (A1) or (A2) fails, then Aut.A�/ has
a finite index subgroup that maps onto Z.

(In [1], condition (A1) is referred to by (B2), while condition (A2) is the hypothesis
of Theorem 1.6.)

When condition (A1) fails, there are vertices u, v in � such that there is no w sat-
isfying u � w � v. A homomorphism from a finite index subgroup of Aut.A�/ can be
constructed with image Z so that the transvection Rvu has an infinite order image. The
failure of condition (A2) is used to give a surjection onto Z by exploiting a partial conjug-
ation with multiplier v whose star separates � into two or more connected components,
but which does not dominate any other vertex.

The first main task of this paper is to modify condition (A2), defining a condition (A20)
to obtain more graphs � for which Aut.A�/ is virtually indicable. The key, as with (A2),
is to exploit certain partial conjugations.

We say a graph � satisfies condition (A20) if for every vertex x and component C of
� n st.x/ some non-zero power of the partial conjugation by x on C can be expressed as
a product in Out.A�/ of partial conjugations (or their inverses) by x with supports that
are components of � n st.y/ for some y dominated by, but not equal to, x. See the start of
Section 5 for another definition, and Lemma 5.1 for equivalence with the one given here.
One can observe that if (A20) holds, then necessarily (A2) holds also.

Our first main result is the following.

Theorem 3. If a simplicial graph fails property (A20), then Aut.A�/ has a finite index
subgroup that admits a surjection onto Z.

We use this to answer Question 1 entirely when the defining graph has no SIL.

Theorem 4. Suppose � has no SIL. Then Out.A�/ has property (T) if and only if both
properties (A1) and (A20) hold in � .

This also allows us to give an answer in any case when all equivalence classes in �
are abelian.
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Corollary 5. Suppose all equivalence classes in � are abelian. Then Out.A�/ has prop-
erty (T) if and only if � has no SIL and both properties (A1) and (A20) hold.

Proof. If � does contain a SIL, then Out.A�/ is large by [15, Theorem 2], and hence does
not have property (T). If � does not contain a SIL, then we apply Theorem 4.

The proof of Theorem 3 involves a composition of restriction and projection maps (see
Section 2.3) to focus our attention on a smaller portion of � , ultimately mapping into the
automorphism group of a free product of free abelian groups. We then apply a homological
representation by acting on a certain cover of the Salvetti complex of the free product. The
image of the composition of all these maps can be seen to admit a surjection onto Z.

Once Theorem 3 is established, to prove Theorem 4 we use the standard representa-
tion of Out.A�/, obtained by acting on the abelianisation of A� . This gives a short exact
sequence such that, when � contains no SIL, the kernel IA� , sometimes called the Torelli
subgroup, is free abelian. To fully exploit this structure of Out.A�/, we need this sequence
to be split, which we show is (virtually) the case.

In the following, we denote by SOut0.A�/ the subgroup of Out.A�/ of finite index
that is generated by the set of all transvections and partial conjugations of A� .

Proposition 6. The standard representation of SOut0.A�/ gives the short exact sequence

1! IA� ! SOut0.A�/! Q! 1;

which splits if � has no SIL.

We note that the short exact sequence may be split even if there is a SIL. This is
discussed in more detail in Remark 6.2, where weaker sufficient conditions are given for
this to occur.

Compare Proposition 6 with [16, Theorem 1.2] and [25], where automorphism groups
of certain graph products are expressed as a semidirect product in a manner similar to
Proposition 6.

Finally, we comment on the fact we show in Theorem 4 that Out.A�/ has property (T),
but prove nothing about Aut.A�/. We use the fact that when there is no SIL, partial con-
jugations commute in Out.A�/. When dealing with automorphisms (not outer), this fact
fails. We use a decomposition of IA� in Section 7 to prove Theorem 4, which involves sub-
groups, denoted by AXC , that are normal in SOut0.A�/. Since they are subgroups of IA� ,
they are free abelian. This enables us to build SOut0.A�/ out of block-triangular groups,
for each of which we can verify property (T) via a criterion of Aramayona and Martínez-
Pérez [1]. When dealing with this situation for SAut0.A�/, the groups AXC need to include
some inner automorphisms, and they no longer remain free abelian in general.

1.1. The (un)resolved cases

We finish the introduction by summarising what is known, and what is left unknown with
regard to property (T) for outer automorphism groups of RAAGs. Example A below gives
a simple case where the literature does not determine property (T).
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Properties of � that deny property (T) in Out.A� /.
• Condition (A1) fails (so Out.A�/ is virtually indicable) [1, Corollary 1.4].

• Condition (A20) fails (so Out.A�/ is virtually indicable) (Theorem 3).

• If there is a non-abelian equivalence class of size three (so Out.A�/ is large) [15,
Theorem 6].

• If there is a “special SIL” (so Out.A�/ is large) [15, Proposition 3.15]. A special SIL
is a SIL .x1; x2 j x3/ such that

– each xi is in an abelian equivalence class,

– if xi � u � xj , then u 2 Œx1� [ Œx2� [ Œx3�,

– if u � xi for any i , then there is a connected component C of � n st.u/ so that
x1; x2; x3 2 C [ st.u/.

There is a handful of cases that are covered by other means, but are contained within
one of the above situations. We explain them now.

Firstly, if there is an equivalence class of size two, then Out.A�/ is large and we do
not have property (T) [15, Theorem 6]. In this case, we would also have the failure of
condition (A1).

We also know that Out.A�/ is virtually nilpotent if and only if there is no SIL, and
all equivalence classes are of size one [11, Theorem 1.3]. If, furthermore, there is either
at least one vertex v whose star separates � , or at least one pair of vertices u, v satisfying
u � v, then Out.A�/ must be infinite. Finitely generated virtually nilpotent groups have
property (T) if and only if they are finite, so this gives a class of graphs where Out.A�/
does not have property (T). However, if all equivalence classes are of size one and there is
some pair of vertices u, v with u � v, then condition (A1) necessarily fails. Meanwhile,
if there is no such pair u, v, but there is some vertex x whose star separates � , then x is
minimal and so condition (A2) fails (and hence also (A20)).

A third situation worth remarking upon is that if all equivalence classes are abelian
and � contains a SIL, then it contains a special SIL [15, Proposition 3.9]. This is used for
Corollary 5.

Properties of � that imply property (T) in Out.A� /.
• If � has no SIL and satisfies conditions (A1) and (A20) (Theorem 4).

• If � has no edges and at least four vertices (i.e., Out.A�/ D Out.Fn/ for n � 4) [19,
20, 22].

The first point here covers both the case when Out.A�/DGL.n;Z/, for n� 3, as well
as when Out.A�/ is finite. The latter occurs if and only if there are no vertices x, y in �
so that x � y, and there is no vertex whose star separates � into two or more components
(see, for example, [6, §6]).

It is tempting to speculate that the no SIL condition could be removed from Theorem 4,
to answer Question 1 completely. However, if we allow � to contain a SIL, and assume
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Figure 1. The graph � for Example A.

both (A1) and (A20) hold, then there is nothing to stop us from having a free equivalence
class of size three, or all equivalence classes be abelian. In both cases, we do not have
property (T) by [15, Theorem 6].

Example A. Let � be the graph in Figure 1. This is an example where the existing liter-
ature does not tell us whether Out.A�/ has property (T) or not.

The graph � has been constructed so that it has a non-special SIL, but also satisfies
both conditions (A1) and (A20). The trick to making an example that satisfies both (A1)
and (A20) is to make sure the equivalence classes are sufficiently big and at least one is
not abelian.

It has four equivalence classes of vertices: X , Y , Z and ¹mº. All vertices are domin-
ated by m, while Z is also dominated by X and Y .

A SIL can be described with three vertices, with the intersection of the links of two
separating them from the third. The SILs in � involve at most one vertex from each of X
and Y and the remainder coming from Z. None of these SILs are special, because in
a special SIL the three vertices must come from distinct abelian equivalence classes, which
is not possible here.

Since each equivalence class X , Y and Z has more than two elements, condition (A1)
is satisfied.

Condition (A20) is a bit more cumbersome to verify. We can see that for any x 2 X ,
the components of � n st.x/ are Y , and then one for each z 2 Z. The components are the
same for any other x0 in X , so the condition on the partial conjugations with multiplier
in X holds. For those in Y , it is similar. For any z 2 Z, if C is a component of � n st.z/,
then either C D X , C D Y , or C D ¹z0º for some other z0 2 Z. In any case, we can
take z00 2 Z distinct from both z and (if necessary) z0. Then C is also a component of
� n st.z00/, and we see that the condition holds. Finally, for m the condition is vacuous.

The last thing to note is that we cannot use the equivalence classes, as in [15, Propos-
ition 2.1], because the equivalence classes are too large.
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Paper structure

We begin with some preliminary material in Section 2. In Section 3, we establish a homo-
logical representation for a free product of free abelian groups. This representation is used
in obtaining surjections onto Z later. A new notion is introduced in Section 4 that describes
which partial conjugations are necessary to virtually generate the Torelli subgroup IA�
when there is no SIL. Theorem 3 is proved in Section 5. The aim of this section is to
construct homomorphisms onto groups on which we can then apply the homological rep-
resentations of Section 3. In Section 6, we establish that when there is no SIL, we can
express SOut0.A�/ as a semidirect productQ Ë IA� , proving Proposition 6. The proof of
Theorem 4 is given in Section 7.

2. Generators and SILs

We begin with some background material on RAAGs and their automorphism groups.
RAAGs are defined via a simplicial graph � . A generating set of the group A� is the

vertex set V.�/, and presentation is given by

A� D hV.�/ j Œu; v� D 1 if u and v are adjacent in �i:

Given a simplicial graph � and a vertex v of � , the link of v is the induced subgraph
on the set of all vertices connected to v by an edge. It is denoted by lk.v/. The star of v,
written st.v/ is the join of lk.v/ with the vertex v.

2.1. Domination and equivalence classes of vertices

This section deals with transvections on a RAAG. We denote a transvection by Rvu for
vertices u; v 2 � , where Rvu.u/ D uv and all other vertices are fixed. Servatius made the
following definition that determines when transvections are automorphisms [24].

Definition 2.1. The Servatius domination relation � on vertices of � is given by u � v if
and only if lk.u/ � st.v/.

We leave as an exercise to the reader to prove that a transvection Rvu is an automorph-
ism if and only if u � v.

Remark 2.2. This definition can be tightened up as follows: if u, v are adjacent, then
u � v if and only if st.u/ � st.v/; if u, v are not adjacent, then u � v if and only if
lk.u/ � lk.v/.

The domination relation is a preorder and determines equivalence classes of vertices.
We denote the equivalence class containing a vertex x by Œx�. These classes come in two
flavours. They are either abelian if all vertices in the class are pairwise adjacent, or non-
abelian (also referred to as free) otherwise. It is a straightforward exercise to see that the
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vertices of a non-abelian equivalence class share no edges and so generate a non-abelian
free group (see [7, Lemma 2.3]).

For subsets X , Y in � , we write X � Y whenever x � y for each x 2 X and y 2 Y .
When X and Y are equivalence classes, if x � y for any x 2 X and y 2 Y , then X � Y .

2.2. Generating Aut.A� /

The Laurence–Servatius generating set of Aut.A�/ is a finite generating set that consists
of the automorphisms of A� of the following four types [21]:

• Involutions: automorphisms that send one generator v to its inverse v�1 and fix all
others.

• Graph symmetries: automorphisms that permute the set of vertices of � according to
a symmetry of the graph.

• Transvections: Rvu for distinct vertices satisfying u � v.

• Partial conjugations: for a vertex v and a connected component C of � n st.v/, the
partial conjugation �vC sends every vertex u of C to v�1uv and fixes all others.

For transvections Rvu and partial conjugations �vC , we call the vertex v the multiplier,
and u or C respectively the support. When dealing with partial conjugations, we will also
let the support C denote a union of connected components of � n st.v/.

We denote by SAut0.A�/ (resp. SOut0.A�/) the finite index subgroup of Aut.A�/
(resp. Out.A�/) that is generated by partial conjugations and transvections.

2.3. Restriction and projection maps

In constructing virtual surjections to Z, we use a composition of homomorphisms, most
of which are of one of two types, restriction maps and projection (or factor) maps. These
have been exploited in the study of automorphisms of RAAGs and other graph products
before, for example [7, 8, 12, 15, 23]. We give a brief description of them here.

Letƒ be a subgraph of � . We can define a restriction map to Out.Aƒ/ from the relative
outer automorphism group Out.A� IAƒ/ – that is the subgroup of Out.A�/ consisting of
those automorphisms that preserve the subgroup Aƒ up to conjugacy

r W Out.A� IAƒ/! Out.Aƒ/:

Each outer automorphism ˆ in Out.A� IAƒ/ restricts to an outer automorphism r.ˆ/

of Aƒ.
We wish to use this when the relative outer automorphism group contains certain sub-

groups. Let X be a set consisting of partial conjugations and transvections. If X contains
all of these, then

hXi D SOut0.A�/;

but in general this may not be the case.
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The following two tests can be performed to check if hXi is contained in Out.A� IAƒ/,
and hence whether r may be defined on hXi:

• If Rvu 2 X , and u 2 ƒ, then v 2 ƒ.
• If �wC 2 X and w … ƒ, then either ƒ � C [ st.w/ or ƒ \ C D ;.

Next we discuss projection maps (also called factor maps). These are homomorphisms

pW hXi ! Out.Aƒ/

obtained by killing vertices of � that are not in ƒ. To be more explicit, let �WA� ! Aƒ
be the quotient map obtained by deleting the vertices in � nƒ. Let ' be an automorphism
in the outer automorphism class ˆ. Then ˆ is sent to the outer automorphism class of the
map �.g/ 7! � ı '.g/ for g 2 A� . Thus, for p to be well defined, we need the kernel of �
to be preserved, up to conjugacy by hXi. This is true for each partial conjugation, so one
just needs to check it for transvections in X :

• If Rvu 2 X and v 2 ƒ, then u 2 ƒ.

2.4. Separating intersection of links

Separating intersections of links (SILs) are an important feature of � in relation to the
properties of Out.A�/. In particular, with no SIL, the subgroup of Out.A�/ generated by
partial conjugations is abelian. Whereas, with a SIL, this subgroup contains a non-abelian
free subgroup.

Definition 2.3. A separating intersection of links (SIL) is a triple of vertices .x; y j z/
in � that are not pairwise adjacent, and such that the connected component of � n .lk.x/\
lk.y// containing z does not contain either x or y.

The key consequence of � admitting a SIL .x; y j z/ is that, if Z is the connected
component of � n .lk.x/ \ lk.y// containing z, then �xZ and �yZ generate a non-abelian
free subgroup of Out.A�/.

There is a relationship between SILs and equivalence classes. Notably, any three ver-
tices in a non-abelian equivalence class determine a SIL. Thus when considering graphs
without a SIL, we immediately remove the possibility of admitting non-abelian equi-
valence classes of size at least 3. Furthermore, if a graph � satisfies condition (A1) of
Theorem 4 and has no SIL, then it cannot have any equivalence class of size 2 (this is
immediate from condition (A1)), and so all its equivalence classes must be abelian.

We end this section with some preliminary lemmas concerning SILs, particularly how
they behave with respect to the domination relation.

Lemma 2.4. Suppose u, v, w are distinct vertices of � such that u � v;w and .v;w j u/
is not a SIL. Then Œv; w� D 1.

Proof. Suppose Œv;w� ¤ 1. If u and v are adjacent, then v 2 lk.u/ � st.w/, contradicting
Œv;w�¤ 1. Thus Œu; v�¤ 1, and similarly Œu;w�¤ 1. Then we have lk.u/� lk.v/\ lk.w/
by Remark 2.2, implying that .v; w j u/ is a SIL.
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We want to understand how partial conjugations behave under conjugation by trans-
vections. When there is no SIL, either the partial conjugation and transvection commute,
or the conjugation action itself behaves like a transvection – see Lemma 2.6. Before stating
this, we quickly note the following.

Lemma 2.5. Suppose x � y and C is a connected component of � n st.x/. Then C 0 D
C n st.y/ is a (possibly empty) union of connected components of � n st.y/.

Proof. Suppose z is any vertex of � not in C or st.y/. If there is a path between z and
a vertex of C , then it must pass through st.x/, and hence through lk.x/. Since x � y, the
path therefore intersects st.y/.

Note that if C is empty, then by convention we understand �xC to mean the identity
map.

Lemma 2.6. Let v; x; y 2 � be such that x � y, and let C be a connected component of
� n st.v/. Then, for "; ı 2 ¹1;�1º, in Out.A�/,

(i) �vC and Ryx commute if v ¤ x and either .v; y j x/ is not a SIL or x; y … C or
x; y 2 C [ st.v/,

(ii) .�vC /
"R

y
x .�

v
C /
�" D .Rvx/

�"R
y
x .R

v
x/
" if v ¤ x, .v; y j x/ is a SIL, and exactly

one of x or y is in C ,

(iii) .R
y
x /
ı�xC .R

y
x /
�ı D �xC .�

y
C 0/

ı if v D x, where C 0 D C n st.y/.

Proof. For part (i), the conclusion when x; y … C is immediate as the supports and
multipliers are disjoint. Meanwhile, if x; y 2 C [ st.v/, we can multiply by an inner
automorphism, effectively replacing C by � n .C [ st.v//, to get x; y … C .

Now suppose that v ¤ x and .v; y j x/ is not a SIL. Up to multiplication by an inner
automorphism, we may assume that x … C . If v D y, then (i) holds since the supports of
the transvection and partial conjugation are disjoint and the multipliers of each are fixed by
one-another. So assume v ¤ y. We claim that y … C also, which implies the automorph-
isms commute as before. To prove the claim, if x 2 st.v/, then x � y implies y 2 st.v/
too. Assume x … st.v/ and y 2 C . Since x … C , any path from x to y passes through st.v/,
and in particular, using the fact that x � y, we must therefore have lk.x/ � lk.v/. Hence
x � v; y. Since .v; y j x/ is not a SIL, Lemma 2.4 implies that Œv; y� D 1, contradicting
y 2 C .

Now assume the hypotheses for (ii) hold. As .v; y j x/ is a SIL, we must have x � v,
as lk.x/ must be contained in lk.v/ \ lk.y/. As C contains exactly one of x or y, up
to multiplication by an inner automorphism, we may assume y 2 C and x … C . Direct
calculation then yields

�vCR
y
x .�

v
C /
�1.x/ D xv�1yv D .Rvx/

�1RyxR
v
x.x/;

while all other vertices, including those in C , are fixed. This confirms the claimed identity
in (ii) when " D 1. The case when " D �1 is similar.
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Now assume that v D x. Again, up to an inner automorphism, we may assume that
y … C . Then direct calculation (left to the reader) verifies relation (iii), with Lemma 2.5
ensuring �yC 0 makes sense.

2.5. The standard representation

The standard representation of Out.A�/ is obtained by acting on the abelianisation of A� .
We denote it by

�W Out.A�/! GL.n;Z/;

where n is equal to the number of vertices in � .
The image of � is described in more detail in Section 6. Here we focus on the kernel. It

is denoted by IA� , and is sometimes referred to as the Torelli subgroup of Out.A�/. Day
and Wade independently proved that IA� is generated by the set of partial conjugations
and commutator transvections RŒv;w�u D ŒRvu; R

w
u � (see [10, §3] and [26, §4.1]). It fol-

lows that IA� is a subgroup of SOut0.A�/, so the kernel is unchanged when taking the
restriction of � to SOut0.A�/. We will abuse notation by also calling this restriction �.

The no SIL condition implies that we have no commutator transvections – this is
a consequence of Lemma 2.4. It is not hard to see that with no SILs all partial conjugations
commute up to an inner automorphism (it is proved in, or follows immediately from results
in, each of [5, 11, 15, 16]). In particular, we have the following.

Proposition 2.7. Suppose � has no SIL. Then IA� is free abelian and is generated by the
set of all partial conjugations.

3. A homological representation for a free product of abelian groups

In this section, we describe a homological representation for a finite index subgroup of
Aut.G/, where

G D Zc0 � � � � � Zcs � Zd :

This representation will be used in the proof of Theorem 3 to obtain a virtual surjection
onto Z when condition (A20) fails. It is obtained by acting on a subspace of the homology
of a certain cover of the Salvetti complex associated to G.

For each Zci factor, let Zi be a basis set. For the Zd factor, write a basis as Y D

¹y1; : : : ; yk ; xº, so that d D k C 1. The reason for distinguishing the element x from
the yi ’s will become clear in Section 5 when the homological representation is applied.

We now describe the cover of the Salvetti complex on which we act to get the repres-
entation. Take the elements of Z2 to be 1 (the identity) and g (the non-identity element).
Let � WG ! Z2 be defined by

�.v/ D

´
1 if v 2 Y,

g otherwise.
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The Salvetti complex S of G is a wedge of tori, of dimensions c0; c1; : : : ; cs; d . Let T be
the double cover of S on which Z2 acts by deck transformations. The 1-skeleton of T can
be thought of as a variation on the Cayley graph of Z2, where instead of using a generating
set to construct the edges, we useZ0 [ � � � [Zs [Y. Specifically, there will be edges con-
necting the vertex labelled 1 to the vertex g for each a 2 Zi . We denote these edges by ea,
and for each one there is a corresponding edge gea from g to 1. When a is in Y, we have
two single-edge loops, ea at the vertex 1, and its image gea at g. The edges ea and gea for
a 2 Zi form the 1-skeleton for a ci -dimensional torus, a two-sheeted cover of the corres-
ponding torus in S . The ea edges for a 2 Y are the 1-skeleton for a d -dimensional torus,
while the edges gea form the 1-skeleton for a copy of this torus under g.

Let Aut�.G/ be the finite index subgroup of Aut.G/ of automorphisms ' such that
� ı ' D � . These automorphisms are induced by homotopy equivalences of S which lift
to homotopy equivalences of T , fixing the two vertices 1 and g. We therefore have an
action of Aut�.G/ on the homologyH1.T IQ/, which preservesH1.T IZ/ and commutes
with the action of Z2.

The action we desire is on a subspace of H1.T IQ/, namely the eigenspace cor-
responding to the eigenvalue �1 for the action of Z2. We will denote this eigenspace
by V�1. In the special case when c0 D c1 D � � � D cs D d D 1, the group G is the
free group FsC2, and by Gäschutz [13] the homology H1.T IQ/ decomposes as Q ˚
QŒZ2�sC1, and V�1 Š QsC1. In general, we show the following.

Lemma 3.1. Let T be the two-sheeted cover of the Salvetti complex of G associated to
the map � WG!Z2 defined above, and let V�1 be the�1-eigenspace for the action by Z2.
Then

(I) H1.T IQ/ Š Q.
P
ci /�s ˚QŒZ2�dCs ,

(II) V�1 Š QdCs .

Proof. Let Ai denote the Q-vector space of i -dimensional chains in T . Each of these
decomposes into the sum of C1 and �1-eigenspaces under the Z2 action: Ai D A

.C1/
i ˚

A
.�1/
i . The boundary maps @i WAi ! Ai�1 commute with the action of Z2, so we get

restrictions of these to the eigenspaces

@
.C1/
i W A

.C1/
i ! A

.C1/
i and @

.�1/
i W A

.�1/
i ! A

.�1/
i :

The eigenspace V�1 of H1.T IQ/ is the quotient ker @.�1/1 = im @
.�1/
2 .

Fix a vertex z0 2 Z0. The space of all 1-cycles has dimension 2d C 2.
P
ci / � 1 and

a basis given by the following vectors:

• ex ; ey1 ; : : : ; eyk and gex ; gey1 ; : : : ; geyk ,

• ez0 � ea and g.ez0 � ea/ for a 2 Z0 [ � � � [Zs , a ¤ z0,

• ez0 C gez0 .

We can describe its structure as

ker @1 Š Q˚QŒZ2�
dC.

P
ci /�1:
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When moving onto the �1-eigenspace, the dimension of ker @.�1/1 is k C .
P
ci / and

a basis is given by

• .1 � g/ex ; .1 � g/ey1 ; : : : ; .1 � g/eyk ,

• .1 � g/.ez0 � ea/ for a 2 Z0 [ � � � [Zs , a ¤ z0.

There are two types of 2-cells found in T . The first are those coming from the commut-
ator relation between two vertices in Zi , and the second are those from the commutator
relation between two vertices in Y. The latter have the boundary equal to zero in A1. The
former have the boundary ˙.ea C geb � gea � eb/, for a; b 2 Zi . In particular, im @2 is
generated by .1 � g/.ea � eb/ for a; b 2 Zi , and i D 0; : : : ; s. We can fix a vertex zi in
each of the remaining classes Zi . Then a basis for im @2 is given by

¹.1 � g/.ezi � ea/ j a 2 Zi n ¹ziº; i D 0; : : : ; sº:

We therefore have dim.im @2/ D
P
.ci � 1/. Furthermore, these are all cycles in the �1-

eigenspace of A1, so im @2 D im @
.�1/
2 . We conclude that V�1 has dimension

k C

sX
iD0

ci �

sX
iD0

.ci � 1/ D k C s C 1 D d C s

as required.
Finally, the claimed structure of H1.T IQ/ follows by the fact that the following list

of elements form a basis

• ex ; ey1 ; : : : ; eyk and gex ; gey1 ; : : : ; geyk ,

• ez0 � ezi and g.ez0 � ezi / for i D 1; : : : ; s,

• ezi � ea D g.ezi � ea/ for a 2 Zi and i D 0; : : : ; s,

• ez0 C gez0 .

We note that, following the proof of Lemma 3.1, we can write down a basis for V�1 as
follows:

• x D .1 � g/ex ,

• yj D .1 � g/eyj for j D 1; : : : ; k,

• zi D .1 � g/.ez0 � ezi / for i D 1; : : : ; s.

We thus have a representation of Aut�.G/ obtained by acting on V�1,

Aut�.G/! PGL.V�1/:

We observe that inner automorphisms act on V�1 as �1, so are in the kernel of this repres-
entation. This means that it factors through the finite index subgroup Out�.G/ of Out.G/
that is the quotient of Aut�.G/ by the inner automorphisms. Thus we define the repres-
entation �� to be the representation on Out�.G/,

�� W Out�.G/! PGL.V�1/:
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3.1. The action of partial conjugations

We now take time to look at how partial conjugations behave under the representation �� .
Recall that we are acting on the projective space associated to V�1.

We first look at how the partial conjugations �xZi act on the vectors zj . First assume
i D 0. Then �xZ0 sends z0 to x�1z0x in G. This means that ez0 is sent to �ex C ez0 C
gex D ez0 � .1 � g/ex , and we get for each j D 1; : : : ; r ,

��.�
x
Z0
/.zj / D .1 � g/.ez0 � .1 � g/ex � ezj / D zj � .1 � g/2ex D zj � 2x:

All other basis vectors are fixed by �xZ0 . Thinking of its matrix representation, if we order
the basis elements as z1; : : : ; zr ; y1; : : : ; yk ; x, then the matrix for �xZ0 is as follows, with
the first block marking off the basis vectors zi , the second block for yi and the final block
for x,

��.�
x
Z0
/ D

0BBBBBBBBBBBBBBB@

1 0 � � � 0 0 0 � � � 0 0

0 1 � � � 0 0 0 � � � 0 0
:::

:::
:::

:::

0 0 � � � 1 0 0 � � � 0 0

0 0 � � � 0 1 0 � � � 0 0

0 0 � � � 0 0 1 � � � 0 0
:::

:::
:::

:::

0 0 � � � 0 0 0 � � � 1 0

�2 �2 � � � �2 0 0 � � � 0 1

1CCCCCCCCCCCCCCCA
:

Similar calculations yield that ��.�xZi /, for i D 1; : : : ; s, will be a transvection:

x��.�
x
Zi
/.zj / D

´
zj C 2x if i D j ,

zj otherwise.

The matrix representation for this will be an elementary matrix differing from the identity
by a 2 in the appropriate entry.

Consider a partial conjugation �aD for a ¤ z. Up to an inner automorphism, we can
assume that Z0 6� D. Then vectors zi are fixed whenever Zi 6� D. First let us assume
a D yj for some j . WhenZi �D, we have ��.�

yj
D /.ezi /D�eyj C ezi C geyj . We there-

fore get

��.�
yj
D /.zi / D

´
zi C 2yj if Zi � D,

zi if Zi 6� D.

If instead a D zj for some j , then ��.�
zj
D /.ezi / D �gezj C gezi C ezj and

��.�
zj
D /.zi / D

´
zi � 2zj if Zi � D,

zi if Zi 6� D.



On virtual indicability and property (T) for outer automorphism groups of RAAGs 161

Another way that we can write this is to use the standard inner product on W D
SpanQ.z1; : : : ; zs/ Š Qs . Define wD 2 W , so that the i -th entry is equal to 1 if Zi � D,
and 0 otherwise (this is how it is also defined later, in Lemma 4.4). Then

��.�
yj
D /.zi / D zi C 2hzi ;wDiyj and ��.�

zj
D /.zi / D zi � 2hzi ;wDizj :

This extends linearly over W , as per the following lemma.

Lemma 3.2. For v 2 W , and partial conjugations �yjD with Z0 6� D and j D 1; : : : ; k,
we have

��.�
yj
D /.v/ D vC 2hv;wDiyj ;

��.�
yj
D /.x/ D x; ��.�

yj
D /.yl / D yl for l D 1; : : : ; k.

For partial conjugations �zD with Z0 6� D and z 2 Zi , for i D 1; : : : ; s, we have

��.�
z
D/.v/ D v � 2hv;wDizi ;

��.�
z
D/.x/ D ˙x; ��.�

z
D/.yl / D ˙yl for l D 1; : : : ; k:

Meanwhile, any partial conjugation with multiplier z in Z0 acts as �1 on zi if Zi � D.
Hence

��.�
z
D/ D Id :

Proof. The statements regarding partial conjugations with multipliers y D yj or z 2 Zi
for i > 0 follow from the discussion preceding the lemma, except when acting on x or yj .
With multiplier yj the action on x and yl is trivial since x and yl commute with yj . With
multiplier z, either Y is not in D and the vectors x; y1; : : : ; yk are fixed, or ex (resp. eyl )
is sent to gex (resp. geyl ), meaning x 7! �x (resp. yj 7! �yl ).

The final statement concerning those with multiplier z 2 Z0 follows from direct cal-
culation. If zi 2 D, then

�zD.zi / D z
�1ziz) ezi 7! �gez0 C gezi C ez0 ) zi 7! �zi I

if x 2 D, then

�zD.x/ D z
�1xz) ex 7! �gez0 C gex C gez0 D gex ) x 7! �x:

Calculations for any yi 2 D are the same as for x.

4. Principal equivalence class-component pairs

We will introduce a new notion that concerns partial conjugations, with the objective being
to refine the set of partial conjugations necessary to virtually generate the Torelli subgroup
IA� when � has no SIL (see Lemma 4.5).

Before we do so, we introduce some terminology. Deleting the star of a vertex x can
divide � up into multiple pieces, each being the support of a partial conjugation with
multiplier x. We use the following to refer to these pieces.
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Definition 4.1. Let x be a vertex of � . We use the phrase x-component to mean a con-
nected component of � n st.x/.

Let X be a subset of � . An X -component is an x-component C for some x 2 X .

Note that the terminology is similar, but different, to that found in [8], where a yv-
component consists of a set of vertices in � n st.v/ that can be connected by a path that
has no edge in st.v/.

We will be focussing on X -components when X is an equivalence class. There are
two possibilities here depending on whether X is abelian or not. If it is, then each X -
component is also an x-component for each x 2 X . If X is a free equivalence class and C
is an X -component that does not intersect X , then C is again an x-component for each
x 2 X . However, this is not always the case, the (only) exception to this rule being the
following. If x;x0 2X , then ¹x0º is an x-component, though clearly not an x0-component.
In particular, each vertex in a free equivalence class X forms an X -component.

If x � y, then by Lemma 2.5, the x-components are each a union of y-components,
with vertices from st.x/ removed. We are interested in when a partial conjugation �xC
can be expressed as a product in Out.A�/ of partial conjugations whose supports are y-
components, for y � x.

Definition 4.2. Let x be a vertex of � and C an x-component. We say the partial conjug-
ation �xC is virtually obtained from dominated components if there exists n ¤ 0 so that in
Out.A�/

.�xC /
n
D .�xD1/

"1 � � � .�xDm/
"m ;

where each "i is an integer, and the set Di is a yi -component for some yi dominated by,
but not equal to x.

If furthermore each Di can be taken to be a yi -component for some yi dominated
by, but not equivalent to x, then we say �xC is virtually obtained from dominated non-
equivalent components.

The product in Definition 4.2 is considered within Out.A�/. We note that in certain
cases it is equivalent to look at products within Aut.A�/, however this is not always
the case. Indeed, provided there is some vertex y (resp. equivalence class Y ) dominated
by, and distinct from, the vertex x (resp. equivalence class X ), the inner automorphism
by x is itself virtually obtained from dominated components (resp. from dominated non-
equivalent components). However, if � n st.x/ is connected and x is not dominated by
any other vertex, then �xC is inner and so is virtually obtained from dominated compon-
ents (in Out.A�/, with the empty word).

Note that the product being in Out.A�/ means �xC (or its power) can be constructed
using the complement of C in � n st.x/.

Definition 4.3. Let X be an equivalence class in � and C an X -component. We say the
pair .X; C / is non-principal if �xC is virtually obtained from dominated non-equivalent
components for any x 2 X . Otherwise, we say .X; C / is principal.
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We introduce some notation here. Let Y be an equivalence class of � , and let C be
a Y -component. Define the set P YC to be

P YC D ¹�
x
C 0 j x � Y; C

0
D C n st.x/º:

Then �xC is virtually obtained from dominated non-equivalent components if there is
a non-zero integer n such that

.�xC /
n
2 hP YD j Y � X; Y ¤ X; and D is a Y -componenti

for each x 2 X .
Observe that if for any x 2 X there is only one x-component, then �xC is inner and

hence is virtually obtained from dominated non-equivalent components. Thus, if .X; C /
is principal, then � n st.x/ is not connected for any x 2 X .

An immediate example of principal pairs .X; C / occurs when X is a domination-
minimal equivalence class such that for any x 2 X the star of x separates � . A simple
example of a non-principal pair is given in Example B below. An example where we have
to take n > 1 is given in Example C. Further examples are given in Section 5 below, in
Examples D, E, and F.

Example B. We consider the graph in Figure 2. In this graph, the vertex x dominates
vertices y, z1, z2 and z3, and forms its own equivalence classX D¹xº. TheX -components
are C1D ¹z1º, C2D ¹z2º, and C3D ¹z3º. The pairs .X;C1/ and .X;C2/ are non-principal
sinceC1 andC2 are also z3-components, meaning that �xC1 2P

Œz3�
C1

and �xC2 2P
Œz3�
C2

. Since

.�xC3/
�1
D �xC1�

x
C2

in Out.A�/;

we also deduce that .X; C3/ is non-principal as �xC3 2 hP
Œz3�
C1

; P
Œz3�
C2
i.

Example C. We consider the graph � constructed using Figure 3. There are four x-
components, C0, C1, C2, and C3, labelled so that zi 2 Ci . The only vertices dominated
by x are those added to the diagram: y1, y2, and y3. The y1-components are C0 [ C3 and

x

z3

z1 z2

y

Figure 2. The graph � for Example B.
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x

z3

z1

z2

z0

Figure 3. To construct � , add three vertices to the graph shown here. Add a vertex y1 whose link
consists of the vertices with a green circle 
; add a vertex y2 whose link consists of the vertices
with a blue square�; add a vertex y3 whose link consists of the vertices with a red diamond˘.

C1 [ C2; the y2-components are C0 [ C1 and C2 [ C3; the y3-components are C0 [ C2
and C1 [ C3. Then

�xC0[C3�
x
C0[C1

�xC0[C2 D .�
x
C0
/2 adx D .�xC0/

2

implying
.�xC0/

2
2 hP

Œy1�
C0[C3

; P
Œy2�
C0[C1

; P
Œy3�
C0[C2

i:

The following lemma translates the problem of determining principality into a linear
algebra question. We will exploit this approach in Section 5.6.

Lemma 4.4. LetX be an equivalence class, and let C0;C1; : : : ;Cr be theX -components.
LetW be an r-dimensional vector space over Q, and let ¹z1; : : : ; zrº be a basis. For each
vertex y dominated by, but not in, X , and each y-component D, let wD denote the vector

wD D w1z1 C � � � C wrzr ;

where

wi D

´
1 if Ci � D,

0 otherwise.

Let � denote the set of all vectors wD as D varies among all y-components, for all
vertices y dominated by, but not in, X .

Then the vector h1; 1; : : : ; 1i is in SpanQ.�/ if and only if .X; C0/ is non-principal.
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Proof. Consider a product of partial conjugations with multiplier x 2X in the setsP YD , for
equivalence classes Y that are dominated by, but not equal to, X , and Y -components D.
We write the product as .�xD1/

"1 � � � .�xDl
/"l , where each Di is equal to a Y -component

with st.x/ removed, and "i D ˙1. Up to an inner automorphism, and flipping the sign
of "i , we may assume C0 6� Di , and we then take the vector wDi 2 � defined above.

The vector wD
P
"iwDi records the action of x on the vertices of each component Cj

in the following way. For z 2 C1 [ � � � [ Cr , we have

.�xD1/
"1 � � � .�xDl /

"l .z/ D x� j̨ zx j̨ ;

where

j̨ D

X
¹i jCj�Di º

"i and h˛1; : : : ; ˛ri D

lX
iD1

"iwDi :

If .X; C0/ is not principal, then .�xC0/
n, for some integer n, can be written as a product

as above. In particular, we would have ˛i D n for each i , implying h1; 1; : : : ; 1i is in the
span of �.

On the other hand, if we can write hn; n; : : : ; ni as a Z-linear combination of the
vectors �, then by the above we can translate that into a product of partial conjugations
from sets P YD , with Y � X and Y ¤ X that equal .�xC0/

n.

The following lemma explains why we refer to the pairs as principal or non-principal.
This is important in Section 7 when we deal with graphs with no SIL. The Torelli subgroup
is the kernel of the standard representation, obtained by acting on the abelianisation ofA� .
For this lemma, all we need to know about the Torelli subgroup is that when there is no SIL
it is abelian and is generated by the set of partial conjugations (see also Proposition 2.7).

Lemma 4.5. When � contains no SIL, the union of the sets PXC for which .X; C / is
principal generates a finite index subgroup of the Torelli subgroup IA� .

Proof. Seeing that these sets generate a finite index subgroup is done by first noting that
some power of every partial conjugation �yD is in the subgroup generated by the sets PXC
with .X; C / principal. This follows from the definition of principal/non-principal pairs.
Together with Proposition 2.7, which states that IA� is abelian and generated by the set of
all partial conjugations, this proves the lemma.

5. Virtual indicability from partial conjugations

We begin by generalising condition (A2), defining the following property of a graph � .
Note that Lemma 5.1 below gives an alternate definition with as much jargon removed as
possible:

(A20) If an equivalence class X admits an X -component C for which .X;C / is prin-
cipal, then jX j > 1.
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The aim of this section is to prove Theorem 3, which states that if � fails condi-
tion (A20), then Aut.A�/ is virtually indicable.

Recall, .Œx�;C / being principal means that �xC cannot be virtually obtained from dom-
inated non-equivalent components. That is, no non-trivial power of �xC can be expressed
as a product of partial conjugations �xD , whereD is a y-component for some y dominated
by, but not equivalent to, x (see Definition 4.2). The product takes place in Out.A�/.

Condition (A2) of Aramayona–Martínez-Pérez [1] implies that the minimal star-sep-
arating equivalence classes have size greater than one. These will of course be principal,
thus, as mentioned in the introduction, (A20) implies (A2).

We remark that the definition of (A20) is a peculiar mix of graphical and algebraic
conditions. We can ask whether it is possible to express the condition in purely graphical
language. However, we feel somewhat pessimistic about hopes to do this in a meaningful
way. Indeed, Example C gives a situation where some naïve criterion to deny principal-
ity – either C is a y-component for some y � X , y … X , or the complement of C in
� n .st.x/ [X/ can be expressed as a disjoint union of such components – may apply.
Instead, we suspect that using something like Lemma 4.4 is as close as we may get.
We can remove the linear algebra language from Lemma 4.4, for example, by describ-
ing a “game” on an associated graph, as described below, and looking for solutions to this
game.

The graph G for the game is defined as follows. For each X -component except C ,
add a vertex. Then for each vertex u of � that is dominated by, but not in, X , add edges
between vertices of G that are in common u-components, but not for those that are in the
same u-component as C . Label each edge by the corresponding u. The pair .X;C / is then
non-principal if and only if the following game has a winning strategy. Each vertex of G
is given a label in Z, which is initially set to zero. A move in the game involves choosing
some u dominated by X , some vertex D of G, and either increasing or decreasing by 1
the integer label on D and on every other vertex of G that is connected to D by an edge
labelled by u. The player wins the game if they can simultaneously relabel each vertex
of G by the same non-zero integer. (Note that if there are no such u, then there is no
possible move to make, and the player automatically loses.)

The following is the reformulation of condition (A20) given in the introduction, which
removes the language of equivalence classes and principality.

Lemma 5.1. A graph � satisfies (A20) if and only if for every vertex x in � and every
x-component C , the partial conjugation �xC is virtually obtained from dominated com-
ponents.

Proof. We prove the contrapositive statement. We have failure of (A20) if and only if there
is some equivalence classX of size one and anX -componentC so that .X;C / is principal.
That is to say, X D ¹xº, and �xC is not virtually obtained from dominated non-equivalent
components. Since no vertex is equivalent to x, this gives the “if” direction.

Now suppose we have x and an x-component C , so that �xC is not virtually obtained
from dominated components. We want to show that Œx� D ¹xº and .Œx�; C / is principal,



On virtual indicability and property (T) for outer automorphism groups of RAAGs 167

so (A20) fails. The latter follows immediately once we have shown the former. So suppose
x � x0. Then we necessarily have x0 2 C since otherwise C would be an x0-component,
contradicting the hypothesis on �xC . Since C is an x-component, we must furthermore
have C D ¹x0º and Œx� D ¹x; x0º. Suppose C1; : : : ; Cr are the remaining x-components.
Then each Ci is also an x0-component and

.�xC /
�1
D �xC1 � � ��

x
Cr

again contradicts our assumption on �xC . Hence no vertex is equivalent to x, and the lemma
follows.

5.1. Outline of proof

The objective is to prove Theorem 3, asserting that if condition (A20) fails, then Aut.A�/ is
virtually indicable. Thus we assume (A20) fails, giving us a vertex x and x-component C
satisfying the following conditions:

• X D Œx� D ¹xº,

• .X; C / is principal,

• x is domination-minimal among vertices satisfying the first two conditions.

We hereby fix x and C throughout Section 5.
We will construct a homomorphism from a finite index subgroup of Out.A�/ onto Z.

The process to construct such a virtual map onto Z involves refining the graph � through
projection and restriction maps. Note that the domination relation that we will be referring
to throughout always refers to domination in � .

Step 1: Decluttering � . We aim to exploit the partial conjugation �xC to obtain a surjec-
tion onto Z. The x-components therefore play a crucial role. The first step, completed in
Section 5.3, is to remove much of � by using a projection map, but being sure to leave
something in each x-component for the partial conjugations by x to act on.

If C D C0; C1; : : : ; Cr are the x-components, we explain in Definition 5.2 how to
choose a subset Zi of Ci , for each i , to create a subgraph yƒ of � that admits a projection
map

p1W SOut0.A�/! Out.A yƒ/:

The construction of yƒ ensures it contains x and all vertices dominated by x.
The graph yƒ is disconnected. We can abelianise each component to obtain a graphƒ0,

so that

Aƒ0 D Zc0 � Zc1 � � � � � Zcr � ZkC1

for some integers c0; : : : ; cr ; k, and which furthermore admits a homomorphism (Lem-
ma 5.5) from the image of p1 to Out.Aƒ0/. Composing this with p1, we get a homo-
morphism

pW SOut0.A�/! Out.Aƒ0/:
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Step 2: Dividing into cases. The arrangement of the subsets Zi with regards to x and the
vertices it dominates can cause different issues to arise. We use these to split into two
cases in Section 5.4. The first case ultimately yields a homomorphism

qW SOut0.A�/! Out.Zc0 � Zc1 � Z/

for some positive integers c0 and c1. In the second case, we get a similar map, but we may
have more than three free factors in the target group. We get

qW SOut0.A�/! Out.Zc0 � Zc1 � � � � � Zcs � Zd /

for positive integers c0; : : : ; cs; d .

Step 3: Employing the homological representation of Section 3. Readers familiar with
homological representations will appreciate that in the first case, if the image of q in
Out.Zc0 � Zc1 � Z/ is sufficiently rich (even just containing a non-trivial partial conjug-
ation), then obtaining a virtual surjection onto Z is entirely plausible. In fact, if there are
enough partial conjugations in the image, we can even obtain largeness of Out.A�/ (see
Remark 5.11).

The second case, though, is more subtle. The homological representation we use ini-
tially yields an action on a vector space of dimension d C s. But by studying the action of
partial conjugations and transvections on this space, we are able to restrict to a subspace V
so that the image of a finite index subgroup of Aut.A�/ in PGL.V / is free abelian.

To summarise, Figure 4 shows the maps that are constructed in the process of obtaining
a virtual epimorphism to Z.

5.2. Examples

We describe these three steps in three examples, each with slight differences, before
describing the full process.

Note that these are not “new” examples, in the sense that Aut.A�/ is already known
to be virtually indicable by earlier results. For example, we can apply Theorem 2 (a result
of Aramayona and Martínez-Pérez [1]) to obtain a virtual surjection onto Z. We use these
examples though to highlight our method. Some tricks, such as replacing vertices by equi-
valence classes, or introducing benign vertices, can be used to prevent the application of
earlier results, but doing so over-complicates matters and defeats the purpose of including
some, hopefully, enlightening examples.

In each example (and, indeed, the rest of this section), we refer to a set U which
consists of those vertices in yƒ that are dominated by, but not equal to, x.

Example D. The graph � given in Figure 5 satisfies the conditions of case (1) of Sec-
tion 5.4.

There are five x-components, C0; : : : ; C4, and in each a domination-minimal vertex zi
has been selected. In � , the vertex z0 dominates x; meanwhile, z2 and z3 are dominated
by x, and form the set U .
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Out.A�/

Out.A yƒ/

Out.Aƒ0/

Out.Aƒ1/

Out.Aƒ/

Out.Aƒ/ Out.Zc0 � � � � � Zcs � Zd /

Out.Zc0 � Zc1 � Z/

PGL.V�1/

Z

p1

p

r
p3

p2

Š

Š

��
��

Figure 4. The maps used in the projection to Z. Note that maps are defined on finite index subgroups
of the groups shown, but we suppress this notation to reduce clutter.

We claim that .X;C0/ and .X;C1/ are both principal. There is only one z2-component.
There are two z3-components,C4 being one, and the other containingC0 [C1 [C2 [ ¹xº
and some unlabelled vertices. As there is no way to separate C0 and C1 by the star of
either z2 or z3, both .X; C0/ and .X; C1/ must be principal.

The graph yƒ is the graph consisting of vertices x; z0; z1; : : : ; x4. It has no edges, and
so is equal to ƒ0.

In � we could replace some zi by an equivalence class Zi of vertices, either free or
abelian (it must be abelian for any vertex of U ). Then yƒ would include these equivalence
classes, and ƒ0 would abelianise any which were free.

This example yields a map into Out.F3/ (having c0 D c1 D 1, though these could
differ if z0 or z1 were replaced by a larger equivalence class). The classes z0 and z1 are
not separated by any star from U , while z4 is separated from z0 by st.z3/. We can take a
restriction map r to Out.Aƒ1/, with ƒ1 given by vertices ¹z0; z1; xº. The map p2 is just
the identity map in this example.
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x

z4

z0

z1z2

z3

Figure 5. The graph � of Example D satisfying case (1).

The image of all these maps will include �x
¹z0º

, which will have infinite order image
under the homological representation �� . Since V�1 has dimension 2 in this case, the
image will be an infinite subgroup of PGL.V�1/, which is virtually free, implying the
image is also virtually free (including of course, possibly virtually Z).

Example E. The graph � given in Figure 6 satisfies the conditions of case (2) in Sec-
tion 5.4.

There are four x-components, which we can denote Ci so that zi 2Ci for i D 0;1;2;3.
We set Zi D ¹ziº for each i , and we can enlarge each Zi to be an equivalence class, free
or abelian, of any size.

We claim that .X; C0/ is principal, and to show this we use Lemma 4.4. Consider the
vector spaceW over Q with basis given by ¹z1; z2; z3º. The only vertices dominated by x
are y1 and y2, so U D ¹y1; y2º. For each partial conjugation �yiD , we can, up to an inner
automorphism, assume that C0 \D D ;. Thus we have partial conjugations with supports
C1 [ C2 and C2 [ C3. These translate into vectors h1; 1; 0i and h0; 1; 1i as described in
Lemma 4.4. It is clear that h1; 1; 1i is not in the Q-span of these two vectors, so .X; C0/
is principal.

In our first step, we take a projection map p1 so that the image lies in Out.A yƒ/,
where yƒ is the induced graph with vertex set ¹x; y1; y2º [ Z0 [ Z1 [ Z2 [ Z3. If we
enlarged some Zi to be free, then we should abelianise these now to get ƒ0, otherwise
yƒ D ƒ0. In this example, we do not need to use the next projection map p3, so we take
this to be the identity map and ƒ D ƒ0. (The reason we may take p3 as the identity is
because this graph gives no partial conjugations in the set B , defined in Section 5.5.2.)
We therefore have

Aƒ Š Zc0 � Zc1 � Zc2 � Zc3 � Z3;

where we use ci for the size of Zi , which is 1 unless it was enlarged.
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x

y1

y2

z0 z1

z2z3

Figure 6. The graph � of Example E satisfying case (2).

In this example, V�1 will have dimension 6 (with basis ¹x; y1; y2; z1; z2; z3º). We will
restrict our representation to a subspace of V�1 of dimension 2. Since our only transvec-
tions are Rxyi , we can try to restrict to some vectors zi and x. However, we have partial
conjugations �y1C1[C2 and �y2C2[C3 which prevent us from naively doing this. But with
a little thought, we can make a restriction.

The partial conjugations act as follows:

'.�
y1
C1[C2

/W

8̂̂<̂
:̂

z1 7! z1 C 2y1;
z2 7! z2 C 2y1;
z3 7! z3;

'.�
y2
C2[C3

/W

8̂̂<̂
:̂

z1 7! z1;
z2 7! z2 C 2y2;
z3 7! z3 C 2y2:

Notice though that zD z1 � z2C z3 is fixed by both partial conjugations. In this example,
we can restrict the action to the subspace V spanned by z and x. The partial conjuga-
tion �xC0 acts as a transvection z 7! z� 2x, so the image of the representation in PGL.V /Š
PGL.2;Q/ has infinite order in PGL.2;Z/. This is sufficient to imply virtual indicability
of Out.A�/.

Example F. The graph � given in Figure 7 satisfies the conditions of case (2) in Sec-
tion 5.4.

There are six x-components, C0; : : : ; C5, with a domination minimal vertex zi chosen
in each Ci . As in the previous example, we set Zi D ¹ziº, and each Zi could be replaced
by a larger equivalence class that is either free or abelian. Again, U D ¹y1; y2º. We note
that st.y1/ separates z1, z2, and z3 from z0, while st.y2/ separates z3, z4, and z5 from z0.
(This confirms we are in case (2).)
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x
y1 y2
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z3

z4

z5

z2

Figure 7. The graph � of Example F satisfying case (2).

To see that .X; C0/ is principal, using the notation of Lemma 4.4, � consists of two
vectors, h1; 1; 1; 0; 0i from y1, and h0; 0; 1; 1; 1i from y2. Evidently, there is no way to get
h1; 1; 1; 1; 1i in the Q-span of �, implying .X; C0/ is principal.

Our first step is to declutter � by taking a projection map p1 with yƒ being the induced
subgraph on vertex set ¹x; y1; y2º [ Z0 [ � � � [ Z5. We then abelianise any of the Zi
classes that are not already abelian to get ƒ0, composing this with p1 gives us the map p.

In this example, we have some partial conjugations that can cause us problems, and
dealing with these is the purpose of the projection map p3. In Section 5.5.2, we define
a set B that consists of these “bad” partial conjugations. Here, B consists of

• �
z2
C1

,

• �
z2
D , where D contains C0, C3, C4, C5 and some vertices from st.x/,

• �
z4
C5

,

• �
z4
E , where E contains C0, C1, C2, C3 and some vertices from st.x/,

• �
z5
C4

, and

• �
z5
E .

Note that there are also partial conjugations by z2 that appear to meet the definition of B
given in Section 5.5.2, specifically those that act on the vertices of C2 n st.z2/, and simil-
arly for z4 and z5. However, none of these are in the image of p.
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The following explains how we determine which vertices to delete to define the pro-
jection map p3. (We follow the method and notation of the proof of Lemma 5.13.) We first
define 1 by killing z2. This will leaveB1DB n ker 1 to contain the partial conjugations
with multiplier z4 or z5. Then we define  2 by killing both z2 and z4. Immediately, we see
that the partial conjugations with multiplier z4 are in the kernel, but it also contains �z5C4 .
Finally, �z5E has become inner. Thus B2 D B n ker 2 is empty – we have taken a projec-
tion map that kills our “bad” partial conjugations, but it still leaves enough information
for our other partial conjugations to act non-trivially, in particular, �xC0 . We set p3 D  2.

We are left therefore with ƒ that consists of the vertex set ¹x; y1; y2º [ Z0 [ Z1 [
Z3 [Z5, and

Aƒ Š Zc0 � Zc1 � Zc3 � Zc5 � Z3;

where we use ci for the size of an equivalence class optionally put in place of zi .
We are now ready to apply the homological representation. We deleted vertices z2

and z4, so we define W to be the 3-dimensional subspace of V�1 with basis z1, z3, z5.
We also define a set … that consists of vectors

z1 C z3 D h1; 1; 0i and z3 C z5 D h0; 1; 1i:

These are the vectors that correspond to the y1 and y2-components that do not contain C0.
The vector

v D z1 � z3 C z5 D h1;�1; 1i

is in …?, and indeed …? D SpanQ.v/.
Suppose that V D SpanQ.v; x/. By direct calculations, or using Lemma 3.2, we see

that �y1C1[C2[C3 acts trivially on v (and x), so preserves V . The same is true for �y2C3[C4[C5 .
The partial conjugations by z2 and z4 were killed by the map p3 since those vertices were
killed, while the partial conjugation by z5 was also killed because its support was C4. The
remaining partial conjugations are those with multiplier x, which preserve V ,

'.�xC1/.v/ D vC 2x; '.�xC3/.v/ D v � 2x;
'.�xC5/.v/ D vC 2x; '.�xC0/.v/ D vC 2x:

The other partial conjugations act trivially. The only transvections are by x on yi , both of
which act trivially on V . We conclude that the image of the homological representation
restricted to V is Z.

5.3. Projecting to a simpler RAAG

In this section, we do some spring cleaning on � , removing as much as we can while
leaving enough so that the partial conjugations with multiplier x still act non-trivially.
To do this, we pick out a minimal equivalence class in each x-component to keep, and kill
the rest of the component through a projection map, as described in Section 2.3.

Recall that x and C D C0 have been chosen so that X D Œx� D ¹xº and .X; C / is
principal, with x domination-minimal among such vertices.
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Definition 5.2. The following describes how to construct the graph yƒ:

• LetC DC0;C1; : : : ;Cr be the x-components. IfCi consists of one vertex, setZi DCi .
Otherwise, let Zi be a domination-minimal equivalence class in Ci .

• Let Y be the set of vertices in st.x/ that are dominated by x.

Define yƒ to be the induced subgraph of ƒ with vertex set Z0 [ � � � [Zr [ Y [ ¹xº.

To see that the sets Zi are well defined, we observe that if Ci contains more than one
vertex, then the equivalence class of each vertex in Ci is contained in Ci . Indeed, if z 2 Ci ,
then jCi j > 1 implies lk.z/ \ Ci is nonempty. Suppose z0 is equivalent to z. Firstly, this
implies z0 cannot be in st.x/. Next, if z0 is adjacent to z, then z0 is immediately in Ci .
Otherwise, lk.z/ D lk.z0/, so the fact that lk.z/ \ Ci is nonempty gives a two-edge path
in Ci connecting z to z0.

This observation also implies that a set Zi can fail to be a complete equivalence class
only if Zi D Ci consists of one vertex that is dominated by x.

Lemma 5.3. Suppose v 2 yƒ and u � v. Then

(I) if u 2 Ci , v 2 Zj and i ¤ j , then u � x and ¹uº D Zi is a v-component;

(II) u 2 yƒ.

In particular, part (II) implies that the projection map

p1W SOut0.A�/! Out0.A yƒ/

is well defined.

Proof. First, we prove part (I). Any path from u to v must hit st.x/. Hence lk.u/D lk.u/\
lk.v/ � st.x/, so u � x and Ci D Zi D ¹uº. Also, lk.u/ � lk.v/ implies that Zi is a v-
component.

For part (II), first suppose v 2 Y [ ¹xº. Then u � x. Either u 2 Y or lk.u/ � lk.x/,
which implies u forms its own x-component, so there is some i so that ¹uº D Ci D Zi .
In particular, u 2 yƒ.

Now suppose v 2Zj �Cj for some j . Note that this implies u … st.x/ since otherwise
x 2 lk.u/� st.v/. If u is also in Cj , then by minimality of the equivalence classZj in Cj ,
we must have that u 2 Zj too, and hence in yƒ. If on the other hand u 2 Ci with i ¤ j ,
then we are in the situation for part (I), from which it follows that u is in yƒ.

The structure of A yƒ as a group is as follows. The subgroup generated by Y could be
any RAAG, denote it by AY . The Zi that are equivalence classes could be free or free
abelian. They cannot be adjacent to any y 2 Y or x, since the link of y is contained in the
star of x. Thus the group generated by yƒ has the form

A yƒ D G0 �G1 � � � � �Gr � .AY � Z/;

where each Gi is either Zci or Fci according to whether Zi is abelian or not, and where
ci D jZi j. The final Z factor has generator x.
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Following this projection p1, we compose it with another homomorphism obtained by
abelianising each free factor in the above decomposition of A yƒ.

Definition 5.4. Let ƒ0 be the graph obtained from yƒ by adding edges, so that AY and
each equivalence class Zi become abelian. The structure of Aƒ0 is therefore

Aƒ0 D Zc0 � Zc1 � � � � � Zcr � ZkC1;

where k D jY j.

Lemma 5.5. The projection p1 composes with a homomorphism imp1 ! Out.Aƒ0/ to
give a homomorphism

pW SOut0.A�/! Out.Aƒ0/:

Proof. The homomorphism sends an outer automorphismˆ in imp1 to the automorphism
defined by the action of ˆ on the vertices of ƒ0. To see that ˆ is indeed sent to an
automorphism, one just needs to verify that the kernel of the map A yƒ ! Aƒ0 , which
is normally generated by the commutators Œa; b� for a; b 2 Zi and i D 0; 1; : : : ; r , is
preserved by each generator in the image of p1. Indeed, any transvection Rvu preserves
the kernel as either u and v are in the same factor Gi , or otherwise the factor containing u
must be cyclic (since lk.u/ must therefore be contained in st.x/, regardless of what v is).
Meanwhile, a partial conjugation �vD with v 2 yƒ preserves the kernel since each factor
in A yƒ either is contained in D, does not intersect D, or both D and v are contained
in Zi .

We finish this subsection with a couple of useful observations about the behaviour of
the sets Zi . We define U to be the subset of vertices in yƒ dominated by (and not equal
to) x,

U D ¹u j u � x; u ¤ xº:

Remember, the domination relation that we refer to (and hence the equivalence classes of
vertices) always comes from the relation in � .

Lemma 5.6. Let u 2 U , and let D be a u-component. Then either

• D D Ci for some i , or

• x 2 D.

Proof. Let x … D, so st.u/ separates D and x. We claim this means that D � � n st.x/.
Indeed, otherwise x would be adjacent to a vertex of D, and since x 62 st.u/, we would
have x 2 D. Thus, since D is connected, it must be contained in an x-component Ci .
Finally, since u � x no vertex of Ci is in st.u/, and it therefore follows that D D Ci .

The next lemma gives us useful properties when we work under the assumption that
condition (A1) of [1] holds. Recall that when (A1) fails, Theorem 2 from [1] tells us
that we get virtual indicability. This lemma also highlights the role of the distinguished
x-component C D C0.
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Lemma 5.7. There exists some i ¤ 0 so that both C0 and Ci are not u-components for
any u 2 U . In particular, if condition (A1) holds, then x does not dominate Z0 or Zi .

Proof. The fact that C0 is not a u-component for any u 2 U follows immediately from
principality of .X; C0/. Meanwhile, if for each Ci there is a ui 2 U so that Ci are a ui -
component, then �xCi 2 P

Œui �
Ci

. In particular, .�xC0/
�1 D �xC1 � � � �

x
Cr

is in the subgroup

generated by the sets P Œui �Ci
for i D 1; : : : ; r , contradicting principality of .X; C0/.

Suppose that Ci is not a u-component for any u (we allow i D 0 here). IfZi is domin-
ated by x, then Ci D Zi D ¹ziº. If condition (A1) holds, then there is some other vertex u
such that zi � u� x. In particular, u 2 U and since Ci cannot be a u-component, we must
have u adjacent to zi . But u � x then implies zi 2 st.x/, a contradiction.

5.4. Two cases

We divide into two cases according to the possible arrangements of componentsZi . Recall
that U D ¹u j u � x; u ¤ xº. The two cases are

(1) There is a class Zi , with i ¤ 0 and not dominated by x, so that Z0 and Zi are in
the same u-component for every u 2 U .

(2) For every class Zi , for i ¤ 0 and which is not dominated by x, there is some
u 2 U so that Z0 and Zi are in separate u-components.

We make the following observation.

Lemma 5.8. If there is some i (possibly zero) such that Zi dominates x, then

(1) Zi is not dominated by x,

(2) there is j ¤ i such that 0 2 ¹i; j º and so that Zi and Zj are in the same u-
component for every u 2 U .

In particular, we are in case (1).

Proof. Assume Zi dominates x. Since x is not equivalent to any other vertex of � , we
cannot have x dominating Zi . By Lemma 5.7, we know there is some j ¤ i so that Cj is
not a u-component for any u 2 U , and furthermore that j can be chosen so that 0 2 ¹i; j º.
Since for any u 2 U , we know that Cj is not a u-component, there must be some vertex
y 2 lk.x/ that is in the same u-component as Cj , and is, in fact, adjacent to a vertex of Cj .
Since Zi dominates x, we also have that y is adjacent to Zi . We can therefore construct
a path from Zj to Zi that is entirely in Zi [ Cj [ ¹yº, and hence disjoint from st.u/.

5.5. Refining the graph further

We will describe two different ways to cut down ƒ0 to a smaller graph ƒ, depending on
which case we are in. Ultimately, in each case we claim there are integers c0; c1; : : : ; cs; d
and a homomorphism

qW SOut0.A�/! Out.Zc0 � � � � � Zcs � Zd /
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such that the image is sufficiently rich so that we can use a homological representation to
get a virtual map to Z.

Note that we will work under the assumption that conditions (A1) and (A2) hold in � ,
so Theorem 2 does not already yield virtual indicability. In particular, Lemma 5.7 tells us
that there is some i > 0 so that Z0 and Zi are not dominated by x.

5.5.1. Case (1). Relabel the classes Zi for i > 0, if necessary, so that Z1; : : : ; Zt are all
the classes that are not dominated by x and that are not separated fromZ0 by st.u/ for any
u 2 U . We first refine the graph ƒ0 by removing all classes Zi for i > t , and all vertices
y 2 Y , leaving a graph ƒ1 that has vertex set Z0 [ � � � [Zt [ ¹xº.

Lemma 5.9. The restriction map r W imp ! Out.Aƒ1/ is well defined.

Proof. First consider transvections in the image of p. Suppose z 2 Zi for some i with
0 � i � t . By assumption, Z1; : : : ; Zt are not dominated by x, while Z0 is not dom-
inated by x by virtue of Lemma 5.7. Thus we cannot have z � z0 with z0 2 Zi 0 and
i 0 ¤ i , since then Lemma 5.3 (II) implies Zi would be dominated by x. Similarly, we
cannot have z � y 2 Y . Thus any transvection Rwz must have w 2 ƒ1, and thus pre-
serve Aƒ1 .

The remaining transvections to consider are those of the form Rwx . But then by Lem-
ma 5.8, w must be a vertex of some Zi � ƒ1, and so Aƒ1 is again preserved. All other
transvections in imp act on a vertex not in ƒ1 and so fix Aƒ1 .

Next consider partial conjugations. By construction, those of the form �
y
D with y 2 Y

act trivially onƒ1. Indeed, x 2 st.y/ and the remaining vertices ofƒ1, namelyZ0 [Z1 [
� � � [Zs , are all in the same y-component.

That leaves us to consider the partial conjugations �zD for z 2 Zi for some i > t . We
want to show that st.z/ cannot separate ƒ1 into more than one component.

For contradiction, first suppose st.z/ separates Z0 and Zj for some j � t . Fix u 2 U .
Let p be any path from Z0 to Zj that avoids st.u/ (which is possible by choice of Zj ).
Since st.z/ separates Z0 and Zj , there must be a vertex v on p that is adjacent to z. See
Figure 8 (a). We can therefore define a path p0 that follows p from Z0 to v, then jumps
to z. Since st.z/ separatesZ0 andZj , we have z … U . Furthermore, lk.u/� st.x/ implies
z … st.u/. Hence the path p0 avoids st.u/. We have shown that Z0 and Zi are not separ-
ated by st.u/ for any u 2 U , and also that Zi is not dominated by x. This contradicts the
choice of i .

On the other hand, suppose st.z/ separates some Zj in ƒ1 and x. By the previous
paragraph, we can assume j D 0, since otherwise we saw Z0 and Zj are not separated
by st.z/. Let p be a path from Z0 to Z1 that avoids st.z/. Then p passes through st.x/.
See Figure 8 (b). Let v be the first vertex of p in st.x/, and define p0 to be the path that
follows p from Z0 to v and then hops across to x. Then p0 is a path from Z0 to x that
avoids st.z/.

Thus every transvection and partial conjugation in imp preserves Aƒ1 and, since they
generate the image, the restriction map is well defined.
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Figure 8. Showing that st.z/ does not separate ƒ1. The dashed paths are the paths p, the solid line
from v to either z or x represents an edge of � .

We observe that when Zi is not dominated by x, as is the case for each Z1; : : : ; Zt ,
we can use a projection map to eliminate it.

Lemma 5.10. Suppose that i1; : : : ; in 2 ¹1; : : : ; tº. Ifƒ is the graph obtained by removing
Zi1 ; : : : ; Zin from ƒ1, then the projection map

p2W im r ! Out.Aƒ/

is well defined.

Proof. Recall that for any projection map, partial conjugations always map to (possibly
trivial) partial conjugations. So, to see that p2 is well defined, we need only to check
the image of transvections (in im r) map to automorphisms under p2. In particular, the
transvection Rwv will fail to map to an automorphism only if v is not in ƒ, whereas w is.
We may therefore assume that v is in some Zij that is deleted to make ƒ. Since v 6� x,
Lemma 5.3 (II) tells us that v is not dominated by any z 2 Zi for i ¤ ij . So for w to
dominate v, it must therefore be in Zij , hence not in ƒ.

We can therefore choose our favourite i 2 ¹1; : : : ; tº and use p2 from Lemma 5.10
to get

q D p2 ı r ı pW SOut0.A�/! Out.Zc0 � Zci � Z/:

We have ƒ being the graph on vertex set Z0 [Zi [ ¹xº.

Remark 5.11. If we can chooseZi here so that st.Zi / separatesZ0 and x in � , or so that
st.Z0/ separates Zi and x, then, in fact, Out.A�/ is large. This is the case, for example,
ifZ0 orZi dominates x. To obtain largeness, observe that the vertices ofƒ form a special
SIL, as defined in [15], which implies largeness by [15, Proposition 3.15]. The special SIL
will be either .x; z0 j zi / or .x; zi j z0/, where zi 2 Zi and z0 2 Z0. There is a technical
note here though. Special SILs require the equivalence class of each vertex involved to
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be abelian. This will be so once we reach ƒ0, but is not necessarily the case in � itself.
Indeed, the only way to have an equivalence class that remains free in ƒ0 is if it is the
union of singleton sets Zi . Then Lemma 5.3 (I) implies that the class is dominated by x
and hence not inƒ0. Finally, to obtain largeness from the special SIL, one needs to verify
that the required SIL automorphisms survive the map p.

5.5.2. Case (2). In this case, we use a projection map to kill the partial conjugations �zD ,
which would otherwise later cause trouble in the image of the homological representation.
We gather these partial conjugations up in a set B , defined to consist of partial conjuga-
tions �zD 2 imp such that

• z 2 Zi for some i ¤ 0,

• z 6� x,

• D is not a union of u-components for any u 2 U .

The aim is to kill enough of the Zi so that the partial conjugations in B act trivially
on what remains, but not to kill too many so that the action of �xC0 becomes trivial, and
furthermore, so that we can still track the action of partial conjugations by u 2 U on each
component Ci , whether it has been deleted or not.

The following lemma is a crucial tool in accomplishing this.

Lemma 5.12. Suppose �zD 2 B . Then either

• D and z are in the same u-component for every u 2 U , or

• x 2 D.

Proof. Suppose neither condition holds. Let u 2 U be such that D and z are separated
by st.u/. Since lk.u/ � st.x/, and u … st.x/ only if ¹uº D Zi for some i , we must have
thatD does not intersect the x-component containing z. Since we assume x …D, we have
D \ st.x/ D ;. Hence D is a union of x-components.

Let L be the set of vertices in st.x/ that are adjacent to a vertex of D. Any vertex
in L must be in st.z/ as st.z/ separates D and x by assumption. Meanwhile, L must
also be contained in st.u/ as otherwise it gives a two-edge path from D to z avoiding
st.u/. In particular, this implies that D must be a union of u-components, contradicting
�zD 2 B .

The next lemma says we can delete some Zi to make all partial conjugations in B
trivial, while keeping some other Zi 0 so that the action of the surviving partial conjuga-
tions �uE on Zi is tracked via its action on Zi 0 .

Lemma 5.13. We can reorder the sets Zi so that we can apply a projection map

p3W imp ! Out.Aƒ/;

where ƒ is the subgraph of ƒ0 induced by the vertices

Z0 [ � � � [Zs [ Y [ ¹xº
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for some s � r , so that the following hold:

(a) For each i such that s < i � r , there is some j with 1 � j � s such that Zi
and Zj lie in the same u-component for each u 2 U .

(b) All partial conjugations �zD 2 B are sent to the identity.

(c) The image of �xC0 under p3 is non-trivial.

Proof. The process to choose the Zi that are deleted is iterative, and we define p3 as
a composition of projection maps, each one obtained by killing some Zi .

Begin by settingB0 DB , and 0W imp!Out.Aƒ0/ the identity map. We supposeƒn
has been obtained from ƒ0 by deleting some of the sets Zi , and the projection map
 nW imp ! Out.Aƒn/ is well defined. Let Bn be the set of partial conjugations �zD 2 B
that are not in the kernel of  n. We will define  nC1 so that the corresponding set BnC1
is strictly smaller than Bn.

Choose any Zi so that z 2 Zi admits a partial conjugation �zD in Bn. Since  n.�zD/
is non-trivial, Zi is in ƒn and, up to an inner automorphism, we may assume x … D.
Furthermore, since �zD acts non-trivially on ƒn, D must contain some set Zi 0 that is
in ƒn. By Lemma 5.12, Zi and Zi 0 are in the same u-component for each u 2 U . Since
we are in case (2), we must have i 0 ¤ 0.

Since Zi is not dominated by x, it cannot be dominated by any Zj by Lemma 5.3 (II),
or by any u 2 U . Hence we may delete Zi from ƒn to get a new graph ƒnC1 and
define a projection map im n ! Out.AƒnC1/ (compare with Lemma 5.10). Compose
this projection map with  n to get  nC1W im p ! Out.AƒnC1/. In particular, the partial
conjugation �zD is in the kernel of  nC1 so is not included in BnC1.

Stop this process when we reach n with Bn empty. Then we set p3 D  n. Clearly,
item (b) holds by construction.

For item (a), the construction yields for each i > s some i 0, so that Zi and Zi 0 are in
the same u-component for each u 2U . It may be that i 0 > s (and so deleted to formƒ) but
then we have some i 00 so that Zi and Zi 00 are in the same u-component for each u 2 U .
We can repeat this until, after finitely many steps, we find the required set Zj that is
in ƒ.

Finally, for point (c), the image of �xC0 would be trivial only if all componentsZi have
been killed except Z0. This cannot happen because after each Zi is killed, there must be
some Zi 0 left surviving, with i 0 ¤ 0. This implies s > 0.

To conclude, in case (2) we define the homomorphism q to be the composition

q D p3 ı pW SOut0.A�/! Out.Aƒ/:

5.6. Applying the homological representation

We compose the map q from Section 5.5 with the representation �� of Section 3 to get

' D �� ı qW Out�.A�/! PGL.V�1/:
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More specifically, we use the restriction of q to the finite index subgroup Out�.A�/ that
is the pre-image of Out�.Aƒ/.

The action of Aut�.A�/ onH1.T IQ/ preserves the latticeH1.T IZ/, so a finite index
subgroup Aut�;Z.A�/ of Aut�.A�/ preserves the lattice Zx˚Zy1˚ � � � ˚Zyk ˚Zz1˚
� � � ˚ Zzs in V�1. Restricting ' to the image of this subgroup in Out.A�/, we therefore
get

'W Out�;Z.A�/! PGL.d C s;Z/;

where Out�;Z.A�/ has a finite index in Out.A�/. We now verify that in each case the
image of ' is virtually indicable, implying the same of Aut.A�/.

5.6.1. Case (1). We have done nearly all the work needed to obtain a map onto Z from
a finite index subgroup of Out.A�/ in this case. Indeed, V�1 has dimension 2, and the
image of the partial conjugation �xC0 is an infinite order element. It follows that the image
of Out�;Z.A�/ under ' in this case is an infinite subgroup of a virtually free group. Hence
it is virtually free itself (possibly virtually Z) and, in particular, we can obtain a map
onto Z from a finite index subgroup of Out.A�/. This proves Theorem 3 in case (1).

5.6.2. Case (2). Since the dimension of V�1 is not necessarily 2 in this case, we need to
use a more involved strategy to get a map onto Z. We claim that we can restrict everything
in the image of ' to a subspace of V�1 so that the image is free abelian.

Consider the subspaceW spanned by the vectors zi for i D 1; : : : ; s. As in Lemma 4.4,
we associate to each partial conjugation �uD , with u 2 U , a vector wD in W . First, after
multiplying by an inner automorphism, we may assume that C0 6�D. We define the vector
wD D hw1; : : : ; wsi in W by

wi D

´
1 if Ci � D,

0 otherwise.

This gives us a set of vectors … defined as

… D ¹wD j D is a u-component for some u 2 U º:

As in Lemma 4.4, we can determine whether .X; C0/ is principal by inspecting the span
of the set …. This requires more than a simple application of Lemma 4.4 since we can
only useW to (immediately) see the effect on components C1; : : : ; Cs . We need to ensure
that the effect on the “lost” components CsC1; : : : ; Cr can still be discerned.

Lemma 5.14. The vector h1; 1; : : : ; 1i is in SpanQ.…/ if and only if .X; C0/ is not prin-
cipal.

Proof. The “if” direction follows from Lemma 4.4.
As in the proof of Lemma 4.4, consider a product of partial conjugations with multi-

plier x and supports Di that are u-components for some u 2 U . We write the product as

.�xD1/
"1 � � � .�xDl /

"l :
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Up to an inner automorphism, and flipping the sign of "i , we may assume C0 6� Di , and
we then take the vector wDi 2 … defined above. For z 2 C1 [ � � � [ Cs , we have

.�xD1/
"1 � � � .�xDl /

"l .z/ D x� j̨ zx j̨ ; (1)

where

j̨ D

X
¹i jCj�Di º

"i and h˛1; : : : ; ˛si D

lX
iD1

"iwDi :

The entry j̨ records the effect on the component Cj , however we have not recorded the
effect on each component Ci for i > s. The key here is that we can use what is happening
inside ƒ to keep track of what is happening outside of ƒ too. Indeed, by Lemma 5.13,
each Ci for s < i � r can be paired up with some Cj with 1� j � s, so thatZi andZj are
in the same u-component for every u 2 U . The action of each partial conjugation �xDi is
therefore the same on Zi as it is on Zj , and we can extend the labelling j̨ from Cj to Ci .
We set ˛i D j̨ , and equation (1) extends to z 2 Cj for 1 � j � r . Note that the choice
of j does not matter: if Zj 0 is another component in ƒ which is in the same u-component
as Zi (and hence Zj ) for every u, then necessarily j̨ D j̨ 0 .

Hence, if h1; 1; : : : ; 1i 2 SpanQ.…/, then we have a product of such partial conjuga-
tions that is equal to

.�xC1[���[Cr /
n
D .�xC0/

�n

for some integer n, implying .X; C0/ is not principal.

We now complete the proof of Theorem 3.
Consider an automorphism in Aut�.A�/. It can be written asR� , where � is a product

of partial conjugations and R a product of transvections. This follows from the relations
in Lemma 2.6, by means of writing the automorphism as a product of partial conjugations,
transvections, and their inverses, and then by shuffling the partial conjugations (and their
inverses) to the right. Each partial conjugation is in Aut�.A�/, so we can assumeR is too.

Since .X; C0/ is principal, Lemma 5.14 tells us that the span of … does not include
h1; 1; : : : ; 1i. Its orthogonal complement is therefore non-trivial, and we can define V to
be the subspace

V D SpanQ.…
?
[ ¹xº/:

We claim that V (more accurately, the associated projective space) is fixed by all partial
conjugations except those with multiplier x, and is fixed by any product of transvections
in Aut�.A�/ (in particular, by R).

For any v 2 …?, by Lemma 3.2, we get '.�aD/.v/ D v for any a � x, a ¤ x and
corresponding componentsD. The vector x is sent to �x, so these partial conjugations fix
the projective space associated to V . The remaining partial conjugations are those with
multiplier in z 2 Zi for some i . If �zD is in the set B , then it is in the kernel of ' by
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construction – either it is in the kernel of p3 or it is mapped to an inner automorphism
by p3, which is then in the kernel of �� . If it is not in B , or not otherwise killed by q,
then 1 � i � s and D is a union of u-components for some u 2 U . In particular, wD 2
SpanQ.…/, so '.�aD/.v/D v for any v 2…?. As previously, if x 2D, or not, the vector x
is fixed.

As for transvections, we claim thatR acts trivially on V . ConsiderRba . By Lemma 5.8,
we have a 2 Y [ Z0 [ � � � [ Zr . If a 2 Y , then Rba acts trivially on V . So we assume
a 2 Z0 [ � � � [Zr .

We will make use of the following observation.

Lemma 5.15. Suppose Zi D ¹ziº is dominated by x. If i > 0, then either

(1) zi is in …, or

(2) there is no vertex u such that zi � u � x.

In particular, if either i D 0 or i > 0 and zi … …, then we get a finite index subgroup of
Aut.A�/ mapping onto Z.

Proof. Firstly, if i > 0 and Zi is dominated by some u 2 U , then Zi is a u-component,
so zi 2 …. This proves the first part of the lemma.

For the consequence regarding a virtual surjection onto Z, both of the given possibil-
ities imply that condition (A1) fails. Indeed, if i D 0, then Lemma 5.7 applies, while we
have case (2) when i > 0.

In light of Lemma 5.15, whenever Zi is dominated by x, we can assume that i > 0
and zi 2 …. We know from Lemma 5.3 (II) that if Rba is a transvection with a 2 Zi and
b 2Zj with j ¤ i , then a � x. Thus, unless a and b are both inZi , we must have that a is
dominated by x. Then ¹aº D Zi for some i and zi 2…. Thus if we take a vector v in…?,
the zi -entry is zero for any i for which there is a transvection Rba with a 2 Zi , b … Zi . We
therefore focus on the effect of R on the entries of v that correspond to basis vectors zi ,
where Zi is not dominated by x. The only way R can act on a 2 Zi is by sending it to an
element of hZi i, and furthermore, in order to be in Aut�.A�/,R.a/must be representable
by a word of odd length on Zi [Z�1i . Thus '.R/ sends .1 � g/ezi to

.1 � g/.�.1C g/ezi C ezi / D .1 � g/ezi

for some integer �, and so zi is fixed. It follows thatR fixes each v 2…? and acts trivially
on V .

To conclude, we can restrict to V and get a new representation

y'W Out�;Z.A�/! PGL.V /:

The image of y' will be generated by the image of the partial conjugations �xCi . The image
will therefore be a free abelian group of rank equal to dim.…?/, and this completes the
proof of Theorem 3.
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6. Splitting the standard representation when there is no SIL

As defined in Section 2.5, the standard representation of Out.A�/ is obtained by acting on
the abelianisation of A� , and we denote it by

�W Out.A�/! GL.n;Z/;

where n is equal to the number of vertices in � . We have a short exact sequence

1! IA� ! SOut0.A�/! Q! 1; (2)

whereQ is a subgroup of SL.n;Z/. The objective of this section is to show that under the
assumption of no SIL, this short exact sequence splits, proving Proposition 6.

The structure of Q is well understood: it is (after conjugating Q by a suitable per-
mutation matrix) a block triangular matrix group. This can be seen as follows.

Convention 6.1. Enumerate the vertices of � as v1; v2; : : : ; vn in such a way so that if
vi � vj , then either i � j or vi is equivalent to vj , and so that equivalence classes of
vertices are adjacent in this ordering.

Under �, transvections map to elementary matrices. We denote the image ofRvu byEvu ;
if u D vi and v D vj , then Evu D Ej i , the matrix that differs from the identity by a 1 in
the .j; i/-entry.

Since the equivalence classes form clusters in this order, we obtain a block structure
in Q. The blocks correspond to equivalence classes, and each diagonal block consists of
matrices from SL.k;Z/, where k is equal to the number of vertices in the corresponding
equivalence class. Matrices in Q are lower block triangular by choice of the ordering on
the vertices from Convention 6.1 and the fact that Q is generated by the set of elementary
matrices Ej i when vi � vj .

We now prove Proposition 6, determining that the short exact sequence (2) splits when
there is no SIL in � .

Proof of Proposition 6. Since SOut0.A�/ is generated by partial conjugations and trans-
vections and the kernel IA� is generated by the partial conjugations, we know that Q is
generated by the image of the transvections, namely

¹Evu j u � vº:

Using the matrix structure of Q, we get the following set of defining relators (see [26,
Proposition 4.11] for details) for u � v � w and x � y:

(A) ŒEvu ; E
w
v � D E

w
u if u ¤ w,

(B) ŒEvu ; E
y
x � D 1 if u ¤ y and v ¤ x,

(C) .Evu.E
u
v /
�1Evu/

4 D 1 if u ¤ v and u � v,

(D) Evu.E
u
v /
�1EvuE

u
v .E

v
u/
�1Euv if ¹u; vº is an equivalence class of size 2.
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To see the short exact sequence splits, define � WQ ! SOut0.A�/ by sending each Evu
to Rvu. We need to check the four relators hold in the image of � .

Since u � v � w, Lemma 2.4 implies Œv; w� D 1. Then direct calculation, left to the
reader, verifies the relation ŒRvu; R

w
v � D R

w
u , so (A) holds.

For (B), if u D x, then Œv; y� D 1 by Lemma 2.4, and so Rvu and Ryu commute, as
required. If u¤ x, then since also u¤ y and v¤ x, the supports ofRvu andRyx are disjoint
and do not contain the multipliers. It follows that the transvections again commute.

Finally, for both (C) and (D), u and v are in the same equivalence class in � . Either
this class has size at least 3, and so is abelian (since a non-abelian equivalence class of
size at least 3 gives a SIL), or the equivalence class has size 2. We claim that in either case
the subgroup hRvu;R

u
v i embeds into a copy of SL.n;Z/, where n is the number of vertices

in the equivalence class.
Let A denote the subgroup of A� generated by the equivalence class containing u

and v. Since Rvu and Ruv preserve the kernel of the projection map �WA� ! A obtained
by killing all vertices of � not in this class, we can define the factor map

f W hRvu; R
u
v i ! SOut0.A/

so that f .ˆ/.g/ D �.ˆ.g// for ˆ 2 hRvu; R
u
v i and g 2 A. It is clear that ˆ.g/ is in A, up

to conjugacy, and thus
f .ˆ/.g/ D ˆ.g/:

Thusˆ is in the kernel of f only ifˆ acts as an inner automorphism on A. If A is abelian,
this is not possible for non-trivial ˆ 2 hRvu; R

u
v i, so f is an embedding into

SOut0.A/ Š SL.n;Z/

as claimed. On the other hand, if A is not abelian, it must be non-abelian free of rank 2.
In this case, using the fact that � has no SIL, we must have that A� splits as a direct
product A � B . Indeed, B is generated by the vertices of � different to u or v, and if
any such vertex x was not adjacent to u and v, then we would obtain a SIL .u; v j x/.
In particular, if f .ˆ/ is inner on A, then ˆ must have been inner on A� . Thus f is an
embedding into SOut0.A/ Š SL.2;Z/.

With this claim, and since f maps Rvu and Ruv to elementary matrices in SL.n;Z/, the
relations (C) and (D) (the latter when nD 2) hold in SL.n;Z/ and hence also in hRvu;R

u
v i

as required.

Remark 6.2. We note that the short exact sequence may still split in cases when � does
have a SIL. For example, as long as � has no SIL of the form .x; y j z/ with z � x; y,
then if all its equivalence classes are abelian, the sequence will still be split. This can be
seen from the above proof, since the no SIL condition was used for three reasons. One
was in application of Lemma 2.4, which just requires the absence of the above type of
SIL; a second was in deducing that equivalence classes of size at least three are abelian;
and thirdly in the situation when we had a non-abelian equivalence class generating A.
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7. Property (T) when there is no SIL

In this section, we show that, for a graph � with no SIL, if Theorems 2 and 3 do not imply
virtual indicability, then the outer automorphism group Out.A�/ has property (T). This
results in Theorem 4.

For background material concerning property (T), we refer the reader to the book by
Bekka, de la Harpe, and Valette [2]. Some key facts regarding property (T) that we rely on
are the following:

• it passes to and from finite index subgroups [2, Theorem 1.7.1];

• it is passed to quotients [2, Theorem 1.3.4];

• it is stable under short-exact sequences [2, Proposition 1.7.6].

The following is central to our method.

Lemma 7.1. SupposeH1; : : : ;Hs are normal subgroups of G and each has property (T).
Then hH1; : : : ;Hsi has property (T).

Proof. We use induction on s, with the case s D 1 trivial. Since hH1; : : : ; Hsi=H1 is
a quotient of hH2; : : : ;Hsi, it has property (T) by induction and the fact that property (T)
passes to quotients. Stability of property (T) under short-exact sequences then implies
hH1; : : : ;Hsi has property (T).

The method to prove Theorem 4 is then as follows. We will decompose a finite index
subgroup of IA� into a direct product of subgroupsA1; : : : ;As , each generated by a subset
of partial conjugations. As � has no SIL, each Ai is abelian, and furthermore we will see
that it is invariant under the action of Q D SOut0.A�/= IA� . In particular, Q Ë Ai is
normal in Q Ë A, where A D hA1; : : : ; Asi has finite index in IA� . We will show that
for each i , the group Q Ë Ai has property (T), allowing us to apply Lemma 7.1. Then
Out.A�/ inherits property (T) from its finite index subgroup Q Ë A.

We now describe the decomposition of IA� (up to a finite index subgroup). Let X be
an equivalence class in � and C an X -component. Recall that the set PXC is defined as

PXC D ¹�
y
C 0 j y � X; C

0
D C n st.y/º:

The set PXC is a basis for a free abelian group, which we denote by AXC .
It is clear that the union of all subsets PXC as X and C vary over all equivalence

classes, and corresponding components will contain all partial conjugations and therefore
generate IA� by Proposition 2.7. However, we restrict ourselves to consider only those
sets PXC for which .X; C / is principal. By Lemma 4.5, these will generate a finite index
subgroup of IA� .

Lemma 7.2. Let X be an equivalence class in � and C an X -component. The subgroup
AXC D hP

X
C i is normal in SOut0.A�/.
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Proof. This follows from the relations in Lemma 2.6 under the assumption that there is
no SIL.

We aim to show that Q Ë AXC has property (T) when .X; C / is principal. This is done
by showing that Q Ë AXC is itself a block triangular matrix group, and, in particular, one
of those covered by criteria set out in [1, Section 4] that determine when such groups
have property (T). We now introduce the relevant notation (which differs slightly from
that of [1]).

Fix integers m1, m2 so that m1 < m2. It may help when first reading this to assume
m1 D 1; in practice, we will have eitherm1 D 1 orm1 D 0. Let V1; : : : ; Vr be a partition of
I D Œm1;m2�\Z so that for each x 2 Vi and each y 2 Vj , if i < j , then x < y. Letƒ be
a directed graph with r vertices labelled by V1; : : : ; Vr . Assume that there is an edge from
the vertex labelled Vi to the vertex labelled Vj only if i � j , and that the edge relation is
transitive: if there are an edge from Vi to Vj and another from Vj to Vk , then there is an
edge from Vi to Vk . Let ni be the size of Vi and n D m2 �m1 C 1.

We letEba , for a;b 2 I , denote the n� n elementary matrixEij , where i D bC 1�m1
and j D a C 1 �m1. (Thus if m1 D 1, then we have Eba D Eba.) Define the group Hƒ

to be the block triangular matrix generated by

¹Eba j a 2 Vi ; b 2 Vj and there is an edge from Vi to Vj º:

The group Hƒ is a block lower-triangular matrix, with i -th diagonal block corresponding
to SL.ni ;Z/, and the .i; j /-th block, for i ¤ j , being non-trivial if and only if there is an
edge from Vj to Vi .

We can identifyQDOut.A�/= IA� with a group Hƒ as follows. Takem1D 1 andm2
to be the number of vertices in � . Order the vertices of � as per Convention 6.1. Let
V1; : : : ; Vr be the equivalence classes so that if i < j , then given va 2 Vi and vb 2 Vj ,
we have a < b. To construct ƒ, take the directed graph with r vertices labelled by Vi and
add an edge from Vi to Vj whenever Vi � Vj . Note that this includes edges from each Vi
to itself.

In the following, we explain how to realise Q Ë AXC as a matrix group of this form,
starting with Q Š Hƒ. You may think of the rows/columns of a matrix in Hƒ as corres-
ponding to vertices of � . To obtain the corresponding matrix representation of Q Ë AXC ,
we add a new row/column above/in front of the existing entries. The new row/column can
be thought of, roughly, as representing C .

Lemma 7.3. Let X D Vi be an equivalence class in � , and let C be an X -component.
Construct yƒ fromƒ by adding a vertex labelled by V0 D ¹0º, and adding an edge from V0
to itself, and from V0 to any Vj where an edge from Vi terminates.

Then Q Ë AXC Š H yƒ.

Proof. The quotient map H yƒ!Hƒ ŠQ that kills the first coordinate, corresponding to
the integer 0, has kernel K isomorphic to AXC , seen as follows. The kernel is generated by
the matrices Eb0 for any b 2 Vj where there is an edge from Vi to Vj in ƒ, or equivalently
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so that Vi � Vj . The isomorphismK Š AXC comes from identifying Eb0 with �vbC 0 for each
�
vb
C 0 2 P

X
C . Both groups K and AXC are free abelian of the same rank, namely jPXC j, and

the above describes an identification of bases.
By Lemma 2.6, the action of Q on AXC agrees with the action of Hƒ on K, giving

Q Ë AXC Š H yƒ as required.

We are now ready to apply the result of [1] that gives sufficient conditions for groups
Hƒ to have property (T) in order to complete the proof of Theorem 4. These conditions
are as follows. Recall that ni is the size of Vi .

Proposition 7.4 ([1, Proposition 4.2]). Let ƒ be constructed as above. Suppose the fol-
lowing conditions hold:

(H1) for each i , there is an edge from Vi to itself,

(H2) ni ¤ 2 for each i ,

(H3) whenever ni D nj D 1 and there is an edge from Vi to Vj , with i ¤ j , there are
a third vertex Vk and edges from Vi to Vk and from Vk to Vj .

Then Hƒ has property (T).

Proof of Theorem 4. Assume that � has no SIL and that conditions (A1) and (A20) hold.
Let V1; : : : ; Vr be the equivalence classes of � . Note that property (A1) implies each
equivalence class of � has size not equal to 2.

Construct the graph ƒ from � as above. Condition (H1) holds in ƒ by construction,
while condition (A1) implies that (H2) and (H3) also hold.

Let X D Vi and C be an X -component, chosen so that .X; C / is principal. Now
construct yƒ as described in Lemma 7.3. By construction, yƒ inherits both (H1) and (H2)
fromƒ. For (H3), if there is an edge from V0 to Vj , for j ¤ i , in yƒ, and nj D 1, then there
are also edges from V0 to Vi and from Vi to Vj . This is sufficient since condition (A20)
prevents us from having ni D 1. Proposition 7.4 therefore implies that H yƒ, and hence
Q Ë AXC by Lemma 7.3, has property (T).

To complete the proof, we apply Lemmas 7.1 and 4.5. Denote by A the subgroup
of IA� generated by the sets AXC when .X; C / is principal. By Lemma 7.1, we get that
Q ËA has property (T). Since A has finite index in IA� by Lemma 4.5, so doesQ ËA in
Out.A�/, and the result follows.
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