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On commutator length in free groups

Laurent Bartholdi, Sergei O. Ivanov, and Danil Fialkovski

Abstract. Let F be a free group. We present for arbitrary g 2N a LOGSPACE (and thus polynomial
time) algorithm that determines whether a given w 2 F is a product of at most g commutators;
and more generally, an algorithm that determines, given w 2 F , the minimal g such that w may
be written as a product of g commutators (and returns 1 if no such g exists). This algorithm
also returns words x1; y1; : : : ; xg ; yg such that w D Œx1; y1� : : : Œxg ; yg �. These algorithms are
also efficient in practice. Using them, we produce the first example of a word in the free group
whose commutator length decreases under taking a square. This disproves in a very strong sense
a conjecture by Bardakov.

1. Introduction

Let F be a free group and ŒF; F � its derived subgroup; so every element w 2 ŒF; F �
is a product of commutators Œu; v� D u�1v�1uv. The minimal number of terms in such
a product is called the commutator length of w. This “norm” k � k on ŒF; F � was the
subject of much investigation, already by Burnside [2, §238, p. 319, Example 7], but is still
poorly understood, in particular in relation to the usual word length jwj. One surprising
phenomenon is that kwmk can be smaller than m � kwk; for F D hx; yi, we have

kŒx; y�3k � 2 since Œx; y�3 D Œx�1yx; x�2yxy�1� � Œyxy�1; y2�

(and in fact equals 2; more generally, kŒx; y�mk D bm
2
c C 1, see [5, Example 2.6]. In con-

trast, stable commutator length, the limit scl.w/ D limm!1
kwmk
m

, is much better under-
stood, see [3]).

1.1. Algorithms

The first algorithm for computing commutator length was constructed by Goldstein and
Turner [7]; see also [5, 12]. The method is fundamentally topological: construct a graph
with w labeled along a cycle, and determine the minimal genus of a topological surface
on which the graph embeds. Given a graph, it is straightforward to compute the minimal
genus by linear algebra, but a large number of graphs need to be considered.
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Bardakov suggests a more algebraic algorithm in [1], see Section 2.1, which trans-
lates the problem into a calculation in the symmetric group Sjwj. He proves that kwmk
increases at least linearly with m, giving a lower bound based on a quasi-homomorphism,
and conjectures kwmk � mC1

2
kwk for all w, m. Note that from [14], we have kwmk � 2

for all m � 2 and w ¤ 1.
Yet a different algorithm is proposed by Calegari [3, p. 96sqq], based on linear pro-

gramming. In fact, stable commutator length can be computed as the solution of a linear
program of polynomial size in jwj, and integer solutions lead to commutator length.
Integer linear programming is much more computationally intensive than real linear pro-
gramming, but is nevertheless feasible, and has been implemented by Walker, as the
program SCALLOP [15].

Writing group conjugates as wg D g�1wg, our main result is the following.

Theorem A. Consider a non-trivial wordw 2 ŒF;F � in a free group F D hSi. Then there
exists a factorization of w without cancellations,

w D w1a
�1w2b

�1w3aw4bw5;

with a; b 2 S [ S�1 and kw1w4w3w2w5k D kwk � 1. Furthermore, we have

w D Œ.w4w3a/
w�11 ; .bw�12 w�13 /w

�1
4 w�11 � � .w1w4w3w2w5/:

Recall that a decision problem is in LOGSPACE if it can be solved by a Turing machine
with read-only input and one auxiliary read-write tape initially empty, with the guarantee
that its read-write head remains within O.log n/ steps of the origin, for an input word
of length n. Its number of total configurations is bounded by a polynomial in n, so such
a machine stops after polynomial time if it ever stops. Lipton and Zalcstein prove in [11]
that the word problem in free groups is in LOGSPACE. From Theorem A, we deduce the
following corollary.

Corollary B. Let a free group F and an integer g 2N be fixed. Then the problem “Given
w 2 F , is kwk � g?” is in LOGSPACE.

Let F be a free group. We call F -RAM machines the extension of the computational
model of RAM machines with finitely many registers holding elements of F , which can
be left- and right-multiplied by generators and tested on their left-most and right-most
letter in constant time.

Corollary C. Let a free group F be fixed. Then there is an algorithm for an F -RAM
machine that, given w 2 F , determines kwk in time O.jwj4kwk/. Furthermore, this algo-
rithm returns a representation of w as a product of kwk commutators.

An algorithm by Wicks [16] determines whether a word w is a commutator by the
criterion: “some cyclic permutation of w must have the form w�11 w�12 w�13 w1w2w3 as
a product without cancellation”. This leads to an O.jwj3/-time algorithm by searching
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for the possible starting positions of w1, w2, w3. We give, in Section 2.4, an algorithm
that, assuming constant-time arithmetic operations on integers, improves the average time
complexity to O.jwj2/.

Given a solution w D Œu1; v1� : : : Œug ; vg � to the problem of expressing w as a product
of g commutators, numerous other solutions may be derived by elementary transforma-
tions, such as “replace ui by viui”. Viewing a solution as a homomorphism †g;1 ! F

with †g;1 D hu1; v1; : : : ; ug ; vg ; c j Œu1; v1� : : : Œug ; vg � D ci the fundamental group of
a surface of genus g with one boundary component, we see that the mapping class group of
that surface (which coincides with the outer automorphism group of †g;1) naturally acts
by precomposition on the space of solutions. Culler proves in [5, Theorem 4.1] that there
are finitely many orbits of solutions under the mapping class group action. We believe that
our algorithm produces at least one solution in every orbit.

For example, running our algorithm on w D x�1y�1x2yx�1 with g D 1 produces,
with the convention x�1 D X and y�1 D Y , the solutions

w D Œx; yX� D Œxx; yX� D ŒYx; YX� D Œyx;XX� D Œyx;X�

while running it on w D x�1x�1y�1x�1yxy�1x2y with g D 2 produces the solutions

w D ŒY YXyx; YxYxyy� � Œy; xy� D ŒY YXyx; YxYxyy� � Œy; Yxy�

D ŒYxYXyx; YxxYxyXy� � ŒXy; y� D ŒYxYXyx; YxxYxyXy� � ŒYXy; y�

D ŒYxyx; YxxyxYXy� � Œy; X� D Œx; Yxyx� � Œx; y� D ŒYXyxYx; xyXYxy� � Œy; x�

D ŒyxYx; xyxyXY � � ŒY; X� D Œxx; xyXYxy� � Œy; x� D ŒXyxYxx; yyXYx� � Œx; Y �

D Œxx; yXYxy� � Œy; x� D ŒXYxyxx;XYxyx� � Œx; y� D Œx; XYxyx� � Œx; y�

D ŒXXyxYxxx;XyXyXYxx� � Œx; Yx� D ŒXXyxYxxx;XyXyXYxx� � Œx; XYx�

D Œxx;XyXYxy� � Œy; x� D ŒXXyxx; x� � ŒYx; xy� D ŒXXyxx; x� � Œxx; xy�

D ŒXXyxx; x� � Œxx; y� D ŒXXyxx; x� � Œxx;Xy�

D ŒXXYxyxx;XXYxx� � ŒYx; xy� D ŒXXYxyxx;XXYxx� � Œxx; xy�

D ŒXXYxyxx;XXYxx� � Œxx; y� D ŒXXYxyxx;XXYxx� � Œxx;Xy�

D ŒXXYxxyxx;XXYxyXYXyxx� � Œx; yx�

D ŒXXYxxyxx;XXYxyXYXyxx� � Œx; Xyx�

D ŒXXYxxyxx;XXXYXyxx� � Œx; yx� D ŒXXYxxyxx;XXXYXyxx� � Œx; Xyx�:

1.2. Non-monotonicity

We already noted that kwmk < m � kwk can occur, for example with w D Œx; y�. Barda-
kov’s conjecture “kwmk � mC1

2
kwk” is refuted from general results on solutions of equa-

tions in free groups: Kharlampovich and Myasnikov deduce [9, Theorem 3] the existence
of a sequence .wn/ in ŒF;F �with kwnk!1 and kw2nk bounded; equivalently, the infinite
product F1 contains an element of order 2 in its abelianization.
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These results are however fundamentally not constructive, and explicit elements with
kw2k < kwk had eluded discovery; see [6, Question 2].

Theorem D. There exists an element w 2 ŒF; F � of length 64, see (3), with kwk D 3 and
kw2k D 2.

We obtain this result by running our algorithm on an enumeration of the solutions to
a quadratic equation, see Section 3. Some tricks and techniques were necessary to render
such a computation (and discovery) feasible, which we record in Section 2.4.

2. A commutator length algorithm

We begin by recalling standard notation. Fix a free group F D hx1; : : : ; xri. Its elements
are represented as words over the letters x1; : : : ;xr ;x�11 ; : : : ;x�1r ; words may be simplified
by removing a pair of contiguous letters aa�1 as often as possible, and two words are
deemed equal if they simplify to the same word, called freely reduced. A word is called
cyclically reduced if furthermore its first and last letters do not cancel. We denote by wŒi�
the i th letter of a wordw, numbered from 1 to jwj; and for j � i � 1, we denote bywŒi W j �
the possibly-empty subword wŒi�wŒi C 1� : : : wŒj �. The following is our main algorithm
computing commutator length; some improvements will be given in Section 2.4.

Algorithm 1: Test recursively whether kwk � g

1 cyclically reduce w;
2 if g D 0 then
3 return w D 1

4 for 1 � i < j < k < ` � jwj do
5 if wŒi� ¤ wŒk��1 or wŒj � ¤ wŒ`��1 then
6 continue

7 if kwŒ1 W i � 1�wŒk C 1 W ` � 1�wŒj C 1 W k � 1�wŒi C 1 W j � 1�
wŒ`C 1 W jwj�k � g � 1 then

8 return true

9 return false

2.1. Bardakov’s theorem

Let us denote by Sn the symmetric group on n elements. We compose elements of Sn
right-to-left, as functions. Every � 2 Sn induces a partition of ¹1; : : : ; nº into orbits. Let
.1; : : : ; n/ denote the cyclic permutation of ¹1; : : : ; nº, and for a permutation � 2 Sn write

v.�/ WD number of orbits of .1; : : : ; n/�:
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Let nowwDw1 : : :wn be a word (not necessarily reduced) over an alphabet ¹x˙11 ; : : : ;

x˙1r º. A pairing on the wordw is an involution � 2Sn such that a�.i/D a�1i for all i . Note
that a pairing exists if and only if w represents an element of the commutator subgroup.

Theorem 2.1 ([1, Theorem 1]). Consider a word w representing a non-trivial element
also written w of the derived subgroup. Then

kwk D min
� pairing on w

�1 � v.�/
2

C
n

4

�
:

Remark 2.2. Bardakov proves his result only in the case of cyclically reduced words, but
does not use this in the proof. He also overlooks the restriction that w be non-trivial.

2.2. Induced permutations

Let us consider more generally the symmetric group SX on a set X , and an injective map
˛WY !X . There is a renormalization map SX ! SY induced by ˛, defined as follows: for
� 2SX and y 2 Y , letm.y/� 1 be the least positive integer such that �m.y/.˛.y//2 ˛.Y /,
and set

�˛.y/ WD ˛
�1.�m.y/.˛.y///:

This is the permutation of Y obtained from the disjoint cycle representation of � by erasing
all elements of X n ˛.Y / and replacing every element of ˛.Y / by its ˛-preimage.

Note that the renormalization map is not quite a homomorphism; nevertheless, we
have the following assertion.

Lemma 2.3. Let ˛WY ! X be an injective map, and let � 2 SX be such that �.˛.Y // D
˛.Y /, so � D � 0� 00 with � 0 fixing ˛.Y / and � 00 fixing X n ˛.Y /. Then for all � 2 SX , we
have

.��/˛ D .��
0/˛�˛:

Proof. We first note � 00˛ D ˛
�1�˛ D �˛ . Consider then y 2 Y , write x WD ˛.y/, and let

m > 0 be minimal such that .��/m.x/ 2 ˛.Y /; thus we have .��/˛.y/ D ˛..��/m.x//.
Now �.x/ D � 00.x/ by assumption, while zi WD .��/i .x/ … ˛.Y / for i < m, so �.zi / D
� 0.zi /; thus .��/i .x/ D .�� 0/i .� 00.x//, and m is also minimal such that

.�� 0/m.� 00.x// 2 ˛.Y /:

Lemma 2.4. Let ˛W Y ! X be an injective map and consider � 2 SX . Then the map
O 7! ˛�1.O/ is a bijection between the orbits of � on X that intersect ˛.Y / and those
of �˛ on Y . In particular, if ˛.Y / intersects every orbit of � , then � and �˛ have the same
number of orbits.

Proof. LetO be a � -orbit ofX , which by assumption contains ˛.y/DW x for some y 2 Y .
It suffices to prove that ˛�1.O/ is a �˛-orbit. Now O D ¹� i .x/ j i � 0º; let 0 D m0 <
m1 < � � � be all the indicesmi such that �mi .x/ 2 ˛.Y /, soO \ ˛.Y /D ¹�mi .x/ j i � 0º,
and �mi .x/ D ˛.� i˛.y//, so ˛�1.O/ D ¹� i˛.y/ j i � 0º.
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Consider now 1 � i < j < k < ` � n, and denote by ˛ the injective map

¹1; : : : ; n � 4º ! ¹1; : : : ; nº

defined by

1; : : : ; n � 4 7! 1; : : : ; i � 1; k C 1; : : : ; ` � 1; j C 1; : : : ; k � 1; i C 1; : : : ; j � 1;

`C 1; : : : ; n:

Proposition 2.5. Assume that n � 5 and let � 2 Sn map i , j , k, ` to k, `, i , j , namely its
cycle decomposition contains the cycles .i; k/ and .j; `/. Then v.�/ D v.�˛/.

Proof. Write � D .1; : : : ; n/.i; k/.j; `/ and � 00 D .i; k/.j; `/� , the restriction of � to the
range of ˛, so �� 00 D .1; : : : ; n/� . An easy calculation checks �˛ D .1; : : : ; n � 4/. We
note that the image of ˛ intersects all orbits of .1; : : : ; n/� : indeed, it suffices to show that
no orbit is contained in ¹i; j; k; `º. Now the images of i , j , k, ` are k C 1, `C 1, i C 1,
j C 1 (mod n), respectively, so this may happen only if i C 1D j , j C 1D k, kC 1D `,
`C 1 D i � n and hence n D 4. We thus have

v.�/ D number of orbits of .1; : : : ; n/� Lemma 2.4
D number of orbits of ..1; : : : ; n/�/˛

D number of orbits of .�� 00/˛
Lemma 2.3
D number of orbits of �˛�˛

D number of orbits of .1; : : : ; n � 4/�˛ D v.�˛/:

2.3. Proof of Theorem A

We recall our main result.

Theorem 2.6. Consider a non-trivial word w 2 ŒF; F �. Then there exists a factorization
of w without cancellations,

w D w1a
�1w2b

�1w3aw4bw5; with a, b generators or their inverses

and kw1w4w3w2w5k D kwk � 1. Furthermore, we have

w D Œ.w4w3a/
w�11 ; .bw�12 w�13 /w

�1
4 w�11 � � .w1w4w3w2w5/:

Proof. The last equality is directly checked by expanding the commutator; therefore,

kw1w4w3w2w5k � kwk � 1;

and it remains to prove the reverse inequality. Write n D jwj, and let � 2 Sn be a pairing
on w maximizing v.�/. If n D 4, then w1 D w2 D w3 D w4 D w5 D 1 and the result
follows, so we may assume n � 5. Say two transpositions .i; k/, .j; `/ with i < k, j < `
are linked if the intervals Œi; k� and Œj; `� are neither nested nor disjoint. If all transpositions
in the cycle decomposition of � are unlinked, then w freely reduces to the trivial word;
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we may thus assume that there are linked transpositions .i; k/; .j; `/ in � , ordered so that
i < j < k < `. By Proposition 2.5 and twice by Theorem 2.1, we have

kw1w4w3w2w5k �
2 � 2v.�˛/C n � 4

4
D
2 � 2v.�/C n � 4

4

D
2 � 2v.�/C n

4
� 1 D kwk � 1:

Proof of Corollary B. We unroll g times the recursion in Algorithm 1, arriving at an iter-
ative algorithm with 4g nested loops. We implement it using a Turing machine whose
read-write storage contains 4g pointers in the range ¹1; : : : ; nº. Using these 4g pointers
i1; j1; k1; `1; : : : ; ig ; jg ; kg ; `g , it is possible with O.logn/ memory to compute the func-
tion mapping i 2 ¹1; : : : ; nº to the i th letter of the word obtained at the last stage of the
recursion. We then apply the Lipton–Zalcstein algorithm to check in LOGSPACE whether
this word is trivial.

Algorithm 2: factorization.w; g/
Data: A word w and an integer g � 0
Result: A list of pairs of words expressing w as a product of g commutators, or

fail if no such factorization exists
1 cyclically reduce w;
2 if g D 0 then
3 return fail if w ¤ 1, else ./

4 for 1 � i < j < k < ` � jwj do
5 if wŒi� ¤ wŒk��1 or wŒj � ¤ wŒ`��1 then
6 continue

7 .w1; w2; w3; w4; w5/ .wŒ1 W i � 1�; wŒi C 1 W j � 1�; wŒj C 1 W k � 1�,
wŒk C 1 W ` � 1�; wŒ`C 1 W jwj�/;

8 F  factorization.w1w4w3w2w5; g � 1/;
9 if F ¤ fail then

10 return ..w1w4w3wŒk�w�11 ; w1w4wŒ`�w
�1
2 w�13 w�14 w�11 /; F /

11 return fail

Proof of Corollary C. To compute the commutator length ofw, we apply Algorithm 1 first
with gD 0, then gD 1, then gD 2 etc. till it succeeds. In the RAM model, it is possible to
keep track of w1w4w3w2w5 as a linked list of letters, and at each elementary step of the
algorithm (increase i; j;k or `) a bounded number of operations need be executed to adjust
the product w1w4w3w2w5, including its free cancellations. Therefore, the complexity of
the algorithm, at each step of the recursion, is controlled by the loop over i < j < k < `,
with time complexity O.jwj4/.

Furthermore, Algorithm 1 may be modified in a straightforward manner to return an
expression of w as a product of commutators, see Algorithm 2.
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2.4. Implementation

It is possible to speed up the algorithm a little bit, and this was crucial for the computations
in the next section. Let us concentrate on the case kwk D 1, namely determine whether w
is itself a commutator. A naive implementation, looping over all positions of a�1, b�1, a, b
and testing whether w1w4w3w2w5 freely reduces to the trivial word, requires O.jwj5/

steps: four factors jwj for the loop and one for the reduction of w1w4w3w2w5.
This time can be reduced to O.jwj3/ assuming large machine integers, and even

to O.jwj2/ on average, as follows: firstly, rather than keeping track of words w1, w2,
w3, w4, w5, we store 2 � 2 integer matrices faithfully representing them. If F has rank 2,
we can even choose as images of generators the transvections . 1 20 1 / and . 1 02 1 /. We update
the words wi at each step of the algorithm by elementary row and column operations.
In this manner, words of length up to 64 may faithfully be stored into four 64-bit integers.
Next, we note that we may loop first on the positions of a�1 and a; and that, if w is a com-
mutator, then the words w�13 bw�12 and w4bw5w1 are conjugates of each other. Knowing
their matrix representations, we can immediately rule out a pair of a-positions if these
matrices have different traces, a constant-time test that eliminates almost all candidates
(note that integer overflow is not an issue here, since we are looking for cheap ways of
ruling out some candidates).

For those that survive the test, rather than considering the O.jwj2/ pairs of b-positions,
we could cyclically reduce these words and check whether they are cyclic permutations of
each other, using for example the Knuth–Morris–Pratt algorithm [10]; but this case occurs
so seldom in practice that it was not worth implementing.

In even more detail: our implementation loops over i , k, j , ` in that order, and
maintains matrices M23451, M23, M451, M32, M514 representing the respective products
w2b

�1w3aw4bw5w1, w2b�1w3, w4bw5w1, w3w2, w5w1w4. At each elementary step
(increase one of i , j , k, `), one of these matrices is to be multiplied on the left or on the
right by a generator. For each choice of i , k, the implementation checks whether M451

and M23 have same trace (recall that in SL2.Z/ the trace of a matrix equals the trace of
its inverse), before looping on j and `.

3. Quadratic equations and Theorem D

Consider the equation x21x
2
2x
2
3x
2
4 D 1 in a free group F . A solution .x1; x2; x3; x4/ is the

same thing as a homomorphism �W S ! F with S D hx1; x2; x3; x4 j x21x
2
2x
2
3x
2
4 D 1i.

According to [13], the set ˆ of solutions � to the equation is characterized as follows:
let F2 denote the free group of rank 2. A literal solution �WS ! F2 is a homomorphism
sending each generator to a word of length� 1. The mapping class group of S is the group
of automorphisms of S that preserve ¹x1ºS [ � � � [ ¹x4ºS ; equivalently, automorphisms
of the free group hx1; : : : ; x4i that preserve the conjugacy class of x21x

2
2x
2
3x
2
4 . Then

ˆ D ¹� ı � ı ˛ j ˛ 2 MCG.S/; � literal; �WF2 ! F any homomorphismº: (1)
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3.1. The mapping class group of the non-orientable surface of genus 2

In order to explore the solutions of the equation

x21x
2
2x
2
3x
2
4 D 1;

it is helpful to also consider a different presentation of S , in which generators of MCG.S/
are easier to write. We use

S D hs1; t1; s2; t2 j s1t1s
�1
1 t�11 s2t2s

�1
2 t2i:

The isomorphism is given for instance by

.s1; t1; s2; t2/ D .x2x
2
3x4; x

�1
3 x�12 ; x3x4x2; x3x4x1x2/:

Using these generators, we have the following mapping classes, in which unlisted gener-
ators are fixed:

˛1W t1 7! t1s
�1
1 ; ˇ1W s1 7! s1t1; ˇ2W s2 7! s2t2;


1W

8̂̂<̂
:̂
s1 7! s1u;

t1 7! u�1t1u;

s2 7! u�1s2

for u D s2t�12 s�12 t1;

�3W

8̂̂̂̂
<̂
ˆ̂̂:
s1 7! s1v;

t1 7! v�1t1v;

s2 7! v�1t1s2;

t2 7! t�11 s2t2s
�2
2 t1s2

for v D s22 t
�1
2 s2t

�1
2 s�12 t1;

and by [4, Appendix], these elements generate MCG.S/.
We add for good measure the automorphism

ıW x1 7! x2 7! x3 7! x4 7! x1

in the original generators, and thus consider as generating set for MCG.S/ the collection

† D ¹˛˙11 ; ˇ˙11 ; ˇ˙12 ; 
˙11 ; �˙13 ; ı; ı2; ı3º: (2)

In the generating set ¹s1; t1; s2; t2º, there are three maximal literal solutions ��1, �0, �1
given for i D �1; 0; 1 by

�i W

8̂̂̂̂
<̂
ˆ̂̂:
s1 7! x;

t1 7! xi ;

s2 7! y;

t2 7! 1:
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3.2. Proof of Theorem D

The connection to Theorem D is the following: given a solution .x1; : : : ; x4/ 2 F 4 to
x21x

2
2x
2
3x
2
4 D 1, consider the element w D x1x2x3x4. Then

w2 D .x1x2x3x4/
2.x21x

2
2x
2
3x
2
4/
�1

D .Œx�14 x�13 ; x�13 x�12 x�11 � � Œx�12 x�11 ; x2�/
x�12 x�11 ;

so for every solution .x1; x2; x3; x4/, the element w2 D .x1x2x3x4/
2 has commutator

length at most 2. On the other hand, the first claim of Theorem D will follow by construct-
ing a sufficiently complicated solution.

We computed a finite set of solutions from the set ˆ defined in (1) by restricting to ˛
that are products of at most 5 of the generators from † given in (2), to � 2 ¹��1; �0; �1º,
toF D F2 and to �D 1. We computed, for each solution, the imagew of x1x2x3x4 (which
is conjugate to t2), and sorted them in increasing order of length. We finally computed the
commutator length of each of these solutions (see the next section), and after examining
about 2500 candidates arrived at a solution

w Dx�2yxy2x�2yxyx�1y�1xy2x�1y2xy�1x�1y�1x2y�2x�1y�1

� xy�2xy�2x�1y�1xy�2x�1yxy�1x�1y�1x2y�1x�1y�1xy2

� x�1yxy2x�2yxy (3)

with commutator length 3. It was produced by �D �1 and ˛ D ��13 ı ˛1 ı �
�1
3 ı ı

2 ı ��13 .
Dozens of other solutions appeared, but no shorter one.

Algorithm 1, with the improvements described in Section 2.4, could test words of
length comparable to w in about a second. Words of length above 100 could be routinely
tested. For extra safety and to protect against hidden bugs, the commutator length ofw was
also computed using Walker’s program SCALLOP [15]. With the options “-CYCLIC-C”
and the GUROBI solver [8] as backend, it certified kwk D 3 for the word w from (3) in
a bit more than one hour.

3.3. Open problems

There does not seem to be much hope to obtain, by brute force, words w with kwk � 4
and kw2k D 2. However, the construction of w in (3) in the form �1.˛.x1x2x3x4// for
a mapping class ˛ that is a product of 5 generators raises the following problem.

Question 3.1. Does there exist a mapping class ˛ 2 MCG.S/ with

k�1.˛
n.x1x2x3x4//k � n

for all n 2 N?

This would provide a systematic collection of solutions, and remove much of the non-
constructivity of the implicit function theorem in free groups.
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It is as of yet unknown whether commutator length can decrease upon taking cubes;
more importantly, whether there exists a sequence .wn/ in F with kwnk ! 1 and kw3nk
bounded, or equivalently whether there is 3-torsion in the abelianization of F1. Fol-
lowing the same idea, one would want arbitrarily complicated solutions to the equation
x31x

3
2x
3
3x
3
4 D 1, a goal that seems out of reach now.

Danny Calegari suggested a variant of the question that may be more tractable: “can
one find w with k3wk < kwk?”. Here km � wk is the minimal number of commuta-
tors required to express a product of m conjugates of w, and is trivially at most kwmk.
A sequence .wn/ with kwnk ! 1 and k3wnk bounded would likewise imply the exis-
tence of 3-torsion in H1.F1/.
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