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Inclusions of C �-algebras arising from
fixed-point algebras

Siegfried Echterhoff and Mikael Rørdam

Abstract. We examine inclusions of C�-algebras of the form AH � A Ìr G, where G and H are
groups acting on a unital simple C�-algebra A by outer automorphisms and H is finite. It follows
from a theorem of Izumi that AH � A is C�-irreducible, in the sense that all intermediate C�-
algebras are simple. We show that AH � A Ìr G is C�-irreducible for all G and H as above
if and only if G and H have trivial intersection in the outer automorphisms of A, and we give
a Galois type classification of all intermediate C�-algebras in the case when H is abelian and the
two actions of G and H on A commute. We illustrate these results with examples of outer group
actions on the irrational rotation C�-algebras. We exhibit, among other examples, C�-irreducible
inclusions of AF-algebras that have intermediate C�-algebras that are not AF-algebras; in fact, the
irrational rotation C�-algebra appears as an intermediate C�-algebra.

1. Introduction

Inclusions of unital simple C �-algebras with the property that all intermediate C �-alge-
bras are simple were characterized and labeled C �-irreducible in the recent paper [13] by
the second named author. A well-known and classic result of Kishimoto [11] states that
whenever a group G acts by outer automorphisms on a simple C �-algebra A, then the
reduced crossed product A Ìr G is simple as well. It follows easily from the proof of this
theorem that the inclusion A � A Ìr G is C �-irreducible, when A in addition is unital,
cf. [13, Theorem 5.8]. Moreover, Izumi [10, Corollary 6.6] in the case of finite G, and
Cameron and Smith [4, Theorem 3.5] in the general case established a Galois correspon-
dence between intermediate C �-algebras A � D � A Ìr G and subgroups L of G, via
L 7! D D A Ìr L.

It was observed by Rosenberg [14] that if H is any finite group acting (outer or not)
on any C �-algebra A, then AH is isomorphic to a hereditary sub-C �-algebra of A ÌH .
In particular, if A is simple and the action ofH on A is by outer automorphisms, then AH

is simple. A result of Izumi [10, Corollary 6.6] shows that the inclusion AH � A then is
C �-irreducible and that all intermediate algebras are of the form AH � AL � A for sub-
groups L of H . This mirrors the situation of crossed products by finite groups, and Izumi
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indeed directly relates the fixed-point algebra inclusion to the corresponding crossed-
product inclusion via a version of Jones basic construction (see [10, Corollary 3.12]).

Bisch and Haagerup considered in their paper [2] subfactors of the form PH � P ÌG
arising from outer actions of two finite groupsH andG on a II1-factor P . They show that
certain properties of the resulting subfactors (finite depth, respectively, amenability) are
precisely mirrored by properties of the subgroup of Out.P / generated by H and G. They
also show that the inclusion PH � P ÌG is irreducible if and only if G and H intersect
trivially in Out.P /.

Specifically, as stated in the abstract, we prove in this paper that if ˛ and ˇ are actions
of groups G and H on a unital simple C �-algebra A, and if H is finite, then the inclusion
AH � A Ìr G is C �-irreducible if and only if ˛s ı ˇt is outer for all .s; t/ 2 G � H
with .s; t/ ¤ .eG ; eH /. This condition is an exact translation to the realm of C �-algebras
of the Bisch–Haagerup condition ensuring irreducibility in the subfactor case. In the case
where H is abelian and the two actions ˛ and ˇ commute, we further establish a Galois
correspondence between intermediate C �-algebras of the inclusion AH � A Ìr G and
subgroups of yH � G, where yH denotes the Pontryagin dual of H . Clearly, A itself is an
intermediate C �-algebra of this inclusion.

We apply our results to some well-known outer actions of finite and infinite cyclic
groups on the irrational rotation C �-algebra A� . There is a canonical (outer) action of the
group SL.2;Z/ on A� . It is known that Z2, Z3, Z4 and Z6 are finite cyclic subgroups of
SL.2;Z/, and in fact the only ones, up to conjugacy. The corresponding actions of these
finite cyclic groups onA� were studied in [8], and it was shown therein, that the fixed-point
algebra and the crossed product of A� by each of these groups gives rise to a simple AF-
algebra. We use this, and our main result stated above, to show that if F1 and F2 are (cer-
tain) combinations of the groups Z2, Z3 and Z4, then AF1

�
� A� Ì F2 is a C �-irreducible

inclusion of simple AF-algebras admitting a non-AF intermediateC �-algebra, namelyA� .
This answers in the negative Question 6.11 from [13]. We also study several interesting
examples of C �-irreducible inclusions which involve actions of the integer group Z.

The paper is organized as follows. In Section 2, we collect some well-known and some
new results about outer actions of groups on C �-algebras. In Section 3, we prove our main
result on C �-irreducibility of inclusions of the form AH � A Ìr G, and in Section 4, we
establish the Galois correspondence for the intermediate subalgebras of these inclusions
(under the assumptions stated above). Finally, in Section 5, we provide examples of our
main results relating to actions on the irrational rotation C �-algebras.

2. Outer actions on fixed-point algebras

In this section, we derive some preliminary results on outer actions of a discrete group G
on a C �-algebra A. The C �-algebra A may or may not be unital, and if it is not unital, we
shall consider its multiplier algebraM.A/. For a unital C �-algebra A, we let U.A/ denote
its group of unitary elements.
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We shall repeatedly use the classic result by Kishimoto from [11, Theorem 3.1] men-
tioned in the introduction that if ˛WG!Aut.A/ is an action of a discrete groupG by outer
automorphisms on a simple C �-algebra A, then the reduced crossed product A Ì˛;r G is
simple as well. We shall often write A Ì˛ G instead of A Ì˛;r G if G is known to be
amenable (in particular, if G is abelian or finite), since then the full and reduced crossed
products coincide. Also, we may writeAÌr G instead ofAÌ˛;r G if the action ˛ is under-
stood. Recall that if G is discrete, there is always a canonical inclusion A � A Ì˛;r G
together with a canonical unitary representation uWG ! UM.A Ì˛;r G/ implementing
the action ˛, i.e., ˛g D Adug for g 2 G. The algebraic crossed product

A Ì˛;alg G WD
°X
g2G

agug W ag 2 A; ag D 0 for all but finitely many g
±

becomes a dense subalgebra of A Ì˛;r G, and the two algebras coincide if G is finite.
Recall that an action ˛ is outer if no ˛g is inner, for g ¤ e, that is ˛g ¤ Ad v for all

unitaries v 2 M.A/. On the other extreme, if the action ˛WG ! Aut.A/ is implemented
by a unitary representation vWG! UM.A/ such that ˛g D Advg , for all g 2 G, we have

A Ì˛;r G Š A Ìid;r G Š A˝ C
�
r .G/;

where the first isomorphism is the extension of the map

A Ì˛;alg G ! A Ìid;alg GW agug 7! .agvg/ug :

We use these results to prove

Lemma 2.1. Let ˛W G ! Aut.A/ be an action of a discrete group on a simple C �-
algebra A. Then the following are equivalent:

(i) The action ˛ is outer.

(ii) For all subgroups H of G, the crossed product A Ì˛;r H is simple.

(iii) For all (finite or infinite) cyclic subgroups Cg WD hgi of G, the crossed product
A Ì˛ Cg is simple.

Proof. The implication (i)) (ii) is a direct consequence of Kishimoto’s theorem, since
outerness of ˛ implies outerness of the restriction of ˛ to any subgroup of G. The impli-
cation (ii)) (iii) is trivial. Thus it suffices to prove (iii)) (i).

So assume that (iii) holds for all g 2 G. If ˛ is not outer, there exists an element
e ¤ g 2 G such that ˛g.a/ D Ad u.a/ D uau� for some unitary element u 2 M.A/.
Let Cg be the cyclic subgroup of G generated by g. Suppose first that g has infinite
order. Since ˛gn D Ad un for all n 2 Z, it follows that the restriction of ˛ to Cg Š Z is
implemented by the unitary representation n 7! un 2 UM.A/, and hence we get

A Ì˛ Cg Š A˝ C �.Cg/ Š A˝ C �.Z/ Š A˝ C.T /;

which is certainly not simple.
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On the other hand, if Cg is cyclic of order m 2 N, then Adum D ˛e D idA. It follows
from simplicity ofA thatA0 \M.A/DC, so there must exists ! 2 T such that um Dw1.
Now, if � 2 T is an m-th root of xw, we see that gk 7! .�u/k 2 UM.A/ implements
a homomorphism zuWCg ! UM.A/ such that ˛jCg D Ad zu, and hence

A Ì˛ Cg Š A˝ C �.Cg/ Š A˝Cm;

which is not simple.

Remark 2.2. In general, outerness for an action ˛WG!Aut.A/ on a simpleC �-algebraA
(unital or not) is not equivalent to A Ì˛;r G being simple, even if G is finite and abelian
and A is simple and unital. To construct a counterexample, let H be any finite abelian
group. Let G WD H � yH be the direct product of H with its dual group yH . For each pair
.g; x/ 2 H � yH , let V.g;x/ be the unitary operator on `2.H/ defined by

.V.g;x/�/.h/ D hh; xi�.g
�1h/;

where h � ; � iWH � yH ! T denotes the canonical pairing betweenH and yH . A short com-
putation then shows that V WH � yH ! U.`2.H// is a projective representation such that

V.g1;x1/V.g2;x2/ D hg1; x2iV.g1g2;x1x2/

for all .g1; x1/; .g2; x2/ 2H � yH . Thus, V is an !-representation of the Heisenberg-type
2-cocycle !WH � yH !T defined by !..g1;x1/; .g2;x2//D hg1;x2i. LetC �.H � yH;!/
denote the twisted group algebra of H � yH with respect to the cocycle ! (see, e.g., [5,
Section 2.8.6] for the construction). Since ! is totally skew in the sense of [1, p. 300] it
follows from [1, Theorem 3.3] that V is the unique irreducible!-representation ofH � yH ,
which then implements an isomorphism C �.H � yH;!/ Š B.`2.H// ŠMjH j.C/.

Now let A WD B.`2.H// and define ˇWH � yH ! Aut.A/ by ˇ.g;x/ D AdV �
.g;x/

.
Then one checks that A˝ C �.H � yH;!/ is isomorphic to A Ìˇ .H � yH/ via the map
a ˝ ı.g;x/ 7! aV.g;x/u.g;x/ (see, e.g., [5, Remark 2.8.18]). Thus ˇ is an action by inner
automorphisms on the simple unital C �-algebra A D MjH j.C/ for which A Ìˇ .H �
yH/ ŠMjH j.C/˝MjH j.C/ is simple.

3. C �-irreducible inclusions arising from fixed-point algebras into
crossed products

We shall here prove our main results regardingC �-irreducibility of inclusions arising from
fixed-point algebras into crossed products. LetH be a finite group and let ˇWH !Aut.A/
be an action of H on the C �-algebra A. Let

AH;ˇ WD ¹a 2 AWˇh.a/ D a for all h 2 H º
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(or simply AH if confusion seems unlikely) be the fixed-point algebra of ˇ. Consider the
projection

pˇ WD
1

jH j

X
h2H

uh 2M.A Ìˇ H/; (1)

where uWH ! UM.A Ìˇ H/ denotes the canonical unitary representation which imple-
ments ˇ in the crossed-product. Note that pˇ commutes with AH . Rosenberg observed
in [14] that the image of the �-homomorphism AH 3 a 7! apˇ D 1

jH j

P
h2H auh 2

A Ìˇ H is equal to pˇ .A Ìˇ H/pˇ , so that we get an isomorphism

AH Š pˇ .A Ìˇ H/pˇ : (2)

We say that ˇ is saturated if ApˇA (or pˇ , if A is unital) is full in A Ìˇ H , i.e., not
contained in any proper closed two-sided ideal in A Ìˇ H . Of course, this always holds if
the crossed product A Ìˇ H is simple. The following result is then a direct consequence
of [10, Corollary 6.6].

Theorem 3.1 (Izumi). Let ˇWH!Aut.A/ be an outer action of a finite groupH on a uni-
tal C �-algebra A. Then the inclusion AH;ˇ � A is C �-irreducible, and the intermediate
algebras of the inclusion are precisely the fixed-point algebras AL;ˇ for the subgroups
L � H .

The following lemma is a modification of [11, Lemma 3.2] by Kishimoto. We are
grateful to Masaki Izumi for pointing out to us a modification of our original argument
which assumed, in addition to the assumptions given in the lemma, that j̨ commutes
with ˇt for all 1 � j � n and t 2 H .

Lemma 3.2. Let A be a unital simple C �-algebra, let ˇWH ! Aut.A/ be an action of
a finite groupH on A. Let ˛1; : : : ; ˛n be automorphisms of A, and let a1; : : : ; an 2 A and
" > 0 be given. Suppose that j̨ ı ˇt is outer on A for all 1 � j � n and for all t 2 H .
Then there exists a positive element h 2 AH with khk D 1 such that khaj j̨ .h/k � " for
all j D 1; : : : ; n.

Proof. First observe that j̨ ı ˇt is outer for all t 2 H implies that ˇs�1 ı j̨ ı ˇt is
outer as well for all s; t 2 H , which follows from the fact that the conjugate of an outer
automorphism by an arbitrary automorphism remains outer.

It follows then from [11, Lemma 3.2] that there exists a positive element h0 2 A with
kh0k D 1 and

kh0ˇs�1.aj /.ˇs�1 ı j̨ ı ˇt /.h0/k � "jH j
�2; s; t 2 H; 1 � j � n:

Applying the automorphism ˇs to the inequality above, we obtain that

kˇs.h0/aj j̨ .ˇt .h0//k � "jH j
�2
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for all s; t 2 H and for all j D 1; 2; : : : ; n. Set h1 D jH j�1
P
s2H ˇs.h0/. Then h1 is

a positive element in AH , and

kh1aj j̨ .h1/k � jH j
�2

X
s;t2H

kˇs.h0/aj j̨ .ˇt .h0//k � "jH j
�2:

Since kh1k � jH j�1kh0k D jH j�1, it follows that h WD kh1k�1h1 has the desired prop-
erties.

We proceed to state our first main result characterizing when inclusions of the form
AH;ˇ � A Ì˛;r G are C �-irreducible. Thanks to some very helpful comments by Izumi,
we can now state this theorem in a stronger form than in a previous version of this paper,
where it was assumed that the actions ˛ and ˇ commute and that the group H is abelian.

Theorem 3.3. Let A be a unital, simple C �-algebra, and let ˛WG! Aut.A/ and ˇWH !
Aut.A/ be actions of a discrete group G and a finite group H . Then the following are
equivalent:

(i) AH;ˇ � A Ì˛;r G is C �-irreducible,

(ii) .AH;ˇ /0 \ .A Ì˛;r G/ D C,

(iii) the automorphisms ˛g ı ˇt are outer for all .eG ; eH / ¤ .g; t/ 2 G �H .

Proof. (i)) (ii) follows from [13, Remark 3.8].
(ii)) (iii). Suppose that ˛g ı ˇt is inner for some .eG ; eH / ¤ .g; t/ 2 G �H . Then

there is a unitary u 2 A such that ˇt D ˛g�1 ı Ad u D Ad ug�1u (where g 7! ug 2

A Ì˛;r G is the unitary implementation of ˛). Hence ug�1u 2 .AH /0 \ .A Ì˛;r G/, and
ug�1u … C since u belongs to A and ug�1 does not.

(iii)) (i). Let x be a non-zero positive element inAÌ˛;r G. We show that x is full rel-
ative to AH in the sense of [13, Definition 3.4]. It follows then from [13, Proposition 3.7]
that AH � A Ì˛;r G is C �-irreducible.

LetEWAÌ˛;r G!A be the canonical conditional expectation. ThenE.x/ 2A is non-
zero and positive. Since AH � A is C �-irreducible by Theorem 3.1 (Izumi), it follows
from [13, Proposition 3.7 and Lemma 3.5] that there exist b1; : : : ; bn 2 AH such that
1AH �

Pn
jD1 b

�
j E.x/bj D

Pn
jD1 E.b

�
j xbj /. Upon replacing x by the non-zero positive

element
Pn
jD1 b

�
j xbj , we may therefore assume that E.x/ � 1AH .

Let 0 < "< 1 be given. Choose y D
P
g2G agug 2AÌalg G such that kx � yk < "=3.

According to Lemma 3.2, we can find a positive element h 2 AH with khk D 1 such that
kh.y �E.y//hk � "=3. This implies that kh.x �E.x//hk � ". Note that

hxh � hE.x/h � " � 1AH � h
2
� " � 1AH ;

so h2xh2 � h4 � "h2. Let 'W Œ0; 1�! RC be a continuous function which vanishes on
Œ0;
p
"� and which is non-zero on .

p
"; 1�. Then d WD '.h/.h4 � "h2/'.h/ is non-zero

and '.h/h2xh2'.h/ � d > 0. By simplicity of AH , which follows from outerness of ˇ,
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cf. the comments below (2), there exist b1; : : : ; bn 2 AH such that
Pn
jD1 b

�
j dbj D 1AH .

It follows that
nX

jD1

b�j '.h/h
2xh2'.h/bj �

nX
jD1

b�j dbj D 1AH ;

which proves that x is full relative to AH .

Remark 3.4. It follows from [10, Theorem 3.3] by Izumi that an inclusion B � A of
simple unital C �-algebras with a conditional expectation EWA! B of finite index is C �-
irreducible if (and only if) it is irreducible (i.e., A \ B 0 D C). The inclusions AH;ˇ �
A Ì˛;r G considered in Theorem 3.3 do have finite index with respect to the composition
of the canonical conditional expectationsE1WAÌ˛;r G! A andE2WA! AH;ˇ provided
that G is finite. Hence the implication (ii) ) (i) of Theorem 3.3 is a consequence of
Izumi’s theorem when G is finite. Note that our proof of Theorem 3.3 does not factor
through Izumi’s theorem.

Remark 3.5. Condition (iii) of Theorem 3.3 is equivalent to saying that the actions

˛W G ! Aut.A/ and ˇW H ! Aut.A/

are outer, so thatG andH may be identified with subgroups of Out.A/, the outer automor-
phisms on A, and that G and H intersect trivially in Out.A/. This condition is identical
with the condition in [2, Corollary 4.1 (i)] of Bisch and Haagerup ensuring irreducibility
of an inclusion PH � P Ì G of II1-factors arising from finite groups G and H acting
outerly on a II1-factor P .

4. A Galois correspondence for the intermediate subalgebras

In this section, we shall establish a Galois type classification of the intermediate subal-
gebras of the inclusions considered in Theorem 3.3 under the additional assumptions that
the two actions ˛ and ˇ commute and that H is abelian.

Let us first recall that if ˛WG ! Aut.A/ and ˇWH ! Aut.A/ are outer actions on
a simple unital C �-algebra A with G discrete andH finite, then the intermediate algebras
of the inclusions AH;ˇ � A and A � A Ì˛;r G are in one-to-one correspondence with
subgroups L � H and K � G by taking the fixed-point algebras AL;ˇ and the crossed
products A Ì˛;r K, respectively, as shown by Izumi [10], and Cameron–Smith [4].

At present time, it is not clear to us how one can describe all intermediate algebras
of an inclusion AH;ˇ � A Ì˛;r G in the general setting of Theorem 3.3, but we can give
a satisfactory answer in the case where H is abelian and the actions ˛ and ˇ commute.
Note that in the abelian case, there is a bijection between subgroupsL ofH and subgroups
of the Pontryagin dual yH D Hom.H;T / given by L 7! L?, where

L? WD ¹x 2 yH W h`; xi D 1 for all ` 2 Lº: (3)
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Suppose now that ˛WG ! Aut.A/ and ˇWH ! Aut.A/ are commuting actions of
discrete groups G and H on a simple C �-algebra A. Then we get an action

˛ � ˇW G �H ! Aut.A/; .˛ � ˇ/.g;h/ WD ˛g ı ˇh; .g; h/ 2 G �H:

We shall more than once use the fact that if ˛ and ˇ are commuting actions as above,
then ˇ extends naturally to an action ž on A Ì˛;r G given, for h 2 H and

P
g2G agug 2

A Ì˛;alg G, by
ž
h

�X
g2G

agug

�
D

X
g2G

ˇh.ag/ug :

The following lemma is well known to experts (e.g., see [7, Lemma 2.9], where a more
general result is shown for full crossed products). For completeness, we include the easy
proof.

Lemma 4.1. Suppose that ˛ � ˇWG � H ! Aut.A/ is an action of the discrete prod-
uct group G �H , as above, where H is finite. Suppose further that ˇWH ! Aut.A/ is
saturated. Then the following hold:

(i) the fixed-point algebra AH;ˇ is a G-invariant subalgebra of A, and ˛ therefore
restricts to a well-defined action ˛H WG ! Aut.AH;ˇ /;

(ii) the natural extension of ˇ to žWH ! Aut.A Ì˛;r G/ is also saturated;

(iii) the canonical inclusion AH;ˇ Ì˛H ;r G ,! A Ì˛;r G co-restricts to an isomor-
phism

AH;ˇ Ì˛H ;r G Š .A Ì˛;r G/H;
ž
:

Proof. The first assertion is a direct consequence of the fact that ˛ and ˇ commute. For
the proof of (ii), we first observe that the canonical inclusion

A Ìˇ H ,! .A Ìˇ H/ Ìz̨;r G Š .A Ì˛;r G/ Ì ž H

maps the projection pˇ 2 M.A Ìˇ H/ to the projection p ž in the multiplier algebra
M..A Ì˛;r G/ Ì ž H/. Since pˇ is full in A Ìˇ H , it follows that

.A Ì˛;r G/ Ì ž H D .A Ìˇ H/ Ìz̨;r G

Š ..A Ìˇ H/pˇ .A Ìˇ H// Ìz̨;r G

D ..A Ìˇ H/ Ìz̨;r G/pˇ ..A Ìˇ H/ Ìz̨;r G/

D ..A Ì˛;r G/ Ì ž H/p ž..A Ì˛;r G/ Ì ž H/:

Hence p ž is full in .A Ì˛;r G/ Ì ž H which proves (ii). The proof of (iii) then follows
from

.A Ì˛;r G/H;
ž
D p

ž
..A Ì˛;r G/ Ì ž H/p

ž
D pˇ ..A Ìˇ H/ Ìz̨;r G/pˇ

D .pˇ .A Ìˇ H/pˇ / Ìz̨;r G D AH;ˇ Ì˛;r G;
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where the first and the last isomorphism in the above computation follow from Rosen-
berg’s equation (2).

Using the above observation, we can now prove the following assertion.

Proposition 4.2. Let ˛ and ˇ be commuting actions of discrete groups G and H on
a simple C �-algebra A, with H finite, as above. Suppose further that ˛ � ˇWG �H !
Aut.A/ is outer. Then the restricted action ˛H WG!Aut.AH;ˇ / on the fixed-point algebra
AH;ˇ is outer.

Proof. Let ˛ � ˇWG � H ! Aut.A/ be as above. Since A is simple and ˇ is outer, it
follows from Kishimoto’s theorem that A Ìˇ H is simple as well. Hence ˇ is saturated
andAH;ˇ is a full corner ofAÌˇ H by the full projection pˇ . Since full corners of simple
C �-algebras are simple, it follows that AH;ˇ is simple.

Thus, by Lemma 2.1, it suffices to show that for every subgroup M � G the crossed
product AH;ˇ Ì˛H ;r M is simple. But it follows from Lemma 4.1 that AH;ˇ Ì˛H ;r M D
.A Ì˛;r M/H;

ž which is a full corner of .A Ì˛;r M/ � ž H Š A Ì˛�ˇ;r .M �H/. But
the latter is simple, again by Kishimoto’s theorem.

We shall also need the lemma below. Let ˇWH ! Aut.A/ be an action of a discrete
abelian groupH on a C �-algebra A. The dual action y̌W yH ! Aut.A Ìˇ H/ is for x 2 yH
and b D

P
h2H ahuh 2 A Ìˇ;alg H given by

y̌
x.b/ D

X
h2H

hh; xi ahuh:

Since yH is a compact abelian group, the subgroup L? of yH , defined in (3), associated
with a subgroup L of H , is compact as well.

Lemma 4.3. Suppose that ˇWH ! Aut.A/ is an action of a discrete abelian group on
a C �-algebra A and let L be a subgroup of H . Then

A Ìˇ L D .A Ìˇ H/L
?; y̌;

when A Ìˇ L is viewed as a subalgebra of A Ìˇ H .

Proof. Let b D
P
l2L alul 2 A Ìalg;ˇ L. Then

y̌
x.b/ D

X
l2L

hl; xi alul D
X
l2L

alul D b

for all x 2 L?, so b lies in .A Ìˇ H/L
?

. This proves that A Ìˇ L � .A Ìˇ H/L
?

.
To prove the converse inclusion, we make use of the conditional expectation EWA Ìˇ

H ! A Ìˇ L given by E.b/ D
R
L?
y̌
x.b/ dx, where the integral is with respect to the

normalized Haar measure. To see thatE indeed maps AÌˇ H onto AÌˇ L, note first thatZ
L?
hh; xi dx D

´
1 for h 2 L;

0 for h 2 H n L:
(4)
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Hence, for b D
P
h2H ahuh 2 A Ìˇ;alg H , we have

E.b/ D

Z
L?

y̌
x.b/ dx D

Z
L?

X
h2H

hh; xi ahuh dx D
X
l2L

alul 2 A Ìˇ L:

This shows that the range of E is contained in A Ìˇ L and that E is the identity on
A Ìˇ L. Now, since E.b/ D b, whenever b 2 .A Ìˇ H/L

?

, we are done.

We now provide an elaboration of the observation by Rosenberg stated in (2) relat-
ing the fixed-point algebra to a crossed product. Two inclusions B1 � A1 and B2 � A2
of C �-algebras are said to be isomorphic if there is a �-isomorphism �WA1 ! A2 with
�.B1/ D B2. Clearly, ifB1�A1 andB2�A2 are isomorphic, and if one of the inclusions
is C �-irreducible, then so is the other.

Proposition 4.4. Let ˇ be an action of a finite abelian groupH on a C �-algebraA. Then,
with pˇ 2M.A Ìˇ H/ as defined above (2), there is an isomorphism  WA! pˇ .A Ìˇ
H Ì y̌ yH/pˇ satisfying  .AH;ˇ / D pˇ .A Ìˇ H/pˇ , thus implementing an isomorphism
between the two inclusions

AH;ˇ � A and pˇ .A Ìˇ H/pˇ � pˇ .A Ìˇ H Ì y̌ yH/pˇ :

Moreover, for each subgroupL�H , we have .AL;ˇ /D pˇ .AÌˇ H Ì y̌ L?/pˇ , where
L? � yH is the annihilator defined above Lemma 4.3.

Proof. Let uWH ! UM.A Ìˇ H/ and yuW yH ! UM.A Ìˇ H Ì y̌ yH/ denote the canoni-
cal representations implementing ˇ and y̌, respectively. Let h � ; � iWH � yH ! T denote
the natural pairing between H and yH as in Remark 2.2.

By the definition of the dual action, yux 2 A0 \M.A Ìˇ H Ì y̌ yH/, for all x 2 yH , and
yuxug yu

�
x D hg; xiug , for all g 2 H and x 2 yH .

For each g 2 H and x 2 yH , set

px D
1

jH j

X
g2H

hg; xiug ; qg D
1

jH j

X
x2 yH

hg; xiyux :

(Note that jH j D j yH j.) In the notation used above (2), pe D pˇ and qe D p
y̌ (where e

denotes the neutral element in both groups). By definition of the dual action and the fact
that yu implements y̌, it follows that

yuxug yu
�
x D
y̌
x.ug/ D hg; xiug ; ug yuxu

�
g D ug yuxug�1 yu

�
xyux D hg; xiyux

for all g 2H , x 2 yH . Together with a variant of equation (4), it is then straightforward to
verify that

1 D
X
g2H

qg D
X
x2 yH

px ; yuxpeyu
�
x D px ; ugqeu

�
g D qg

for all g 2 H and x 2 yH .
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Recall from Lemma 4.3 thatA D .A Ìˇ H/
yH . By Rosenberg’s result, cf. (2), we have

�-isomorphisms

'W AH ! pe.A Ìˇ H/pe;  0W A! qe.A Ìˇ H Ì y̌ yH/qe;

given by '.b/ D bpe D jH j
�1
P
g2H bug and  0.a/ D aqe D jH j

�1
P
x2 yH

ayux for
b 2 AH and a 2 A.

Now, by Takai duality, the two projections pe and qe are equivalent in the C �-alge-
bra generated by ¹ugºg2H [ ¹yuxºx2 yH (since this C �-algebra is isomorphic to MjH j.C/
and pe and qe are minimal projections herein). We can also see this directly as follows:
For x 2 yH , we have peyuxpe D pepxyux D ıe;xpe , so peqepe D jH j�1pe . Similarly,
qepeqe D jH j

�1qe . Set z D jH j1=2peqe . Then z�z D qe and zz� D pe . Note that z
commutes with AH . Define a �-isomorphism

 W A! pe.A Ìˇ H Ì y̌ yH/pe;  .a/ D z 0.a/z
� .D jH jpeaqepe/; a 2 A: (5)

For b 2 AH , we have  .b/ D z.bqe/z
� D bzqez

� D bpe D '.b/. Hence  .AH / D
'.AH / D pe.A Ìˇ H/pe , as desired.

Let L � H be a subgroup. We check that  .AL/ D pe.A Ìˇ H Ì y̌ L?/pe , where
we view A Ìˇ H Ì y̌ L? as a subalgebra of A Ìˇ H Ì y̌ yH in the canonical way. Recall
from Lemma 4.3, applied to y̌ via the isomorphism H Š yyH , which maps g 2 H to .x 7!
hg; xi/ 2 yyH , that

A Ìˇ H Ì y̌ L? D .A Ìˇ H Ì y̌ yH/L;
yy̌:

Since pe2AÌˇH is fixed by yy̌, we see that yy̌ restricts to an action on pe.AÌˇHÌ y̌ yH/pe .
So the result will follow if we can show that the isomorphism WA! pe.AÌˇHÌ y̌ yH/pe
is ˇ-yy̌ equivariant. To this end observe first that for all g 2 H , we have

yy̌
g.qe/ D

1

jH j

X
x2 yH

hg; xi yux D qg�1 D u
�
gqeug :

Using this and the fact that pe is fixed by yy̌, we get for all a 2 A and g 2 H

yy̌
g. .a//

(5)
D jH j yy̌g.peaqepe/ D jH jpea

yy̌
g.qe/pe D jH jpeau

�
gqeugpe

D jH jpeu
�
gˇg.a/qeugpe

.�/
D jH jpeˇg.a/qepe D  .ˇg.a//;

where at (�) we have used the fact that peu�g D ugpe D pe for all g 2 H , which follows
easily from the definition of pe . This finishes the proof.

Lemma 4.5. Let B � A be a unital inclusion of C �-algebras, and let p 2 B be a projec-
tion. If B � A is C �-irreducible, then so is pBp � pAp. Conversely, if p is full in B and
if pBp � pAp is C �-irreducible, then B � A is C �-irreducible as well. Moreover, in this
case the assignmentD 7! pDp gives a bijective correspondence between the intermediate
C �-algebras of B � A and those of pBp � pAp.
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Proof. Assume first that B � A is C �-irreducible. Let pBp � C � pAp be an intermedi-
ate C �-algebra, and set D D C �.B [ C/. Then B � D � A, so D is simple. Moreover,
C D pDp, so C is a corner of the simple C �-algebra D, and is hence simple as well.

Suppose now that p is full and that pBp � pAp is C �-irreducible. If B � D � A
is any intermediate C �-algebra, then pBp � pDp � pAp, and hence pDp is simple.
Since p is full in B , it follows that p is also full in D, and this implies that D is simple.

As for the last claim, we remarked above that the assignment C 7! C �.B [ C/ gives
a map from intermediate C �-algebras of the inclusion pBp � pAp to intermediate C �-
algebras of the inclusion B � A, which is a left-inverse of the assignmentD 7! pDp, i.e.,
pC �.B [ C/p D C , for any pBp � C � pAp. If p is full in B , then it is also a right-
inverse, i.e., D D C �.B [ pDp/ for any B � D � A. Indeed, 1 D 1B D

Pn
jD1 b

�
j pbj

for some b1; : : : ; bn 2 B by fullness of p in B . Hence, for each d 2 D, we have d D 1 �
d � 1D

Pn
i;jD1 b

�
i pbidbjpb

�
j , which belongs to C �.B [ pDp/, since pbidbjp 2 pDp,

for all i , j .

We are now ready to give a Galois type classification of the intermediate subalgebras
of (some of) the inclusion AH;ˇ � A Ì˛;r G considered in Theorem 3.3.

Theorem 4.6. Suppose that ˛WG! Aut.A/ and ˇWH ! Aut.A/ are commuting actions
of a discrete group G and a finite abelian group H on a unital simple C �-algebra A.

(i) The inclusion AH;ˇ � A Ì˛;r G is isomorphic to the inclusion

pˇ .A Ìˇ H/pˇ � pˇ .A Ìˇ H Ì y̌ yH Ìz̨;r G/pˇ ; (6)

where pˇ is as defined in (1), and where z̨WG ! Aut.A Ìˇ H Ì y̌ yH/ is the
extension of ˛, cf. the explanation above Lemma 4.1.

(ii) There is a one-to-one correspondence between subgroupsL� yH �G and inter-
mediate algebras of the inclusion in (6) given by sending L to

pˇ .A Ìˇ H/pˇ Ì y̌�z̨;r L D p
ˇ .A Ìˇ H Ì y̌�z̨;r L/p

ˇ :

(iii) There is a one-to-one correspondence between subgroups of yH � G and inter-
mediate algebras of the inclusion AH;ˇ � A Ì˛;r G.
In particular, if L D L1 � L2 is a product of subgroups L1 � yH and L2 � G,
then the corresponding intermediate algebra AH;ˇ � D � A Ì˛;r G is D D
AL

?
1 ;ˇ Ì˛;r L2, with L?1 the annihilator of L1 in H , cf. (3).

Proof. (i) It was shown in Proposition 4.4 that the inclusion AH � A is isomorphic to the
inclusion pˇ .A Ìˇ H/pˇ � pˇ .A Ìˇ H Ì y̌ yH/pˇ via the �-isomorphism

 W A! pˇ .A Ìˇ H Ì y̌ yH/pˇ ;

defined in (5), that maps AH onto pˇ .A Ìˇ H/pˇ . The isomorphism  is easily seen
to be ˛-z̨ equivariant. Hence it extends naturally to a �-isomorphism x WA Ì˛;r G !
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pˇ .A Ìˇ HÌ y̌ yH/pˇ Ìz̨;r G. The algebra pˇ .A Ìˇ HÌ y̌ yH/pˇ Ìz̨;r G coincides with
pˇ .A Ìˇ HÌ y̌ yH Ìz̨;r G/pˇ because z̨g.pˇ / D pˇ for all g 2 G by the definition of z̨.
The �-isomorphism x therefore implements the desired isomorphism of the two inclu-
sions.

(ii) Since AH � AÌ˛;r G is C �-irreducible by Theorem 3.3, so is the inclusion in (6),
and hence so is the inclusion

A Ìˇ H � A Ìˇ H Ì y̌ yH Ìz̨;r G D A Ìˇ H Ì y̌�z̨;r . yH �G/; (7)

by Lemma 4.5. It follows from [13, Theorem 5.8] that y̌ � z̨W yH �G ! Aut.A Ìˇ H/ is
outer.

By Lemma 4.5, there is a bijective correspondence between intermediate C �-alge-
bras of the inclusion in (7) and intermediate C �-algebras of the inclusion in (6) given by
compression with pˇ . Finally, by the Cameron–Smith theorem, [4, Theorem 3.5], which
applies because y̌ � z̨ is outer, each intermediate C �-algebra of the inclusion in (7) is of
the form

.A Ìˇ H/ Ì y̌�z̨;r L

for some subgroup L of yH �G. This proves (ii).
(iii) follows from (i) and (ii) and, for the last claim, inspection of the isomorphism  

which implements the isomorphism of the two inclusions in (i).

5. Examples

In this section, we want to discuss some interesting examples of the theory as developed
in the previous sections arising from group actions on the irrational rotation algebra A�
for � 2 R nQ. Recall that A� is the universal C �-algebra generated by two unitaries u, v
subject to the relation

vu D e2�i�uv:

There is an outer action ˛WSL.2;Z/! Aut.A� / for which

n D

�
n11 n12
n21 n22

�
2 SL.2;Z/

acts on the generators u, v of A� by

˛n.u/ D e
2�in11n21�un11vn21 ; ˛n.v/ D e

2�in12n22�un12vn22 :

Up to conjugacy, there are exactly four different finite cyclic subgroups of SL.2;Z/ iso-
morphic to the cyclic groups Z2, Z3, Z4, and Z6, generated, in that order, by the elements�

�1 0

0 �1

�
;

�
0 1

�1 �1

�
;

�
0 �1

1 0

�
;

�
0 �1

1 1

�
: (8)
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The resulting crossed products A� Ì˛ Zk , k D 2; 3; 4; 6, have been studied in detail
in [8], where it has been shown that they, as well as the fixed-point algebras AZk

�
, k D

2; 3; 4; 6, are simple AF-algebras. By [13, Theorem 5.8], all inclusions A� � A� Ì˛ Zk
are C �-irreducible, and it follows from Theorem 3.1 (Izumi) that the inclusionsAZk

�
�A�

are C �-irreducible as well. Thus we see that every A� , with � irrational, has a unital
C �-irreducible inclusion into some simple AF-algebra, and that, on the other hand, there
always exist simple AF-algebras which admit a unital C �-irreducible embedding into A� .
But note that the composition AZk

�
� A� Ì˛ Zk of these inclusions is not C �-irreducible,

since
.AG� /

0
\ .A� Ì˛ G/ ¤ C;

as observed earlier for general actions ˛WG ! Aut.A/ of a finite group G. On the other
hand, since the entire group SL.2;Z/ acts by outer automorphisms on A� , condition (iii)
of Theorem 3.3 is satisfied for the actions of two subgroups F1; F2 � SL.2;Z/ on A� if
and only if their intersection F1 \ F2 is trivial in SL.2;Z/. We therefore get the following
proposition.

Proposition 5.1. Suppose that .F1; F2/ is either one of the pairs

.Z2;Z3/; .Z3;Z4/; .Z3; zZ3/;

where zZ3 WD hRi for some matrixR 2 SL.2;Z/which is a conjugate of the matrix
�

0 1
�1 �1

�
inside SL.2;Z/ and for which Z3 \ zZ3 D 1.1 Then

A
F1
�
� A� Ì F2; A

F2
�
� A� Ì F1

are C �-irreducible inclusions of AF-algebras.

Proof. In all these cases, we have F1 \ F2 D 1 in SL.2;Z/, so the result follows from
Theorem 3.3.

Among the finite subgroups of SL.2;Z/ listed in and above (8), the pairs .F1; F2/
listed in the proposition above are the only ones which satisfy item (iii) of Theorem 3.3, so
any other combination of subgroups .F1; F2/ will not provide C �-irreducible inclusions.

SinceA� is not an AF-algebra, Proposition 5.1 leads (as expected) to a negative answer
to [13, Question 6.11].

Corollary 5.2. There exist C �-irreducible inclusions of AF-algebras with intermediate
C �-algebras that are not AF-algebras.

Of the three pairs of groups .F1; F2/ in Proposition 5.1 above, only the pair .Z2;Z3/
satisfies the additional assumptions of Theorem 4.6 which gives a classification of the
intermediate C �-algebras. This pair also satisfies the conditions of the following.

1One can, for example, take R D
�
�2 1
�3 1

�
D S

�
0 1
�1 �1

�
S�1 with S D

�
1 1
1 2

�
.
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Proposition 5.3. Suppose thatH and G are finite cyclic groups of prime orders p and q,
respectively, such that p ¤ q. Let ˛ � ˇWG � H ! Aut.A/ be an outer action on the
simple unital C �-algebra A. Then AH;ˇ � A Ì˛ G is a C �-irreducible inclusion, and A
and AH;ˇ Ì˛ G are the only (strict) intermediate C �-algebras for this inclusion.

Proof. Since finite cyclic groups are self-dual, it follows from the assumption on the pair
p, q that yH Š yH � ¹eº and G Š ¹eº � G are the only non-trivial subgroups of yH � G.
Thus it follows from Theorem 4.6 that A D A yH

?;ˇ and AH;ˇ Ì˛ G D A¹eº
?;ˇ Ì˛ G are

the only strict intermediate C �-algebras for the inclusion AH;ˇ � A Ì˛ G.

Corollary 5.4. Let � 2 R nQ. The only strict intermediate C �-algebras for the C �-ir-
reducible inclusion AZ2;˛

�
� A� Ìˇ Z3 are A� and AZ2;˛

�
Ìˇ Z3. Similarly, the only strict

intermediate C �-algebras for the C �-irreducible inclusion AZ3;ˇ
�
� A� Ì˛ Z2 are A�

and AZ3;ˇ
�

Ì˛ Z2.

Note that the intermediate algebras AZ2;˛
�

Ìˇ Z3 and AZ3;ˇ
�

Ì˛ Z2 are AF-algebras.
Indeed, it is shown in [8] thatA� Ì Z6 DA� Ì˛�ˇ .Z2 �Z3/ is an AF-algebra. By Lem-
ma 4.1 together with Rosenberg’s isomorphism (2), it follows that

A
Z2;˛
�

Ìˇ Z3 D .A� Ìˇ Z3/
Z2;˛

is a (full) corner of A� Ìˇ Z3 Ìz̨ Z2 Š A� Ì Z6, and similarly for AZ3;ˇ
�

Ì˛ Z2. Since
corners of AF-algebras are AF-algebras, it follows that AZ2;˛

�
Ìˇ Z3 and AZ3;ˇ

�
Ì˛ Z2 are

AF-algebras.

Remark 5.5. It would be very interesting also to understand the intermediateC �-algebras
of the inclusions appearing in Proposition 5.1, other than the ones arising from the pair
.Z2;Z3/.

Perhaps, the most interesting case is given by the inclusion AZ3
�
� A� Ì zZ3. The only

obvious intermediate C �-algebra here is A� itself, and it might well be that it is the only
one. (By an “obvious” intermediate C �-algebra of an inclusion AH � A Ìr G, we think
here of one of the form D Ìr;˛ L, where L is a subgroup of G and D is an L-invariant
intermediate algebra AH � D � A.) If that would be true it would give us an example
of a C �-irreducible inclusion of two AF-algebras with A� as the unique intermediate C �-
algebra.

Since zZ3 is a conjugate of Z3 by an element of SL.2;Z/, the crossed productA� Ì zZ3
is canonically isomorphic to the crossed product A� Ì Z3 in which AZ3

�
sits as a full

corner. In particular, AZ3
�

and A� Ì zZ3 are Morita equivalent AF-algebras.

Actions by infinite cyclic groups. Actions on A� can provide further examples of C �-
irreducible inclusions with interesting properties. For this let us consider actions of Z
on A� which are given by restrictions of the action of SL.2;Z/ to infinite cyclic sub-
groups. These are generated by matrices S 2 SL.2;Z/ of infinite order. Let us then write
˛S for the corresponding action of Z an A� . The crossed products A� Ì˛S Z have been
studied and classified in [3]. A particularly interesting example occurs if tr.S/ D 3, e.g.,
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for S D
�
1 1
1 2

�
. In this case, the classification results of [3] imply that A� Ì˛S Z is actually

isomorphic to A� itself. Thus by [13, Theorem 5.8] and [4], we obtain a proper C �-
irreducible inclusion

A� � A� Ì˛S Z Š A� :

By the results of Cameron and Smith [4, Theorem 3.5], all (strict) intermediate C �-
algebras are of the form

A� Ì˛S .nZ/ D A� Ì˛Sn Z; n D 2; 3; 4; : : :

Using the results of [3, Theorem 3.5], all these intermediate algebras can be classified by
their Elliott invariants, and it turns out that they are never AF (since by [3, Theorem 3.5]
their K1-groups never vanish) and they are usually not isomorphic to A� .

Example 5.6. Let us look again at the matrix S D
�
1 1
1 2

�
. Then S is self-adjoint with

tr.S/ D 3. The entries of the powers of S are Fibonacci numbers

Sn D

�
f2n�1 f2n
f2n f2nC1

�
; n � 1:

In particular, it follows that tr.Sn/ > 3 for all n � 2, and hence it follows from [3, The-
orems 3.5 and 3.9] that the intermediate algebras A� Ì˛Sn Z of the inclusion A� �
A� Ì˛S Z Š A� are never isomorphic to A� and are not even irrational rotation algebras.

Indeed, using [3, Remark 3.12], we can conclude that A� Ì˛Sn Z and A� Ì˛Sm Z are
never isomorphic if n¤m, since we have j2� tr.Sn/j ¤ j2� tr.Sm/j, whenever n;m 2N
with n ¤ m.

Remark 5.7. For any element S 2 SL.2;Z/ of infinite order, the intersection hSi \ F is
trivial for any finite subgroup F � SL.2;Z/. Therefore, with S D

�
1 1
1 2

�
as above, we get

C �-irreducible inclusions

AF� � A� Ì˛S Z Š A�

for every such subgroup F . In the case where F D Z2, which is generated by the central
element

�
�1 0
0 �1

�
, the actions of F and Z commute and Theorem 4.6 gives a description

of all intermediate algebras for this inclusion.

Another interesting consequence of this type of examples is the existence of outer
actions ˇn of the cyclic groups Zn on A� for all n 2 N with n � 2, such that the crossed
products A� Ìˇn Zn as well as the fixed-point algebras AZn;ˇn

�
are not AF, quite contrary

to the case of the actions of the finite subgroups of SL.2;Z/ considered before. For this
we need the following lemma.

Lemma 5.8. Suppose that ˇWH ! Aut.A/ is an outer action of the discrete abelian
groupH on a simpleC �-algebraA. Then, for each finite subgroupM � yH , the restriction
of the dual action y̌W yH ! Aut.A Ìˇ H/ to M is outer as well.
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If yH is finite, or more generally, if yH has no element of infinite order, then the lemma
simply says that y̌ itself also is outer, cf. Lemma 2.1.

Proof. Let L � M � yH be any subgroup of M , and let L? be the annihilator of L
in H . Then it follows from [6, Proposition 2.1] that .A Ìˇ H/ Ì y̌ L is Morita equivalent
to A Ìˇ L?, which is simple by Lemma 2.1. Thus, since Morita equivalence preserves
simplicity, the crossed product .A Ìˇ H/ Ì y̌ L is simple as well. Thus, it follows from
Lemma 2.1 that the restriction of y̌ to M is by outer automorphisms.

Example 5.9. Let S D
�
1 1
1 2

�
as above (for most of what we do here, one could take any

S 2 SL.2;Z/ with tr.S/ D 3). Consider the dual action y̨S WT ! Aut.A� Ì˛S Z/ of ˛S .
The isomorphismA� Ì˛S ZŠA� carries this to an action, say ˇWT !Aut.A� /. For each
n 2 N, let us identify the cyclic group Zn of order n with the group of all n-th roots of
unity in T , which is the annihilator of nZ � Z under the identification T Š yZ. Thus Zn
can be identified with .nZ/? � T . It follows from Lemma 5.8 that the restriction of ˇ
to Zn gives an outer action, called ˇn below, of Zn on A� . Thus, using [13, Theorem 5.8]
and Theorem 3.3, we obtain C �-irreducible inclusions

A
Zn;ˇn

�
� A� and A� � A� Ìˇn Zn

with intermediate algebras given by AZm;ˇm

�
and A� Ìˇm Zm, respectively, for all m 2 N

which divide n. It follows then from Lemma 4.3 that

A
Zm;ˇm

�
Š A� Ì˛Sm Z:

So at least for S D
�
1 1
1 2

�
, it follows from Example 5.6 that the C �-algebras above are

pairwise non-isomorphic for different m, and that none of them are AF-algebras.
Note, if n;m 2 N have no common divisors, then Zn \ Zm D ¹0º, and Theorem 3.3

implies that the inclusion

A
Zn;ˇn

�
� A� Ìˇm Zm

is also C �-irreducible. Again, in this case, Theorem 4.6 allows us to compute all interme-
diate algebras of this inclusion.

Question 5.10. Let A� � A� Ì˛S Z Š A� be the C �-irreducible inclusion considered in
Remark 5.7 above. By iteration, we get a chain of inclusions

A� � A� � � � � � A� � � � � :

Are all compositions in this sequence C �-irreducible?
It has been shown in [3, Remark 3.11] that the direct limit of this sequence is the AF-

algebra constructed by Effros and Shen in [9], and into which A� embeds with the same
ordered K0-groups, as shown by Pimsner and Voiculescu in [12].
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