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Growing trees from compact subgroups

Pierre-Emmanuel Caprace, Timothée Marquis, and Colin D. Reid

Abstract. We establish a new connection between local and large-scale structure in compactly gen-
erated totally disconnected locally compact (t.d.l.c.) groups G, finding a sufficient condition for G
to have more than one end in terms of its compact subgroups. The condition actually results in an
action of a quotient group G=N on a tree with faithful micro-supported action on the boundary,
where N is compact, and is closely related to the Boolean algebra formed by the centralisers of the
subgroups of G=N with open normaliser. As an application, we find a sufficient condition, given
a one-ended t.d.l.c. group G, for all direct factors of open subgroups of G to be trivial or open.

This is not our world with trees in it. It’s a world
of trees, where humans have just arrived.

(Richard Powers, The Overstory, 2018)

1. Introduction

A recurring theme in the theory of totally disconnected locally compact (t.d.l.c.) groups is
the relationship between local structure, that is, properties evident in an arbitrarily small
neighbourhood of the identity, and global or large-scale properties, for instance, in the
sense of quasi-isometry invariants of the group, or “commability” in the sense of [9]. The
connection between the local structure and large-scale properties is looser than for Lie
groups, but there are still nontrivial relationships between the two. The goal of this article
is to investigate a certain aspect of this relationship for general compactly generated t.d.l.c.
groups: we provide an algebraic criterion on the local structure of a t.d.l.c. group ensuring
that the group has infinitely many ends and, hence, that it acts on a tree with compact open
edge stabilisers. An application is given in another article by the same authors, showing
that many one-ended locally compact Kac–Moody groups are locally indecomposable:
see [6].

A fundamental example of local structure is the structure lattice LN .G/ of a t.d.l.c.
group, introduced in [7]. This is the poset LN .G/ D LN.G/=�o, where LN.G/ is the
set of closed locally normal subgroups (subgroups with open normaliser) of G ordered by
inclusion andH �o K ifH \K is open inH andK. Note that LN .G/ is equipped with

2020 Mathematics Subject Classification. Primary 22D05; Secondary 20E08.
Keywords. Locally compact groups, actions on trees, micro-supported actions.

https://creativecommons.org/licenses/by/4.0/


P.-E. Caprace, T. Marquis, and C. D. Reid 328

an action of G by conjugation, which we also carry over to conjugation-invariant subsets
of LN .G/. To avoid some complications, it is useful to assume that G is ŒA�-semisimple,
meaning that the subgroup QZ.G/ of elements with open centraliser is trivial and that G
has no nontrivial abelian locally normal subgroups. We set

LC.G/ WD ¹CG.K/ j K 2 LN.G/º;

LC.G/ WD LC.G/=�o:

When G is ŒA�-semisimple, then LC.G/ is a Boolean algebra called the (global) cent-
raliser lattice of G; its elements are pairwise inequivalent under �o, so it is isomorphic
as a Boolean algebra to the (local) centraliser lattice LC.G/. There is also a subalgebra
LD.G/ of LC.G/, the local decomposition lattice, which consists of those elements of
LN .G/ represented by direct factors of open subgroups. In particular, we sayG is locally
indecomposable if LD.G/ is trivial, and faithful locally decomposable ifG acts faithfully
on LD.G/. When G is ŒA�-semisimple, having faithful action on LC.G/ is equivalent to
the existence of a faithful action on a compact totally disconnected Hausdorff spaceX that
is micro-supported, meaning that for every nondense subset Y of X , there is g 2 G n ¹1º
that fixes Y pointwise.

An interesting class to consider in this context is the class S of nondiscrete, compactly
generated, topologically simple t.d.l.c. groups. In the class S, unlike in the class of simple
Lie groups, the local structure does not determine the global structure: Smith [20] exhib-
ited a family of 2@0 pairwise nonisomorphic groups in S that are locally isomorphic to one
another and all faithful locally decomposable. However, it is the case that all groupsG 2 S
are ŒA�-semisimple, and that G acts faithfully on any G-invariant subalgebra of LC.G/

other than the trivial one ¹0;1º (there could be none).
The space EG of ends of a locally compact group G is a large-scale invariant; see [10,

Definition 8.B.12] and Section 2.2 for the precise definition of EG in use in this article.
A result of Abels [1] ensures that an analogue of Stallings’ splitting theorem holds for
compactly generated t.d.l.c. groups: such a group has infinitely many ends if and only if
it has a continuous unbounded action on a tree with compact open edge stabilisers (see
also Lemma 3.2 and Proposition 3.6 below). Moreover, 2-ended groups have a restricted
and well-understood algebraic structure, from which it follows that a group in G 2 S has
either one end or infinitely many ends.

To avoid ambiguity, we will refer to edges of graphs as arcs when taking account of
orientation, i.e., the arc from v to w is distinct from the arc from w to v. Many examples
of groups in S, including Smith’s examples, have been constructed as groups acting arc-
geometrically on a leafless tree, meaning with compact open arc stabilisers and preserving
no proper subtree. As mentioned above, for a compactly generated t.d.l.c. group, having
such an action is equivalent to having more than one end. Write S1 for the infinitely-ended
groups in S, and SLD for the locally decomposable groups in S. Neither of S1 and SLD

contains the other: for example, PSL2.Qp/ is infinitely-ended but locally indecompos-
able, whereas Neretin’s groups are one-ended (see [13, Corollary 9.0.12]; an alternative
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proof of that fact can be deduced from the main result of [12]) but locally decomposable.
There are also groups in S that are in neither S1 nor SLD . For example, given a simple
algebraic group G over a local field k, the associated group S D G.k/C=Z 2 S is locally
indecomposable (see [8, Appendix A]). However, S acts geometrically on a building X
with apartments isometric to R`, where ` is the k-rank of G [3]; if ` � 2, then the apart-
ments are one-ended, soX is one-ended (e.g., [6, Lemma 5.21]) and hence S is one-ended.

Nevertheless, there is a large overlap between S1 and SLD in the known examples,
and for certain geometric constructions they have been shown to be equivalent. An exam-
ple of such a construction occurs in [4], where the equivalence between having infinitely
many ends and being locally decomposable is nonvacuous, in the sense that some of the
groups in S obtained in [4] are one-ended and not locally decomposable, while others
are infinitely-ended and locally decomposable. More generally, except in the setting of
algebraic groups over local fields, it is difficult to show that a group G in S is locally
indecomposable, and even more difficult to show G has no micro-supported action on the
Cantor space. In fact, to date, the majority of constructions of groups in S are based on Tits’
property (P) [21] or its generalisations based on the double commutator lemma (see [8,
Proposition I]), which often directly imply local decomposability, or at least a micro-
supported action.

In the present article, we establish a sufficient condition for a compactly generated
t.d.l.c. group G to act arc-geometrically on a tree T , such that the action on an associated
compact boundary xET (see Section 2.2) is micro-supported. To simplify the presentation,
here we assume that the only compact normal subgroup of G is the trivial subgroup ¹1º;
for the full statement without this assumption, see Section 4.1.

Definition 1.1. LetG be a t.d.l.c. group without nontrivial compact normal subgroup, and
let K be an infinite compact subgroup of G. We say K is a TMS subgroup of G if there is
a compact open subgroup U of G with the following properties:

(a) For all conjugates V of U in G, the set of g 2 G such that gKg�1 � U but
gKg�1 — V has compact closure.

(b) The set of g 2 G such that gKg�1 � U does not have compact closure.

The letters TMS stand for tree micro-supported. The definition and choice of termin-
ology are motivated by the following results, where a half-tree of a tree T is a proper
subtree of T that is joined to the rest of T by a single edge.

Proposition 1.2 (See Proposition 4.6). Let G be a compactly generated t.d.l.c. group
acting faithfully and arc-geometrically on a leafless tree T . Suppose that for some half-
tree T 0 of T , the pointwise fixator K of T 0 in G fixes only finitely many arcs of T n T 0.
Then K is a TMS subgroup of G.

Theorem 1.3 (See Theorem 4.2). Let G be a compactly generated t.d.l.c. group without
nontrivial compact normal subgroup. Suppose that G has a TMS subgroup K. Then G is
ŒA�-semisimple. Moreover, G acts faithfully on a leafless tree T , such that the pointwise
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fixator of every half-tree contains a conjugate of K, and such that one of the following
holds:

(i) T is locally finite, and G acts vertex-transitively with compact open stabilisers
on T , fixing a unique end;

(ii) G preserves no end or proper subtree of T , and G has compact open arc stabil-
isers on T .

In either case, the action of G on EG is faithful and nondiscretely micro-supported.

We remark that in case (i), the group G is a focal hyperbolic group in the sense of [5].
The totally disconnected focal hyperbolic groups are also studied by Willis in [22], who
calls them scale groups. They are formed as an ascending HNN extension over a com-
pact open subgroup. In case (ii), the tree need not be locally finite; moreover, the normal
subgroup hgKg�1 j g 2 Gi is topologically simple by a theorem of Möller and Vonk [16,
Theorem 2.4].

The following consequence of Theorem 1.3 is immediate, since by definition, a group
with a TMS subgroup cannot be compact.

Corollary 1.4. Let G be a compactly generated t.d.l.c. group without nontrivial compact
normal subgroup. If G has a TMS subgroup, then G has infinitely many ends.

Proposition 1.2 may be viewed as a partial converse to Theorem 1.3. More interest-
ingly, we can express some sufficient conditions to have a TMS subgroup in terms of the
local structure of G. In particular, we have the following when G is locally of finite quo-
tient type, meaning that there is a compact open subgroup U of G such that U has only
finitely many discrete quotients of each order.

Theorem 1.5. LetG be a nontrivial compactly generated t.d.l.c. group, with QZ.G/D¹1º
and with no nontrivial compact normal subgroups, such that G is locally of finite quotient
type. Suppose that there is a nonempty G-invariant subset Q of LD.G/ n ¹0;1º such
that G˛ is compact for every ˛ 2 Q and such that every nonzero element of the subal-
gebra hQi generated by Q lies above some nonzero element of Q. Then there is ˛ 2 Q

such that ristG.˛/ WD
T
ˇ2hQi;ˇ�˛Gˇ is a TMS subgroup ofG, andG falls under case (ii)

of Theorem 1.3.

The hypothesis that G˛ is compact is not a local condition, but seems unavoidable
given the known examples. Specifically, the coloured Neretin groups G D NAlt.2nC5/

(n � 0) constructed by Lederle in [15] are in SLD and are locally of finite quotient type,
but they can also be shown to be one-ended by a similar proof to [13, Theorem 8.2.6];
in these examples, G˛ is not compact because it contains isomorphic copies of G itself.
Moreover, the group NAlt.2nC5/ contains as an open subgroup the Burger–Mozes group
U.Alt.2nC 5//C, which belongs to S1; so, even in the class S, there is no purely local
criterion for the number of ends.
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Theorem 1.5, or rather a special case of its contrapositive (see Corollary 4.9), will be
applied in a subsequent article to a large family of groups in S (obtained as completions of
Kac–Moody groups over finite fields) that were already known to be one-ended, in order
to show that they are locally indecomposable.

A known obstacle to weakening the hypotheses of Theorem 1.3 is the existence of
groups in S that are faithful micro-supported, but act geometrically on well-behaved one-
ended spaces; see [4]. However, in the more restrictive context of Theorem 1.5, where we
only consider the decomposition lattice, it would be consistent with known examples to
omit the hypothesis that G is locally of finite quotient type and the conclusion that G falls
under case (ii) of Theorem 1.3. This leads us to the following.

Question 1.6. Suppose G and Q satisfy the hypotheses of Theorem 1.5, except that G is
not locally of finite quotient type. Is ristG.˛/ a TMS subgroup of G for some ˛ 2 Q?

Structure of the article

In Section 2, we recall some general structure theory of t.d.l.c. groups. In Section 3, we
introduce arc-geometric actions on trees and recall a general construction due to Dicks–
Dunwoody, which can be applied in the context of a multi-ended t.d.l.c. groupG to obtain
an arc-geometric action of G on a tree. Finally, in Section 4, we prove the main results
about sources and consequences of TMS subgroups.

2. Preliminaries

2.1. Local structure theory and dynamics on Stone spaces

Let G be a t.d.l.c. group. A subgroup of G is called locally normal if it has open normal-
iser. A local direct factor of G is a closed subgroup K, such that some open subgroup O
of G splits as a topological group as a direct product O D K � L. Note that every local
direct factor is locally normal. We say G is locally indecomposable if every local direct
factor of G is discrete or open.

The quasi-centre QZ.G/ of G consists of all elements of G with open centraliser.
A t.d.l.c. group G is ŒA�-semisimple if QZ.G/ D ¹1º and G has no nontrivial abelian
locally normal subgroups.

Assume for the moment that QZ.G/ D ¹1º. Then we define the (local) decomposition
lattice LD.G/ to be the poset of local direct factors ofG ordered by inclusion, modulo the
relation �o of local equivalence, where H �o K if H \ U D K \ U for some compact
open subgroup U of G. The poset LD.G/ is then naturally equipped with an action of G
by automorphisms, which is induced by the conjugation action of G on its local direct
factors. We define the centraliser lattice LC.G/ to be the poset of centralisers of locally
normal subgroups, modulo local equivalence.
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Theorem 2.1 ([7, Theorem I]). Let G be a t.d.l.c. group.

(i) Suppose QZ.G/ D ¹1º. Then LD.G/ is a Boolean algebra.

(ii) Suppose G is ŒA�-semisimple. Then LC.G/ is a Boolean algebra containing
LD.G/ as a subalgebra.

Let A be a Boolean algebra; write 0 for the smallest element and 1 for the largest
element of A. A partition of A is a finite set of pairwise disjoint elements of A with
join1. We require all actions on Boolean algebras and topological spaces to be by auto-
morphisms and homeomorphisms respectively. A Boolean algebra A has an associated
Stone space S.A/, where the points are the ultrafilters �WA! ¹0; 1º of A, and the topo-
logy is generated by sets of the form ¹� 2 S.A/ j �.˛/ D 1º for ˛ 2 A. Given an action
of a group G on A, and given ˛ 2 A, we define the rigid stabiliser ristG.˛/ to be the
subgroup consisting of all g 2 G such that, whenever ˇ 2 A is such that ˇ � ˛, then
gˇ D ˇ. Analogously, given an action of a group G on a space X , the rigid stabiliser
ristG.Y / of Y �X is the pointwise fixator ofX n Y . An action of a groupG on a Boolean
algebra A, respectively a topological spaceX , is micro-supported if ristG.a/ acts nontrivi-
ally for all a 2 A n ¹0º, respectively for all nonempty open a � X . In the case of a t.d.l.c.
group, we say the action is nondiscretely micro-supported if in addition, the kernel of
the action of ristG.a/ is not open in ristG.a/, so that every open subgroup of G also has
micro-supported action. An action of a group G on a Boolean algebra A, respectively
a totally disconnected topological space X , is locally decomposable if

Q
a2P ristG.a/ is

open whenever P is a partition of A, respectively a clopen partition of X .
We say a t.d.l.c. group G is faithful locally decomposable, respectively faithful micro-

supported, if it has a faithful locally decomposable, respectively faithful nondiscretely
micro-supported, action on a Boolean algebra. We then have a universal G-action of this
kind, as shown in [7].

Theorem 2.2 (See [7, Theorem 5.18]). Let G be a t.d.l.c. group with a compact open
subgroup U .

(i) Suppose G has a faithful micro-supported action on some Boolean algebra A.
Then the following are equivalent:

(a) QZ.G/ D ¹1º.

(b) The action of U is micro-supported, and every nontrivial normal subgroup of
G has nontrivial intersection with U .

(c) G is ŒA�-semisimple, and A is G-equivariantly isomorphic to a subalgebra
of LC.G/. Indeed, the set of rigid stabilisers of the action on A forms a sub-
algebra of the global centraliser lattice of G.

(ii) Up to a G-equivariant isomorphism of Boolean algebras, every faithful locally
decomposable action of G (if there are any) occurs as the action of G on a subal-
gebra of LD.G/.
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Given a group G acting on a locally compact topological space X , a nonempty sub-
set Y is compressible under the action if for nonempty open Z there exists g 2 G such
that gY is contained in Z. The action is extremely proximal if every proper compact sub-
space is compressible. We make analogous definitions for a group acting on a Boolean
algebra via the Stone space.

2.2. Cayley–Abels graphs, ends and trees

A graph � consists of a vertex set V � , an arc (also known as a directed edge) set A� ,
origin and terminus functions o� ; t� WA� ! V � , and edge reversal .�/� WA� ! A� .
(We suppress the subscripts when the graph in question is clear from context.) In this
article, all graphs will be simplicial graphs, meaning that o.a/ ¤ t .a/ for all arcs a, and
the map a 7! .o.a/; t.a// from A� to V � � V � is injective; where convenient, we will
simply identify an arc a with the ordered pair .o.a/; t.a//, respectively identify the undir-
ected edge ¹a; xaº with the unordered pair ¹o.a/; t.a/º. For the purposes of geometric
properties, we also identify a connected graph with its usual geometric realisation; in par-
ticular, a connected graph carries a natural metric on its vertices. A bounded set is one that
has finite diameter in the metric.

Given a connected graph � , we can associate compact totally disconnected spaces as
follows. Given A � V � , let ıA (or ı�A if the choice of graph � is not clear from context)
be the set of arcs a 2 A� such that o.a/ 62 A and t .a/ 2 A; we say A is almost separated
if ıA is finite. More generally, in a metric space one has the following coarse geometry
concept:A is coarsely almost separated if and only if, for all d > 0, the set ıdA of points p
such that p 62 A but d.p;A/ � d is bounded. The two notions of almost separation agree
on connected locally finite graphs.

One sees that the set of almost separated subsets of � is closed under finite intersec-
tions, finite unions and complements, so it forms a Boolean algebra B� . (The coarsely
almost separated sets also form a Boolean algebra A, however if � is not locally finite,
then B� can be properly contained in A.) If � itself is unbounded, the bounded almost
separated subsets form an ideal of B�; write B� for the quotient of B� by this ideal.
We then have associated Stone spaces x� D S.B�/ and xE� D S.B�/; equivalently,
xE� can be regarded as the closed subspace of S.B�/ consisting of the ultrafilters that
are zero on bounded subsets. (If � itself is bounded, we can take xE� WD ;.) Given � 2 xE�
and A 2 B� , we will say “� is in A” or “A is in �” interchangeably to mean �.A/ D 1.

Using coarse almost separation, one sees that if � is locally finite, then xE� is a coarse
geometric invariant of the graph; in other words, it is preserved by passing to a cobounded
subset with a large-scale equivalent metric. In addition, the space xE� is naturally homeo-
morphic to the usual notion of the space of ends E� of a geodesic metric space, as defined
by equivalence classes of rays (see for instance [2, Chapter I.8, Proposition 8.29]).

A tree is a simply connected graph; a subtree is a nonempty subgraph that is also a tree.
Given a tree T and an arc e of T , we define the associated half-tree Te to be the induced
graph on the vertices v of the tree such that d.t.e/; v/ < d.o.e/; v/; in particular, note
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that Te is an almost separated set, with ıTe D ¹eº. It is sometimes useful to distinguish
within xET the subspace of (geometric) ends ET of T , consisting of those � 2 xET con-
taining an infinite descending sequence of half-trees; these correspond in a natural way to
equivalence classes of geodesic rays in the tree.

Now letG be a compactly generated t.d.l.c. group. An action ofG on a metric spaceX
is called geometric if the following conditions are satisfied:

(a) The action is isometric: G acts by isometries.

(b) The action is proper: For all n < 1 and x 2 X , the set of g 2 G such that
d.x; gx/ < n is a neighbourhood of the identity with compact closure.

(c) The action is cobounded (the term cocompact is used if X is locally compact):
There is a distance n such that for all x; y 2 X , there exists g 2 G such that
d.x; gy/ < n.

A metric space equipped with a geometric action of G is called a G-metric space, and
a G-metric on a G-set is a metric with respect to which the action of G is geometric.
All proper geodesic G-metric spaces have the same quasi-isometry type, which is also
the quasi-isometry type of G as defined intrinsically; indeed, if G acts geometrically on
the proper geodesic metric space M , then g 7! gm is a quasi-isometry for any m 2 M .
(See [10, Sections 4.B and 4.C].) In particular, we can define the space of ends EG ofG to
be xEM , where M is any proper geodesic G-metric space. There is then a natural induced
action of G on EG; from the construction, it is clear that G acts by homeomorphisms.

With t.d.l.c. groups, it is useful to think about geometric actions more combinatorially.
A G-metric graph is a connected locally finite graph equipped with a geometric action
of G with respect to the graph metric, and a geometric G-set is a set X equipped with
a permutation action of G, such that point stabilisers are compact open and G has finitely
many orbits. A Cayley–Abels graph for G is a connected locally finite simple graph �
equipped with an action of G by isometries that is vertex-transitive, with compact open
vertex stabilisers. In particular, every Cayley–Abels graph is a G-metric graph.

Lemma 2.3 (See, e.g., [8, Section 4.1]). Let G be a compactly generated t.d.l.c. group,
let U be a compact open subgroup of G, and let A be a compact symmetric subset of G
such that G D hU;Ai. Then there is a finite symmetric subset B of G such that

BU D UB D UBU D UAU:

Moreover, for any such subset B , we have G D hBiU , and the coset space G=U is the
set of vertices of a Cayley–Abels graph � for G, where gU is adjacent to hU in � if and
only if gU ¤ hU and Uh�1gU � UBU .

Any transitive geometric G-set is of the form G=U for some compact open sub-
group U of G; Lemma 2.3 then supplies a Cayley–Abels graph � with V � D G=U .
It is then straightforward to see that given any geometric G-set X , there is a geometric G-
graph � with V � D X (restricting to a Cayley–Abels graph on each G-orbit of vertices),
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yielding a G-metric on X . In particular, the space of ends EG of any compactly generated
t.d.l.c. group G is realised as a G-space by E� for a Cayley–Abels graph � of G.

2.3. Local finiteness properties

Definition 2.4. Say a profinite group U is of finite quotient type if for each natural num-
ber n, there are only finitely many open normal subgroups of U of index n. Say a t.d.l.c.
group G is locally of finite quotient type if every compact open subgroup of G is of finite
quotient type.

To determine if G is locally of finite quotient type, it suffices to consider a single
compact open subgroup.

Lemma 2.5. Let G be a t.d.l.c. group. Suppose there is some compact open subgroup U
of G of finite quotient type. Then for every compact open subgroup V of G and n 2 N,
there are only finitely many open subgroups of V of index n. In particular, G is locally of
finite quotient type.

Proof. Every open subgroup of U of index n contains an open normal subgroup of index
dividing nŠ. Consequently, there are only finitely many open subgroups of U of index n.

Now consider an arbitrary compact open subgroup V ofG. Given an open subgroupW
of V of index n, we see that W contains an open subgroup of U of index at most
njU W U \ V j. Thus for a fixed n, there are only finitely many such subgroupsW of V .

We note a property of groups that are locally of finite quotient type that will be useful
later.

Lemma 2.6. Let G be a nontrivial compactly generated t.d.l.c. group that is locally of
finite quotient type with QZ.G/ D ¹1º and such that

T
g2G gOg

�1 D ¹1º for some open
subgroupO � G. Then each compact open subgroup U ofG has only finitely many direct
factors.

Proof. Let U be a compact open subgroup of G. Since
T
g2G gOg

�1 D ¹1º, it follows
by [8, Proposition 4.6] that the composition factors of U are of bounded order; let k be the
largest order that occurs. Then U has only finitely many quotients of order at most k, and
hence only finitely many simple quotients. In any profinite group P , a standard argument
shows that any proper closed normal subgroup is contained in an open normal subgroupQ
such that P=Q is simple; by considering the simple quotients of U , we see that U cannot
be written as an infinite direct product of nontrivial profinite groups. By [7, Proposi-
tion 4.11], it follows that U has only finitely many direct factors.

Remark 2.7. A profinite group U is topologically finitely generated if it has a dense
finitely generated subgroup; it is then easy to deduce that U has only finitely many open
subgroups of each index. Given a pro-p group, having finite quotient type (indeed, having
only finitely many open normal subgroups of index p) is equivalent to being topologically
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finitely generated, since the quotient by the Frattini subgroup is elementary abelian. For
general profinite groups, on the other hand, a finite quotient type is strictly more general
than topological finite generation. For example, every just infinite profinite group is of
finite quotient type (see, for instance, [17, Corollary 2.5]), whereas there are examples (see
for instance [23]) of (hereditarily) just infinite profinite groups that are not topologically
finitely generated.

3. Arc-geometric actions of totally disconnected locally compact
groups on trees

In this section, we analyse the space of ends of a compactly generated t.d.l.c. group via
actions on trees. This approach is well known, and finds its origin in the analogue of
Stallings’ theorem in this context, which is due to Abels [1]. Moreover, an analysis along
similar lines can also be found in the article [14, §3] of Krön–Möller, which was in turn
inspired by the Dicks–Dunwoody approach (see [11]) to the space of ends of an abstract
group. However, the authors of the present article found it useful to give a new presentation
of the ideas, in particular, in order to phrase the results in terms of arc-geometric actions
and to highlight the dynamics of the action on EG.

A group acting on a tree, preserving no proper subtree, has one of a few possible
structures. The next proposition is already known in some form (indeed, similar results
are known in greater generality, see, for example, [5, §§3.A–3.B]), but we could not find
a clear reference for the result as stated here, so we include a proof for clarity.

Proposition 3.1. Let T be a tree with more than two vertices, and let G � Aut.T /. Sup-
pose that G preserves no proper subtree of T . Then exactly one of the following holds:

(i) T is a line andG is either cyclic or infinite dihedral, acting geometrically on T .

(ii) G fixes exactly one end � 2 ET and has the form P Ì hli, where l is a transla-
tion towards �, and the P -orbits on V T are exactly the horospheres around �.
Consequently, the action of G on xET n ¹�º is extremely proximal.

(iii) G has no fixed points in ET , and for all pairs .a; b/ of arcs of T there is g 2 G
such that Tga � Tb . Consequently, the action of G on ET is faithful, and the
action on xET is extremely proximal.

Moreover, in cases (ii) and (iii) then xET is infinite and perfect (that is, it has no isolated
points) andG acts faithfully on ET ; moreover, every nontrivial normal subgroup ofG has
unbounded orbits on T .

Proof. If T is a line, then the fact that G preserves no proper subtree means that G con-
tains a translation. It is then clear that G is a cyclic or infinite dihedral group acting
geometrically, as in (i). We may now assume T is not a line; the hypotheses ensure T
is leafless, so T has more than two ends. Since T is leafless, it is also easy to see that
every half-tree belongs to a geometric end of T , so ET is dense in xET .
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SupposeG fixes an end �; ifG fixed another end � 0, thenG would fix the line between
them, which is a proper subtree of T . Thus � is unique. Let ˇWV T !Z be a function such
that if a is an arc pointing towards �, then ˇ.o.a//� ˇ.t.a//D 1. By considering vertices
along two geodesic rays from some initial vertex v, where one ray represents � and the
other represents an end other than �, we see that ˇ is surjective. Let r W Œ0;1/! T be
a geodesic ray representing �. Since G fixes �, given g 2 G there exist n0 and t such
that gr.n/ D r.nC t / for all n � n0. From the graph structure, we have t 2 Z, and then
one sees that in fact ˇ.v/ � ˇ.gv/ D t for all v 2 V T . Thus G D P Ì hli, where l is
either trivial or a translation towards �, and P is the setwise stabiliser of each of the
horospheres ˇ�1.n/ around �. We can moreover rule out the case that l is trivial by noting
that P preserves a proper subtree, namely, the subtree spanned by ˇ�1.�N/. Now let
n 2 Z and suppose that P acts intransitively on ˇ�1.n/, say Xn is a proper nonempty P -
invariant subset. We see that l translates along an axisL, and then the union of the P -orbit
of L is a G-invariant subtree T 0 such that V T 0 \ ˇ�1.n/ is contained in either Xn or its
complement in ˇ�1.n/. In either case, we have a properG-invariant subtree, contradicting
our hypothesis. So in fact, P acts transitively on ˇ�1.n/ for each n 2 Z.

Let Y and Z be nonempty compact open subspaces of xET n ¹�º. We see that Y � Ta
and Tb � Z for some half-trees Ta and Tb of T , such that � 62 ETa. From the fact that P
acts transitively on every horosphere, we see that it acts minimally on xET n ¹�º. In particu-
lar, writing � 0 for the end ofL other than �, we see that there is g 2 P such that g� 0 2 ETb .
We then have gl�ng�1Ta � Tb , and hence gl�ng�1Y � Z, for some n � 0. Thus the
action on xET n ¹�º is extremely proximal.

The remaining case is that G fixes no ends of T . Let a and b be arcs of T . Since G
does not fix an end, we see that there is k 2 G such that a and ka point away from each
other, that is, Ta and Tka are disjoint. Now suppose that H is the set of h 2 G such that
o.ha/ 2 Tb and ha 62 ¹b; xbº. Then H ¤ ; by [21, Lemme 4.1]; taking h 2 H , if Tha is
not contained in Tb , then Tha � Tb and hence Thka � Tb . Thus there is g 2 G such that
Tga � Tb .

To show the action is extremely proximal, it suffices to show, for any two proper
nonempty clopen subsets Y andZ of xET , that there is g 2G such that gY �Z. As before,
we have Y � Ta and Tb � Z for some half-trees Ta and Tb of T . By the previous para-
graph, there is then g 2G such that Tga � Tb , from which it follows that gY �Z. We have
now shown that the action of G on xET is extremely proximal, proving (iii).

Now suppose we are in case (ii) or (iii); let B be the set of vertices of T of degree
at least 3. In either case, it is clear that xET is infinite. In case (ii), we see that some
horosphere, say ˇ�1.0/, intersects B; it then follows that ˇ�1.mn/ � B for all n 2 Z,
wherem is the translation length of l , so xET is perfect. In case (iii), xET is perfect because
it is a compact minimal G-space, so again the convex hull of B is the whole tree. Now let
g 2 G act trivially on ET . Then given v 2 B , there are ends �1, �2, �3 forming the corners
of an ideal triangle of T , such that v is the unique point lying on all three sides of the
triangle; in particular, g fixes B pointwise. Since the convex hull of B is T , we deduce
that g D 1, as required. Given a normal subgroup N with bounded orbits on T , we see
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that N fixes a vertex or inverts an edge; the fact that G preserves no subtree then implies
that N is trivial.

Given a compactly generated t.d.l.c. group G acting on a leafless tree T , we say the
action is arc-geometric if the arcs form a geometric G-set. This situation can be charac-
terised as follows.

Lemma 3.2 (See also [14, Theorem 11]). Let G be a compactly generated t.d.l.c. group
acting on a leafless tree T .

(i) The action is arc-geometric if and only if G has compact open arc stabilisers and
preserves no proper subtree.

(ii) Suppose that the action of G on T is arc-geometric. Then there is a G-metric
graph � with vertex set V � D AT where for all arcs .a; b/ of � , either b D xa
or oT .a/ D oT .b/. Moreover, for almost separated set X in V T , the set ATX
of all arcs of T between vertices of X is almost separated in � , so we have
a G-equivariant quotient map EG ! xET .

Proof. Suppose the action is arc-geometric; by definition, G has compact open arc stabil-
isers. Now let T 0 be a proper G-invariant subtree. Then since T is leafless, there is some
geodesic ray r of T such that r.0/ is a vertex of T 0, but thereafter r is outside T 0. In par-
ticular, we see that the distance from r.n/ to T 0 tends to infinity, meaning that the arcs in
the image of r lie in infinitely manyG-orbits, a contradiction. ThusG preserves no proper
subtree.

Conversely, suppose that G has compact open arc stabilisers and preserves no proper
subtree of T . After taking a quotient with compact kernel, we may assume G acts faith-
fully on T . By [19, Proposition 6.6], one sees that G has finitely many orbits on AT ,
and Gv is compactly generated for each vertex v. Thus G has arc-geometric action on T .
Consider now the action of Gv on o�1.v/: given a; b 2 o�1.v/, then a and b are in the
same G-orbit if and only if they are in the same Gv-orbit, and Ga D .Gv/a. Thus o�1.v/
is a geometric Gv-set. Now take v1; : : : ; vk to be representatives of the G-orbits on V T ,
and for 1 � i � k make a connected locally finite graph �vi with vertex set o�1.vi /, such
that Gvi acts geometrically on �vi . We then define a graph � with vertex set AT and arcs

A� D
[
a2AT

.a; xa/ [

k[
iD1

[
g2G

gA�vi :

It is then easy to see that � is connected, locally finite andG-invariant, so thatG acts on �
geometrically. By construction, if .a;b/ is an arc of � , then either bD xa or oT .a/D oT .b/.

Let X be an almost separated set of vertices in T , and let ATX be the set of arcs
a 2 AT such that ¹oT .a/; tT .a/º � X . Consider an arc .a; b/ of � such that a 62 ATX
and b 2 ATX . Then b ¤ xa, so oT .a/ D oT .b/. However, the only way a can be outside
ATX while having the same origin as an arc in ATX is if oT .a/ 2 X and tT .a/ 62 X ,
in other words, a 2 ıTX . Then by the fact that � is locally finite, there are only finitely
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many possibilities for the pair .a; b/, so ı�X� is finite. Thus ATX is almost separated as
a subset of V � . We deduce that

¹ATX j X � V T almost separatedº

is a subset A of B� . Note also that if X is bounded, then actually it is finite and con-
sists of vertices of finite degree, so ATX is also finite. Conversely, if AX is bounded,
then it is finite; since AX includes all but finitely many of the T -arcs incident with X , we
deduce thatX is finite. Moreover, we find that for any almost separated setsX1;X2 � V T ,
then AT .X1 [ X2/ has finite difference with ATX1 [ ATX2, and similarly for intersec-
tions and complements. Thus the map X 7! ATX induces an injective homomorphism
�WBT ! B�; the dual map O� is then a quotient map from xE� (which can be identified
with EG) to xET .

In particular, we see that if the compactly generated t.d.l.c. group G has an arc-
geometric action on a leafless tree T , then it has at least jxET j ends. Conversely, if G
has more than one end, then the space of ends can be approximated using arc-geometric
actions. It is useful to divide into three cases:

(A) G acts geometrically on a line.

(B) G has a vertex-transitive action on a locally finite tree T with compact open
stabilisers, fixing exactly one end.

(C) G has more than one end but does not satisfy (A) or (B).

In case (A), it is clear that G is compact-by-D, where D is either infinite cyclic or
infinite dihedral, and that jEGj D 2. In particular, Lemma 3.2 ensures that (A) and (B) are
mutually exclusive.

For case (B), say a compactly generated t.d.l.c. group G is a scale group if G admits
a faithful vertex-transitive action on a locally finite tree T with compact open stabilisers,
fixing exactly one end. We say G is an almost scale group if G=N is a scale group for
some compact normal subgroup N . Every almost scale group is a focal hyperbolic group
in the sense of [5]. The results from loc. cit. imply the following characterisation.

Proposition 3.3. LetG be a compactly generated t.d.l.c. group. ThenG is an almost scale
group if and only if it has an arc-geometric action on a leafless tree T , fixing an end, such
that T is not a line. If G has such an action, then T is locally finite and EG Š ET as
G-spaces.

Moreover, if G=N is a scale group for some compact normal subgroup N , then G has
exactly one fixed point in EG, and N is the largest compact normal subgroup of G.

Proof. If G=N is a scale group for some compact normal subgroup N , then G clearly
has the specified action on a locally finite tree and also on its space of ends. Since G=N
acts vertex-transitively on an infinitely ended tree, its unique compact normal subgroup is
trivial, so N is the largest compact normal subgroup of G.
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Conversely, suppose G admits an arc-geometric action on a leafless tree T , fixing
an end �, such that T is not a line. Then by Lemma 3.2, the action preserves no proper
subtree, so we are in case (ii) of Proposition 3.1, with G D P Ì hli. If a is an arc pointing
towards the fixed end �, then Ga D Go.a/. Moreover, the fact that P acts transitively on
each horosphere implies that Go.a/ must act transitively on o�1.o.a// n ¹aº. Since Go.a/
is compact and arc stabilisers are open, we deduce that o�1.o.a// is finite, and thus the
tree is locally finite, and hence a G-metric graph, ensuring that EG Š ET as G-spaces.
In particular, G is hyperbolic, hence focal hyperbolic in the sense of [5]. It follows from
[5, Lemma 5.1] thatG has a largest compact normal subgroupN , and then it follows from
[5, Theorems 7.1 (b) and 7.3] that G=N is a scale group.

It remains to give the approximation of EG using arc-geometric actions on trees in
case (C). Say that a compactly generated t.d.l.c. group G is of general infinitely-ended
type if G has more than one end, does not act geometrically on a line, and is not an almost
scale group. In this case, we can appeal to a construction by Dicks–Dunwoody. Given
a graph � and A� V � , let ıA be the set of arcs a such that o.a/ 62 A and t .a/ 2 A; notice
that ıA is finite if and only if A is almost separated. Write Bn� for the subalgebra of B�
generated by the almost separated sets A such that jıAj � n; note that Bn� is G-invariant
and that .Bn�/n�0 is an ascending sequence of subalgebras with union B� . By [11, The-
orem II.2.20], there is an ascending sequence .Rn/n�1 of nonempty G-invariant subsets
of B� , such that Rn generates Bn� as a subalgebra and has the poset structure of the set
of half-trees of a tree: specifically, it carries an order-reversing involution c (which is just
complementation in V �), such that for all A;B 2 Rn exactly one of the following holds:

A < B; A D B; A > B; A < Bc ; A D Bc ; A > Bc ;

and such that for allA;B 2Rn there are only finitely many C 2Rn such thatA<C <B .
The elements A 2Rn can also be chosen so that both A and Ac span connected subgraphs
of V � . There is then an associated tree T .n/ D T .Rn/ such that the half-trees corres-
pond to the poset Rn with the same partial order, yielding a G-equivariant embedding
�nWBT

.n/ ! B� with image Bn� . The tree T .n/ is also equipped with a canonical G-
equivariant map 'nW V � ! V T .n/, with the property that 'n.v/ belongs to the half-tree
corresponding to A 2 Rn if and only if v 2 A. In particular, note that 'n.v/ ¤ 'n.w/ if
and only if v andw are separated by some element of Bn� . (See for instance [14, §3.1.3].)

Lemma 3.4. LetG be a compactly generated t.d.l.c. group, let � be a Cayley–Abels graph
for G, and let the tree T .n/ be as above for some n � 1. Then the action of G on T .n/

preserves no proper subtree. If T .n/ has more than one vertex, then the action of G on
T .n/ is arc-geometric.

Proof. We may assume T D T .n/ has more than one vertex. We observe that 'n.V �/
intersects every half-tree of T , since every element of Rn contains a vertex. Since G acts
transitively on V � , it also acts transitively on 'n.V �/; it follows by [21, Lemme 4.1]
that G preserves no proper subtree.
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Given a 2AT , thenGa is the setwise stabiliser of the elementRa 2Rn corresponding
to the half-tree Ta. Since ıRa is bounded, Ga has bounded orbits on �; since G acts
geometrically on � , it follows that Ga is compact. On the other hand, since ıRa consists
of finitely many arcs, Ga is open. Thus by Lemma 3.2, the action is arc-geometric.

We thus obtain an approximation of EG by boundaries of trees on which G acts arc-
geometrically.

Proposition 3.5. LetG be a compactly generated t.d.l.c. group of general infinitely-ended
type, and let � be a Cayley–Abels graph for G. Then G has a unique largest compact
normal subgroup N , and the action of G on E� is extremely proximal with kernel N .
Moreover, if we construct the trees T .n/ as above, then there is some t such that for
all n � t , the dual of the inclusion map �nWBT .n/ ! B� restricts to a quotient map
y��n WE� !

xET .n/. In particular, EG Š lim
 �n�t

xET .n/ as G-spaces.

Proof. Consider two proper nonempty clopen subsets Y and Z of E� . Via Stone duality,
Y and Z correspond to elements xAY and xAZ of B� n ¹0;1º. Choose n large enough
that T D T .n/ has more than one vertex and xAY and xAZ belong to the image of Bn�
in B� , and take representatives AY and AZ of xAY and xAZ respectively in Bn� . Then
'n.AY / and 'n.AZ/ are each described as subsets of 'n.V �/ by taking unions of inter-
sections with finitely many half-trees of T , and hence there are half-trees Ta and Tb of T
such that

'n.AY / � Ta and Tb \ '.V �/ � Tb :

By Proposition 3.1, we see that gTa � Tb for some g 2G, which then implies gAY � AZ
(since AY and AZ are saturated with respect to 'n). Therefore, G has extremely prox-
imal action on E� . We also see by Proposition 3.1 that if T .n/ has more than one vertex,
then the kernel N of the action of G on T .n/ is the largest compact normal subgroup
of G.

Now let t be large enough that T .n/ has more than one vertex for all n � t , and con-
sider the image of E� under the dual map y�n from x� to T .n/ for n � t . We see that G
has extremely proximal, in particular, minimal, action on y�n.E�/ and on xET .n/; thus the
two subspaces of T .n/ are either equal or disjoint. Moreover, taking g 2 G with hyper-
bolic action on T .n/, then by considering the action of g on 'n.V �/, we see that g has an
attracting end � on � , which is mapped to the attracting end of g on T .n/. Thus y�n.E�/
and xET .n/ are not disjoint, so they are equal. Since the spaces are compact Hausdorff
and y�n is continuous, it restricts to a quotient map y��n W E� ! xET

.n/. In particular, iden-
tifying E� with EG, we recover EG as the desired inverse limit, and the kernel of the
action is again N .

To summarise this section, here are the possible large-scale structures of a compactly
generated t.d.l.c. group G, regarded from the perspective of the space of ends.
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Proposition 3.6. Let G be a compactly generated t.d.l.c. group, and let N be the kernel
of the action of G on EG. Then exactly one of the following holds:

• (Compact) G is compact and G D N .
• (One-ended) jEGj D 1 and G D N .
• (Two-ended) jEGj D 2 and G has a largest compact normal subgroup K such that

G=K 2 ¹ZIZ=2Z �Z=2Zº, which implies, in particular, that G acts geometrically on
a line.

• (Focal hyperbolic) EG is homeomorphic to the Cantor set, N is compact and G=N
is a scale group, fixing exactly one point � in EG and acting faithfully and extremely
proximally on EG n ¹�º.

• (General infinitely-ended) We have a sequence of trees Ti , such that on each tree,
G acts arc-geometrically on Ti and extremely proximally with compact kernel N
on xETi , and EG Š lim

 �
xETi as G-spaces.

We remark that if G is noncompact with no infinite cyclic or infinite dihedral quotient
(for example, G 2 S), then only the one-ended and general infinitely-ended cases can
occur.

4. TMS subgroups

4.1. A sufficient condition for a micro-supported action on a tree

In this subsection, we establish a sufficient condition for a compactly generated t.d.l.c.
group G to have an arc-geometric action on a tree with micro-supported action on the
boundary. In order to state the theorem, we define a certain kind of subgroup of a t.d.l.c.
group.

Definition 4.1. Let G be a t.d.l.c. group, let K be a subgroup of G, and let U be a com-
pact open subgroup of G. We say .K; U / is a TMS pair of G if it has the following
properties:

(a) For each compact normal subgroup N of G, and each G-conjugate V of U , the
set of g 2 G such that gKg�1 � UN but gKg�1 — V has compact closure.

(b) The set of g 2 G such that gKg�1 � U does not have compact closure.
(c) For each compact normal subgroup N of G, the index jK W K \N j is infinite.

We sayK � G is a TMS subgroup ofG if it forms a TMS pair .K;U / with some compact
open subgroup U of G.

Here is the main theorem of this section.

Theorem 4.2. Let G be a compactly generated t.d.l.c. group with a compact normal
subgroup M , such that there is a TMS subgroup K=M of G=M . Then G has a unique
largest compact normal subgroup N and G=N is ŒA�-semisimple, with faithful action on
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EG Š EG=N such that every nonempty open set contains the support of some G=N -
conjugate of K=N . Moreover, one of the following holds:

(i) G=N is a scale group.
(ii) We have a sequence of trees .Ti /i�0 on which G acts, with the following proper-

ties:

(a) For each i , the action of G on Ti is arc-geometric, with kernel N and with
the support of K confined to some half-tree.

(b) As G-spaces, EG Š lim
 �
xETi and the action on EG is extremely proximal.

We begin the proof with a series of lemmas, starting with some general observations
on the TMS property.

Lemma 4.3. Let G be a t.d.l.c. group, and let .K;U / be a TMS pair for G.

(i) The subgroup K is infinite with compact closure, so, in particular, it is nondis-
crete, and .g xKg�1; U / is a TMS pair for all g 2 G.

(ii) If M is a compact normal subgroup of G, then .KM=M; UM=M/ is a TMS
pair of G=M .

(iii) Let V and W be compact open subgroups of G such that V is contained in
a conjugate of UN for some compact normal subgroup N of G, and W �T
g2G gUg

�1. Then the set of g 2 G such that gKg�1 � V but gKg�1 —W is
compact and open, while the set of g 2 G such that gKg�1 � W does not have
compact closure.

Proof. Throughout the proof, we refer to properties (a), (b) and (c) of the definition of
a TMS pair.

We see by property (b) that K is contained in a compact identity neighbourhood, so it
has compact closure, andK is infinite by property (c). It is clear that the properties (a), (b)
and (c) are invariant under taking conjugates and taking the closure, so any conjugate of xK
forms a TMS pair with U . This proves (i).

Take a compact normal subgroup M of G and write zA for AM=M , where A is an
element or subset of G. It is clear that properties (b) and (c) are satisfied by . zK; zU/ in zG.
For property (a), take a compact normal subgroup zN D N=M of zG and a zG-conjugate
zV D zh zU zh�1 of zU , for some h 2 G; note that N is a compact normal subgroup of G
and V WD hUh�1 is a G-conjugate of U . Given g 2 G such that zg zKzg�1 is contained
in zU zN but not in zV , then gKg�1 � UN but gKg�1 — VN ; in particular, gKg�1 — V .
By property (a), the set of elements g 2G satisfying these conditions has compact closure,
and hence the same is true of its image in zG. Thus property (a) is satisfied by . zK; zU/,
completing the proof of (ii).

For (iii), we first note that the setH of g 2 G such that gKg�1 � V but gKg�1 — W
is a union of right cosets of the compact open subgroup V \W ; thus H is clopen, and
to show H is compact, it suffices to show it has compact closure. By compactness, we
see that W �

Tn
iD1 giUg

�1
i , for some finite subset ¹g1; : : : ; gnº of G, and hence by
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properties (a) and (b) of a TMS pair, the set of g 2G such that gKg�1 �W does not have
compact closure. To proveH has compact closure, it is enough to show for 1 � i � n that
the set of g 2 G such that gKg�1 � V but gKg�1 — giUg�1i has compact closure. Thus
we may assume W is a conjugate of U . We also have V � hUNh�1 for some h 2 G, so
that H is contained in the set of g 2 G such that gKg�1 � hUNh�1 but gKg�1 — W ;
thus we may assume V D hUNh�1. Finally, we see from property (a) that h�1H has
compact closure (noting that h�1W h is a conjugate of U ), and hence H has compact
closure as required, completing the proof of (iii).

Note that given Lemma 4.3 (i), in defining a group with a TMS pair .K; U /, it makes
little difference whether or not we require K to be compact.

Lemma 4.4. Let G be a compactly generated t.d.l.c. group with a subgroupK, and let X
be a geometric G-set with some G-metric, such that G acts faithfully. Suppose .K; U / is
a TMS pair for some compact open subgroup U such that

T
g2G gUg

�1 D ¹1º.

(i) X is not quasi-isometric to a line.

(ii) For all r � 0 sufficiently large, writing XK;r for the set of points in x 2 X such
that K fixes pointwise the ball of radius r around x, then XK;r is coarsely almost
separated, and both XK;r and X nXK;r are infinite. If X D G=V for some V �
U , we can take all r � 0.

Proof. Since K has the same fixed points as xK, we may assume that K is closed, hence
compact.

For (i), suppose X is quasi-isometric to a line. Then G has a compact open normal
subgroup N such that G=N is cyclic or dihedral. But then jK W N \Kj is finite, a contra-
diction.

For (ii), we first consider the case that X D G=V for some open V � U , and the G-
metric is given by a Cayley–Abels graph � with vertex set G=V and edges of � given by
.gV;gsV / for s 2 S , where S is a compact symmetric generating set such that S D VSV .
Note that .K; V / is a TMS pair of G by Lemma 4.3 (iii).

Let XK be the set of fixed points of K on X , and let V1 D
T
s2S sVs

�1; since S is
compact, V1 is a finite intersection of conjugates of V . Given gV 2 XK with a neighbour-
ing vertex w 2 X n XK , then w D gsV for some s 2 S . After conjugating, we find that
g�1Kg � V , but g�1Kg — V1. Since .K; V / is a TMS pair, this means g is confined to
a compact set, leaving only finitely many possibilities for gV and hence for w. We deduce
that XK is an almost separated set of X .

Suppose for a contradiction that XK is finite, say XK D ¹g1V; : : : ; gnV º; and let
k 2 K n ¹1º. We can then find a compact open subgroupW that is disjoint from ¹g�11 kg1;

: : : ; g�1n kgnº; since
T
g2G gVg

�1 D ¹1º, in fact, we can take W to be a finite intersec-
tion of G-conjugates of V , including V itself. It then follows that no G-conjugate of W
containsK, soW contains no G-conjugate ofK, which is incompatible with property (b)
of the TMS pair .K;W /. Similarly, suppose for a contradiction that X nXK is finite, say
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X D XK [ ¹g1V; : : : ; gnV º. Then the group K 0 D K \
Tn
iD1 giVg

�1
i is of finite index

in K, hence nontrivial, but fixes every point in X . To put this another way, we have

N WD hgK 0g�1 j g 2 Gi � V � U;

which contradicts the hypothesis
T
g2G gUg

�1D ¹1º. From these contradictions, we con-
clude that XK is infinite with infinite complement. Since XK is almost separated, for any
given r � 0, we see that XK;r is a cofinite subset of XK ; thus XK;r is almost separated
and both XK;r and X nXK;r are infinite.

In the general case,G acts onX with finitely many orbits and compact open stabilisers.
Choose some point x 2 X ; there is then some r0 such that for all r � r0 and x 2 X , the
pointwise fixator Gx;r of the ball of radius r around x is contained in U . From the fact
that the set of fixed points of K on G=Gx;r is infinite with infinite complement, we see
that XK;r is infinite with infinite complement. Let r1 be large enough that every ball
of radius r1 intersects all orbits of G, and let r � r0 C r1. Fix n � 0, and suppose we
have y 2XK;r and z 2X nXK;r with dX .y; z/� n. Then there are some points y0 and z0

within distance r1 of y and z, respectively, that belong toGx; say y0 D gyx and z0 D gzx.
Since y0 and z0 are within a bounded distance of each other, we can take gz D gyg,
where g is confined to a finite set F1, chosen independently of .y; z/. There is then a finite
subset F2 of G such that

T
f 2F2

f Gx;r�r1f
�1 fixes all points within distance r C r1

of hx for all h 2 F1.
We now haveK �Gy0;r�r1 , so g�1y Kgy �Gx;r�r1 , but g�1y Kgy moves a point within

distance r C r1 of g�1y z0 D gx, so g�1y Kgy — f Gx;r�r1f
�1 for some f 2 F2. Since

.K;Gx;r�r1/ is a TMS pair and F2 is finite, we see that g�1y is confined to a compact set,
independently of the pair .y; z/. Thus z0 is confined to a bounded set, and hence also z is
confined to a bounded set, showing that ınXK;r is bounded. ThusXK;r is coarsely almost
separated.

We next consider the scale group case.

Lemma 4.5. LetG be a scale group with a TMS subgroupK, acting geometrically on the
locally finite leafless tree T with fixed end �. Then K fixes pointwise a half-tree T 0 such
that � 2 ET 0. Consequently, the action of G on ET is nondiscretely micro-supported.

Proof. We may quotient out by the kernel of the action on T , and so assume G acts
faithfully on T . It is then easy to see that G has no nontrivial compact normal subgroups.
For each v 2 V T , we see that the conjugacy class of Gv forms a base of neighbourhoods
of the identity in G; arguing as in Lemma 4.3 (iii), we see that .K;Gv/ is a TMS pair.

Let TK be the fixed subtree of K. We have G D P Ì hli, where l is a translation
towards � and the P -orbits on V T are exactly the horospheres around �. Since K is
compact, it fixes pointwise a ray representing �, and hence � 2 ETK . By Lemma 4.4 (ii)
and the fact that TK is a subtree, we see that V TK is an almost separated subset of V T
with infinite complement. We can thus take a half-tree T 0 D Ta, with a on the axis of l
and pointing towards � , such that t .a/ 2 V TK and such that no vertex of Ta belongs to
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ı1.V T
K/c , ensuring that Ta � TK ; in other words, the support of K is confined to the

half-tree Txa. In particular, in the action on ET , the support of K is confined to a compact
subset of ET n ¹�º. Since G has extremely proximal action on ET n ¹�º, it follows that
every nonempty open subset of ET n ¹�º, and hence also of ET , contains the support of
some G-conjugate of K. Since K is nondiscrete and G acts faithfully on ET , we deduce
that the action is nondiscretely micro-supported.

We now conclude the proof of the theorem.

Proof of Theorem 4.2. Choose a compact open subgroup U=M of the quotient group
G=M such that .K=M; U=M/ is a TMS pair for G=M . Let � be a Cayley–Abels graph
for G=M with vertex set G=U , and let �K be the graph of fixed points of K acting
on � . Without loss of generality, M D

T
g2G gUg

�1. Then by Lemma 4.4 (ii), there is
an almost separated subset of V � that is infinite with infinite complement. Moreover, by
Lemma 4.4 (i), G=M does not act geometrically on a line. We deduce that G=M acts arc-
geometrically on a leafless tree T that is not a line, and we have an action as in case (ii)
or (iii) of Proposition 3.1, with compact open arc stabilisers. In particular, the kernelN=M
of this action is compact, and, on the other hand, any compact normal subgroup of G has
bounded orbits, so is contained in N . Thus N is the largest compact normal subgroup
of G, and we note that EG Š EG=N as G-spaces. From now on, we can pass to the quo-
tient G=N , so we assume G has no nontrivial compact normal subgroups; in particular,
M D ¹1º. We also note via Lemma 4.3 (iii) that .K; V / is a TMS pair for every open
subgroup V contained in a conjugate of U .

If G is a scale group, the action of G on EG is nondiscretely micro-supported by
Lemma 4.5, and hence by Theorem 2.2, G is ŒA�-semisimple. Thus we may assume for
the rest of the proof that G is not a scale group. Since G does not act arc-geometrically on
a line, we then see by Proposition 3.3 that in every arc-geometric action of G on a leafless
tree, G fixes no ends of the tree, so in fact G is of general infinitely-ended type.

Starting from the Cayley–Abels graph � for G, form the trees Ti WD T .tCi/ as in the
Dicks–Dunwoody construction, starting from some t � 1 large enough that Ti has more
than one vertex for all i � 0. By Lemma 3.4, it follows that the action of G on Ti is arc-
geometric with no G-invariant subtree. Equip ATi with a G-metric di as in Lemma 3.2.
Note that we are in case (iii) of Proposition 3.1, so G has faithful extremely proximal
action on the infinite perfect space xETi .

Consider the set .ATi /K;r of a2ATi such thatK fixes every b2ATi with di .a; b/�r .
By Lemma 4.4 (ii), for r � 0 sufficiently large, the set Y D .ATi /K;r is coarsely almost
separated, infinite and has infinite complement in ATi . Considering the metric on ATi ,
we see that the span of Y contains a half-tree of Ti , with the result that the support of K
on xETi is not dense. Since the action of G on xETi is extremely proximal, it follows that
every nonempty open subset of xETi contains the support of some G-conjugate of the
nondiscrete subgroup K; thus the action of G on xETi is nondiscretely micro-supported.
In particular,G is ŒA�-semisimple by Theorem 2.2. The assertions of (ii) (a) are now clear;
(ii) (b) follows by Proposition 3.5.
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4.2. Sources of TMS subgroups

In light of Theorem 4.2, it is interesting to consider sufficient conditions for a compactly
generated t.d.l.c. group G to have a TMS subgroup. We first note a partial converse to
Theorem 4.2.

Proposition 4.6. Let G be a compactly generated t.d.l.c. group with faithful arc-geomet-
ric action on a leafless tree T . Let K D ristG.Ta/ for some arc a 2 AT , and suppose
that K fixes only finitely many arcs of Ta. Then .K;Ga/ is a TMS pair.

Proof. Equip AT with a G-metric. The hypothesis ensures that .AT /K differs from ATxa
by only finitely many elements; thus .AT /K is almost separated. For property (a) of a TMS
subgroup, it is enough to show the following: for any two arcs b1 and b2, the set Lb1;b2
of g 2 G such that gKg�1 � Gb1 but gKg�1 — Gb2 is compact. So fix b1; b2 2 AT , and
let g 2 Lb1;b2 . Then we see that K fixes g�1b1 but not g�1b2. Thus g�1b2 2 ıd .AT /K ,
where d D d.b1; b2/ does not depend on g, so g�1b2 is confined to a finite set, and
hence g is confined to a compact set. Thus property (a) for a TMS pair is satisfied.

We now consider the type of action G has on T ; note that by Lemma 3.2, G preserves
no proper subtree. The fact that K acts nontrivially means that T cannot be a line; it is
possible that G fixes at most one end � , but since K only fixes finitely many arcs of Ta,
we see that � cannot be an end of Ta. In either case, we see by Proposition 3.1 that xETa
is a compressible subspace of xET under the action of G. From there it is easy to see that
the set of g 2 G such that gKg�1 � Ga does not have compact closure, so property (b)
is satisfied. On the other hand, one sees that any compact normal subgroup N of G acts
trivially on the tree, from which it follows that jK W K \N j is infinite. Thus property (c)
is satisfied, and we conclude that .K;Ga/ is a TMS pair.

More interesting is to obtain a TMS subgroup without imposing much large-scale
structure on G, but more from the local structure of G. Given the conclusions of The-
orem 4.2, a necessary condition is that G has a largest compact normal subgroup N
and G=N is faithful micro-supported. For convenience, let us take N D ¹1º, so we as-
sume G itself is faithful micro-supported and has no nontrivial compact normal sub-
groups. In particular, via Theorem 2.2,G is ŒA�-semisimple and acts faithfully on LC.G/.
In this context, we find a sufficient condition for K D ristG.˛/ to be a TMS subgroup for
˛ 2 LC.G/, with three variants depending on whether or not ˛ 2 LD.G/ and whether
or not G is locally of finite quotient type.

Proposition 4.7. Let G be an ŒA�-semisimple t.d.l.c. group without nontrivial compact
normal subgroups, and let Q � LC.G/ n ¹0;1º be nonempty and G-invariant, generat-
ing a subalgebra B D hQi. Fix ˛ 2 Q and let K D ristG.˛/, with all rigid stabilisers
defined with respect to the action on B. Suppose ˛ and Q satisfy the following conditions:

(a) Given ˇ 2 B such that ˇ > 0, there is 0 <  � ˇ such that  2 Q.

(b) There is g 2 G such that g˛ < ˛.
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(c) For all ˇ 2 Q, its stabiliser Gˇ is compact.

(d) At least one of the following holds:

(1) For each natural number n, there are only finitely many ˇ 2 Q such that
ˇ < ˛ and

jK W Kˇ j � n:

(2) We have Q � LD.G/, and for each ˛ 2 Q and natural number n, there are
only finitely many ˇ 2 Q such that ˇ < ˛ and

jK W ristG.ˇ/CK.ristG.ˇ//j � n:

(3) We have Q � LD.G/, and G is locally of finite quotient type.

Then .K;U / is a TMS pair of G for every compact open subgroup U of G.

Proof. From (c), together with the fact that G has no nontrivial compact normal sub-
groups, we see that G acts faithfully on B. By [7, Proposition 5.16], for all ˛ 2 B the
group ristG.˛/ is the largest locally normal subgroup representing ˛; in particular, given
distinct elements ˛ and ˇ of B, then ristG.˛/ and ristG.ˇ/ do not have any open subgroup
in common. Note also that

NG.ristG.˛// D G˛

for all ˛ 2 B; in particular, NG.ristG.˛// is compact for all ˛ 2 Q.
Fix compact open subgroups U and V of G; we claim that the set H D HU;V of

h 2 G such that hKh�1 � U but hKh�1 — V has compact closure. We may assume that
U — V . Since U is compact and acts faithfully on B with finite orbits, there is a base
of neighbourhoods of the identity in U consisting of pointwise stabilisers of finite U -
invariant subalgebras of B. Since U \ V is a neighbourhood of the identity in U , we
infer that there is a finite U -invariant subalgebra B 0 of B whose pointwise stabiliser W
in U is contained in V ; note that W is also the pointwise stabiliser in U of the set P D

¹ˇ1; : : : ; ˇmº of atoms of B 0. By condition (a), for each 1 � i � m there is 0 < i � ˇi
such that i 2Q. Given 1� i �m, writeHi for the set of g 2G such that gKg�1 �U and
˛ > g�1i . Let n 2N be such that jU WLi j � n for 1� i �m, where under hypothesis (1),
we set Li D Ui and under hypothesis (2), we set

Li D ristU .i /CU .ristU .i //:

Now consider g 2 Hi .
Under hypothesis (1), the stabiliser of i in gKg�1 has index at most n, so the sta-

biliser of g�1i in K has index at most n. We deduce that there are only finitely many
possibilities for g�1i .

Under hypothesis (2), we have U � gKg�1 > ristG.i /, so

ristG.i / D ristgKg�1.i / D ristU .i /:
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After conjugating by g, we see that ristG.g�1i / D ristK.g�1i / and

jK W ristG.g�1i /CK.ristG.g�1i //j D jK W K \ g�1Ligj � n:

Hypothesis (2) then leaves only finitely many possibilities for g�1i .
Under hypothesis (3), let W D K � ristU .˛?/. Given ˇ 2 Q and a natural number n0

such that ˇ < ˛ and

jK W ristG.ˇ/CK.ristG.ˇ//j � n0;

then ristG.ˇ/ is a direct factor of an open subgroup of W of index at most n0. By Lem-
ma 2.6, this leaves only finitely many possibilities for ˇ, so, in fact, hypothesis (2) holds.

In all cases, since Gi is compact, we deduce that Hi is compact.
Given h 2 H , then hKh�1 acts nontrivially on P , so ˇi and kˇi are disjoint for some

k 2 hKh�1 and 1 � i � m, and hence h˛ > ˇi � i . We deduce that

H �

m[
iD1

Hi ;

thus H has compact closure as claimed. In particular, .K; U / satisfies condition (a) for
a TMS pair.

By hypothesis, there is g 2 G such that g˛ < ˛. It then follows that g is not contained
in any compact subgroup and gnKg�n <K for all n� 0. TakingW to be a compact open
subgroup of G containing K, it follows that the set of h 2 G such that hKh�1 � W is
unbounded; since HW;U has compact closure, the set of h 2 G such that hKh�1 � U is
also unbounded. Thus .K;U / satisfies condition (b) for a TMS pair.

Finally, by hypothesis G has no finite locally normal subgroups, so K is infinite.
Since G has no nontrivial compact normal subgroups, condition (c) for a TMS subgroup
is immediate. Thus .K;U / is a TMS pair of G.

To justify some of the hypotheses in Proposition 4.7, we recall the following from [8].

Lemma 4.8 (See [8, Theorem 6.19]). Let G be an ŒA�-semisimple t.d.l.c. group without
nontrivial compact normal subgroups, and let A be a subalgebra of LD.G/ on which G
acts faithfully. Then there exist nonzero elements ˛1; : : : ; ˛d of A, where d is the number
of minimal nontrivial closed normal subgroups of G, such that for all ˇ 2 A n ¹0º, there
are g 2 G and 1 � i � d such that g˛i < ˇ. In particular, setting

Q D ¹g˛i j g 2 G; 1 � i � dº and ˛ D ˛1;

then ˛ and Q satisfy conditions (a) and (b) of Proposition 4.7.

The critical conditions in Proposition 4.7 are thus (c) and (d). In particular, we can
now prove Theorem 1.5.
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Proof of Theorem 1.5. Since G has no nontrivial compact normal subgroups, for every
˛ 2 Q, we see that G˛ contains no nontrivial normal subgroup of G. Hence G acts faith-
fully on B D hQi. By Theorem 2.2, G is ŒA�-semisimple. By our present hypotheses,
conditions (a), (c) and (d) (3) of Proposition 4.7 are satisfied, and by Lemma 4.8, we can
take ˛ 2 Q such that condition (b) is satisfied. Thus K D ristG.˛/ is a TMS subgroup
of G.

By [18, Corollary 1.4], it follows that given a compact open subgroup U of G, then U
is not isomorphic to any of its proper open subgroups. In particular, we see that if G acts
on a tree with more than two ends and with compact open stabilisers, then G cannot fix
any end of the tree. Thus we are in case (ii) of Theorem 1.3.

Theorem 1.5 can be used to give a sufficient condition for a one-ended compactly
generated t.d.l.c. group G to be locally indecomposable. The only nonobvious aspect of
applying Theorem 1.5 in this manner is in imposing conditions on locally normal sub-
groups (without direct reference to the decomposition lattice) ensuring that elements of
LD.G/ n ¹0;1º have compact stabilisers.

Corollary 4.9. Let G be a nontrivial compactly generated t.d.l.c. group. Suppose the fol-
lowing: G is one-ended; QZ.G/ D ¹1º; G has no nontrivial compact normal subgroups;
G is locally of finite quotient type; no open subgroup of G has an infinite discrete quo-
tient; and the centraliser of every nontrivial closed locally normal subgroup is compact.
Then G is locally indecomposable.

Proof. Let G be locally decomposable, that is, there is some ˛ 2 LD.G/ n ¹0;1º.
Then G˛ is an open subgroup, such that an open normal subgroup of G˛ splits as a direct
product H D ristG.˛/ � ristG.˛c/. Since the groups ristG.˛/ and ristG.˛c/ are closed
locally normal subgroups that centralise each other, they are both compact, and hence H
is compact. Since G˛ has no infinite discrete quotient, G˛=H is finite, so G˛ is also com-
pact.

Our goal is to invoke Theorem 1.5 with Q D LD.G/ n ¹0;1º. Since G˛ is com-
pact for all ˛ 2 Q and G has no nontrivial compact normal subgroup, it follows that the
G-action on the Boolean algebra B D hQi is faithful. Therefore, G is ŒA�-semisimple by
Theorem 2.2, and it follows from Lemma 4.8 that all hypotheses of Theorem 1.5 are sat-
isfied. It follows that G has more than one end, contradicting our hypothesis. So we must,
in fact, have LD.G/ D ¹0;1º.

The authors do not know a general method for proving that, given a t.d.l.c. group G,
that the centraliser of every nontrivial closed locally normal subgroup of G is compact.
However, such a restriction on centralisers can be proved for many complete geometric
Kac–Moody groups, allowing the application of Corollary 4.9; this is done in another
article [6].
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