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Realizing invariant random subgroups as
stabilizer distributions

Simon Thomas

Abstract. Suppose that � is an ergodic invariant random subgroup of a countable groupG such that
ŒNG.H/ W H� D n <1 for �-a.e. H 2 SubG . In this paper, we consider the question of whether �
can be realized as the stabilizer distribution of an ergodic action G Õ .X; �/ on a standard Borel
probability space such that the stabilizer map x 7! Gx is n-to-one.

1. Introduction

Let G be a countable discrete group, and let SubG be the compact space of subgroups
H 6 G. Then a Borel probability measure � on SubG which is invariant under the conju-
gation action of G on SubG is called an invariant random subgroup or IRS. For example,
suppose that G acts via measure-preserving maps on the standard Borel probability space
.X; �/, and let f WX ! SubG be the G-equivariant stabilizer map defined by

x 7! Gx D ¹g 2 G j g � x D xº:

Then the corresponding stabilizer distribution � D f�� is an IRS of G. In fact, by a result
of Abért–Glasner–Virág [1], every IRS of G can be realized as the stabilizer distribution
of a suitably chosen measure-preserving action. Moreover, as pointed out by Creutz–
Peterson [3], using the ergodic decomposition theorem, it follows that if � is an ergodic
IRS of G, then � is the stabilizer distribution of an ergodic action G Õ .X; �/.

If � is an IRS of a countable groupG, then the construction of Abért–Glasner–Virág [1]
realizes � as the stabilizer distribution of a measure-preserving action G Õ .X; �/ such
that the set ¹x 2 X j Gx D H º is uncountable for �-a.e. H 2 SubG . There are many
examples of IRSs where this cannot be avoided.

Notation 1.1. Throughout this paper, if G Õ X is a Borel action of a countable group G
on a standard Borel space X , then the corresponding orbit equivalence relation will be
denoted by EX

G .

Theorem 1.2. Suppose that � is an ergodic IRS of a countable group G with the prop-
erty that ŒNG.H/ W H� D 1 for �-a.e. H 2 SubG . If � is the stabilizer distribution

2020 Mathematics Subject Classification. Primary 37A15; Secondary 37A20.
Keywords. Invariant random subgroup, cocycle.

https://creativecommons.org/licenses/by/4.0/


S. Thomas 354

of a measure-preserving action G Õ .X; �/ on a Borel probability space, then the set
¹x 2 X j Gx D H º is uncountable for �-a.e. H 2 SubG .

Proof. If not, it follows that the set ¹x 2 X j Gx DH º is countable for �-a.e.H 2 SubG .
Consider the Borel equivalence relation E on X defined by

xEy , Gx D Gy :

Then for �-a.e. x 2 X , the corresponding E-class Œx�E is countable. Hence, after restrict-
ing to a Borel subset X0 � X with �.X0/ D 1 if necessary, we can suppose that Œx�E
is countable for every x 2 X . Thus E is a smooth countable Borel equivalence relation
on X . Since E 0 D E \ EX

G � E, it follows that E 0 is also smooth. (This is a straight-
forward consequence of the Feldman–Moore theorem [5]. For example, see Thomas [8,
Lemma 2.1].) Also, since Gx D Gg �x whenever g 2 NG.Gx/, it follows that every E 0-
class is infinite. But then, by Dougherty–Jackson–Kechris [4, Proposition 2.5], since EX

G

contains the smooth aperiodic Borel equivalence relation E 0, it follows that EX
G is com-

pressible; and hence, by Dougherty–Jackson–Kechris [4, Theorem 3.5], there does not
exist a G-invariant Borel probability measure on X , which is a contradiction.

On the other hand, suppose that � is an ergodic IRS of a countable group G such that
ŒNG.H/ W H� < 1 for �-a.e. H 2 SubG . Then there exists an integer n � 1 such that
ŒNG.H/ W H� D n for �-a.e. H 2 SubG . If n D 1, then � is the stabilizer distribution of
the ergodic action G Õ .SubG ; �/ and the corresponding stabilizer map H 7! NG.H/

is �-a.e. injective. Now suppose that n > 1 and that � is the stabilizer distribution of the
measure-preserving action G Õ .X; �/. If x 2 X and g 2 NG.Gx/, then Gx D Gg �x .
It follows that for �-a.e. x 2 X , the stabilizer map f WX ! SubG is n-to-one on the
orbit G � x. Consequently, the stabilizer map f is �-a.e. n-to-one if and only if the map

G � x 7! ¹gGxg
�1
j g 2 Gº

is �-a.e. injective. Furthermore, in this case, by restricting to a suitable G-invariant Borel
subset X0 � X with �.X0/ D 1, we obtain a measure-preserving action G Õ .X0; �/

with stabilizer distribution � such that the corresponding stabilizer map is n-to-one.

Question 1.3. Suppose that � is an ergodic IRS of a countable group G with the property
that ŒNG.H/ W H� D n <1 for �-a.e. H 2 SubG . Is � the stabilizer distribution of an
ergodic action G Õ .X; �/ on a standard Borel probability space such that the stabilizer
map x 7! Gx is n-to-one?

There is a natural approach to the construction of such an action; namely, let Z D
¹H 2 SubG j ŒNG.H/ WH�D nº, and let X D ¹aH jH 2 Z;a 2 NG.H/º. Then we can
define a Borel probability measure � on X by

�.B/ D

Z
Z

jB \ ¹aH j a 2 NG.H/ºj

n
d�.H/:
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Let cWEZ
G ! G be a Borel map such that

c.H1;H2/H1c.H1;H2/
�1
D H2

for each pair of conjugate subgroupsH1;H2 2 Z. (For example, if .gn j n 2N/ is a fixed
enumeration of G, then we can let c.H1; H2/ D g`, where ` is the least n 2 N such that
gnH1g

�1
n D H2.) Then for each g 2 G, we can define a corresponding Borel bijection

�g WX ! X by

�g.aH/ D c.H; gHg
�1/ aHg�1

D gb�1
H ag�1.gHg�1/;

where bH 2NG.H/ is the element such that gD c.H;gHg�1/bH . It is clear that each �g

is �-preserving. However, in order to ensure that these maps define a G-action, it is nec-
essary to impose an extra hypothesis on the map cWEZ

G ! G.

Definition 1.4 (Hjorth–Kechris [6]). Given a Borel actionG ÕZ of a countable groupG
on a standard Borel spaceZ, a Borel map cWEZ

G !G is a cocycle if whenever xEZ
Gy and

yEZ
G z, we have c.x; z/ D c.y; z/c.x; y/.
A Borel action G Õ Z is said to have the cocycle property if there exists a Borel

cocycle cWEZ
G ! G such that whenever xEZ

Gy, we have c.x; y/ � x D y.

Remark 1.5. For later use, note that if cWEZ
G !G is a cocycle and x 2Z, then by taking

x D y D z, we obtain that c.x; x/D 1. It follows that if xEZ
Gy, then c.y; x/D c.x; y/�1.

Definition 1.6. A measure-preserving actionG Õ .Z;�/ on a standard Borel probability
space is said to have the �-cocycle property if there exists a G-invariant Borel subset
Z0 � Z with �.Z0/ D 1 such that G Õ Z0 has the cocycle property.

Example 1.7. Let Fn be the free group on n generators, where 2� n�@0, and let� be the
usual uniform product probability measure on 2Fn . By Hjorth–Kechris [6, Corollary 10.7],
the shift action Fn Õ 2Fn does not have the cocycle property. However, since Fn acts freely
outside a �-null subset, it follows that the shift action Fn Õ .2Fn ; �/ has the �-cocycle
property.

Remark 1.8. If G is an amenable group, then every measure-preserving action of G on
.Z;�/ on a standard Borel probability space has the �-cocycle property. To see this, recall
that by Connes–Feldman–Weiss [2], there exists a G-invariant Borel subset Z0 � Z with
�.Z0/ D 1 such that EZ0

G is hyperfinite; and hence, by Hjorth–Kechris [6, Theorem 8.1],
the action G Õ Z0 has the cocycle property.

The following result will be proved in Section 2.

Theorem 1.9. Suppose that � is an ergodic IRS of a countable group G and that

(i) ŒNG.H/ W H� D n <1 for �-a.e. H 2 SubG;
(ii) G Õ .SubG ; �/ has the �-cocycle property.

Then � is the stabilizer distribution of an ergodic action G Õ .X;�/ on a standard Borel
probability space such that the stabilizer map x 7! Gx is n-to-one.
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Corollary 1.10. If � is an ergodic IRS of a countable amenable group G such that
ŒNG.H/ W H� D n <1 for �-a.e. H 2 SubG , then � is the stabilizer distribution of an
ergodic action G Õ .X;�/ on a standard Borel probability space such that the stabilizer
map x 7! Gx is n-to-one.

The next result confirms that, as expected, there exist examples of ergodic IRSs which
fail to satisfy hypothesis (ii) of Theorem 1.9.

Theorem 1.11. There exists a countable group G with an ergodic IRS � such that the
action G Õ .SubG ; �/ does not have the �-cocycle property.

Remark 1.12. We will prove a strengthening of Theorem 1.11 in Section 3.

2. The proof of Theorem 1.9

Clearly, we can suppose that n > 1. By assumption, there exists a G-invariant Borel sub-
set Z � SubG with �.Z/ D 1 such that the conjugation action G Õ Z has the cocycle
property. Thus there exists a Borel map cWEZ

G ! G such that whenever H1;H2;H3 2 Z

are conjugate subgroups of G, we have

• c.H1;H2/H1c.H1;H2/
�1 D H2;

• c.H1;H3/ D c.H2;H3/c.H1;H2/.

After slightly shrinking Z if necessary, we can also suppose that ŒNG.H/ W H� D n for
every H 2 Z.

Let X D ¹aH j H 2 Z; a 2 NG.H/º, and let � be the Borel probability measure
on X defined by

�.B/ D

Z
Z

jB \ ¹aH j a 2 NG.H/ºj

n
d�.H/:

For each g 2 G and aH 2 X , define

g � aH D c.H; gHg�1/aHg�1:

Let b 2 NG.H/ be such that g D c.H; gHg�1/b. Since b�1a 2 NG.H/ and

g � aH D gb�1ag�1.gHg�1/;

it follows that g � aH is a coset of gHg�1 in NG.gHg
�1/ and thus g � aH 2 X . Also if

g; h 2 G and aH 2 X , then

g � .h � aH/ D c.hHh�1; ghHh�1g�1/c.H; hHh�1/aHh�1g�1

D c.H; ghHh�1g�1/aH.gh/�1

D gh � aH:
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Thus the maps aH 7! g � aH define an action of G on X , which is easily seen to be
�-preserving. Furthermore, for each aH 2 X , the corresponding G-orbit is G � aH D
¹bgHg�1 j g 2G; b 2NG.gHg

�1/º; and it follows that the actionG Õ .X;�/ is ergodic.
Finally, suppose that g 2 G and aH 2 X are such that g � aH D aH . Then clearly g 2
NG.H/ and thus aH D c.H;H/aHg�1 D ag�1H . It follows that g 2 H and hence H
is the stabilizer of aH under the action G Õ .X; �/. Thus the stabilizer map

aH
f
7! GaH

is n-to-one. Also if T � SubG is a Borel subset, then

.f��/.T / D �.¹aH j H 2 T \Z; a 2 NG.H/º/ D �.T /

and so � is the stabilizer distribution of G Õ .X; �/. This completes the proof of Theo-
rem 1.9.

3. The weak cocycle property

Suppose that � is an ergodic IRS of a countable groupG such that ŒNG.H/ WH�D n <1

for �-a.e. H 2 SubG . Then, in the statement of Theorem 1.9, we can weaken the hypoth-
esis that G Õ .SubG ; �/ has the �-cocycle property, as follows.

Definition 3.1. An IRS � of a countable groupG is said to have the weak cocycle property
if there exist a G-invariant Borel subset Z � SubG with �.Z/ D 1 and a Borel map
cWEZ

G ! G such that whenever H1;H2;H3 2 Z are conjugate subgroups of G, we have

• c.H1;H2/H1c.H1;H2/
�1 D H2;

• c.H1;H3/
�1c.H2;H3/c.H1;H2/ 2 H1.

In this case, we say that c is a weak cocycle.

Theorem 3.2. If � is an ergodic IRS of a countable group G with the property that
ŒNG.H/ WH�D n<1 for �-a.e.H 2 SubG , then the following conditions are equivalent:

(i) � has the weak cocycle property.

(ii) � is the stabilizer distribution of an ergodic action G Õ .X; �/ on a standard
Borel probability space such that the stabilizer map x 7! Gx is n-to-one.

Proof. It is easily checked that the construction in Theorem 1.9 goes through under the
hypothesis that � has the weak cocycle property. Conversely, suppose that the ergodic
IRS � is the stabilizer distribution of an ergodic action G Õ .X; �/ on a standard Borel
probability space such that the stabilizer map x

f

7! Gx is n-to-one. Then we can suppose
that ŒNG.Gx/ W Gx � D n for all x 2 X , and, as we explained in Section 1, it follows that
the map

G � x 7! ¹gGxg
�1
j g 2 Gº
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is injective. LetZD¹Gx j x 2Xº. Then �.Z/D 1, and for allH 2Z, the n-set f �1.H/D

¹x 2 X j Gx D H º lies in a single G-orbit. Let � be a Borel linear ordering of X , and
let 'WZ ! X be the Borel map defined by '.H/ D the �-least x 2 f �1.H/. Finally, let
cWEZ

G ! G be any Borel map such that if H1;H2 2 Z are conjugate subgroups, then

c.H1;H2/ � '.H1/ D '.H2/:

Clearly, if H1;H2 2 Z are conjugate subgroups, then

c.H1;H2/H1c.H1;H2/
�1
D H2:

Also if H1;H2;H3 2 Z are conjugate subgroups of G, then

c.H2;H3/c.H1;H2/ � '.H1/ D '.H3/ D c.H1;H3/ � '.H1/;

and so
c.H1;H3/

�1c.H2;H3/c.H1;H2/ 2 G'.H1/ D H1:

Thus cWEZ
G ! G is a weak cocycle.

The remainder of this section is devoted to the proof of the following strengthening of
Theorem 1.11.

Theorem 3.3. There exists a countable group G with an ergodic IRS � which does not
have the weak cocycle property.

Most of our effort will go into showing that there exists an ergodic probability mea-
sure � on 2F2 such that the shift action F2 Õ .2F2 ; �/ does not have the �-cocycle
property. (Of course, Example 1.7 shows that � is not the usual uniform product prob-
ability measure.) We will then identify the action F2 Õ .2F2 ; �/ with a suitable IRS � of
the lamplighter group G D C2 wr F2. Finally, an easy calculation will show that any weak
cocycle for � lifts to a genuine cocycle for the action F2 Õ .2F2 ; �/. Consequently, the
IRS � will not have the weak cocycle property.

Remark 3.4. Let B be the base group of the lamplighter group G D C2 wr F2. Then
the IRS � will concentrate on the subgroups H 6 B such that ŒB W H� D 1. Since B is
abelian, it follows that B 6 NG.H/ and thus � concentrates on the subgroups H 2 SubG

such that ŒNG.H/ W H� D1. Consequently, the IRS � does not settle Question 1.3.

The proof of Theorem 3.3 will make use of Popa’s cocycle superrigidity theorem [7],
which involves a slightly different formulation of the notion of a Borel cocycle.

Definition 3.5. Given a measure-preserving action of a countable group on a standard
Borel probability space G Õ .X; �/ and a countable group H , a Borel function

˛W G �X ! H

is called a cocycle if for all g; h 2 G,

˛.hg; x/ D ˛.h; g � x/˛.g; x/ for �-a.e. x 2 X .
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Proof of Theorem 1.11. First recall that � D SL.3;Z/ is a 2-generator Kazhdan group.
(For example, Zimmer [9, Chapter 7].) Let � W F2 ! � be a surjective homomorphism,
let m be the uniform product probability measure on 2� , and let F2 Õ .2� ; m/ be the
ergodic action defined by g � x D �.g/ � x.

Claim 3.6. The action F2 Õ .2� ; m/ does not have the m-cocycle property.

Proof. Suppose that Z � 2� is an F2-invariant Borel subset with m.Z/ D 1 and that
cWEZ

F2
! F2 is a Borel cocycle. Then we can define a Borel cocycle ˛W� � Z ! F2 by

˛.
; z/ D c.z; 
 � z/. By Popa’s cocycle superrigidity theorem [7], after deleting an m-
null subset of Z if necessary, there exist a Borel map bWZ ! F2 and a homomorphism
'W� ! F2 such that for all 
 2 � and z 2 Z,

'.
/ D b.
 � z/˛.
; z/b.z/�1:

Since � D SL.3;Z/ does not embed into F2, it follows that N D ker ' ¤ 1; and this
implies that Œ� W N� <1. (For example, Zimmer [9, Chapter 8].) In particular, N is an
infinite subgroup of � . Since the action � Õ .2� ;m/ is strongly mixing, it follows that N
acts ergodically on .2� ; m/. Note that if 
 2 N and z 2 Z, then

c.z; 
 � z/ D ˛.
; z/ D b.
 � z/�1b.z/;

and hence

b.
 � z/ � .
 � z/ D b.z/c.z; 
 � z/�1
� .
 � z/ D b.z/c.
 � z; z/ � .
 � z/ D b.z/ � z:

But then, since the action N Õ .2� ; m/ is ergodic, it follows that the Borel map z 7!
b.z/ � z is m-a.e. constant, which is a contradiction.

Hence, letting j W 2� ! 2F2 be the Borel injection defined by j.x/.g/ D x.�.g// and
� D j�m, it follows that the shift action F2 Õ .2F2 ; �/ does not have the �-cocycle
property. Next let B D

L
h2F2

Ch, where each Ch is a cyclic group of order 2. Then
the wreath product G D C2 wr F2 is defined to be the semidirect product B Ì F2, where
gChg

�1 D Cgh for each g; h 2 F2. Let � W 2F2 ! SubG be the injective F2-equivariant
map defined by

x 7! Bx D ˚¹Ch j h 2 F2; x.h/ D 1º;

and let � D ��� be the corresponding F2-invariant ergodic probability measure on SubG .
Since B acts trivially on �.2F2/, it follows that � is G-invariant and thus � is an ergodic
IRS of G. We claim that � does not have the weak cocycle property. To see this, sup-
pose that Z � SubG is a G-invariant Borel subset with �.Z/ D 1 and that the Borel map
cWEZ

G ! G is a weak cocycle. Then we can suppose that Z � �.2F2/. Let Y � 2� be the
F2-invariant Borel subset with m.Y / D 1 such that Z D .� ı j /.Y /. Let xcWEY

F2
! F2 be

the Borel map such that if y1E
Y
F2
y2 and Hi D .� ı j /.yi / for i D 1; 2, then

c.H1;H2/ D b.H1;H2/xc.y1; y2/;



S. Thomas 360

where b.H1; H2/ 2 B . Since B acts trivially on Z, it follows that xc.y1; y2/ � y1 D y2.
Also if y2E

Y
F2
y3 and H3 D .� ı j /.y3/, then

c.H1;H3/
�1c.H2;H3/c.H1;H2/ 2 H1 6 B;

and it follows that
xc.y1; y3/

�1
xc.y2; y3/xc.y1; y2/ D 1:

But this means that xcWEY
F2
! F2 is a cocycle, which contradicts Claim 3.6. This completes

the proof of Theorem 3.3.
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