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Cycles in graphs with geometric property (T)

Jeroen Winkel

Abstract. We show that a sequence of graphs with uniformly bounded vertex degrees, number of
vertices going to infinity, and with geometric property (T) has many small cycles. We also show
that when a small part of such a sequence of graphs with geometric property (T) is changed, it still
has geometric property (T), provided that it is still an expander. We use this to give an example of
a sequence of graphs with geometric property (T) that has large cycle-free balls.

1. Introduction

In this paper, we are interested in sequences .Xn/ of finite connected graphs. All graphs
we consider are simple and undirected. The vertex sets will be denoted by V.Xn/ and
the edge sets by E.Xn/. We will always assume that limn!1 jV.Xn/j D 1 and that the
sequence has uniformly bounded degree, i.e., there is a constant d such that for all n, all
vertices of Xn have degree at most d .

Let X be a finite graph. For vertices x, y, we write x � y if .x; y/ is an edge, and we
write deg.x/ for the degree of x. The Laplacian of X is the matrix �X , whose rows and
columns are indexed by the vertices of X , defined by

.�X /xy D

8̂̂<̂
:̂

deg.x/ if x D y;

�1 if x � y;

0 else.

It is a symmetric positive semi-definite matrix, and it has 0 as an eigenvalue. This is
a simple eigenvalue if and only if X is connected.

Consider a sequence X D .Xn/ of finite connected graphs with uniformly bounded
degree and number of vertices going to infinity. The sequence is an expander sequence if
there is a constant h > 0 such that for all n, all positive eigenvalues of �Xn are at least h.
Equivalently, we can directly look at the operator

�X D
M
n

�Xn � B.`
2X/:
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Here and in the following, `2X denotes the Hilbert space generated by the vertices of
X1; X2; : : : as basis vectors. Then the sequence is an expander sequence if and only if
there is h > 0 such that �.�X / � ¹0º [ Œh;1/.

There is an equivalent combinatorial characterisation of expanders. For a subset of the
vertices A � V.Xn/, let ıA denote the set of edges with exactly one vertex in A. Then the
sequence .Xn/ is an expander if and only if it has uniformly bounded degree and there is
c > 0 such that for all A � V.Xn/ with jAj � 1

2
jV.X/j, we have jıAj � cjAj. We refer

to, e.g., [7] for more details on expanders.
In [11], Willett and Yu introduced geometric property (T). It was studied in more

depth by the same authors in [12]. It is a stronger property than being an expander, based
on spectral gap of �X in a larger algebra.

Let .Xn/ be a sequence of graphs, and let T be a bounded operator in
Q
nB.`

2Xn/ �

B.`2X/. For x; y 2 V.Xn/, we denote by d.x; y/ the shortest-path distance from x to y.
We can view T as a matrix whose rows and columns are indexed by the vertices ofX , and
Txy D 0 if x 2 Xn, y 2 Xm, m ¤ n. The propagation of T is sup¹d.x; y/ j Txy ¤ 0º,
which may be infinite. The sum and product of operators with finite propagation have
finite propagation again. The algebraic uniform Roe algebra, as introduced by Roe in [9],
is defined as

CuŒX� D
°
T 2

Y
n

B.`2Xn/
ˇ̌
T has finite propagation

±
:

The algebraic uniform Roe algebra is a complex unital �-algebra. A representation
of CuŒX� is given by a Hilbert space H and a unital �-homomorphism � WCuŒX�!B.H /.

The completion of CuŒX� in the norm inherited byB.`2X/ is the reduced uniform Roe
algebra C �red.X/. In this paper, we are more interested in the completion with respect to
a larger norm, namely the maximal norm k�kmax given by

kTmaxk D sup
.�;H/

k�.T /k;

where the supremum is taken over all representations .�;H /. IfX has uniformly bounded
degree, then the maximal norm is necessarily finite (see, for example, [3, Section 3]). It is
then easy to check that it is indeed a norm. Its completion is a C �-algebra, the maximal
uniform Roe algebra C �max.X/ (see, for example, [10]).

For T 2 CuŒX�, we denote by �.T / the spectrum in C �red.X/, while �max.T / denotes
the, possibly larger, spectrum in C �max.X/. Recall that X is an expander sequence if and
only if there is h > 0 such that �.�X / � ¹0º [ Œh;1/.

Definition 1.1 ([11]). Let X D .Xn/ be a sequence of finite connected graphs with uni-
formly bounded degree and number of vertices going to infinity. Then X has geometric
property (T) if there is  > 0 such that �max.�X / � ¹0º [ Œ;1/.

A sequence of finite graphs .Xn/ has large girth if for every R > 0, there is a positive
integer N such that for n � N , the graphs Xn do not have any cycles of length shorter
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than R. It was shown in [11, Corollary 7.5] that a sequence of graphs with property (T)
can never have large girth, using properties of K-theory. We give a quantitative version of
this result: there is some R such that all of the Xn have “many” R-cycles.

Let us make this more precise. As in [1], we define the cycle spaces of a graph.

Definition 1.2. Let X be a graph with edge set E. Let CŒE� be the free R-vector space
generated by E. We use the convention that .x; y/ D �.y; x/. Let Z.X/ be the subspace
of CŒE� generated by the cycles, where a cycle .x1;x2; : : : ;xn/ corresponds to the element
.x1; x2/C .x2; x3/C � � � C .xn�1; xn/C .xn; x1/. For any integer R, let ZR.X/ be the
subspace generated by the cycles of length at most R.

We can now state the first theorem of this paper.

Theorem A. Suppose X D .Xn/ is a sequence of finite connected graphs with uniformly
bounded degree and with number of vertices going to infinity. Suppose that X has geo-
metric property (T). Then there are constants R > 0 and " > 0 such that for all large
enough n, we have dimZR.Xn/ � "jV.Xn/j.

The cost of generating an equivalence relation is introduced by Levitt in [6]. Taking
the supremum of all equivalence relations generated by probability measure preserving
actions of a group gives the cost of this group, as introduced by Gaboriau in [2]. Com-
binatorial cost is a variant on this concept for sequences of graphs, which was defined by
Elek in [1]. It measures the number of edges necessary to induce the coarse structure of
a sequence of graphs.

Definition 1.3. Let .Xn/ and .Yn/ be sequences of finite connected graphs such that Xn
and Yn have the same vertex set. For x; y 2 V.Xn/, denote by dX .x; y/ the path distance
inXn, and by dY .x;y/ the path distance in Yn. We say that .Xn/ and .Yn/ induce the same
coarse structure if there is a constant L such that dX .x; y/ � LdY .x; y/ and dY .x; y/ �
LdX .x; y/ for all n and x; y 2 V.Xn/.

Definition 1.4 ([1]). The combinatorial cost of a sequence X D .Xn/ of graphs is de-
fined as

c.X/ D inf
Y

lim inf
n

jE.Yn/j

jV.Xn/j
;

where the infimum is taken over all sequences of graphs .Yn/ on the same vertex sets
as Xn, which induce the same coarse structure as .Xn/.

In [4], it was shown that any group with property (T) has cost 1. This raises the ques-
tion if a similar theorem can be proved in the combinatorial context. From Theorem A,
it already follows that the infimum in Definition 1.4 is not attained for sequences of graphs
with geometric property (T) (see Proposition 2.7). The question, whether sequences of
graphs with geometric property (T) necessarily have cost 1, remains open.

Theorem A also raises the following question: is it true that for every sequence .Xn/
with geometric property (T), there is an R such that all vertices have a cycle in their
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R-neighbourhood? We show that if two graph sequences .Xn/ and .Yn/ “mostly” agree,
and one of them has geometric property (T) and the other one is an expander, then the
other one has geometric property (T) too. This can be used to answer the above question
negatively (see Corollary 3.2).

Definition 1.5. Let X D .Xn/ and Y D .Yn/ be sequences of finite connected graphs
with increasing number of vertices and uniformly bounded degree. We say that X and Y
are approximately isomorphic if there are subgraphs X 0n � Xn and Y 0n � Yn such that X 0n
and Y 0n are isomorphic for all n, and

lim
n!1

jV.X 0n/j

jV.Xn/j
D lim
n!1

jE.X 0n/j

jE.Xn/j
D lim
n!1

jV.Y 0n/j

jV.Yn/j
D lim
n!1

jE.Y 0n/j

jE.Yn/j
D 1:

It is easy to see that we may takeX 0n and Y 0n to be induced subgraphs (that is, subgraphs
that contain all edges between their vertices that are present in the ambient graph).

If X and Y are approximately isomorphic and X has geometric property (T), then Y
need not have geometric property (T); indeed, it does not even need to be an expander
(it is only an asymptotic expander, as defined in [5]). For example, if .Xn/ is a sequence
of graphs with geometric property (T) with jXnj � n2, and we attach a path of length n to
each Xn, then it will not be an expander anymore. However, this is the only thing that can
go wrong.

Theorem B. Let X D .Xn/ and Y D .Yn/ be approximately isomorphic sequences of
finite connected graphs with uniformly bounded degree and number of vertices going to
infinity. SupposeX has geometric property (T) and Y is an expander. Then Y has geomet-
ric property (T).

2. Short-cycle spaces in graphs with geometric property (T)

Let .Xn/ be a sequence of graphs. The algebraic Roe algebra CuŒX�, as recalled in Sec-
tion 1, has a standard representation on `2X . Other representations are harder to describe
explicitly. We will see how to construct a representation of CuŒX�, starting from a repres-
entation of only part of the matrix algebra B.`2Xn/, for each n.

Definition 2.1. Let X be a graph, and let BR.`2X/ be the set of bounded operators
on `2X of propagation at most R. An R-representation is a Hilbert space H together with
a linear map � WBR.`2X/! B.H / satisfying �.T �/ D �.T /� and �.TS/ D �.T /�.S/
if T , S and TS have propagation at most R.

Suppose X D .Xn/ is a sequence of graphs, and suppose we have a sequence of rn-
representations �n of Xn on Hn. If rn !1, we can make a representation of CuŒX� as
follows: let U be a free ultrafilter on N, and define the ultraproduct H D

Q
n Hn=U.

Define �.T / D limU �n.T j`2Xn/ 2 B.H /. Then � WCuŒX�! B.H / is a representation.
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We can use these representations to prove that a sequence of graphs with property (T)
does not have large girth (which was also already proved in [11] using K-theory). Below,
we first give the proof for d -regular graphs with an even integer d , to avoid technicalities.
It is true in greater generality; this will follow later from Theorem A.

Proposition 2.2. Let X D .Xn/ be a sequence of d -regular finite connected graphs and
an increasing number of vertices. Suppose that X has geometric property (T) and that d
is even. Then X does not have large girth.

Proof. Suppose that X has large girth and let t 2 R. Let rn denote the girth of Xn. There
is an Eulerian cycle on Xn. This defines a direction on each edge of Xn. So we can define
a function �WEn ! ¹�1; 1º, where En denotes the edge set of Xn such that for each
x 2 Xn, we have

P
y�x �.x; y/ D 0. For all pairs .x; y/ 2 X2n , choose a shortest path

.x;y/ D .x D x0; x1; : : : ; xd.x;y/ D y/ from x to y. Choose it in such a way that .y;x/ is
the inverse of .x;y/. Define �WX2n ! Z by

�.x; y/ D �.x0; x1/C � � � C �.xd.x;y/�1; xd.x;y//:

Then �.x; y/ D ��.y; x/, and if d.x; y/C d.y; z/C d.x; z/ < rn, we have �.x; y/C
�.y; z/ D �.x; z/. Now define �nWB.`2Xn/! B.`2Xn/ by

�n.T /�.x/ D
X
y

Txy exp.i t�.x; y//�.y/:

Then �n.T �/D �n.T /�, and if the propagations of S and T and TS are at most 1
3
rn, then

�n.TS/ D �n.T /�n.S/. So �n defines a 1
3
rn-representation.

Consider the constant unit vector �n 2 `2Xn with �n.x/ D 1p
jV.Xn/j

. This satisfies

�n.�X /�n D d.1 � cos t /�n:

Let � WCuŒX�!B.H / denote the limit of the �n. It is a representation. Let � D .�n/ 2 H .
Then �.�X /� D d.1� cos t /� , so d.1� cos t / 2 �max.�X /. Since t can be any real num-
ber, we conclude that Œ0; 2d � � �max.�X /. Then X does not have geometric property (T),
and we have arrived at a contradiction.

If the graph is not d -regular for an even d , we do not necessarily have an Eulerian
cycle. In this case, we can still prove the result. We need Lemmas 2.3 and 2.4 below to
construct a cycle v 2 Z.X/ that will play a similar role as the Eulerian cycle above. We
will use it to prove something even stronger, namely that there are “many” small cycles
in X (Theorem A).

Note that, if X is a finite connected, then dim.CŒE�/ D jEj and dim.Z.X// D jEj �
jX j C 1 (this is clear for a tree, and any time an edge is added to a graph, both sides
increase by 1). We will also use the standard inner product on CŒE�, such that edges
have norm 1 and are perpendicular to each other. An edge in a connected graph is called
a bridge if the removal of this edge would render the graph disconnected.
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Lemma 2.3. Let X be a finite connected graph with edge set E. There is v 2 Z.X/
satisfying the following conditions:

(i) For all e 2 E, we have v.e/ 2 ¹�1; 0; 1º.

(ii) Of all edges e 2 E that are not bridges, at most half satisfy v.e/ D 0.

Proof. LetZ1; : : : ;ZK be cycles inX such that each edge that is not a bridge is contained
in one of the cycles Zi . Choose "1; : : : ; "K 2 ¹0; 1º uniformly and independently at ran-
dom. LetwD

PK
iD1 "iZi . For each e 2E that is not a bridge, we have P Œw.e/ is odd�D 1

2
.

So EŒ#¹e 2 E j w.e/ is oddº� is equal to half the number of edges that are not bridges. So
there is some w 2 Z.X/ such that w.e/ is odd for at least half the number of edges that
are not bridges. Now letE 0 �E be the subset ofE consisting of the edges for whichw.e/
is odd. Then each vertex of X has an even number of adjacent edges in E 0. So each com-
ponent of .V .X/; E 0/ has an Eulerian cycle. Let v be the sum of these Eulerian cycles.
Then v satisfies the conditions.

Lemma 2.4. Let X be a finite connected graph with edge set E and maximal degree d .
Suppose there is a constant h > 0 such that for all subsets A with

1

4
jV.X/j � jAj �

1

2
jV.X/j;

we have jıAj � hjAj. Then there is a constant c > 0, only depending on d and h, such that
if jV.X/j is large enough, the number of edges that are not bridges in X is at least cjEj.

Proof. For a bridge b, define Kb and Gb to be the two components of the graph .V .X/;
E n ¹bº/, with jKbj � jGbj. Since ıKb D ¹bº, and h � 1

4
jV.X/j > 1 for jV.X/j large

enough, we must have jKbj < 1
4
jV.X/j. Now let G D

T
b Gb andK D V.X/ nG, where

the intersection ranges over all bridges b. If x; y 2 G, then all the vertices of any minimal
path from x to y are also in G. In particular, G is connected.

We show that G is non-empty. Let b be a bridge such thatKb is maximal. Let x be the
endpoint of b in Gb . Then x 2 G: for if there is another bridge b0 with x 2 Kb0 , we have
either Kb [ ¹xº � Kb0 , or Gb � Kb0 , and then Kb0 is too large.

Note that all bridges of X must have at least one vertex in K. Therefore, the number
of edges that are not bridges is at least jGj � 1. So if we find a constant c0 > 0 such that
jGj � c0jV.X/j, we are done.

Let ıG D ¹b1; : : : ; bN º. These are all bridges. For each 1 � i � N , we have jKbi j �
1
4
jV.X/j. The Kbi are pairwise disjoint: if Kbi and Kbj were not disjoint for i ¤ j ,

then we would find a cycle with bi and bj . Then we can choose some 1 � M � N
such that min.jKj; 1

4
jV.X/j/ �

PM
jD1 jKbj j �

1
2
jV.X/j. IfK < 1

4
jV.X/j, we have jGj �

3
4
jV.X/j, and we are done. Suppose thatK � 1

4
jV.X/j. Then we can apply the assumption

of the lemma to A D
SM
jD1Kbj . We have

jıAj DM � N D jıGj � d jGj;

therefore jAj � d
h
jGj. So jGj � h

4d
jV.X/j. This finishes the proof.
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Corollary 2.5. Let X be a finite connected graph with edge set E and maximal degree d .
Suppose there is a constant h > 0 such that for all subsets A � V.X/ with 1

4
jV.X/j �

jAj � 1
2
jV.X/j, we have jıAj � hjAj. Then, provided that jV.X/j is large enough, there

are a constant c > 0, only depending on d and h, and v 2 Z.X/ satisfying the following
conditions:

(i) For all e 2 E, we have v.e/ 2 ¹�1; 0; 1º.

(ii) We have #¹e 2 E j v.e/ ¤ 0º � cjEj.

Proof. This follows directly from Lemmas 2.3 and 2.4.

Theorem A. Suppose X D .Xn/ is a sequence of finite connected graphs with uniformly
bounded degree and with number of vertices going to infinity. Suppose that X has geo-
metric property (T). Then there are constants R > 0 and " > 0 such that for all large
enough n, we have dimZR.Xn/ � "jV.Xn/j.

Proof. Let  > 0 be such that �max.�X / � ¹0º [ Œ;1/. Let d be the maximal degree
of all vertices of X . Since X has geometric property (T), it is, in particular, an expander
sequence by Cheeger’s inequality: for each subset A � Xn with jAj � 1

2
jV.Xn/j, we have

jıAj � 
2
jAj. Only finitely many of the Xn can be trees (this follows from Lemma 2.4, for

example). We can then assume without loss of generality that none of the Xn is a tree.
Define h D 

4
. Let c1 be the constant from Corollary 2.5, using the constants d and h.

Let c2 > 0 be such that

c3 D
1

4
d2 �

�
1 �

c1

2d

��1
2
d C c2d

�2
�
c1

2d

�1
2
d C c2d �

1

2

�2
> 0: (1)

Let t > 0 be small enough such that

dt2 <  (2)

and also ˇ̌̌
exp.i t/ � 1 � i t C

1

2
t2
ˇ̌̌
� c2t

2: (3)

Let " > 0 be such that the following conditions are satisfied:

8"d2 �
1

2
c3t

4; (4)

2" �
c1

2d
; (5)

4" � h: (6)

Suppose for a contradiction that for each R, there is an n such that dimZR.Xn/ <

"jV.Xn/j. Let En be the set of edges of Xn. Note that Z.Xn/ � CŒEn� consists of
the functions �WEn ! C satisfying

P
y�x �.x; y/ D 0 for all x 2 V.Xn/. The subset

ZR.Xn/
?�CŒEn� consists of all functions �WEn!C satisfying �.x1;x2/C �.x2;x3/C

� � � C �.xq; x1/ D 0 for all q-cycles .x1; x2; : : : ; xq/ with q � R.
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Let � 2ZR.Xn/?. We will construct a 1
3
R-representation �� ofXn. First, we extend �

to a function on V.Xn/2 as follows: for each pair .x; y/ 2 V.Xn/2, choose a shortest path
.x D x0; x1; : : : ; xd.x;y/ D y/ from x to y and define

�.x; y/ D �.x0; x1/C �.x1; x2/C � � � C �.xd.x;y/�1; xd.x;y//:

Since � 2 ZR.Xn/?, this satisfies the following: if x; y 2 V.Xn/ satisfy d.x; y/ � R,
then �.x; y/D��.y; x/, and if x;y; z 2 V.Xn/ satisfy d.x; y/C d.y; z/C d.z; x/ � R,
then �.x; y/C �.y; z/C �.z; x/ D 0.

Now we define ��WB.`2Xn/! B.`2Xn/ by

��.T /�.x/ D
X
y

Txy exp.i�.x; y//�.y/:

This is a 1
3
R-representation.

For a subset B � En, denote by Xn n B the graph .Xn; En n B/. Choose edges
b1; : : : ; bdim.ZR.Xn// recursively in such a way that bj is an edge in a cycle in ZR.Xn/ \
Z.Xn n ¹b1; : : : ; bj�1º/. Then ZR.Xn/ \Z.Xn n ¹b1; : : : ; bj�1; bj º/ has one dimension
fewer than ZR.Xn/ \ Z.Xn n ¹b1; : : : ; bj�1º/. Thus, with B D ¹b1; : : : ; bdim.ZR.Xn//º

we have ZR.Xn/ \ Z.Xn n B/ D 0. Then we also have ZR.Xn/ \ CŒEn n B� D 0, and
counting dimensions, ZR.Xn/ ˚ CŒEn n B� D CŒEn�. Since CŒB� ? C.En n B/ and
ZR.Xn/

? ? ZR.Xn/, it follows that CŒB�\ZR.Xn/? D 0. Counting dimensions again,
we get ZR.Xn/? ˚CŒB� D CŒEn�.

Since each bj is an edge in a cycle in Z.Xn n ¹b1; : : : ; bj�1º/, it follows by induction
thatXn nB is still a connected graph. Let A� V.Xn/, with 1

4
jV.Xn/j � jAj �

1
2
jV.Xn/j.

Denote by ıXnnBA the set of edges in Xn n B with exactly one vertex in A. Then we
have jıXnnBAj � jıXnAj � jBj �


2
jAj � "jV.Xn/j � .


2
� 4"/jAj D .2h � 4"/jAj �

hjAj by inequality (6). So Xn n B satisfies the conditions of Corollary 2.5. We can also
assume V.Xn/ is large enough to apply the corollary by taking R large enough.

Now let v 2C.Xn nB/ be as in Corollary 2.5. Recall thatZR.Xn/?˚CŒB�DCŒEn�.
Hence there is a unique function � 2 ZR.Xn/? such that �.e/ D v.e/ for all e 62 B .

Now we consider the 1
3
R-representation �t�. Let �t D �t�.�X / 2 B.`

2Xn/. Let
�n 2 `

2Xn be the constant function with �n.x/ D 1 for all x 2 Xn. Then we have

�t�n.x/ D
X
y�x

.1 � exp.i t�.x; y///

for all x 2 Xn.
We define a partition V.Xn/ D A1 [ A2 [ A3. We can think of the vertices in A1 as

the ‘good’ vertices, the vertices in A2 as the ‘neutral’ vertices, and the vertices in A3 as
the ‘bad’ vertices. Luckily, A3 will be small. The sets are defined as follows:

A3 D ¹x 2 Xn j .x; y/ 2 B for some y � xº;

A1 D ¹x 2 Xn n A3 j v.x; y/ ¤ 0 for some y � xº;

A2 D Xn n .A1 [ A3/:
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Since jBj � "jV.Xn/j, we have jA3j � 2"jV.Xn/j, and since at least c1jEnj edges e satisfy
v.e/ ¤ 0, we have jA1j � c1

d
jEnj � jA3j � .

c1
d
� 2"/jV.Xn/j �

c1
2d
jV.Xn/j by inequal-

ity (5).
We will estimate j�t�n.x/ � 1

2
dt2j, finding increasingly good estimates in the cases

x 2A3;A2;A1, respectively. For all x 2Xn, we have j�t�n.x/� 1
2
dt2j � 2d . For x 62A3,

we have �.x; y/ D v.x; y/ for all y � x. Since
P
y�x v.x; y/ D 0, we have

�t�n.x/ D
X
y�x

.1C i tv.x; y/ � exp.i tv.x; y///:

Then, using inequality (3), we haveˇ̌̌
�t�n.x/ �

1

2
dt2

ˇ̌̌
�

X
y�x

ˇ̌̌
1C i tv.x; y/ �

d

2 deg.x/
t2 � exp.i tv.x; y//

ˇ̌̌
�

�X
y�x

ˇ̌̌
1C i tv.x; y/ �

d

2 deg.x/
t2

�

�
1C i tv.x; y/ �

1

2
t2v.x; y/2

�ˇ̌̌�
C c2dt

2

�
1

2
dt2 C c2dt

2
�
1

2

X
y�x

v.x; y/2t2:

For x 2 A2, this is at most .1
2
d C c2d/t

2. For x 2 A1, there is y � x with v.x; y/ ¤ 0,
and we find that j�t�n.x/ � 1

2
dt2j � .1

2
d C c2d �

1
2
/t2.

Using inequalities (1) and (4), we now have�t�n � 1
2
dt2�n

2 D X
x2Xn

ˇ̌̌
�t�n.x/ �

1

2
dt2

ˇ̌̌2
�

X
x2A1

�1
2
d C c2d �

1

2

�2
t4 C

X
x2A2

�1
2
d C c2d

�2
t4 C

X
x2A3

4d2

�

��
1 �

c1

2d

��1
2
d C c2d

�2
C
c1

2d

�1
2
d C c2d �

1

2

�2�
jV.Xn/jt

4

C 8"d2jV.Xn/j

D

�1
4
d2 � c3

�
jV.Xn/jt

4
C 8"d2jV.Xn/j

�

�1
4
d2 �

1

2
c3

�
jV.Xn/jt

4
D

�
1 �

2c3

d2

�1
2
dt2�n

2:
For eachR, we have found an nR, a 1

3
R-representation �nR WB.`

2XnR/! B.`2XnR/,
and a vector �nR 2 B.`

2XnR/ satisfying�nR.�X /�nR � 12dt2�nR � �1 � 2c3d2 � 12 12dt2�nR:
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Let U be a free ultrafilter on N, and define the ultraproduct H D
Q
n B.`

2XnR/=U. Let
� D limU �nR and � D limU

�nR
k�nRk

. Then � is a representation of CuŒX�, and we have�.�X /� � 1
2
dt2�

 � �1 � 2c3
d2

� 1
2
1
2
dt2�

:
It follows that

�.�.�X // \
h1
2
dt2

�
1 �

�
1 �

2c3

d2

� 1
2
�
;
1

2
dt2

�
1C

�
1 �

2c3

d2

� 1
2
�i
¤ ;:

So �max.�X / contains a positive element that is at most dt2. This is a contradiction with
inequality (2).

Remark 2.6. Note that in the above proof, " only depends on d and  .

We have shown that each sequence of graphs with geometric property (T) has many
small cycles. It follows that we can remove a large number of cycles of the graph, while
still keeping the same coarse structure. In particular, the infimum in the definition of cost
is not attained (see Definition 1.4).

Proposition 2.7. Let X D .Xn/ be a sequence of graphs with degree at most d . Suppose
there are R; " > 0 such that dimZR.Xn/ � "jV.Xn/j for all n. Then

c.X/ � lim inf
n

jE.Xn/j

jV.Xn/j
�

"

dR�1
:

In particular, if X has geometric property (T), the infimum c.X/ D infY lim infn
jE.Yn/j
jV.Xn/j

,
over all sequences .Yn/ inducing the same coarse structure as X , is not attained.

Proof. Consider the set of all subgraphs of Xn, on the same vertex set, without R-cycles.
Let Yn be a maximal element of this set. If two vertices x, y are connected in Xn, then
either they are connected in Yn, or adding the edge .x; y/ to Yn would create an R-cycle
in Yn. So dY .x; y/ � R � 1.

It follows that dY .x;y/� .R� 1/dX .x;y/ for any two vertices x;y 2V.Xn/. Since Yn
is a subgraph of Xn, we also have dY .x; y/ � dX .x; y/. This shows that X and Y induce
the same coarse structure.

Since dimZR.Xn/ � "jV.Xn/j, there are, in particular, at least "jV.Xn/j cycles of
length at most R in Xn. Of all these cycles, at least one of its edges is not in Yn. One edge
can be contained in at most dR�1 cycles of length at most R. So jE.Yn/j � jE.Xn/j �
"

dR�1
jV.Xn/j. This gives

lim inf
n

jE.Yn/j

jV.Xn/j
� lim inf

n

jE.Xn/j

jV.Xn/j
�

"

dR�1
:

So c.X/ � lim infn
jE.Xn/j
jV.Xn/j

�
"

dR�1
.

The last statement of the lemma follows from Theorem A and the fact that if X
and Y induce the same coarse structure, also Y has geometric property (T) (see [12, The-
orem 4.1]).
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3. Behaviour of geometric property (T) under small changes

A natural question in light of Theorem A is the following: if a sequence of graphs .Xn/ has
geometric property (T), is it necessary that there is an R such that every vertex has a cycle
in its R-neighbourhood? In this section, we will see that the answer is no. We will do this
by proving that if we change a sequence of graphs a small amount (see Definition 1.5)
while keeping expansion, we also keep geometric property (T).

Theorem B. Let X D .Xn/ and Y D .Yn/ be approximately isomorphic sequences of
finite connected graphs with uniformly bounded degree and number of vertices going to
infinity. SupposeX has geometric property (T) and Y is an expander. Then Y has geomet-
ric property (T).

For the proof, we need the following proposition.

Proposition 3.1. Let X D .Xn/ be an expander sequence with maximum degree d , and
let h > 0 such that �.�X / � ¹0º [ Œh;1/. Let � WCuŒX�! B.H / be a representation,
and suppose that v 2 H is a unit vector with �Xv D �v for some � > 0.

(i) Let Fn � V.Xn/ be such that limn!1
jFnj
jV.Xn/j

D 0, and let PF 2 CuŒX� denote
the projection on the vertices of the Fn. Then kPF vk � 2

3
4 d

1
2 h�

1
2 �

1
4 .

(ii) Let G D .Gn/ be a sequence of subgraphs of Xn such that limn!1
jV.Gn/j
jV.Xn/j

D 0.
Then h�Gv; vi � 2

3
2 dh�1�

3
2 and k�Gvk � 2

3
4 d

1
2 h�

1
2 �

5
4 .

Proof. (i) We can assume that � < h. Let ı > 0 and let N be a large enough integer such
that jFnj=jV.Xn/j < ı for n > N . Let PX�N 2 CuŒX� be the projection on the vertices
of X1 up to XN . Then we have �XPX�N v D �PX�N v. Since � is not an eigenvalue of
�XPX�N , we have PX�N v D 0. So PF v D PF>N v, where PF>N is the projection on the
union F>N D

S
n>N Fn.

We can colour the edges of X in 2d colours such that no two intersecting edges have
the same colour. For each colour i , define the involution �i of X that sends each vertex in
an edge with colour i to the other vertex of this edge, while fixing the other vertices. This
defines an element in CuŒX� that we also denote by �i . As �2i D 1, we have 0 � 1 � �i � 2.
This inequality holds in C �max.X/. We have �X D

P2d
iD1.1 � �i /: we can check this by

computing the matrix coefficients. For any x 2 X , we have

2dX
iD1

.1 � �i /xx D #¹i j x has an edge with colour iº D deg.x/;

and for different x; y 2 X , we have

2dX
iD1

.1 � �i /xy D � #¹i j .x; y/ is an edge with colour iº;

which is �1 if .x; y/ is an edge and 0 otherwise.



J. Winkel 372

For f 2 `1X , denote the corresponding multiplication operator in B.`2X/ by Mf .
Define the positive unital linear map 'W `1X ! C by '.f / D hMf v; vi. For each i ,
we have h.1� �i /v; vi � �, so k.1� �i /vk2 D h.2� 2�i /v; vi � 2�. Then for f 2 `1X ,
we have

.1 � �i /'.f / D '.f � f ı �i /

D hMf v; vi � hMf ı�i v; vi

D hMf v; vi � hMf �iv; �ivi

D hMf v; v � �ivi C hMf .v � �iv/; �ivi:

We get j.1 � �i /'.f /j � 2kf k1kv � �ivk � 2
p
2�kf k1, so k.1 � �i /'k � 2

p
2�.

So ' is almost invariant for the involutions �i . Note that ' is a unit vector in the Banach
space .`1X/�. By the Goldstine theorem, ' is in the weak closure of the set P .X/� `1X

of probability measures on X . We will use some functional analysis to show that we can
approximate ' by a probability measure  2 P .X/, in such a way that it will still be
almost invariant for the involutions �i .

Let B be the real Banach space
L2d
iD1 `

1.X;R/ with norm k. i /k D maxi k ik1.
Define the convex set B � B by

B D ¹..1 � �i / / j  2 P .X/; j .1F>N / � '.1F>N /j < ıº:

There is a net  � 2 P .X/ converging weakly to '. For large �, we have j �.1F>N / �
'.1F>N /j < ı. Now .1 � �i / � converges weakly to .1 � �i /' 2 .`1X/� for all i . So
..1 � �i /'/ 2 B�� is in the weak closure of B .

Let A be the open ball ¹a 2 B j kak < 2
p
2� C ıº. Suppose A and B are disjoint.

By the Hahn–Banach separation theorem, there are f 2 B� and a positive real number s
with f .a/ < s � f .b/ for a 2A and b 2 B . Now ..1� �i /'/ 2 B�� is in the weak closure
of B , so f ...1 � �i /'// � s. On the other hand, k..1� �i /'/k � 2

p
2�, so ..1 � �i /'/ is

in the weak closure of 2
p
2�

2
p
2�Cı

A, showing that f ...1 � �i /'// �
2
p
2�

2
p
2�Cı

s, giving a con-
tradiction.

Therefore, A \ B ¤ ;, so there is  2 P .X/ with j .1F>N / � '.1F>N /j < ı and
k.1 � �i / k < 2

p
2�C ı for all i . Let � D  

1
2 2 `2X . Then for all i , we have

h.1 � �i /�; �i D
X
x2X

.�.x/ � �.�ix//�.x/

D
1

2

X
x2X

.�.x/ � �.�ix//
2

�
1

2

X
x2X

j�.x/2 � �.�ix/
2
j

D
1

2
k.1 � �i / k1 �

p
2�C

1

2
ı:



Cycles in graphs with geometric property (T) 373

Summing over all i gives h�X�; �i � 2d
p
2� C dı. Denote by �c the projection of �

on the locally constant functions in `2X . We get h�X .� � �c/; � � �ci D h�X�; �i �
2d
p
2�C dı, but also h�X .� � �c/; � � �ci � hk� � �ck22. So

k� � �ck
2
2 �

1

h
.2d

p
2�C dı/:

Since jFnj
V.Xn/

< ı for n > N , we have k�cjF>N k <
p
ı. We get

 .1F>N / D
X
x2F>N

�.x/2

D

X
x2F>N

.� � �c/.x/
2
C 2

X
x2F>N

�c.x/.� � �c/.x/C
X
x2F>N

�c.x/
2

� k� � �ck
2
2 C 2k�cjF>N k2 � k� � �ck2 C k�cjF>N k

2
2

�
1

h
.2d

p
2�C dı/C 2

p
ı C ı:

Finally, we have

kPF vk
2
D kPF>N vk

2
D hM1F>N

v; vi D '.1F>N / �  .1F>N /C ı

�
1

h
.2d

p
2�C dı/C 2

p
ı C 2ı:

Letting ı ! 0 gives the desired conclusion.
(ii) We recursively define F0 D

S
n V.Gn/ and

FkC1 D ¹x 2 V.X/ n F�k j x is adjacent to a vertex in Fkº

for k � 1. Here we write F�k for F0 [ � � � [ Fk . Let ı > 0. Since there are infinitely
many Fk and they are all disjoint, there is k � 1 with kPFk�1[Fkvk � ı. Since the
graphs have uniformly bounded degree, we have limn!1

jF�k�1j

jV.Xn/j
D 0. By part (i), we

have kPF�k�1vk � 2
3
4 d

1
2 h�

1
2 �

1
4 . Denote by �F�k the Laplacian operator of the induced

subgraph with vertex set F�k . Then we have

PF�k�1�X D PF�k�1�F�k D �F�k � PFk�F�k D �F�k � PFk�F�kPFk�1[Fk :

It follows that

h�Gv; vi � h�F�kv; vi D hPF�k�1�Xv; vi C hPFk�F�kPFk�1[Fkv; vi

� �hPF�k�1v; vi C kPFk�F�kk�kPFk�1[Fkvk�kvk

� 2
3
2 dh�1�

3
2 C 2dı:

Similarly, we have

k�Gvk � kF�kvk � kPF�k�1�Xvk C kPFk�F�kPFk�1[Fkvk

� 2
3
4 d

1
2 h�

1
2 �

5
4 C 2dı:

Since these inequalities hold for all ı > 0, the conclusion follows.
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Proof of Theorem B. Since X and Y are approximately isomorphic, we can identify the
isomorphic subgraphs and assume there are induced subgraphs Zn � Xn \ Yn with

lim
n!1

jV.Zn/j

jV.Xn/j
D lim
n!1

jV.Zn/j

jV.Yn/j
D 1:

Let d be the maximum degree in X [ Y , let  > 0 with �max.�X / � ¹0º [ Œ;1/,
and let h > 0 with �.�Y / � ¹0º [ Œh;1/. Suppose that Y does not have geometric
property (T). Then the maximal spectrum of �Y contains arbitrarily small positive num-
bers. Let 0 < � < h be in the maximal spectrum of �Y . Then there are a representation
�WCuŒY �! B.H / and a unit vector v 2 H with �Y v D �v.

We will first apply Proposition 3.1 to bound v on some small subsets of Y . Then we
will construct a representation of CuŒX� containing a vector 1˝ v that we will show is
almost constant. SinceX has geometric property (T), it follows that 1˝ v is close to some
constant vector. This will give a contradiction because v is perpendicular to all constant
vectors.

We have

h�Y nZv; vi � 2
3
2 dh�1�

3
2 and k�Y nZvk � 2

3
4 d

1
2 h�

1
2 �

5
4

by Proposition 3.1 (ii).
Let F D ¹z 2 Z j z adjacent to some x 2 X n Zº. Since the degree of the vertices

of Y is uniformly bounded, we have limn!1
jF\Ynj
jYnj

D 0. By Proposition 3.1 (i), we have
kPF vk � 2

3
4 d

1
2 h�

1
2 �

1
4 .

Now we construct a representation of CuŒX�. Consider the map EWCuŒX�! CuŒZ�

given by E.T /D PZTPZ . This is a conditional expectation, meaning that for T 2 CuŒX�

and S 2 CuŒZ�, we have E.TS/ D E.T /S and E.ST / D SE.T /. We can construct the
tensor product H 0 D CuŒX�˝CuŒZ� H , as in [8, Theorem 1.8]. We repeat the construc-
tion here. First we consider the algebraic tensor product CuŒX�ˇH . We equip this with
a conjugate symmetric form given on simple tensors by

hT1 ˇ v1; T2 ˇ v2i D hE.T
�
2 T1/v1; v2i:

It can be shown that this is positive semi-definite (see [8, Lemma 1.7] and its proof).
Define the semi-norm kwk D hw;wi

1
2 for w 2 CuŒX�ˇH . Let H 0 D CuŒX�˝CuŒZ� H

be the Hilbert space we get by taking the quotient with respect to the kernel of k�k, and
then taking the completion. Let T1 ˝ v1 denote the image of T1 ˇ v1 in H 0. It is easy to
see that for S 2 CuŒZ�, we have T1S ˝ v1 D T1 ˝ Sv1. We now have a representation
� WCuŒX�! B.H 0/, given on simple tensors by �.T1/.T2 ˝ v1/ D T1T2 ˝ v1.

Consider the unit vector 1˝ v 2 H 0. We have

h�X .1˝ v/; 1˝ vi D h�Zv; vi C hE.�XnZ/v; vi

D h�Zv; vi C hE.�XnZ/PF v; PF vi

� h�Y v; vi C kE.�XnZ/k�kPF vk
2

� �C 2d � 2
3
2 dh�1�

1
2 � 8d2h�1�

1
2 ;



Cycles in graphs with geometric property (T) 375

provided � is small enough. Letw 2H 0c be the projection of 1˝ v on the space of constant
vectors H 0c D ker.�.�X //. Then we have

h�X .1˝ v/; 1˝ vi D h�X .1˝ v � w/; 1˝ v � wi

� k1˝ v � wk2:

Combining these inequalities, we get

k1˝ v � wk2 � 8d2h�1�1�
1
2 :

Finally, we have

� D h�Y v; vi

D h�Zv; vi C h�Y nZv; vi

D h�Z.1˝ v/; wi C h�Z.1˝ v/; 1˝ v � wi C h�Y nZv; vi

D h�Z.1˝ v/; 1˝ v � wi C h�Y nZv; vi

D h�.1˝ v/; 1˝ v � wi � h1˝�Y nZv; 1˝ v � wi C h�Y nZv; vi

� �k1˝ v � wk2 C k�Y nZvk � k1˝ v � wk C 2
3
2 dh�1�

3
2

� .8d2h�1�1 C 2
9
4 d

3
2 h�1�

1
2 C 2

3
2 dh�1/�

3
2 :

This gives a contradiction if � is small enough. Therefore, Y must have geometric prop-
erty (T).

Using the theorem, we can construct a sequence of graphs with geometric property (T)
such that the graphs locally have arbitrarily large girth.

Corollary 3.2. There is a sequence of graphs .Xn/ with uniformly bounded degree and
number of vertices converging to infinity, satisfying geometric property (T), with a desig-
nated vertex pn 2 V.Xn/, such that the n-ball around pn does not contain any cycles.

Proof. We start with a sequence of finite connected graphs .Yn/ with geometric prop-
erty (T) and maximal degree d . We will construct the graphs Xn by attaching new trees to
each Yn.

Let .Rn/ be an unbounded sequence of integers with limn!1
2Rn

jV.Yn/j
D 0. Let .Tn;pn/

be a rooted tree of depth Rn such that each vertex except for the leaves has degree 3.
Connect each leaf of the tree to a different vertex in Yn. We call the new graph Xn, and
we show that .Xn/ is still an expander sequence. Note that the maximal degree of Xn
equals d C 1. For a subset A � V.Xn/, denote by ıoutA the outer vertex boundary, that
is, the set ¹x 2 V.Xn/ j x 62 A; x adjacent to a vertex in Aº. Since .Yn/ is an expander
sequence, there is h > 0 such that for all n and all B � V.Yn/ with jBj � 2

3
jYnj, we

have jıoutBj � hjBj. Now let C � V.Xn/ with jC j � 1
2
jV.Xn/j. Write A D C \ V.Tn/

and B D C \ V.Yn/. Note that jBj � 2
3
jV.Yn/j (provided n is large enough). We have
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jıoutAj �
1
2
jAj, and all vertices in ıoutA are also in ıoutC unless they are in B , so jıoutC j �

1
2
jAj � jBj. We also have

jıoutC j � jıoutB \ V.Yn/j � hjBj:

Taking a convex combination, we conclude that

jıoutC j �
�
1C

3

2h

��1�1
2
jAj � jBj C

3

2h
hjBj

�
D

h

2hC 3
jC j:

Hence, .Xn/ is an expander sequence.
By the condition on Rn, we see that .Xn/ approximates .Yn/. By Theorem B, the

sequence .Xn/ has geometric property (T). The Rn-neighbourhood of pn is the tree Tn,
so it does not contain any cycles. After taking a subsequence and renumbering the graphs,
we get the sequence of graphs we wanted.
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