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Symbolic group varieties and dual surjunctivity

Xuan Kien Phung

Abstract. Let G be a group. Let X be an algebraic group over an algebraically closed field K.
Denote by A D X.K/ the set of rational points of X . We study algebraic group cellular automa-
ta � WAG ! AG whose local defining map is induced by a homomorphism of algebraic groups
XM ! X , where M is a finite memory. When G is sofic and K is uncountable, we show that if �
is post-surjective, then it is weakly pre-injective. Our result extends the dual version of Gottschalk’s
conjecture for finite alphabets proposed by Capobianco, Kari, and Taati. When G is amenable,
we prove that if � is surjective, then it is weakly pre-injective, and conversely, if � is pre-injective,
then it is surjective. Hence, we obtain a complete answer to a question of Gromov on the Garden of
Eden theorem in the case of algebraic group cellular automata.

1. Introduction

We recall basic notations in symbolic dynamics. Fix a set A called the alphabet, and
a group G, the universe. A configuration c 2 AG is a map cWG ! A. The Bernoulli shift
action G �AG ! AG is defined by .g; c/ 7! gc, where .gc/.h/ D c.g�1h/ for g; h 2 G
and c 2 AG . For� � G and c 2 AG , the restriction cj� 2 A� is given by cj�.g/D c.g/
for all g 2 �.

Following von Neumann [26], a cellular automaton over the group G and the alpha-
bet A is a map � WAG ! AG admitting a finite memory set M � G and a local defining
map �WAM ! A such that

.�.c//.g/ D �..g�1c/jM /

for all c 2 AG and g 2 G.
Two configurations c; d 2 AG are asymptotic if cjGnE D d jGnE for some finite subset

E � G. Let � WAG ! AG be a cellular automaton. Then � is pre-injective if �.c/ D �.d/
implies c D d whenever c; d 2 AG are asymptotic. We say that � is post-surjective if for
every x; y 2 AG with y asymptotic to �.x/, we can find z 2 AG asymptotic to x such that
�.z/ D y.
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The cellular automaton � WAG ! AG is said to be linear if A is a finite-dimensional
vector space and � is a linear map.

The important Gottschalk’s conjecture [15] asserts that over any universe, an injective
cellular automaton with finite alphabet must be surjective.

The conjecture was shown to hold over sofic groups (cf. [16, 27], see also [6, 9, 21])
while no examples of non-sofic groups are known in the literature. The dual version of
Gottschalk’s conjecture was introduced recently by Capobianco, Kari, and Taati in [3]
and states the following.

Conjecture 1.1. Let G be a group, and let A be a finite set. Suppose that � WAG ! AG is
a post-surjective cellular automaton. Then � is pre-injective.

As for Gottschalk’s conjecture, the above dual surjunctivity conjecture is also known
when the universe is a sofic group (cf. [3, Theorem 2]).

Theorem 1.2 (Capobianco–Kari–Taati). Let G be a sofic group, and let A be a finite set.
Suppose that � WAG ! AG is a post-surjective cellular automaton. Then � is pre-injective.

Moreover, as Bartholdi pointed out in [1, Theorem 1.6], Conjecture 1.1 also holds for
linear cellular automata over sofic groups.

Theorem 1.3. LetG be a sofic group, and let V be a finite-dimensional vector space over
a field. Suppose that � WV G ! V G is a post-surjective linear cellular automaton. Then �
is pre-injective.

Several related applications of groups satisfying Conjecture 1.1 are investigated in the
papers [14, 22].

Fix a group G and an algebraic group X over an algebraically closed field K. Denote
by A D X.K/ the set of K-points of X . We regard A � X as a subset which consists of
closed points of X (see, e.g., [9, Remark A.21]).

We denote by CAalgr.G; X; K/ the set of algebraic group cellular automata over
.G;X;K/, which consists of cellular automata � WAG!AG which admit a memory setM
with local defining map �WAM !A induced by some homomorphism of algebraic groups
f WXM ! X , i.e., � D f jAM , where XM is the fibered product of copies of X indexed
by M .

In [21, Definition 8.1], two notions of weak pre-injectivity, namely, .�/-pre-injectivity
and .��/-pre-injectivity, are introduced for the class CAalgr (cf. Section 4). We prove in
Corollary 4.3 that in CAalgr, we have

.�/-pre-injectivity ) .��/-pre-injectivity: (1.1)

Note that for linear cellular automata, pre-injectivity, .�/-pre-injectivity, and .��/-pre-
injectivity are equivalent (cf. [21, Proposition 8.8]).

Generalizing Theorem 1.3, we establish Conjecture 1.1 for the class CAalgr where the
universe is a sofic group and the alphabet is an arbitrary algebraic group not necessarily
connected (cf. Theorem 6.1).
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Theorem A. LetG be a sofic group, and letX be an algebraic group over an uncountable
algebraically closed field K. Suppose that � 2 CAalgr.G;X;K/ is post-surjective. Then �
is .�/-pre-injective.

We observe in Example 6.2 that for every group G, there exist a complex algebraic
group X and � 2 CAalgr.G; X;C/ such that � is post-surjective but not pre-injective.
Moreover, in characteristic zero, we prove (Theorem 9.2) that every post-surjective, pre-
injective � 2 CAalgr is reversible with ��1 2 CAalgr. Such property was known in the
literature for cellular automata with finite alphabet [3, Theorem 1] and for linear cellular
automata [1].

The classical Myhill–Moore Garden of Eden theorem for finite alphabets (cf. [19,20])
asserts that a cellular automaton over the group universe Zd is pre-injective if and only
if it is surjective. Over amenable groups, the theorem was extended to cellular automata
with finite alphabet in [13] and to linear cellular automata in [5]. The theorem fails over
non-amenable groups (cf. [1, 2], see also [8]). In [16, 8.J. Question], Gromov asked

Does the Garden of Eden theorem generalize to the proalgebraic category? First,
one asks if pre-injective) surjective, while the reverse implication needs further
modification of definitions.

Let G be an amenable group, and let K be an algebraically closed field. The papers
[10] and [21], respectively, give a positive answer to Gromov’s question for the class
CAalg.G; X; K/ (cf. Section 2.6) when X is a complete irreducible algebraic variety
overK, and for the class CAalgr.G;X;K/ when X is a connected algebraic group overK.

In this paper, we obtain the following complete answer to Gromov’s question for the
class CAalgr.G;X;K/, whereX is an arbitrary algebraic group (cf. Theorems 7.2 and 8.1).

Theorem B. Let G be an amenable group, and let X be an algebraic group over an
algebraically closed field K. Suppose that � 2 CAalgr.G;X;K/. Then the following hold:

(i) If � is pre-injective, then it is surjective.

(ii) If � is surjective, then it is both .�/- pre-injective and .��/-pre-injective.

In Proposition 7.3, we show that one cannot replace the pre-injectivity hypothesis in
Theorem B (i) by the weaker .��/-pre-injectivity. Moreover, we obtain a very general result
(cf. Theorem 5.2) saying that post-surjectivity implies surjectivity in CAalgr and CAalg.
Consequently, when the universe G is an amenable group, Theorem B (ii) implies Theo-
rem A.

The paper is organized as follows. In Section 2, we present briefly important prop-
erties of sofic groups as well as amenable groups. Section 2.6 recalls basic definitions
about the classes CAalg and CAalgr. In Section 3, we introduce the useful tool of induced
maps on the set of connected components of algebraic varieties and give some applica-
tions to the class CAalgr. Then in Section 4, we investigate at length .�/-pre-injectivity
and .��/-pre-injectivity in the class CAalgr and prove (1.1). In Section 5, we establish
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a certain uniform post-surjectivity property (Lemma 5.3) and show, in particular, that post-
surjectivity implies surjectivity in CAalg and CAalgr (Theorem 5.2). We present the proof
of Theorem A in Section 6. Then Theorem 7.2 establishes the Myhill property for CAalgr

as stated in Theorem B (i). Finally, the Moore property for CAalgr, i.e., Theorem B (ii), is
proved in Section 8 (Theorem 8.1).

2. Preliminaries

2.1. Convention and notation

To simplify the presentation, we suppose throughout the paper that the universe G is
always a finitely generated group. The symbol e denotes the neutral element of algebraic
groups and group alphabets while the neutral element of a universe G is denoted by 1G .
We denote cardinality by j � j. Given a group alphabet A and a subset E � G of a uni-
verse G, we identify naturally every subsetD of AE with the corresponding subsetDe D
D � ¹eºGnE of AE � ¹eºGnE .

2.2. Algebraic varieties and algebraic groups

Following [17, Corollaire 6.4.2], an algebraic variety X over an algebraically closed field
K is a reduced K-scheme of finite type and is identified with the set of K-points X.K/.
Algebraic subvarieties are Zariski closed subsets, and algebraic subgroups are subgroups
which are also algebraic subvarieties. An algebraic group is a group that is an alge-
braic variety with group operations given by algebraic morphisms (cf. [18]). See also
[9, Appendix A], [10, Section 2] for standard definitions and basic properties of algebraic
varieties.

2.3. Sofic groups

The important class of sofic groups was introduced by Gromov [16] and Weiss [27] as
a common generalization of residually finite groups and amenable groups. Many conjec-
tures for groups have been established for the sofic ones such as Gottschalk’s surjunctivity
conjecture and its dual surjunctivity conjecture (cf. [3]). See also [4, 7] for some more
details.

Let S be a finite set. Then an S -label graph is a pair G D .V; E/, where V is the set
of vertices, and E � V � S � V is the set of edges.

Denote by l.�/ the length of a path � in G . If v; v0 2 V are not connected by a path
in G , we set dG .v; v

0/ D1. Otherwise, we define

dG .v; v
0/ D min¹l.�/W � is a path from v to v0º:

For v 2 V and r � 0, we define

BG .v; r/ D ¹v
0
2 V W dG .v; v

0/ � rº:
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Observe that BG .v; r/ is naturally a finite S -labeled subgraph of G .
Let .V1; E1/ and .V2; E2/ be two S -label graphs. A map �W V1 ! V2 is called an S -

labeled graph homomorphism from .V1; E1/ to .V2; E2/ if .�.v/; s; �.v0// 2 E2 for all
.v; s; v0/ 2 E1. A bijective S -labeled graph homomorphism �W V1 ! V2 is an S -labeled
graph isomorphism if its inverse ��1WV2 ! V1 is an S -labeled graph homomorphism.

Let G be a finitely generated group, and let S � G be a finite symmetric generating
subset, i.e., S D S�1. The Cayley graph ofG with respect to S is the connected S -labeled
graph CS .G/ D .V;E/, where V D G and E D ¹.g; s; gs/Wg 2 G and s 2 Sº.

For g 2 G and r � 0, we denote BS .r/ D BCS .G/.1G ; r/.
We can characterize sofic groups as follows [7, Theorem 7.7.1].

Theorem 2.1. Let G be a finitely generated group. Let S � G be a finite symmetric
generating subset. Then the following are equivalent:

(a) the group G is sofic;

(b) for all r; " > 0, there exists a finite S -labeled graph G D .V;E/ satisfying

jV.r/j � .1 � "/jV j;

where V.r/ � V consists of v 2 V such that there exists a (unique) S -labeled
graph isomorphism  v;r WBS .r/! BG .v; r/ with  v;r .1G/ D v.

Let 0 � r � r 0. Then V.r 0/ � V.r/ since every S -labeled graph isomorphism

 v;r 0 W BS .r
0/! BG .v; r

0/

induces by restriction an S -labeled graph isomorphism BS .r/ ! BG .v; r/. We shall
need the following well-known packing lemma (cf. [27], [7, Lemma 7.7.2], see also [21]
for (ii)).

Lemma 2.2. With the notation as in Theorem 2.1, the following hold:

(i) BG .v; r/ � V.kr/ for all v 2 V..k C 1/r/ and k � 0.

(ii) There exists a finite subset V 0 � V.3r/ such that the balls BG .v; r/ are pairwise
disjoint for all v 2 V 0 and that V.3r/ �

S
v2V 0 BG .v; 2r/.

2.4. Tilings of groups

Let G be a group, and let E;E 0 � G. A subset T � G is called an .E; E 0/-tiling if the
following hold:

(T-1) the subsets gE, g 2 T , are pairwise disjoint,

(T-2) G D
S
g2T gE

0.

We shall need the following existence result which is an immediate consequence of
Zorn’s lemma (see [7, Proposition 5.6.3]).

Proposition 2.3. Let E be a nonempty finite subset of a group G and let E 0 D ¹gh�1W
g; h 2 Eº. Then there exists an .E;E 0/-tiling T � G.
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2.5. Amenable group and algebraic mean dimension

Amenable groups were introduced by von Neumann in [25]. A group G is amenable if it
admits a Følner net, i.e., a family .Fi /i2I over a directed set I consisting of nonempty
finite subsets of G such that

lim
i2I

jFi n Figj

jFi j
D 0 for all g 2 G:

In [10], algebraic mean dimension is introduced as an analog of topological and mea-
sure-theoretic entropy, as well as various notions of mean dimension studied by Gromov
in [16].

Definition 2.4. Let G be an amenable group, and let F D .Fi /i2I be a Følner net for G.
Let X be an algebraic variety over an algebraically closed field K, and let A D X.K/.
The algebraic mean dimension of a subset � � AG with respect to F is the quantity
mdimF .�/ defined by

mdimF .�/ D lim sup
i2I

dim.�Fi /
jFi j

;

where dim.�Fi / denotes the Krull dimension of

�Fi D ¹xjFi W x 2 �º � A
Fi

with respect to the Zariski topology.

We shall need the following technical lemma in Sections 7 and 8.

Lemma 2.5. Let G be an amenable group, and let F D .Fi /i2I be a Følner net for G.
Let X be an algebraic variety over an algebraically closed field K, and let A D X.K/.
Suppose that � � AG satisfies the following condition:

(C) there exist finite subsets E; E 0 � G and an .E; E 0/-tiling T � G such that
dim�gE < dimAgE for all g 2 T .

Then one has mdimF .�/ < dim.X/.

Proof. See [10, Lemma 5.2].

2.6. Strongly irreducible subshifts

Let G be a group, and let A be a set. A subshift of AG is a G-invariant subset. A subshift
of AG is called a closed subshift if it is closed in AG with respect to the prodiscrete
topology.

We say that a subshift † � AG is strongly irreducible if there exists a finite subset
� � G such that for all finite subsets E;F � G with E� \ F D ¿ and x; y 2 †, there
exists z 2 † such that

zjE D xjE and zjF D yjF :
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2.7. Algebraic subshifts and algebraic cellular automata

Let G be a group. Let X be an algebraic variety over an algebraically closed field K, and
let A D X.K/. Then algebraic subshifts of finite type of AG are closed subshifts of the
form

†.AG IW;D/ D ¹x 2 AG W .gx/jD 2 W for all g 2 Gº;

where D � G is a finite subset and W � AD is an algebraic subvariety.
Following [9, Definition 1.1], the set CAalg.G; X;K/ of algebraic cellular automata

consists of cellular automata � WAG ! AG which admit a local defining map �WAM ! A

induced by any K-morphism of algebraic varieties f WXM ! X , i.e., � D f jAM (note
that we always have f .AM / � A).

Letƒ�AG be a subshift. IfƒD �.†/ for some � 2 CAalg.G;X;K/ and an algebraic
subshift of finite type † � AG , then we call ƒ an algebraic sofic subshift (cf. [11]). See
also [12, 24] for the simpler linear case.

3. Induced maps on the set of connected components

Fix an algebraically closed field K. For every K-algebraic variety U , we denote by U0
the finite set of connected components of U , and let iU WU ! U0 be the map sending
every point u 2 U to the connected component of U which contains u. It is clear that
.U n/0 D .U0/

n for every n 2 N.
For every morphism of K-algebraic varieties � WR! T , we denote by �0WR0 ! T0

the map which sends every p 2 R0 to q0 2 T , where q0 is the connected component of T
containing �.u/ for any point u 2 R that belongs to p0. Note that �0 is well defined
since the image of every connected component is connected. Moreover, it follows from
the definition that

iT ı � D �0 ı iR: (3.1)

If in addition the map � is surjective, then clearly jT0j � jR0j.
Let X be a K-algebraic variety, and let G be a group. Suppose � WX.K/G ! X.K/G

is an algebraic cellular automaton with an algebraic local defining map f WXM ! X for
some finite symmetric subset M � G, i.e., M D M�1. Then we obtain a well-defined
cellular automaton �0WXG0 ! XG0 admitting f0WXM0 ! X0 as a local defining map,

�0.c/.g/ D f0..g
�1c/jM /

for all c 2 XG0 and g 2 G. Let iXG WXG ! XG0 be the induced map iXG D
Q
G iX . Then

it is clear that
iXG ı � D �0 ı iXG :

We also infer from relation (3.1) the functoriality of our construction of induced cel-
lular automata: for all �; � 2 CAalg.G;X;K/, we have

.� ı �/0 D �0 ı �0:
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Indeed, let f WXM ! X and hWXM ! X be the algebraic local defining maps of �
and � , respectively, for some finite memory set M 2 G. Let f CM WX

M 2
! XM be the

induced map given by f CM .c/.g/ D f ..g
�1c/jM / for every c 2 AM

2
and g 2 M . Then

h ı f CM WX
M 2
! X is an algebraic local defining map of � ı � associating with the mem-

ory set M 2. Since
.h ı f CM /0 D h0 ı .f

C

M /0;

we deduce without difficulty that .� ı �/0 D �0 ı �0.
Suppose that � WR ! T is a homomorphism of algebraic groups over K. Then R0

and T0 inherit naturally a group structure from R and T , respectively. For example, the
multiplication map R0 � R0 ! R0 is defined by pq D r for .p; q/ 2 R0 � R0, where
r 2 R0 is the connected component of R containing xy for any x; y 2 R such that x 2 p
and y 2 q. Therefore, it follows immediately from (3.1) that �0WR0 ! T0 is a group
homomorphism. With this observation, we obtain the following lemma.

Lemma 3.1. Let G be a group, and let X be an algebraic group over K. Suppose that
� 2 CAalgr.G; X; K/. Then the induced cellular automaton �0WXG0 ! XG0 is a group
cellular automaton.

Proof. By definition, � admits an algebraic local defining map f WXM ! X for some
finite subset M � G. Then the induced map f0WXM0 ! X0 is a local defining map of the
cellular automaton �0WXG0 ! XG0 . Since f0 is a homomorphism of groups, �0 is a group
cellular automaton.

4. Weak pre-injectivity

We recall the following two notions of weak pre-injectivity introduced in [21, Defini-
tion 8.1].

Definition 4.1. Let G be a group. Let X be a K-algebraic group, and let A D X.K/.
For every � 2 CAalgr.G;X;K/, we say that

(a) � is .�/-pre-injective if there is no finite subset � � G and no Zariski closed
subset H ¨ A� such that

�..A�/e/ D �.He/:

(b) � is .��/-pre-injective if for every finite subset � � G, we have

dim.�..A�/e// D dim.A�/:

We establish first the following lemma.

Lemma 4.2. Let f WX ! Y be a homomorphism of algebraic groups over a field K.
Suppose that dimX > dim f .X/. Then there exists a closed subset Z ¨ X such that
dimZ < dimX and f .Z/ D f .X/.
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Proof. Let us write X D
S
i2I Xi as a disjoint union of connected components of X ,

where I is a finite set. For each i 2 I , consider the restriction algebraic morphism fi D

f jXi WXi ! f .Xi /.
By [18, Theorems 5.80 and 5.81], we know that the image f .X/ is an algebraic group.

Since connected components of an algebraic group are precisely irreducible components
and have the same dimension as the dimension of the algebraic group, it follows that
fi .Xi / is a connected component of f .X/ for every i 2 I . The morphisms fi are sur-
jective morphisms of irreducible algebraic varieties with dimXi > dim fi .Xi /. Hence,
[21, Lemma 8.2] implies that for every i 2 I , there exists a proper closed subset Zi ¨ Xi
such that fi .Zi / D fi .Xi / D f .Xi /. In particular, since Xi is irreducible, it follows that
dimZi < dimXi for every i 2 I .

Let Z D
S
i2I Zi � X , then we find by construction that

f .Z/ D
[
i2I

f .Zi / D
[
i2I

f .Xi / D f .X/

and clearly,
dimZ D max

i2I
dimZi < max

i2I
Xi D dimX:

Therefore, Z verifies the desired properties and the proof is complete.

Lemma 4.2 allows us to show the following general logical implication in the class
CAalgr:

.�/-pre-injectivity ) .��/-pre-injectivity:

Corollary 4.3. Let G be a group, and let X be an algebraic group over K. Let � 2
CAalgr.G;X;K/. Suppose that � is .�/-pre-injective. Then � is also .��/-pre-injective.

Proof. Let A D X.K/, and suppose on the contrary that � is not .��/-pre-injective. Then
we can find a finite subset E � G such that dim �..AE /e/ < dimAE . Hence, we infer
from Lemma 4.2 that there exists a closed subset Z � AE such that dimZ < dimAE and
that �..AE /e/ D �.Ze/. Since dimZ < dimAE , we have Z ¨ AE and we can conclude
that � is not .�/-pre-injective, which is a contradiction. The proof is thus complete.

Let X be a connected algebraic group over an algebraically closed field K, and let G
be a group. Let � 2 CAalgr.G;X;K/. Then it was shown in [21, Proposition 8.3] that � is
.�/-pre-injective if and only if it is .��/-pre-injective. However, the following result shows
that the converse of Corollary 4.3 fails as soon as the alphabet is not a connected algebraic
group.

Proposition 4.4. Let G be a group, and letK be an algebraically closed field. Then there
exist a finite algebraic group X over K and � 2 CAalgr.G; X;K/ such that � is .��/-pre-
injective but is not .�/-pre-injective.

Proof. LetX D Z=4Z and consider the homomorphism 'WX !X given by x 7! 2x. Let
Y D Ker' ' Z=2Z, then we also have '.X/ D Y . Let us denote H D X n ¹eº ¨ X .
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We define � WXG ! XG by �.c/.g/ D '.c.g// for all g 2 G and c 2 XG .
Now let E � G be a finite subset. Then it is clear by the construction that we have an

equality of Krull dimensions dim �..XE /e/ D dimXE D 0. It follows that � is .��/-pre-
injective. However, we have

�..XE /e/ D �..H
E /e/ D .Y

E /e;

and HE ¨ XE is a proper closed subset. Consequently, � is not .�/-pre-injective, and the
proof is complete.

5. Uniform post-surjectivity

We will show in this section that the class CAalgr admits a uniform post-surjectivity prop-
erty (cf. Lemma 5.3). We also prove in Theorem 5.2 that in the class CAalg, we have the
implication

post-surjectivity ) surjectivity:

5.1. Post-surjectivity implies surjectivity

This subsection is independent of the rest of the paper. We begin with the following uni-
form property of strong irreducibility which is a generalization of [3, Proposition 1].

Lemma 5.1. LetG be a countable group. LetX be an algebraic variety over an uncount-
able algebraically closed fieldK, and letADX.K/. Let†�AG be a strongly irreducible
closed algebraic subshift. Then there exists a finite subset � � G such that for every
x; y 2 † and for every finite subset E � G, we can find z 2 † which coincides with x
outside of E�, and zjE D yjE .

Proof. Since † is strongly irreducible, there exists a finite subset � � G with 1G 2 �
such that for all finite subsets E1; E2 � G with E1� \E2 D ¿ and all z1; z2 2 †, there
exists z 2 † such that zjE1 D z1jE1 and zjE2 D z2jE2 .

Fix a finite subset E � G, and let x; y 2 †. Let .Fn/n2N be an increasing sequence
of finite subsets of G such that G D

S
n2N Fn and E� � Fn for every n 2 N. We set

Hn D Fn n E�. Then for every n 2 N, there exists by the strong irreducibility of †
a configuration zn 2 † such that znjE D yjE and such that znjHn D xjHn . Let us define
for n 2 N

ƒn D ¹c 2 †Fn W cjE D yjE ; cjHn D xjHnº:

Then by the above paragraph, we deduce that .ƒn/n2N forms an inverse system of
nonempty algebraic varieties over K. The transition maps are simply induced by the
restriction maps AFm ! AFn for 0 � n � m. Hence, by [9, Lemma B.2], lim

 �n2N
ƒn

is nonempty, and thus we can find

z 2 lim
 �
n2N

ƒn � lim
 �
n2N

†Fn D †:
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The latter equality follows from the closedness of † in AG with respect to the prodis-
crete topology.

Note that z 2 † is asymptotic to x and satisfies zjE D yjE . In fact, z and x coincide
outside of E�. The proof is thus complete.

We obtain the following generalization of [3, Proposition 2].

Theorem 5.2. Let G be a countable group, and let K be an uncountable algebraically
closed field. Let X be an algebraic variety over K, and let A D X.K/. Let † � AG be
a strongly irreducible algebraic sofic subshift. Suppose that � W†! † is the restriction of
some � 2 CAalg.G;X;K/. Then if � is post-surjective, it is also surjective.

Proof. Let us fix x0; y 2 † and a memory setM � G of � . Let .En/n2N be an increasing
sequence of finite subsets of G such that G D

S
n2N En. Then for every n 2 N, we infer

from Lemma 5.1 that there exists zn 2† asymptotic to �.x0/ and such that znjEn D yjEn .
Since � is post-surjective and �.x0/ 2 Im.�/, it follows that zn 2 Im.�/ for every

n 2 N. As .En/n2N is an increasing sequence of finite subsets of G such that G DS
n2N En, we deduce that y belongs to the closure of Im.�/with respect to the prodiscrete

topology.
Since Im.�/ is closed by [11, Theorem 8.1], it follows that y 2 Im.�/. Therefore, � is

surjective and the proof is complete.

We note here that by the exactly same proof, Theorem 5.2 still holds if X is an alge-
braic group over an arbitrary algebraically closed fieldK,†�AG is a strongly irreducible
algebraic group subshift (cf. [23, Definition 1.2]), and � W†! † is the restriction of some
� 2 CAalgr.G;X;K/. It suffices to observe that in this situation, Im.�/ is still closed inAG

thanks to [23, Theorem 4.4].

5.2. Uniform post-surjectivity

We have the following key uniform property for the post-surjectivity in the class CAalgr.

Lemma 5.3 (Uniform post-surjectivity). Let G be a countable group. Let X be an al-
gebraic group over an uncountable algebraically closed field K, and suppose that � 2
CAalgr.G;X;K/ is post-surjective. LetADX.K/. Then there exists a finite subsetE �G
with the following property. For all x; y 2 AG such that yjGn¹1Gº D �.x/jGn¹1Gº, there
exists x0 2 AG such that �.x0/ D y and x0jGnE D xjGnE .

Proof. Let M � G be a finite memory set of � such that 1G 2 M and M D M�1. Let
�WAM ! A be the corresponding local defining map.

Since � 2 CAalgr.G;X;K/, it follows that � is induced by a homomorphism of alge-
braic groups f WXM !X . Let .En/n2N be an exhaustion ofG consisting of finite subsets
such that 1G 2 E0. For each n 2 N, we define

Vn D
®
x 2 AG W �.x/jGn¹1Gº D ¹eº

Gn¹1Gº; xjGnEn D ¹eº
GnEn

¯
: (5.1)
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Consider the following homomorphism of algebraic groups:

'nW A
En � ¹eºEnM

2nEn ! AEnM

defined by 'n.x/.g/D �..g�1x/jM / for all x 2 AEn � ¹eºEnM
2nEn and g 2 EnM . Note

that 1G 2 EnM for every n 2 N. We denote respectively by pnWAEnM ! A¹1Gº and
qnWA

EnM ! AEnMn¹1Gº, the canonical projections.
It is clear that for all n 2 N, we can identify Vn D Ker qn ı 'n which is an algebraic

subgroup of AEn � ¹eºEnM
2nEn D AEn . Let us consider

Zn D pn.'n.Vn// D �.Vn/¹1Gº; Tn D A nZn:

ThenZn is a closed algebraic subgroup ofA, and thus Tn is a Zariski open subset ofA
for every n 2 N. Since En � EnC1, we deduce from (5.1) that Vn � VnC1. Consequently,
we find that Zn � ZnC1 for all n 2 N.

We claim that
S
n2N Zn D A. Indeed, let y 2 A and consider c 2 AG defined by

c.g/ D e for all g 2G n ¹1Gº and c.1G/D y. Since � is post-surjective and �.eG/ D eG ,
it follows that there exist x 2 AG and n 2 N such that xjGnEn D eGnEn and such that
�.x/ D c. We deduce that �.x/jGn¹1Gº D eGn¹1Gº and thus x 2 Vn. Moreover, because
�.x/.1G/D y, it follows that y 2Zn. Hence, we have proven the claim that

S
n2NZnDA.

Therefore, .Tn/n2N is a decreasing sequence of Zariski open (thus constructible, see
[9, Section A.1]) subsets of A and satisfies\

n2N

Tn D A n
� [
n2N

Zn

�
D ¿:

Since the field K is uncountable and algebraically closed, we infer from [9, Lem-
ma B.3] that there exists N 2 N such that TN D ¿. It follows that ZN D A. We claim
that E D EN satisfies the desired property in the conclusion of the lemma.

Indeed, suppose that x;y 2 AG satisfy yjGn¹1Gº D �.x/jGn¹1Gº. Let us define c 2 AG ,
where c.g/ D y.g/.�.x/.g//�1 for all g 2 G. Then cjGn¹1Gº D eGn¹1Gº. Since ZN D
�.VN /¹1Gº D A, we can find d 2 VN such that �.d/.1G/ D c.1G/. Therefore, d jGnEN D
eGnEN and �.d/jGn¹1Gº D e

Gn¹1Gº.
Consequently, since � is a homomorphism, we find for x0 D dx 2 AG and for every

g 2 G that

�.x0/.g/ D �.d/.g/�.x/.g/

D

´
�.x/.g/ if g 2 G n ¹1Gº;

y.1G/.�.x/.1G//
�1�.x/.1G/ if g D 1G

D

´
y.g/ if g 2 G n ¹1Gº;

y.1G/ if g D 1G

D y.g/:

Therefore, �.x0/D y. On the other hand, since d jGnE D eGnE and x0 D dx, we have
x0jGnE D xjGnE . The conclusion thus follows.
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6. Dual surjunctivity for CAalgr

In this section, we will present the proof of Theorem A and the construction of Exam-
ple 6.2 showing that in a certain sense, Theorem A is optimal.

Theorem 6.1. Let G be a sofic group, and let X be an algebraic group over an uncount-
able algebraically closed field K. Suppose that � 2 CAalgr.G; X; K/ is post-surjective.
Then � is both .�/-pre-injective and .��/-pre-injective.

Proof. Let A D X.K/, and let S � G be a memory set of � such that 1G 2 S , S D S�1

and that S generates G. Let f WAS ! S be the corresponding local defining map which
is a homomorphism of algebraic groups.

As .�/-pre-injectivity implies .��/-pre-injectivity in the class CAalgr (cf. Lemma 4.3),
it suffices to show that � is .�/-pre-injective.

Suppose on the contrary that � is not .�/-pre-injective. Then there exist a finite subset
� � G and a proper closed subset H ¨ A� such that

�..A�/e/ D �.He/: (6.1)

Since � is post-surjective, there exists a finite subset E � G with the property de-
scribed in Lemma 5.3, i.e., for x; y 2 AG with yjGn¹1Gº D �.x/jGn¹1Gº, there exists
x0 2 AG such that �.x0/ D y and x0jGnE D xjGnE .

In the Cayley graph CS .G/, note thatBS .1/D S (see Section 2.3). Up to enlargingE,
we can suppose without loss of generality that

� � BS .r � 1/ � E D BS .r/ for some r � 2:

If dimA D 0, then A is a finite group, so Theorem 1.2 implies that � is pre-injective.
By [10, Proposition 6.4.1, Example 8.1] and [21, Proposition 8.3.(ii)], pre-injectivity is
equivalent to .�/-pre-injectivity for finite group alphabets. Thus we deduce that � is .�/-
pre-injective.

Suppose from now on that dimA > 0. Let X0 be the set of connected components
of X . Let us fix 0 < " < 1=2 small enough so that

jX0j
".1 � jX0j

�jBS .r/j/
1

2jBS .2r/j < 1; (6.2)

and that
0 < .1 � "/�1 < 1C

1

jBS .2r/j dimA
: (6.3)

Since the group G is sofic, it follows from Theorem 2.1 that there exists a finite S -
labeled graph G D .V;E/ associated to the pair .3r; "/ such that

jV.3r/j � .1 � "/jV j >
1

2
jV j; (6.4)
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where for each s � 0, the subset V.s/� V consists of v 2 V such that there exists a unique
S -labeled graph isomorphism  v;s WBG .v; s/! BS .s/ sending v to 1G (cf. Theorem 2.1).
Note that V.s/ � V.s0/ for all 0 � s0 � s.

We denote B.v; s/ D BG .v; s/ for v 2 V and s � 0. Define V 0 � V.3r/ as in Lem-
ma 2.2 (ii), so thatB.v;r/ are pairwise disjoint for all v 2V 0 and V.3r/�

S
v2V 0 B.v;2r/.

In particular,
jV.3r/j � jV 0jjBS .2r/j: (6.5)

Note that the local map f induces a homomorphism of algebraic groups ˆWAV !
AV.3r/ given by ˆ.x/.v/ D f . v;1.xjB.v;1/// for all x 2 AV and v 2 V.3r/. As E D
BS .r/ � BS .r/S � BS .3r/, we deduce applying repeatedly Lemma 5.3 that ˆ is surjec-
tive (cf. the [3, proof of Lemma 2]),

ˆ.AV / D AV.3r/: (6.6)

We claim that dim Ker � j.A�/e D 0. Indeed, suppose on the contrary that

dim Ker � j.A�/e � 1: (6.7)

For s � r � 1 and v 2 V.s/, we denote by 'v;s WABS .s/ ! AB.v;s/ and 'v;s;�WA� !
A v;s.�/ the isomorphisms induced by the bijections  v;s and  v;sj�, respectively.

Since � � BS .r � 1/, we can regard Ker � j.A�/e as a closed subgroup of ABS .r�1/ �
¹eºBS .r/nBS .r�1/. Let us denote V 0 D

`
v2V 0 B.v; r/.

As ˆ is naturally induced by the local defining map f WAS ! A of � and as the balls
B.v; r/, v 2 V 0, are disjoint, we deduce that

¹eºV nV
0

�

Y
v2V 0

'v;r .Ker � j.A�/e / � Kerˆ:

Consequently, relation (6.7) implies that

dim Kerˆ �
X
v2V 0

dim'v;r .Ker � j.A�/e / D
X
v2V 0

dim.Ker � j.A�/e / � jV
0
j: (6.8)

The Fiber dimension theorem (see, e.g., [18, Proposition 5.23]) implies that

dimˆ.AV /
(6.8)
D dimAV � dim Kerˆ

(6.4)
� jV j dimA � jV 0j

(6.5)
� .1 � "/�1jV.3r/j dimA �

jV.3r/j

jBS .2r/j

(6.3)
� jV.3r/j dimA

�
.1 � "/�1 �

1

jBS .2r/j dimA

�
< jV.3r/j dimA D dimAV.3r/:

However, since ˆ.AV /D AV.3r/ by (6.6), we arrive at a contradiction. Thus, we have
proven the claim that dim Ker � j.A�/e D 0.

In what follows, we shall distinguish two cases according to whether

dimH < dimABS .r/ or dimH D dimABS .r/:
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Case 1: dimH < dimA�. Then we infer from (6.1) that

dim �..A�/e/ D dim �.He/ < dimA�:

Therefore, the Fiber dimension theorem (cf. [18, Proposition 5.23]) implies

dim Ker � j.A�/e D dimA� � dim �..A�/e/ � 1;

which is a contradiction since dim Ker � j.A�/e D 0.

Case 2: dimH D dimA�. Since dimKer� j.A�/e D 0, it follows from the Fiber dimension
theorem (cf. [18, Proposition 5.23]) that

dim �.He/ D dim �..A�/e/ D dimA�:

From the decomposition ofH into irreducible components (see, for example, [10, Sec-
tion 2.1]), we can write H D H 0 [H 00, where H 0 is the union of irreducible components
of H of dimension equal to dimH , and H 00 is the union of other irreducible components.
Consequently, �.He/ D �.H 0e/ [ �.H

00
e / and dimH 00 < dimH . Moreover, H 0 contains

precisely components which are irreducible components of AG as H is closed in A� and
dimH D dimA�. Since irreducible components of an algebraic group are also connected
components, we deduce thatH 0 is a union of some connected components of the algebraic
group A�.

Note that since �.He/ D �..A�/e/ is an algebraic group, all of its connected compo-
nents have the same dimension dim �..A�/e/.

On the other hand, since dim�.H 00e /� dimH 00 < dimA� D dim�..A�/e/, we deduce
that dim �.H 0e/ D dim �..A�/e/ and also

�..A�/e/ D �.H
0
e/ [ �.H

00
e / D �.H

0
e/: (6.9)

SinceˆWAV ! AV.3r/ is surjective, the induced mapˆ0WXV0 ! X
V.3r/
0 is also a sur-

jective homomorphism (cf. Section 3). Let Y � X be the neutral connected component
of X and B D Y.K/. We deduce from (6.9) that �.H 0 � BBS .r/n�/ has nonempty inter-
section with every connected component of �.A� � BBS .r/n�/. In particular, for every
v 2 V 0, we find that

ˆ0..A
 v;r .�/ � BV n v;r .�//0/ D ˆ0..'v;r;�.H

0/ � BV n v;r .�//0/: (6.10)

Note that since H 0 is a union of some connected components of A�, we have

.'v;r;�.H
0/ � BV n v;r .�//0 2 X

V
0 :

Therefore, in (6.10), the expression ˆ0..'v;r;�.H 0/ � BV n v;r .�//0/ is well defined.
For each v 2 V 0, we consider the following subset of XBS .r/0 :

Iv D .X
BS .r/
0 n .A v;r .�/ � BBS .r/n v;r .�//0/ [ .'v;r;�.H

0/ � BBS .r/n v;r .�//0:
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Then since .H 0/0 ¨ X�0 is a proper subset, we deduce that

jIvj � jX
BS .r/
0 j � 1: (6.11)

Moreover, since V 0 D
`
v2V 0 B.v; r/ is a disjoint union of the balls B.v; r/ and since

 v;r .�/ � B.v; r � 1/ for all v 2 V 0, we infer from (6.10) that

ˆ0..A
V /0/ D ˆ0

�
X
V nV 0

0 �

Y
v2V 0

Iv

�
:

Taking the cardinality of both sides, we deduce from relations (6.11), (6.5), (6.4),
and (6.2) that

jˆ0.X
V
0 /j �

ˇ̌̌
X
V nV 0

0 �

Y
v2V 0

Iv

ˇ̌̌ (6.11)
� jX0j

jV j�jV 0jjBS .r/j.jX0j
jBS .r/j � 1/jV

0j

D jX0j
jV j.1 � jX0j

�jBS .r/j/jV
0j

(6.5)
� jX0j

jV j.1 � jX0j
�jBS .r/j/

jV.3r/j
jBS .2r/j

(6.4)
< jX0j

jV j.1 � jX0j
�jBS .r/j/

jV j
2jBS .2r/j

(6.2)
< jX0j

jV j
jX0j

�"jV j

D jX0j
.1�"/jV j (6.4)

< jX0j
jV.3r/j;

which is again a contradiction sinceˆ0.XV0 /DX
V.3r/
0 . Therefore, we can conclude that �

must be .�/-pre-injective. The proof of the theorem is thus complete.

6.1. A counterexample

Using nontrivial covering maps, we present a simple example which shows that in the
class CAalgr, the implication

post-surjectivity ) pre-injectivity

fails over any universe.

Example 6.2. LetG be a group, and letE be a complex elliptic curve with originO 2 E.
Consider the algebraic group cellular automaton � WEG!EG defined by �.c/.g/D 2c.g/
for every c 2 EG and g 2 G. We claim that � is post-surjective but it is not pre-injective.

Indeed, consider the multiplication-by-2 map 'WE ! E, P 7! 2P . Then ' is a cov-
ering map of E of degree 4. Hence, there exists P 2 I n ¹Oº such that 2P DO . Consider
c 2 EG given by c.1G/ D P , and c.g/ D O if g 2 G n ¹1Gº. It is immediate that c
and OG are asymptotic and distinct but �.c/ D �.OG/ D OG . This proves that � is not
pre-injective.

Now let x;y 2EG such that yjGn�D �.x/jGn� for some finite subset��G. Since '
is surjective, we can find p 2 E� such that 2p.g/D y.g/ for all g 2�. Consider z 2 EG

given by zjGn� D xjGn� and zj� D p; then it is clear that �.z/ D y. This shows that � is
post-surjective.
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More generally, we obtain with a similar argument the following example.

Example 6.3. LetG be a group, and letA be a set equipped with a surjective non-injective
self map f WA!A. Then the induced cellular automaton � WAG!AG given by �.x/.g/D
f .x.g// for all x 2 AG , and g 2 G is post-surjective but not pre-injective.

7. Myhill property of CAalgr

We shall need the following technical result in the proof of Theorem 7.2.

Proposition 7.1. LetG be an amenable group, and let F D .Fi /i2I be a Følner net forG.
Let X be an algebraic group over an algebraically closed field K, and let A D X.K/.
Suppose that � 2 CAalg.G;X;K/ is .��/-pre-injective. Then one has

mdimF .�.A
G// D dim.X/:

Proof. It is a direct consequence of [10, Proposition 6.5]. It suffices to observe there that
CAalgr � CAalg and in the class CAalgr, the two notions .��/-pre-injectivity and .��/-pre-
injectivity are in fact equivalent by [21, Proposition 8.3].

We can now state and prove the Myhill property for the class CAalgr, which is the
content of Theorem B (i).

Theorem 7.2. Let G be an amenable group, and let X be an algebraic group over K.
Suppose that � 2 CAalgr.G;X;K/ is pre-injective. Then � is surjective.

Proof. Let ADX.K/, and let � D �.AG/. Then it follows from [21, Theorem 5.1] that �
is closed in AG with respect to the prodiscrete topology.

Since � is pre-injective, it is .��/-pre-injective (cf. [21, Proposition 8.3]). We can thus
deduce from Proposition 7.1 that

mdimF .�/ D dim.X/;

where F D .Fi /i2I is an arbitrary fixed Følner net for G.
Therefore, it follows immediately from Lemma 2.5 and Proposition 2.3 that we have

an equality of Krull dimensions dim�E D dimXE for every finite subset E � G.
On the other hand, [11, Theorem 7.1] implies that �E is an algebraic subgroup of AE

for every finite subset E � G.
Now consider the induced group cellular automaton �0WXG0 ! XG0 , where the alpha-

bet X0 is the set of connected components of X (cf. Lemma 3.1). We are going to show
that �0 is also pre-injective.

Let f WAM ! A, where M � G is a finite symmetric subset, be a homomorphism of
algebraic groups which is also a local defining map of � .
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Suppose on the contrary that �0 is not pre-injective. Consequently, we can find a finite
subset E � G, and subvarieties V1; V2 � AE , and a subvariety U � AMEnE with the
following properties:

(a) U is a connected component of AEMnE , and V1, V2 are distinct connected com-
ponents of AE ;

(b) the images �CE .U � V1/ and �CE .U � V2/ belong to the same connected com-
ponent Z of the algebraic group AE , where the induced homomorphism �CE W

AEM ! AE of algebraic groups is given by �CE .c/.g/D f ..g
�1c/jM / for every

c 2 AEM and g 2 E.

Let us choose an arbitrary point u 2 U . Then as � is pre-injective and as dim Vi D

dimZ D dimAE , we must have �CE .¹uº � Vi / D Z for i D 1; 2.
Indeed, since otherwise we would have dim �CE .¹uº � Vi / < dimZ D dim Vi . Note

that ¹uº � Vi is an irreducible variety. Therefore, applying [10, Proposition 2.11], we can
find distinct points s; t 2 Vi such that �CE .u; s/ D �CE .u; t/. Hence, the map �CE j¹uº�Vi
cannot be injective. It follows that � is not pre-injective, which is a contradiction.

Therefore, for any z 2 Z, we can find vi 2 Vi for i D 1; 2 such that �CE .u; vi / D z.
Since V1 and V2 are disjoint, v1 ¤ v2 and it follows that � is not pre-injective, which is
a contradiction. We conclude that �0 is indeed pre-injective.

Hence, since the alphabet X0 is finite and G is an amenable group, we can deduce
from the classical Garden of Eden theorem for finite alphabets that �0 is surjective.

LetE �G be any finite subset. As �0 is surjective, we deduce from the definition of �0
that �E contains points in every connected component of AE . On the other hand, we have
seen that �E is an algebraic subgroup of AE such that dim�E D dimAE . It follows that
�E D X

E for every finite subset E � G.
Since the image � D �.AG/ is closed in AG with respect to the prodiscrete topology,

we find that

� D lim
 �
E�G

�E D lim
 �
E�G

AE D AG :

It follows that � is surjective and the proof is complete.

Our next result shows that in the class CAalgr, the implication

.��/-pre-injectivity ) surjectivity

does not hold in any universe G.

Proposition 7.3. Let G be a group. Then there exist a finite algebraic group X over K
and � 2 CAalgr.G;X;K/ such that � is .��/-pre-injective but is not surjective.

Proof. Let X and � 2 CAalgr.G; X; K/ be given by Proposition 4.4. Keep the notations
as in the proof of Proposition 4.4. Then we know that � is .��/-pre-injective but it is not
surjective since �.XG/ D Y G ¨ XG . The proof is thus complete.
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8. Moore property of CAalgr

To complete the proof of Theorem B, we will prove the following Moore property of the
class CAalgr.

Theorem 8.1. Let G be an amenable group, and let X be an algebraic group over an
algebraically closed field K. Suppose that � 2 CAalgr.G;X;K/ surjective. Then � is both
.�/-pre-injective and .��/-pre-injective.

Proof. LetADX.K/, and let F be a Følner net forG. Thanks to Corollary 4.3, it suffices
to show that � is .�/-pre-injective. For this, we shall proceed by contradiction.

Suppose that � is not .�/-pre-injective. Thus, there exist a finite subset E � G and
a proper closed subset H ¨ AE such that

�..AE /e/ D �.He/: (8.1)

We will distinguish two cases according to whether dimH D dimAE .

Case 1: dimH < dimAE . By Proposition 2.3, we can find a finite subset E 0 � G such
that G contains an .E; E 0/-tiling T . For every t 2 T , we define H.t/ � AtE to be the
image of H under the canonical bijective map AE ! AtE that is induced by the left-
multiplication by t�1. Since � is a G-equivariant homomorphism, we deduce from (8.1)
that for each t 2 T , we have that

�.AtE � ¹pº/ D �.H.t/ � ¹pº/ for all p 2 AGntE :

Consider the subset � � AG defined by

� D AGnTE �
Y
t2T

H.t/:

We can check that �.AG/ D �.�/ (cf. [10, proof of Proposition 6.6]). Therefore, we
find that

mdimF .�.A
G// D mdimF .�.�//

[10, Proposition 5.1]
� mdimF .�/

Lemma 2.5
< dim.X/;

which contradicts the surjectivity of � . Observe that the hypothesis of Lemma 2.5 is satis-
fied since we have dimH.t/ < dimAE for all t 2 T .

Case 2: dimH D dimAE . According to whether dim�..AE /e/D dimAE , we distinguish
two subcases as follows.

Case 2a: dim �..AE /e/ < dimAE . Then Lemma 4.2 tells us that there exists a proper
closed subset Z � AE such that dimZ < dimAE and that

�..AE /e/ D �.Ze/:

We are thus in the situation of case 1 and obtain a contradiction.
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Case 2b: dim �..AE /e/ D dimAE . Hence, we deduce that

dim �..AE /e/ D dim �.He/ D dimH D dimAE :

Let Vi , i 2 I , be the connected components of the algebraic group AE , where I is
a finite set. As H � AE and dimH D dimAE , we can write H D Z [ V , where V DS
j2J Vj for some J ¨ I , and Z is a closed subset of AE such that dimZ < dimAE . We

find that
�.He/ D �.Ze/ [ �.Ve/:

Note that �.He/ D �..AE /e/ is an algebraic group, all of its connected components
are therefore irreducible and have the same dimension. But since dim �.Ze/ � dimZ <

dimAE D dim �.He/, we deduce immediately that �.He/ D �.Ve/.
Let us consider the induced cellular automaton �0WXG0 ! XG0 where the alphabet X0

is the set of connected components of X . Let " 2 X0 denote the connected component
of X containing e. We claim that �0 is not pre-injective. Indeed, since J ¨ I and

�..AE /e/ D �.He/ D �.Ve/ D �
��[

j2J

Vj

�
e

�
;

we find that �0..XE0 /"/ D �0.Q"/, where Q � XE0 is the set of connected components
of
S
j2J Vj . Hence jQj D jJ j. Since jJ j < jI j D jXE0 j, it follows immediately that the

map �0 is not pre-injective.
As the alphabetX0 is finite and the groupG is amenable, we deduce from the classical

Garden of Eden theorem that �0 is not surjective. In particular, we deduce that � is not
surjective. Hence, we also arrive at a contradiction in this case.

Therefore, we can conclude that � must be .�/-pre-injective and the proof of the theo-
rem is complete.

9. Reversibility in CAalgr

We have seen in Theorem 5.2 that post-surjectivity implies surjectivity in the classesCAalg

and CAalgr. On the other hand, pre-injectivity is weaker than injectivity. As shown by
Capobianco, Kari, and Taati in [3, Theorem 1], such trade-off between injectivity and
surjectivity preserves bijectivity for cellular automata with finite alphabet.

Theorem 9.1 (Capobianco–Kari–Taati). Let G be a group, and let A be a finite set. Then
every pre-injective, post-surjective cellular automaton � WAG ! AG is reversible.

It turns out that the same property holds for the class CAalgr at least in characteristic
zero. Moreover, we can show that the inverse is also an algebraic group cellular automaton.

Theorem 9.2. Let G be a group, and let X be an algebraic group over an algebraically
closed field K of characteristic zero. Let � 2 CAalgr.G; X; K/ be a post-surjective, pre-
injective group cellular automaton. Then � is reversible and ��1 2 CAalgr.G;X;K/.



Symbolic group varieties and dual surjunctivity 233

Proof. Suppose � 2 CAalgr.G;X;K/ is post-surjective and pre-injective. Let A D X.K/.
Using Lemma 5.3 instead of [3, Lemma 1], we have a similar result as stated in [3, Corol-
lary 2] for the class CAalgr. Thus, the exact same construction given in [3, Theorem 1]
shows that � is reversible, i.e., there exists a cellular automaton � WAG ! AG such that
� ı � D � ı � D Id. In particular, � is bijective.

Therefore, we can apply directly [21, Proposition 6.2] to see that for some memory
set M � G, the cellular automaton � admits a local defining map AM ! A which is
a homomorphism of algebraic groups. It follows that � 2 CAalgr.G;X;K/, and the proof
is complete.
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