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A fine property of Whitehead’s algorithm

Dario Ascari

Abstract. We develop a refinement of Whitehead’s algorithm for primitive words in a free group.
We generalize to subgroups, establishing a strengthened version of Whitehead’s algorithm for free
factors. These refinements allow us to prove new results about primitive elements and free factors in
a free group, including a relative version of Whitehead’s algorithm and a criterion that tests whether
a subgroup is a free factor just by looking at its primitive elements. We develop an algorithm to
determine whether or not two vertices in the free factor complex have distance d for d D 1; 2; 3, as
well as d D 4 in a special case.

1. Introduction

An algorithm to determine whether an element of a free group is primitive or not was first
found by Whitehead in 1936; it is based on the following theorem.

Theorem A (Whitehead). Let w be a cyclically reduced word, which is primitive but not
a single letter. Then there is a Whitehead automorphism ' such that the cyclic length
of '.w/ is strictly smaller than the cyclic length of w.

For a proof of the Theorem A, the reader can refer to Whitehead’s paper [11]. Theo-
rem A has been proved and studied in several different ways over the years. Whitehead’s
original proof involves working with three-manifolds, performing surgery on embedded
paths and surfaces (see [11]). Of particular importance are the peak-reduction techniques
introduced by Rapaport in [9]; see also [6] for a simplified version of the argument.
Another surprisingly short proof, based on Stallings’ folding operations, appeared recently
in [5].

Let x1; : : : ; xn be a fixed basis for Fn. We recall that a Whitehead automorphism '

is an automorphism such that, for some a 2 ¹x1; : : : ; xn; xx1; : : : ; xxnº, we have '.a/ D a
and '.xj / 2 ¹xj ; axj ; xj xa; axj xaº for each other generator xj 6D a; xa. A generic element
w 2 Fn consists of a (reduced) sequence of symbols in ¹x1; : : : ; xn; xx1; : : : ; xxnº, and in
order to obtain the image '.w/, we can just apply ' letter by letter to the sequence of
symbols (and then reduce the resulting word). In the present paper, we shall build on the
following refinement of Whitehead’s Theorem A.

2020 Mathematics Subject Classification. Primary 20E05; Secondary 20F65.
Keywords. Free groups, Whitehead’s algorithm, free factor.

https://creativecommons.org/licenses/by/4.0/


D. Ascari 236

Theorem B (Theorem 3.7). The automorphism in Theorem A can be chosen in such a way
that every letter a or xa that is added when we apply ' to w letter by letter, immediately
cancels (in the cyclic reduction process).

Theorem B can be deduced fairly directly from Whitehead’s original argument [11];
however, we were not able to find this statement in the literature. It can also be derived
with the techniques of [5], as will be shown in the body of the present paper. It is difficult
to imagine how Theorem B might be proved with the peak-reduction techniques of [9].

We make use of Theorems A and B to prove the following theorem about free factors
in a free group.

Theorem C (Theorem 4.1). Let H � Fn be a finitely generated subgroup. Suppose that
every element ofH which is primitive inH is also primitive in Fn. ThenH is a free factor.

We point out that the additional property of Whitehead’s algorithm really plays a key
role in the proof of Theorem C.

We also generalize the fine property of Theorem B to subgroups. Generalizations of
Whitehead’s algorithm for free factors already exist, as shown in [4], but the known proofs
are based on the peak-reduction techniques, which, as we have noted, do not seem appro-
priate for our refinement. We introduce the concept of Whitehead graph for a subgroup,
and we generalize the ideas of [5] in order to get a refined statement of Whitehead’s algo-
rithm for subgroups. The standard statement is the following Theorem D, and we add the
fine property into Theorem E.

Theorem D (See Theorems 5.5 and 5.6). Let H � Fn be a free factor, and suppose
core.H/ has more than one vertex. Then there is a Whitehead automorphism ' such that
core.'.H// has strictly fewer vertices and strictly fewer edges than core.H/.

Theorem E (Theorem 5.7). The automorphism in Theorem D can be chosen in such a way
that core.'.H// can be obtained from core.H/ by means of a quotient that collapses some
of the edges to points whilst preserving the labels and orientations on the other edges.

This additional property turns out to have several interesting features, and in particular,
it behaves well with respect to subgroups (see Lemmas 5.17 and 5.19 in the body of
the paper). It also allows us to deduce a relative version of Whitehead’s algorithm. Let
x1; : : : ; xn be a fixed basis for Fn.

Theorem F (Theorem 5.21). Let w 2 Fn be a primitive element that is not a single letter.
Suppose there is an automorphism � WFn ! Fn such that �.hx1; : : : ; xki/ D hx1; : : : ; xki
and �.w/ D xkC1. Then there is a Whitehead automorphism ' such that

(i) '.xi / D xi for i D 1; : : : ; k.

(ii) The length of '.w/ is strictly smaller than the length of w.

(iii) Every letter, which is added to w when applying ' to w letter by letter, immedi-
ately cancels (in the free reduction process).
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We then use the techniques developed in order to investigate the structure of the free
factor complex FFn. The free factor complex of a free group is analogous to the curve
complex of a surface. A famous rigidity theorem of Ivanov states that the isometries of
the curve complex are essentially the mapping class group of the surface; in the same
way, there is a rigidity theorem due to Bestvina and Bridson stating that the isometries
of FFn are essentially the outer automorphisms of Fn, see [1]. Just as the curve complex
turned out to be hyperbolic, FFn is hyperbolic too: in [2], Bestvina and Feighn study the
large-scale geometry of FFn and give a detailed description of lines which are geodesics
up to a reparametrization and up to distance C . Unfortunately, the constant C is quite
large, so those techniques do not give much information about the local geometry of FFn.
In the present paper, we investigate existence of an algorithm for computation of the exact
distance in FFn. There are algorithms to compute the distance between any two points in
the curve complex of a surface, but the same question for FFn remains open. We are able
to determine whether two vertices are at distance d for d D 1; 2; 3; we are also able to do
that for d D 4 in the particular case when one of the two vertices represents a conjugacy
class of free factors of rank n � 1.

In order to do this, we make use of the tools developed earlier in this paper, together
with an idea which appeared in [3], which is the following. Given a subgroup H � Fn
and an element w 2 H , even if we have a bound on the size (i.e., the number of edges)
of core.H/, we cannot really control the cyclic length of w; we instead look at the map
i�W core.hwi/! core.H/ induced by the inclusion, and we look at the image im.i�/. We
have that im.i�/ is a subgraph of core.H/, and we are able to bound the size of core.H/:
it follows that im.i�/ can only take a finite number of values, and is thus much easier to
control. We notice that the same observation remains true when we replace the word w
with a subgroup K � H , and we make use of this observation to produce algorithms to
recognize whether two vertices of the free factor complex are at distance d for d D 1; 2; 3,
and d D 4 in a special case.

2. Preliminaries and notations

We work inside a finitely generated free group Fn of rank n, generated by x1; : : : ; xn.
We write xxi D x�1i . We denote by Rn the standard n-rose, i.e., the graph with one ver-
tex � and n oriented edges labeled x1; : : : ; xn. The fundamental group �1.Rn; �/ will be
identified with Fn: the path going along the edge labeled xi (with the right orientation)
corresponds to the element xi 2 Fn.

Definition 2.1. An Fn-labeled graph is a graph G together with a map f W G ! Rn
sending each vertex of G to the unique vertex of Rn, and each open edge of G home-
omorphically to one edge of Rn.

This means that every edge of G is equipped with a label in ¹x1; : : : ; xnº and an
orientation, according to which edge of Rn it is mapped to; the map f WG ! Rn is called
labeling map for G.
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Definition 2.2. Let G0 and G1 be Fn-labeled graphs. A map hWG0 ! G1 is called label-
preserving if it sends each vertex to a vertex and each edge to an edge with the same label
and orientation.

We notice that if hWG0! G1 is label-preserving and f0WG0! Rn and f1WG1! Rn
are the labeling maps, then f1 ı h D f0.

Core graph of a subgroup

Definition 2.3. Let G be a graph which is not a tree. Define its core graph core.G/ as
the subgraph given by the union of its non-degenerate loops, i.e., all the images f .S1/ for
a continuous locally injective map f WS1 ! G from the circle.

Notice that core.G/ is connected, and every vertex has valence at least 2. We say that
a graph G is core if core.G/ D G.

In the following, we will often consider graphs with a basepoint. We always mean that
the basepoint is a vertex of the graph.

Definition 2.4. Let .G; �/ be a pointed graph which is not a tree. Define its pointed core
graph core�.G/ as the subgraph given by the union of all the images f .Œ0; 1�/ for a con-
tinuous locally injective map f W Œ0; 1�! G with f .0/ D f .1/ D �.

We will often abbreviate .G; �/ to G. For a pointed graph G, there is a unique short-
est path � (either trivial or embedded) connecting the basepoint to core.G/; the graph
core�.G/ consists exactly of the union core.G/ [ im.�/.

Given a nontrivial subgroupH �Fn, we can build the corresponding pointed covering
space pW .cov.H/; �/! .Rn; �/; this means that cov.H/ is the unique covering space
for Rn such that p�.�1.cov.H/; �// D H as subgroups of �1.Rn; �/ D Fn. Define the
core graph core.H/ and the pointed core graph core�.H/ to be the core and the pointed
core of .cov.H/;�/, respectively. Notice that the labeling map f Wcore�.H/!Rn induces
an injective map �1.f /W�1.core�.H/;�/! Fn, and the image of such map is exactly the
subgroup H . We observe that conjugate subgroups have the same core graph, but distinct
pointed core graphs. We also observe that H is finitely generated if and only if core.H/
is finite (and if and only if core�.H/ is finite).

Stallings’ folding

We will assume that the reader has some confidence in the classical Stallings’ folding
operation, for which we refer to [10]. Let us briefly recall the main properties that we are
going to use.

Let G be a finite connected Fn-labeled graph and suppose there are two distinct edges
e1, e2 with endpoints v, v1 and v, v2, respectively. Suppose that e1 and e2 have the same
label and orientation. We can identify v1 with v2, and e1 with e2: we then get a quotient
map of graphs qWG ! G0.

Definition 2.5. The quotient map qWG ! G0 is called Stallings’ folding.
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We notice that q is label preserving. Fix a basepoint � 2 G, which induces a basepoint
� 2 G0; then the map �1.f /W�1.G/! �1.Rn/ and the map �1.f 0/W�1.G0/! �1.Rn/

give the same subgroup �1.f /.�1.G// D �1.f
0/.�1.G

0// � �1.Rn/ D Fn. The map
�1.q/W�1.G/! �1.G

0/ is surjective; however, it is not injective in general.

Definition 2.6. A Stallings’ folding qWG ! G0 is called rank-preserving if the induced
map �1.q/ is an isomorphism.

Being rank-preserving is equivalent to the requirement v1 6D v2 (i.e., that we are iden-
tifying two distinct vertices) (see also Figure 1). In fact, the rank of the fundamental group
of a finite connected graph is E � V C 1, where E is the number of edges and V is the
number of vertices; during a folding operation, the number of edges always decreases by
exactly one; if we identify two distinct vertices, then the number of vertices decreases
by one too, and thus the rank is preserved; if the vertices v1, v2 coincide, then the num-
ber of vertices remains the same, and thus the rank decreases by one. Notice that being
rank-preserving does not depend on the choice of the basepoint.
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Figure 1. Examples of configurations where a folding operation is possible. The two examples on
the left produce rank-preserving folding operations. The two examples on the right produce non-
rank-preserving folding operations.

Given a finite Fn-labeled graph G, we can successively apply folding operations to G
in order to get a sequence G D G.0/ ! G.1/ ! � � � ! G.l/. Notice that the number of
edges decreases by 1 at each step, and thus the length of any such chain is bounded (by the
number of the edges of G).

Proposition 2.7. Let G be a finite connected Fn-labeled graph, and let G D G.0/ !

G.1/ ! � � � ! G.l/ be a maximal sequence of folding operations. Also, fix a basepoint
� 2 G, inducing a basepoint � 2 G.i/. Then we have the following:

(i) Each such sequence has the same length l and the same final graph G.l/.

(ii) For each such sequence, and for each label, the sequence has the same number
of folding operations involving edges with that label.

(iii) Each such sequence has the same number of rank-preserving folding operations.

(iv) For i D 1; : : : ; l , let f .i/WG.i/ ! Rn be the labeling map. Then the image of
the map �1.f .i//W�1.G.i//! �1.Rn/ is the same subgroup H � Fn for every
i D 1; : : : ; l .
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(v) For i D 1; : : : ; l , there is a unique label-preserving map h.i/WG.i/ ! cov.H/
preserving the basepoint. The image im.h.i// is the same subgraph of cov.H/
for every i D 1; : : : ; l .

(vi) The map h.l/ is an embedding of G.l/ as a subgraph of cov.H/. Moreover,
G.l/ contains core�.H/.

An Fn-labeled graph is called folded if no folding operation is possible on G.

Definition 2.8. Let G be a finite connected Fn-labeled graph. Define its folded graph
fold.G/ to be the Fn-labeled graph G.l/ obtained from any maximal sequence of folding
operations as in Proposition 2.7.

The following lemma gives us information about vertices of valence one that may
appear along a chain of folding operations.

Lemma 2.9. Let .G; �/ be a finite connected Fn-labeled graph, and let G ! G.1/ !

� � � ! G.l/ be any maximal sequence of folding operations as in Proposition 2.7, with
maps pk WG ! G.k/ given by the composition of folding operations. Suppose that for
some vertex v of G, the vertex pk.v/ of G.k/ has valence one. Then all the edges going
out of v in G have the same label and orientation.

Proof. Suppose that pk.v/ has valence one in G.k/. Let e, e0 be edges of G going out
of v: we observe that pk.e/, pk.e0/ are both edges of G.k/ going out of pk.v/. But then
they must coincide, since there is only one edge of G.k/ going out of pk.v/. In particular,
pk.e/, pk.e0/ have the same label and orientation, and thus e, e0 have the same label and
orientation too, since pk is label-preserving.

Corollary 2.10. Let .G;�/ be a finite connected Fn-labeled graph, and let G ! G.1/!

� � � ! G.l/ be any maximal sequence of folding operations as in Proposition 2.7. Suppose
for each vertex v of G, there are two edges going out of v with different labels, or with the
same label but different orientations. Then there is no valence-1 vertex in any graph of the
sequence.

Proof. Suppose some graph G.k/ contains a valence-1 vertex u. Let pk WG! G.k/ be the
map given by the composition of the folding operations: since pk is surjective, we can
find a vertex v of G with pk.v/ D u. But then by Lemma 2.9, all the edges going out of v
have the same label and orientation, contradicting the hypothesis.

Suppose we are given a finite set of reduced words w1; : : : ; wk 2 Fn of lengths
l1; : : : ; lk , and let H D hw1; : : : ; wki. We can construct the graph G given by a base-
point � and pairwise disjoint loops 
1; : : : ; 
k starting and ending at the basepoint. The
loop 
i is subdivided into li edges, labeled and oriented according to the letters of the
word wi , in such a way that, when going along 
i , we read exactly the word wi . We have
the following lemma.
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Lemma 2.11. We have that core�.H/ D fold.G/. Moreover, along the chain of folding
operations, we never have a valence-1 vertex, except possibly for the basepoint.

Proof. Proposition 2.7 tells us that fold.G/ is a finite subgraph of cov.H/ and that it
contains core�.H/. Lemma 2.9 tells us that fold.G/ has no valence-1 vertex, except
possibly for the basepoint. But a finite subgraph of cov.H/, containing core�.H/, and
with no valence-1 vertex except possibly the basepoint, must be equal to core�.H/. Thus
fold.G/ D core�.H/, as desired.

In particular, w1; : : : ; wn are a basis for Fn if and only if, with the above construction,
the resulting Fn-labeled graph fold.G/ is the standard n-roseRn. In that case, each folding
operation has to be rank-preserving, since the fundamental group of G has the same rank
as the fundamental group of fold.G/ D Rn.

Primitive elements and free factors

We will be interested in the study of primitive elements and free factors.

Definition 2.12. An element w 2 F is called primitive if it is part of some basis for the
group.

Definition 2.13. A subgroup H � F is called a free factor if some basis (equivalently,
every basis) for H can be extended to a basis for F .

Notice that an element w 2 F is primitive if and only if the cyclic subgroup hwi is
a free factor; in this sense, the notion of free factor is a natural generalization of the notion
of primitive element.

The following lemma is immediate.

Lemma 2.14. Let G be a pointed graph, and let G0 be a connected subgraph containing
the basepoint. Then the map �1.G0/! �1.G/ induced by the inclusion is injective, and
�1.G

0/ is a free factor in �1.G/.

The following proposition turns out to be very useful in several situations.

Proposition 2.15. LetK � Fn be a finitely generated subgroup, and letH � Fn be a free
factor. Then H \K is a free factor in K.

Proof. Suppose H has rank r ; without loss of generality, we can assume that H D
hx1; : : : ; xri � Fn.

LetGD core�.K/ be the basepointedFn-labeled graph which representsK. A wordw
belongs to H \K if and only if it can be represented by a path inside G which starts and
ends at the basepoint, and which only crosses edges labeled with x1; : : : ; xr . Consider the
subgraph G0 � G which is given by the union of the basepoint and of all such paths. Then
�1.G

0/ is exactly H \K.
But since G0 is a subgraph of G, we have that �1.G0/ is a free factor in �1.G/, mean-

ing that H \K is a free factor in K, as desired.
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We can easily obtain several corollaries from the above proposition.

Corollary 2.16. Consider the standard inclusion Fk D hx1; : : : ; xki � hx1; : : : ; xni D Fn
with k < n. Let w 2 Fk . Then w is primitive in Fk if and only if w is primitive in Fn.

Corollary 2.17. Consider the standard inclusion Fk D hx1; : : : ; xki � hx1; : : : ; xni D Fn
with k < n. Let H � Fk . Then H is a free factor in Fk if and only if H is a free factor
in Fn.

In particular, when talking about primitive elements and free factors, it often makes
sense to omit mention of the ambient group.

Corollary 2.18. Let H;H 0 � Fn be free factors. Then H \H 0 is a free factor.

In the above statement, we mean that it is a free factor in Fn, and also in both H
and H 0.

3. A fine property of Whitehead’s algorithm

Whitehead automorphisms and Whitehead graph

Definition 3.1. Let a 2 ¹x1; : : : ; xn; xx1; : : : ; xxnº, and let A � ¹x1; : : : ; xn; xx1; : : : ; xxnº n
¹a; xaº. Define the Whitehead automorphism ' D .A; a/ as the automorphism given by
a 7! a and 8̂̂̂̂

<̂
ˆ̂̂:
xj 7! xj if xj ; xxj 62 A;

xj 7! axj if xj 2 A and xxj 62 A;

xj 7! xj xa if xj 62 A and xxj 2 A;

xj 7! axj xa if xj ; xxj 2 A:

The letter a will be called the acting letter, and the set A will be the set of letters we
act on. Notice that our notation for Whitehead automorphisms is slightly different from
the one found in Lyndon and Schupp’s book [7]: they choose to include the acting letter a
inside the set A, while we prefer not to do so.

Let w be a cyclically reduced word, whose reduced form is w D b1 : : : bl , where we
have bj 2 ¹x1; : : : ; xn; xx1; : : : ; xxnº. Let ' D .A; a/ be a Whitehead automorphism. We
can substitute each bj with the sequence '.bj / (which is either bj or abj or bj xa or abj xa):
this produces a new writing '.b1/ : : : '.bl / which represents the word '.w/; this writing
will not be cyclically reduced in general. In what follows, when we speak of the free or
cyclic reduction, we mean any sequence of moves in which an adjacent pair of letters xi xxi
or xxixi is replaced by the empty word.

Lemma 3.2. Let w D b1 : : : bl be a cyclically reduced word, and let ' D .A; a/ be
a Whitehead automorphism. Then, in the process of cyclic reduction for the sequence
'.b1/ : : : '.bl /, no letter different from a gets cancelled.
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Proof. For simplicity of notation, we prove the proposition only for the free reduction
process; the proof for the cyclic reduction process is completely analogous.

Fix a process of free reduction for '.b1/ : : : '.bl /. Suppose some cancellation takes
place, involving a letter which is not a nor xa. Consider the first such cancellation. Suppose
this cancellation involves a letter from the block '.bj / and one from the block '.bk/, with
j < k. Then we must have bk D xbj , and either all the letters inbetween are a, or all of them
are xa. This means that the word w has the form either : : : bjad xbj : : : or : : : bj xad xbj : : : for
some d � 0. Also, since the writing b1 : : : bl was reduced, we must have d > 0.

We assume w has the form : : : bja
d xbj : : : , the other case being completely analogous.

If xbj 62 A, then the sequence '.b1/ : : : '.bl / has the form : : : bja
d xbj : : : , and at least one a

letter survives between bj and xbj , and thus bj is not allowed to cancel with xbj . If xbj 2 A,
then the sequence '.b1/ : : : '.bl / has the form : : : bj xaa

daxbj : : : , and again we see that at
least one a letter survives between bj and xbj , and thus bj is not allowed to cancel with xbj .
This contradiction completes the proof.

Definition 3.3. Let w be a cyclically reduced word. Define the Whitehead graph of w as
follows:

(i) We have 2n vertices labeled x1; : : : ; xn; xx1; : : : ; xxn.
(ii) For every pair of consecutive letters in w, we draw an (unoriented) arc from the

inverse of the first letter to the second. We also draw an arc connecting the inverse
of the last letter of w to the first letter of w, as if they were adjacent.

Notice that, w being cyclically reduced, we never have any arc connecting a vertex
to itself.

Definition 3.4. Let w be a cyclically reduced word. A vertex a in the Whitehead graph
of w is called a cut vertex if it is non-isolated and at least one of the following two config-
urations happens:

(i) The connected component of a does not contain xa.
(ii) The connected component of a becomes disconnected if we remove a.

Whitehead’s algorithm

We are now ready to state Whitehead’s theorem and our refinement of it (Theorem 3.7).

Theorem 3.5. Let w be a cyclically reduced word, which is primitive but not a single
letter. Then the Whitehead graph of w contains a cut vertex.

Theorem 3.6. Let w be a cyclically reduced word, and suppose the Whitehead graph
of w contains a cut vertex. Then there is a Whitehead automorphism ' such that the cyclic
length of '.w/ is strictly smaller than the cyclic length of w.

Theorem 3.7. The automorphism in Theorem 3.6 can be chosen in such a way that every a
or xa letter, which is added when we apply ' to w letter by letter, immediately cancels (in
the cyclic reduction process).
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Example. Let w D xyxyx xyz in F3. Consider the automorphism ' D .¹xxº; y/, mean-
ing that x 7! x xy, y 7! y and z 7! z; the word becomes '.w/ D xxx xy xyz. This one is
shorter, meaning that the automorphism ' would be suitable for Theorem 3.6 applied to
the word w. But ' does not satisfy Theorem 3.7, because a letter xy appears between the
last x and the z, and it does not cancel.

We are now going to prove Theorems 3.5, 3.6 and 3.7. The proof of Theorem 3.5 that
we give is essentially contained in [5], but we will make use of variations of the argument
in what follows, so we prefer to rewrite it here.

Proof of Theorem 3.5. Let w be cyclically reduced and primitive. We will assume that w
contains all the letters x1; : : : ; xn at least once; otherwise, if w only contains the letters
x1; : : : ; xk , then we can just apply the same argument to the free factor hx1; : : : ; xki �
hx1; : : : ; xni D Fn (using Corollary 2.16).

Since w is primitive, we can take a basis w D w1; w2; : : : ; wn of reduced words.
We can build the graph G given by a basepoint �, together with a path pi for each wi : the
path pi goes from � to �, and contains an edge for each letter appearing in wi (in such
a way that, moving around the path pi , we read exactly the word wi ). Let G.w/ denote
the subgraph of G given by the only cycle corresponding to the generator w.

We now apply a sequence of folding operations to the graph G, in order to get a se-
quence G! G0! � � � ! G.l�1/! G.l/ as in Proposition 2.7: each map G.i/! G.iC1/

consists of a single folding operation, and no further folding operation can be applied
toG.l/. Since w1; : : : ;wn is a basis, we have thatG.l/ is the standard n-roseRn. Since w1
is cyclically reduced and w2; : : : ;wn are reduced, Corollary 2.10 yields that no graphG.i/

contains any valence-1 vertex. A folding operation can decrease the rank of the fundamen-
tal group, but it cannot increase it; since �1.G/ has the same rank as �1.Rn/, we must
have that each folding operation is rank-preserving.

We now look at the graphG.l�1/: it does not contain any valence-1 vertex, and a single
rank-preserving folding operation sends it to the standard n-rose. It is quite easy to see
that G.l�1/ has to be of the form described in Figure 2 below, for some 1 � ˛ � ˇ � n
with ˛ < n (up to permutation of the letters, and up to substitution of some letter with its
inverse).

We have a map of graphs f WG.w/!G.l�1/ preserving the orientations and the labels
on the edges (given by the inclusion G.w/! G followed by the sequence of foldings).
Suppose we have two adjacent letters w D : : : yz : : : ; this means that G.w/ contains two
edges labeled y and z with a common endpoint u. We either have

f .u/ D v or f .u/ D v0;

meaning that xy and z are either both in ¹x1; xx1; x2; xx2; : : : ; x˛; xx˛; x˛C1; : : : ; xˇ º or
both in ¹xx1; xx˛C1; : : : ; xxˇ ; xˇC1; xxˇC1; : : : ; xn; xxnº. This tells us that, if we remove the
vertex xx1 from the Whitehead graph of w, we get the disjoint union V t V 0 of two sep-
arate graphs: V with vertices x1; x2; xx2; : : : ; x˛; xx˛; x˛C1; : : : ; xˇ and V 0 with vertices
xx˛C1; : : : ; xxˇ ; xˇC1; xxˇC1; : : : ; xn; xxn.
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. .
v v0

x1

x2

. . .

x˛

x1

x˛C1

. . .

xˇ

xn

. . .

xˇC1

Figure 2. The generic graph G.l�1/. This contains exactly one edge with each label, except for the
two edges labeled x1. Those two edges have to be folded in order to obtain the n-rose.

If the image f .G.w// � G.l�1/ crosses both the edges labeled x1, then in the White-
head graph of w we have that xx1 is connected to at least one vertex in V and to one vertex
in V 0; this means xx1 is a cut vertex (because it satisfies condition (ii) of Definition 3.4).
If f .G.w// crosses the edge labeled x1 with distinct endpoints, but not the other, then xx1
is connected to V 0 but not to V ; and again xx1 is a cut vertex (because it satisfies con-
dition (i) of Definition 3.4). If f .G.w// does not cross the arc labeled x1 with distinct
endpoints, then we make use of the assumption that w contains every letter at least once;
we get that f .G.w// has to contain the edge x˛Ci for some 1 � i � ˇ; this gives that
any of x˛Ci , xx˛Ci is a cut vertex for the Whitehead graph of w (because they satisfy
condition (i) of Definition 3.4).

We now prove that Theorem 3.5 implies Theorem 3.6, together with the fine property
of Theorem 3.7.

Proof of Theorems 3.6 and 3.7. Let w be cyclically reduced, and let a be a cut vertex in
its Whitehead graph.

If the connected component of a does not contain xa, then we take the set A to be that
connected component (excluding a itself). Otherwise, take the connected component of a
and remove a itself: we are left with at least two nonempty connected components, and at
least one of these components does not contain xa; take A to be such a component. In both
cases we consider the Whitehead automorphism ' D .A; a/. We look at what happens
between two consecutive non-a non-xa letters in w when we apply the automorphism '.

Suppose we have two consecutive letters w D : : : yz : : : with y; z 2 ¹x1; : : : ; xn;
xx1; : : : ; xxnº n ¹a; xaº. Then we have an arc from xy to z in the Whitehead graph, so we are
either acting on neither of xy, z or on both of them. If we are not acting on them, then
'.w/ D : : : yz : : : and the word is not affected between y and z. If we are acting on both
of them, then '.w/ D : : : yxaaz : : : D : : : yz : : : and every a and xa which appears there
immediately cancels, and again the word is not affected between y and z.
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Suppose we have inw a segment of the formwD : : : yakz : : : with y;z 2 ¹x1; : : : ; xn;
xx1; : : : ; xxnº n ¹a; xaº and k � 1 (the case k � �1 is analogous). This means that we have
an arc from xa to z, and thus we are not acting on z. If we are not acting on xy, then
'.w/ D : : : yakz : : : and the word is not affected between y and z. If we are acting on xy,
then '.w/D : : : yxaakz : : :D : : : yak�1z : : : and the number of a letters strictly decreases
between y and z.

This shows that the property of Theorem 3.7 holds for this automorphism. To con-
clude, we notice that, since there is at least one arc between a and a vertex of A, at least
one cancellation takes place, giving a (strict) decrease in the cyclic length of w, yielding
Theorem 3.6.

Remark 3.8. The above also shows that it is possible to count the number of cancellations
that take place, by just looking at the Whitehead graph of w and at the Whitehead auto-
morphism ' D .A; a/; it is also shown in [8, Proposition 2.2]. To be precise, let E be the
number of edges of the Whitehead graph of w that connect the vertex a to a vertex of A;
then we have j'.w/jc D jwjc �E, where jwjc denotes the cyclic length of the word w.

4. On primitive elements in a subgroup of a free group

Let H � Fn be any subgroup. If H is a free factor, then, of course, every element which
is primitive in H has to be primitive in Fn too. We here deal with a converse: if H is not
a free factor, then there is an element which is primitive in H , but not in Fn. This section
is completely dedicated to the proof of the existence of such a witness.

Theorem 4.1. Let H � Fn be a finitely generated subgroup. Suppose that every element
of H which is primitive in H is also primitive in Fn. Then H is a free factor.

Proof. The proof proceeds by induction on the rank of the subgroup. For the base step,
we notice that for a subgroup of rank 1 the statement is trivially true. For the inductive
step, suppose we know the statement to be true for subgroups of rank k, and we want to
prove it for subgroups of rank k C 1.

Take a subgroup H D hw1; : : : ; wkC1i of rank k C 1 (meaning that w1; : : : ; wkC1 is
a basis for H ), and suppose that every element v which is primitive in H is also primitive
in F . We consider the subgroupH 0 D hw1; : : : ;wki and notice that every element v which
is primitive in H 0 is also primitive in H , and thus is primitive in F . Then H 0 has rank k
and satisfies the hypothesis of the theorem, so by inductive hypothesis we get that H 0 is
a free factor. So we can take an automorphism � WF !F with �.wi /D xi for i D 1; : : : ; k.
Instead of proving that H is a free factor in F , we prove that �.H/ is a free factor in F ;
but �.H/D hx1; : : : ; xk ; �.wkC1/i, so it is enough to prove the statement of Theorem 4.1
for subgroups H of the form H D hw; x1; : : : ; xki.

The statement in the case of subgroups of the formH D hw;x1; : : : ;xkiwill be proved
by induction on the length of w. The base step where w has length one is trivial.
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We observe that if the first (or the last) letter of w is y 2 ¹x1; : : : ; xk ; xx1; : : : ; xxkº,
then we can define the shorter word w0 D xyw (or wxy). But then H D hw; x1; : : : ; xki D
hw0; x1; : : : ; xki, and so we are done by inductive hypothesis. Thus in the following, we
assume this is not the case.

We consider the word v D x1wx1 zw, where zw is any word in the letters ¹x1; : : : ; xkº
with the following properties:

(i) The Whitehead graph of zw contains at least one edge joining each pair of distinct
vertices in ¹x1; : : : ; xk ; xx1; : : : ; xxkº.

(ii) When we write x1wx1 zw, we get a cyclically reduced word, without any cancella-
tion needed.

For example, we may take

zw D .x1x1/.x2x2/ : : : .xkxk/
Y

1�i<j�k

x1.xixj /.xi xxj /;

where the factors in the product are ordered lexicographically (but any ordering works).
The word v is primitive in the subgroupH , so by the hypothesis, it has to be primitive

in F , and, in particular, we can take an automorphism ' satisfying Theorems 3.6 and 3.7.
We now look at what happens to the letters x1; : : : ; xk and to the word w.

Case 1. Suppose the acting letter a is different from x1; : : : ; xk ; xx1; : : : ; xxk . Then ¹x1; : : : ;
xk ; xx1; : : : ; xxkº is either contained in A or disjoint from A. This is because the vertices
¹x1; : : : ; xk ; xx1; : : : ; xxkº are all pairwise connected in the Whitehead graph of v.

Subcase 1:1. Suppose that ¹x1; : : : ; xk ; xx1; : : : ; xxkº is disjoint from A. This means that
'.x1/D x1; : : : ; '.xk/D xk and 'hw;x1; : : : ; xki D h'.w/;x1; : : : ; xki. We have '.v/D
x1'.w/x1 zw which is cyclically reduced, and thus has to be strictly shorter than v D
x1wx1 zw. But in x1'.w/x1 zw we can only have cancellations inside '.w/, and so we
are able to deduce that '.w/ is strictly shorter than w, and we are done by inductive
hypothesis.

Subcase 1:2. Let ¹x1; : : : ; xk ; xx1; : : : ; xxkº be contained in A. This means that '.x1/ D
xax1a; : : : ;'.xk/D xaxka. Moreover, we have 'hw;x1; : : : ;xkiD xaha'.w/xa;x1; : : : ;xkia.
We have '.v/ D xax1.a'.w/xa/x1 zwa which cyclically reduces to x1.a'.w/xa/x1 zw, and
thus this has to be strictly shorter than v D x1wx1 zw. But in x1.a'.w/xa/x1 zw, we can
only have cancellations inside .a'.w/xa/, and so we deduce that a'.w/xa is strictly shorter
than w, and we are done by the inductive hypothesis.

Case 2. Suppose the acting letter a is one of x2; : : : ; xk ; xx2; : : : ; xxk . Then ¹x1; : : : ; xk ;
xx1; : : : ; xxkº is disjoint fromA, because all the vertices ¹x1; : : : ; xk ; xx1; : : : ; xxkº n ¹a; xaº are
connected to xa in the Whitehead graph of v. Now we have '.x1/ D x1; : : : ; '.xk/ D xk
and 'hw; x1; : : : ; xki D h'.w/; x1; : : : ; xki. We proceed exactly as in subcase 1.1. The
key point is that, since a 6D x1; xx1, when we write x1'.w/x1 zw, the two x1 letters cannot
cancel against '.w/. We get that '.w/ is strictly shorter than w, and we are again done by
the inductive hypothesis.
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Case 3. Suppose a D x1 (the case a D xx1 is completely analogous). As in case 2, we get
that ¹x1; : : : ; xk ; xx1; : : : ; xxkº is disjoint from A, and thus '.x1/D x1; : : : ; '.xk/D xk and
'hw;x1; : : : ;xki D h'.w/;x1; : : : ;xki. We have '.v/D .x1'.w//x1 zw which is cyclically
reduced, and has thus to be strictly shorter than v D x1wx1 zw. In .x1'.w//x1 zw, the only
cancellations can happen inside .x1'.w//, so we are able to deduce that x1'.w/ has to be
strictly shorter than x1w. Now some care is needed. If x1 does not cancel against '.w/,
then we get that '.w/ is strictly shorter than w, and we are done by the inductive hypoth-
esis. Otherwise, let t be the first letter of w, and we must have t 2 A. We look at the arcs
between a D x1 and A in the Whitehead graph of v: we certainly have at least one arc
from x1 to t .

Subcase 3:1. If we have more than one arc from x1 to t , or if we have any other arc
from x1 to A, then all of those arcs give cancellations inside '.w/. We already knew that
x1'.w/ was strictly shorter than x1w, but now we got at least one additional cancellation
inside '.w/, so we are able to deduce that x1'.w/ is strictly shorter than w. Now we
observe that 'hw; x1; : : : ; xki D hx1'.w/; x1; : : : ; xki, and we are done by inductive
hypothesis.

Subcase 3:2. Suppose we only have one arc from x1 to t , and no other arc from x1 toA. If
the vertex t has degree at least 2, then we use t instead of x1 as cut vertex for the Whitehead
graph of v, and we end up in case 1, and we are done. If the vertex t has degree 1,
then the letter t appears exactly once inside w; in this case, we have the automorphism
�WF ! F which keeps all the letters fixed, except for t 7!w; this gives �ht; x1; : : : ; xki D
hw; x1; : : : ; xki, showing that the subgroup is a free factor, as desired.

Remark 4.2. We proved that Theorem 4.1 holds for a subgroup H which is finitely gen-
erated, but that hypothesis can easily be waived. For a subgroup of rank greater than the
rank of F (and, as a consequence, for a subgroup of infinite rank), the hypothesis of The-
orem 4.1 cannot hold.

5. Whitehead’s algorithm for free factors

Whitehead graph for subgroups

Definition 5.1. Let G be a Fn-labeled graph, and let v 2 G be a vertex. Define the letters
at v to be the subset L.v/ � ¹x1; : : : ; xn; xx1; : : : ; xxnº of the labels of the edges coming
out of v. More precisely, we have xi 2 L.v/ if and only if G contains an edge labeled xi
coming out of v, and xxi 2 L.v/ if and only if G contains an edge labeled xi going into v.

Definition 5.2. LetG be aFn-labeled graph. Define the Whitehead graph ofG as follows:

(i) We have 2n vertices labeled x1; : : : ; xn; xx1; : : : ; xxn.

(ii) For every vertex v 2 G and for every pair y; z 2 L.v/ of distinct letters at v, we
draw an (unoriented) arc from y to z in the Whitehead graph.
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This means that the Whitehead graph ofG contains an edge for every (legal) turn inG.
Notice that the Whitehead graph contains a complete subgraph with vertex set L.v/ for
every vertex v 2G; moreover, the Whitehead graph is exactly the union of these complete
subgraphs. Notice that, when we apply a folding operation to a Fn-labeled graph G, the
Whitehead graph of G can gain new edges, but it does not lose any.

We define the Whitehead graph of a nontrivial finitely generated subgroup H � Fn
to be the Whitehead graph of core.H/. When the subgroup H is generated by a single
word H D hwi, the Whitehead graph of H coincides with the Whitehead graph of the
cyclic reduction of w; in this sense, this notion of Whitehead graph is a generalization of
the previous Definition 3.3. We can also define the notion of cut vertex for the Whitehead
graph of a subgroup exactly as in Definition 3.4.

Whitehead automorphisms and subdivision of graphs

We are now interested in how the core graph of a subgroup changes when we apply
a Whitehead automorphism. We are thus going to describe an operation which we call
subdivision, being performed on an Fn-labeled graph. In what follows, we work with
a fixed Whitehead automorphism ' D .A; a/, and we assume that a 2 ¹x1; : : : ; xnº. The
case where a 2 ¹xx1; : : : ; xxnº is completely analogous: whenever we would have an edge
labeled a with a certain orientation, we consider instead an edge labeled xa and with oppo-
site orientation.

LetG be an Fn-labeled graph. Choose an edge e 2G, oriented and labeled with a letter
y 2 ¹x1; : : : ; xnº. If y; xy 62 A, we do not change the edge e. If y 2 A and xy 62 A, then we
subdivide e into two edges, and to the first, we give the label a and the orientation of e, and
to the second, we give the label y and the same orientation. If y 62 A and xy 2 A, then we
subdivide e into two edges, and to the first, we give the label y and the same orientation
of e, and to the second, we give the label a and the opposite orientation. If y; xy 2 A, then
we perform both transformations on e, as in Figure 3.

. .

. .

x

x

. .

. . .

y

x y

. .

. . .

z

z x

. .

. . . .

t

x t x

Figure 3. The effect of the subdivision operation upon the single edges. Here F4 D hx; y; z; ti and
' D .¹y;xz; t; Ntº; x/, meaning that '.x/D x and '.y/D xy and '.z/D zxx and '.t/D xt xx. Above,
we see the edges before the subdivision, while below we see them after the subdivision.

We apply the subdivision operation to each edge of G, in order to obtain another Fn-
labeled graph, which will be called '-subdivided graph, to be denoted by subd'.G/.

Notice that for every vertex v 2 G, we also have a vertex v 2 subd'.G/: we say that
v 2 subd'.G/ is an old vertex. For every edge e 2 G, the subdivision on e gives at most
three edges, and exactly one of them has the same label as e: we say that the edge is an old
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edge. If we have a vertex v 2 G and a letter b 2 L.v/\A, then the subdivision operation
upon the corresponding edge will create a new vertex u together with an edge labeled a
going from v to u: we say that the vertex u is a new vertex near v, and that the edge from v

to u is a new edge near v. For every vertex of subd'.G/, it is either an old vertex or a new
vertex near a unique v 2 G. For every edge of subd'.G/, it is either an old edge, or a new
edge near a unique v 2 G.

To anFn-labeled graphG, we associate the subgroupH �Fn given by the imageH D
�1.f /.�1.G//, where f WG ! Rn is the labeling map. It is immediate to see that, if G
is associated with the subgroup H , then subd'.G/ is associated with the subgroup '.H/.
This observation yields the following (which is essentially the same as [3, Lemma 2]).

Proposition 5.3. Let H � Fn be a non-trivial finitely generated subgroup, and let ' D
.A; a/ be a Whitehead automorphism. Then core.'.H// D core.fold.subd'.core.H////.

Proof. For the Fn-labeled graph core.H/ with labeling map f W core.H/! Rn, we have
that f�.�1.core.H/// D H . After the subdivision operation, if we call

gW subd'.core.H//! Rn

the labeling map, we have that g�.�1.subd'.core.H//// D '.H/. In particular, Proposi-
tion 2.7 tells us that fold.subd'.core.H/// can be embedded in cov.'.H// as a subgraph
containing core.'.H//. It follows that core.fold.subd'.core.H//// D core.'.H//, as
desired.

We are also interested in having a detailed description of how the folding operations
take place. Some partial description is already given in [3, Lemma 3], but we provide the
more precise technical Lemma 5.4, which is a generalization of Lemma 3.2.

Lemma 5.4. LetH � Fn be a non-trivial finitely generated subgroup, and let ' D .A; a/
be a Whitehead automorphism. Consider the graph subd'.core.H//. For every vertex
v 2 core.H/, fold together all the edges of subd'.core.H// going out of v and labeled
with a. Then, after these folding operations, no further folding operation is possible.

In particular, for every folding sequence starting from subd'.core.H//, the sequence
contains only rank-preserving folding operations involving edges labeled a.

Proof. Let G D core.H/ and denote by L.v/ the set of letters at the vertex v in G. For
every vertex v 2 G, take all the edges in subd'.G/ labeled a and going out of v, and fold
them all together; call the resulting graphG0. Our aim is to show that no folding operation
is possible onG0. This is equivalent to showing that, for every vertex u 2 G0 and for every
letter, there is at most one edge with that label going out of u.

Suppose we have a vertex v 2 G with L.v/ \ A D ;. Then no new vertex is created
near v in the subdivision operation.

Suppose we have a vertex v 2 G with L.v/\A 6D ; and a 2 L.v/; this means that G
contains an edge labeled a going from v to u. Then every new vertex, which is created
near v with the subdivision operation, gets identified with u in G0.
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Suppose we have a vertex v 2 G with L.v/ \ A 6D ; and a 62 L.v/. Then all the new
vertices, which are created near v with the subdivision operation, are identified together
into a vertex which we call v1 2 G0.

Thus G0 contains only two types of vertices: old vertices u obtained from a vertex
u 2 G, and new vertices u1 near a vertex u 2 G with L.u/ \ A 6D ; and a 62 L.u/.

Case 1. Suppose we have a vertex u 2 G with xa 62 L.u/. Since xa 62 L.u/, we have that
the vertex u 2 subd'.G/ does not get identified with any other vertex during the folding
operations that produce G0. The edges going out of u 2 G with label in L.u/ \ Ac give
edges going out of u 2 G0 with the same label. The edges going out of u 2 G with label
in L.u/ \ A give edges labeled a going out of u 2 subd'.G/; all the edges labeled a and
going out of u 2 subd'.G/ are folded together in G0, meaning that there is at most one
edge labeled a going out of u 2 G0. Thus in this case, the vertex u 2 G0 has at most one
edge with each label going out of it.

Case 2. Suppose we have a vertex u 2 G with xa 2 L.u/. This means that G contains an
edge labeled a going from v to u (see also Figure 4). It is possible that the subdivision
operation creates new vertices near v; the folding operation identifies all such vertices
with u. Thus, for every letter l 2 L.v/ \ A, the vertex u 2 G0 has one edge labeled l
going out of it. The edges going out of u with label in L.u/ \ Ac give edges going out
of u 2 G0 with the same label. Notice that L.v/ \ A and L.u/ \ Ac are disjoint, so we
cannot get two vertices with the same label in this way. As in case 1, the edges going out
of u 2 G with label in L.u/ \ A give edges labeled a going out of u 2 subd'.G/; all the
edges labeled a going out of u 2 subd'.G/ are folded together in G0, meaning that there
is at most one edge labeled a going out of u 2 G0. Thus in this case, the vertex u 2 G0 has
at most one edge with each label going out of it.

Case 3. Suppose we have a vertex u 2 G with L.u/ \ A 6D ; and a 62 L.u/. This means
that all the vertices which are created near u fold together into a single vertex u1 2 G0.
Each edge going out of u 2G with label in L.u/\A gives one edge going out of u1 2G0

with the same label. The vertex u1 also has one edge labeled xa going out of it, and notice
that xa 62 L.u/\A. It follows that the vertex u1 2 G0 has at most one edge with each label
going out of it.

Since we examined each vertex of G0, we conclude that no folding operation is possi-
ble onG0. According to Proposition 2.7, we have that each folding sequence starting from
subd'.G/ can only contain rank-preserving folding operations involving edges labeled a,
as desired.

Whitehead’s algorithm for subgroups

We are now ready to state the analogs of Theorems 3.5, 3.6 and 3.7 for free factors.

Theorem 5.5. Let H � Fn be a free factor, and suppose core.H/ has more than one
vertex. Then the Whitehead graph of H contains a cut vertex.
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Figure 4. A local picture of the graph G and how it changes during the proof of Lemma 3.2 (with
a focus on case 2). Here F4 D hx; y; z; ti and ' D .¹y;xz; t; Ntº; x/ is the same as in Figure 3. We see
a portion of the starting graph G, its subdivision, and the corresponding portion of G0.
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Theorem 5.6. Let H � Fn be a free factor, and suppose the Whitehead graph of H
contains a cut vertex. Then there is a Whitehead automorphism ' such that core.'.H//
has strictly fewer vertices and strictly fewer edges than core.H/.

In the following theorem, we write L.v/ as introduced in Definition 5.1.

Theorem 5.7. The automorphism ' D .A;a/ in Theorem 5.6 can be chosen in such a way
that, at each vertex v of core.H/, exactly one of the following configurations takes place:

(i) L.v/ \ A D ;.

(ii) L.v/ � A.

(iii) a 2 L.v/ and L.v/ � A [ ¹aº.

Remark 5.8. Case (i) means that we do not act on any of the letters at v. Case (ii) means
that we act on all the letters at v. Case (iii) means that we act on all the letters at v except
for a.

Remark 5.9. Notice that if xa 2 L.v/, then v necessarily falls into case (i).

The proof of Theorem 5.5 is analogous to the proof of Theorem 3.5.

Proof of Theorem 5.5. LetH be a free factor such that core.H/ has more than one vertex.
Up to conjugation, we can assume that the basepoint belongs to core.H/. We also assume
that core.H/ contains each letter x1; : : : ; xn at least once; otherwise, if core.H/ only
contains the letters x1; : : : ; xk , then we can just apply the same argument in the free factor
hx1; : : : ; xki � hx1; : : : ; xni D Fn (using Corollary 2.17).

SinceH is a free factor, we can take a basis forH and add reduced words w1; : : : ; wr
in order to make it a basis for Fn. Take the graph core.H/ and add r paths from the
basepoint to itself, corresponding to the words w1; : : : ; wr , in order to get a graph G.
Then, apply a sequence of folding operations G ! G0 ! � � � ! G.l/ until no further
folding operation is possible, as in Proposition 2.7. Since hH;w1; : : : ;wri D Fn, we must
have that G.l/ D Rn is the standard n-rose. Using Corollary 2.10, we can see that no
graph in the sequence contains any valence-1 vertex. Also, since �1.G/ has the same rank
as �1.Rn/, we must have that each folding operation is rank-preserving.

Thus G.l�1/ has no valence-1 vertex, and produces the standard n-rose with just one
rank-preserving folding operation. It is easy to see that G.l�1/ has to be of the form
described in Figure 2, for some 1 � ˛ � ˇ � n with ˛ < n (up to permutation of the
letters, and up to substitution of some letter with its inverse) (and the two edges labeled x1
are the ones to be folded in order to obtain the n-rose).

We have a map of graphs f W core.H/ ! G.l�1/ which preserves orientations and
labels of edges. The image of f .core.H// � G.l�1/ contains each letter at least once,
meaning that it has to cross at least one of the edges connecting v to v0 (see Figure 2). If it
crosses the edge labeled x1, then xx1 is a cut vertex for the Whitehead graph of H . If it
does not cross the edge labeled x1, then it has to cross the edge x˛Ci (for some 1� i � ˇ),
and thus any of x˛Ci , xx˛Ci is a cut vertex for the Whitehead graph of H .
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Theorems 5.6 and 5.7 are a consequence of Theorem 5.5.

Proof of Theorems 5.6 and 5.7. Let a be a cut vertex in the Whitehead graph of H .
If the connected component of a does not contain xa, then we take the set A to be

that connected component (excluding a itself). Otherwise, take the connected component
of a and remove a itself: we remain with at least two nonempty connected components,
and at least one of these components does not contain xa; take A to be such a component.
We consider the Whitehead automorphism ' D .A; a/.

Take a vertex v in core.H/, and notice that the letters inL.v/ are vertices of a complete
subgraph of the Whitehead graph of H . Thus L.v/ has to be contained either in A [ ¹aº
or in Ac . This yields the trichotomy of Theorem 5.7.

We now examine in more detail what happens in each of the three cases. The folding
takes place according to Lemma 5.4. For each vertex v of core.H/, we look at the vertices
which are created near v in subd'.core.H//.

Case (i): L.v/ � Ac . This means no new vertex is created near v. The total number of
vertices remains unchanged.

Case (ii): This means that, for every edge with endpoint v, a new vertex is created near v.
All these new vertices are then folded together into a vertex v1. The vertex v becomes
a valence-1 vertex, and can thus be removed from the graph. Thus we lose the vertex v
and we gain the vertex v1 in the core graph: the total number of vertices is unchanged.

Case (iii): a 2 L.v/ and L.v/ � A [ ¹aº. This means that core.H/ contains an edge e
labeled a going from v to u. For every other edge with endpoint v, a new vertex is created
near v. All these new vertices are then folded together with the vertex u. The vertex v
becomes a valence-1 vertex, and can thus be removed from the graph. The total number
of vertices decreases by 1.

In each of the cases (i), (ii) and (iii), the number of vertices and edges of the core graph
does not increase. Also, since the Whitehead graph contains at least an edge between a
and A, we have that case (iii) happens at least once, giving a strict decrease in the number
of vertices and edges. This yields Theorem 5.6.

Remark 5.10. We notice that, if core.H/ has rank r , the number of edges of core.H/
is the number of vertices plus r � 1. The same holds for core.'.H//, which has rank r
too. Thus the decrease in the number of vertices is the same as the decrease in the number
of edges.

Remark 5.11. One may try to look for generalization of Remark 3.8: we would like to
compute the decrease in the number of edges of core.H/ by just looking at the Whitehead
graph of H ; this is unfortunately not easy, because the valence of certain vertices of H
comes to play a role. Let S be the set of vertices of core.H/ that fall into case (iii) of the
trichotomy of Theorem 5.7: then we have that jcore.'.H//je D jcore.H/je � jS j, as we
will show later in the paper (see Lemma 5.16, and refer also to Figure 5), where jcore.H/je
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Figure 5. Here F4D hx;y;z; ti and we consider the free factorH D htyxx2;x xyxzti. The Whitehead
transformation ' D .¹y; xz; t; Ntº; x/ satisfies the trichotomy of Theorem 5.7 for the graph core.H/.
In the figure we start with core.H/, we subdivide it, we fold the result and we remove the valence-1
vertices: the result is core.'.H//. We observe that core.'.H// can be obtained from core.H/ in the
following way: take the vertices of core.H/ which fall into case (iii) of the trichotomy, and collapse
to a point the x-edges at those vertices; Theorem 5.14 makes this formal.

denotes the number of edges of the graph core.H/. Let E be the number of edges of the
Whitehead graph of H that connect the vertex a to a vertex of A: the number E can in
general be different from jS j; in fact,E and S are related byE D

P
v2S .d.v/� 1/, where

d.v/ denotes the degree of a vertex v of core.H/.

The quotient map

In the following, we use the notation L.v/ as introduced in Definition 5.1.

Definition 5.12. Let H � Fn be a finitely generated non-trivial subgroup, and let ' D
.A; a/ be a Whitehead automorphism. We say that the action of ' on H is fine if for each
vertex v 2 core.H/, exactly one of the following configurations takes place:

(i) L.v/ \ A D ;.

(ii) L.v/ � A.

(iii) a 2 L.v/ and L.v/ � A [ ¹aº.

Remark 5.13. This is exactly the property given by the trichotomy of Theorem 5.7.

Suppose now the action of ' on H is fine. Let v be a vertex of core.H/ that falls into
case (iii) of the trichotomy: since a 2L.v/, there is a unique edge labeled a going out of v.
For each vertex v of core.H/ that falls into case (iii), collapse that a-edge to a single point.
We obtain a quotient Fn-labeled graph Q together with a quotient map qW core.H/! Q.
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Theorem 5.14. There is an isomorphism � WQ ! core.'.H// of graphs sending each
edge to an edge with the same label and orientation.

Before proving the above theorem, we need to introduce another map first. According
to Proposition 5.3, we have core.'.H//D core.fold.subd'.core.H////. Consider the map
r1W core.H/ ! subd'.core.H// which sends each edge e of core.H/ to the edge-path
subd'.e/. Consider also the map r2W subd'.core.H//! fold.subd'.core.H/// which is
given by the quotient map induced by the folding operations. Consider finally the map
r3W fold.subd'.core.H///! core.fold.subd'.core.H//// given by the retraction which
collapses each edge with a valence-1 endpoint to the other endpoint. The composition of
these three maps gives a map r D r3 ı r2 ı r1W core.H/! core.'.H//.

Theorem 5.15. The isomorphism � WQ! core.'.H// in Theorem 5.14 can be chosen in
such a way that

(i) For each vertex v of core.H/, we have r.v/ D .� ı q/.v/.

(ii) For each edge e of core.H/, the map r
ˇ̌
e

is a (weakly monotone) reparametriza-
tion of � ı q

ˇ̌
e
.

In particular, r and � ı q are homotopic relative to the 0-skeleton of core.H/.

See also Figure 6.

core.H/

Q core.'.H//

q r

�

Figure 6. The maps q, r and � .

Proof of Theorems 5.14 and 5.15. We examine cases (i), (ii), (iii) of the trichotomy of
Definition 5.12.

Let v in core.H/ be a vertex which falls into case (i). Then we have that no new vertex
is created near v, and the core graph remains unchanged.

Let v in core.H/ be a vertex which falls into case (ii). Then we have that, for each
edge at v, a new vertex is created near v. All these new vertices fold together into a new
vertex v1, and v becomes a valence-1 vertex and is thus removed from the core graph. The
vertex v1 takes the place of the vertex v, and the core graph does not change.

Let v in core.H/ be a vertex which falls into case (iii). We consider the unique edge e
labeled a and going from v to another vertex u. For every other edge at v, we have that
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a new vertex is created near v. All these new vertices are then folded together and with u,
and the vertex v becomes a valence-1 vertex, and is thus removed from the core graph.
The effect on the core graph is exactly the same as collapsing the edge e to a single point.

This shows that the quotient graph Q is isomorphic to core.'.H//, yielding Theo-
rem 5.14.

Take now an edge e of core.H/ with endpoints u, v. Notice that if e gets collapsed by
the quotient map q, then it is collapsed by the map r too, and the thesis holds; so assume
this is not the case. If both u and v fall into case (i) of the trichotomy, then the quo-
tient map q and the map r send e homeomorphically onto the same edge q.e/ D r.e/

of core.'.H//. If u falls into case (i) but v falls into case (ii) or (iii), then q sends e
homeomorphically onto an edge q.e/ of core.'.H//. The map r1 maps e to an edge path
containing two edges, and the map r3 collapses one of those two edges to a point, and
sends the other homeomorphically onto q.e/. This yields the conclusion for the edge e.
The case where u falls into case (ii) or (iii) is completely analogous.

For brevity, in the following we write xq D � ı qW core.H/! core.'.H//. The above
Theorems 5.14 and 5.15 have several interesting consequences.

Lemma 5.16. LetH �Fn be a non-trivial finitely generated subgroup, and let 'D .A;a/
be a Whitehead automorphism such that the action of ' on H is fine. If case (iii) takes
place for exactly p� 1 vertices v 2 core.H/, then core.'.H// has exactly p fewer vertices
and p fewer edges than core.H/. If case (iii) never happens, then core.'.H//D core.H/
and the restriction of ' to H is conjugation by some element u 2 Fn.

Proof. The map xq collapses exactly one edge for each vertex of core.H/ that falls into
case (iii). This proves the first part of the lemma.

For the second part, suppose that case (iii) never happens for a vertex of core.H/. This
means that the map xqW core.H/! core.'.H// is an isomorphism of Fn-labeled graphs.

Consider the pointed core graph core�.H/, and let � be the (possibly trivial) shortest
path from the basepoint to a vertex v of core.H/; moreover, call t the word that you read
while going along � , from the basepoint to v.

Take an element w 2 H and think of the corresponding (reduced) path ˛ in core�.H/
from the basepoint to itself. The path ˛ consists of � followed by ˇ followed by the reverse
of � , for some (reduced) path ˇ in core.H/ from v to itself. This gives a decomposition
w D tw0 Nt , where w0 is the word that we read while going along ˇ.

Notice that xq sends ˇ isomorphically onto xq.ˇ/, preserving labels and orientation on
the edges. If v falls into case (i) of the trichotomy, then this gives '.w0/ D w0, meaning
that ' acts on H as the conjugation by '.t/Nt . If v falls into case (ii) or (iii) of the tri-
chotomy, then this gives '.w0/ D aw0xa, meaning that ' acts on H as the conjugation by
'.t/a Nt .

We now show that the trichotomy of Definition 5.12 has a nice behavior when we
consider subgroups.
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Lemma 5.17. Let K � H � Fn be non-trivial finitely generated subgroups, and let ' D
.A; a/ be a Whitehead automorphism. If the action of ' on H is fine, then the action of '
on K is fine.

Proof. It is enough to notice that for every vertex u 2 core.K/, we have that its image
i�.u/D v 2 core.H/ satisfies L.u/ � L.v/. Since the vertex v satisfies the trichotomy of
Definition 5.12, so does u.

Remark 5.18. In the hypothesis of Lemma 5.17, we have that, for each subgroupK �H ,
the automorphism ' either strictly decreases the size of core.K/, or it acts on K as a con-
jugation by an element of Fn. We can actually be more precise than just that. Consider
the map xqW core.H/! core.'.H//, and let G � core.H/ be the subgraph given by the
union of all the edges which are not collapsed by q. Observe that the inclusion i WK ! H

induces a locally injective label-preserving map of graphs i�W core.K/! core.H/. Then,
' acts on K as a conjugation automorphism if and only if i�.core.K// � G.

We conclude this section with a technical lemma which will be useful to us later. Let
again K � H � Fn be finitely generated non-trivial subgroups. Let i WK ! H be the
inclusion, consider the map of graphs i�W core.H/! core.K/ and consider the subgraph
i�.core.K// � core.H/. For an automorphism 'WFn ! Fn, let j W '.K/! '.H/ be the
inclusion, let

j�W core.'.H//! core.'.K//

be the corresponding map of graphs, and consider the subgraph

j�.core.'.K/// � core.'.H//:

Lemma 5.19. Let K � H � Fn be non-trivial finitely generated subgroups. Let ' D
.A; a/ be a Whitehead automorphism such that the action of ' onK is fine. Then, with the
above notation, j�.core.'.K/// has at most as many edges as i�.core.K//.

Proof. Let xq D � ı qW core.K/! core.'.K// be as in Theorem 5.14. Suppose we have
two edges e, e0 in core.K/ such that their image is the same edge i�.e/ D i�.e

0/ of
core.H/, and suppose xq does not collapse either of e, e0. Then the two edges xq.e/, xq.e0/
of core.'.K// are sent to the same edge

j�.xq.e// D j�.xq.e
0//

of core.'.H//. We now divide the edges ofK into equivalence classesE1; : : : ;E˛ , where
each equivalence class is the set of edges with a given image in core.H/ (and, in particular,
the image i�.core.K// has exactly ˛ edges); similarly, we divide the edges of core.'.K//
into equivalence classes F1; : : : ; Fˇ , based on their image in core.'.H//. Then each Fj
is a union of some Ei s, implying that ˇ � ˛, as desired.

Remark 5.20. Lemma 5.19 becomes false if we try to count the number of vertices,
instead of counting the number of edges.
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A relative version of Whitehead’s algorithm

Let Fn D hx1; : : : ; xni and consider the free factor hx1; : : : ; xki for 1 � k � n � 1.

Theorem 5.21. Let w 2 Fn be primitive and not a single letter. Suppose there is an auto-
morphism � WFn! Fn such that �.hx1; : : : ; xki/D hx1; : : : ; xki and �.w/D xkC1. Then
there is a Whitehead automorphism ' D .A; a/ such that

(i) '.xi / D xi for i D 1; : : : ; k.

(ii) The length of '.w/ is strictly smaller than the length of w.

(iii) Every letter a, which is added to w when applying ' to w letter-by-letter, imme-
diately cancels (in the free reduction process).

Remark 5.22. Notice that the word w is not required to be cyclically reduced. In (ii), we
mean the length and not the cyclic length. In (iii), we consider the free reduction process
and not the cyclic reduction process.

For the proof, we need the following straightforward lemma.

Lemma 5.23. Consider the inner automorphism 
a.w/ D awxa of Fn. Then for every
Whitehead automorphism .A; a/, the identity .A; a/ D 
a ı .Ac n ¹a; xaº; xa/ holds.

Proof of Theorem 5.21. Consider the free factor H D hx1; : : : ; xki � hwi. Notice that
core.H/ consists of core�.w/ together with k edges from the basepoint to itself, labeled
with the letters x1; : : : ; xk (and here it is important that k � 1). We apply Theorems 5.6
and 5.7 to H in order to get a Whitehead automorphism ' D .A; a/. If the basepoint of
core.H/ would fall into case (ii) or (iii) of the trichotomy of Theorem 5.7, then we apply
Lemma 5.23 and consider the Whitehead automorphism

' D .Ac n ¹a; xaº; xa/

instead. Then ' satisfies all of the desired properties.

We observe that Theorem 5.21 can also be generalized to subgroups (and the proof is
the same, so will be omitted).

Theorem 5.24. Let H � Fn be a free factor of rank r � 1, and suppose that core�.H/
has at least two vertices. Suppose there is an automorphism � WFn ! Fn such that

�.hx1; : : : ; xki/ D hx1; : : : ; xki and �.H/ D hxkC1; : : : ; xkCri:

Then there is a Whitehead automorphism ' D .A; a/ such that

(i) '.xi / D xi for i D 1; : : : ; k.

(ii) The graph core�.'.H// has strictly fewer vertices and edges than core�.H/.

(iii) The trichotomy of Theorem 5.7 holds at each vertex v 2 core�.H/. Moreover,
the basepoint always falls into case (i) of the trichotomy.
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6. About computation of distances in the complex of free factors

For an element w 2 Fn, we denote by Œw� the conjugacy class of that element. For a sub-
group H � Fn, we denote by ŒH � the conjugacy class of that subgroup.

We are now going to define a simplicial complex FFn, starting with its 0-skeleton and
its 1-skeleton. The 0-skeleton FF0n has a point ŒH � for every conjugacy class of free factors
H � Fn. The 1-skeleton FF1n is defined as follows: add a 1-simplex with vertices ŒH0�,
ŒH1� if and only if ŒH0� 6D ŒH1� and there are representativesH 00 2 ŒH0� andH 01 2 ŒH1� and
a permutation � W ¹0; 1º ! ¹0; 1º such thatH 0

�.0/
�H 0

�.1/
. Define FFn as the flag complex

over the 1-skeleton FF1n: we have a k-simplex with endpoints ŒH0�; : : : ; ŒHk � if and only if
ŒH0�; : : : ; ŒHk � are pairwise connected by 1-simplices in FF1n. Equivalently, we have a k-
simplex with endpoints ŒH0�; : : : ; ŒHk � if and only if ŒH0�; : : : ; ŒHk � are pairwise distinct
and there are representativesH 00 2 ŒH0�; : : : ;H

0
k
2 ŒHk � and a permutation � W ¹0; : : : ;kº!

¹0; : : : ; kº such that H 0
�.0/
� � � � � H 0

�.k/
.

Definition 6.1. The simplicial complex FFn defined above is called complex of free fac-
tors.

It is shown in [2] that FFn is connected. We would like to determine whether there
is an algorithm that, given two vertices of FFn, gives as output their distance in a finite
time, where distance is the combinatorial distance in the 1-skeleton FF1n. We here furnish
algorithms for distances 1, 2, 3, and also an algorithm for distance 4 when one of the free
factors has rank n � 1.

Distance one

It is easy to check whether two conjugacy classes of free factors ŒH �, ŒK� are at distance 1
or not. Assume rank.H/ � rank.K/. We look for representatives H 0 2 ŒH � and K 0 2 ŒK�
with an inclusion K 0 � H 0. This is equivalent to looking for a locally injective map of
graphs core.K/! core.H/. Each such map, if it exists, is uniquely determined by the
image of a given vertex; thus we only have to deal with a finite number of tries.

Distance two

We will rely on the following proposition.

Proposition 6.2. Let H and K be non-trivial free factors, and suppose that core.H/ t
core.K/ contains at least one edge with each label. Suppose there are free factorsH 02 ŒH �
andK 0 2 ŒK� and J 6D Fn such thatH 0;K 0 � J . Then there is a Whitehead automorphism
' D .A; a/ such that

core.'.H// t core.'.K//

has strictly fewer vertices and strictly fewer edges than core.H/ t core.K/.
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Remark 6.3. With core.H/ t core.K/ we mean the (not connected) Fn-labeled graph
defined as the disjoint union of core.H/ and core.K/. Similarly, with core.'.H// t
core.'.K// we mean the Fn-labeled graph defined as the disjoint union of core.'.H//
and core.'.K//.

Proof. Since J is a free factor, by a recursive application of Theorems 5.6 and 5.7, we
obtain a chain of Whitehead automorphisms '1; : : : ; 'l such that core.'l ı � � � ı '1.J // is
a rose with labels only in ¹x1; : : : ; xn�1º. By Lemmas 5.17 and 5.16, we have that either
core.'1.H// t core.'1.K// D core.H/ t core.K/ or core.'1.H// t core.'1.K// has
strictly fewer vertices and strictly fewer edges than core.H/t core.K/. If core.'1.H//t
core.'1.K// D core.H/ t core.K/, then we repeat the reasoning with '2 instead of '1;
and so on. If core.'l ı � � � ı '1.H// t core.'l ı � � � ı '1.K// D core.H/ t core.K/, then
we have a contradiction, since core.'l ı � � � ı '1.H// t core.'l ı � � � ı '1.K// only con-
tains edges with the labels ¹x1; : : : ; xn�1º, while core.H/ t core.K/ contains edges with
all possible labels by hypothesis. So we can take the smallest m such that

core.'m.H// t core.'m.K// 6D core.H/ t core.K/;

and the Whitehead automorphism 'm satisfies the thesis.

Let ŒH �, ŒK� be conjugacy classes of non-trivial free factors. We want to check (i)
whether or not there are representatives with non-trivial intersection and (ii) whether or
not there are representatives contained in a common proper free factor.

For (i), it is possible to use the technique explained in [10]. There are representatives
H 0 2 ŒH � andK 0 2 ŒK� with non-trivial intersection if and only if the pullback of the two
graphs core.H/ and core.K/ contains a non-trivial cycle.

For (ii), we apply Proposition 6.2 repeatedly. If core.H/ t core.K/ contains only
edges with labels from ¹x1; : : : ; xn�1º (or from any other proper subset of ¹x1; : : : ; xnº),
then they are at distance two; otherwise we look for a Whitehead transformation which
strictly reduces the number of vertices of core.H/ t core.K/: if we do not find it, then
they are not at distance two, if we do then we apply it and reiterate the reasoning.

Distance three

Given two conjugacy classes of free factors ŒH �, ŒK�, we want to check whether there
are representatives H 0 2 ŒH � and K 0 2 ŒK� and non-trivial free factors I , J such that
H 0; J � I and J � K 0 (there is also a symmetric check to do, but it is completely analo-
gous).

Define the finite oriented graph‚ as follows. The graph‚ has one vertex correspond-
ing to each pair of core folded Fn-labeled graphs .A;B/ such that A has at most as many
edges as core.H/ and B has at most as many edges as core.K/. There is an oriented
edge from .A;B/ to .C;D/ if and only if there is a Whitehead automorphism ' such that
C D core.fold.subd'.A/// and D is isomorphic to a subgraph of core.fold.subd'.B///;
in that case we label that edge of ‚ with the automorphism '.
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Suppose now there are non-trivial free factors I , J such that H 0; J � I and J � K 0.
The inclusion j W J ! K 0 gives a locally injective map j�W core.J /! core.K/, and thus
a subgraph j�.core.J // � core.K/: the pair .core.H/; j�.core.J /// is a vertex of ‚.
If core.I / contains only edges with labels from ¹x1; : : : ; xn�1º, then we see that the pair
of graphs .core.H/; j�.core.J /// only contains edges with those labels too. If core.I /
contains at least one edge with each label, then by Theorems 5.6 and 5.7 there is a White-
head automorphism ' such that core.'.I // has strictly fewer edges than core.I /, and such
that for each vertex in core.I / the trichotomy of Theorem 5.7 holds. In particular, by Lem-
mas 5.16, 5.17 and 5.19, we have that the number of edges of core.H/ and of j�.core.J //
does not increase either. This means that the pair .core.'.H//; j�.core.'.J //// is a ver-
tex of ‚, and that ‚ contains an edge labeled ' and going from .core.H/; j�.core.J ///
to .core.'.H//; j�.core.'.J //// (here we are using Proposition 5.3).

We now reiterate the same reasoning. By Theorems 5.6 and 5.7, we can take a finite
sequence of Whitehead automorphisms '1; : : : ; 'l such that 'i strictly reduces the num-
ber of edges of core.'i�1 ı � � � ı '1.I //, such that for each vertex of core.'i�1 ı � � � ı
'1.I // the trichotomy of Theorem 5.7 holds, and such that 'l ı � � � ı '1.I / only con-
tains edges with labels from ¹x1; : : : ; xn�1º. Then this produces a path in ‚ with ver-
tices .core.'i ı � � � ı '1.H//; j�.core.'i ı � � � ı '1.J //// and which goes from the pair
.core.H/; j�.core.J /// to a pair containing only edges with labels in ¹x1; : : : ; xn�1º.
Since the graph ‚ is finite, there is an algorithm that tells us whether such a path in ‚
exists or not.

Conversely, given two conjugacy classes of free factors ŒH �, ŒK�, suppose there is
a path in ‚ with vertices .A1; B1/; : : : ; .Al ; Bl / and with an edge labeled 'i going from
.Ai ; Bi / to .AiC1; BiC1/, such that A1 D core.H/ and B1 is a subgraph of core.K/, and
such that Al , Bl only contain edges with labels in ¹x1; : : : ; xn�1º. Then we fix basepoints
in Al and Bl and we set  D '�11 ı � � � ı '

�1
l

: we get a segment of length three in FF1n
connecting ŒH � and ŒK�, with vertices ŒH �D Œ .�1.Al //� and ŒI �D Œ .hx1; : : : ; xn�1i/�
and ŒJ � D Œ .�1.Bl //� and ŒK�.

Thus, given conjugacy classes of free factors ŒH � and ŒK�, the existence of non-trivial
free factors I , J such that H 0; J � I and J � K 0 is equivalent to the existence of a path
in ‚ from a vertex of the form .core.H/; B1/, with B1 � core.K/, to a vertex of the
form .Al ; Bl /, where Al t Bl does not use all the labels in ¹x1; : : : ; xnº. This yields an
algorithm to check whether two vertices of FFn are at distance three or not.

About distance four

We would like to check whether two conjugacy classes of free factors ŒH �, ŒK� are at
distance at most four in FFn. In order to achieve this, we need to check two conditions:

(1) Whether or not there are representatives H 0 2 ŒH � and K 0 2 ŒK� and non-trivial
free factors J1, J2, J3 such that J1 � H 0 and J1; J3 � J2 and J3 � K 0.

(2) Whether or not there are representatives H 0 2 ŒH � and K 0 2 ŒK� and non-trivial
free factors J1, J2, J3 such that H 0; J2 � J1 and J2; K 0 � J3.
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We here furnish an algorithm to check condition (1).

Remark 6.4. In the particular case when rank.H/ D n � 1, condition (2) reduces to
checking distance three. In particular, when one of the free factors has rank n � 1, we
have an algorithm to check whether they are at distance four or not.

The technique is the same as for distance three. Consider the oriented graph� defined
as follows. We have one vertex for each pair of core folded Fn-labeled graphs .A;B/ such
thatA has at most as many edges as core.H/ andB has at most as many edges as core.K/.
There is an oriented edge from .A; B/ to .C; D/ if and only if there is a Whitehead
automorphism ' such that C is isomorphic to a subgraph of core.fold.subd'.A/// and D
is isomorphic to a subgraph of core.fold.subd'.B///; in that case, we label that edge of�
with the automorphism '.

Suppose there are representatives H 0 2 ŒH � and K 0 2 ŒK� and non-trivial free fac-
tors J1, J2, J3 such that J1 �H 0 and J1;J3 � J2 and J3 �K 0. By means of Theorems 5.6
and 5.7, we take a chain of Whitehead automorphisms '1; : : : ; 'l such that 'iC1 strictly
reduces the number of edges of core.'i ı � � � ı '1.J2//, and such that the trichotomy of
Theorem 5.7 holds too. By Lemmas 5.16, 5.17 and 5.19, we have that this produces a path
.Ai ; Bi / in �, where Ai is the image the map

core.'i ı � � � ı '1.J1//! core.'i ı � � � ı '1.H//

induced by the inclusion J1 � K 0, and Bi is the image of the map

core.'i ı � � � ı '1.J3//! core.'i ı � � � ı '1.K//

induced by the inclusion J3 � K 0. The starting point .A1; B1/ of the path is given by
two subgraphs of core.H/ and core.K/ respectively, and the endpoint .Al ; Bl / has the
property thatAl tBl only contains edges with labels from a proper subset of ¹x1; : : : ;xnº.

Conversely, suppose there is a path .A1; B1/; : : : ; .Al ; Bl / in � with an edge from
.Ai ; Bi / to .AiC1; BiC1/ labeled 'i , and such that A1, B1 are subgraphs of core.H/,
core.K/, respectively, and Al t Bl contains only edges with labels in ¹x1; : : : ; xn�1º.
Then we fix basepoints in Al and Bl , we set  D '�11 ı � � � ı '

�1
l

, and we produce the
free factors J1 D  .�1.Al // and J2 D  .hx1; : : : ; xn�1i/ and J3 D  .�1.Bl //. For
these free factors, there are representativesH 0 2 ŒH � andK 0 2 ŒK� such that J1 �H 0 and
J1; J3 � J2 and J3 � K 0, as desired.

Since the graph � is finite, we obtain an algorithm to check condition (1).
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