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Groups with minimal harmonic functions as small as
you like

Gideon Amir and Gady Kozma
(with an appendix by Nicolás Matte Bon)

Abstract. For any order of growth f .n/ D o.logn/, we construct a finitely-generated group G and
a set of generators S such that the Cayley graph ofG with respect to S supports a harmonic function
with growth f but does not support any harmonic function with slower growth. The construction
uses permutational wreath products Z=2 oX � in which the base group � is defined via its properly
chosen action on X .

1. Introduction

A harmonic function on a graph is a function f from its vertices into R such that for
every vertex v, f .v/ is equal to the average of f over all the neighbours of v. Finite
connected graphs have no nonconstant harmonic functions, and infinite ones have, in many
interesting examples, surprisingly small families of harmonic functions. For example, on
the graph Zd , the only harmonic functions with polynomial growth are polynomials [12].
When the graph is the Cayley graph of some finitely generated group, it is natural to try to
relate properties of harmonic functions to properties of the group. Graphs for which there
are no nonconstant bounded harmonic functions are called Liouville graphs, and they are
deeply connected with random walk entropy and amenability [1,3,9,11,14]. In a different
regime, harmonic functions with linear growth were used by Kleiner to give a new proof
of Gromov’s famous polynomial growth theorem [15, 24].

There is an interesting quantitative version of the Liouville question which goes as fol-
lows: for a given Cayley graph, what is the largest f WN! Œ0;1/ such that any harmonic
function hwith h.x/D o.f .dist.1;x/// is constant? (1 is of course the identity element of
the group, and dist is the graph distance in the Cayley graph.) This question was addressed
in [4] where a number of examples were analysed. In particular, for the two-dimensional
lamplighter group Z=2 o Z2, it was shown that it supports a harmonic function with log-
arithmic growth, but that any h with h.x/ D o.log.dist.1; x/// is constant. Surprisingly,
though, it turns out that this cannot be changed by using more complicated lamps. Indeed,
it was shown in [4] that for G D .� � � .Z2 o Z2/ o Z2/ � � � o Z2, the same behaviour holds,

2020 Mathematics Subject Classification. Primary 20F69; Secondary 20P05, 60B15, 20E22.
Keywords. Harmonic functions, random walks, Schreier graphs, group actions.

https://creativecommons.org/licenses/by/4.0/


G. Amir and G. Kozma 2

namely, any sublogarithmic harmonic function must be constant (in sharp contrast to the
behaviour of random walk return probabilities and entropy on G).

In this paper, we construct examples of groups with any f between log and constant.
Here is the precise statement.

Theorem. Let f be a positive C 1 function on Œ1;1/ such that f .x/!1 and such that
xf 0.x/ is decreasing. Then there exist a finitely generated groupG and a finite, symmetric
set of generators S such that the Cayley graph Cay.GIS/ has the following properties:

(1) There exists a nonconstant harmonic function h on Cay.GIS/ such that jh.x/j �
Cf .dist.1; x//.

(2) Any harmonic function h on Cay.GIS/ with h.x/ D o.f .dist.1; x// is constant.

It is a famous open problem whether the Liouville property is a group property, i.e.,
whether it is possible for the same group to have two sets of generators with respect to
which one Cayley graph is Liouville and the other is not. (It is known that the Liouville
property is not quasi-isometrically invariant for general graphs, see [2, 19].) In our case
too, we do not know whether the minimal growth rate of a harmonic function is a group
property or it might depend on the generators. For the specific groups we are constructing,
though, it is possible to show that any set of generators has the same minimal growth of
harmonic functions. We will not prove it, though, as it only adds technical complications
to the proof.

Let us warn the reader against confusing a harmonic function of minimal growth with
a minimal harmonic function. A positive harmonic function h is called minimal if any
other positive harmonic function g with g.x/ � h.x/ for all x is a multiple of h by a con-
stant. Such functions play a role in the construction of the Martin boundary of a group.
Surprisingly, perhaps, minimal harmonic functions in fact grow very fast. For example,
in Z=2 oZ they actually grow exponentially fast. A minimal harmonic function h on Z=2 oZ
will have a very specific “direction” in which it decays exponentially fast and this prevents
any other harmonic function from being smaller than h everywhere, but in a typical direc-
tion h will increase exponentially. We will not prove these claims as they are somewhat
off topic, but they follow in a more or less straightforward manner from the description of
minimal harmonic functions using the Martin kernel.

Our construction uses permutational wreath products – an approach with a very suc-
cessful track record in constructing groups with interesting behaviour – but with the
following twist. A permutational wreath product (exact definitions will be given below)
starts from a group acting on a set X . In most constructions so far the groups were auto-
maton groups, and these act naturally on certain sets such that the result is a “graphical
fractal”. These groups and their actions have been studied extensively, and the construc-
tion requires deep knowledge of this theory. Here, instead of starting with a well-studied
group, we start with a graph (which we also denote by X , the group will act on its ver-
tices). We colour the edges of the graph such that any vertex is incident to all colours,
and then use the colouring to construct a group acting on X . Each colour (say azure)
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will correspond to the permutation of X given by taking every vertex x to the vertex on
the other side of the edge e incident to x and coloured azure. The group will simply be
the group of permutations generated by all the colours. We shall see that if the colouring
is chosen to have enough repetitions, then the group may be analysed directly and quite
simply, with no need for the heavy combinatorial analysis typically associated with auto-
maton groups. While not a truly different technique, more of a different way to think about
existing techniques, we believe it is useful, and in fact it has already been used in [16].

2. Preliminaries

2.1. Graph and random walk preliminaries

For a graph G and two vertices x and y, we denote by x � y the case where .x; y/ is
an edge of G, and say that x and y are neighbours. By d.x; y/ or dist.x; y/ we denote
the graph distance between them, i.e., the length of the shortest path between them in
the graph (if one exists; 1 otherwise). We denote by B.x; r/ the closed ball B.x; r/ D
¹yW d.x; y/ � rº. If we need to stress that this is taken in some graph G, we shall denote
the ball by BG.x; r/. The sphere will be denoted by @B , i.e., @B.x; r/D ¹yWd.x;y/D rº.
We shall also use G to denote the set of vertices of G, so x 2 G means that x is a vertex
of G. If we need the set of edges of G, we shall denote it by E.G/. For two graphs G
and H , we denote by G �H the standard graph product, i.e., the graph with vertex set
¹.g;h/Wg 2G;h 2H º and with .g;h/� .g0; h0/ if and only if gD g0 and h� h0 or g � g0

and h D h0.
A weighted graph is a pair .G; m/, where mWE.G/ ! .0;1/ is called the weight

function. We consider every graph also as a weighted graph withm� 1. Similarly, a mul-
tigraph (i.e., a graph where multiple edges are allowed between vertices) is considered as
a weighted graph with m.x; y/ being the number of edges between x and y. The Lapla-
cian � of a weighted graph G is the operator on `2.G/ defined by

.�f /.x/ D
X
y�x

m.x; y/.f .x/ � f .y//:

For a weighted graph G, the simple random walk on G is the stochastic process on the
vertices of G which, whenever it is in some vertex x, moves to any neighbour y of x with
probability proportional to m.x; y/. In particular, if the graph is simple, it chooses among
the neighbours with equal probability. For an x 2 G and an A � G, the hitting time of A
(from x) is the random time

min¹t 2 ¹0; 1; 2; : : :ºWR.t/ 2 Aº;

where R is the simple random walk on G with R.0/ D x. If R never hits A, we consider
the minimum to be1.

For a weighted graph G and two sets A, B � G, we define Res.A; B/ to be the elec-
trical resistance between them, i.e., construct an electrical network where each edge has
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resistance 1, and where the sets A and B are fused to be one point each, and then meas-
ure the resulting effective resistance between these two points. Formally, the definition
is as follows. Assume first that G is finite and connected, and that each of A and B is
a point. Find the function hWG ! R satisfying �h D ıA � ıB (it is unique up to addition
of constants) and define

Res.A;B/ D h.B/ � h.A/:

For general graphs, take the resistance inside finite concentric balls, take the radius to
infinity and define Res.A; B/ to be the limit of the finite resistances (by Rayleigh mono-
tonicity [10, §1.4], this is a decreasing series so the limit exists). If A and B are sets,
define Res.A; B/ by identifying each one to a point (adding up weights if multiple edges
are generated) and measuring the resistance on the identified graph. For more details see,
say, the book [10].

We shall consider the effective resistance between a point and the boundary of a ball
around it with radius R, and the main property of effective resistance that we shall use is
that this resistance is inversely proportional to the probability that a random walk starting
from the point will hit the boundary of the ball before returning. See [10, §1.3.4] for more
details. Other properties of electrical resistance will only be used to estimate the resistance
in the Schreier graphs (Lemmas 4.7 and 3.5).

We denote by C and c constants, which might change from place to place or even
within the same formula. Throughout C will denote constants which are sufficiently large,
and c will denote constants which are sufficiently small. The constants would depend
only on the graph at hand (usually denoted by T ) unless otherwise specified. The notation
X � Y is short for cX � Y � CX .

2.2. Group preliminaries: Cayley and Schreier graphs, permutational wreath
products

Let X be a set, and let G be a group acting on X from the right (denoted by XÔ G).
We denote the action of a g 2 G on an x 2 X by x:g (so, of course, x:gh D .x:g/:h).
For a (finite, symmetric) subset S � G, the right Schreier graph Sch.X I S/ is the graph
whose vertices are X and whose edges are all .x; x:s/ for all x 2 X and s 2 S . The (right)
Cayley graph Cay.GIS/ is the Schreier graph of the action of G on itself by right multi-
plication.

The wreath product Z=2 oX G is the group

.Z=2/X ÌG;

where the action of G on .Z=2/X implicit in the notation Ì is g.!/.x/ D !.x:g/. In other
words, the product on Z=2 oX G is

.!; g/ � .!0; g0/ D .! C !0.�:g/; gg0/:

The actionXÔ G induces an actionXÔ Z=2 oX G by having theG component act onX ,
and the ! component doing nothing at all.
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Lemma 2.1. Let XÔ G and let S � G be finite. Let o 2 X and let aWX ! R satisfy
�a D ıo, where � is the Laplacian of Sch.X I S/ and ıo is the Kronecker delta at o.
Assume a.o/ D �1=2. Then the function

f .!; g/ D .�1/!.o/ � a.o:g/

is (right) harmonic on Z=2 oX G with respect to the switch-or-move generators, that is,
¹.ıo; 1/º [ ¹.0; s/W s 2 Sº.

Here and below, when we write .�1/!.o/a.o:g/, we consider the group Z=2 to be
embedded in R as ¹0; 1º, and .�1/!.o/a.o:g/ is then just powering and multiplication
in R. Some readers might benefit from thinking about a as the harmonic potential (see,
e.g., [23]) at o, though we are not making any requirement that a be minimal in any sense.

Proof. This is a straightforward, if confusing, calculation. Denote by �o the Laplacian
of Z=2 oX G with respect to the switch-or-move generators. We first examine g for which
o:g ¤ o. For such g, we have

.�of /.!; g/
.�/
Df .!; g/ � f .! C ıo:g�1 ; g/C

X
s2S

.f .!; g/ � f .!; gs//

.��/
D .�1/!.o/a.o:g/ � .�1/!.o/a.o:g/

C

X
s2S

..�1/!.o/a.o:g/ � .�1/!.o/a.o:gs//

.���/
D .�1/!.o/.�a/.o:g/ D 0;

where .�/ follows from the definitions of Z=2 oX G and �o; .��/ follows from the defini-
tion f and from the fact that if o:g ¤ o, then o:g�1 ¤ o and then .!C ıo:g�1/.o/D !.o/;
and in .���/, � stands for the Laplacian on Sch.X IS/.

In the case that o:g D o, we get a similar formula, except that for the generator .ıo; 1/,
we have .!; g/.ıo; 1/ D .! C ıo; g/ which inverts the sign at o. Hence

.�of /.!; g/ D .�1/
!.o/a.o/C .�1/!.o/a.o/C

X
s2S

..�1/!.o/a.o/ � .�1/!.o/a.o:s//

D .�1/!.o/.2a.o/C .�a/.o// D 0

since we assumed �a.o/ D 1 and a.o/ D �1=2.

3. Spherically symmetric trees

As explained in the introduction, we shall construct a group from a coloured graph, and
properties of the random walk on that graph will allow us to infer properties of the group.
We now reveal the nature of the graph in question: it will be a product of a spherically
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symmetric tree with Z. We therefore start with some properties of spherically symmetric
trees and random walks on them.

A tree is a graph with no cycles. For a tree T and a marked vertex o (also called the
root of T ), we say that T is spherically symmetric (with respect to o) if the degree of
a vertex depends only on its graph distance from o. For a spherically symmetric tree T
with all degrees of all vertices 2 or 3 (except the root which can have degree 1 or 2), we
call the points of degree 3, branch points. The root of T is considered a branch point if its
degree is 2.

Definition 3.1. Let T be the family of spherically symmetric trees with degrees as in
the previous paragraph such that the distances bi of the branch points from o satisfy
infi biC1=bi > 2.

Lemma 3.2. Let T 2 T . Then for any r 2 N and any x 2 B.o; r/, the expected hitting
time of o from x in the graph B.o; r/ is � Cr2.

Proof. Let H be the graph given by taking B.o; r/ and “projecting it on Z”, i.e., for
every h � r , identifying all the vertices with distance h from o (soH would have multiple
edges). By spherical symmetry, the hitting time of o inH is exactly as inB.o;r/. To estim-
ate the hitting time inH , we use the commute-time identity, which states that in any finite
graph G and for any two vertices x and y, we have C.x; y/ D Res.x; y/ � jE.G/j, where
C.x; y/, the commute time, is the time a random walk starting from x takes to hit y and
then return to x. See [6] for the proof of this identity. Let

` D max¹2i W bi < rº;

i.e., the number of branches of the tree at r (in particular, we define ` D 1 in the case that
b1 � r). Hence jE.H/j � `r . The resistance between x and o can be bounded above by
the resistance to the leaves, for which we have the formula

Res.o; leaves/ D b1 C
X min.biC1; r/ � bi

2i
� C

r

`
;

where C depends only on min biC1=bi . We get that the commute-time is � Cr2 which of
course bounds the hitting time in H and hence also in B.o; r/.

Lemma 3.3. Let T 2 T . Then T �Z satisfies a “spherically symmetric Harnack inequal-
ity”, i.e., there exists C such that for any x 2 T �Z, any r > 0 and any h which is positive
harmonic in B.x; 2r/ and spherically symmetric, maxB.x;r/ h � C minB.x;r/ h.

Before starting the proof proper, let us give the main idea: we will show the Harnack
inequality by showing a Poincaré inequality, which, under volume doubling, implies the
Harnack inequality. The Poincaré inequality is essentially equivalent to an inequality for
the second eigenvalue of the Laplacian. This, in turn, follows from the hitting time estim-
ate of Lemma 3.2. This chain of conclusions allows to prove a Harnack inequality without
calculating pointwise exit probabilities, which would have probably been longer and more
technical. The Poincaré inequality will be reused later in the proof of Lemma 3.6.
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o

w

L.w; r/

¹vW jd.o; v/ � d.o;w/j � rº

Figure 1. The subtree L.w; r/.

Proof. For any w 2 T and any r , let L.w; r/ be the following subgraph of T : we take all
v 2 T such that jd.o; v/� d.o;w/j � r , examine the induced subgraph of T and take the
connected component of w; see Figure 1.

We first want to bound the second eigenvalue �L of the Laplacian onL. We note thatL
is itself a tree and satisfies the conditions of Lemma 3.2. Hence the hitting time of its root
is bounded by Cr2 (strictly speaking, we apply Lemma 3.2 for an extension of L to an
infinite tree in T ). This bound for the hitting time is well known to bound the mixing
time of L, say by the equivalence of the mixing time and the forget time (see [17]) or
by [20, Corollary 1.2]. Since the mixing time bounds the inverse of the second eigenvalue,
we get that �L � cr�2.

Next we examine Q D L � ¹�r; : : : ; rº. Since the eigenvalues of a graph product are
simply sums of all couples of eigenvalues of the two factors, we get a similar estimate for
the second eigenvalue of Q, i.e., �Q � cr�2.

We now rewrite this inequality in a functional form that resembles the Poincaré in-
equality. For this, we first note that the first eigenvalue of the Laplacian is 0, and corres-
ponds to the eigenvector which is constant 1. Hence by the minimax representation of
eigenvalues (note that the Laplacian is self-adjoint), we have

kf k2 � Cr2h�f; f i 8f such that hf; 1i D 0:

A simple resummation shows that h�f; f i D
P
jf .x/ � f .y/j2, where the sum is over

the edges ofQ. The condition hf; 1i D 0 can be removed by subtracting the average of f .
Hence we arrive at (in weighted graph notation)X

x2Q

m.x/jf .x/ � fQj
2
� Cr2

X
.x;y/2E.Q/

m.x; y/jf .x/ � f .y/j2; (3.1)
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wherem.x; y/ is 1 when x � y and 0 otherwise,m.x/D
P
y2Qm.x; y/, E.Q/ is the set

of edges of Q and fQ D .1=jQj/
P
x2Q f .x/.

We now “flatten” T � Z. By this we mean that we define a new weighted graph F .
Set F D ZC � Z and define � W T � Z! F by �.x; n/ D .d.x; o/; n/. We consider �
also as a map from E.T � Z/ to E.F /. We then define the weight of each edge e in F to
be j��1.e/j (we denote the weights in F by m.x; y/ and m.x/ too). We remark that F is
not a product graph itself. Inequality (3.1) translates to a Poincaré inequality for squares
in F . Indeed, a square of F is lifted to a disjoint collection of copies ofQ. Hence to show
the Poincaré inequality, we take a function f on the square, lift it (i.e., consider f ı �) to
said disjoint collection, use (3.1) for each copy and sum.

Next we show that F satisfies the volume doubling condition, i.e.,

m.B.x; 2r// � Cm.B.x; r// 8x; r;

where B.x; r/ is a ball in F (in the usual graph metric which ignores the weights), and
where for any set of vertices S ,m.S/D

P
x2S m.x/. The easiest way to see this is to start

with T and note that

m.¹v 2 T W jd.o; v/ � d.o;w/j � 2rº/ � Cm.¹v 2 T W jd.o; v/ � d.o;w/j � rº/

(this is a straightforward calculation, though we note that it uses the condition that the
branching points bi satisfy biC1=bi � 2), conclude the same after multiplying the left-
hand side by ¹�2r; : : : ; 2rº and the right-hand side by ¹�r; : : : ; rº, and then by flattening
for squares in F . Moving from squares to balls follows by inscribing B.x; 2r/ in a square
of side length 2r C 1 and inscribing in B.x; r/ a square of side length r=2.

Similarly, we need to move the Poincaré inequality from squares to balls, since the
usual weak Poincaré inequality is stated for balls, namelyX

x2B.z;r/

m.x/jf � fB.z;r/j
2
� Cr2

X
.x;y/2E.B.z;2r//

m.x; y/jf .x/ � f .y/j2 8z; r

(it is called “weak” because the ball on the left has radius r and on the right has radius 2r).
Nevertheless, it is well known that the squares and balls versions are equivalent under
volume doubling (see, e.g., [13, §5], the setting there is a little different but the proof is
the same).

The purpose of all these manoeuvres was to be able to apply Delmotte’s theorem [8]
which states that the weak Poincaré inequality and volume doubling imply Harnack’s
inequality. Lifting to T � Z gives a Harnack inequality for spherically symmetric func-
tions.

Lemma 3.4. Let T 2 T , and let T �Z Ô G. Then there exists a harmonic function u on
Z=2 oT�Z G such that

u.x/ � C ResT�Z.d.o; x//;

where ResT�Z.n/ is the electrical resistance in T � Z from o to @B.o; n/.
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Proof. Let r be arbitrary, and let a D ar W BT�Z.o; r/ ! R satisfy that �a restricted
to B.o; r � 1/ is ıo, a.o/ D 0 and is constant on @B.o; r/. Here and below, o D oT�Z D

.oT ; 0/. Since these conditions define a uniquely, it is spherically symmetric.
Let s < r=2 and examine the random walk Xt on B.o; s/ starting from o. Let �s be the

hitting time of @B.o; s/, �Co the first return time to o and � D min.�Co ; �s/. Since a.Xt / is
a (bounded) martingale for 1 � t � � , we have

E.a.X1// D E.X� / D P .� D �s/E.a.X.�s// j � D �s/C P .� D �Co /a.o/:

Now a.o/ D 0, E.a.X1// D 1 since �a.o/ D 1 and by the Markov property,

E.a.X.�s// j � D �s/ D E.a.X.�s///:

Thus
Res.s/ D

1

P .X hits @B.o; s/ before returning to o/
D E.a.X.�s///: (3.2)

By Harnack’s inequality (Lemma 3.3), all values of a on @B.o;s/ are equal up to constants,
and hence are also equal to the expectation in (3.2) up to constants. We get

ar .x/ � C Res.d.o; x// 8d.o; x/ �
1

2
r:

This means that we may take a pointwise converging subsequence ark . The limit a1
satisfies �a1 D ıo and a1.x/ � C Res.d.o; x//. An appeal to Lemma 2.1 finishes the
proof (we use Lemma 2.1 with aLemma 2.1 D a1 � 1=2).

Lemma 3.5. For any T 2 T ,

ResT�Z.n/ �

nX
kD1

1

k`.k/
;

where `.k/ is the number of branches of T at level k.

Proof. For the lower bound, we use the fact that identifying vertices only decreases the
resistance (see, e.g., [10, §2.2]). Let Sn be the square

Sn D ¹.t; k/ 2 T � ZW d.o; t/ D n; jkj � n or k D ˙n; d.o; t/ � nº;

and note that
SN=2 � BT�Z.o;N /:

Let En be the number of edges between Sn�1 and Sn. We identify all vertices in Sn, for
all n, and get

ResT�Z.N / � ResT�Z.o; SN=2/ �

N=2X
nD1

1

En
:
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.0; 0/

.n; k/


k

Figure 2. The path 
k is a discretisation of the line.

To estimate En, examine edges between the two different pieces of Sn. The number of
edges between the part ¹d.o; t/ D nº in Sn�1 and Sn is .2n C 1/`.n/: The number of
edges between the other part of Sn�1 is (twice) the size of the tree up to level n, i.e.,

2

nX
kD1

`.k/ � 2n`.n/:

The difference between summing 1=En up toN and up toN=2 is no more than a constant.
This proves the lower bound.

For the upper bound, we construct a unit flow from .o; 0/ to Sn (in fact, only to the
“vertical” part of Sn, but this is not important) and use the fact that the energy of any unit
flow from .o; 0/ to Sn is an upper bound on ResT�Z.o; SN / (see, e.g., [10, §1.3.5]). Let
t 2 T satisfy d.o; t/ D n, and let jkj � n. Examine the line in R2 from .0; 0/ to .n; k/.
Discretise it to a path 
k in Z2 which does not go left, and such that any edge of 
k is at
distance � 1 from the line (if there is more than one way to do it, choose one arbitrarily).
See Figure 2. Translate 
k to a collection of `.n/ paths in T � Z as follows: assume the
vertex .a; b/ 2 Z2 translates to a .t; b/ 2 T �Z. If the next edge in 
k is vertical, translate
.a; b ˙ 1/ (as the case might be) to .t; b ˙ 1/. If it is horizontal, translate .a C 1; b/ to
.t 0; b/, where t 0 is one of the children of t in T . This gives `.n/ different paths in T � Z.
Send 1=..2nC 1/`.n// mass through each such path. This is the desired flow.

Let us now calculate the energy of this flow. Since T �Z has bounded degree, we may
examine flows through vertices instead of through edges, losing only a constant. Examine
therefore a vertex .t; b/, and assume jbj � d.o; t/C 2, since otherwise the flow is zero.
To check how many paths go through it, note that the line in R2 must pass no further than
distance 2 from it. This restricts to an angle of opening � C=d.o; t/ and hence, there are
no more than C=d.o; t/ of the flow in such paths. Further, the flow divides evenly between
the different `.d.o; t// branches at this level, so the flow through each particular branch
is 1=`.d.o; t// of the total flow. We get that the flow is bounded by C=d.o; t/`.d.o; t//.
Summing the squares gives

ResT�Z.o; SN / �
X
.t;b/W

jbj�2�d.o;t/�N

C

d.o; t/2`.d.o; t//2
�

NX
nD1

C

n`.n/
:

This finishes the proof of the lemma.
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Lemma 3.6. Let T 2 T , let x; y 2 T � Z, and let r > d.x; y/. Let � be the hitting time
of y by a random walk on T � Z started from x. Let � 0 be an independent exponential
variable with expectation r2. Then

P .� > � 0/ �
1

ResT�Z.r/
;

where the constants implicit in the� might depend on x and y.

Proof. Since the claim is trivial in the case that T � Z is transient, we shall assume it is
recurrent, i.e., Res.r/D ResT�Z.r/!1 as r!1. We may assume that r is sufficiently
large. Recall from the proof of Lemma 3.3 that the flattening F of T �Z satisfies volume
doubling and Poincaré’s inequality. Hence, by Delmotte’s theorem [8], the random walk
on F satisfies Gaussian bounds

Px.Rt D y/ �
Cm.y/

m.B.x;
p
t //

exp
�
�
cd.x; y/2

t

�
; (3.3)

where m is as in the proof of Lemma 3.3 as well. In particular, we may conclude that
Px.d.x; Rt / > �

p
t / � C exp.�c�2/. From this we get (using a simple dyadic decom-

position of Œ0; t �) the same bound for maxs�t d.x; Rs/. This last bound extends from F

back to T �Z since if R D RŒ0; t � is a random walk on T �Z and if the image of R in F
stayed in a ball of radius �

p
t throughout the time interval Œ0; t �, then R must have stayed

in a ball of radius C�
p
t .

Another fact we ask the reader to recall, this time from Lemma 3.4, is that the prob-
ability that a random walk starting from x hits y before hitting @B.y; s/ is � 1=Res.s/
(recall that all� signs and all c and C may depend on the points x and y).

With these two facts, we first conclude the lower bound on the probability. With
probability � 1=Res.r/, the random walk reaches @B.y; r/ before hitting y. It then has
probability > c to walk cr2 time without getting to distance bigger than r=2, which of
course prevents it from returning to y during this time interval. During this period of
length cr2, there is a positive probability that � 0 will occur. Hence

P .� > � 0/ >
c

Res.r/
:

For the other direction, we first note that

P
�
� 0 <

r2

Res.r/

�
�

1

Res.r/
:

Denote this event by B1. Next we sum (3.3) over B.y; s/ for some s � r=
p

Res.r/ to
claim that, for the random walk on our flattened graph F ,

Px.d.Rr2=Res.r/; y/ < s/ �
Cm.B.y; s//

m.B.x; r=
p

Res.r///
:
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Examining only the Z direction gives m.B.y; s// � m.B.y; s0// � .s=s0/, so

Px
�
d.Rr2=Res.r/; y/ <

r

Res.r/3=2

�
�

C

Res.r/
:

This estimate extends from F to T �Z as distances in T �Z are no less than the distances
in the projection to F . Denote this event by B2 and put s D r=Res.r/3=2.

Thus if neither of B1, B2 occurred, then the random walk exited a ball of radius s
before time � 0. Adding the estimate for the probability for exiting a ball of radius s before �
mentioned above gives

P .� > � 0/ �
C

Res.r/
C

C

Res.s/
: (3.4)

Applying Lemma 3.5 twice gives

Res.s/ � c
sX

nD1

1

n`.n/
� c

rX
nD1

1

n`.n/
� C log

r

s
� c Res.r/ � C log

r

s
:

We insert this into (3.4) to get

P .� > � 0/ �
C

Res.r/
C

C

Res.r/ � C log Res.r/
:

The lemma is proved.

4. Proof of the theorem

At this point, we set out to construct an action of some group G on a tree T , and we
need G to be “small” in a sense to be prescribed later.

Definition 4.1. Let T 2 T . Colour the edges of T with three colours, azure, bordeaux
and chartreuse such that no two neighbouring edges have the same colour. Edges between
bi C 1 and biC1 will be coloured azure and bordeaux alternatingly, with all edges of a fixed
distance from o having the same colour, and chartreuse will be used in the branching points
for one of the children. See Figure 3.

Let G be the subgroup of the group of permutations of T (acting from the right) gen-
erated by the following three involutions termed a, b and c. The generator a, for example,
maps every vertex x to the vertex on the other end of the edge coloured azure containing x,
or, if no such edge exists, maps x to itself (if you prefer, add loops to all vertices of T of
degree 2 and colour them in the missing colour). We call G the coloured involution group
of T .

Definition 4.2. We define a subpolynomially growing tree to be a T 2 T such that

jB.o; r/j D r1Co.1/:
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c

a

b

b

a

a

b

c

c

b
a

a

a

a

b

b

b

b

Figure 3. Colouring by azure, bordeaux and chartreuse, marked by a, b and c, respectively, for
readers with a monochrome copy.

Lemma 4.3. Let T be a subpolynomially growing tree. Then for every r , the number of
different coloured graphs that can arise as balls of radius r in T is r1Co.1/.

Proof. Let x 2 T and examine the number of branch points in B.x; r/. If there are none,
then the ball is a line and there are exactly 2 possibilities for the colouring. If there is one,
then there are r C 1 possibilities for the distance of x from the branch point, 3 possibilities
for the “side” of x (father’s side, chartreuse child’s side or non-chartreuse child’s side), and
two more possibilities which depend on whether the non-chartreuse child of the branch
point is azure or bordeaux. All in all, we get no more than 12r C 12 possibilities.

Finally, if there is more than one branch point, then we have two branch points with
distance less than 2r between them. Since biC1=bi > 2, this means that both branch points
are no further than 4r from the root, and x is no further than 5r from the root. Since T is
subpolynomially growing, the number of possibilities for this is no more than r1Co.1/.

Lemma 4.4. Let T be a subpolynomially growing tree, and let G be its coloured invol-
ution group. Then G satisfies that Hn � n1=2Co.1/, where Hn is the entropy of simple
random walk on the Cayley graph of G with respect to the generators a, b and c, i.e.,
Hn WD H.Xn/, where Xn is the random walk and H is the Shannon entropy.

Proof. Examine the random walk Xn on G. For every x 2 T , x:Xn is a simple random
walk on T . By the Carne–Varopoulos theorem (see [5, 21, 25] or [18, §13.2]),

P .d.x:Xn; x/ > C
p
n logn/ � n�3

for some C sufficiently large. By Lemma 4.3, there are only n1Co.1/ different balls we
need to consider, hence

P .9x 2 T such that d.x:Xn; x/ > C
p
n logn/ � n�2Co.1/:

Denote the event above by B. We now divide Hn as follows:

Hn � P .B/H.XnjB/C P .Bc/H.XnjB
c/C 1:

For both terms, we now bound the entropy by the logarithm of the state space. For
H.XnjB/, we bound it simply by Cn while forH.XnjBc/ we have a smaller state space:
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since there are only .C
p
n logn/1Co.1/ D n1=2Co.1/ different relevant balls, and since

each such ball has volume less than n1=2Co.1/, the state space is smaller than

.n1=2Co.1//n
1=2Co.1/

and its logarithm is less than n1=2Co.1/. Combining this with P .B/� n�2Co.1/, the lemma
is proved.

Theorem 4.5. Let T be a subpolynomially growing tree, and let G be its coloured invol-
ution group. Let H D Z=2 o.T�Z/ .G � Z/, where G � Z acts on T � Z by

.t; n/:.g;m/ D .t:g; nCm/ 8t 2 T; g 2 G; n;m 2 Z:

Let S D ¹.a; 0/; .b; 0/; .c; 0/; .1; 1/; .1;�1/º so that S generates G � Z. Consider H as
a Cayley graph with respect to the switch-or-move generators ¹.ıo; 1/º [ ¹.0; s/W s 2 Sº,
where o is the root of T . Then H supports a harmonic function u with

u.x/ � ResT�Z.d.o; x//;

and any harmonic function h with h.x/ D o.ResT�Z.d.o; x/// is constant.

Proof. The claim that u exists follows from Lemma 3.4. Let therefore h be a harmonic
function with h.x/D o.ResT�Z.d.o;x///. Recall that x D .!;g;n/, where ! 2 .Z=2/T�Z

is the lamp configuration, g 2 G and n 2 Z. Our first step is the following lemma.

Lemma 4.6. The function h does not depend on the lamp configuration, i.e., for every !,
!0, g and n, h.!; g; n/ D h.!0; g; n/.

Proof. We follow an argument from [4]. It is enough to prove the claim when ! differs
from !0 in exactly one point of T � Z, call it v. Examine lazy random walks R and R0

on H started from x D .!; g; n/ and x0 D .!0; g; n/. Couple them as follows: they walk
exactly the same unless v:Rt D o at some time t (recall that T � Z Ô H via its G � Z
coordinate). In this case, if R does a .ı0; 1/, let R0 do a lazy step and vice versa (other
kinds of steps are still done together). In the former case, we get RtC1 D R0tC1 at this
time, and we then change the coupling rule so that they walk together for all time.

Fix some r > 0 and examine our two coupled walks. Let � 0 be the stopping time when
the two walks coupled as in the previous paragraph. Let � 00 be an exponential variable with
expectation r2, independent of everything else. Let � D min¹� 0; � 00º. We now claim that

P .� D � 00/ �
C

Res.r/
; (4.1)

where C might depend on x and v but not on r . To see (4.1), note that at every visit of
v:Rt D v:R

0
t to o, there is a positive probability that they will couple. Let Bk be the event

that v:Rt reached o exactly k times before time � 00, but no coupling occurred. On the one
hand, there is probability e�ck that in k attempts, coupling always failed. On the other
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hand, after the kth visit, � 00 is independent of the past, so Bk implies that � 00 happened
before v:Rt returned to o. By Lemma 3.6, because v:Rt is a simple random walk on
T � Z, this probability is � C=Res.r/. We get

P .� D � 00/ �
1X
kD0

e�ck
C

Res.r/
;

the constant C here comes from Lemma 3.6, so it depends on the starting point of the
walk, but there are only two starting points to consider, v:.g; n/ (for k D 0) and o (for
k � 1). This shows (4.1).

Returning to our two coupled walks, since h.Rt / is a martingale,

h.x/ D E.h.R� // D E.h.R� / � 1¹� D � 00º/C E.h.R� / � 1¹� ¤ � 00º/

(justifying integrability is easy because h.x/ � Cd.o; x/ and � is bounded by � 00 which
is an exponential variable). The same holds for h.x0/ with R0t instead of Rt . However, if
� ¤ � 00, then R� D R0� , so these terms give equal contribution to h.x/ and h.x0/. We get

jh.x/ � h.x0/j � jE.h.R� / � 1¹� D � 00º/j C jE.h.R0� / � 1¹� D �
00
º/j:

A crude bound over � 00 will give

jh.x/ � h.x0/j � 2P .� D � 00/ �max¹jh.x/jW d.o; x/ � r3º CO.e�cr /:

By (4.1) and our assumption on h, we get

jh.x/ � h.x0/j �
o.Res.r3//

Res.r/
CO.e�cr /:

Lemma 4.6 now follows from the next simple result.

Lemma 4.7. There exists an infinite sequence rk !1 such that

Res.r3
k
/

Res.rk/
� C:

Proof. Examine Res.23
k
/. Because our graph contains Z2, Res.23

k
/ � C3k (according

to Rayleigh’s monotonicity, see, e.g., [10, §2.2]). Further, this is an increasing sequence.
Hence for infinitely many choices of k, Res.23

k
/ � 4Res.23

k�1
/.

We return to the proof of Theorem 4.5. We have just established Lemma 4.6, i.e.,
that h does not depend on the lamps. We get that h.!;g; n/D h0.g; n/, and h0 is harmonic
on G � Z. To show that it is constant, we use our entropy estimate. Indeed, by [11, The-
orem B], if for some f and a sequence nk , we have

lim
k!1

f .nk/
p
HnkC1 �Hnk D 0;
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then a harmonic function with growth at most f is constant. By Lemma 4.4, the entropy of
simple random walk on G (with respect to the generators a, b and c) is at most n1=2Co.1/.
Thus the same holds for G � Z (with the added generators of Z). Denote the entropy of
G � Z by Hn. Thus one may find a sequence nk such that HnkC1 �Hnk � n

�1=2Co.1/

k
.

We take the function f to be, say, f .n/ D n1=8 and get that any harmonic function h0 on
G � Z with h0.x/ � Cd.o; x/1=8 is constant. Since our function h0 satisfies

h0.x/ D o.ResT�Z.d.o; x/// D o.ResZ�Z.d.o; x/// D o.log d.o; x//;

it must be constant, and Theorem 4.5 is proved.

4.1. Eligible growth rates

Theorem 4.5 is almost our stated result. We merely need to demonstrate that for any func-
tion f with f .x/ ! 1 and xf 0.x/ decreasing, one may construct a subpolynomially
growing tree T such that ResT�Z.n/ � f .n/. This is no more than a calculus exercise,
but let us do it in details nonetheless.

Lemma 4.8. Let f be a positive C 1 function on Œ1;1/ such that f .x/!1 and that
xf 0.x/ is decreasing. Then there exist `.n/ such that for all N ,

NX
nD1

1

n`.n/
� f .N /;

and such that `.n/ can be taken to be the branching values of a subpolynomially growing
tree. The constant implicit in the� may depend on f , but not on N .

Proof. We would have liked to define `.n/ D 1=nf 0.n/ but this might not satisfy the
requirement that `.2n/ � 2`.n/, needed for a tree in T . Define therefore

w.n/ D
1

min
kD0

4k

nf 0.n2�k/
; w2.n/ D min¹w.n/; log2 8nº;

where in the definition of w, we extend f below 1 to be f .x/ D f .1/ C f 0.1/ log x,
an extension which preserves the condition that xf 0.x/ be decreasing, and ensures that
the minimum is achieved. We note that w.2n/ � 2w.n/. Indeed, w.n/ D 4k=nf 0.n2�k/
for some k, and using k C 1 in the definition of w.2n/ gives w.2n/ � 4kC1=2nf 0.2n �
2�k�1/ D 2w.n/. The same holds for log2 8n and hence, also w2.2n/ � 2w2.n/. Let us
now estimate

P
1=nw2.n/. On the one hand, we have

NX
nD1

1

nw2.n/
�

NX
nD1

1

n � 1
nf 0.n/

� f 0.N /C

N�1X
nD1

f .nC 1/ � f .n/

D f .N / � f .1/C f 0.N / � f .N /;
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where in the first inequality, we used the definition of w with k D 0 and in the second
inequality, the fact that f 0 is also decreasing, so f 0.n/ � f 0.�/ D f .n C 1/ � f .n/.
For the other direction, we write

NX
nD1

1

nw2.n/
D

NX
nD1

max
�

1

n log2 8n
;
1

max
kD0

f 0.n2�k/

4k

�
.�/
�

NX
nD1

1

n log2 8n
C

1X
kD0

1

4k

NX
nD1

f 0.n2�k/

� C C

1X
kD0

1

4k

�
f 0.2�k/C 2k

NX
nD2

f .n2�k/ � f ..n � 1/2�k/

�
.��/
� C C

1X
kD0

1

2k
f .N2�k/

.���/
� C C 2f .N /;

where in .�/ we estimated both maxima by a sum, and rearranged the summands; .��/
follows from the fact that f .x/ D C C C log x for x < 1; and .���/ is due to the fact
that f is increasing (f cannot decrease, since if at some x we have f 0.x/ < 0, then f 0

must be negative forever, contradicting the requirement f .x/!1). Defining

`.n/ D 2blog2w2.n/c;

we see that
P
1=.n`.n// � f while at the same time, `.2n/ � 2`.n/ which is the only

condition necessary for `.n/ to be the branching numbers of a tree in T . Since `.n/ �
log2 8n, T is also subpolynomially growing.

Combining Lemmas 3.5 and 4.8 and Theorem 4.5 proves our main result.

A. A remark on groups defined by slowly growing trees
(by Nicolás Matte Bon)

To prove their main result, the authors introduce a new idea to construct groups, defined
by an explicit Schreier graph obtained by labelling a slowly growing tree, which is of
independent interest. We remark in this appendix that this construction yields elementary
amenable groups (in fact, (locally finite)-by-dihedral, see Proposition A.1 below). In par-
ticular, the main result of this paper, which is pertinent to the realm of amenable groups,
holds already in the more restricted realm of elementary amenable groups. (Recall that the
class of elementary amenable groups is the smallest class of groups that contain finite and
abelian groups and is stable under direct limits and extensions [7]; certain types of asymp-
totic and algebraic behaviours are possible for amenable groups but not for elementary
amenable groups.)
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A variant of this group construction, named bubble groups, were introduced and used
in [16] and further studied in [22], where their amenability was shown with an analytic
method, and the isoperimetric profile of (permutational wreath products over) the bubble
groups was studied and shown to realise a wide family of behaviors. Our remark also
applies to the bubble groups (showing that they are locally finite-by-metabelian). It would
be interesting to know if these group constructions can be used to study the behaviour of
other asymptotic invariants among elementary amenable groups.

It is interesting to notice that these group constructions were somewhat inspired by
previous ones based on automata groups, which are instead often non-elementary amen-
able.

Definition of the groups

We work in parallel with two different groups belonging to two different families, denoted
by G and � , that we shall define precisely below. The group G is essentially the same
group denotedG in Section 4, with the difference that we also allow the degree of branch-
ing points of the tree T to vary (and to be possibly unbounded). The group � is one of the
bubble groups from [16], in a similar more general setting considered in [22].

Choose and fix two sequences of positive integers: the scaling sequence .bi /, assumed
to be strictly increasing, and the degree sequence .di /. We also assume that di � 3 for
every i � 1. We set d� D sup di (possibly, d� D1).

To define the group G, let T be a spherically homogeneous rooted tree as in Figure 1,
where the root has degree d0 � 1, and every other vertex has degree 2, except if its distance
from the root is equal to bi for some i > 0, in which case it has degree di . A vertex with
degree greater than 2 will be called a branching point. We label the edges of T using
the letters a, b and cn, n 2 Œ1; d� � 2� as follows. Edges that are strictly between two
branching points will be labelled by a and b alternatively, as in Figure 2. Edges adjacent
to a branching point of degree di will be labelled by a; b; c1; : : : ; cdi�2. Each letter a, b
or cn corresponds to a permutation of the vertex set of T , denoted by the same letter,
that exchanges the endpoints of every edge with the corresponding label. As in Section 4,
we let G be the group of permutations of T generated by a, b and cn, 1 � n � d� � 2.
The group G is finitely generated if and only if the degree sequence is bounded. Note
that the groups appearing in the proof of the main theorem of the paper are of the form
Z=2 oT�Z .G � Z/ (see Theorem 4.5), for particular choices of the scaling sequence, and
for a degree sequence constant and equal to 3. Therefore, they are elementary amenable if
and only if the group G is so.

To define the bubble group � , we let ‚ be the (oriented) graph obtained from the
graph T as follows. Every branching point is replaced by an oriented cycle of length di ,
called a branching cycle, and every path between a branching point at generation i and a
branching point at generation i C 1 is replaced by an oriented cycle of length 2.biC1 � bi /,
called a bubble; see Figure 4. Edges on a bubble will be labelled by the letter ˛, and edges
on a branching cycle will be labelled by ˇ. We still denote by ˛, ˇ the corresponding
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ˇ

˛

Figure 4. The graph ‚.

permutations that permute cyclically every bubble or branching cycles, respectively. The
bubble group is the group � generated by ˛ and ˇ. Note that the group � , unlike the
group G, is always 2-generated, even if the degree sequence .di / is unbounded.

Structure of � and G

In the statements below, we make the assumption that biC1 � bi tends to infinity, while
no assumption is made on .di /. Under the same assumptions, the fact that the group � is
amenable was first established in [22, Proposition 5.13].

Proposition A.1. Let .bi /, .di / be a scaling sequence and a degree sequence. Assume
that bi � bi�1 tends to infinity, and let .di / be arbitrary. Then

(i) The group G splits as a semi-direct product of the form

G ' N ÌD1;

where N is locally finite, and D1 is the infinite dihedral group. The surjection
G ! D1 maps a and b to two generating involutions of D1, and all the gener-
ators cj , j � 1 to the identity.

(ii) The group � is an extension of the form

1! K ! � ! C o Z! 1;

where K is locally finite, and C is a non-trivial cyclic group, which is finite if
the degree sequence .di / is bounded, and infinite cyclic if .di / is unbounded. The
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surjection � ! C o Z maps ˛ to a standard generator of Z, and ˇ to a standard
generator of the lamp group over 0.

In particular, the groups G and � are elementary amenable.

Before the proof, let us fix some terminology on spaces of Schreier graphs. If H is
a finitely generated group endowed with a finite generating set S , we denote Sch.H; S/
the space of rooted, connected, oriented graphs with edges labelled by S , that arise as
Schreier graphs of the pair .H; S/, up to isomorphisms of rooted connected labelled
graphs. Endowed with the topology induced by the space of marked graphs, Sch.H; S/ is
a compact space, on whichH acts continuously by moving the root in the natural way. As
it is well known and easy to see, this action is conjugate to the conjugation action of H
on its space of subgroups Sub.H/ endowed with the Chabauty topology (however, we
will not need this point of view here). In our conventions, edges of Schreier graphs are
always oriented, with the exception that we represent edges corresponding to a generator
of order two by a single unoriented one rather than two oriented ones (this is consistent
with the fact that T is not oriented, while ‚ is). We systematically omit the loops when
representing Schreier graphs. All Schreier graphs will be intended as rooted and labelled
graphs, and we will specify unrooted when we forget the root.

Proposition A.1 follows by analysing the closure of the orbits of T and‚ in the spaces
of Schreier graphs of G and � . In one sentence, each graph in the closure provides a quo-
tient of the groups, and these can be readily described.

Proof of Proposition A.1. Throughout the proof, we say that an integer n � 3 is admiss-
ible if di D n for infinitely many n’s. For simplicity, let us first consider the case where
the degree sequence d is bounded. We begin by proving (i) and then explain the modi-
fications needed for (ii). Let S D ¹a; b; c1; : : :º be the standard generating set of G. Let
o 2 T be the root, and view .T; o/ as an element of Sch.G; S/. We look at the closure
of the G-orbit of .T; o/ in Sch.G; S/. Each Schreier graph in the closure has underlying
unrooted graph of one of the following three types: the graph T , the graph xTn as in Fig-
ure 5 (a), where the degree n of its unique branching point runs over admissible integers,
and the graph yT , shown in Figure 5 (b). Each of these labelled graphs naturally defines
a group of permutations of its vertices, generated by the permutations of its vertices that
correspond to each letter (as in Section 2). Since all these graphs are Schreier graphs of
.G; S/, the group defined by each of them is a quotient of G. The group defined by yT is
simply the dihedral groupD1. Therefore, we have a surjection pWG!D1 mapping a, b
to two generating involutions of D1. Since a, b already generate a subgroup isomorphic
to D1 in G, the group G splits as a semi-direct product of the form G ' ker.p/ ÌD1.
We shall now check that ker.p/ is locally finite. For each admissible n, we denote xGn
the group of permutations of vertices of xTn defined by the labelling of edges of xTn, and
�nWG ! xGn the associated natural surjection. Observe that yT is also in the closure of
the orbit of the rooted graphs whose underlying graph is xTn, therefore it is also a Schreier
graph of xGn for every n. Thereby, we also have a surjection pnW xGn ! D1. Clearly,
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Figure 5. (a) The graph xTn for n D 4. (b) The graph yT .

ker.pn/ is a locally finite subgroup of xGn: in fact every element of ker.pn/ acts trivially
sufficiently far from the branching point of xTn, hence ker.pn/ consists of permutations
of xTn with finite support. Moreover, it is clear that p D pn ı �n, as it is seen by looking at
the images of generators. It follows that �n maps ker.p/ inside ker.pn/ for every admiss-
ible n. Consider the diagonal map � W

Q
n�nWG!

Q
n
xGn, where the product is taken over

all admissible n’s. It follows from the discussion above that � maps ker.p/ to the locally
finite group

Q
n kerpn. Hence to check that ker.p/ is locally finite, it is enough to check

that ker� D
T
n ker�n is locally finite (since an extension of two locally finite groups is

still locally finite). To see this, let g 2 ker� , and let jgj be its word length with respect to
the standard generating set. Since bi � bi�1 tends to infinity, the ball of radius jgj around
any vertex v 2 T sufficiently far from the root contains at most one branching point. Hence
for every sufficiently far vertex v 2 T , the ball of radius jgj around v coincides with a ball
in some xTn, for n admissible. Since g has trivial projection in xGn for every admissible n,
we deduce that g fixes v, and thus it fixes all vertices sufficiently far from the root. It
follows that ker.�/ consists of permutations with finite support, hence it is locally finite.
As noted, this shows that ker p is locally finite and concludes the proof of (i) under the
assumption that .di / is bounded.

To remove this assumption, write G as the ascending union of its finitely generated
subgroups Gjj generated by Sj D ¹a; b; c1; : : : ; cj º, and let T jj be the graph obtained
from T by removing all edges labelled by ci , i > j . Essentially, the same argument as in
the case of a bounded degree sequence shows that we have surjections pjj WGjj ! D1
with locally finite kernel (a minor modification is needed since the graph T jj is no longer
connected, hence strictly speaking, it is not an element of Sch.Gjj ; Sj /: consider instead
the closure of the orbits of all its connected components and argue in a similar way). This
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ˇ

˛

(a) (b)

Figure 6. (a) The graph x‚n for n D 4. (b) The graph y‚.

shows that we have surjections pjj WGjj !D1 with locally finite kernel, mapping a and b
to the standard generators of D1 and each ci to 1. Thus they globally define a surjection
pWG ! D1 with locally finite kernel.

We now prove (ii). Assume first that the sequence .di / is bounded. We consider the
closure of .�; o/ in Sch.�; S/. Similarly, to the previous case, the graphs in the closure
have underlying unrooted graph of three types: the graph ‚, the graphs of the form x�n
for n admissible (see Figure 6 (a)) and the graph y‚ (see Figure 6 (b)).

Denote by x�n the group defined by the graph x�n, by x�nW� ! y�n the corresponding
projection, and by x� the image of � into

Q
n
x�n under the diagonal map � D

Q
n �n.

As in the case of G, ker � is locally finite. Closer inspection shows that the group x�n
is isomorphic to Z=nZ o Z, and the projection �n sends the generator ˛ to a standard
generator of Z, and the generator ˇ to a standard generator of the cyclic lamp group
over 0. It follows that x� is isomorphic to Z=`Z oZ, where ` is the least common multiple
of all the admissible integers n 2 N. This concludes the proof for � under the assumption
that .di / is bounded.

Let us assume now that .di / is unbounded. In this case, the argument for � is slightly
different from the one used forG, since � is still finitely generated, and we may still work
in the space Sch.�; S/. The closure of the orbit of .‚; o/ now contains the same graphs
as in the bounded degree case, plus the graph x‚1 obtained by taking a limit of graphs of
the form .x‚n; x/ when n goes to1 and the root x belongs to a branching cycle (in plain
words, x‚1 consists of a bi-infinite oriented line labelled by ˇ, to each vertex of which is
glued a bi-infinite line labelled by ˛). The permutation group x�1 defined by its labelling is
easily seen to be isomorphic to Z oZ. To conclude the proof, it is enough to show that the
kernel of the natural surjection �1W� ! x�1 consists of finitely supported permutations
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of ‚. To this extent, let g 2 ker �1, and write g D s1 : : : sn as a product of generators.
Observe that x‚1 covers all graphs of the form x‚n, for all n2N (the covering map is given
by folding the line labelled by ˇ to an n-cycle, and identifying two ˛-lines if the vertices
of the ˇ-line to which they are glued are identified). If a vertex v 2 ‚ lies sufficiently far
from the root, then the ball of a fixed radius r around v is isomorphic to a ball of radius r in
a graph of the form x‚n, for some n 2N. Since g 2 ker�1, the path labelled by s1; : : : ; sn
in this ball lifts to a closed path in x‚1, hence it was already closed. This shows that
gv D v. It follows that g is a permutation with finite support, concluding the proof.
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