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Tight inclusions of C �-dynamical systems

Yair Hartman and Mehrdad Kalantar

Abstract. We study a notion of tight inclusions of C�- andW �-dynamical systems, which is meant
to capture a tension between topological and measurable rigidity of boundary actions. An important
case of such inclusions isC.X/�L1.X;�/ for measurable boundaries with unique stationary com-
pact models. We discuss the implications of this phenomenon in the description of Zimmer amenable
intermediate factors. Furthermore, we prove applications in the problem of maximal injectivity of
von Neumann algebras.

1. Introduction

One of the key tools in the rigidity theory is the notion of boundary actions in the sense of
Furstenberg [14,15]. These actions are defined in both topological and measurable setups,
and exploiting their dynamical and ergodic theoretical properties reveals various rigidity
phenomena of the underlying groups.

For example, the fact that the measurable Furstenberg–Poisson boundaries of irre-
ducible lattices in higher rank semisimple Lie groups have few quotients (the factor
theorem) implies rigidity for normal subgroups (the normal subgroup theorem), and a clas-
sification of certain spaces related to the Furstenberg–Poisson boundary (the intermediate
factor theorem) implies rigidity of invariant random subgroups. These rigidity phenomena
are “higher rank phenomena” either in the classical sense of semisimple Lie groups or of
product groups, and are based on the measure theoretical boundary.

Recently, properties related to the Furstenberg–Poisson boundary (boundary struc-
tures) have shown to imply strong rigidity results in noncommutative settings [2, 3, 8].

On the other front, dynamical properties of the topological boundaries have been
shown to imply certain noncommutative rigidity properties, such as C �-simplicity and
the unique trace property [9, 24].

In many natural examples, measurable boundaries are concretely realized on topologi-
cal boundaries, and one expects this to be reflected in their dynamical properties. However,
the connection between the two notions of boundary actions has barely been systemati-
cally investigated.
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A typical instance in which the interaction between the two setups arises is a topologi-
cal boundary admitting a unique stationary measure turning it into a measurable boundary.
A systematic study of such an action in the noncommutative setting was undertaken in the
authors’ work [20], wherein the framework of this connection, properties of measurable
boundaries, were used in C �-simplicity problems.

An important consequence of having a unique stationary boundary measure is a uni-
queness property for equivariant maps from the space of continuous functions into the
space of essentially bounded measurable functions on the boundary. This work is devoted
to the study of this particular uniqueness phenomenon and several of its applications.
As we will see below, this property is not an exclusive feature of certain boundary actions,
and it does appear in setups with quite different behavior.

More precisely, this work is about the following notion. Given a locally compact
groupG, we denote by OAG the category of all unitalG-C �-algebras andG-W �-algebras
where the morphisms are G-equivariant ucp maps.

By an inclusion A � B of objects A; B 2 OAG we mean a C �-algebraic inclusion.

Definition (Definition 2.1). We say aC �-inclusion A� B of objects A;B2OAG isG-tight
if the inclusion map is the unique G-equivariant ucp map from A to B.

This property has already been exploited in some previous work. When A is a com-
mutative C �-algebra, and B is a commutative von Neumann algebra, this coincides with
Furman’s notion of alignment systems [13], a key concept in his work on rigidity of homo-
geneous actions of semisimple groups. Around the same time, in a completely different
context, Ozawa [29] proved that for a quasi-invariant and doubly-ergodic measure � on the
Gromov boundary @Fn of the free group, the inclusion C.@Fn/ � L1.@Fn; �/ is Fn-tight.
He used this property to prove a nuclear embedding result for the reduced C �-algebra of
the free group.

As mentioned earlier, we have the following fact. We use the abbreviation lcsc for
locally compact and second countable.

Theorem (Theorem 3.4). Let G be an lcsc group, and let � 2 Prob.G/ be an admissible
probability measure onG. SupposeX is a minimal compactG-space that admits a unique
�-stationary probability measure � such that .X; �/ is a �-boundary. Then the canonical
embedding C.X/ � L1.X; �/ is G-tight.

The tightness property becomes particularly fruitful in combination with the notion of
Zimmer amenability.

Theorem (Theorem 4.8). Let G be an lcsc group, and let � 2 Prob.G/ be an admissi-
ble measure such that the Furstenberg–Poisson boundary .B; �/ of .G;�/ has a uniquely
stationary compact model. Let .Y; �/ be a .G; �/-space, and let �W . zY ; z�/ ! .Y; �/ be
the standard cover in the sense of Furstenberg–Glasner. If . zY ; z�/

'
�! .Z; !/

 
�! .Y; �/

are measurable G-maps such that  ı ' D � and .Z; !/ is Zimmer amenable, then
. zY ; z�/

'
Š .Z; !/.
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For discrete groups � , we prove a noncommutative version of this. Namely, we show
that under the same conditions, there are no injective von Neumann algebrasM satisfying
� Ë L1.Y; �/ �M ¨ � Ë L1. zY ; z�/ (Corollary 4.15).

Examples of tight inclusions involving noncommutative C �-algebras include the em-
bedding of tight �-C �-algebras in their associated crossed products. This, for instance,
yields the following maximal injectivity result.

Theorem (Corollary 4.16). Let � be a discrete group and � 2 Prob.G/ a generating
measure such that the Furstenberg–Poisson boundary .B; �/ of .�; �/ has a uniquely
stationary compact model. Let � Õ .Z;m/ be a measure-preserving action. Then the von
Neumann algebra � Ë L1.B � Z; � � m/ is maximal injective in � Ë .B.L2.B; �// x̋
L1.Z;m//.

In [31, Corollary 3.8] Suzuki gave a complete description of the intermediate subalge-
bras of certain von Neumann crossed product inclusions associated to boundary actions of
irreducible higher rank lattices, using the deep theory available for these groups. From this,
he concluded a maximal injectivity result, which is a special case of our theorem above.
In particular, our result shows that Suzuki’s maximal injectivity result is not a higher rank
phenomenon but rather follows from the broader framework of tightness. Consequently,
this provides a large class of new examples of maximal injective von Neumann algebras
(see comments after Corollary 4.16).

However, our notion of tightness is not bound to only certain boundary actions, it is
more general even in the commutative setup. Corollary 3.8 and Theorems 3.9 and 3.12
below show that there are examples of tight actions with properties far from boundary
actions.

Next, we fix our notation and briefly review some of the definitions and basic facts
that will be used in the rest of the paper.

Throughout the paper, unless otherwise stated, G is a locally compact second count-
able group, and � denotes a countable discrete group. We writeG ÕX to mean a continu-
ous action of G on a compact space X by homeomorphisms (all topological spaces in this
paper are assumed to be Hausdorff). In this case, we say X is a compact G-space. Given
G ÕX andG Õ Y , we say that Y is a (G-)factor ofX , or thatX is a (G-)extension of Y ,
if there is a continuous map ' fromX onto Y that isG-equivariant, that is, '.gx/D g'.x/
for all g 2 G and x 2 X .

We denote by Prob.X/ the compact convex space of all Borel probability measures
onX equipped with the weak� topology. Any continuous actionG ÕX induces a canon-
ical action G Õ Prob.X/ by affine homeomorphisms. For � 2 Prob.X/, the Poisson
transform (associated to �) is the map P� W C.X/ ! C lu

b .G/ defined by P�.f /.g/ DR
X
f .gx/ d�.x/ for f 2 C.X/ and g 2 G, where C lu

b .G/ denotes the space of bounded
left uniformly continuous functions onG, that is, bounded continuous functions �WG!C
satisfying kg� � �ksup ! 0 as g! e.

The map P� is obviously a continuous unital linear positive map which is also G-
equivariant.
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We use similar standard terminology for measurable actions of an lcsc group G. All
measure spaces considered here are assumed to be standard Borel probability spaces.
We write G Õ .X; �/ to mean a measurable action of G on a standard Borel probabil-
ity space .X; �/ by measurable isomorphisms; in particular, in this setup, the measure � is
quasi-invariant, that is, g� and � have the same null sets for any g 2G. In this case, we say
.X; �/ is a probability G-space. Given G Õ .X; �/ and G Õ .Y; �/, we say that .Y; �/ is
a (G-)factor of .X;�/, or that .X;�/ is a (G-)extension of .Y;�/, if there is aG-equivariant
measurable map ' from X to Y such that �D '��. In this case, the map ' yields a canon-
ical G-equivariant von Neumann algebra embedding '�WL1.Y; �/! L1.X; �/.

For an action G Õ .X; �/, similarly to the continuous case, we denote by

P� W L
1.X/! L1.G/

the Poisson transform P�.f /.g/ D
R
X
f .gx/ d�.x/, which is a G-equivariant normal

unital positive linear map.
LetG Õ .X; �/, and � 2 Prob.G/. We say � is �-stationary if � � � D �, where � � �

is the convolution of the measures. In this case, we write .G; �/ Õ .X; �/ and say .X; �/
is a .G;�/-space.

A compact model for a probabilityG-space .Y;�/ is a compactG-spaceX and a quasi-
invariant � 2 Prob.X/ such that .X; �/ is isomorphic to .Y; �/ as probability G-spaces.

We also consider noncommutative actions in this paper, namely, actions of G on C �

and von Neumann algebras. All C �-algebras considered here are assumed to be unital.
By a G-C �-algebra (resp. G-von Neumann algebra) we mean a unital C �-algebra (resp.
a von Neumann algebra) A, on which G acts continuously by �-automorphisms, where
continuity is with respect to the point-norm topology (resp. point-weak� topology). For
any lcsc group G, the space C lu

b .G/ is a G-C �-algebra.
Given a discrete group � and a �-C � or �-von Neumann algebra A, a covariant rep-

resentation of .�; A/ is a pair .�; �/, where � is a unitary representation of � on a Hilbert
space H� , and �W A! B.H�/ is a �-equivariant representation of A, where � Õ B.H�/

by inner automorphisms Ad�.g/, g 2 � . In this case, we let � Ë�� A be the C � or von
Neumann algebra (depending on A) generated by the set ¹�.a/�.g/Wa 2 A; g 2 �º, and we
equip it with the action of � by inner automorphisms Ad�.g/, g 2 � . In the case of a reg-
ular covariant representation, we use the notation � Ë A for either the reduced C �-crossed
product or the von Neumann algebra crossed product of the action, again depending on A,
and we will explicitly specify the setup if there is any danger of confusion.

We refer the reader to [11] for the definitions and details concerning these construc-
tions and their properties.

In this paper, we often consider equivariant ucp maps from C �-algebras into von Neu-
mann algebras. In view of the following known fact, these maps should be considered
as noncommutative counterparts of quasi-factor maps in the sense of Glasner [17, Chap-
ter 8]. We omit the proof of the following, which can be found in [29]. The latter argument
was written for a special example, but as noted in [5], the same argument works in general;
(see also [3, Proposition 4.10]).
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Lemma 1.1. Let X be a compact metric (G-)space and .Y; �/ a standard probabil-
ity (G-)space. Then there is a one-to-one correspondence between (G-equivariant) �-
measurable maps Y ! Prob.X/ and (G-equivariant) ucp maps C.X/! L1.Y; �/.

Boundary actions

The most natural examples in our context are topological and measurable boundary actions
in the sense of Furstenberg. We briefly review the definitions and refer the reader to [12,
15, 18, 20] for more details.

An action G Õ X is said to be a topological boundary action, and X is said to be
a topological G-boundary if for every � 2 Prob.X/ and x 2 X , there is a net .gi /i of
elements of G such that gi� ! ıx in the weak� topology, where ıx is the Dirac measure
at x. It was shown by Furstenberg [15, Proposition 4.6] that any topological group G
admits a unique (up to G-equivariant homeomorphism) maximal G-boundary @FG in the
sense that every G-boundary X is a G-factor of @FG.

Measurable boundary actions are defined as follows. Let G be an lcsc group, and let
� 2 Prob.G/ be an admissible measure, that is, � is absolutely continuous with respect to
the Haar measure and is not supported in a proper closed subsemigroup, and let � be a �-
stationary probability measure on a metrizable G-space X . The action .G;�/ Õ .X; �/ is
a �-boundary action if for almost every path .!k/ 2 GN of the .G; �/-random walk, the
sequence !k� converges to a Dirac measure ıx! .

An action .G;�/ Õ .Y; �/ is said to be a �-boundary action if it has a compact model
which is a �-boundary in the above sense.

Similarly to the topological case, there is a unique (up to G-equivariant measurable
isomorphism) maximal �-boundary .B; �/, called the Furstenberg–Poisson boundary of
the pair .G;�/, in the sense that every �-boundary .X; �/ is a G-factor of .B; �/.

2. Tight inclusions

Let G be an lcsc group. We denote by OAG the category of all unital G-C �-algebras and
G-von Neumann algebras where the morphisms areG-equivariant ucp maps (not assumed
normal even between von Neumann algebras).

If � is a discrete group, every �-von Neumann algebra is also a �-C �-algebra, and
therefore OA� is just the category of all unital �-C �-algebras.

Given A 2 OA� , we say A is �-injective if it is an injective object in the category
OA� . We refer the reader to [19,24] for more details on this concept and its connection to
boundary actions.

A unital C �-algebra A is injective if it is injective in the category of unital C �-algebras
with ucp maps as morphisms, equivalently, �-injective for the trivial group � D ¹eº.

Note that all positive maps between commutative C �-algebras are automatically com-
pletely positive, but for the sake of consistency, we keep assuming ucp for all our mor-
phisms.
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By an inclusion A � B of objects A;B 2 OAG we mean a C �-algebraic inclusion such
that the G-action on B restricts to the G-action on A.

Definition 2.1. An inclusion A� B of objects A;B 2OAG is calledG-tight if the inclusion
map is the unique G-equivariant ucp map from A to B.

We begin with a few observations on the general properties of G-tight inclusions be-
fore getting to some basic examples.

Proposition 2.2. Suppose A � B is a G-tight inclusion of objects in OAG . Then for any
C 2 OAG with A � C � B, the inclusion A � C is G-tight; in particular, A � A is G-tight.

Proof. Every G-equivariant ucp map A ! C is, in particular, a G-equivariant ucp map
from A to B. Thus G-tightness of A � B implies G-tightness of A � C.

We refer to an object A for which A � A is G-tight as a (G-)self-tight object.

Lemma 2.3. Suppose A � B is a G-tight inclusion of objects in OAG . If A admits a G-
invariant state, then A D C.

Proof. Suppose � is a G-invariant state on A. Then � is, in particular, a G-equivariant
ucp map from A to C � B. Hence � D id by G-tightness of the A � B, and this implies
A D C.

Recall that a topological group G is said to be amenable if any continuous action of G
by affine homeomorphisms on a compact convex subset of a topological vector space has
a fixed point.

Corollary 2.4. If there is a G-tight inclusion A � B of objects in OAG with A non-trivial,
then G is non-amenable.

Proof. Suppose A � B is a G-tight inclusion of objects in OAG . If G is amenable, then A
admits a G-invariant state, and therefore we have A D C by Lemma 2.3. This implies the
claim.

Recall that every discrete group � admits a minimal normal subgroup N such that
�=N is an ICC group (every non-trivial element has infinite conjugacy class). This sub-
group is called the hyper-FC-center of � .

Proposition 2.5. Let � be a discrete group and A � B be a �-tight inclusion of objects
in OA� . Then the hyper-FC-center of � is contained in the kernel of the action of �
on A.

Proof. Suppose g 2 � has a finite conjugacy class Cg . Define ˆg W A! A by

ˆg.a/ D
1

#Cg

X
k2Cg

ka; a 2 A:
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Then ˆg is ucp, and for every h 2 � and a 2 A,

hˆg.a/ D
1

#Cg

X
k2Cg

hka D
1

#Cg

X
k2Cg

kha D ˆg.ha/;

which showsˆg is equivariant. Thus, by tightness,ˆg D id. Since the identity map on A is
an extreme point in the space of all ucp maps on A, it follows that kaD a for every k 2 Cg
and a 2 A. In particular, g acts trivially on A. This implies that the normal subgroup N
of � consisting of all finite conjugacy elements lies in the kernel of the action � Õ A.
Repeating the argument for the action �=N Õ A and taking a transfinite induction yield
the result.

In particular, we conclude the following for discrete groups with faithful actions on
tight inclusions.

Corollary 2.6. Let � be a discrete group and A � B be a �-tight inclusion of objects
in OA� . If the action of � on A is faithful, then � is an ICC group.

It follows from the definition that for any B 2 OAG , the inclusion C � B is G-tight.

Proposition 2.7. Let G be an lcsc group and B 2 OAG . Then B admits a maximal subal-
gebra A such that A � B is tight.

Proof. This follows from a standard Zorn’s lemma argument combined with the above
observation that the inclusion C � B is G-tight.

We continue with some basic examples of G-tight inclusions. More examples will be
studied in later sections.

Example 2.8. For every countable discrete group � , C is a maximal subalgebra of `1.�/
which is tight. Indeed, since the right translation by any element of � is a ucp equivariant
map on `1.�/, any function in a tight subalgebra of `1.�/ must be invariant under right
translation by every g 2 � , hence constant.

Example 2.9. If Y is a topological G-boundary, and X is a continuous G-factor of Y ,
then it follows from [15, Proposition 4.2] that the inclusion C.X/ � C.Y / is G-tight.
In particular, C.X/ is self-tight for every topological boundary X .

Example 2.10. Let H be a separable Hilbert space, and let G D U.H / be the group
of all unitaries on H , considered as an uncountable discrete group. The space B.H / of
all bounded linear maps on H is canonically a G-C �-algebra. We show B.H / is G-self-
tight. For this, let be aG-equivariant ucp map on B.H /, and let p be a projection on H .
LetH �G be the group of unitaries on H commuting with p. Then by equivariance, .p/
also commutes with H , hence  .p/ 2 ¹pº00 D span¹p; 1B.H/ � pº. Thus, by positivity,

 .p/ D rpp C spp
?

for some rp , sp 2 RC.



Y. Hartman and M. Kalantar 74

Now, given two projections p and q such that both their ranges and orthogonal sub-
spaces to their ranges are infinite-dimensional, there is u 2 G such that upu� D q and
up?u� D q?. Then by equivariance,

 .q/ D  .upu�/ D u .p/u� D u.rpp C spp
?/u� D rpq C spq

?;

therefore rp D rq.DW r/ and sp D sq.DW s/. In particular, in this case, since  is unital,
1 � sp D rp? D rp . Moreover, given such p as above, if we choose subprojections p1
and p2 of p with infinite-dimensional ranges such that p D p1 C p2, then we get

rp1 C sp1
?
C rp2 C sp2

?
D  .p1 C p2/ D  .p/ D rp C sp

?

D rp1 C rp2 C s.p1 C p2/
?

D rp1 C rp2 C sp1
?
C sp2

?
� s1B.H/;

which implies sD 0, hence r D 1, and .p/Dp for all projections p as above. Now, if q is
a finite rank projection, then q � p for some projection p as above. Then, since both p � q
and .p � q/? have infinite ranks, we get pD .p/D .p � q/C .q/D p � qC .q/,
which implies  .q/ D q. Hence,  restricts to the identity map on projections, and since
the set of projections spans a norm dense subspace of B.H /, we conclude  D id.

Rigidity properties of locally compact groups are usually passed down to their lattices.
This is the case for the tightness condition.

Theorem 2.11. Let G be an lcsc group, and let � be a lattice in G. Then any G-tight
inclusion A � B of objects in OAG is �-tight.

Proof. Let � be a lattice in G. Suppose A � B is a G-tight inclusion of objects in OAG .
Let  W A! B be a �-equivariant ucp map. For each a 2 A, the map g 7! g .g�1a/ is
continuous fromG to Bwhich is constant on each left �-cosets by �-equivariance. Thus, it
induces a continuous function �aWG=� ! B, g� 7! g .g�1a/. Define the map �WA! B
by �.a/ WD

R
G=�

�a.g�/ d�.g�/, where � is a G-invariant Borel probability measure on
G=� . Then � is ucp, and for every h 2 G,

h�.a/ D

Z
G=�

h�a.g�/ d�.g�/ D

Z
G=�

hg .g�1a/ d�.g�/

D

Z
G=�

g .g�1ha/ d�.g�/ D �.ha/;

which shows � is G-equivariant. Hence, by G-tightness, � is the inclusion map. Since the
maps A 3 a 7! g .g�1a/ 2 B are ucp for every g 2G, by extremality of the inclusion map
in the set of all ucp maps, it follows g .g�1a/ D a for all a 2 A and �-a.e. g� 2 G=� .
By continuity of the action and the fact that � has full support, we conclude the latter
equality for all g 2 G. Hence, in particular,  D idA.

The following lemma, which is essentially [19, Lemma 3.3], provides a useful techni-
cal tool for proving the tightness of inclusions.
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Lemma 2.12. Let G be an lcsc group and A � B � C be inclusions of objects in OAG
such that

(1) the inclusion A � B is G-tight,

(2) there is a faithful G-equivariant conditional expectation E from C onto B,

then the inclusion A � C is also G-tight.

Proof. If  W A! C is a G-equivariant ucp map, then E ı  is a G-equivariant ucp map
from A to B. Hence, by the tightness of A � B, we get E ı  D idA. Then using the fact
that E is a B-bimodule map and applying the Schwarz inequality for the completely pos-
itive map  , we see that for every x 2 A, E..x� �  .x�//.x �  .x/// D 0, which, by
faithfulness of E, implies  .x/ D x. Thus, the inclusion A � C is G-tight.

Recall our notation that � Ë B denotes either the reduced C �-crossed product or the
von Neumann crossed product for B 2 OA� , equipped with the canonical �-action by
inner automorphisms.

Corollary 2.13. Let � be a discrete group and A � B a �-tight inclusion of objects
in OA� . Then the canonical inclusion A � � Ë B is also �-tight.

Proof. The canonical conditional expectation E0W� Ë B! B is �-equivariant and faithful.
Hence the result follows from Lemma 2.12.

2.1. (Weak) Zimmer amenability

In this section, we consider a property for objects in OAG , which in the case of commu-
tative G-von Neumann algebras gives a weaker property than Zimmer-amenability. This
weaker notion of Zimmer amenability is indeed enough for many applications. Further-
more, it has the advantage that it can as well be extended to C �-algebra setting.

Definition 2.14. An object B 2 OAG is said to be weakly Zimmer amenable if for every
A 2 OAG , there is a G-equivariant ucp map A! B.

Below are some examples that are easily verified to be weakly Zimmer amenable.

Example 2.15. For any lcsc group G, the G-C �-algebra C lu
b
.G/ is weakly Zimmer

amenable.

Example 2.16. IfG is amenable, then every object B2OAG is weakly Zimmer amenable.

Example 2.17. If � Õ .X;�/ is a Zimmer amenable probability measure-class preserving
action of a discrete group � , then L1.X; �/ is a weakly Zimmer amenable �-C �-algebra.
In particular, if � 2 Prob.�/, and .B; �/ is the Furstenberg–Poisson boundary of .�; �/,
then L1.B; �/ is weakly Zimmer amenable.

Example 2.18. More generally than the previous example, since our objects are all unital,
every �-injective A 2 OA� is weakly Zimmer amenable; the converse is not true: if �
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is non-amenable, then one can see that B.`2.�// is not �-injective, but it is obviously
weakly Zimmer amenable.

The following is a useful characterization of weakly Zimmer amenable G-C �-alge-
bras. We recall the fact that C.@FG/ is G-injective for any locally compact group G
(see [24, Theorem 3.11] and [30, Theorem 6]).

Proposition 2.19. Let G be a locally compact group. A G-C �-algebra B is weakly Zim-
mer amenable if and only if C.@FG/ � B as a G-invariant operator subsystem.

Proof. Let B be a G-C �-algebra. Suppose B is weakly Zimmer amenable. Then there is
a G-equivariant ucp map C.@FG/! B. But any such map is isometric (e.g., [24, 30]),
hence an embedding of C.@FG/ into B as a G-invariant operator subsystem.

Conversely, suppose C.@FG/ � B as a G-invariant operator subsystem, and let A be
a G-C �-algebra. Then by G-injectivity of C.@FG/, there is a G-equivariant ucp map
from A to C.@FG/, and so in B. Hence, B is weakly Zimmer amenable.

Proposition 2.20. Let � be a discrete group, and let A � B be a �-tight inclusion of
objects in OA� . If B is weakly Zimmer amenable, then A D C.X/ for some topological
�-boundary X .

Proof. Since B is weakly Zimmer amenable, we have C.@F �/ � B as a �-invariant
operator subsystem by Proposition 2.19. By �-injectivity, there is a �-equivariant ucp
idempotent  WB! C.@F �/. By tightness of the inclusion A � B, the restriction of  to A
is the identity map, which implies A � C.@F �/ (as a �-operator subsystem).

Since C.@F �/ is an injective C �-algebra, its multiplication coincides with the Choi–
Effros product associated to  . Since A is a subalgebra of B, it follows that this product
agrees with the original product on A. It follows that A is indeed a subalgebra of C.@F �/,
and so of the form A D C.X/ for some topological �-boundary X .

3. Tight inclusions in commutative setting: tight measure classes

In this section, we focus our attention on a special case of tight inclusions in the commu-
tative setting.

Definition 3.1. Let X be a compact G-space. A non-singular probability measure � 2
Prob.X/ is said to be G-tight (or just tight if the group G is clear from the context) if it
has full support, and the canonical embedding C.X/ � L1.X; �/ is a G-tight inclusion.

In [13], Furman introduced and studied the notion of the alignment property: given
a measurableG-space .X;�/ and a compactG-spaceZ, a Borel measurableG-equivariant
map � WX ! Z is said to have the alignment property if the only Borel measurable G-
equivariant map from .X; �/ to Prob.Z/ is the one given by x 7! ı�.x/.
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The correspondence between maps X ! Prob.Z/ and ucp maps C.Z/! L1.X; �/

(Lemma 1.1) implies that for X and � 2 Prob.X/ as in Definition 3.1, � is G-tight if
and only if the identity map idW .X; �/! X has the alignment property in the sense of
Furman.

Remark 3.2. Observe that tightness is, in fact, a property of the measure class rather
than of a single measure. Furthermore, it can be considered as a property of the algebra
L1.X; �/: the existence of an L1-dense, C �-subalgebra A of L1.X; �/, such that the
restriction, G Õ A, is norm-continuous and there is a unique equivariant ucp map from A
into L1.X; �/.

Let us restate in the case of tight measure classes the facts proven in Section 2 for
general tight inclusions.

Proposition 3.3. Let G be an lcsc group.

(1) If a compact G-space X admits both a tight probability measure and an invariant
probability measure, then X is a singleton. In particular, for any lcsc group G,
the only finite G-space that admits a tight measure class is the trivial one.

(2) If the group G admits a non-trivial action with a tight measure class, then G is
non-amenable.

(3) If � is discrete and admits a faithful action on a compact space X supporting
a tight measure class, then � is ICC.

(4) If � is a lattice in G, then any G-tight measure class on any compact G-space is
�-tight.

A natural source of tight measure classes is the following.

Theorem 3.4. Let G be an lcsc group, and let � 2 Prob.G/ be an admissible probability
measure onG. SupposeX is a minimal compact metrizableG-space that admits a unique
�-stationary probability measure � such that .X; �/ is a �-boundary. Then the measure
class of � is G-tight.

Proof. By Lemma 1.1, any G-equivariant ucp map from C.X/ to L1.X; �/ corresponds
to a measurable equivariant map from .X; �/ to Prob.X/. By [26, Corollary 2.10 (a)], any
such map is mapped into delta measures, hence yields a G-equivariant map .X; �/ !
.X; �/. But the identity is the unique measurable G-map on .X; �/ (see, e.g., [16, Propo-
sition 3.2 (1)]). We conclude that the identity is the unique G-equivariant ucp map from
C.X/ to L1.X; �/.

A space like X in the theorem above is called a �-USB (stands for uniquely station-
ary boundary). In [20], we showed that this condition implies that X is a topological
boundary.

Recall that topological boundaries yield self-tight algebras of continuous functions
(Example 2.9). The same statement fails for general measurable boundaries. Namely,
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L1.B;�/ is not self-tight, and Theorem 3.4 shows that the tightness holds once restricting
to a USB (if there is such). Another form of tightness that holds for measurable boundaries
is the following well-known fact.

Lemma 3.5. Let G be an lcsc group, � 2 Prob.G/ be an admissible measure and .B; �/
be a �-boundary. Then the only normal equivariant unital positive map on L1.B; �/ is
the identity.

Proof. Let  WL1.B; �/! L1.B; �/ be a normal equivariant unital positive map. We
will show that the pre-adjoint map  �WL1.B; �/! L1.B; �/ is the identity, which then
yields the result.

Since  is unital and positive,  �.�/ is a probability measure, and since  is equivari-
ant,  �.�/ is furthermore �-stationary and ergodic. Since a measure class can support at
most one ergodic stationary measure (e.g., [4, Proposition 2.6]), it follows that  �.�/D �,
and therefore  �.g�/ D g� for all g 2 � by equivariance. Since .B; �/ is a �-boundary,
� is SAT in the sense of [21], which implies that the set ¹g�W g 2 �º spans a norm-dense
subspace of L1.B; �/. Hence, we conclude  � is identity on L1.B; �/.

Theorem 3.4 already provides a vast class of examples, especially in the case of dis-
crete groups. There is a significant amount of work on realizations of Furstenberg–Poisson
boundaries on concrete topological spaces, where the main tool is the strip criterion of
Kaimanovich [22]. In many cases, the topological space is compact, and it is proven
that the Furstenberg–Poisson measure is the unique stationary measure on the discussed
space. These cases include actions of linear groups on flag varieties [10,22,25], hyperbolic
groups acting on the Gromov boundary [22], non-elementary subgroups of mapping class
groups acting on the Thurston boundary [23], among others.

Tight measure classes vs. topological boundaries

The arguments in [29] imply that for discrete groups � , any compact �-space that supports
a Zimmer amenable tight measure-class must be a topological �-boundary. This was noted
in [5, Theorem 1.3], although the authors stated the result under topological amenability,
which is a stronger assumption. Our Proposition 2.20 is indeed a generalization of this
result with a simpler and more conceptual proof.

However, neither arguments directly generalize to non-discrete groups. The existence
of the faithful equivariant conditional expectation is a key point in Ozawa’s argument, and
such conditional expectation does not exist in general non-discrete cases. And the proof
of Proposition 2.20 uses the injectivity of C.@F �/ in the case of discrete groups � .

Below, we give a simple alternative proof of [5, Theorem 1.3], in the general case of
locally compact second countable groups.

Proposition 3.6 (cf. [29] and [5]). Let G be an lcsc group, and suppose X is a compact
G-space that admits a G-tight probability measure �. If the action G Õ .X; �/ is weakly
Zimmer-amenable, then G Õ X is a topological boundary action.
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Proof. For any � 2 Prob.X/, the Poisson transform P� is a G-equivariant unital positive
map fromC.X/ intoC lu

b .G/. SinceGÕ .X;�/ is weakly Zimmer-amenable, there is aG-
equivariant unital positive map  0 from C lu

b .G/ toL1.X;�/. By tightness,  0 ıP� D id,
which implies P� is isometric for every � 2 Prob.X/. By [1, Proposition 1.1], it follows
that the weak� closure of theG-orbit of � in Prob.X/ containsX , hence the actionG ÕX

is minimal and strongly proximal.

Other examples

All examples of tight measure classes presented so far occur in the setup of boundary
actions. However, examples of tight measure classes appear in more general settings.
Below, we give examples of actions supporting tight measure classes that are not boundary
actions in a topological or measurable sense.

Example 3.7. Let G1 and G2 be two lcsc groups, and for i D 1; 2, let Xi be a compact
Gi -space and �i 2 Prob.Xi / an ergodic non-trivial tight measure class. Consider the action
of the product groupG DG1 �G2 on the disjoint unionX DX1 �[X2, whereG1 andG2
act trivially on X2 and X1, respectively. Then the measure

� D
1

2
�1 C

1

2
�2

is a G-tight measure class on X D X1 �[X2.

In particular, the above (somewhat superficial) example shows that, unlike the case of
boundary actions, neither ergodicity of the measure nor the minimality of the topological
action follow from the tightness of the measure class. Furthermore, we conclude another
difference of tight measure classes to the case of boundaries.

Corollary 3.8. In general, tightness of measures does not pass to (measurable or contin-
uous) factors.

Proof. The G-space .X; �/ from Example 3.7 clearly has a continuous factor, namely,
the space with 2 points, equipped with the uniform measure, which is not tight by Lem-
ma 2.3.

We continue with more interesting examples of rigid actions which are not boundaries.
In particular, we give examples of purely atomic tight measure classes on non-minimal,
non-strongly proximal spaces.

Following [6], we say an open subgroup H of an lcsc group G has the spectral gap
property if ıH is the unique H -invariant mean on `1.G=H/.

Examples of subgroups with the spectral gap property include the following (see [6]
for more on these examples):

• SLn.Z/ � SLnC1.Z/ for n � 2;

• H � H �K for any non-amenable H and any K with jKj � 3.
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Theorem 3.9. Let H be an open subgroup of G. Then the following are equivalent:

(1) H has the spectral gap property.

(2) The inclusion `1.G=H/ � `1.G=H/ is G-tight.

(3) The inclusion `1.G=H/ � B.`2.G=H// is G-tight.

Proof. .1/) .2/: Let W`1.G=H/! `1.G=H/ be aG-equivariant unital positive map.
Then  �.ıH / is anH -invariant mean on `1.G=H/, hence  �.ıH /D ıH by uniqueness.
Since � isG-equivariant, it follows that �.ıgH /D ıgH for all g 2G. Since the set ıgH ,
g 2 G, separates points of `1.G=H/, we conclude that  D id.

.2/) .3/: The canonical conditional expectation B.`2.G=H//! `1.G=H/ isG-equiv-
ariant and faithful. Hence, it follows from Lemma 2.12 that the inclusion `1.G=H/ �
B.`2.G=H// is G-tight.

.3/) .1/: AssumeH does not have the spectral gap property, and let � be anH -invariant
mean on `1.G=H/ different from ıH . Consider the Poisson transform

P� W `
1.G=H/! `1.G/;

where G is regarded as a discrete group. Then P� is indeed mapped into `1.G=H/, and
therefore can be considered as a map from `1.G=H/ to B.`2.G=H//. We observe that
P �� .ıH / D �. In particular, P� ¤ id, hence the inclusion `1.G=H/ � B.`2.G=H// is
not G-tight.

In the setting of the above theorem, if, moreover, the action of G on the Stone–Čech
compactification ˇ.G=H/ of the coset spaceG=H is continuous (e.g., whenG is discrete),
we get new examples of tight measure classes. Indeed, in this case, any � 2 Prob.G=H/
with full support considered as a probability measure on the Stone–Čech compactification
ˇ.G=H/ is G-tight.

Denote by Subo
sg.G/ the set of open subgroups of G with the spectral gap property.

In [6, Theorem A], a representation rigidity result was proved for subgroupsƒ 2 Subo
sg.�/

of a discrete group �; namely, it was shown that if ‡ is a self-commensurated subgroup
of � (that is, if g 2 � and g … ‡ , then ‡ \ g‡g�1 has infinite index in either ‡ or
g‡g�1) such that the quasi-regular representation ��=‡ is weakly equivalent to ��=ƒ,
then ‡ is conjugate to ƒ.

Using the self-tightness property of the subgroup H 2 Subo
sg.G/, we see below that

they satisfy a much stronger representation rigidity with themselves.

Definition 3.10. Let � and � be continuous unitary representations of an lcsc group G.
We say � is barely contained in � , denoted � Î � , if there is a G-equivariant ucp map
from B.H� / to B.H�/. We say � and � are barely equivalent, denoted � b

� � , if � Î �

and � Î � .

If � is weakly contained in � , then � is also barely contained in � . Indeed, the canoni-
cal �-homomorphismC �� .G/!C �� .G/ extends to a �-homomorphism ' of the multiplier
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algebras, and any ucp extension B.H� /! B.H�/ of ' is automatically G-equivariant
since �.G/ is in the multiplicative domain of the ucp extension.

But the converse is very far from being the case. For instance, if G is amenable, then
�

b
� � for any � and � .

Theorem 3.11. Let H; L 2 Subo
sg.G/. Then �G=H

b
� �G=L if and only if H and L are

conjugate in G.

Proof. Let z'WB.`2.G=H// ! B.`2.G=L// be a G-equivariant ucp map. Restricting
z' to `1.G=H/ and then composing it with the canonical conditional expectation from
B.`2.G=L//! `1.G=L/, we get a G-equivariant unital positive map 'W `1.G=H/!
`1.G=L/. Analogously, we obtain a G-equivariant unital positive map  W `1.G=L/!
`1.G=H/.

By Theorem 3.9, both `1.G=H/ and `1.G=L/ are G-self-tight, hence  ı ' D
id`1.G=H/ and ' ı  D id`1.G=L/. It follows that ' and  are isometric linear isomor-
phisms, hence von Neumann algebra isomorphisms. Thus, there is a G-equivariant bijec-
tion G=H ! G=L. This implies there exists g 2 G such that L D gHg�1.

Another interesting class of examples of tight measure classes appears as atomic mea-
sures on the orbit of “parabolic-type points” as follows.

Theorem 3.12. Let � be a countable discrete group andƒ a subgroup of � . Assume there
exist a minimal compact �-space X and x0 2 X such that ƒ D �x0 and such that ıx0 is
the unique ƒ-invariant probability measure on X . Then

(i) The measure � WD
P1
nD1

1
2n
ıgnx0 is a tight measure on X , where ¹gnºn2N is

a complete set of representatives of �=ƒ.
(ii) The inclusion given by the Poisson transform Pıx0 .C.X// � `

1.�=ƒ/ is a �-
tight inclusion.

Proof. Note that L1.X; �/ is �-equivariantly isomorphic to `1.�=ƒ/, and this isomor-
phism on C.X/ is the Poisson transform Pıx0 . So, we only need to prove (ii). For this, we
argue similarly to the proof of Theorem 3.9. Let  WC.X/! `1.�=ƒ/ be a �-equivariant
unital positive map. Then  �.ıƒ/ is a ƒ-invariant state on C.X/, hence the point eval-
uation at x0 by the uniqueness assumption. Since  � is �-equivariant, it follows that
 �.ıgƒ/ D ıgx0 for all g 2 � . This shows  D Px0 , hence (ii) follows.

Corollary 3.13. Let � Õ X , ƒ � � , and let x0 2 X be as in the statement of Theo-
rem 3.12. Then the inclusion Pıx0 .C.X// � B.`2.�=ƒ// is �-tight.

Proof. The canonical conditional expectation B.`2.�=ƒ//! `1.�=ƒ/ is �-equivariant
and faithful. Hence, it follows from Theorem 3.12 and Lemma 2.12 that the inclusion
Pıx0 .C.X// � B.`2.�=ƒ// is �-tight.

We conclude the section with an example of an action satisfying the conditions of
Theorem 3.12.
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Example 3.14. Consider the action PSL2.Z/Õ P1.R/, the element gD
�
1 1
0 1

�
2PSL2.Z/.

Then the cyclic subgroup ƒ D hgi generated by g is the stabilizer of the point x0 D
�
1
0

�
.

For every point x 2 P1.R/, we have gnx ! x0, which implies that ıx0 is the unique
ƒ-invariant probability measure on P1.R/. Moreover, the subgroup generated by g and
h D

�
1 0
1 1

�
2 PSL2.Z/ is isomorphic to the free group F2, and the restriction action F2 Õ

P1.R/ also satisfies the conditions of Theorem 3.12.

4. Applications: intermediate objects

In this section, we use properties of tight inclusions and tight measure classes to prove
certain rigidity results concerning intermediate operator algebras associated with tight
inclusions.

Let A � B be an inclusion of objects in OAG . By an intermediate object (for the inclu-
sion) we mean a D 2 OAG such that A � D � B which is also assumed to be a G-von
Neumann algebra in case B is.

Let B 2 OAG , and let A; C 2 OAG be G-invariant C �-subalgebras of B. We write
B D A _ C if B is the object generated by A and C; this means if B is a G-C �-algebra, then
it is the C �-algebra generated by A and C, and if B is a G-von Neumann algebra, then it is
the von Neumann algebra generated by A and C.

Definition 4.1. We say the inclusion C� B is co-tight if there is aG-tight inclusion A� B
such that B D A _ C.

Example 4.2. Let F2 Õ .Z; m/ be an ergodic probability measure preserving (pmp)
action. Then for any generating � 2 Prob.F2/ and any �-stationary � 2 Prob.@F2/, using
Theorem 3.4 and Lemma 2.12, one can show that the inclusion L1.Z; m/ � L1.Z �
@F2; m � �/ is co-tight.

Example 4.3. If ƒ is a subgroup of � with spectral gap property, or if it is a subgroup as
in the statement of Theorem 3.12, then it follows from Corollary 3.13 that the inclusion
L� � � Ë `1.�=ƒ/ is co-tight, where L� denotes the (left) group von Neumann algebra
of � , that is, the von Neumann algebra generated by the left regular representation of � .

Recall the notion of G-rigid extension in the sense of Hamana [19]: if A � B is an
inclusion of G-C �-algebras, then B is said to be a G-rigid extension of A if the identity
map on B is the unique G-equivariant ucp extension of the identity map on A. We should
remark that Hamana only considered discrete groups in [19].

Proposition 4.4. Let G be an lcsc group, and let C � B be a co-tight inclusion of G-C �-
algebras. Then B is a G-rigid extension of C.

Proof. By the assumption, there exists a G-tight inclusion A � B such that B D A _ C.
Assume  W B! B is a G-equivariant ucp map such that  jC D idC. By tightness, we also
have  jA D idA. Since  is ucp, it follows  jA_C D id jA_C, and this implies the claim.
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The notion of (co-)tightness in this section is mainly used in the form of the following
two simple observations.

Lemma 4.5. Let G be an lcsc group, and let C � B be a co-tight inclusion of objects
in OAG , and in the case that B is a von Neumann algebra, we assume that C is a von
Neumann subalgebra of B. If there is a G-equivariant ucp map from B to C, then C D B.

Proof. Assume  W B! C is a G-equivariant ucp map. Since C � B is co-tight, there is
a G-tight inclusion A � B such that B is generated by A and C. By tightness of A � B,
the map  restricts to identity on A, thus A � C. This implies by our assumptions that
C D A _ C, hence C D B.

Lemma 4.6. Let G be an lcsc group. A co-tight inclusion of objects in OAG admits no
weakly Zimmer-amenable proper intermediate objects.

Proof. This follows from Lemma 4.5 and the obvious fact that any intermediate object for
a co-tight inclusion is also co-tight.

Below we use the standard terminology from the ergodic theory of joinings and rel-
atively measure-preserving extensions. In particular, we use the terminology of [16]. We
recall that aG-space . zY ; z�/ is a joining of theG-spaces .Y; �/ and .X;�/ if bothL1.Y; �/
and L1.X; �/ are embedded G-equivariantly in L1. zY ; z�/ and the latter is the von Neu-
mann algebra generated by these two subalgebras.

A factor map �W . zY ; z�/ ! .X; �/ is said to be relatively measure-preserving if the
canonical conditional expectation L1. zY ; z�/! L1.X; �/ isG-equivariant. A more com-
mon definition in the ergodic theory usually uses the adjoint setup and requires equivari-
ance of the disintegration map.

Proposition 4.7. Let G be an lcsc group, X a compact G-space, and let � be a G-tight
measure on X . Assume that . zY ; z�/ is a relatively measure-preserving extension of .X; �/,
and �W . zY ; z�/! .Y; �/ is aG-factor map such that . zY ; z�/ is a joining of .Y; �/ and .X; �/.
If .Z; !/ is a weakly Zimmer amenable G-space, and . zY ; z�/

'
�! .Z; !/

 
�! .Y; �/ are G-

factor maps such that  ı ' D �, then . zY ; z�/
'
Š .Z; !/.

Proof. First, note that the maps �, ', and  yield canonical embeddings of corresponding
L1-algebras, which we identify with their images under these embeddings.

Since . zY ; z�/ is a relatively measure-preserving extension of .X; �/, there is a G-
equivariant faithful conditional expectation L1. zY ; z�/ ! L1.X; �/. Hence, by Lem-
ma 2.12, the inclusion C.X/ � L1. zY ; z�/ is G-tight.

Since z� is a joining of � and �, we have

L1. zY ; z�/ D L1.X; �/ _ L1.Y; �/ D C.X/ _ L1.Y; �/;

therefore the inclusion L1.Y; �/ � L1. zY ; z�/ is co-tight. Thus, if L1.Z; !/ is weakly
Zimmer amenable, it follows by Lemma 4.6 that L1. zY ; z�/ D L1.Z; !/, and this com-
pletes the proof.
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In [16], Furstenberg and Glasner introduced and studied the notion of standard covers.
Let us recall that a .G; �/-space . zY ; z�/ is called standard if it is a relatively measure-
preserving extension of a �-boundary. The structure theorem of Furstenberg–Glasner [16,
Theorem 4.3] states that for each .G;�/-space .Y; �/, there exists a unique standard space
. zY ; z�/, called the standard cover of .Y; �/, with the property that there exists a �-boundary
.X; �/ which is a relatively measure-preserving factor of . zY ; z�/, and such that . zY ; z�/
is a joining of .Y; �/ and .X; �/. Using this terminology, Nevo–Zimmer’s theorem [28]
states that for higher rank semisimple Lie groups many stationary actions are standard.
Moreover, in this setup, not only that the spaces are standard, but the �-boundary .X; �/
admits a USB model.

Theorem 4.8. LetG be an lcsc group and � 2 Prob.G/ an admissible measure. Let .Y;�/
be a .G;�/-space with the standard cover . zY ; z�/ realized by the factor maps

�W . zY ; z�/! .Y; �/ and �0W . zY ; z�/! .X; �/;

where .X; �/ is a �-boundary and �0 is relatively measure-preserving. Let .Z; !/ be
a weakly Zimmer amenable .G; �/-space, and . zY ; z�/

'
�! .Z; !/

 
�! .Y; �/ are G-factors

such that  ı ' D �. If either

(i) .X; �/ has a metrizable USB model or

(ii) the Furstenberg–Poisson boundary of .G;�/ has a metrizable USB model,

then . zY ; z�/
'
Š .Z; !/.

Proof. Case (i): Without loss of generality, we may assume that X is metrizable and
.X; �/ is �-USB. Then � is a tight measure by Theorem 3.4, and therefore the assertion
follows from Proposition 4.7.

Case (ii): Let .B; �/ denote a metrizable USB model of the Furstenberg–Poisson bound-
ary of .G; �/. The space . zY ; z�/ is weakly Zimmer amenable as it is a G-extension of
a weakly Zimmer amenable space .Z;!/, so there is aG-equivariant ucp map from C.B/

to L1. zY ; z�/. By Lemma 1.1, the map corresponds to a measurable G-equivariant map
�W zY ! Prob.B/. Since .B; �/ is USB, it follows from [26, Corollary 2.10 (a)] that �
is mapped into delta measures, hence a G-equivariant factor map �W . zY ; z�/ ! .B; �/

(cf. [27, Theorem 9.2 (1)]). We claim that �0 D bnd ı �, where bndW .B; �/! .X; �/ is
the canonicalG-factor map. The claim then implies that � is relatively measure-preserving
by [16, Theorem 4.3] since it is an extension of the Furstenberg–Poisson boundary. Hence,
this puts us in the setup of Proposition 4.7, and therefore completes the proof. The claim,
indeed, holds in more generality where USB assumption is not needed. We state this in
the following lemma.

Lemma 4.9. Let G be an lcsc group, and let � 2 Prob.G/ be an admissible measure. Let
.X; �/ be a .G; �/-boundary, let .Y; �/ be a .G; �/-space, and let �W .Y; �/! .X; �/ be
a relatively measure-preserving factor map. Then �� is the unique normal G-equivariant
ucp map from L1.X; �/ to L1.Y; �/.
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Proof. Let ˆWL1.X; �/ ! L1.Y; �/ be a normal G-equivariant ucp map. Denote by
EWL1.Y; �/! ��.L1.X; �// the canonical conditional expectation, which is G-equiv-
ariant by the assumption. Then E ıˆ is a normal unital positive G-equivariant map from
L1.X; �/ to ��.L1.X; �//, hence coincides with �� by Lemma 3.5. Since E is faithful,
it follows that �� D ˆ.

In the noncommutative setting, co-tight inclusions appear naturally in the setting of
covariant representations of actions of tight inclusions.

Proposition 4.10. Let � be a discrete group, and let A 2 OA� . Suppose that .�; �/ is
a covariant representation of .�; A/ such that the inclusion �.A/ � � Ë�� A is �-tight. Let
D 2 OA� be an intermediate object for the inclusion C �� .�/ � � Ë�� A. If there is a �-
equivariant ucp map from � Ë�� A to D, then D D � Ë�� A.

In particular, if D is either weakly Zimmer-amenable or injective, then D D � Ë�� A.

Proof. Note that since the inclusion �.A/ � � Ë�� A is �-tight and � Ë�� A is generated by
�.A/ and C �� .�/, the inclusion C �� .�/� � Ë�� A is co-tight. This implies that the inclusion
D � � Ë�� A is also co-tight and hence, the claim follows from Lemma 4.5.

The case of weakly Zimmer-amenable D follows from Lemma 4.6. If D is injective,
then there is a conditional expectation

EW � Ë�� A! D;

which is automatically �-equivariant since �.�/ is in the multiplicative domain of E. The
assertion now follows similarly to the weakly Zimmer-amenable case.

We denote by C �red.�/ the reduced C �-algebra of � , that is, the C �-algebra generated
by the left regular representation of � on `2.�/.

Corollary 4.11. Let � be a discrete group, let A 2 OA� be �-self-tight, and let D be
an intermediate object for the inclusion C �red.�/ � � Ë A. If D is either weakly Zimmer-
amenable or injective, then D D � Ë A.

Proof. By Corollary 2.13, the inclusion A � � Ë A is �-tight. Hence, the result follows
from Proposition 4.10.

The above corollary applies, for example, in the case A D C.X/, where X is a topo-
logical boundary (see Example 2.9).

Corollary 4.12. Let � be a discrete group, B a �-von Neumann algebra, and A a weak�-
dense �-C �-subalgebra of B such that A � B is �-tight. Suppose that D is an intermediate
�-von Neumann algebra for the crossed product, that is, L� � D � � Ë B. If D is either
weakly Zimmer-amenable or injective, then D D � Ë B.

Proof. By Corollary 2.13, the inclusion A� � Ë B is also �-tight. Thus, the result follows
from Proposition 4.10.
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Next, we prove noncommutative generalizations of earlier results regarding interme-
diate objects, and apply them to prove a maximal injectivity result (Corollary 4.16).

We begin with an extension of Lemma 4.6.

Lemma 4.13. Let � be a countable discrete group, and let C � B be a co-tight inclusion
of objects in OA� . Then the inclusion � Ë C � � Ë B is co-tight, hence, in particular, has
no injective or weakly Zimmer amenable intermediate proper objects.

Proof. By co-tightness of C � B, there is a �-tight inclusion A � B such that B D A _ C.
Then the inclusion A � � Ë B is tight by Corollary 2.13, which then implies the inclusion
� Ë C � � Ë B is co-tight. Hence, arguing similarly to the proof of Proposition 4.10, we
conclude that the inclusion � Ë C � � Ë B has no injective or weakly Zimmer amenable
intermediate proper objects.

The following is the noncommutative extension of Proposition 4.7.

Proposition 4.14. Let � be a discrete group,X a compact �-space, and let � be a �-tight
measure on X . Assume that . zY ; z�/ is a relatively measure-preserving extension of .X; �/,
and .Y; �/ a �-factor of . zY ; z�/ such that . zY ; z�/ is a joining of .Y; �/ and .X; �/. Suppose
� Ë L1.Y; �/ � M � � Ë L1. zY ; z�/ is an inclusion of von Neumann algebras. If M is
injective, then M D � Ë L1. zY ; z�/.

Proof. As seen in the proof of Proposition 4.7, the assumptions imply that the inclusion
L1.Y; �/ � L1. zY ; z�/ is co-tight. Thus, the result follows from Lemma 4.13.

This result provides large classes of examples. We single out two interesting cases in
the following.

Corollary 4.15. Let � be a discrete group and � 2 Prob.�/ a generating measure such
that the Furstenberg–Poisson boundary .B; �/ of .�; �/ has a metrizable �-USB model.
Then the conclusion of Proposition 4.14 holds in the following two cases, for any �-factor
map . zY ; z�/! .Y; �/:

(i) . zY ; z�/ is Zimmer amenable and is the standard cover of .Y; �/; or

(ii) . zY ; z�/D .B �Z;� �m/ and .Y; �/D .Z;m/, with the canonical factor map, for
some ergodic pmp action � Õ .Z;m/.

Proof. Under the assumptions of part (i), it was shown in the proof of Theorem 4.8 (ii)
that . zY ; z�/ is a relatively measure-preserving extension of .B; �/, and also is a joining
of .Y; �/ and .B; �/. Since � is �-tight by Theorem 3.4, the assertion (i) follows from
Proposition 4.14.

Now, assume (ii). Then . zY ; z�/ is a relatively measure-preserving extension of .B; �/,
indeed the integration of the Z-component with respect to m is the canonical conditional
expectation L1.B � Z; � � m/! L1.B; �/, which is obviously �-equivariant. Also,
. zY ; z�/ is clearly a joining of .Y; �/ and .B; �/. Thus, assertion (ii) also follows from
Proposition 4.14.
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The above statements can be considered as “minimal ambient injectivity” results.
Since the commutant of an injective von Neumann algebra is also injective (regardless
of the representation), by taking commutants in the above inclusions, we obtain (new)
examples of maximal injective von Neumann subalgebras.

In particular, in the product space case as in part (ii) of Corollary 4.15, we get the
following.

Given a non-singular action � Õ .X; �/, we have an action � Õ B.L2.X; �// by
inner automorphisms associated with the corresponding Koopman representation.

Corollary 4.16. Let � be a discrete group and � 2 Prob.G/ a generating measure such
that the Furstenberg–Poisson boundary .B; �/ of .�; �/ has a metrizable USB model.
Let � Õ .Z; m/ be a measure-preserving action. Then the von Neumann algebra � Ë
L1.B �Z; � �m/ is maximal injective in � Ë .B.L2.B; �// x̋L1.Z;m//.

Proof. Assume that N is an injective von Neumann algebra, and that we have

� Ë L1.B �Z; � �m/ � N � � Ë .B.L2.B; �// x̋L1.Z;m//:

Taking commutants in B
�
`2.�/ ˝ L2.B � Z; � � m/

�
, we get (see, e.g., [32, Proposi-

tion V.7.14]) the inclusion of von Neumann algebras

� Ë L1.Z;m/ � N 0 � � Ë L1.B �Z; � �m/;

and N 0 is injective. Thus, N 0 D � Ë L1.B � Z; � �m/ by Proposition 4.14, and hence
N D � Ë L1.B �Z; � �m/.

We note that the above corollary can be, of course, stated in the more general setup of
Proposition 4.14.

The special case of Corollary 4.16, where � is an irreducible lattice in a higher rank lat-
ticeG, andZ is the trivial space, yields a stronger version of Suzuki’s maximal injectivity
result in [31], where he proves that � ËL1.B; �/ is maximal injective in � Ë L1.Y; �/0,
where .Y; �/ is any essentially-free measurable �-factor of .B; �/, and the commutant
of L1.Y; �/ is taken in B.L2.B; �// (see the last assertion in [31, Corollary 3.8]). In
Suzuki’s proof, the essential freeness assumption was needed to apply the splitting result
for the intermediate von Neumann algebras that he proved in the same paper. Another
key step of his proof is the use of Margulis’ factor theorem, which is a deep result con-
cerning higher rank lattices. In particular, Corollary 4.16 shows that the source of such
rigidity of intermediate von Neumann algebras is not a higher rank, but a much broader
phenomenon of tightness. In fact, we obtain a large class of new examples of maximal
injective von Neumann algebras. As remarked before, examples of Furstenberg–Poisson
boundary actions with a uniquely stationary compact metrizable model include actions of
hyperbolic groups on their Gromov boundaries, linear groups on flag varieties, mapping
class groups on the Thurston boundary, and Out.Fn/ on the boundary of the outer space,
all for suitable �’s.



Y. Hartman and M. Kalantar 88

Remark 4.17. Methods similar to those described above may be applied to the case of
tight inclusions, as in Theorem 3.12, to prove maximal injectivity of Lƒ in L� . More
precisely, assume that � Õ X , and x0 2 X and ƒ � � are as in the statement of Theo-
rem 3.12. In addition, assume that ƒ D �x0 is a maximal amenable subgroup of � . We
will show that Lƒ is maximal injective in L� . Obviously, it is equivalent to show this
for the right group von Neumann algebras Rƒ � R� . If Rƒ � N � R� is an inclusion
of von Neumann algebras with N injective, then L� � N 0 � Rƒ0 D L� _ `1.�=ƒ/,
and N 0 is injective. The canonical conditional expectation B.`2.�// ! `1.�/, which
is �-equivariant and faithful, restricts to a conditional expectation Rƒ0 ! `1.�=ƒ/.
By Theorem 3.12, Pıx0 .C.X// � `

1.�=ƒ/ is �-tight. Furthermore, since ƒ D �x0 , it
follows that Pıx0 .C.X// is weak�-dense in `1.�=ƒ/, thus the inclusion L� � L� _
`1.�=ƒ/ is co-tight. Invoking Proposition 4.10, we conclude N 0 D L� _ `1.�=ƒ/,
hence N � R� .

This applies to the case of maximal abelian subgroups of free groups as in Exam-
ple 3.14. However, the result of Boutonnet–Carderi [7, Theorem A] covers these examples,
but our methods offer a new approach, which may result in new examples in this setup.
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