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Polyharmonic equations involving surface measures

Marius Müller

Abstract. This article studies (optimal) W 2m�1;1-regularity for the polyharmonic equation

.��/mu D Q Hn�1 �;

where � is a (suitably regular) .n � 1/-dimensional submanifold of Rn, Hn�1 is the Hausdorff
measure, and Q is some suitably regular density. As an application, we derive (optimal) W 3;1-
regularity for solutions of the biharmonic Alt–Caffarelli problem in two dimensions.

1. Introduction

Let � � Rn be a C1-smooth domain, n � 2. In this article we prove (optimal) W 3;1-
regularity for solutions of the higher-order measure-valued equation

.��/2u D Q Hn�1 � in �;

where � ��� is some closed C 1;˛-submanifold andQ 2 C 0;˛.�/ for some ˛ > 0. Later
we will also study what happens if one replaces .��/2 by .��/m for somem 2N;m� 2.
This article hence extends findings of [9] to a higher-order setting.

For .��/2, we impose Navier boundary conditions with smooth boundary data
u0 2 C

1.�/, meaning one would classically require that u D u0 on @� and �u D 0

on @�. The weak formulation of this problem is given in the next definition.

Definition 1.1. We say that u 2 W 2;2.�/ is a weak solution of´
.��/2u D Q Hn�1 � in �;

u D u0; �u D 0 on @�
(1)

if u � u0 2 W
1;2
0 .�/ andZ
�

�u�� dx D
Z
�

Q� dHn�1; 8� 2 C 2.�/ \W
1;2
0 .�/: (2)
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One might notice that the demanded a priori regularity is not enough to speak of clas-
sical Navier boundary conditions. The boundary values are however encoded in the usage
of the large test function space C 2.�/ \W 1;2

0 .�/. Indeed, (2) is equivalent to v D ��u
being a very weak solution of the measure-valued Dirichlet problem´

��v D Q Hn�1 � in �;

v D 0 on @�;
(3)

in the sense of [11, Definition 3.1]. If one considers (3) for some suitably regular dataQ,� ,
one can show that v D �u 2 W 1;1.�/ \ C0.�/ and the Navier boundary conditions
‘�u D 0 on @�’ also hold classically. We refer to Section 2.2 for details.

Optimal regularity of weak solutions of (3) was also the main object of study in [9],
even for more general elliptic operators than (��). The treatment in Section 2.2 resembles
the same regularity results as in [9], but with a more elementary and self-contained argu-
ment in the given special case.

Once this regularity for �u is obtained, elliptic regularity implies u 2 W 3;q.�/ for
all q 2 Œ1;1/.

Question 1: Optimal regularity.
While W 3;q-regularity is now understood for each q < 1, it is not clear whether

u 2 W 3;1.�/. This shall be the main question of this article.
We remark that one can not expect regularity beyondW 3;1.�/; for example, we shall

see in Section 2.2 that u 62 C 3.�/ unless Q � 0 (cf. Remark 2.6). Also, W 4;1-regularity
is excluded by (1), since Q Hn�1 � 62 L1.�/ (and hence, �2u 62 L1.�/).

This article gives a positive answer to the W 3;1-regularity under some further regu-
larity assumptions on � and Q.

Theorem 1.2 (Optimal regularity). Let Q 2 W 2;p.�/ .p > n/, � D @�0 for some C 2-
smooth domain �0 �� �, and u0 2 C1.�/. Then, each weak solution of equation (1)
lies in W 3;1.�/.

From now on, we will abbreviate the above condition on � by ‘� D @�0 2 C 2’. We
also remark that Q was a priori only defined on � , so the condition ‘Q 2 W 2;p.�/’
requires that Q can be extended to a W 2;p-function on �.

One might expect that similar methods as in [9] carry over to the fourth-order set-
ting. However, the approach in [9] relies heavily on the maximum principle, which is not
available for fourth-order equations.

Instead, our approach relies on a suitable auxiliary equation for @2iju, which we will
derive.

Question 2: Inherited regularity for D4u.
Once W 3;1-regularity is shown, one can also ask the question of regularity inherit-

ance. This is a different question from the above, as we shall explain in what follows.
Instead of searching for the highest Sobolev class that solutions live in, we ask whether



Polyharmonic equations involving surface measures 63

all highest order derivatives inherit their quality from the operator. For instance, for p
2 .1;1/, it is known that (��) inherits Lp-regularity to D2u in the following sense:
Looking at all derivatives in the sense of distributions, one has

��u 2 L
p
loc ) D2u 2 L

p
loc

for each u 2 L1loc.R
n/. Let now Mloc.�/ denote the space of all signed Radon measures

on �. It seems interesting to study under which conditions ��u 2Mloc.�/ implies that
D2u 2Mloc.�/.

Definition 1.3 (Inheritance of Mloc-regularity for (��)). Let S �Mloc.�/ be a subspace.
We say that the differential inclusion ‘��u 2 S ’ inherits Mloc-regularity to D2u if for
each function u 2 L1loc.�/ one has (in the sense of distributions)

��u 2 S ) D2u 2Mloc.�/: (4)

Remark 1.4. The conclusion D2u 2Mloc.�/ can be phrased equivalently via the inclu-
sion ru 2 BVloc.�/. This will be useful for our proofs.

Remark 1.5. Notice that we have to restrict to a subspace S ¨ Mloc.�/ in Definition 1.3,
since conclusion (4) is not true for S D Mloc.�/. This becomes clear if one looks at
� D Rn; S DMloc.Rn/ and considers � D ı0 2 S . The fundamental solution F D F�
2 L1loc.R

n/ then solves (distributionally) ��F D ı0 2 S , but one has D2F 62Mloc.Rn/.
The latter can easily be seen as follows: If D2F 2 Mloc.Rn/, then rF 2 BVloc.Rn/,
which would imply rF 2 L

n
n�1

loc .R
n/. Noticing that rF.x/D x

jxjn
almost everywhere for

any n � 2, one readily checks that rF 62 L
n
n�1

loc .R
n/.

In this article, the studied subspace S of Definition 1.3 is

S WD S.�; p/ WD
®
Q Hn�1 � W Q 2 W 2;p.�/

¯
(5)

for some p > n and some � D @�0 2 C 2. We will see in Section 2.2 that ��u 2 S.�;p/
inherits Mloc-regularity. This serves as a starting point for the investigation of regularity
inheritance properties for (��)2. Since the operator is of fourth order, it is now natural to
ask for regularity inheritance to D4u. More precisely, we ask whether .��/2u 2 S.�; p/
implies that D4u 2Mloc.�/. The statement ‘D4u 2Mloc.�/’ can again be phrased best
by D3u 2 BVloc.�/. This BV -regularity turns out to be true if � is additionally assumed
to be C 2;1-smooth.

Theorem 1.6 (Regularity inheritance). LetQ 2W 2;p.�/ .p > n/, � D @�0 2 C 2;1, and
u0 2 C

1.�/. Then, each weak solution of (1) satisfies D3u 2 BV.�/.

Once BV -regularity of D3u is shown, it is natural to ask the more specific question
of SBV -regularity of D3u, which we will answer positively under the same conditions.
In doing so, we also have to refine our study for the model equation given by (3).
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Application: The biharmonic Alt–Caffarelli problem.
The results can be applied to prove optimal regularity for minimizers of the biharmonic

Alt–Caffarelli problem (in 2D), which has recently raised a lot of interest (cf. [2,3,10] and
[9, Section 5]. The subject of this is the minimization of the functional

E.u/ WD

Z
�

.�u/2 dx C
ˇ̌®
u > 0

¯ˇ̌
among all u 2 W 2;2.�/ such that u� u0 2 W

1;2
0 .�/ for some u0 2 C1.�/; u0 > 0. We

will discuss the details in Section 5.

2. The model equation ��u D Q H n�1 �

In what follows, we always assume (unless stated otherwise) that��Rn is aC1-smooth
domain and � D @�0 2 C 2. We call �00 WD � n�0 throughout this section. Moreover, if
not stated otherwise, Q 2 C 0;˛.�/ is a Hölder continuous function on � for some ˛ > 0.

2.1. Preliminaries

Before we can study the fourth-order problem, we need to refine some results for the
second-order problem (see (3)).

Definition 2.1. We say that v 2 L2.�/ is a (very) weak solution of (3) if

�

Z
�

v�� dx D
Z
�

Q� dHn�1; 8� 2 C 2.�/ \W
1;2
0 .�/: (6)

Remark 2.2. Observe that the map T W W 1;2
0 .�/! R given by T .�/ WD

R
�
Q� dHn�1

defines an element of the dual spaceW 1;2
0 .�/� (due to the continuity of the Sobolev trace

operator). Hence, existence of solutions of (6) is readily checked with the Lax–Milgram
theorem. Solutions constructed this way actually lie inW 1;2

0 .�/. Even more regularity can
be obtained with this method: properties of the Sobolev trace also yield that T 2W 1;s

0 .�/�

for all s 2 .1;1/. As� W W 1;q
0 .�/! W

1;
q
q�1

0 .�/� is an isomorphism for all q 2 .1;1/,
we obtain that solutions lie in W 1;q

0 .�/ for all q <1.

Most of the results in this section can also be obtained from [9], where the equa-
tion �div.A.x/ru/ D Q Hn�1 � for an elliptic operator A 2 W 1;q.�/ and a density
Q 2 C 0;˛.�/ on a surface � D @�0 2 C 1;˛ was studied. Our approach is self-contained
in the sense that results from [9] are not used but rather reproved in a more elementary
way for the special case of A D In;Q 2 W 2;p.�/; .p > n/, and � D @�0 2 C 2. The key
ingredient is a comparison with the signed distance function

d� W B�.�/! R; d�.x/ WD

8̂̂<̂
:̂
�dist.x; �/ x 2 �0;

0 x 2 �;

dist.x; �/ x 2 �00;
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where B�.�/ WD ¹x 2 Rn W dist.x; �/ < �º for some � > 0, which we will always fix and
choose small enough as in [8, Appendix 14.6] (and in such a way that B�.�/ �� �).
We briefly recall some properties of d� on B�.�/ from [8, Appendix 14.6]. First note
that B�.�/ is a C 2-domain and d� 2 C 2.B�.�//. Further, one has rd� D ��

0

ı �� ,
where �� W B�.�/! � is the (C 1-regular) nearest point projection on � . We will always
denote � WD ��

0

from now on.

Lemma 2.3. Let Q 2 W 2;p.�/, p > n and let � D @�0 2 C 2 with outer unit normal �.
Further, let d� W B�.�/! R be the signed distance function of � . Then (distributionally
in C10 .B�.�//

0), it holds that

@2ij

�Q
2
jd� j

�
D Q�i�jHn�1 � C gij

for some g D .gij / 2 Lp.B�.�/IRn�n/. In particular,

��
�Q
2
jd� j

�
D �Q Hn�1 � � tr.g/: (7)

Proof. Let � 2 C10 .B�.�// be arbitrary but fixed. Denote by � D ��
0

and ��
00

the outer
unit normals of �0; �00 (respectively). Then, using integration by parts and d� j� D 0, we
findZ

Q

2
jd� j@

2
ij� dx D �

Z
�0

Q

2
d�@

2
ij� dx C

Z
�00

Q

2
d�@

2
ij� dx

D �

Z
@�0

Q

2
d��

�0

i @j� dHn�1
C

Z
@�00

Q

2
d��

�00

i @j� dHn�1

C

Z
�0
@i

�Q
2
d�

�
@j� dx �

Z
�00
@i

�Q
2
d�

�
@j� dx

D

Z
�0
@i

�Q
2
d�

�
@j� dx �

Z
�00
@i

�Q
2
d�

�
@j� dx

D

Z
@�0

@i

�Q
2
d�

�
��
0

j � dHn�1
�

Z
@�00

@i

�Q
2
d�

�
��
00

j � dHn�1

�

Z
�0
@2ij

�Q
2
d�

�
� dx C

Z
�00
@2ij

�Q
2
d�

�
� dx:

Noticing that @�0 \ supp.�/ D @�00 \ supp.�/ D � and ��
00

j D ���
0

j on � , we inferZ
Q

2
jd� j@

2
ij� dx D

Z
�

@i .Qd�/�j� dHn�1
C

Z
gij� dx;

where gij WD @2ij .
Q
2
d�/.��00 � ��0/ 2 L

p.B�.�//. Now notice that on � , one has

@i .Qd�/ D .@iQ/d� CQ.@id�/ D 0CQ�i D Q�i :
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Thus, we inferZ
Q

2
jd� j@

2
ij� dx D

Z
�

Q�i�j� dHn�1
C

Z
gij� dx; 8� 2 C10 .B�.�//;

which was asserted. Formula (7) follows immediately from ��f D �
Pn
iD1 @

2
i if and

and using
P
i �
2
i D 1.

Corollary 2.4. Let � D @�0 2 C 2 and letQ 2W 2;p.�/, .p > n/ be such thatQj� 6� 0.
Then,

(a)
Q

2
jd� j 2W

1;1.B�.�//; (b)r
�Q
2
jd� j

�
2BV.B�.�//; (c)

Q

2
jd� j 62 C

1.B�.�//:

Proof. Claim (a) is immediate by Lipschitz continuity of jd� j and the fact that W 2;p

,! C 1 for p > n. Claim (c) follows from the fact that the function rjd� j D sgn.d�/rd�
D sgn.d�/� ı �� has a jump at each point on � . To show claim (b), we compute for
i D 1; : : : ; n and  2 C10 .B�.�/IR

n/ with j j � 1 using Lemma 2.3Z
@i .
Q

2
d�/div. / dx D

nX
jD1

Z
@i .
Q

2
d�/@j j dx D �

nX
jD1

Z
Q

2
d�@

2
ij j dx

D �

nX
jD1

�Z
�

Q�i�j j dHn�1
�

Z
gij j dx

�
�

nX
jD1

.jjQjjL1.�/ C jjgij jjL1.B�.�///:

This implies @i .
Q
2
d�/ 2 BV.B�.�//, and thus, (b) follows.

2.2. Regularity results in the spirit of the author’s 2022 paper

We can now retrieve the results of [9, Theorem 1.2] as well as [9, Corollary 3.3 and
Remark 3.4] and [9, Lemma 2.6] (in our special case) in an easier fashion than in [9]. As a
byproduct, we will obtain a maximal Mloc-regularity statement for (��) with S as in (5).

Lemma 2.5. Let v 2 L2.�/ satisfy (6) for some Q 2 W 2;p.�/ .p > n/ with Qj� 6� 0.
Then,

.i/ v 2 W 1;1.�/; .ii/ rv 2 BV.�/; .iii/ v 62 C 1.�/:

Proof. Let � 2 C10 .B�.�//. Then, by (7), we have

�

Z
v�� dx D

Z
�

Q� dHn�1
D

Z
Q

2
jd� j�� dx �

Z
�

tr.g/� dx:

In particular, we have (distributionally in C10 .B�.�//
0) that .��/.v C Q

2
jd� j/ D tr.g/

2 Lp.B�.�//. We infer by elliptic regularity that v C Q
2
jd� j 2 W

2;p
loc .B�.�//. Now let
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h 2 W
2;p

loc .B�.�// be such that v D �Q
2
jd� j C h. The fact that h 2 W 2;p

loc � C
1 implies

together with Corollary 2.4 (a) that v 2W 1;1
loc .B�.�//. Moreover, v 62C 1.B�.�// is easily

deduced by contradiction—if v were an element of C 1.B�.�//, then we would also have
v � h 2 C 1.B�.�//. But, v � h D �Q

2
jd� j 2 C

1.B�.�// contradicts Corollary 2.4 (c).
This already implies (iii). Finally, rh 2 W 1;p

loc � BVloc and Corollary 2.4 (b) can be used
to show v D�Q

2
jd� j C h 2 BVloc.B�.�//. Now observe by (6) that v is weakly harmonic

on � n � , implying that v 2 C1.� n �/. In particular, w WD vj@B �
2
.�/ 2 C

2.@B �
2
.�//.

Then, v solves 8̂̂<̂
:̂
��v D 0 in � n B �

2
.�/;

v D 0 on @�;

v D w on @B �
2
.�/

on � n B �
2
.�/ (weakly). Elliptic regularity thus implies that v 2 W 2;q.� n B �

2
.�// for

any q <1. This together with the fact that v 2 W 1;1.B 3�
4
.�// and rv 2 BV.B 3�

4
.�//

implies (i) and (ii).

Remark 2.6. From point (iii) in the previous lemma and (3), it follows that each weak
solution u 2 W 2;2.�/ of (1) with Qj� 6� 0 satisfies v D ��u 62 C 1.�/. In particular,
u 62 C 3.�/ unless Qj� � 0.

As a direct consequence of point (ii) in the previous lemma, we obtain the regularity
inheritance for the second-order problem.

Corollary 2.7. Let S D S.�;p/ be as in (5) with p > n. Then, ‘��u 2 S ’ inherits Mloc-
regularity with respect to S (in the sense of Definition 1.3).

Proof. Let w 2 L1loc.�/ be such that (distributionally) ��w 2 S , that is, there exists
Q 2 W 2;p.�/ such that ��w DQ Hn�1 � . By Remark 2.2, we have the existence of
some v 2 W 1;2

0 .�/ � L2.�/ which is a weak solution of´
��v D Q Hn�1 � in �;

v D 0 on @�:

Lemma 2.5 now implies that rv 2 BV.�/. Since w � v 2 L1loc.�/ is weakly harmonic
in �, we also deduce that r.w � v/ 2 BVloc.�/. These observations imply rw 2
BVloc.�/, and therefore, D2v 2Mloc.�/. The claim follows.

We will also need a lemma about (local) Lipschitz-regularity of distributional solutions
to ��w D Q Hn�1 � .

Lemma 2.8. Let D � Rn be any C 2-domain, � D @D0 2 C 2 for some D0 �� D, and
w 2 L1loc.D/ satisfy (distributionally in C10 .D/

0)

��w D Q Hn�1 �;

for some Q 2 W 2;p.D/, .p > n/. Then, w 2 W 1;1
loc .D/:
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Proof. For ı > 0, considerDı WD ¹x 2D W dist.x;DC / > ıº. By [8, Appendix 14.6],Dı
is a C 2-domain for all ı 2 .0; ı0/ small enough. Possibly choosing ı0 > 0 smaller, one
can also achieve that � �� D2ı for all ı 2 .0; ı0/. Fix some arbitrary ı 2 .0; ı0

2
/. By

[4, Theorem 5.1], there exists some sequence .Uk/k2N of domains such that Uk � Dı
has C1-smooth boundary and Uk approximates Dı in a suitable sense (whose precise
definition will not be needed here). With [4, Theorem 5.1], one also obtains Uk � D for
some k � k0 large enough. Next, consider the measure-valued Dirichlet problem´

�� zw D Q Hn�1 � on Uk0 ;

zw D 0 on @Uk0 :
(8)

By Lemma 2.5, (8) has a solution zw 2 W 1;1.Uk0/. In particular, zw is also Lipschitz con-
tinuous on Dı . Now, note that xw WD w � zw satisfies �� xw D 0 distributionally on Dı ,
meaning that xw 2 C1.D2ı/. This implies that w D zw C xw 2 W 1;1.D2ı/. Since
ı 2 .0; ı0

2
/ was arbitrary, the claim follows.

2.3. SBV -regularity

We first briefly report on the definition of the space SBV . Recall that for each BV -
function w 2 BV.�/, there exists a finite signed vector-valued Radon measure �w on �
such that Z

�

w div.�/ dx D
Z
�

� d�w ; 8� 2 C 1c .�IR
n/:

Now �u can be decomposed (cf. [6, Section 5.1]) into two finite signed vector-valued
measures �w D �aw C �

s
w , where �aw is absolutely continuous with respect to the Lebes-

gue measure and �sw is singular with respect to the Lebesgue measure on �.
Further, we define for each Lebesgue-measurable f W �! R the approximate limits

fC.x/ WD inf
°
t 2 R W lim

r!0

j¹f > tº \ Br .x/j

rn
D 0

±
and

f�.x/ WD sup
°
t 2 R W lim

r!0

j¹f < tº \ Br .x/j

rn
D 0

±
:

It can be shown that fC; f� are Borel measurable and fC � f� (cf. [6, Chapter 5,
Lemma 5.6]). We define the jump set of f to be the Borel set

Jf WD
®
x 2 � W fC.x/ > f�.x/

¯
:

Ifw 2BV.�IR/, then [6, Chapter 5, Theorem 5.17] implies that Jw is countably .n� 1/-
rectifiable. Now we are ready to define the space SBV.�/.

Definition 2.9 (The space SBV.�/). We say w 2 BV.�/ lies in SBV.�/ if �sw.� n
Jw/ D 0.
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We will make use the characterization lemma of SBV shown next, which is frequently
used in the study of free discontinuity problems.

Lemma 2.10 (cf. [1, Lemma 2.3]). Letw 2L1.�/ andK �� be (relatively) closed such
that w 2 C 1.� nK/ \ BV.�/ and Hn�1.K/ <1. Then, w 2 SBV.�/ and Jw � K.

Corollary 2.11. Let � D @�0 2 C 2 and Q 2 W 2;p.�/, p > n. Further, let v 2 L1.�/
be a weak solution of ´

��v D Q Hn�1 � in �;

v D 0 on @�:

Then, v 2 W 1;1.�/ and rv 2 SBV.�/. Moreover, J@iv � � for all i D 1; : : : ; n.

Proof. We intend to apply Lemma 2.10. By Lemma 2.5, one has that v 2 W 1;1.�/ (i.e.,
rv 2 L1.�/) and also from Lemma 2.5, we conclude that rv 2 BV.�/. Clearly, v lies
also in C 1.� n �/ as v is (weakly) harmonic on � n � . Since � �� � is a closed C 1-
submanifold, we infer also that Hn�1.�/ <1. Hence, Lemma 2.10 is applicable and the
claim follows.

3. Optimal regularity (Proof of Theorem 1.2)

We will prove the theorem by showing that for all u 2 W 2;2.�/ as in Theorem 1.2 and
for all i; j 2 ¹1; : : : ; nº, the function @2iju 2 L

2.�/ actually lies in W 1;1.�/. The reason
for that will be that it solves a suitable measure-valued auxiliary problem of second order.
Together with our results from the previous section, this will yield the desired regularity.

We have already discussed in (3) and thereafter that�u 2W 1;1.�/\C0.�/ (mean-
ing also�uD 0 on @�) and u 2 W 3;q.�/ for all q 2 Œ1;1/. Next, we turn to some local
smoothness properties on � n � .

Lemma 3.1. Let u 2 W 2;2.�/ be a weak solution of (1). Then, u 2 C1.� n �/ and
.��/2u D 0 on � n � . Moreover, u 2 C1.� \N/ for an open neighborhood N of @�.

Proof. Notice that for each � 2 C10 .� n �/, one has by (2) thatZ
�

�u�� dx D
Z
�

Q� dHn�1
D 0:

In particular, �u is weakly harmonic on � n � . This implies that �u lies in C1.� n �/
and is harmonic on � n � . Elliptic regularity now implies that u 2 C1.� n �/ and har-
monicity of �u yields �2u D �.�u/ D 0. Now, let D �� � be a smooth subdomain
such that � ��D ���. (Such a subdomain clearly exists, since one can observe that for
� > 0 small enough, the subdomain �� WD ¹x 2 Rn W dist.x;�C / > �º has C 2-boundary
and can hence be approximated by smooth domains with the same construction as in
Lemma 2.8). Define ' WD .�u/j@D 2 C1.@D/. Notice that � nD is a smooth domain
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and a subset of� n � . Therefore, v WD�u is harmonic on� nD. Moreover, v is continu-
ous on � nD with boundary values v D 0 in @� and on @D one has v D ' 2 C1.@D/.
In particular, v is smooth on @.� nD/. Elliptic regularity and smoothness of� nD imply
then that v 2 C1.� nD/: The claim follows by choosing N WD Rn nD.

Finally, we are able to find the desired auxiliary equation for @2iju and prove The-
orem 1.2.

Proof of Theorem 1.2. Let u be as in the statement and 1 � i; j � n. We first derive a dis-
tributional equation for @2iju onC10 .B�.�//

0. To this end, let � 2C10 .B�.�// be arbitrary.
Then, several integrations by parts yieldZ

@2iju�� dx D
Z
u�.@2ij�/ dx D

Z
�u@2ij� dx

D

Z �
�u �

Q

2
jd� j

�
@2ij� dx C

Z �Q
2
jd� j

�
@2ij� dx: (9)

Recall that distributionally in C10 .B�.�//
0 one has

.��/.��u/ D .��/2u D QHn�1 �

and
.��/

�Q
2
jd� j

�
D �Q Hn�1 � � tr.g/;

where g D .gij / is as in Lemma 2.3. We conclude that (again, in the sense of distributions
in C10 .B�.�//

0) one has

.��/
�
�u �

Q

2
jd� j

�
D tr.g/ 2 Lp.B�.�//:

Therefore, by elliptic regularity, h WD �u � Q
2
jd� j lies in W 2;p

loc .B�.�//. Using this and
Lemma 2.3 once more, we infer from (9) thatZ

@2iju�� dx D
Z
h@2ij� dx C

Z �Q
2
jd� j

�
@2ij� dx

D

Z
.@2ijh/� dx C

Z
�

Q�i�j� dHn�1
C

Z
gij� dx:

We infer that (distributionally in C10 .B�.�//
0) one has

�.@2iju/ D �i�jQ Hn�1 � C .@2ijhC gij /: (AUX1)

Notice that @2ijh C gij 2 L
p
loc.B�.�//. Therefore, we can decompose the second deriv-

ative on B�.�/ as a sum of two functions; in other words, @2iju D w1 C w2, where
w1 2 L

1
loc.B�.�//, solves

�w1 D �i�jQ Hn�1 �
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(distributionally in C10 .B�.�//
0), and w2 2 L1loc.B�.�// solves

�w2 D .@
2
ijhC gij / 2 L

p
loc.B�.�//

(distributionally in C10 .B�.�//
0). We remark that this decomposition is not unique; it is

unique only up to harmonic functions on B�.�/. However, since these are smooth, they
do not play a role for the (local) regularity. From Lemma 2.8, we conclude that w1 2
W
1;1

loc .B�.�// and elliptic regularity yields w2 2 W
2;p

loc .B�.�//. Therefore, we obtain
@2iju D w1 Cw2 2 W

1;1
loc .B�.�//. Since by Lemma 3.1, u 2 C1.� n B �

2
.�///, we also

have @2iju 2 C
1.� n B �

2
.�//. Since i; j 2 ¹1; : : : ; nº were arbitrary, we find that u

2 W 3;1.�/.

4. Regularity inheritance (Proof of Theorem 1.6)

Next, we address the question of regularity inheritance for our fourth-order problem. To
this end, we first need some notation. We say that a continuous function f W � ! R lies
in C 1;1.�/ if f 2 C 1.�/ and there exists L > 0 such that

jr�f .x/ � r�f .y/j � Ljx � yj; 8x; y 2 �: (10)

Here all norms are taken in Rn and r�f .x/ is defined as in [12, p. 42] (and is always
looked at as a vector in Rn by means of the usual identification Tx� � Rn). We now turn
to an extension result which will be of use for the proof.

Lemma 4.1. Let � D @�0 2 C 2;1. Then, each function in f 2 C 1;1.�/ can be extended
to a function in W 2;1.�/.

Proof. Let f 2 C 1;1.�/ and L > 0 be as in (10). By [8, Section 14.6] and the fact that
@�0 2 C 2;1, we know that for some suitably small "0 2 .0; dist.�; �C //, the function
ˆ W� � .�"0; "0/!� given byˆ.x/ WD xC t�.x/ is aC 1;1-regular diffeomorphism onto
its image. In particular, for any fixed " 2 .0; "0/, the set T WD ˆ.� � .�"; "// is an open
neighborhood of � with C 1;1-boundary. Due to this fact, we have C 1;1. xT / D W 2;1.T /

(cf. [5, Chapter 5.8.2.(b)]). One readily checks that ˆ�1 W T ! � � .�"; "/ actually lies
inC 1;1.T IRn/. Sayˆ�1 has Lipschitz constantM0 >0 andDˆ�1 has Lipschitz constant
M1 > 0 on T . Define now the functions ‰ W T ! � and � W T ! .�"; "/ via the relation
ˆ�1.z/D .‰.z/; �.z// for all z 2 T and observe that both ‰ and � enjoy C 1;1-regularity
on xT . Further, we define an extension xf W T ! R of f via xf .z/ WD f .‰.z//: We show
now that xf 2 C 1;1.T /. To this end, first notice that for i D 1; : : : ; n and all z 2 T , one
has

@i xf .z/ WD hr�f .‰.z//; @i‰.z/i;
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where h�; �i denotes the Euclidean scalar product in Rn. Now for z1; z2 2 T and i D
1; : : : ; n, we have

j@i xf .z2/ � @i xf .z1/j D jhr�f .‰.z2//; @i‰.z2/i � hr�f .‰.z1//; @i‰.z1/ij

D jhr�f .‰.z2// � r�f .‰.z1//; @i‰.z2/i � hr�f .‰.z1//; @i‰.z1/ � @i‰.z2/ij

D jr�f .‰.z2// � r�f .‰.z1//j j@i‰.z2/j C jr�f .‰.z1//j j@i‰.z1/ � @i‰.z2/j

� Lj‰.z1/ �‰.z2/j j@i‰.z2/j C jjf jjC 1.�/M1jz2 � z1j

� .LM 2
0 C jjf jjC 1.�/M1/jz2 � z1j:

We conclude that xf 2 C 1;1. xT / D W 2;1.T /. As T � � is an open neighborhood of � ,
one readily checks by a suitable cutoff argument that an extension in W 2;1.�/ can also
be found.

Making use of this and the already derived auxiliary equation (AUX1) for the second
derivatives of solutions, we are able to prove Theorem 1.6.

Proof of Theorem 1.6. Assume � D @�0 2 C 2;1. Following the lines of the proof of The-
orem 1.2, we derive as in (AUX1) that distributionally in C1.B�.�//0 we have

�.@2iju/ D �i�jQ Hn�1 � C fij

for some fij 2 L
p
loc.B�.�// and all 1 � i; j � n. In particular, one can decompose, as in

the proof of Theorem 1.2, @2iju D w1 Cw2 where w2 2 W
2;p

loc .B�.�// solves�w2 D fij
(distributionally) and w1 2 L1loc.B�.�// solves

�w1 D �i�jQ Hn�1 �

(distributionally). Since �i�j 2 C 1;1.�/, one can find an extension in W 2;p.�/. Since
also Q 2 W 2;p.�/ and W 2;p.�/ is a Banach algebra (as p > n), we infer that �w1 D
zQ Hn�1 � for some zQ 2 W 2;p.B�.�//. Thereupon, Lemma 2.5 yields that rw1 2
BVloc.B�.�//. Moreover, one has rw2 2 W

1;p
loc .B�.�// � BVloc.B�.�//. All in all, we

infer r.@2iju/ D rw1 Crw2 2 BVloc.B�.�//. Hence, @3
ijk
u 2 BVloc.B�.�// for all 1 �

i; j; k � n. The fact that u is smooth on� nB �
2
.�/ and also in a neighborhood of @� (cf.

Lemma 3.1) finally implies that D3u 2 BV.�/.

4.1. SBV -regularity for D3u

The SBV -regularity statement for the higher-order equation given below follows imme-
diately from the results in Section 2.2 and the auxiliary problem that has been formed
in (AUX1).

Corollary 4.2. Let � D @�0 2 C 2;1 andQ 2W 2;p.�/, p > n. Further, let u 2W 2;2.�/

be a weak solution of (1) with �;Q as above. Then, u 2 W 3;1.�/ and D3u 2 SBV.�/.
Moreover, J@3

ijk
u � � for all i; j; k D 1; : : : ; n.
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Proof. We conclude—again, following the lines of the proof of Theorem 1.2 (up
to (AUX1))—that (distributionally in C10 .B�.�//

0) one has for all i; j 2 ¹1; : : : ; nº

�.@2iju/ D �i�jQ Hn�1 � C fij ;

for some fij 2 L
p
loc.B�.�//. Notice once again that there exists w 2 W 2;p

loc .B�.�// such
that �w D f . Therefore (distributionally in C10 .B�.�//

0), one has

�.@2iju � w/ D �i�jQ Hn�1 �:

Now with (a slight adaptation of) Corollary 2.11, one concludes that r.@2iju � w/ 2
SBVloc.B�.�//, and hence (sincerw 2 W 1;p

loc .B�.�//� SBVloc.B�.�//), one hasr@2iju
2 SBVloc.B�.�//. Since also r@2iju 2 C

1.� n B �
2
.�// (cf. Lemma 3.1), we find that

r@2iju 2 SBV.�/. The claim follows.

5. Optimal regularity for the biharmonic Alt–Caffarelli problem

The biharmonic Alt–Caffarelli problem deals with the minimization of

E.u/ D

Z
�

.�u/2 dx C
ˇ̌®
u > 0

¯ˇ̌
(11)

among all u 2 W 2;2.�/ such that u � u0 2 W
1;2
0 .�/ for some u0 2 C1.�/ such that

u0 > 0. Here � � Rn is a smooth domain. It has raised some interest in recent literature
(cf. [2, 3, 10]). Minimizers have to balance out two competing interests: On the one hand
bending has to be minimized, but on the other hand minimizers must stay below the zero
level on a large set. The set � WD ¹u D 0º is a free boundary of the problem, where
minimizers lose regularity due to the fact that E is not Fréchet differentiable with respect
to perturbations whose support intersects � .

The behavior of minimizers in dimension n D 2 is studied in [10].

Theorem 5.1 ([10, Theorem 1.4]). Suppose that n D 2 and � � R2 is a smooth domain
and u0 2 C1.�/; u0 > 0. Then, each minimizer of problem (11) lies in C 2.�/ and satis-
fiesru¤ 0 on the free boundary � D ¹uD 0º. Moreover, � D

SN
iD1 @Gi for finitely many

disjoint domainsGi with C 2-smooth boundary (whose boundaries are also disjoint). Fur-
thermore, the minimizer satisfies the equationZ

�

�u�� dx D �
1

2

Z
�

1

jruj
� dx; 8� 2 W 2;2.�/ \W

1;2
0 .�/:

In the language of this article, each minimizer u is a weak solution of the equation´
�2u D Q Hn�1 � in �;

u D u0; �u D 0 on @�;
(12)



M. Müller 74

(a) 3D-Plot of a minimizer u.
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(b) Radial profile curve r 7! u.re1/.
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(c) First radial derivative r 7! @ru.re1/.
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(d) Second radial derivative r 7! @2ru.re1/.
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(e) Third radial derivative r 7! @3ru.re1/.

Figure 1. A minimizer u for � D B1.0/ � R2 with constant boundary datum u0 � 0:07: In this
situation, radial symmetry of minimizers and explicit formulas are proved in [10, Section 10].

where Q D Q.u/ D � 1
2jruj

ˇ̌
�
2 C 0;˛.�/.

By the discussion before (3) and Remark 2.2, one already obtains that v D ��u
2 W

1;q
0 .�/ for all q < 1 (whereupon elliptic regularity yields u 2 W 3;q.�/ for all

q 2 Œ1;1/). Computation of radial minimizers gives rise to the assumption that u 2
W 3;1.�/; see Figure 1. Equipped with Theorem 1.2, we are finally able to establish
the optimal W 3;1-regularity.
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Theorem 5.2 (Optimal regularity for the biharmonic Alt–Caffarelli problem). Let u
2 W 2;2.�/ be a minimizer for problem (11) in dimension n D 2. Then, u 2 W 3;1.�/

and u 62 C 3.�/. Furthermore, D3u 2 SBV.�/.

Proof. We already know that u 2 W 3;q.�/ for all q 2 Œ1;1/ and that ru ¤ 0 on � D
¹u D 0º. Notice in particular that ru 2 W 2;q.�/ for all q 2 Œ1;1/, and hence also ru 2
C 1;˛.�/ for all ˛ 2 Œ0;1/. Thus, there exists � > 0 such thatru¤ 0 onB�.�/. Choose 2
C 20 .B�.�// such that  � 1 on � . We infer that zQ WD zQ.u/ WD � 1

2jruj
 lies inW 2;q.�/

for all q 2 Œ1;1/ (in particular, for some q > n) and is an extension of Q.u/ to �. In
particular, (12) is equivalent to´

�2u D zQ Hn�1 � in �;

u D u0; �u D 0 on @�:
(13)

If now � D @G for a single C 2-domain G, Theorem 1.2 implies that (13) has a solution
u 2 W 3;1.�/: In the general case of multiple boundary components � D

SN
iD1.@Gi /

(disjoint union), one has to write Hn�1 � D
PN
iD1 Hn�1 .@Gi / and use the linearity

of the equation to infer the assertedW 3;1-regularity. Since by Theorem 5.1 there are only
finitely many connected components of � , theW 3;1-regularity is shown. That u 62C 3.�/
follows from Lemma 2.5, applied to v D ��u.

To derive the BV -regularity of D3u, we apply Theorem 1.6. In order to do so, we
need to show that � D ¹uD 0º is a C 2;1-regular manifold. This is due to the fact that � is
the zero level set of the function u 2 W 3;1.�/ D C 2;1.�/ and ru ¤ 0 on � . Therefore,
the situation described by (13) satisfies all requirements of Theorem 1.6 and we finally
obtain that D3u 2 BV.�/. Furthermore, SBV -regularity readily follows from (13) and
Corollary 4.2.

6. Generalization to the polyharmonic case

The findings given in this article thus far can be generalized to polyharmonic operat-
ors .��/m, m � 2 on smooth domains � � Rn. For this, we need some more notation.
A boundary operator B.x;D/ W C1.�/! L2.@�/ of order � N is a formal expression
of the form

B.x;D/ D
X

˛2Nn
0 ;j˛j�N

b˛.x/D
˛ where b˛ 2 C1.�/ for each multiindex ˛.

Notice that Sobolev trace theory implies that each boundary operator of order�N extends
to a continuous map B.x;D/ W W NC1;2.�/! L2.@�/.

Definition 6.1. Let m � 2, Q 2 W 2;p.�/, p > n, and � D @�0 2 C 2. Let Bj .x; D/ W
W 2m�3;2.�/! L2.@�/, j D 1; : : : ;m� 1 be boundary operators of orderNj � 2m� 4
such that with Bm.x;D/ WD .��/m�1, the operators .Bj .x;D//mjD1 are complementing
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boundary conditions in the sense of [7, Definition 2.9]. A function u 2 W 2m�2;2.�/ is
said to be a weak solution to8̂̂<̂

:̂
.��/mu D Q Hn�1 � in �;

Bj .x;D/u D Bj .x;D/u0; j D 1; : : : ; m � 1 on @�;

Bm.x;D/u D 0 on @�;

if Bj .x;D/.u � u0/ D 0 for all j D 1; : : : ; m � 1 andZ
�

Œ.��/m�1u��� dx D
Z
�

Q� dHn�1; 8� 2 C 2.�/ \W
1;2
0 .�/: (14)

The regularity theorem we can show here is given next.

Theorem 6.2. Let u 2 W 2m�2;2.�/ be as in Definition 6.1. Then, u 2 W 2m�1;1.�/.

Proof. We proceed by induction over m. For m D 2, the statement is Theorem 1.2. Next,
letm>2 and i; j 2 ¹1; : : : ;mº. Let � > 0 be chosen as in Section 2.1. For � 2C10 .B�.�//,
we can computeZ

Œ.��/m�2.@2iju/��� dx D
Z
Œ.��/m�2u��.@2ij�/ dx D

Z
Œ.��/m�1u�@2ij� dx:

Defining hm WD Œ.��/m�1u�C
Q
2
jd� j, where d� is as in Section 2.1, we obtainZ

Œ.��/m�2.@2iju/��� dx D
Z
hm@

2
ij� dx �

Z
Q

2
jd� j@

2
ij� dx:

Using Lemma 2.3, we find thatZ
Œ.��/m�2.@2iju/��� dx D

Z
hm@

2
ij� dx �

Z
�

Q�i�j� dHn�1
�

Z
gij� dx (15)

for some gij 2 Lp.B�.�//. Next, we show that hm 2 W
2;p

loc .B�.�//. To this end, observe
that for each  2 C10 .B�.�//, one has (by (14) and Lemma 2.3)Z

hm� dx D
Z
�

Œ.��/m�1u�� dx C
Z
�

Q

2
jd� j� dx

D �

Z
�

Q dHn�1
C

Z
�

Q dHn�1
C

Z
.tr.g// dx

D

Z
.tr.g// dx;

where the matrix g D .gij / 2 Lp.B�.�// is as above. Elliptic regularity yields then that
hm 2 W

2;p
loc .B�.�// and (15) can be reformulated toZ
.��/m�2.@2iju/�� dx D �

Z
�

Q�i�j� dHn�1
C

Z
.@2ijhm � gij /� dx:
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Therefore, it holds that

.��/m�1.@2iju/ D Q�i�j Hn�1 � � .@2ijhm � gij / (AUX2)

distributionally in C10 .B�.�//
0. Using the induction assumption and the fact that @2ijhm �

gij 2 L
p.B�.�//, one can proceed as in the discussion after (AUX1) to prove that @2iju 2

W
2.m�1/�1;1

loc .B�.�//, that is, D2u 2 W
2m�3;1

loc .B�.�//. Therefore, we obtain that u 2
W
2m�1;1

loc .B�.�//. Similar to Lemma 3.1, one can also deduce that u 2 C1.� n B �
2
.�//

(this time using [7, Theorem 2.20]), yielding that u 2 W 2m�1;1.�/.

Using auxiliary equation (AUX2) again inductively, one can also deduce generaliza-
tions of the BV -regularity result (Theorem 1.6) and also of the SBV -regularity result in
Section 4.1. All in all, one obtains that for interfaces � D @�0 2 C 2;1, one hasD2m�1u 2

SBV.�/. The details can be safely omitted as they follow the lines of the previous argu-
ments (with the usage of auxiliary equation (AUX2) instead of (AUX1) and the usage of
elliptic regularity for .��/m�1 instead of .��/1).
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