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The double-bubble problem on the square lattice

Manuel Friedrich, Wojciech Górny, and Ulisse Stefanelli

Abstract. We investigate the minimal-perimeter configurations of two finite sets of points on the
square lattice. This corresponds to a lattice version of the classical double-bubble problem. We give a
detailed description of the fine geometry of minimisers, and, in some parameter regime, we compute
the optimal perimeter as a function of the size of the point sets. Moreover, we provide a sharp bound
on the difference between two minimisers, which are generally not unique, and use it to rigorously
identify their Wulff shape as the size of the point sets scales up.

1. Introduction

The classical double-bubble problem is concerned with the shape of two sets of given
volume under minimisation of their surface area. In the Euclidean space, minimisers are
enclosed by three spherical caps, intersecting at an angle of 2�=3. The proof of this fact in
R2 dates back to [23] and has then been extended to R3 [31] and Rn for n � 4 [43]. See
also [15] for a quantitative stability analysis in two dimensions. A number of variants of
the problem have also been tackled, including double bubbles in spherical and hyperbolic
spaces [16, 17, 19, 36], hyperbolic surfaces [9], cones [32, 39], the 3-torus [11, 18], the
Gauß space [16, 38], and in the anisotropic Grushin plane [24].

The aim of this paper is to tackle a lattice version of the double-bubble problem. We
restrict our attention to the square lattice Z2 and define the lattice length of the interface
separating two disjoint sets C;D � Z2 as

Q.C;D/ D #
®
.c; d/ 2 C �D W jc � d j D 1

¯
;

where j � j is the Euclidean norm. The lattice double-bubble problem consists in finding
two distinct lattice subsets A and B of fixed sizes NA; NB 2 N solving

min
®
P.A;B/ W A;B � Z2; A \ B D ;; #A D NA; #B D NB

¯
; (1.1)

where the lattice perimeter P.A;B/ is defined by

P.A;B/ D Q.A;Ac/CQ.B;Bc/ � 2ˇQ.A;B/

D Q.A;Ac n B/CQ.B;Bc n A/C .2 � 2ˇ/Q.A;B/: (1.2)
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Figure 1. A minimiser for ˇ D 1=2.

The latter definition features the parameter ˇ 2 .0; 1/. Note that the classical double-
bubble case corresponds to the choice ˇ D 1=2. In the following, we allow for the more
general ˇ 2 .0; 1/, for this will be relevant in connection with applications, see Section 2.
In particular, ˇ models the interaction between the two sets. The reader is referred to [28]
where cost-minimising networks featuring different interaction costs are considered.

Analogously to the Euclidean case, we prove that minimisers .A;B/ of (1.1) are con-
nected (A, B , and A [ B are connected in the usual lattice sense, see below). We call
isoperimetric those subsets of the lattice which minimise C 7! Q.C; C c/ under given
cardinality. Without claiming completeness, the reader is referred to the monograph [29]
and to [4,6–8,46] for a minimal collection of results on discrete isoperimetric inequalities,
to [14,34,35] for sharp fluctuation estimates, and to [2] for some numerical approximation.
A second analogy with the Euclidean setting is that optimal pairs .A;B/ do not consist of
the mere union of two isoperimetric sets A and B , for the onset of an interface between A
and B influences their shape.

Differently from the Euclidean case, the existence of minimisers for (1.1) is here obvi-
ous, for the minimisation problem is finite. Moreover, the geometry of the intersection of
interfaces is much simplified, as effect of the discrete geometry of the underlying lattice.
In particular, all interfaces meet at multiples of �=2 angles.

At finite sizes NA; NB , boundary effects are relevant and a whole menagerie of min-
imisers of (1.1) may arise, depending on the specific values of NA; NB , and ˇ. Indeed,
although uniqueness holds in some special cases, it cannot be expected in general. We are
however able to prove an a priori estimate on the symmetric distance of two minimisers,
which differ at most by N 1=2

A D N
1=2
B points for ˇ irrational or by N 3=4

A D N
3=4
B points

for ˇ rational.
As size scales up, whereas properly rescaled isoperimetric sets approach the square,

A and B converge to suitable rectangles. In the limit NA D NB !1 (and for ˇ D 1=2),
we prove that minimisers of (1.1) converge to the Wulff shape configuration of Figure 1.
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That is, uniqueness is restored in the Wulff shape limit. In fact, in the crystalline-perimeter
case, the double-bubble problem for ˇ D 1=2 has been already tackled in [40], see also
the recent [22] for an elementary proof of the existence of minimisers. The case ˇ 6D 1=2
is addressed in [47] instead. In particular, the different possible geometries of the Wulff
shape, corresponding to different volume fractions of the two phases, have been identified.

Let us now present our main results. We start by associating to each V � Z2 the
corresponding unit-disk graph, namely, the undirected simple graph G D .V ; E/, where
vertices are identified with the points in V , and the set E � V � V of edges contains one
edge for each pair of points in V at distance 1. We say that a subset V �Z2 is connected if
the corresponding unit-disk graph is connected. Moreover, we indicate by Rz WD Z � ¹zº
and Cz D ¹zº � Z rows and columns for all z 2 Z.

Our main findings read as follows.

Theorem 1.1. Let .A;B/ solve the double-bubble problem (1.1). Then,

(i) Connectedness. The setsA,B , andA[B are connected. Moreover, the setsA\
Rz , B \Rz , .A[B/\Rz , A\Cz , B \Cz , and .A[B/\Cz are connected
(possibly being empty) for all z 2 Z.

(ii) Separation. If max¹x W .x;z/2Aº�min¹x W .x;z/2Bº � 1 for some z 2Z, then
the same holds with equality for all z 2 Z (whenever not empty). An analogous
statement is valid for columns, possibly after exchanging the role of A and B .

(iii) Interface. Let I �R2 be the set of midpoints of segments connecting points in A
with points in B at distance 1. Then, for all x 2 I there exists y 2 I n ¹xº with
jx � yj 2 ¹1=

p
2; 1º and I can be included in the image of a piecewise-affine

curve �W Œ0; 1�! R2 with monotone components.

If NA D NB D N and ˇ � 1=2, we additionally have that

(iv) Minimal perimeter:

P.A;B/ D min
h2N

�
4dN=he C 2h.2 � ˇ/

�
; (1.3)

where all minimisers h satisfy

jh �
p
2N=.2 � ˇ/j � CˇN

1=4

for some constant Cˇ only depending on ˇ. For ˇ 2R nQ, there exists a unique
minimiser of (1.3).

(v) Explicit solution. Let h minimise (1.3) and ` 2 N and 0 � r < h be given with
N D h`C r . Then, letting

A0 WD
®
.x; y/ 2 Z2 W x 2 Œ�`C 1; 0�; y 2 Œ1; h� or x D �`; y 2 Œ1; r�

¯
;

B 0 WD ¹.x; y/ 2 Z2 W x 2 Œ1; `�; y 2 Œ1; h� or x D `C 1; y 2 Œ1; r�
¯
;

the pair .A0; B 0/ solves the double-bubble problem (1.1).
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(vi) Fluctuations. There exists a constant Cˇ only depending on ˇ and an isometry
T of Z2 such that

#.A4T .A0//C #.B4T .B 0// � CˇN 1=2 if ˇ 2 R nQ;

#.A4T .A0//C #.B4T .B 0// � CˇN 3=4 if ˇ 2 Q; (1.4)

where the pair .A0; B 0/ is defined in (v). (See the beginning of Section 9 for the
definition of isometry.)

Theorem 1.1 is proved in subsequent steps along the paper, by carefully characterising
the geometry of optimal pairs .A; B/. In fact, our analysis reveals additional geometrical
details so that the statements in the coming sections are often more precise and more gen-
eral in terms of conditions on the parameters NA, NB , and ˇ with respect to Theorem 1.1.
We prefer to postpone these details in order not to overburden the introduction.

The connectedness of optimal pairs .A;B/ is discussed in Section 4 and Theorem 1.1 (i)
is proved in Theorem 4.5 and Proposition 4.6. The separation property of Theorem 1.1 (ii)
follows from Proposition 4.4 and Propositions 4.7–4.8. The geometry of the interface
between A and B , namely, Theorem 1.1 (iii), is described by Corollary 4.10.

In Section 5, we present a collection of examples, illustrating the variety of optimal
geometries. In particular, we show that optimal pairs may be not unique and, in some
specific parameter range, present quite distinguished shapes. We then classify different
admissible pairs in Section 6 by introducing five distinct classes of configurations.

The first of these classes, called Class 	 and corresponding to Figure 1, is indeed
the reference one and is studied in detail in Section 7. In Proposition 7.3, we prove the
existence of optimal pairs in Class 	, among which there is the explicit one of Theorem
1.1 (v). The minimal perimeter in Theorem 1.1 (iv) is then computed by referring to this
specific class in Theorem 7.4. The remaining classes are studied in Section 8. We show
that some of the classes cannot be optimal in the case NA D NB , and that the other ones
can be modified to a configuration in Class 	 by an explicit regularisation procedure. We
also observe that for arbitrarily large N solutions may appear which are not in Class 	,
see Proposition 8.16.

Although optimal pairs .A; B/ are not unique, by carefully inspecting our construc-
tions, we are able to prove that, in some specific parameter regime, two optimal pairs
differ by at most CˇN 1=2 or CˇN 3=4 points, respectively, depending on the irrationality
or rationality of ˇ and up to isometries. This is studied in Section 9, see Theorem 9.1
which proves Theorem 1.1 (vi). If ˇ is irrational, an output of our construction is that
the fluctuation bound CˇN 1=2 is sharp. In the case of a rational ˇ, the sharpness of the
fluctuation bound will be proved in some future work. The N 1=2-scaling in fluctuations
is specifically related to the presence of an interface between the two sets A and B . In
fact, in case of a single set A, optimal configurations show fluctuations of order N 3=4, see
Section 2.1 for details.

Although the setting of our paper is discrete, our results deliver some understanding
of the continuous case as well. This results by considering the so-called thermodynamic



Double bubbles on square lattice 83

limit as N !1. For all V D ¹x1; : : : ; xN º � Z2, let

�V D

� NX
iD1

ı
xi=
p
N

��
N

be the corresponding empirical measure on the plane and denote by L the two-dimensional
Lebesgue measure. We indicate by

A WD

�
�

r
2 � ˇ

2
; 0

�
�

�
0;

s
2

2 � ˇ

�
and B WD

�
0;

r
2 � ˇ

2

�
�

�
0;

s
2

2 � ˇ

�
(1.5)

the continuous Wulff shapes, see Figure 1. Note that

L.A/ D L.B/ D 1:

By combining the explicit construction of Theorem 1.1 (v) and the fluctuation estimate
(1.4), we have the following.

Corollary 1.2 (Wulff shapes). Let ˇ � 1=2 and .AN ; BN / be solutions of (1.1) with
NAN D NBN D N for all N 2 N. Then, there exist isometries TN of Z2 such that

�TNAN
�
* L A and �TNBN

�
* L B

as N !1, where the symbol
�
* indicates the weak-� convergence of measures.

Note that, by taking ˇ D 1 in (1.5) (not covered by the corollary though), we have that
A[B form a single square with side

p
2, whereas for ˇ D 0, the Wulff shapes A and B

are two squares of side 1.
Our results also allow to solve the double-bubble problem in the continuous setting of

R2 with respect to a crystalline perimeter notion. More precisely, for every setD � R2 of
finite perimeter, we denote by @�D its reduced boundary [1,33] and define the crystalline
perimeter and the crystalline length as

Per.D/ D
Z
@�D

k�k1dH1; L.
/ D
Z



k�k1dH1;

where � is the outward pointing unit normal to @�D, k�k1 D j�xj C j�y j, H1 is the one-
dimensional Hausdorff measure, and 
 � @�D is measurable.

The continuous analogue of (1.1) is the crystalline double-bubble problem

min
®

Per.A/C Per.B/ � 2ˇL.@�A \ @�B/ W A;B � R2 of finite perimeter;

A \ B D ;;L.A/ D L.B/ D 1
¯
: (1.6)

By combining Theorem 1.1 (v) and 1.1 (vi), we obtain the following.
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Corollary 1.3 (Crystalline double bubble). For all ˇ � 1=2, the pair .A;B/ is a solution
of (1.6). The minimal energy is given by 4

p
4 � 2ˇ.

For the reference choice ˇ D 1=2, the solution of the crystalline double-bubble prob-
lem (1.6) is depicted in Figure 1, see also [21, 40]. Corollaries 1.2 and 1.3 are proved in
Section 10.

In the recent work [21], the difference in energy between any properly rescaled optimal
discrete configuration and the Wulff shape is estimated. In case NA D NB and ˇ � 1=2,
such an estimate can be recovered from the exact expressions in Theorem 1.1 (iv) and
Corollary 1.3. Note however that the analysis in [21] covers the case NA 6D NB as well,
although for ˇ D 1=2 only.

2. Equivalent formulations of the double-bubble problem

2.1. Optimal particle configurations

The double-bubble problem (1.1) can be equivalently recasted in terms of ground states
of configurations of particles of two different types. Let A D ¹x1; : : : ; xNAº and B D
¹xNAC1; : : : ; xNACNB º indicate the mutually distinct positions of particles of two differ-
ent particle species, and assume that A;B � Z2, which in turn restricts the model to the
description of zero-temperature situations. To the particle configuration .A; B/ we asso-
ciate the configurational energy

E.A;B/ D
1

2

NACNBX
i;jD1

Vsticky.xi ; xj /; (2.1)

where

Vsticky.xi ; xj / D

8̂̂<̂
:̂
�1 if jxi � xj j D 1 and xi ; xj 2 A or xi ; xj 2 B;

�ˇ if jxi � xj j D 1 and xi 2 A; xj 2 B or xi 2 B; xj 2 A;

0 if jxi � xj j ¤ 1:

The interaction density Vsticky.xi ; xj / corresponds to the so-called sticky or Heitmann–
Radin-type potential [30] and models the binding energy of the two particles xi and xj .
In particular, only first-neighbour interactions contribute to the energy, and intraspecific
(namely, of type A � A or B � B) and interspecific (type A � B) interactions are quanti-
fied differently, with interspecific interactions being weaker as ˇ < 1.

The relation between the minimisation of E and the double-bubble problem (1.1) is
revealed by the equality

E.A;B/C 2NA C 2NB D
1

2
P.A;B/: (2.2)
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This follows by analysing the contribution to E and P of each point. In fact, one could
decompose

E.A;B/ D

NACNBX
iD1

e.xi /;

P.A;B/ D

NACNBX
iD1

p.xi /;

where the single-point contribution to energy and perimeter is quantified via

e.x/ D �
1

2
#
®
same-species neighbours of x

¯
�
ˇ

2
#
®
other-species neighbours of x

¯
;

p.x/ D 4 � #
®
same-species neighbours of x

¯
� ˇ#

®
other-species neighbours of x

¯
:

These definitions entail (2.2), which in turn ensures that ground states ofE and minimisers
of P coincide, for all given sizes NA and NB of the sets A and B .

The geometry of ground states ofE results from the competition between intraspecific
and interspecific interaction. In the extremal case ˇD 1, intra- and interspecific interaction
are indistinguishable, and one can consider the whole system .A; B/ as a single species.
The minimisation of E is then the classical edge-isoperimetric problem [5, 29], namely,
the minimisation of C 7! Q.C;C c/ under prescribed size #C . Ground states are isoperi-
metric sets, the ground-state energy is known, the possible distance between two ground
states scales as N 3=4 where N D #C , and one could even directly prove crystallisation,
i.e., the periodicity of ground states, under some stronger assumptions on the interaction
potentials [34].

In the other extremal case ˇD 0, no interspecific interaction is accounted for, and both
phases A and B are independent isoperimetric sets. In particular, ifNA andNB are perfect
squares (or for NA; NB !1 and up to rescaling), the phases A and B are squares.

In the intermediate case ˇ 2 .0; 1/, which is hence the interesting one, intraspecific
and interspecific interaction compete, and neither A or B nor A [ B end up being iso-
perimetric sets. The presence of interspecific interactions adds some level of rigidity. This
is revealed by the fact, which we prove, that the distance between different ground states
scales like N 1=2 for ˇ irrational and like N 3=4 for ˇ rational. Note that in the purely
edge-isoperimetric case fluctuations are of order N 3=4 [34], see also [14, 20, 35, 44].

Although we do not directly deal with crystallisation here, for the points A and B
are assumed to be subset of the lattice Z2, let us mention that a few rigorous crystallisa-
tion results in multispecies systems are available. At first, the existence of quasiperiodic
ground states in a specific multicomponent two-dimensional system has been shown by
Radin [42]. One-dimensional crystallisation of alternating configurations of two-species
has been investigated by Bétermin, Knüpfer, and Nolte [3], see also [27] for some related
crystallisation and noncrystallisation results. In the two-dimensional, sticky interaction
case, two crystallisation results in hexagonal and square geometries are given in [25, 26].
Here, however, interspecific interactions favour the onset of alternating phases.
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2.2. Finite Ising model

The double-bubble problem (1.1) can also be equivalently seen as the ground-state prob-
lem for a finite Ising model with ferromagnetic interactions. In particular, given C D
A [ B � Z2, one describes the state of the system by uWC !˙1, distinguishing theC1
and the �1 phase. The Ising-type energy of the system is then given by

F.C; u/ D �
1 � ˇ

4

X
x;y2C
jx�yjD1

u.x/u.y/ �
1C ˇ

4

X
x;y2C
jx�yjD1

ju.x/u.y/j:

The first term above is the classical ferromagnetic interaction contribution, while the
second sum gives the total number of interactions, irrespective of the phase. This second
term is required since in our model same-phase and different-phase interactions are both
assumed to give negative contributions to the energy.

Under the above provisions, minimisers of the problem

min
®
F.C; u/ W C � Z2; u W C !˙1;

#¹x 2 C W u.x/ D 1º D NA; #¹x 2 C W u.x/ D �1º D NB
¯

corresponds to solutions .A;B/ of the double-bubble problem (1.1), under the equivalence

A � ¹x 2 C W u.x/ D 1º and B � ¹x 2 C W u.x/ D �1º:

In fact, each pair of first neighbours contributes �1 to F if it belongs to the same phase
and �ˇ if it belongs to different phases, namely,

F.C; u/ D E.A;B/:

The literature on the Ising model is vast, and the reader is referred to [12, 37] for a
comprehensive collection of results. Ising models are usually investigated from the point
of view of their thermodynamic limit #C !1 and at positive temperature. In particular,
models are usually formulated on the whole lattice or on a large box with constant bound-
ary states. Correspondingly, the analysis of Wulff shapes is concerned with the study of a
droplet of one phase in a sea of the other one [13].

Our setting is much different, for our system is finite and boundary effects matter. To
the best of our knowledge, we contribute here the first characterisation of ferromagnetic
Ising ground states, where the location C of the system is also unknown and results from
minimisation.

Alternatively to the finite two-state setting above, one could equivalently formulate
the minimisation problem in the whole Z2 by allowing a third state, to be interpreted as
interaction-neutral. In particular, we could equivalently consider the minimisation problem

min
®
F.Z2; v/ W v W Z2 ! ¹�1; 0; 1º;

#¹x 2 Z2 W v.x/ D 1º D NA; #¹x 2 Z2 W v.x/ D �1º D NB
¯
:

The equivalence is of course given by setting u D v on

C WD
®
x 2 Z2 W v.x/ 6D 0

¯
:
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2.3. Finite Heisenberg model

The three-state formulation of the previous section can be easily reconciled within the
frame of the classical Heisenberg model [45]. In particular, we will define the vector-
valued state function sWM ! ¹s�1; s0; s1º where the box M is given as

M WD Œ0;m�2 \ Z2

for m large. We choose the three possible spins as

s0 D .�1; 0/; s1 D

�
ˇ;
p
1 � ˇ2

�
; s�1 D

�
ˇ;�

p
1 � ˇ2

�
:

The energy of the system is defined as

H.s/ D �
X
x;y2M
jx�yjD1

s.x/ � s.y/:

For all sWM !¹s�1; s0; s1º, letA WD ¹x 2M W s.x/D s1º andB WD ¹x 2M W s.x/D s�1º.
We are interested in the minimisation problem

min
®
H.s/ W s WM ! ¹s�1; s0; s1º; #A D NA; #B D NB

¯
:

By letting m be very large compared with NA and NB , we can with no loss of generality,
assume that s D s0 close to the boundary @M .

Let us now show that the latter minimisation problem is indeed equivalent to the
double-bubble problem (1.1). To this aim, we start by noting that the total number of first-
neighbour interactions inM is 2m2 C 2m. First-neighbour interactions between identical
states contribute �1 to the energy, s0 � s1 and s0 � s�1 interactions contribute �s1 � s0 D
�s�1 � s0 D ˇ, and s1 � s�1 interactions contribute �s1 � s�1 D 1 � 2ˇ2. We hence have
that

H.s/C .2m2 C 2m/ D .ˇ C 1/.Q.A;Ac n B/CQ.B;Bc n A//C .2 � 2ˇ2/Q.A;B/

D .ˇ C 1/.Q.A;Ac n B/CQ.B;Bc n A/C .2 � 2ˇ/Q.A;B//

D .ˇ C 1/P.A;B/

so that minimising H is actually equivalent to solving (1.1).

2.4. Minimum balanced-separator problem

One can rephrase the double-bubble problem (1.1) as a minimum balanced-separator prob-
lem on an unknown graph as well. Indeed, as interspecific contributions are energetically
less favoured with respect to intraspecific ones, given the common occupancy V D A[B

of the two phases, one is asked to part V into two regions A and B with given size in
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such a way that the interface between A and B is minimal. This corresponds to a min-
imum balanced-separator problem on the unit-disk graph corresponding to V , i.e., finding
a disjunct partition V D A [ B solving

min
®
Q.A;B/ W #A D NA; #B D NB

¯
:

This is indeed a classical problem with relevant applications in operations research and
computer science [41].

Here, we generalise the above minimum balanced-separator problem by letting the
underlying graph also vary and by simultaneously optimising its perimeter. In particular,
we consider

min
®
P.A;B/ W V D A [ B;A \ B D ;; #A D NA; #B D NB

¯
;

where .V ;E/ is again the unit graph related to A [ B � Z2.
Also, in this setting, the competition between minimisation of the interface and of the

perimeter is evident. Recall

P.A;B/ D Q.A;Ac n B/CQ.B;Bc n A/C .2 � 2ˇ/Q.A;B/:

On the one hand, a graph with few edges betweenA andB would give a short cutQ.A;B/,
while necessarily having largeQ.A;Ac nB/CQ.B;Bc nA/. On the other hand, a graph
with small Q.A;Ac n B/CQ.B;Bc n A/ has A [ B close to be a square, and for NA D
NB , all possible cuts partitioning it in two are approximately as long as its side.

3. Notation

Let us collect here some notation, to be used throughout the paper. For each pair of disjoint
sets A;B � Z2, we call the elements of A and B the A-points and B-points, respectively.
We let NA D #A and NB D #B . For any point p 2 A [ B , we denote its first and second
coordinate by p D .px ; py/. We say that two points are connected by an edge if their
distance is equal to one. (Equivalently, we sometimes use the words bond or connection in
place of edge.) We say that a set S � A[B is connected if it is connected as a graph with
edges described above, or equivalently if the corresponding unit-disk graph is connected.

For the sake of definiteness, from here on, our notation is adapted to the setting of
Section 2.1. In particular, we say that a configuration is minimal (or optimal) if it minim-
ises the energy E given in (2.1) in the class of configurations with the same number of A-
and B-points. Recall once more that minimisers of E and solutions of the double-bubble
problem (1.1) coincide.

Since the number of points is finite, any configuration lies in a bounded square. Sup-
pose that a configuration .A;B/ hasNrow rows (i.e., there areNrow rows in Z2 with at least
one point from A [ B). For k D 1; : : : ; Nrow, denote by Rk the kth row (counting from
the top). In a similar fashion, Ncol denotes the number of columns, and Ck indicates the
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kth column (counting from the left). To simplify the notation, given a finite set X � Z2,
we denote

X row
k D X \Rk and X col

k D X \ Ck :

We will typically apply this to the setsA,B , their union or some of their subsets. Moreover,
denote by nrow

k
the number of A-points in the row Rk and bymrow

k
the number of B-points

in the row Rk . In a similar fashion, ncol
k

and mcol
k

denote the number of A- and B-points
in column Ck , respectively. In the following, we will frequently modify configurations.
Not to overburden the notation, when we use the notation nrow

k
and mrow

k
(and similarly

for columns), we always refer to the configuration in the same sentence, unless otherwise
specified.

For two points p; q 2 A [ B , we say that p lies to the left (respectively, right) of q if
py D qy and px < qx (respectively, px > qx). In other words, they are in the same row,
and the first coordinate of p is smaller (respectively, larger) than the first coordinate of
q. We say that p lies directly to the left (respectively, right) of q if additionally p and q
are connected by an edge. Similarly, we say that p lies above (respectively, below) q if
px D qx and py > qy (respectively, py < qy). Again, we say that p lies directly above
(respectively, below) q if additionally these two points are connected by an edge.

We will also say that the setArow
k

lies to the left (respectively, right) ofB row
k

if for every
p 2 Arow

k
and q 2 B row

k
the point p lies to the left (respectively, right) of q. (Note that by

definition Arow
k

and B row
k

are in the same row.) We also say that Arow
k

lies directly to the
left of B row

k
if additionally there is a connection between one of the points in Arow

k
and one

of the points in B row
k

. An analogous notion is used for columns.
Furthermore, we say that a number of points from different rows are aligned if their

first coordinates are equal. We also say that two sets are aligned to the right (or left) if
their rightmost (leftmost) points are aligned. The same notion is also used for columns.

Finally, given a finite set X � Z2, we denote by X C .a; b/ the set consisting of all
points of X shifted by the vector .a; b/ 2 Z2.

4. Connectedness, separation, and interface

In this section, we introduce a procedure in order to modify an arbitrary configuration
.A; B/ into another configuration . OA; OB/ with specific additional properties, without in-
creasing the energy. In particular, this will prove that for a minimal configuration the sets
A, B , and A [ B are connected.

4.1. Description of the procedure

The goal of this section is to present a procedure allowing to modify a configuration,
making it more regular in the following sense: not only the sets A and B are connected,
but also for any k D 1; : : : ; Nrow and any l D 1; : : : ; Ncol the sets Arow

k
, B row

k
, .A[ B/row

k
,

Acol
l

, Bcol
l

, and .A [ B/col
l

are connected. We start with the following preliminary result.
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Proposition 4.1. Let .A; B/ be a configuration in the sense described above. If there are
any empty rows (or columns) between any two rows (or columns) in .A; B/, then there
exists a configuration . OA; OB/ with strictly smaller energy.

Proof. Without restriction we present the argument for rows. Suppose that between rows
Rk andRkC1 for some k 2 ¹1; : : : ;Nrow � 1º there are l empty rows. Then, we can reduce
the energy in the following way: denote by .A0;B 0/ the configuration consisting of the top
k rows and by .A00; B 00/ the configuration consisting of the bottom Nrow � k rows. Then,
we remove the empty rows, i.e., replace .A00; B 00/ with .A00; B 00/ C .0; l/. Clearly, this
does not increase the energy of the configuration .A;B/. If after this shift there is at least
one connection between Arow

k
[ B row

k
and Arow

kC1
[ B row

kC1
, the energy even decreases by

at least ˇ. Otherwise, if after this shift there are no connections between Arow
k
[ B row

k

and Arow
kC1
[ B row

kC1
, we shift the configuration .A0; B 0/ horizontally to make at least one

connection. Again, the energy is decreased by at least ˇ.

Hence, in studying minimal configurations, we may assume that there are no empty
rows and columns. Now, we are ready to describe a modification procedure making the
configuration more regular. Notice that we may write the energy in the following way:

E.A;B/ D

NrowX
kD1

E row
k .A;B/C

Nrow�1X
kD1

E inter
k .A;B/:

Here, E row
k
.A;B/ is the part of the energy given by interactions in the row Rk , namely

E row
k .A;B/ D

1

2

X
xi ;xj2A

row
k
[B row

k

Vsticky.xi ; xj /; (4.1)

and E inter
k
.A; B/ is the part of the energy given by interactions between rows Rk and

RkC1, namely

E inter
k .A;B/ D

X
xi2A

row
k
[B row

k
; xj2A

row
kC1
[B row

kC1

Vsticky.xi ; xj /:

Now, let us see that we may bound E row
k

and E inter
k

by expressions depending on nrow
k

and
mrow
k

. First, we estimate E row
k

.

Lemma 4.2. We have

E row
k .A;B/ �

8<:�.nrow
k
Cmrow

k
/C 2 � ˇ if nrow

k
> 0;mrow

k
> 0;

�.nrow
k
Cmrow

k
/C 1 else:

Moreover, this inequality is an equality if and only if the sets Arow
k

, B row
k

, and Arow
k
[B row

k

are connected.
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Figure 2. Different configurations inside a single row.

This result is illustrated in Figure 2; assuming that both Arow
k

and B row
k

consist of three
points, we present three possible configurations. The configuration on top is optimal and is
exactly of the form given in the statement of the lemma, while the other two configurations
do not have the optimal energy.

Proof. We consider two cases. In the first case, we suppose that mrow
k
D 0 (a similar

argument works if nrow
k
D 0): then, the desired inequality takes the form E row

k
.A; B/ �

�nrow
k
C 1. Since Arow

k
is a subset of a single row, nrow

k
� 1 is the maximum number of

connections between points in Arow
k

and it is achieved only if Arow
k

is connected.
In the second case, we have nrow

k
> 0 and mrow

k
> 0. Since Arow

k
[ B row

k
is a subset

of a single row, the maximum number of connections (regardless of their type) is nrow
k
C

mrow
k
� 1. It is achieved only if .A[B/row

k
is connected. Among these, at most nrow

k
� 1 are

connections between points in Arow
k

and at most mrow
k
� 1 are connections between points

in B row
k

. These numbers are achieved if and only if Arow
k

and B row
k

are connected. Each of
these connections contributes �1 to the energy and there can be at most nrow

k
Cmrow

k
� 2

of them. The remaining connections are between Arow
k

and B row
k

contributing �ˇ to the
energy. The fact that ˇ < 1 yields the statement.

Now, we make a similar computation for E inter
k

.

Lemma 4.3. We have

E inter
k .A;B/ � �.1 � ˇ/

�
min¹nrow

k ; nrow
kC1º Cmin¹mrow

k ; mrow
kC1º

�
� ˇmin

®
nrow
k Cm

row
k ; nrow

kC1 Cm
row
kC1

¯
:

Moreover, equality is achieved if and only if the following conditions hold:

(1) There are min¹nrow
k
; nrow
kC1
º points in Arow

k
directly above points in Arow

kC1
.

(2) There are min¹mrow
k
; mrow

kC1
º points in B row

k
directly above points in B row

kC1
.

(3) Supposing that nrow
k
Cmrow

k
� nrow

kC1
Cmrow

kC1
, there is a point in Arow

k
[ B row

k
dir-

ectly above every point in Arow
kC1
[ B row

kC1
. Otherwise, if nrow

k
C mrow

k
< nrow

kC1
C

mrow
kC1

, there is a point in Arow
kC1
[B row

kC1
directly below every point in Arow

k
[B row

k
.
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Figure 3. Different alignments of adjacent rows.

This result is illustrated in Figure 3. We present three configurations consisting of
two rows; each of them has the form prescribed by Lemma 4.2 inside both rows, but the
alignment of the two rows is different. Only the top configuration is optimal.

Proof. First, as there are nrow
k
Cmrow

k
points in Arow

k
[ B row

k
and nrow

kC1
Cmrow

kC1
points in

Arow
kC1
[ B row

kC1
, there are at most min¹nrow

k
C mrow

k
; nrow
kC1
C mrow

kC1
º connections between

points inArow
k
[B row

k
andArow

kC1
[B row

kC1
, regardless of their type. Among these, we denote

the number of connections between points in Arow
k

and Arow
kC1

by Qnk and the number of
connections between points in B row

k
and B row

kC1
by Qmk . We have Qnk � min¹nrow

k
; nrow
kC1
º

and Qmk � min¹mrow
k
; mrow

kC1
º with equality if these many points in Arow

kC1
are placed dir-

ectly under points in Arow
k

(and similarly for B row
k

and B row
kC1

). Each of these connections
contributes �1 to the energy, i.e., a total contribution of �Qnk � Qmk . Then, there are at
most min¹nrow

k
Cmrow

k
; nrow
kC1
Cmrow

kC1
º � . Qnk C Qmk/ possible connections which need to

be either connections between points in Arow
k

and B row
kC1

or between points in B row
k

and
Arow
kC1

. Either way, each of these connections contributes �ˇ to the energy. In conclusion,
we obtain the desired inequality, with equality only if

Qnk D min
®
nrow
k ; nrow

kC1

¯
; Qmk D min

®
mrow
k ; mrow

kC1

¯
;

and if there are min¹nrow
k
Cmrow

k
; nrow
kC1
Cmrow

kC1
º connections between Arow

k
[ B row

k
and

Arow
kC1
[ B row

kC1
.

In light of these estimates, we describe a simple modification procedure making any
configuration more regular. For any configuration .A; B/, we construct a configuration
. OA; OB/ having the same number of A- and B-points in each row as .A; B/ such that the
energy is lower or equal and . OA; OB/ has some additional structure properties.

Step 0. We start with the first row from the top. We let OA1 be a connected set in a single
row consisting of nrow

1 atoms and let OB1 be the connected set in the same row with mrow
1

points right of OA1, in such a way that there is a connection between OA1 and OB1. By
Lemma 4.2, we have

E row
1 . OA; OB/ � E row

1 .A;B/:
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Figure 4. Different cases of the regularisation procedure.

Step k . for k D 1; : : : ; Nrow � 1/. We suppose that the sets in the previous steps have
been constructed in such a way that OAk , OBk , and OAk [ OBk are connected, and OAk lies on
the left of OBk . We will now define OAkC1 and OBkC1. To this end, we distinguish four cases.

Case 1. nrow
k
� nrow

kC1
andmrow

k
�mrow

kC1
. We place nrow

k
points of OAkC1 directly below OAk .

Then, we put the remaining nrow
kC1
� nrow

k
points to the left of the previously placed points

so that OAkC1 is connected. Similarly, we place mrow
k

points from OBkC1 directly below
OBk and the remaining mrow

kC1
� mrow

k
points to the right of the previously placed points

so that OBkC1 is connected. By Lemma 4.2, we have E row
kC1

. OA; OB/ � E row
kC1

.A; B/, and by
Lemma 4.3, we have E inter

k
. OA; OB/ � E inter

k
.A; B/. The situation is presented in Figure 4

(the top configuration).

Case 2. nrow
k

> nrow
kC1

and mrow
k

> mrow
kC1

. We place all the points of OAkC1 directly below
OAk , starting from the right. Then, we place all the points of OBkC1 directly below OBk ,

starting from the left. In this way, the sets OAkC1, OBkC1 and OAkC1 [ OBkC1 are connected.
Again, by Lemma 4.2, we have E row

kC1
. OA; OB/ � E row

kC1
.A;B/, and by Lemma 4.3, we have

E inter
k
. OA; OB/ � E inter

k
.A; B/. The situation (after exchanging the roles of the two rows) is

presented in the top configuration in Figure 4.

Case 3. nrow
k
� nrow

kC1
and mrow

k
> mrow

kC1
. First, we put nrow

k
points of OAkC1 directly below

OAk . Then, we consider two possibilities:

• If nrow
k
Cmrow

k
� nrow

kC1
Cmrow

kC1
, we place the remaining nrow

kC1
� nrow

k
points of OAkC1

under OBk , starting from the left so that OAkC1 is connected. Then, we place the mrow
kC1

points of OBkC1 to the right of the previously placed points so that OBkC1 and OAkC1 [
OBkC1 are connected. The situation is presented in Figure 4 (the left configuration).

• If nrow
k
Cmrow

k
< nrow

kC1
Cmrow

kC1
, we place the mrow

kC1
points of OBkC1 below points in

OBk , starting from the right, so that OBkC1 is connected. Then, we place mrow
k
�mrow

kC1



M. Friedrich, W. Górny, and U. Stefanelli 94

points of OAkC1 between the two sets of previously placed points. Finally, we place the
remaining points of OAkC1 to the left of all points placed so far so that OAkC1 [ OBkC1
is connected. The situation is presented in Figure 4 (the right configuration).

In both cases, by Lemma 4.2, we haveE row
kC1

. OA; OB/�E row
kC1

.A;B/, and by Lemma 4.3,
we get E inter

k
. OA; OB/ � E inter

k
.A;B/.

Case 4. nrow
k
> nrow

kC1
and mrow

k
� mrow

kC1
. We proceed as in Case 3 with the roles of A and

B interchanged, with “left” and “right” also interchanged. Again, by Lemma 4.2 we have
E row
kC1

. OA; OB/ � E row
kC1

.A;B/ and by Lemma 4.3, we have E inter
k
. OA; OB/ � E inter

k
.A;B/. The

situation is presented in Figure 4 (the two bottom configurations) after exchanging the
roles of the two colours.

Proposition 4.4. The procedure described above modifies a configuration .A; B/ into a
configuration . OA; OB/ with E. OA; OB/ � E.A; B/. Moreover, if one of the sets Arow

k
, B row

k
,

or .A [ B/row
k

for k D 1; : : : ; Nrow is not connected, or one of the properties .1/–.3/ in
Lemma 4.3 is violated, then E. OA; OB/ < E.A;B/.

Proof. The construction ensures that the configuration . OA; OB/ has the same number of
rows as .A;B/. Hence, we compute

E. OA; OB/ D

NrowX
kD1

E row
k . OA; OB/C

Nrow�1X
kD1

E inter
k . OA; OB/

�

NrowX
kD1

E row
k .A;B/C

Nrow�1X
kD1

E inter
k .A;B/

D E.A;B/:

In view of Lemma 4.2, we obtain strict inequality if one of the sets Arow
k

, B row
k

, or .A [
B/row

k
is not connected. In a similar fashion, we get strict inequality whenever one of the

properties (1)–(3) in Lemma 4.3 does not hold.

In particular, for optimal configurations .A;B/, all setsArow
k

,B row
k

, and .A[B/row
k

are
connected. In other words, inside any row we have first all points of one type and then all
points of the other type without any gaps in between. Moreover, we may make use of this
procedure (and prove an analogue of Lemma 4.2–Proposition 4.4) for columns in place
of rows. Hence, the sets Acol

k
, Bcol

k
, and .A [ B/col

k
are connected. In other words, given

an optimal configuration, in each column, there are first all points of one type and then all
points of the other type without any gaps in between. In particular, as a consequence, we
get an important property of any minimising configuration.

Theorem 4.5. Suppose that .A; B/ is an optimal configuration. Then, A and B are con-
nected.
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Proof. Suppose by contradiction that A is not connected (we proceed similarly for B).
First of all, let us notice that for each k D 1; : : : ;Nrow the setArow

k
is connected. Otherwise,

by Proposition 4.4, we find that .A;B/ was not an optimal configuration.
Let us first suppose that nrow

k
> 0 for all k 2 1; : : : ; Nrow (i.e., Arow

k
¤ ;). Since every

Arow
k

is connected, ifA is not connected, it means that there is no connection betweenArow
k

and Arow
kC1

for some choice of k. In this case, by Lemma 4.3 and by Proposition 4.4, we
find that .A;B/ was not an optimal configuration.

Hence, the only remaining possibility that A is not connected is that there exist k1 <
k2 < k3 such that nrow

k1
; nrow
k3
> 0 and nrow

k2
D 0 (i.e.,Arow

k1
;Arow

k3
¤ ; andArow

k2
D ;). Without

loss of generality, we may require that for every k D k1 C 1; : : : ; k3 � 1 the set Arow
k

is
empty. Let us apply the reorganisation .A; B/! . OA; OB/ using the procedure described
above. Clearly, . OA; OB/ is still optimal by Proposition 4.4. Then, for k D k1, we are either
in Case 2 or in Case 4 of the procedure. We distinguish these two cases.

In the first one, suppose that for k D k1 Case 2 of the procedure applies. Then, the
leftmost point of OBk1C1 lies directly below the leftmost point of OBk1 . Then, since for every
k D k1C 1; : : : ; k3 � 1 the set Arow

k
is empty, Case 1 or 3 of the procedure shows that also

the leftmost point of OBk lies below the leftmost point of OBk1C1 (hence below the leftmost
point of OBk1 ). Now, for k D k3 � 1, when we place the sets OAk3 and OBk3 , we either fall
into Case 1 or Case 3 in the description of the procedure. In Case 1, the leftmost point of
OBk3 is again placed below the leftmost point of OBk1 . Then, the rightmost point of OAk3 is

placed below the rightmost point of OAk1 . Now, one reaches a contradiction by following
the same construction of Proposition 4.4, by exchanging the role of rows and columns. In
Case 3, we either have that a point of OAk3 is placed below a point of OAk1 , which as above is
a contradiction to Proposition 4.4, or the leftmost point of OAk3 is placed below the leftmost
point of OBk1 . In particular, the leftmost point of OAk3 is placed one point to the right of the
rightmost point of OAk1 . Then, by Lemma 4.3 (1) and Proposition 4.4 for columns in place
of rows, we again see that the energy of . OA; OB/ was not minimal, a contradiction. The
situation is presented in the top line of Figure 5 in a simplified setting with k1 D 1 and
k3 D 3.

In the second case, we have that for k D k1 Case 4 of the algorithm applies. Then,
the leftmost point of OBk1C1 does not lie directly below the leftmost point of OBk1 , but
it lies to its left (but no further than the leftmost point of OAk1 ). Again, for every k D
k1C 1; : : : ; k3 � 1 the leftmost point of OBk lies below the leftmost point of OBk1C1. Again,
when we place the sets OAk3 and OBk3 , Case 1 or Case 3 of the procedure applies. In Case
1, the leftmost point of OBk3 is again placed below the leftmost point of OBk1C1. Hence, the
rightmost point of OAk3 is placed either below a point in OAk1 or, in view of the definition of
OBk1C1, one point to the left from the leftmost point of OAk1 . As before, by Lemma 4.3 (1)

and Proposition 4.4 for columns in place of rows, we see that the energy of . OA; OB/ was
not minimal, a contradiction. In Case 3, a point of OAk3 is placed below the leftmost point
of OBk3�1. This shows that the leftmost point of OAk3 is placed either below a point in OAk1
or one point to the right from the rightmost point of OAk1 . The situation is presented in the
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Figure 5. Different cases of the regularisation procedure.

bottom line of Figure 5 in a simplified setting with k1 D 1 and k3 D 3. As before, we
obtain a contradiction to the minimality of . OA; OB/, and the proof is concluded.

A careful inspection of the proofs of Proposition 4.4 and Theorem 4.5 provides some
more information about the structure of any minimising configuration, collected in the
following statements.

Proposition 4.6. Let .A; B/ be an optimal configuration. Then, for any row Rk , the sets
Arow
k

, B row
k

and .A [ B/row
k

are connected. The same claim holds for columns.

Proposition 4.7. Let .A;B/ be an optimal configuration. If for some 1 � k1 < k2 � Nrow

we have Arow
k1
; Arow

k2
¤ ;, then also Arow

k
¤ ; for all k1 � k � k2. The same claim holds

for columns and the set B .

Proposition 4.8. Let .A;B/ be an optimal configuration. Suppose that there exists a row
Rk0 such that Arow

k0
; B row

k0
¤ ; and Arow

k0
lies to the left of B row

k0
. Then, for every row Rk

either Arow
k

lies to the left of B row
k

or one of these sets is empty. The same claim holds for
columns and if we interchange the roles of A and B .

We observe that Theorem 4.5 and Proposition 4.6 imply Theorem 1.1 (i) and that The-
orem 1.1 (ii) follows from Proposition 4.4 and Propositions 4.7–4.8. Corollary 4.10 below
implies Theorem 1.1 (iii) and will be crucial for our later considerations. To this end, we
introduce the following definition.

Definition 4.9. The interface IAB (between A and B) is the set of midpoints of edges
connecting a point in A with a point in B . We say that there is an edge between two points
p;q 2 IAB if jp � qj 2 ¹1=

p
2;1º and the line segment between p and q does not intersect

any point in Z2. We say that the interface is connected if it is connected as a graph.
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Figure 6. Definition of the interface.

In other words, a point p 2 R2 lies in the interface IAB between A and B if there exist
points p1 2 A and p2 2 B such that

jp � p1j D jp � p2j D 1=2:

Necessarily, the interface is a subset of the lattice²�
k C

1

2
; l

�
W k; l 2 Z

³
[

²�
k; l C

1

2

�
W k; l 2 Z

³
:

An example is presented in Figure 6.
Notice that Proposition 4.6 implies that there is at most one point in IAB which is a

midpoint of an edge between a point in Arow
k

and a point in B row
k

. Similarly, there is at
most one point in IAB which is a midpoint of an edge between a point in Acol

k
and a point

in Bcol
k

. Hence, we get the following result.

Corollary 4.10. For any optimal configuration .A; B/, the interface IAB is connected.
Moreover, it is monotone: up to reflections, it goes only upwards and to the right, i.e.,
given p; q 2 IAB , if p1 > q1, then p2 � q2.

We will use this result to study the minimal configurations in the following way: we
will identify all possible shapes of the interface, collected in different classes. Analysing
the different classes in detail, we will show that there always exists an optimal config-
uration in the most natural class (called Class 	). For this class, we are able to directly
compute the minimal energy, explicitly exhibit a minimiser, and provide a sharp estimate
of the possible mismatch of ground states in terms of their size, see (1.4).

Let us also note that the introduction of IAB enables us to write a convenient formula
for the energy associated to an optimal configuration .A; B/. Namely, denote by EA the
energy inside A, i.e., minus the number of bonds between A-points. In a similar fashion,
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Figure 7. Minimisers for NA D 2, NB D 1.

we define EB . Eventually, by
EAB WD �#IABˇ

we denote the interfacial energy, i.e., minus the number of bonds betweenA- andB-points
weighted by the coefficient ˇ. Then,

E.A;B/ D EA CEB CEAB : (4.2)

This simple formula has a very important consequence. Namely, if we separate the sets A
and B and reattach them in a different way (i.e., apply an isometry to one or both sets),
then EA and EB do not change, but EAB possibly might. Therefore, if a configuration is
optimal, it has the longest possible interface with respect to this operation. We will use
variants of this argument on multiple occasions in Section 8.

5. A collection of examples

In this short section, we consider a few examples of minimisers that will serve as a
motivation for the discussion about possible shapes of the interface in the next section.
By Theorem 4.5, for any optimal configuration, both sets A and B are connected. The
properties of an optimal configuration are further restricted by Propositions 4.6–4.8 and
Corollary 4.10. For different choices ofNA;NB >0 and ˇ 2 .0;1/, we provide here a com-
plete account of optimal configurations. Note that the limited number of points involved
allows a direct exhaustive analysis. Even though some optimal configuration is irregular,
the main effort in this paper will be to prove that actually for NA D NB and ˇ � 1=2 one
may find an optimal configuration which is very regular, in the sense that they roughly
consist of two rectangles as given in Theorem 1.1 (v).

The first example consists of only three points: we have NA D 2, NB D 1, for any
ˇ 2 .0; 1/. Even then, the minimiser may fail to be unique: up to isometries, we have two
minimisers, both presented in Figure 7.

The second example consists of six points: we have NA D NB D 3 for any ˇ 2 .0; 1/.
The numbers of A- and B-points are equal. The minimiser may fail to be unique: up to
isometries, we have two minimisers, both presented in Figure 8. Note that the interface is
not necessarily straight. However, there is a minimiser which has a straight interface.

The third example consists of eight points: we have NA D NB D 4 for any ˇ 2 .0; 1/.
In this case, the minimiser is unique. Up to isometries, the only solution is presented in
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Figure 8. Minimisers for NA D 3, NB D 3.

Figure 9. Unique minimiser for NA D 4, NB D 4.

Figure 9. Note that the interface is straight and both rectangles are “full”. This situation is
very special, and in a generic case, we do not expect uniqueness.

The fourth example consists of seven points: we have NA D 3, NB D 4, for any ˇ 2
.0;1/. Up to isometries, we have three minimisers, presented in Figure 10. As in the second
example of Figure 8, in the configuration on the right, the interface is “L-shaped”.

The fifth example consists of ten points: we have NA D NB D 5 for any ˇ 2 .0; 1/.
Up to isometries, we have five possible minimisers, presented in Figure 11. Notice that
the heights of the two types may differ and that the interface may fail to be straight.
Furthermore, the two configurations on the left differ even though the interface is straight.

The final example consists of sixteen points: we have NA D 12 and NB D 4. Then,
the situation may differ with ˇ. For ˇ 2 .1=2; 1/, up to isometries, we have two possible
minimisers (with energy�20� 4ˇ), presented in Figure 12. In one case, we have a straight
interface, while in the other it is L-shaped.

For ˇ 2 .0; 1=2/, up to isometries, we have three possible minimisers (with energy
�21 � 2ˇ), presented in Figure 13. Here, the structure of sets A and B is fixed, but we
may attach them in a few different ways.

For ˇ D 1=2, all configurations presented in Figures 12 and 13 are minimal.

6. Classification of admissible configurations

For simplicity, we will call the configurations which satisfy the statement of Theorem 4.5
and of the corollaries below it admissible. In particular, these results show that optimal
configurations are admissible. In this section, we collect admissible configurations in dif-
ferent classes. These classes will be analysed in more detail in the subsequent sections.
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Figure 10. Minimisers for NA D 3, NB D 4.

Figure 11. Minimisers for NA D 5, NB D 5.

The starting point is the observation that by Proposition 4.7 we have that there cannot be
a row Rk0 such that nrow

k
> 0 above and below this row (for some k > k0 and some other

k < k0), while nrow
k0
D 0. The same result holds for columns. Therefore, we may cluster

the minimisers into several classes which are easier to handle and are described using this
property.

Let us start from the top and suppose that nrow
1 > 0 (otherwise, we exchange the roles

of the two types). Denote by Rk0 the last row such that nrow
k0

> 0. Then, we have the two
possibilities

k0 D Nrow; (6.1a)

k0 < Nrow: (6.1b)

In eq. (6.1a), we distinguish three possibilities, depending on whether B row
1 and B row

Nrow
are

empty or not, ifmrow
1 ;mrow

Nrow
> 0, then each row contains points from both types. This case

corresponds to class 	. If mrow
1 or mrow

Nrow
equals zero, then the B-part of the configuration
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Figure 12. Minimisers for NA D 12, NB D 4, large ˇ.

Figure 13. Minimisers for NA D 12, NB D 4, small ˇ.

has a smaller height. This corresponds to either class 		 or 			. In eq. (6.1b), we have

nrow
Nrow
D 0 and mrow

Nrow
> 0:

We distinguish two possibilities, if the last column Bcol
Nrow

is not empty, i.e., mcol
Ncol

> 0, the
configuration is in class 	V . The case mcol

Ncol
D 0 instead corresponds to class V .

By performing the same analysis for columns, and recalling the corollaries after The-
orem 4.5, we end up with a number of possibilities which we list below, where without
restriction we assume that ncol

1 > 0. This list is complete up to isometries and changing
roles of the types. For the sake of the presentation, by applying Corollary 4.10, we can
without restriction (possibly up to isometry and changing the roles of the types) assume
that the interface is going upwards and to the right. We divide all admissible configurations
into five main classes, the first three being quite regular and the last two a bit more difficult
to handle. In this section, we list all classes and introduce appropriate notation for each
of them. In the next section we advance a regularisation procedure for all configurations.
This has the aim of proving that for NA D NB and ˇ � 1=2 all minimal configurations
belong to Class 	, 	V , or V , as well as checking some fine geometrical properties of such
minimisers.

6.1. Class 	

The first possibility is the reference case: we say that an admissible configuration .A; B/
belongs to Class 	 if for each k D 1; : : : ; Nrow we have nrow

k
> 0 and mrow

k
> 0. In other
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l1 l2 l3

h

Figure 14. Class 	.

words, eq. (6.1a) holds with mrow
1 ; mrow

Nrow
> 0. The situation is presented in Figure 14.

Examples of optimal configurations in Class 	 can be found in Figure 7 (on the right),
in Figure 8 (both), in Figure 9, in Figure 10 (in the middle), in Figure 11 (all but the two
middle ones), and in Figure 12 (on the right). The abundance of examples in Class 	 is
in some sense expected. Indeed, we will prove that for many choices of NA, NB , and ˇ
existence of an optimal configuration in Class 	 is guaranteed.

Let us introduce the following notation. Let h denote the number of rows (which in
this case corresponds to the number of rows of bothA and B). Let l1 denote the number of
columns such that Acol

k
¤ ; and Bcol

k
D ;. Let l2 denote the number of columns such that

Acol
k
¤ ; and Bcol

k
¤ ;. Finally, let l3 denote the number of columns such that Acol

k
D ;

and Bcol
k
¤ ;. This notation is also presented in Figure 14. Then, in view of (2.2), the

energy (2.1) may be expressed as

E.A;B/ D �2.NA CNB/C .l1 C l2 C l3/C hC .1 � ˇ/.l2 C h/: (6.2)

In particular, the energy splits into the bulk energy �2.NA C NB/ and, up to a factor
1=2, into the lattice perimeter introduced in (1.2). Clearly, only the latter is relevant for
identifying optimal configurations. For convenience, we will frequently refer to it as the
surface energy.

In the next section, we will simplify the structure of configurations in Class 	, without
increasing the energy, in order to compute the minimal energy in this class. After such
regularisation, it will turn out that we have two possibilities: either l2 D 0 or l2 D 1; i.e.,
either the interface is a straight line or it has one horizontal jump, see Proposition 7.1.
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6.2. Class 		

We say that an admissible configuration .A; B/ belongs to Class 		 if there exists a
column Ck0 such that for all k � k0 we have ncol

k
> 0 andmcol

k
D 0, for all k > k0 we have

ncol
k
D 0 and mcol

k
> 0, and .A;B/ does not lie in Class 	. In other words, the interface is

a straight vertical line, and there exists at least one row which contains only one type (as
otherwise .A; B/ 2 	). Examples of optimal configurations in this class can be found in
Figure 7 (on the left), in Figure 10 (on the left), and in Figure 13 (all of them). Notice that
in all these examples we have NA ¤ NB . Indeed, in Section 8, we will show that, if NA
and NB are equal, such a configuration cannot be optimal.

A priori, this set of configurations may arise from both cases in (6.1). Up to changing
the roles the two types, however, we may assume that we are in situation (6.1a), as we can
see in the following simple observation.

Lemma 6.1. Fix NA; NB > 0 and ˇ 2 .0; 1/. Suppose that .A; B/ 2 		 is a minimal
configuration. Then, there exists a minimal configuration . OA; OB/ 2 		 such that the last
rows align, i.e., nrow

Nrow
> 0 and mrow

Nrow
> 0.

Proof. Without loss of generality, suppose that nrow
Nrow

> 0 and that r0 < Nrow is the biggest
number such thatmrow

r0
> 0. Notice that, since the interface is a straight line, we may move

the set B by the vector .0; r0 � Nrow/ so that the last two rows align and this procedure
does not increase the energy. The resulting configuration . OA; OB/ also lies in Class 		, if
after this procedure we had also nrow

1 > 0 and mrow
1 > 0; i.e., . OA; OB/ lies in Class 	, then

we would have added at least one bond. This induces a drop in the energy, a contradiction
to the fact that .A;B/ is a minimal configuration.

After applying this regularisation argument, we introduce the following notation. Up
to reflection along the (straight) interface and interchanging the roles of the types, we may
assume that A is on the left-hand side and that it has more nonempty rows than B . Then,
let h1 denote the number of rows such that Arow

k
¤ ; and B row

k
D ;, and let h2 be the

number of rows such that Arow
k
¤ ; and B row

k
¤ ;. Moreover, let l1 denote the number

of columns such that Acol
k
¤ ; and l3 denote the number of columns such that Bcol

k
¤ ;

(the notation l2 is omitted on purpose to simplify some later regularisation arguments).
Then, arguing as in the justification of formula (6.2), see also (2.2), the energy (2.1) may
be expressed as

E.A;B/ D �2.NA CNB/C .l1 C l3/C .h1 C h2/C .1 � ˇ/h2: (6.3)

The situation is presented in Figure 15.

6.3. Class 			

We say that an admissible configuration .A; B/ belongs to Class 			 if for each k D
1; : : : ; Nrow we have nrow

k
> 0 and for each l D 1; : : : ; Ncol we have ncol

l
> 0. In other

words, each row and each column of .A;B/ contains at least one A-point (or equivalently,
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l1

h1

l3

h2

Figure 15. Class 		.

for every B-point there is a A-point above it and another one to its left). An example of
an optimal configuration in this class can be found in Figure 12. Note that in this example
the ratio NA=NB is far away from 1. Indeed, in Section 8, we will show that for NA D NB
configurations in this class cannot be optimal.

Counting from the left, let l1 denote the number of columns such that Acol
k
¤ ; and

Bcol
k
D ;, let l2 denote the number of columns such that Acol

k
¤ ; and Bcol

k
¤ ;, and let

l3 be the number of columns such that Acol
k
¤ ; and Bcol

k
D ;. Similarly, counting from

the top, denote by h1 the number of rows such that Arow
k
¤ ; and B row

k
D ;, let h2 be the

number of rows such that Arow
k
¤ ; and B row

k
¤ ;, and finally let h3 be the number of

rows such that Arow
k
¤ ; and B row

k
D ;. Similarly to previous classes, the energy may be

expressed as

E.A;B/ D �2.NA CNB/C .l1 C l2 C l3/C .h1 C h2 C h3/C .1 � ˇ/.l2 C h2/:

(6.4)
The situation is presented in Figure 16.

6.4. Class 	V

We say that an admissible configuration .A; B/ belongs to Class 	V if there exist l1, l2,
h1, h2 > 0 such that Nrow CNcol � .l1 C l2 C h1 C h2/ > 0 and the following conditions
hold: for each k D 1; : : : ; l1, we have ncol

k
> 0 andmcol

k
D 0. For each k D l1C 1; : : : ; l1C

l2, we have ncol
k
> 0 and mcol

k
> 0. Finally, for all k D l1 C l2 C 1; : : : ; Nrow (this may

possibly be empty), we have ncol
k
D 0 and mcol

k
> 0. Similarly, for each l D 1; : : : ; h1, we

have nrow
l

> 0 and mrow
l
D 0. For each l D h1 C 1; : : : ; h1 C h2, we have nrow

l
> 0 and

mrow
l
> 0. Finally, for all l D h1C h2C 1; : : : ;Ncol (this may possibly be empty) we have

nrow
l
D 0 and mrow

l
> 0. Setting l3 D Ncol � l1 � l2 and h3 D Nrow � h1 � h2 we observe
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l1 l2

h1

l3

h2

h3

Figure 16. Class 			.

l3 > 0 or h3 > 0; i.e., the configuration does not lie in Class 			. The energy may be
expressed as

E.A;B/ D �2.NA CNB/C .l1 C l2 C l3/C .h1 C h2 C h3/C .1 � ˇ/.l2 C h2/:

(6.5)
The situation is presented in Figure 17. Examples of optimal configurations in this class
can be found in Figure 10 (on the right) and in Figure 11 (both in the middle).

6.5. Class V

We say that an admissible configuration .A; B/ belongs to Class V if there exist l1, l2,
l3, h1, h2, h3 > 0 such that l1 C l2 C l3 D Ncol, h1 C h2 C h3 D Nrow and the following
conditions hold: for each k D 1; : : : ; l1, we have ncol

k
> 0 and mcol

k
D 0. For each k D

l1C 1; : : : ; l1C l2, we have ncol
k
>0 andmcol

k
>0. Finally, for all kD l1C l2C 1; : : : ;Nrow,

we have ncol
k
> 0 andmcol

k
D 0. On the other hand, for each l D 1; : : : ; h1 we have nrow

l
> 0

andmrow
l
D 0. For each l D h1 C 1; : : : ; h1 C h2 we have nrow

l
> 0 andmrow

l
> 0. Finally,

for all l D h1 C h2 C 1; : : : ; Ncol we have nrow
l
D 0 and mrow

l
> 0. The energy may be

expressed as

E.A;B/ D �2.NA CNB/C .l1 C l2 C l3/C .h1 C h2 C h3/C .1 � ˇ/.l2 C h2/:

The situation is presented in Figure 18.
We close this section with the observation that the five classes cover all possible cases

up to isometries, reflections, and changing roles of the types.
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l1 l2

h1

l3

h2

h3

Figure 17. Class 	V .

7. Analysis of Class 	

7.1. Regularisation inside Class 	

The goal of this section is to make the configuration in Class 	 more regular without
increasing the energy. This regularisation will facilitate the computation of the minimal
energy. We keep the notation as in the previous section and begin with the following
observation.

Proposition 7.1. Fix NA; NB > 0 and ˇ 2 .0; 1/. Suppose that .A;B/ 2 	 is an optimal
configuration. Then, we either have l2 D 0 or l2 D 1.

Both cases can happen, takeNA DNB D 3 and ˇ 2 .0; 1/. Then, there are two optimal
configurations, one with l2 D 0 and the other one with l2 D 1, see Figure 8.

Proof. The idea of the proof is the following: we suppose by contradiction that l2 � 2. We
add more points to the configuration .A; B/, so that it becomes a full rectangle, keeping
track of the change of the energy in the process. Then, we exchange a number of points,
making the interface shorter and causing a drop in the energy. Finally, we remove the
added points, again keeping track of the energy. This yields strictly smaller total energy, a
contradiction. The argument is presented in Figure 19.

To be exact, let us modify the configuration .A; B/ as follows. We add N 0A A-points
on the left and N 0B B-points on the right such that that .A; B/ becomes a full rectangle
with sides l1 C l2 C l3 and h. Notice that in this way we do not alter the surface energy.
Meanwhile, the bulk energy changes by �2.N 0A CN

0
B/. Now, look at the rectangle in the
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l1 l2

h1

l3

h2

h3

Figure 18. Class V .

middle with sides l2 and h. If we exchange A-points from its rightmost column and B-
points from its leftmost column (as many as we can), we will make one column (or two)
full of points of one type. Hence, in the formula for the energy, see (6.2), we replace l2 by
l2 � 1 (respectively, l2 � 2), and l1 C l3 by l1 C l3 C 1 (respectively, l1 C l3 C 2). This
causes a drop in the surface energy by .1 � ˇ/ or 2.1 � ˇ/.

Finally, we take care of the added points. We remove N 0A A-points, starting from the
leftmost column, going from top to bottom. In the process, the surface energy decreases
or remains the same (since l1 may decrease or remain the same). Similarly, we remove
N 0B B-points, starting from the rightmost column and going from top to bottom.

In this way, we have obtained a configuration . OA; OB/ with the same number of A-
and B-points as .A; B/, but with energy lower at least by .1 � ˇ/. After this operation,
we possibly end up with a shape of the interface different from the one in Class 	, but
this does not matter since we only wanted to show that .A;B/ was not optimal. Hence, if
.A;B/ is an optimal configuration, then l2 D 0 or l2 D 1.

By performing the modification described in the proof, we get that we may assume
that the configuration is as compact as possible: given h, the values of l1 and l3 are as
small as possible, and all the columns except for the leftmost and rightmost ones are full
(i.e., have h points). This is a property that we will use several times in the sequel.

We provide an exact formula for the minimal energy in Theorem 7.4. This requires
fixingNA D NB , which will be assumed throughout. Note however that some of the inter-
mediate lemmas below may be adapted for the case NA 6D NB , as well. Let us first prove
that we may assume that l2 D 0. To this end, let us first state the following technical
lemma.



M. Friedrich, W. Górny, and U. Stefanelli 108

Figure 19. Regularisation of Class 	.

Lemma 7.2. Fix N WD NA D NB > 0 and ˇ 2 .0; 1/. Suppose that .A; B/ 2 	 is an
optimal configuration such that l1 D l3 and l2 D 1. Then, we have l1 D l3 � h=2.

Proof. Without restriction, we assume that .A;B/ has the form described before the state-
ment of the lemma, see also the last picture in Figure 19. Let k D dh=2e. Suppose by
contradiction that the statement does not hold, i.e., l1 D l3 < k (in particular, k � 2).

Consider two cases: first, assume that h is even, so that h D 2k. Then, the whole
configuration fits into a rectangle with height 2k and width 2l1C 1, where l1 � k � 1. Let
us rearrange all the points so that the resulting configuration lies in a rectangle with height
2k � 1 and width 2l1 C 2. We place the points by filling the columns from left to right,
first with A-points and then with B-points so that the resulting configuration lies in Class
	 and has l2 � 1. In fact, all points may be placed in this rectangle since the assumption
l1 � k � 1 implies that

.2k � 1/.2l1 C 2/ � 2k.2l1 C 1/:

But then the new configuration has strictly smaller energy since h decreased by 1, l2 �
1, and l1 C l3 grew by at most 1. Hence, the original configuration was not optimal, a
contradiction.

In the second case, h is odd so that h D 2k � 1. Then, the whole configuration fits
into a rectangle with height 2k � 1 and width 2l1 C 1, where l1 � k � 1. Let us again
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rearrange all the points using the procedure from the previous paragraph so that the res-
ulting configuration lies in a rectangle with height 2k � 2 and width 2l1 C 2 and satisfies
l2 � 1. Indeed, if l1 � k � 2, all points may be placed in this rectangle since in this case
we have

.2k � 2/.2l1 C 2/ � .2k � 1/.2l1 C 1/: (7.1)

On the other hand, if l1 D k � 1, we have

.2k � 2/.2l1 C 2/ D .2k � 1/.2l1 C 1/ � 1;

so the inequality (7.1) is not satisfied. In this case, however, .2k � 1/.2l1 C 1/ is odd.
Thus, since the total number of points 2N is even, it is not possible that the entire rectangle
with height 2k and width 2l1 C 1 was full in the original configuration. Therefore, we can
still place all the points in the rectangle with height 2k � 2 and width 2l1 C 2. As before,
the new configuration has strictly smaller energy since h decreased by 1, l2 � 1, and
l1 C l3 grew by at most 1, a contradiction.

Now, we proceed to prove the main result for Class 	; namely, that for the purpose of
the computation of the minimal energy, we may assume that l2 D 0.

Proposition 7.3. FixN WDNADNB > 0 and ˇ 2 .0;1/. Then, if .A;B/ 2	 is an optimal
configuration, then there exists an optimal configuration . OA; OB/ 2 	 with l2 D 0.

Proof. If .A; B/ 2 	 such that l2 D 0, there is nothing to prove. Suppose to the contrary
that l2 > 0. Then, by Proposition 7.1, we have that l2 D 1. We introduce the following
notation: again, l1 is the number of columns with only A-points and l3 is the number of
columns with only B-points. We can assume that all columns except for the leftmost and
rightmost ones are full, cf. last picture in Figure 19. By r1 2 ¹1; : : : ; hº we denote the
number of A-points in the leftmost column, and r4 2 ¹1; : : : ; hº is the number of B-points
in the rightmost column. By r2; r3 2 ¹1; : : : ; h � 1º we denote the numbers of A- and
B-points, respectively, in the single column which contains points of both types.

Since NA D NB , we compute the number of points of each type, and we get that

.l1 � 1/hC r1 C r2 D .l3 � 1/hC r3 C r4;

so
.l1 � l3/h D r3 C r4 � r1 � r2: (7.2)

Due to the range of r1; : : : ; r4, the left-hand side can take only values between �2hC 3
and 2h � 3, so it needs to take values in the set ¹�h; 0; hº. Hence, up to exchanging the
roles of the two types, we either have l1 D l3 or l1 D l3 C 1.

First, suppose that l1 D l3 C 1. Then, by (7.2), we have r1 C r2 C h D r3 C r4. In
particular, r1 C r2 < h as r3 C r4 � 2h � 1. Hence, we may move the r2 A-points from
the single column with both types to the leftmost column and replace them by r2 B-points
from the rightmost column. In this way, the double-type column disappeared altogether.
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This process strictly decreases the energy (6.2) since l1 stays the same, l2 decreases by 1,
and l3 increases by 1 or stays the same. This is a contradiction.

Now, suppose that l1 D l3. Then, by (7.2), we have r1 C r2 D r3 C r4. If r1 C r2 � h,
we proceed as in the previous paragraph. Suppose otherwise; i.e., r1 C r2 D r3 C r4 >
h. Without restriction, we can suppose that r3 � r2. Let k 2 N such that k D dh=2e.
Notice that we may modify the configuration so that r2 D bh=2c and r3 D k. Indeed,
otherwise, we move bh=2c � r2 (D r3 � k) B-points from the double-type column to the
rightmost column and move bh=2c � r2 A-points from the leftmost column to the double-
type column so that both types have bh=2c and k points, respectively, in the double-type
column. In this way, since

r4 C bh=2c � r2 D .r1 C r2 � r3/C bh=2c � r2 D r1 C bh=2c � r3 � h;

where we used r1 � h and r3 � bh=2c, we did not add any additional column on the right.
Thus, the total energy did not increase.

As l1 D l3 and l2 D 1, by Lemma 7.2, we have that l1 D l3 � k. Now, remove all
the points in the double-type column and place them directly above the first row, bh=2c
A-points directly above the l1 A-points (starting from the right) and k B-points directly
above the l3 B-points (starting from the left). Finally, we merge the two connected com-
ponents of the resulting configuration by moving the connected component on the left by
.1; 0/. In this way, h increased by 1, l2 decreased by 1, and l1 and l3 remain unchanged
so that the energy remains the same, see (6.2). Hence, the resulting configuration . OA; OB/
is minimal, lies in Class 	, and satisfies l2 D 0. This concludes the proof.

7.2. Exact calculation for Class 	

The regularisation procedure presented in the previous section enables us to compute dir-
ectly the minimal energy for configurations in Class 	 for any ˇ 2 .0; 1/. In this section,
we suppose that NA D NB and denote the common value by N . Later, in Section 8, we
will show that there exists always a minimiser in Class 	 which induces that the energy
computed below coincides with the minimal energy.

Theorem 7.4. Fix N WD NA D NB > 0 and ˇ 2 .0; 1/. Suppose that a minimal configur-
ation .A;B/ is in Class 	. Then, its energy is equal to

�4N C min
h2N

�
2dN=he C h.2 � ˇ/

�
;

where all minimisers h satisfy jh�
p
2N=.2 � ˇ/j � CˇN

1=4 for some constant Cˇ only
depending on ˇ. For ˇ 2 R nQ, there exists a unique minimiser.

Proof. By Proposition 7.3, for the purpose of the computation of the minimal energy, we
may assume that l2 D 0. Hence, we also have l1 D l3, and denote the common value by
`. Notice that we may minimise the energy under the constraint

h; ` 2 N; N D h`C r with r 2 N; 0 � r � h � 1:
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This constraint is natural since for fixed h, the length ` is minimal whenever all the
columns except for the leftmost and rightmost ones are full (i.e., have h points). We also
refer to the configuration given in Theorem 1.1 (v). Under these assumptions, we may
rewrite the energy (6.2) as

E.A;B/ D �4N C 2.`Cmin¹r; 1º/C h.2 � ˇ/:

In particular, one can express the energy solely in terms of h 2 N as

E.h/ WD �4N C 2

�
N

h

�
C h.2 � ˇ/:

It is clear that the minimum of E over N is unique in case that ˇ 2 R nQ as E.h1/ �
E.h2/ … Q for all h1; h2 2 N with h1 ¤ h2.

It remains to check that minimisers h satisfy jh�
p
2N=.2 � ˇ/j � CˇN

1=4 for some
constant Cˇ . The function

NE.h/ D �4N C 2N=hC h.2 � ˇ/

is strictly convex and attains its minimum at

Nh WD
p
2N=.2 � ˇ/ with NE. Nh/ D �4N C 2

p
2N.2 � ˇ/:

For h� D d Nhe, we get for ˇ 2 .0; 1/

E.h�/ D �4N C 2

�
N

h�

�
C h�.2 � ˇ/ � �4N C 2

N

h�
C 2C h�.2 � ˇ/

� �4N C 2
N

Nh
C Nh.2 � ˇ/C 4 D NE. Nh/C 4: (7.3)

Let us now determine those h 2 N such that the inequality NE.h/ � NE. Nh/C 4 holds. By
determining the roots of the quadratic equation h NE.h/D h. NE. Nh/C 4/, one can check that
NE.h/ � NE. Nh/C 4 is equivalent to

h 2 IN;ˇ

WD
2

2 � ˇ
C
p
2N=.2 � ˇ/C

2

2 � ˇ

�
�

q
1C

p
2N.2 � ˇ/;

q
1C

p
2N.2 � ˇ/

�
:

Note that h … IN;ˇ cannot be a minimiser ofE since then by (7.3) we haveE.h/� NE.h/ >
NE. Nh/C 4�E.h�/. Clearly, the definition of IN;ˇ implies jh�

p
2N=.2 � ˇ/j �CˇN

1=4

for all h 2 IN;ˇ for some Cˇ sufficiently large. This concludes the proof.

We close this section with the observation that, once we have guaranteed the existence
of a minimiser in Class 	 (see Theorem 8.15 below), Theorem 1.1 (iv) follows from The-
orem 7.4 and (2.2). The construction of the configuration in the previous proof also yields
the explicit solution in Theorem 1.1 (v).



M. Friedrich, W. Górny, and U. Stefanelli 112

8. Analysis and regularisation of other classes

In this section, we show how to regularise configurations related to classes 		–V . Our
main goal is to show that forNA DNB , it is not possible that a minimiser lies in Class 		

or Class 			. While it is possible that a minimiser lies in Class 	V , see Proposition 8.16
below, we will show that under the constraint ˇ � 1=2 we can modify an optimal config-
uration so that it lies in Class 	.

8.1. Class 		

Since the definition of Class 		 already involved a very regular interface, namely, a
straight line, the situation here is much simpler with respect to Class 	. In fact, the whole
analysis of the problem boils down to the following simple result.

Proposition 8.1. Fix N WD NA D NB > 0 and ˇ 2 .0; 1/. If .A;B/ is an optimal config-
uration, then .A;B/ … 		.

Proof. Suppose otherwise. Then, recalling (6.3), notice that we may rewrite the energy as

E.A;B/ D �4N CEA CEB � ˇh2;

where
EA D l1 C h1 C h2 and EB D l3 C h2

are the energy between the void and A and B , respectively, and the last term corresponds
to the interface energy.

Suppose first thatEA > EB . Then, we modify the configuration as follows: set OB D B
and let OA be the symmetric image of B under the reflection along the interface. In this
way, we obtain

E. OA; OB/ D �4N C 2EB � ˇh2 < �4N CEA CEB � ˇh2 D E.A;B/;

a contradiction to minimality of .A; B/. Now, we suppose EA � EB instead. We modify
the configuration as follows: set OA D A and let OB be the symmetric image of A under
the reflection along the interface. In this way, the part of the energy corresponding to the
shape of A stays the same, the part corresponding to B drops or stays the same, and the
length h2 of the interface increases at least by 1. Hence, the total energy decreases, so
.A;B/ was not a minimal configuration.

Let us remark that Proposition 8.1 does not hold if NA 6D NB , a counterexample being
provided by Figure 10.

8.2. Class 			

Using again the notation introduced in the previous section, our first goal is to show that we
can modify an admissible configuration in Class 			 such that we remain in Class 			

and l3 D h3 D 0 without increasing the energy. Then, we will prove that such a configur-
ation cannot be optimal if NA D NB .
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Figure 20. Regularisation of Class 			: part one.

Proposition 8.2. FixNA;NB > 0 and ˇ 2 .0;1/. Suppose that .A;B/ 2			 is a minimal
configuration and l3 > 0 (respectively, h3 > 0). Then, there exists a minimal configuration
. OA; OB/ 2 			 with l3 D 0 (respectively, h3 D 0).

Proof. Assume that l3 > 0 (the proof in the case h3 > 0 is analogous). Our construction is
presented in Figure 20. We will modify the top h1 rows of the configuration .A;B/ in the
following way, for every 1 � k � Nrow, denote by xk the first coordinate in the rightmost
point of .A [ B/row

k
. Then, for k � h1, we set

OAk WD A
row
k C

�
min¹xh1C1 � xk ; 0º; 0

�
I

i.e., each row which has points further to the right than the rightmost point of Bh1C1 is
translated to the left, in such a way that its rightmost point aligns with the rightmost point
of Bh1C1. As we made no modifications inside rows,

E row
k . OA; OB/ D E row

k .A;B/

for all k D 1; : : : ; Nrow, see (4.1). Regarding E inter
k

, observe that for k � h1 C 1 nothing
changed in the configuration, so

E inter
k . OA; OB/ D E inter

k .A;B/:

On the other hand, for k < h1, we either left two adjacent rows intact (so the number of
connections between them stayed the same); moved both of them to the left so that their
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rightmost points align (so the number of connections between them stayed the same or
increased); or moved only one of them to the left, but because the rightmost point of the
other one has first coordinate smaller than or equal to the first coordinate of Bh1C1, this
shift did not destroy any bonds and possibly created new ones. In every case, all these
connections are of type A-A, so we have

E inter
k . OA; OB/ � E inter

k .A;B/:

Finally, for k D h1, we did not change the number ofA-B connections and possibly added
some A-A connections. Thus,

E inter
k . OA; OB/ � E inter

k .A;B/:

Note that after this procedure all columns Acol
l

for l � l1 are still connected, as otherwise
this would contradict Theorem 4.5 and the minimality of the original configuration. Hence,
the resulting configuration lies in Class 			.

In order to facilitate the proof that configurations in Class 			 cannot be optimal, we
further modify the configuration without increasing the energy.

Lemma 8.3. Fix NA; NB > 0 and ˇ 2 .0; 1/. Suppose that .A; B/ 2 			 is a minimal
configuration. Then, there exists a minimal configuration . OA; OB/ 2 			 such that for
every k D 1; : : : ;Nrow the rightmost point of . OA[ OB/row

k
has the same first coordinate and

for every k D 1; : : : ; Ncol the lowest point of . OA [ OB/col
k

has the same second coordinate.

Proof. By Proposition 8.2, we may assume that l3 D h3 D 0. We will use a version of the
technique used for Class 	, and refer to Figure 21 for an illustration of the construction.
Note that if we add N 0A A-points on the top and on the left and N 0B B-points on in the
bottom right corner so that the configuration .A; B/ becomes a full rectangle with sides
l1 C l2 and h1 C h2, we do not alter the surface energy, but the bulk energy changes by
�2.N 0A CN

0
B/.

Having fixed N 0B > 0, let us remove the topmost A-point in the leftmost column and
change the type of the topmost B-point in the leftmost column to A. In this way, we
removed a B-point, without increasing the energy (6.4). We repeat this procedure until we
remove N 0B B-points. Then, we remove N 0A A-points, starting from the top of the leftmost
column. Again, this cannot increase the energy. Moreover, the resulting configuration lies
in Class 			 because if in this last step we removed a whole column or a point which lies
next to the interface, we would decrease the energy. Hence, the resulting configuration is
also minimal and satisfies the desired property.

These regularisation results imply that in the case when the numbers of points in the
two types are equal, then the minimising configuration cannot lie in Class 			.

Proposition 8.4. Fix NA D NB > 0 and ˇ 2 .0; 1/. Then, if .A; B/ is a minimal config-
uration, .A;B/ … 			.
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Figure 21. Regularisation of Class 			: part two.

Proof. Suppose otherwise and let .A; B/ 2 			 be a minimal configuration. Apply the
regularisation procedure described in Proposition 8.2 and Lemma 8.3. After these opera-
tions, .A;B/ lies in a rectangle R with sides h1 C h2 and l1 C l2. Then, the length of the
interface equals l2 C h2. Without loss of generality, h1 C h2 � l1 C l2 (otherwise, this
is true after applying a symmetry with respect to the line R.�1; 1/). Then, we compare
.A; B/ with a configuration . OA; OB/ 2 	 which fits into the rectangle R, with A-points on
the left and B-points on the right such that the length of the interface is either h1 C h2 or
h1 C h2 C 1, depending on whether l2 D 0 or l2 D 1. Hence, by minimality of .A; B/,
we have l2 C h2 � h1 C h2 C 1; i.e.,

l2 � h1 C 1: (8.1)

This gives a contradiction to the assumption NA D NB . To see this, first recall that the
configuration is full, in the sense that the construction in Lemma 8.3 ensures that all the
columns except for the leftmost one have the same number of points. Therefore, we may
first estimate from above the number of B-points by

NB � l2h2 � h1h2 C h2

and the number of A-points from below by

NA � h1l2 C h1.l1 � 1/C h2.l1 � 1/ D h1.l1 C l2/ � h1 C h2.l1 � 1/

� h1.h1 C h2/ � h1 C h2.l1 � 1/ D h1h2 C h1.h1 � 1/C h2.l1 � 1/;
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where we used the assumption that h1 C h2 � l1 C l2. Hence, whenever h1; l1 � 2 or
l1 � 3, we have NA > NB , which would contradict the assumption NA D NB . Moreover,
we get that necessarily h1 � h2.

Finally, we have to take into consideration the case when l1 D 1 (with h1 arbitrary) or
when h1 D 1 and l1 D 2. In the first case, by (8.1), we have h1 C h2 � l2 C 1 � h1 C 2,
so h2 � 2. But then, h1 � h2 � 2, and thus, l2 � h1 C 1 � 3. This leaves us with a finite
(and small) number of configurations to consider separately, and it may be checked that
none of them is optimal. In the second case, again by (8.1), we have l2 � h1 C 1 D 2.
Furthermore, l1 C l2 � h1 C h2, so h1 C h2 � 4, and hence h2 � 3. Again, we end up
with a small number of configurations. A direct exhaustive analysis guarantees that none
of them is optimal.

8.3. Class 	V , part one

The situation in Class 	V is not as clear-cut as in Classes 		 and 			: whereas config-
urations in Classes 		 and 			 are never optimal, the problem is that, even forNADNB
and ˇD 1=2, an optimal configuration may actually lie in Class 	V , see Figure 11. Hence,
the goal in this section is a bit different: we will prove that even though minimal config-
urations in Class 	V may exist, there also exists an optimal configuration in Class 	.
Moreover, the reasoning will also provide some further properties of optimal configura-
tions in Class 	V . In particular, a careful inspection of the forthcoming constructions will
show a fluctuation estimate for minimisers in Class 	V , see Section 9 below.

This goal is achieved as follows: in the first part, we regularise our configuration such
that h3 D 0 and h1 � l1. This is achieved in Proposition 8.7, with the key part of the
reasoning proved in Proposition 8.6. These arguments are valid for any ˇ 2 .0; 1/. Then,
in the second part, under the restriction ˇ � 1=2, we regularise a configuration with h3D 0
and h1 � l1 to obtain a configuration in Class 	. This is achieved in Propositions 8.10–
8.13. We break the reasoning into smaller pieces in order to highlight different techniques
and different assumptions required at each point.

Lemma 8.5. Fix NA; NB > 0 and ˇ 2 .0; 1/. Suppose that .A; B/ 2 	V is a minimal
configuration. Then, there exists a minimal configuration . OA; OB/ 2 	 [ 	V such that
l2 � h2,

min
®
h1; h1 C h2 � l1 � l2

¯
� 0 and min

®
h3; h2 C h3 � l2 � l3

¯
� 0:

Proof. Choose a minimal configuration .A; B/ in Class 	V . Without loss of generality,
we may assume that l2 � h2. Otherwise, consider a reflection of the original configuration
with respect to the line R.�1; 1/. Then, we end up with a configuration of the same type
with the roles of hi and li reversed. We suppose that h1 � 1 as otherwise the second
condition in the statement of the lemma is satisfied. We modify the configuration without
increasing the energy such that h1 D 0 or l1 C l2 � h1 C h2. To see this, suppose that
l1 C l2 < h1 C h2. Then, we remove all the points in the first row, and place them on
the left-hand side starting from the second row, one in each row, possibly forming one
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additional column. The assumption guarantees that there was enough space to place all
the points. In this way, h1 decreases by 1 and l1 increases possibly by 1, so the total
energy decreases (in which case .A; B/ was not a minimal configuration) or stays the
same, cf. (6.5). We repeat this procedure until h1 D 0 or l1 C l2 � h1 C h2.

In a similar fashion, we modify the configuration to obtain min¹h3; h2 C h3 � l2 �
l3º � 0. Finally, if h1 D h3 D 0, the configuration is in Class 	. Otherwise, if h1 � 1, the
configuration is in Class 	V , and if h1D 0, h3 � 1, after a rotation by � and interchanging
the roles of the two types, we obtain a configuration in Class 	V .

We continue the regularisation in the following proposition.

Proposition 8.6. Fix NA;NB > 0 and ˇ 2 .0; 1/. Suppose that .A;B/ 2 	V is a minimal
configuration. Then, there exists a minimal configuration . OA; OB/ 2 	 [	V which satisfies
l2 � h2, min¹h1; h1 C h2 � l1 � l2º � 0, min¹h3; h2 C h3 � l2 � l3º � 0, and at least
one of the following two properties:

(1) l2 D 1,

(2) h3 D 0.

For the proof, we introduce the following notation specific for Class 	V . With the
notation of Figure 17, we will refer to the nine rectangles with sides li and hj as li W hj . For
instance, the rectangle in the middle with sides l2 and h2 will be referred to as rectangle
l2 W h2. A priori, some of these rectangles may be not full or even empty, for instance, the
rectangle l3 W h1.

Proof. Let .A; B/ 2 	V be a minimal configuration from Lemma 8.5 which does not
satisfy the desired properties, i.e., l2 > 1 and h1; h3 > 0 (l2 D 0 is not possible as it would
imply .A; B/ 2 		). Then, we first make a similar regularisation as we did for Class 	.
We add N 0A A-points to the configuration .A; B/ so that the interface between A and the
void consists of four line segments (of lengths l1, h1 C h2, l1 C l2, and h1). This does not
increase the surface energy. Then, we remove N 0A A-points, column by column, starting
from the leftmost column in .A; B/. If we removed a whole column, or if we removed
a point which lies at the interface, the energy drops, so the original configuration .A; B/
was not minimal. Hence, the resulting configuration lies in Class 	V . We proceed in a
similar fashion for the B-points. In particular, the rectangle l2 W h2 (in the middle) is full.

Now, let us look at the (full) rectangle l2 W h2. It contains exactly l2h2 points, N 00A of
them of type A and N 00B of them of type B . We rearrange them (i.e., remove all the points
in l2 W h2 and place them back in l2 W h2) in the following way: we start with the leftmost
column and we fill the columns one by one with A-points until we end up with less than
h2 points to place. Then, we place the remaining points in the next column, starting from
the top. Similarly, we place the B-points starting from the rightmost column and we fill
the columns one by one until we end up with less than h2 points. We place the remaining
points on the bottom of the next column. In this way, the resulting configuration has an
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Figure 22. Regularisation of Class 	V : part one.

interface with at most one step in l2 W h2, and we did not change the energy. By Lemma 8.5,
we also have

(i) l2 � h2,

(ii) l1 � h1,

(iii) l3 � h3.

Indeed, (i) is clear. If h1 D 0, (ii) is obvious. Otherwise, we have h1 C h2 � l1 � l2 � 0
which along with (i) shows (ii). The proof of (iii) is similar. The procedure described
above is presented in Figure 22.

As l2 � 2 and the interface has at most one step, we observe that at least one of the
following cases holds true: (a) the rightmost column of l2 W h2 consists only of points of
type B . (b) The leftmost column of l2 W h2 consists only of points of type A. Then, we
apply one of the two following procedures:

(a) We move the A-points from the rightmost column of the rectangle l2 W h1 (in the
upper right corner) to the rectangle l1 W h3 (in the bottom left corner) and place them in
its highest row (starting from the right). Here, we use (ii) and h3 � 1. In this way, we do
not increase the surface energy, see (6.5), since we have h2! h2 C 1, l2! l2 � 1, h3!
h3 � 1, l3! l3C 1, and h1 and l1 remain unchanged. Finally, we perform a rearrangement
in the new rectangle l2 W h2 as above. An example of such construction is given by the top
arrow in Figure 23.
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(a)

(b)

Figure 23. Regularisation of Class 	V : part two.

(b) We move the B-points from the leftmost column of the rectangle l2 W h3 (in the
bottom left corner) to the rectangle l3 W h1 (in the upper right corner) and place them in
its lowest row (starting from the left). Here, we use (iii) and h1 � 1. In this way, we do
not increase the surface energy since we have h2 ! h2 C 1, l2 ! l2 � 1, h1 ! h1 � 1,
l1! l1 C 1, and h3 and l3 remain unchanged. Finally, we perform a rearrangement in the
new rectangle l2 W h2 as above. An example of such construction is given by the bottom
arrow in Figure 23.

In both cases, after applying the procedure, the conditions (i), (ii), and (iii) are still sat-
isfied, so we may repeat it. We repeat it until l2D 1, h1D 0, or h3D 0. Indeed, this follows
after a finite number of steps since in each step l2 decreases. If l2 D 1 or h3 D 0 holds,
the proof is concluded. Otherwise, h3 D 0 holds after a rotation by � and interchanging
the roles of the two types.

We now come to the main result of this section.

Proposition 8.7. FixNADNB >0 and ˇ 2 .0;1/. Suppose that .A;B/2	V is a minimal
configuration. Then, there exists a minimal configuration .A; B/ 2 	 [ 	V such that
l2 � h2, h1 � l1, and h3 D 0.

Proof. Let .A;B/ be a configuration from Proposition 8.6. Suppose by contradiction that
.A; B/ (up to a rotation by � and interchanging the roles of the two types) does not have
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the desired properties. Since (i), (ii), and (iii) hold, we thus get that l2 D 1 and h1; h3 > 0.
By Proposition 8.6 and h1; h3 > 0, we also have

l1 C 1 � h1 C h2 and l3 C 1 � h2 C h3:

As h2 � 1, this particularly implies that h1 � l1. We can thus move the single column
l2 W h1 to the empty rectangle l1 W h3 without increasing the energy. Note that l1 � h1
guarantees that there was enough space to place all the points. The resulting configuration
has a straight interface with h1 > 0; i.e., lies in Class 		. In view of Proposition 8.1,
however, this contradicts the optimality of the original configuration.

Hence, for NA D NB and any ˇ 2 .0; 1/, we may require that h3 D 0 and h1 � l1. We
continue the analysis in the next section, with an additional requirement on ˇ.

8.4. Class 	V , part two

From now on, we will work with configurations which satisfy the statement of Proposi-
tion 8.7, i.e., h1 � l1 and h3 D 0. Our goal is to perform a further modification such that
configurations lie in Class 	. To this end, we assume without restriction that configura-
tions from Proposition 8.7 lie in Class 	V and that N WD NA D NB . In due course, we
will introduce an additional assumption on ˇ 2 .0; 1/.

As a first step of the regularisation procedure, we again straighten the interface such
that it has at most one step.

Lemma 8.8. Fix NA D NB > 0 and ˇ 2 .0; 1/. Suppose that .A;B/ 2 	V is an optimal
configuration with h3 D 0. Then, there exists a minimal configuration with the same prop-
erties and at most one step in the interface.

Proof. We proceed similarly to our reasoning in Class 	; i.e., as in the proof of Proposi-
tion 7.1. We add points to the configuration such that the rectangles li W hj for i D 1; 2; 3
and j D 1; 2, except for l3 W h1 are full. In this way, the surface part of the energy did not
change. Then, we remove the same number of A- and B-points that we added, starting
with the leftmost and rightmost column. If we removed a full column, then the energy
would drop and the original configuration would not be minimal. Hence, the rectangle
l2 W h2 is necessarily full. Let us now reorganise it in the following way: we put all the
A-points to the left and all the B-points to the right so that the interface between them
(inside l2 W h2) is vertical except for a single possible step to the right. Its length did not
change, so the resulting configuration is optimal.

Lemma 8.9. Fix NA D NB > 0 and ˇ 2 .0; 1/. Suppose that .A;B/ 2 	V is an optimal
configuration such that h1 � l1 and h3 D 0. Then, h1 � h2.

Proof. Suppose otherwise, i.e., h1 > h2. First, we can assume that l3 � h2. Indeed, if
not, we can remove the whole rectangle l3 W h2, rotate it by �=2 and reattach it to the
configuration, adding at least one additional bond, a contradiction to minimality of .A;B/.
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Moreover, we can assume that l1 � 2 as l1 D 1 implies also h1 D 1, and the inequality
h1 � h2 is automatically satisfied. Finally, we can suppose that the interface has at most
one step, see Lemma 8.8. The main step of the proof is to show that l1 < l3. Indeed, then,
we obtain the contradiction

h2 � h1 � l1 < l3 � h2:

Let us now prove l1 < l3. To this end, we will calculate the total number of points in
two ways. Denote by r1 the number of A-points in the leftmost column, by h1 C r2 the
number of A-points in the leftmost double-type column, by r3 the number of B-points
in the leftmost double-type column, and by r4 the number of B-points in the rightmost
column. Then, we have

NA D .l1 � 1/.h1 C h2/C l2h1 C r1 C r2

and
NB D .l2 C l3 � 2/h2 C r3 C r4:

Now, we subtract one of these equations from the other. Since r1 > 0; r2 � 0, and r3; r4 �
h2, we get

0 D NA �NB D l1h1 C l1h2 C l2h1 � h1 � h2 C r1 C r2

� l2h2 � l3h2 C 2h2 � r3 � r4

> .l1 � 1/h1 � h2 C .l1 � l3/h2 C l2.h1 � h2/ � .l1 � l3/h2;

where, in the last step, we used l1 � 2 and the assumption (by contradiction) that h1 � h2.
This shows that l1 < l3 and concludes the proof.

Proposition 8.10. Fix NA D NB > 0 and ˇ � 1=2. Suppose that .A; B/ 2 	V is an
optimal configuration such that h1 � l1 and h3 D 0. Then, there exists an optimal config-
uration . OA; OB/ such that . OA; OB/ 2 	V with h3 D 0 and l2 2 ¹1; 2º.

Proof. Suppose that .A;B/ satisfies l2 � 3. By Lemma 8.9, we have h1 � h2. Then, let us
remove the rightmost two layers in l2 W h1 and place the (at most 2h1) A-points on the left
of the configuration, at most one point in every row. Since h1 � h2, there is enough space
to place all the points. In this way, since the configuration can be assumed to have only
one step in the interface (see Lemma 8.8), l1 increases by at most 1, l2 decreases by 2, l3
increases by 2, and all hi stay the same. Hence, by formula (6.5), we see that the energy
stays the same (for ˇ D 1=2), so the resulting configuration is optimal or decreases (for
ˇ < 1=2), so the original configuration was not optimal. We repeat this procedure until
l2 2 ¹1; 2º.

Hence, in order to prove the existence of an optimal configuration in Class 	, we have
two special cases to consider, depending on the value of l2. We start with the case l2 D 1.
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Proposition 8.11. Fix NA D NB > 0 and ˇ 2 .0; 1/. Suppose that .A; B/ 2 	V is an
optimal configuration such that h3 D 0 and l2 D 1. Then, h1 D 1. Furthermore, there
exists an optimal configuration . OA; OB/ 2 	.

Proof. As in (4.2), let us write the energy as

E.A;B/ D EA CEB � .h2 C 1/ˇ;

where EA is minus the number of bonds between points in A and EB is minus the number
of bonds between points in B .

We consider two cases. First, suppose that EB < EA. We do the following rearrange-
ment of points: we separate A and B and suppose without restriction that the leftmost
column of B is full as otherwise we can move the points in this column to the right-hand
side of B , without changing the EB . We replace A by OA, a reflection of B along the ver-
tical axis. Then, we reconnect OA and B along the vertical line segment of length h2. In
this way, the resulting configuration has energy

E. OA;B/ D EB CEB � h2ˇ:

Hence, as EB � EA � 1, the energy drops by at least 1 � ˇ, so the original configuration
was not optimal, a contradiction.

Now, suppose that EA � EB . We do the following: we keep A fixed (or, as above, we
make A flat on one side without changingEA) and replace B by OB , a reflection of A along
the vertical axis. Then, we join A and OB along the vertical line segment of length h1C h2.
In this way, the resulting configuration lies in Class 	, has a flat interface, and the energy
is given by

E.A; OB/ D EA CEA � .h1 C h2/ˇ:

Therefore, the only way in which the energy does not decrease is that EA D EB and
h1 D 1.

We will employ another variant of the reflection argument to deal with the case l2 D 2.
This is formalised in the next proposition.

Proposition 8.12. Fix NA D NB > 0 and ˇ � 1=2. Suppose that .A; B/ 2 	V is an
optimal configuration such that h3 D 0 and l2 D 2. Then, h1 � 2C 1=ˇ and there exists
an optimal configuration . OA; OB/ 2 	.

Proof. Again, as in (4.2), we write the energy as

E.A;B/ D EA CEB � .h2 C 2/ˇ:

We consider three cases: first, suppose that either EB � EA � 2 or EB D EA � 1 and
h1 � 2 C 1=ˇ. We do the following rearrangement of points: we keep B fixed (up to
making one side flat, as in the previous proof) and replace A by OA, a reflection of B along
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Figure 24. Final step of modification into Class 	.

the vertical axis. Then, we join OA and B along the vertical line segment of length h2. The
resulting configuration lies in Class 	 and satisfies

E. OA;B/ D EB CEB � h2ˇ:

Hence, the energy drops by k � 2ˇ, where k D EA � EB � 1. Thus, either the original
configuration was not optimal (for k � 2 or k D 1 and ˇ < 1=2) or the resulting config-
uration is optimal (for k D 1 and ˇ D 1=2). Moreover, the resulting configuration lies in
Class 	.

Now, suppose that either EB D EA � 1 and h1 > 2C 1=ˇ or EB D EA and h1 � 2
or EA < EB . This time, we keep A fixed (up to making one side flat) and replace B by
OB , a reflection of A along the vertical axis. Then, we join A and OB along the vertical line

segment of length h1 C h2. In this way, the resulting configuration lies in Class 	, has a
flat interface, and the energy is given by

E.A; OB/ D EA CEA � .h1 C h2/ˇ:

Thus, the energy decreases by k C .h1 � 2/ˇ, where k D EB � EA. In particular, for
k D �1 and h1 > 2C 1=ˇ or k D 0 and h1 � 3 or k > 0, the energy drops. For k D 0
and h1 D 2, it stays the same, so the resulting configuration is optimal and lies in Class 	.

The only case left to consider is when EA D EB and h1 D 1. We proceed as follows:
we exchange the rightmost A-point (i.e., the rightmost point of the rectangle l2 W h1) with
the top B-point from column Cl1C1, i.e., the point with two connections to points of type
A and two connections to points of type B . If Cl1C1 contains only one B-point, then the
interface becomes shorter (without changing the overall shape of the configuration) and
the energy actually drops. If it contains more than one B-point, this procedure does not
change the energy. Moreover, the resulting configuration is in Class 	. The construction
is presented in Figure 24.

Summarising, we have shown that h1 � 2 C 1=ˇ and that there exists an optimal
configuration in Class 	.
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We summarise the reasoning from this section in the following result.

Proposition 8.13. Fix NA D NB > 0 and ˇ � 1=2. Suppose that .A; B/ 2 	V is an
optimal configuration. Then, there exists an optimal configuration . OA; OB/ 2 	.

Proof. By Proposition 8.7, there exists an optimal configuration with h1 � l1 and h3 D 0.
Since ˇ � 1=2, by Proposition 8.10, one may require additionally that l2 D 1 or l2 D
2. In both cases, the existence of an optimal configuration in Class 	 is guaranteed by
Proposition 8.11 and by Proposition 8.12, respectively.

8.5. Class V

Finally, we show that we can modify optimal configurations in Class V to optimal con-
figuration in Class 	V . Along with Proposition 8.13, this shows that there always exists a
minimiser in Class 	. This is done in the following proposition which employs a similar
technique to the one used for Class 			.

Proposition 8.14. Fix NA; NB > 0 and ˇ 2 .0; 1/. Suppose that .A;B/ 2 V . Then, there
exists . OA; OB/ 2 	V with E. OA; OB/ � E.A;B/.

Proof. We will modify the top h1 rows of the configuration .A; B/ in a similar fashion
to the proof of Proposition 8.2. For every k � h1, we set OAk WD Arow

k
C .�1; 0/. This

translation implies that
E row
k . OA; OB/ D E row

k .A;B/

for all kD 1; : : : ;Nrow. RegardingE inter
k

, a change is possible at most for kD h1, where we
did not change the number of A-B connections and added zero or one A-A connections,
so E inter

k
. OA; OB/ � E inter

k
.A; B/. Hence, the total energy did not increase. We repeat this

procedure for all rows with index k � h1 until the rightmost point of all Arow
k

with k � h1
does not lie right to the rightmost point of B row

h1C1
. We thus get a configuration which lies

in Class 	V .

8.6. Conclusion

Finally, we are in the position to state another of the main results, which, together with
Theorem 7.4, gives the exact formula for the minimal energy see Theorem 1.1 (iv).

Theorem 8.15. Fix NA D NB > 0 and ˇ � 1=2. Then, there exists an optimal configur-
ation .A;B/ which lies in Class 	 and has a straight interface.

Proof. Since the number of points is finite, there exists an optimal configuration. By The-
orem 4.5 and the discussion below it, it lies in one of the five classes. However, it cannot
lie in Class 		 by Proposition 8.1. It also cannot lie in Class 			 by Proposition 8.4.
If it lies in Class V , then there exists a minimal configuration in Class 	V by virtue of
Proposition 8.14. If it lies in Class 	V , then by Proposition 8.13 there exists a minimal
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configuration in Class 	. Finally, since there is an optimal configuration in Class 	, by
Proposition 7.3, we may suppose that it has a flat interface.

Let us note that in the above theorem we only state that a solution in Class 	 exists
and that we cannot fully exclude the existence of solutions in other classes. In particular,
the following result shows that there exist arbitrarily large optimal configurations in Class
	V .

Proposition 8.16. Let ˇ 2 .0; 1=2�\Q, r; s 2 N with r=s D 1� ˇ=2, and k 2 N. Then,
the Class-	V configuration .A;B/ with

A D
®
.x; y/ 2 Z2 W x 2 Œ�kr C 1; 0�; y 2 Œ1; ks�

¯
[ .1; ks/;

B D
®
.x; y/ 2 Z2 W x 2 Œ1; kr�; y 2 Œ0; ks � 1�

¯
[ .0; 0/

is optimal.

Proof. Using (2.2) and formula (6.5), one can directly compute

P.A;B/ D 4kr C 2.ks C 1/C 2.1 � ˇ/.ks C 1/: (8.2)

To prove optimality, it hence suffices to check thatP.A;B/Dmin¹P�;P �º, whereP� and
P � are defined in Theorem 1.1 (iv) for N WD NA D NB D k2rs C 1. From ˇ 2 .0; 1=2�,
we get that s=r D 2=.2 � ˇ/ 2 .1; 4=3�. This in particular entails that s > r � 2, which
in turn allows to prove thats

2N

2 � ˇ
D

s
k2rs C 1

r=s
D

p
k2s2 C s=r 2 .ks; ks C 1/:

In particular, we have checked that$s
2N

2 � ˇ

%
D ks and

&s
2N

2 � ˇ

'
D ks C 1:

One can hence compute

P� D 4

&
N

b

q
2N
2�ˇ
c

'
C 2

$s
2N

2 � ˇ

%
.2 � ˇ/

D 4

�
k2rs C 1

ks

'
C 2ks.2 � ˇ/ D 4dkr C 1=kse C 2ks.2 � ˇ/

D 4kr C 4C 2ks.2 � ˇ/:

On the other hand, using again the fact that for s > r � 2, we get that

k2rs C 1

ks C 1
2 .kr � 1; kr�;
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and we can compute

P � D 4

&
N

d

q
2N
2�ˇ
e

'
C 2

&s
2N

2 � ˇ

'
.2 � ˇ/

D 4

&
k2rs C 1

ks C 1

'
C 2.ks C 1/.2 � ˇ/ D 4kr C 2.ks C 1/.2 � ˇ/:

We conclude that
min¹P�; P �º D P �

(8.2)
D P.A;B/;

which proves that .A;B/ is optimal.

9. N 1=2-law and N 3=4-law for minimisers

In this section, we give a quantitative upper bound on the difference of two optimal
configurations, see Theorem 1.1 (vi). The goal is to prove that, even though in general
there is no uniqueness of the optimal configurations and some of them may even not
be in Class 	 they all have the same approximate shape. In the following, an isometry
T WZ2 ! Z2 indicates a composition of the translations x 7! x C � for � 2 Z2, the rota-
tion .x1; x2/ 7! .�x2; x1/ by the angle �=2, and the reflections .x1; x2/ 7! .x1;�x2/,
.x1; x2/ 7! .�x1; x2/.

Theorem 9.1 (N 1=2- and N 3=4-law). Fix N WD NA D NB > 0 and ˇ � 1
2

. Then, there
exists a constant Cˇ only depending on ˇ such that for each two optimal configurations
.A;B/ and .A0; B 0/ it holds that

min
®
#.A4T .A0//C #.B4T .B 0// W T W Z2 ! Z2 is an isometry

¯
� CˇN


.ˇ/; (9.1)

where 
.ˇ/ D 1=2 if ˇ 2 R nQ and 
.ˇ/ D 3=4 if ˇ 2 Q.

Proof. Throughout the proof, Cˇ is a constant which depends only on ˇ whose value
may vary from line to line. We start the proof by mentioning that it suffices to check the
assertion only for N � N0 for some N0 2 N depending only on ˇ. As observed in the
proof of Theorem 8.15, every optimal configuration lies in the Classes 	, 	V , V . In Step
1, we show (9.1) for two optimal configurations in Class 	. Afterwards, in Step 2, we
show that for each optimal configuration .A;B/ in Class 	V there exists .A0;B 0/ in Class
	 such that (9.1) holds. Eventually, in Step 3, we check that for each optimal configuration
.A;B/ in Class V there exists .A0;B 0/ in Class 	V such that (9.1) holds. The combination
of these three steps yields the statement.

Step 1: Class 	. Let first .A;B/ be an optimal configuration in Class 	 such that l2 D 0.
Then, by Theorem 1.1 (iv), we find Nh 2 N with j Nh �

p
2N=.2 � ˇ/j � CˇN

1=4 such that

h � Nh; l1 D l3 �

q
N= Nh; (9.2)
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where here and in the following � indicates that the equality holds up to a constant
CˇN


.ˇ/�1=2. Indeed, for ˇ 2 R nQ, the value Nh is unique, whereas for ˇ 2 Q it lies
in an interval whose diameter is at most of orderN 1=4. Consequently, two optimal config-
urations in Class 	 with l2 D 0 clearly satisfy (9.1). Also, notice that since the interface
is straight, reflection along the interface exchanges the roles of the sets A and B . Now,
consider an optimal configuration .A; B/ in Class 	 with l2 > 0. Then, we get l2 D 1 by
Proposition 7.1. The regularisation of Proposition 7.3 shows that .A; B/ can be modified
to a configuration .A0;B 0/ in Class 	 with l2 D 0 such that (9.1) holds. Indeed, in this reg-
ularisation, we only alter the configurations involving the single column containing points
of both types and possibly merge two connected components by moving one connected
component by .1; 0/. This concludes Step 1 of the proof.

Step 2: Class 	V . We now consider an optimal configuration in Class 	V and show
that it can be modified to a configuration in Class 	 such that (9.1) holds. We will work
through the proofs in Sections 8.3 and 8.4 in reverse order. Our strategy is as follows:
we use the knowledge of the structure of the final step of the regularisation procedure,
obtain some a posteriori bounds on the size of li and hi , and go back to see how these can
change at every step of the regularisation procedure. Eventually, this will allow us to show
that already after the first modification described in Lemma 8.5 we obtain an optimal
configuration in Class 	, by moving at most CˇN 1=2 many points. This will conclude
Step 2 of the proof.

Step 2.1. Our starting points are Propositions 8.11 and 8.12: recall that applying all the
intermediate steps, in the end, we have h3 D 0 and we land with an alternative l1 D 1

(which is covered in Proposition 8.11) or l2 D 2 (which is covered by Proposition 8.12).
In both cases, before applying these propositions, we have

l2 � 2; h1 � 2C
1

ˇ
; h3 D 0; h2 � Nh; l1; l3 �

q
N= Nh: (9.3)

In fact, the last conditions follow from (9.2) (for h D h2) and the reflection procedure
described in the propositions.

Step 2.2. Now, we go a step back in the regularisation procedure. In Proposition 8.10,
for ˇ < 1=2 nothing changes and the same bounds hold. For ˇ D 1=2, (9.3) yields that
h1
h2
! 0 as N !1. This implies that in Proposition 8.10, for sufficiently large N , we

move at most two layers. In fact, if we moved at least three layers, the energy would
strictly decrease since all of them fit into a single column. Hence, for sufficiently big N
(depending only on ˇ), we have the following bounds:

l2 � 4; h1 � 2C
1

ˇ
; h3 D 0; h2 � Nh; l1; l3 �

q
N= Nh: (9.4)

Finally, let us take one more step back in the regularisation procedure. In Lemma 8.8, we
actually modify the configuration only slightly inside the rectangle l2 W h2. In this way, hi
and li are not altered, so the bounds (9.4) still hold.
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Step 2.3. Now we come to the main part of the regularisation procedure, i.e., Proposi-
tion 8.6. In its proof, we apply an iterative procedure, and at every step one of the following
changes happens:

(a) h2 ! h2 C 1, l2 ! l2 � 1, h3 ! h3 � 1, l3 ! l3 C 1, h1 ! h1, l1 ! l1 or

(b) h2 ! h2 C 1, l2 ! l2 � 1, h1 ! h1 � 1, l1 ! l1 C 1, h3 ! h3, l3 ! l3.

Notice that in both cases l1 and l3 cannot decrease during this procedure, and exactly
one of them increases at every step. The procedure can end in two ways: h3 D 0 (or
equivalently h1 D 0) or l2 D 1. In the latter case, however, the proof of Proposition 8.7
implies that the original configuration was not optimal, so we only need to examine the
former case.

Consider the last step of the regularisation procedure in the proof of Proposition 8.6,
i.e., the one before we reach h3 D 0. Denote by Oh1 the value of h1 at the end of the regu-
larisation procedure, and note that Oh1 � 2C 1

ˇ
by (9.4). There are two possible situations:

either
Ol1 � 2 Oh1 or Ol1 > 2 Oh1:

In the second case, notice that we cannot have applied the construction from case (a)
twice as otherwise a slightly modified procedure would give the following: we move the
A-points from the rightmost two columns of the rectangle l2 W h1 to the rectangle l1 W h3,
but we place them in a single row. In this way, we have

h2 ! h2 C 1; l2 ! l2 � 2; h3 ! h3 � 1; l3 ! l3 C 2; h1 ! h1; l1 ! l1:

This shows that the energy (6.5) strictly decreases as the length of the interface is de-
creased. Hence, the original configuration was not optimal, so either Ol1 � 2 Oh1 or we have
applied a step of type (a) at most once.

Similarly, since Oh3 at the end of the procedure equals zero, we consider the alternative

Ol3 � 2 or Ol3 > 2:

We apply a similar argument to conclude that either Ol3 � 2 or that we have applied a step
of type (b) at most once.

In view of (9.4), and because l1 and l3 can only increase during the regularisation
procedure, we see that l1 � 2 Oh1 and l3 � 2 lead to contradictions for N sufficiently large
depending only on ˇ. This implies that there can be at most one step of types (a) and (b),
respectively. Therefore, using again (9.4), we see that before the application of Proposi-
tion 8.6 it holds that

l2 � 6; h1 � 4C
1

ˇ
; h3 � 2; h2 � Nh; l1; l3 �

q
N= Nh: (9.5)

Step 2.4. Finally, we consider the modification in Lemma 8.5. For simplicity, we only
address the modification leading to min¹h1; h1 C h2 � l1 � l2º � 0. Note that each step
of the procedure consists in h1 ! h1 � 1 and l1 ! l1 C 1. As after the application of
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Lemma 8.5, we have Oh2= Ol1 � 2=.2� ˇ/CO.1=
p
N/, see (9.5), and during its application

h2 does not change and l1 can only increase, at each step of the procedure, it holds that
h2=l1 � 2=.2� ˇ/CO.1=

p
N/. In view of (9.5), in particular the fact that l2 � 6, for N

sufficiently large depending only on ˇ, we have

.h1 C h2/=.l1 C l2/ � h2=.l1 C l2/ � cˇ (9.6)

at each step of the procedure, for some constant cˇ > 1 only depending on ˇ. This ensures
that at the beginning we have h1 �M forM 2N such that .M C 1/=M < cˇ since other-
wiseM C 1 rows could be moved toM columns leading to a strictly smaller energy. This
along with (9.5) shows that at most CˇN 1=2 are moved. Moreover, the modifications stop
once h1 D 0 or h1 C h2 � l1 C l2 has been obtained. By (9.6), we see that it necessarily
holds h1 D 0. In a similar fashion, one gets h3 D 0. This shows that, directly after the
application of Lemma 8.5, we obtain a configuration in Class 	. This concludes the proof
as we have seen that in the modification of Lemma 8.5 only CˇN 1=2 points are moved.

Step 3: Class V . We now consider an optimal configuration in Class V and show that it
can be modified to a configuration in Class 	V such that (9.1) holds. The modification in
Proposition 8.14 consists in moving at most h1 rows to the left. By Step 2, we know that
h1 � Cˇ which implies that we have moved at most CˇN 1=2 many points. This concludes
the proof of Step 3.

Let us highlight that in the proof of Theorem 9.1 we have not only shown the N 1=2-
law and N 3=4-law for minimisers, but we also get explicit estimates on the shape of the
configuration, written as a separate statement here below. The following corollary is a
consequence of equations (9.5), (9.6), and the procedure from Step 3 of the proof of The-
orem 9.1.

Corollary 9.2. Suppose that .A;B/ 2 	V [ V is an optimal configuration. Then,

l2; h1; h3 � Cˇ ; h2 � Nh; l1; l3 �

q
N= Nh;

where Nh is a minimiser of (1.3).

Recall that for ˇ 2R nQ the minimiser Nh is unique. Thus, in this case, the quantitative
bound given in Theorem 9.1 is sharp, the optimal configuration in Class 	V given by
Proposition 8.16 differs from the one given in Theorem 1.1 (v) by a number of points of
exactly this order. In the case ˇ 2Q, theN 3=4-law can again be checked to be sharp. This
will be addressed in a forthcoming paper.

10. Proofs in the continuum setting

We conclude by providing the proofs of Corollaries 1.2 and 1.3 from the Introduction.
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Proof of Corollary 1.2. For the explicit solution .A0N ;B
0
N / in Theorem 1.1 (v) withNA D

NB DW N , one can directly verify that �A0N
�
* L A and �B 0N

�
* L B, where A and

B are given in (1.5). For a general sequence of solutions .AN ;BN / of (1.1), the statement
follows from the fluctuation estimate in Theorem 1.1 (vi).

Proof of Corollary 1.3. We start by relating point configurations with sets of finite peri-
meter: given .AN ; BN / with NA D NB DW N , we define the sets

AN WD
1
p
N

int

 [
p2AN

p C

�
�
1

2
;
1

2

�2!
;

BN WD
1
p
N

int

 [
p2BN

p C

�
�
1

2
;
1

2

�2!
: (10.1)

Clearly, AN and BN satisfy

AN \ BN D ; and L.AN / D L.BN / D 1:

It is an elementary matter to check that (1.1) and (1.6) coincide in this case up to normal-
isation, i.e.,

N�1=2P.AN ; BN / D Pcont.A
N ; BN /

WD Per.AN /C Per.BN / � 2ˇL.@�AN \ @�BN /: (10.2)

Now, consider any pair of sets of finite perimeter with

A \ B D ; and L.A/ D L.B/ D 1:

Given " > 0, by the density result [10, Theorem 2.1 and Corollary 2.4] (for Z consisting of
three values representing A, B , and the empty set) we can find A0 and B 0 with polygonal
boundary such that

A0 \ B 0 D ;; L.A0/ D L.B 0/ D 1

and
Pcont.A

0; B 0/ � Pcont.A;B/C ":

(Strictly speaking, the constraint L.A0/DL.B 0/D 1 has not been addressed there. How-
ever, possibly after scaling, one can assume that L.A0/� 1, L.B 0/� 1, and then it suffices
to add a disjoint squares of small volume and surface to satisfy the constraint.) We define
a point configuration related to A0 and B 0 by setting

AN D
®
p 2 Z2Wp

ıp
N 2 A0

¯
;

BN D
®
p 2 Z2Wp

ıp
N 2 B 0

¯
:
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By AN and BN we denote the corresponding sets of finite perimeter defined in (10.1).
Note that the setsAN andBN may have different cardinalities, although L.A0/DL.B 0/D

1. Still, equal cardinalities can be restored by adding points to one of the two sets. This can
be achieved at the price of making a small error in the perimeter, which goes to 0 with N
after rescaling. The fact that .A0; B 0/ have polygonal boundary along with the properties
of k � k1 implies that

lim
N!1

Pcont.A
N ; BN / D Pcont.A

0; B 0/:

In fact, each segment of the polygonal boundary of .A0; B 0/ is approximated by a path
consisting of horizontal and vertical segments which is contained in the boundary of the
squares forming .AN ; BN /, see (10.1). The l1-norm of the segment and of the path coin-
cide, up to an error of order 1p

N
. This along with (10.2) and Theorem 1.1 (iv) yields

Pcont.A;B/ � lim inf
N!1

Pcont.A
N ; BN / � "

� lim inf
N!1

N�1=2 min
h2N

�
4dN=he C 2h.2 � ˇ/

�
� "

D lim inf
N!1

min
h2N

�
4
p
N=hC 2

h
p
N
.2 � ˇ/

�
� ":

Optimisation with respect to h yields

Pcont.A;B/ � 4
1q
2
2�ˇ

C 2

s
2

2 � ˇ
.2 � ˇ/ � " D 4

p
2
p
2 � ˇ � ":

We directly compute Pcont.A;B/ D 4
p
2
p
2 � ˇ. As " > 0 is arbitrary, we conclude that

the pair .A;B/ is a solution of (1.6).
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