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Elliptic regularization of some semilinear parabolic
free boundary problems

Alessandro Audrito and Tomás Sanz-Perela

Abstract. We prove the existence of strong solutions to a family of some semilinear parabolic free
boundary problems by means of elliptic regularization. The Existence of solutions is obtained in two
steps: we first show some uniform energy estimates and then we pass to the weak limit. To carry
out the latter step, we establish uniform non-degeneracy estimates for the approximating sequence
as well as parabolic non-degeneracy and optimal regularity for the limit solution. To the best of
our knowledge, this is the first time the elliptic regularization approach is used in the context of
parabolic obstacle problems.

1. Introduction

In this paper, we use elliptic regularization to construct strong solutions to the following
class of semilinear parabolic free boundary problems:´

@tu ��u D �f
 .u/ in Q WD Rn � .0;1/;

ujtD0 D u0 in Rn;
(1.1)

where n � 1, 
 2 Œ1; 2/, u0 � 0, and

f
 .u/ WD 
�¹u>0ºu

�1: (1.2)

Such parabolic free boundary problems appear in chemical engineering (see [29]) and
transport of thermal energy in plasma (see [24]). The mathematical study of its solutions
and their free interfaces was initiated by Caffarelli in [9, 10] (see also [11]) in the case

 D 1, in which (1.1) reduces to a version of the Stefan problem (see, e.g., [4,11,19,20]),
and later extended in the elliptic setting to the range 
 2 .0; 2/ by Alt and Phillips [2]
(see also [27, 28]). In the parabolic setting, we mention the works of Weiss [34, 35]
(see also [12], by Choe and Weiss), where the classification of blowups and fine regu-
larity properties of the free boundary were established, together with sharp bounds on
the (parabolic) Hausdorff dimension of @¹u > 0º. Notice that in [34] the singular range

 2 Œ0; 1/ was considered too. To the best of our knowledge, there are not further results
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in the range 
 < 1, except the very recent papers [14–17], where the authors have studied
the range 
 < 0 in the elliptic framework.

The existence of weak/strong solutions to (1.1) is well known (see, e.g., [20]). How-
ever, the elliptic regularization approach is, to the best of our knowledge, new in the
context of parabolic obstacle problems, and presents some interesting features with respect
to the classical approach. It is a variational approximation procedure (also known as
WIED method), introduced in the works of Lions [23] and Oleinik [26] (see also the article
of De Giorgi [13]). Due to its intrinsic flexibility, elliptic regularization has been applied in
many contexts; see, for instance, [1,6,7,21,25,30] in the parabolic setting and also [31,32]
in the context of nonlinear wave equations (see also the more recent works [3,5] concern-
ing systems with strong competition and nonlocal parabolic problems, respectively).

The main idea of this approach is to approximate solutions to the parabolic problem
(1.1) by using (absolute) minimizers of the functional

E".w/ WD

Z 1
0

e�t="

"

�Z
Rn

."j@twj
2
C jrwj2/ dx C 2

Z
Rn

w


C dx

�
dt; (1.3)

where " 2 .0; 1/ is a free parameter andwC is the standard notation for max¹w;0º. Indeed,
it is not difficult to check that, when 
 2 .1; 2/, any critical point u" satisfies´

�"@t tu" C @tu" ��u" D �f
 .u"/ in Q D Rn � .0;1/;

ujtD0 D u0 in Rn
(1.4)

in the weak sense (the case 
 D 1 is more involved; see the comments below). Prob-
lem (1.4) is exactly (1.1) “up to” the extra term�"@t tu", which makes the equation elliptic
for every " > 0, but degenerate as "! 0: it is thus reasonable to expect that, if minimizers
of (1.3) enjoy some uniform boundedness properties, we may pass to the weak limit into
(1.4) (along a suitable subsequence "j ! 0) and obtain a solution u to (1.1).

This plan has two main steps:

(1) Prove uniform energy estimates in the spirit of [31, 32] and deduce compactness
of families of minimizers in suitable Sobolev spaces.

(2) Pass rigorously to the limit into (1.4) to obtain (1.1).

The main difficulties arising from the fact that we are dealing with a free boundary
problem appear precisely in the second step and when 
 D 1 (the case 
 2 .1; 2/ is quite
standard since f
 is continuous). Indeed, there are two issues that must be treated with care
and are the core of this paper. First, we prove that minimizers u" of E" satisfy (1.4). This
is not obvious, as mentioned above, since the function w 7! wC is not differentiable at
w D 0; see Lemma 3.1 below. Second, once we have the limit of the minimizers, denoted
by u (which is obtained by compactness and after passing to a subsequence), we show
that we can take the limit " ! 0 in (1.4) and obtain (1.1). This requires to prove that
�¹u">0º! �¹u>0º, and this is also non-obvious. Indeed, to prove it, we establish a uniform
non-degeneracy property for the family u" close to free boundary points, as well as optimal
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regularity and parabolic non-degeneracy estimates for the limit u. All these ingredients
and fine estimates for the measure of @¹u > 0º are crucially exploited to pass to the limit
as "! 0.

It is important to stress that our approach does not only aim to construct solutions
in an alternative way with respect to the existing literature (regularizing �¹u>0º in the
nonlinearity f
 .u/ and using classical tools; see [20]). Indeed, we expect some features
of the elliptic problem (with " > 0) being inherited by solutions to (1.1), and we hope
this could lead to a different approach to study parabolic free boundary problems in the
future. For this, the first step is to establish the appropriate convergence of approximating
minimizers towards solutions to (1.1), as we do in this paper.

The techniques we use in this article allow us to prove the existence of solutions for
every 
 2 Œ1; 2/, and some of them do not work for 
 2 .0; 1/ (see Remark 2.6 below).
The main reason is that we use in a crucial way the weak formulation of the problem,
obtained by considering competitors of the form u C ı' with ı > 0 and ' 2 C1c .Q/,
and the weak convergence in H 1. Since for 
 2 .0; 1/ the function u 7! f
 .u/ has a
strong singularity at u D 0, we cannot use the standard weak formulation, but we would
need to consider competitors constructed through domain deformations in order to avoid
differentiating the function u 7! u



C. This approach is much more delicate and will be

treated in a forthcoming article.

Remark 1.1. As mentioned above, the elliptic regularization approach is quite flexible,
and more general/complex equations can be attacked with similar techniques (see, for
instance, [1, 32]). Here, we just mention that our methods can be slightly modified to
prove the existence of strong solutions to´

@tu ��u D �f
 .u/ in � � .0;1/;

ujtD0 D u0 in �;
(1.5)

where � � Rn is a bounded domain and homogeneous Dirichlet or Neumann conditions
are posed on @� � .0;1/. The proof of such fact is postponed to Section 4; see Corol-
lary 4.1.

In the next section, we introduce the functional setting and we state our main result.

1.1. Functional setting and main result

We will work with the space

U WD
\
r>0

H 1.QCr /; where QCr WD Br � .0; r
2/;

made of functions u 2 L2.QCr / with weak derivatives @tu 2 L2.QCr /, @iu 2 L
2.QCr /

.i D 1; : : : ; n/ for every r > 0. The functional (1.3) is well defined on U with values in
Œ0;C1�; we will seek for minimizers u 2 U subject to the initial condition ujtD0 D u0
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in the sense of traces, where

u0 2 H
1.Rn/ \ L
 .Rn/ and u0 � 0 a.e. in Rn; (1.6)

In other words, we will minimize E" over the space

U0 WD
®
u 2 U W ujtD0 D u0

¯
:

We remark that the assumptions on the initial data guarantee that u0 (seen as a function of
x and t ) belongs to U0: in particular, U0 6D ¿. This will be useful in the proof of Lemma
2.2, where we will use u0 as a competitor and prove the elementary, yet crucial, estimate
(2.3). We do not expect such assumptions to be optimal, but they have the advantage to
make the arguments direct and easy readable.

We now introduce the notion of strong solutions to (1.1).

Definition 1.2. Let n � 1 and 
 2 Œ1; 2/. We say that a function u is a strong solution to
(1.1) if

• u 2 L2loc.0;1 W H
1.Rn// with @tu 2 L2loc.0;1 W L

2.Rn//, and ujtD0 D u0 in the
sense of traces;

• the integral relation Z
Q

.@tu�Cru � r�C f
 .u/�/ dxdt D 0 (1.7)

is satisfied for every � 2 C1c .Q/.

Note that this definition differs from one for weak solutions in the fact that @tu is an
L2-function and the integral (1.7) involves the term @tu� and not �u@t�. In particular, the
fact that @tu is in L2 yields that �u is also in L2.

Finally, we state our main result.

Theorem 1.3. Let n � 1, 
 2 Œ1; 2/, u0 as in (1.6), and f
 as in (1.2). Then, there exist a
sequence of minimizers ¹u"j ºj2N of (1.3) in U0 and a continuous strong solution u 2U0

to (1.1) such that
u"j * u weakly in U;

u"j ! u locally uniformly in Q:

The rest of the paper is organized as follows. In Section 2, we prove the existence
and uniqueness of minimizers of E" in U0, and we establish the uniform energy esti-
mates given in (2.6) and (2.7). As a corollary, we prove the weak and strong convergence
of minimizers (see Proposition 2.1 below). Section 3 is divided into three parts. First, in
Section 3.1, we write the Euler–Lagrange equations for minimizers and show uniform
non-degeneracy near free boundary points. Then, in Section 3.2, we establish optimal reg-
ularity and parabolic non-degeneracy results for solutions to parabolic obstacle problems.
Finally, all these ingredients are combined crucially in Section 3.3 to prove Theorem 1.3.
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In the last section of the article, Section 4, we comment on the slight modifications that
one must perform in our methods in order to construct strong solutions to (1.5) with homo-
geneous Dirichlet or Neumann conditions on the parabolic boundary.

2. Energy estimates and Compactness

In this section, we establish the following result.

Proposition 2.1. Let ¹u"º"2.0;1/ 2 U0 be a family of minimizers of E". Then, there exist
u 2 U0 and a sequence "j ! 0 such that

u"j * u weakly in U;

u"j ! u in L2loc.Q/:
(2.1)

Before addressing the proof of the above statement, we show some basic properties of
minimizers of the functional E".

2.1. Existence of minimizers

It is not difficult to show that for every " 2 .0; 1/ the functional E" has a unique minimizer
in U0 (see Lemma 2.2 below). Before presenting the proof, we introduce the functional

J".w/ WD

Z 1
0

e�t
�Z

Rn

.j@twj
2
C "jrwj2/dx C 2"

Z
Rn

w


C dx

�
dt; (2.2)

which satisfies

E".u/ D
1

"
J".v/; whenever v.x; t/ D u.x; "t/:

Since v and u coincide at t D 0, minimizing E" in U0 is equivalent to minimizing J" in
the same space. Working with the functional J" allows us to keep the notations easier.

Lemma 2.2. For every "2 .0;1/, the functional J" defined in (2.2) has a unique minimizer
v" in U0. Such minimizer satisfies v" � 0 a.e. in Q. Moreover, there exists a constant
C > 0, depending only on n, 
 , and u0, such that

J".v"/ � C": (2.3)

Proof. By considering u0 (as a function of x and t ), thanks to (1.6), we have

J".u0/ D "

Z 1
0

e�t
�Z

Rn

jru0j
2dx C 2"

Z
Rn

.u0/


C dx

�
dt

� ".ku0k
2
H1.Rn/

C 2ku0k



L
 .Rn/
/

� C";

(2.4)
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and thus J" 6� C1 on U0. To prove the existence of a minimizer, we consider a mini-
mizing sequence vj 2 U0:

J".vj /! inf
v2U0

J".v/ WD I" � 0:

Consequently, for every fixed r > 0, we haveZ
QCr

.j@tvj j
2
C "jrvj j

2/dx dt � C;

for some C > 0 independent of j . Since for every j we have vj jtD0 D u0, given ı > 0,
for a.e. s 2 .0; r2/ it holds that

kvj .�; s/k
2
L2.Br /

D ku0k
2
L2.Br /

C 2

Z s

0

Z
Br

vj .x; t/@tvj .x; t/dxdt

� ku0k
2
L2.Br /

C ı

Z
QCr

jvj j
2dx dt C

1

ı

Z
QCr

j@tvj j
2dx dt:

Integrating between 0 and r2 and taking ı WD 1=.2r2/, we findZ
QCr

v2j dx dt � 2
�
ku0k

2
L2.Br /

C 2r2
Z
QCr

j@tvj j
2dx dt

�
r2 � C (2.5)

for some new C > 0 independent of j . Therefore, it follows that ¹vj ºj is bounded in
H 1.QCr / uniformly in j which, in turn, implies the existence of v 2 H 1.QCr / such that
vj *v weakly inH 1.QCr / and vj ! v inL2.QCr /, up to passing to a subsequence. Now,
since

Rn � .0;1/ D Q D
[
r>0

QCr ;

a diagonal argument shows that

vj * v weakly in U and vj ! v in L2loc.Q/;

up to passing to another subsequence, and, by the fact that U0 is closed and convex, we
conclude that v 2 U0. Finally, by lower semicontinuity and Fatou’s lemma, we obtain

J".v/ � I"I

i.e., v is a minimizer of J" in U0.
Now, uniqueness follows by the convexity of J". Furthermore, since u0 � 0, if v" is a

minimizer, then .v"/C is an admissible competitor, and thus, by minimality,

J".v"/ � J"..v"/C/;

which is impossible unless v" � 0 a.e. in Q. Finally, (2.3) follows from the minimality of
v" and the bound (2.4).
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2.2. Proof of Proposition 2.1

Proposition 2.1 will be obtained as a consequence of the following energy estimates.

Proposition 2.3 (Energy estimates). There exists a constant C > 0, depending only on n,

 , and u0 such that for every minimizer u" of E", we haveZ 1

0

Z
Rn

j@tu"j
2 dxd� � C; (2.6)

and, for every r � ", Z r

0

Z
Rn

.jru"j
2
C 2.u"/



C/ dxd� � Cr: (2.7)

Indeed, with these uniform bounds at hand, we readily obtain the main result of this
section.

Proof of Proposition 2.1. In light of (2.6) and (2.7), the family ¹u"º"2.0;1/ of minimizers
of E" is uniformly bounded inH 1.QCr / for every fixed r > 0, and thus, a standard diagonal
procedure shows the existence of a sequence "j ! 0 and u 2 U0 such that the first limit
in (2.1) is satisfied. By the Sobolev embedding, we immediately obtain also the second
limit, up to passing to another subsequence.

In the rest of the section, we establish Proposition 2.3. This is the first key result of
the paper and will be obtained as the byproduct of Lemma 2.4 and Corollary 2.5. In what
follows, we will use the following notations: we will denote RC WD .0;C1/ and, for a
minimizer v of J", we write

J".v/ D

Z 1
0

e�t .I.t/CR.t//dt; (2.8)

where
I.t/ WD

Z
Rn

j@tvj
2 dx; R.t/ WD "

Z
Rn

.jrvj2 C 2v


C/ dx:

Since v is a minimizer, it is clear that the functions t 7! I.t/, t 7!R.t/ and t 7! e�t .I.t/C

R.t// are locally integrable in RC. Consequently, the function

E.t/ WD et
Z 1
t

e�� .I.�/CR.�//d�

belongs to W 1;1
loc .RC/ \ C.RC/ with E.0/ D J".v/.

Notice that, by definition,

E 0 D E � I �R in D 0.RC/: (2.9)

In the following result, we give an alternative expression for E 0 which will be useful later
to obtain energy estimates.
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Lemma 2.4. Let v 2 U0 be a minimizer of J". Then

E 0 D �2I in D 0.RC/: (2.10)

Proof. We proceed in the spirit of [31, Proposition 3.1]. Let � 2 C1c .RC/, and set

�.t/ WD

Z t

0

�.�/d�:

Given ı 2 R, we define
'.t/ WD t � ı�.t/; t � 0: (2.11)

If jıj � ı0 and ı0 > 0 is small enough, then ' has smooth inverse  WD '�1 given by

 .�/ D � C ı�. .�//: (2.12)

Now, from the minimizer v 2 U0, for jıj � ı0, we define the competitor

wı.x; t/ WD v.x; '.t//:

Since '.0/D 0, we havewı jtD0Du0 (which impliesw 2U0) and, by (2.11),wı jıD0D v.
Changing variable t D  .�/ in (2.8), we easily see that

J".w/ D

Z 1
0

e�t
�Z

Rn

.j@twı j
2
C "jrwı j

2/dx C 2"
Z

Rn

.wı/


C dx

�
dt

D

Z 1
0

e�t Œ'0.t/2 I.'.t//CR.'.t//�dt

D

Z 1
0

 0.�/e� .�/Œ'0. .�//2 I.�/CR.�/�d�;

and thus, since '; 2W 1;1.RC/, we deduce that J".wı/ <C1. In particular,wı 2U0

is an admissible competitor for all jıj � ı0, and so, by the minimality of v,

lim
ı!0C

J".wı/ � J".v/

ı
D 0: (2.13)

Tedious, yet standard, computations using (2.11) and (2.12) show that

d
dı

�
 0.�/e� .�/

�ˇ̌̌
ıD0
D �0.�/e�� � �.�/e�� ;

d
dı

ˇ̌
'0. .�//

ˇ̌2 ˇ̌̌
ıD0
D �2�0.�/:

(2.14)
Since t 7! e�t .I.t/ C R.t// is locally integrable, we can pass to the limit in (2.13) by
dominated convergence, and, in light of (2.14), the limit in (2.13) takes the formZ 1

0

.�0.�/e�� � �.�/e�� /.I.�/CR.�//d� � 2
Z 1
0

e���0.�/I.�/ d� D 0: (2.15)
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We are left to show that (2.15) is equivalent to (2.10). Recalling that � is a primitive of
� and testing the equation (2.9) with �0.�/e�� and integrating by parts, we obtainZ 1

0

�0.�/e�� .I.�/CR.�//d� D
Z 1
0

E.�/
�
�0.�/e�� C .�0.�/e�� /0

�
d�

D

Z 1
0

�0.�/e��E.�/ d� C
Z 1
0

E.�/.�.�/e�� /0d�:

(2.16)
Using the definition of E and integration by parts, the first term in the right-hand side of
(2.16) becomesZ 1

0

�0.�/e��E.�/ d� D
Z 1
0

�0.�/

Z 1
�

e�s.I.s/CR.s//dsd�

D

Z 1
0

�.�/e�� .I.�/CR.�//d�:
(2.17)

Finally, combining (2.16), (2.17), and (2.15), we deduceZ 1
0

E.�/
�
e���.�/

�0d� D 2 Z 1
0

e���.�/I.�/ d�;

which, in turn, yields (2.10) thanks to the arbitrariness of � 2 C1c .RC/.

From the previous result, we obtain a corollary which will be the key to establish
Proposition 2.3.

Corollary 2.5. There exists a constant C > 0, depending only on n, 
 , and u0, such that
for every minimizer v" of J", we haveZ 1

0

Z
Rn

j@tv"j
2 dxdt � C"; (2.18)

and, for every r � 0, Z rC1

r

Z
Rn

�
jrv"j

2
C 2.v"/



C

�
dxdt � C: (2.19)

Proof. First, since I � 0, the function t 7! E.t/ is non-increasing, and so, E.t/ � E.0/
for all t � 0. Recalling that E.0/ D J".v"/ and the bound (2.3) in Lemma 2.2, it follows
that

E.t/ � J".v"/ � C" (2.20)

for all t � 0, where C > 0 is a constant depending only on n, 
 , and u0.
Now, from Lemma 2.4, we have E 0 D �2I a.e. in RC. Integrating this expression and

using (2.20), we obtain

2

Z t

0

I.�/ d� D E.0/ �E.�/ � E.0/ � C"
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for all t � 0 (recall that E � 0 by definition) and (2.18) follows by the arbitrariness of
t � 0 and the definition of I .

To prove (2.19) for r � 0, it is enough to use (2.20) to deduce that

"

Z rC1

r

Z
Rn

�
jrv"j

2
C 2.v"/



C

�
dx dt

D

Z rC1

r

R.t/ dt � erC1
Z rC1

r

e�tR.t/ dt � eE.r/ � C":

With the previous result at hand, we can now establish the uniform bounds of Propo-
sition 2.3.

Proof of Proposition 2.3. Let u WD u" be a minimizer of E" in U0, and let v.x; t/ WD
u.x; "t/. Then, as a first consequence, we notice that (2.6) is equivalent to (2.18), which
has been established above. Second, changing variable � D "t in (2.19) yieldsZ "�C"

"�

Z
Rn

�
jruj2 C 2u



C

�
dxdt � C"

for all �� 0. If r D ", then (2.7) follows from the above estimate, taking �D 0. Otherwise,
if r > ", let k WD dr="e� 2, and for j D 0;1; : : : ; apply the above estimate with �D �j D j .
Summing over j D 0; : : : ; k � 1, we obtainZ k"

0

Z
Rn

�
jrvj2 C 2v



C

�
dxd� � Ck":

Since r � k" � 2.k � 1/" � 2r , (2.7) follows.

Remark 2.6. Notice that all the proofs (and, consequently, the statements) of this section
work for the full range 
 2 Œ0; 1/ (when 
 D 0, we set u
C WD �¹u>0º). In the next section,
we are forced to restrict ourselves to the range 
 2 Œ1; 2/ in order to derive the Euler–
Lagrange equations when considering competitors of the form u C ı' with ı > 0 and
' 2 C1c .Q/.

3. Proof of the main theorem

This section is devoted to the proof of Theorem 1.3, which is split into three steps. We first
write the Euler–Lagrange equations for minimizers u" of E" (see Lemma 3.1 below) and
then, in Lemma 3.2, we establish a uniform non-degeneracy property. Next, we establish
parabolic non-degeneracy and optimal regularity results for solutions to parabolic obstacle
problems. Last, we combine all these ingredients to pass to the limit as "! 0, along a
suitable subsequence, establishing Theorem 1.3. Recall that we are using the notations

Q WD Rn � .0;C1/ and f
 .u/ WD 
�¹u>0ºu

�1:
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3.1. Euler–Lagrange equations and uniform non-degeneracy

Let us start with the Euler–Lagrange equations for minimizers.

Lemma 3.1. Let " 2 .0; 1/, and let u" 2 U0 be the minimizer of E" in U0. Then

"

Z
Q

@tu"@t� dxdt C
Z
Q

.@tu"�Cru" � r�C f
 .u"/�/ dxdt D 0 (3.1)

for every � 2 C1c .Q/.

Proof. Let u WD u" be the minimizer of E" in U0, and let ' 2 C1c .Q/; we have

E".uC ı'/ � E".u/

ı

D 2

Z 1
0

e�t="

"

Z
Rn

�
"@tu@t' Cru � r' C

.uC ı'/


C � u



C

ı

�
dxdt CO.ı/

as ı ! 0. We divide the remaining part of the proof depending on whether 
 2 .1; 2/ or

 D 1.
�Assume that 
 2 .1; 2/. Then, the function u 7! u



C is everywhere differentiable, and

thus,
.uC ı'/



C � u



C

ı
! 
u


�1
C ' a.e. in Q

as ı ! 0. Consequently, taking the limit of the incremental quotient above and using the
minimality of u, we obtainZ 1

0

e�t="
Z

Rn

."@tu@t' Cru � r' C 
u

�1
C '/dxdt D 0:

Choosing ' D et="� and noticing that

@t' D e
t="

�
1

"
�C @t�

�
;

(3.1) easily follows.
� Assume that 
 D 1. In this case, the function u 7! uC is not differentiable at u D

0: we thus generalize the argument in [18, Proposition 5.12] to our degenerate-elliptic
setting. By Lemma 2.2, we know that u� 0 a.e. inQ. Consequently, one easily obtains that

.uC ı'/C � uC

ı
! �¹u>0º' C �¹uD0º'C a.e. in Q

as ı! 0C. Since by the minimality of E".uC ı'/�E".u/� 0, we may choose ' D et="�
as before and pass to the limit as ı ! 0C to find

"

Z
Q

@tu@t� dxdt C
Z
Q

.@tu�Cru � r�C �¹u>0º�C �¹uD0º�C/ dxdt � 0 (3.2)

for every � 2 C1c .Q/.
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Now, if we define the differential operator

L" WD "@t t C�;

setting

�hL"u; �i WD

Z
Q

."@tu@t�Cru � r�/ dxdt;

the previous inequality (3.2) becomes

�hL"u; �i C

Z
Q

.@tu�C �¹u>0º�C �¹uD0º�C/ dxdt � 0:

Consequently,

hL"u; �i �

8̂̂̂<̂
ˆ̂:
Z
Q

.@tuC 1/� dxdt for all � 2 C1c .Q/ such that � � 0;Z
Q

.@tuC �¹u>0º/� dxdt for all � 2 C1c .Q/ such that � � 0;
(3.3)

that is,
�¹u>0º � "@t tuC�u � @tu � 1 (3.4)

in the weak sense.
Now, given r > 0, we bound L"u in L2.QCr / by duality: given � 2 C1c .Q

C
r /, (3.3)

yields

hL"u; �i � hL"u; �Ci C hL"u;���i

�

Z
QCr

j@tuC 1j�C dxdt C
Z
QCr

j@tuC �¹u>0ºjj��j dxdt

� 2k@tuC 1kL2.QCr /k�kL2.QCr / � Ck�kL2.QCr /; (3.5)

where we have used the estimate (2.6) in the last inequality (notice that here the constant
C > 0 depends on r but is independent of u). Thus, by the arbitrariness of r > 0, it follows
that

L"u D "@t tuC�u 2 L
2
loc.Q/;

and so, by W 2;2-estimates of Calderón–Zygmund type, we obtain u 2 W 2;2
loc .Q/ (see, for

instance, [18, Section 2]). Since W 2;2-regularity is enough to apply Rademacher’s theo-
rem, we deduce that

@tu; @t tu;�u D 0 a.e. in ¹u D 0º:

Combining this with (3.4), we finally obtain

�"@t tu ��uC @tu D ��¹u>0º a.e. in Q;

which, in turn, implies (3.1) for 
 D 1.
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We now establish a uniform non-degeneracy property for solutions to (3.1) when 
 D
1. Notice that even though non-degeneracy is quite standard in obstacle problems, it is not
clear that such property can be made uniform with respect to " 2 .0; 1/, which is exactly
what we prove next.

Lemma 3.2. There exists a constant c > 0, depending only on n, such that for every
" 2 .0; 1/, every .x0; t0/ 2 Q such that B1.x0; t0/ � Q, every weak solution u" to

�"@t tu" C @tu" ��u" D ��¹u">0º in B1.x0; t0/ � Q; (3.6)

every .z"; �"/ 2 ¹u" > 0º \ B1=2.x0; t0/, and every r 2 .0; 1
2
/, we have

sup
Br .z";�"/

u" � cr
2: (3.7)

Proof. Since equation (3.6) is invariant under translations and here the initial condition at
¹t D 0º plays no role, we may assume that .x0; t0/D .0; 0/. We also drop the "-subindexes
to make the proof easier to read; that is, we set

u WD u" and .z; �/ WD .z"; �"/ 2 ¹u > 0º \ B1=2:

Now, take ¹.zk ; �k/ºk2N � ¹u > 0º such that .zk ; �k/! .z; �/ as k ! C1. For each
k 2 N, we define

w.x; t/ WD u.x; t/ � u.zk ; �k/ � c.jx � zkj
2
C .t � �k/

2/ with c WD
1

2.nC 2/
:

Then, if r 2 .0; 1=2/ is arbitrarily fixed, it is easy to compute

�"@t tw C @tw ��w D �1C 2c.nC "/ � 2c.t � �k/

� �1C 2c.nC 1/C 2cjt � �kj

� �1C 2c.nC 1/C 2c � 0 in ¹u > 0º \ Br .zk ; �k/ (3.8)

in view of the definition of c above. Note that u (and hence w) is smooth in ¹u > 0º \
Br .zk ; �k/ by standard elliptic estimates. By definition, we also have

w.zk ; �k/ D 0 and w < 0 in @¹u > 0º \ Br .zk ; �k/;

and thus, by the maximum principle1,

0 D w.zk ; �k/ � sup
@.¹u>0º\Br .zk ;�k//

w D sup
¹u>0º\@Br .zk ;�k/

w

D sup
¹u>0º\@Br .zk ;�k/

u � u.zk ; �k/ � cr
2

� sup
Br .zk ;�k/

u � u.zk ; �k/ � cr
2
I

1Note that by standard elliptic estimates u;w 2 C 1;˛x;t .B1=2/ for all ˛ 2 .0; 1/ and ¹u > 0º \Br .zk ; �k/
is an open set.
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that is,
sup

Br .zk ;�k/

u � u.zk ; �k/C cr
2:

Passing to the limit as k !C1, (3.7) follows thanks to the continuity of u.

3.2. Non-degeneracy and optimal regularity: parabolic setting

We present below two technical results that we will exploit in the proof of Theorem 1.3, in
the case 
 D 1. The first one, Lemma 3.3, is a non-degeneracy property—it can be seen as
the parabolic version of Lemma 3.2—, while the second one, Corollary 3.5, is an optimal
regularity estimate, obtained by combining interior estimates and an optimal growth prop-
erty established below in Lemma 3.4. The optimal regularity we prove coincides with the
optimal regularity of solutions to the parabolic obstacle problem (see, for instance, [8]).
The proof closely follows the classical one, but we work in a slightly more general frame-
work, which is exactly what we need to carry out the limiting procedure in the proof of
Theorem 1.3.

Here and in the rest of the paper, we use the usual notation for parabolic cylinders.
That is, we set

Qr .x0; t0/ WD
®
.x; t/ 2 Rn �R W jx � x0j < r; jt � t0j < r

2
¯

and
Q�r .x0; t0/ WD Qr .x0; t0/ \ ¹t < t0º:

As customary, the center point .x0; t0/ is omitted when .x0; t0/ D .0; 0/.

Lemma 3.3. Let u 2 C.Q1/ be a nonnegative weak solution to

@tu ��u D �1 in ¹u > 0º \Q1:

Then, there exists a constant cı > 0 depending only on n such that, for every .x0; t0/ 2
¹u > 0º \Q1=2 and every r 2 .0; 1=2/, it holds

sup
Q�r .x0;t0/

u � cır
2:

Proof. The argument follows the proof of Lemma 3.2. Given .x0; t0/ 2 ¹u > 0º \Q1=2,
let ¹.xk ; tk/ºk2N � ¹u > 0º \Q1=2 be such that .xk ; tk/! .x0; t0/ as k ! C1. For
each k 2 N, we define

wk.x; t/ WD u.x; t/ � u.xk ; xk/ � cı.jx � xkj
2
C tk � t / with cı WD

1

2nC 1
:

Then, in ¹u > 0º [Q1, it holds

@twk ��wk D �1C cı.2nC 1/ � 0:
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Hence, using the maximum principle and that wk < 0 in @¹u > 0º [Q�r , we have

0 D wk.xk ; tk/ � sup
Q�r .xk ;tk/[¹u>0º

wk D sup
@p.Q

�
r .xk ;tk/\¹u>0º/

wk

� sup
@p.Q

�
r .xk ;tk//

wk ;

where @p� denotes the parabolic boundary of a set��RnC1. Sincewk �u�u.xk ; tk/�
cır

2 in @p.Q�r .xk ; tk//, it holds that

sup
@p.Q

�
r .xk ;tk//

wk � sup
@p.Q

�
r .xk ;tk//

u � u.xk ; tk/ � cır
2

� sup
Q�r .xk ;tk/

u � u.xk ; tk/ � cır
2;

from which we obtain
sup

Q�r .xk ;tk/

u � u.xk ; tk/C cır
2:

We conclude by taking the limit as k ! C1 and using that u.x0; t0/ � 0 (note that
u.x0; t0/ D 0 when .x0; t0/ 2 @¹u > 0º).

Next, we establish an optimal growth bound and, as corollary, an optimal regularity
estimate. The proof is quite standard, but we present it for completeness, following [4,
Lemma 5.3], where it is done for the parabolic obstacle problem.

Lemma 3.4. LetK >0, and let f 2L1.Q1/with f � 0 a.e. inQ1 and kf kL1.Q1/ �K.
Let u 2 C.Q1/ be a nonnegative weak solution to

@tu ��u D f in Q1 (3.9)

with kukL1.Q1/ � K. Then, there exists C0 > 0 depending only on n and K such that

kukL1.Qr .x0;t0// � C0r
2 (3.10)

for every .x0; t0/ 2 ¹u D 0º \Q1=2 and every r 2 .0; 1
4
/.

Proof. Given .x0; t0/ 2 ¹u D 0º \Q1=2, since kf kL1.Q1/ � K, we first notice that [34,
Lemma 5.1] (or, equivalently, [4, Lemma 5.2]) yields that, for every ı 2 .0; 1/ and r 2
.0; 1

4
/,

sup
P ır .x0;t0/

u � C0.u.x0; t0/CKr
2/ D C0Kr

2; (3.11)

where C0 > 0 depends only on n and ı, and

P ır .x0; t0/ WD
®
.x; t/ 2 Q�r .x0; t0/ W t � t0 < �ıjx � x0j

2
¯
:

In light of (3.11), it is sufficient to bound u in the set Qr .x0; t0/ n P ır .x0; t0/ for some
ı 2 .0; 1/ that will be chosen later. This will be obtained by comparison with the function

w.x; t/ WD a.t � t0 C bjx � x0j
2/;
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where
b WD

1

2n
; a WD 2 �max¹C0; 16º �

K

b
:

Let us show that u � w in Q1=4.x0; t0/ n P ı1=4.x0; t0/. First, it is immediate to check

that the choice of b makesw caloric in RnC1. Now, on the one hand, setting ı WD b
2
2 .0;1/,

we have

w.x; t/ � a

�
�
ı

16
C
b

16

�
D
ab

32
in @pQ1=4.x0; t0/ n P ı1=4.x0; t0/;

which allows us to deduce that u � w in @pQ1=4.x0; t0/ n P ı1=4.x0; t0/, thanks to the
assumption kukL1.Q1/�K and the definition of a. On the other hand, for every � 2 .0; 1

4
/,

we have

w.x; t/jtDt0�ıjx�x0j2 D
ab

2
�2 in @B�.x0/

by the definition of w and

sup
x2@B�.x0/;tDt0�ı�2

u.x; t/ � C0K�
2

for every � 2 .0; 1
4
/ as an immediate consequence of (3.11). Combining the last two

inequalities with the definition of a, we deduce that u � w in @P ı
1=4
.x0; t0/ \ ¹t � t0 >

�ı=16º, and therefore, since u is sub-caloric in Q1 (since f � 0 a.e. in Q1), we obtain
that u�w inQ1=4.x0; t0/ nP ı1=4.x0; t0/ as wanted. The result then follows since v �Cr2

inQr .x0; t0/ nP ır .x0; t0/ for every r 2 .0; 1
4
/ and some C > 0 depending on a and b.

Corollary 3.5. Let K > 0, f 2 L1.Q1/, and u 2 C.Q1/ as in Lemma 3.4. Further,
assume that f is constant in ¹u > 0º \Q1. Then, there exists a constant C > 0 depending
only on n and K such that

k@tukL1.Q1=2/ C kD
2ukL1.Q1=2/ � C: (3.12)

In addition, for every .y; �/ 2 ¹u > 0º \Q1=2, we have

jru.y; �/j � Cı; (3.13)

where
ı WD sup

®
� > 0 W Q�.y; �/ � ¹u > 0º

¯
:

Proof. We may assume that @¹u > 0º \ Q1=2 ¤ ¿; otherwise, the result is classical
and well known. Let us fix .y; �/ 2 ¹u > 0º \Q1=2, and let ı D ı.y; �/ > 0 be as in
the statement. We first apply the interior estimates in [22, Theorem 4.9] (with ˛ D 1,
.aij /

n
i;jD1 D I , bi D 0 for i D 1; : : : ; n, and c D 0) to deduce

k@tukL1.Qı=2.y;�// C kD
2ukL1.Qı=2.y;�// C

1

ı
krukL1.Qı=2.y;�//

� xC

�
1

ı2
kukL1.Qı .y;�// C kf kL1.Qı .y;�// C ıŒf �Lipp.Qı .y;�//

�
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for some constant xC > 0 depending only on n, where

Œf �Lipp.Q/ WD sup
.x;t/;.y;�/2Q
.x;t/ 6D.y;�/

jf .x; t/ � f .y; �/jp
jx � yj2 C jt � � j

:

Then, using the growth estimate (3.10)—applied in Q2ı.y0; �0/—, the L1 bound for f ,
and the fact that f is constant on Qı—since Qı � ¹u > 0º—, it follows that

1

ı2
kukL1.Qı .y;�// C kf kL1.Qı .y;�// C ıŒf �Lipp.Qı .y;�// � 4C0 CK;

where C0 > 0 is as in Lemma 3.4. Combining the above two inequalities and using the
arbitrariness of .y; �/, we obtain

j@tu.y; �/j C jD
2u.y; �/j � C for all .y; �/ 2 ¹u > 0º \Q1=2 (3.14)

and
jru.y; �/j � Cı for all .y; �/ 2 ¹u > 0º \Q1=2; (3.15)

where C WD xC.4C0 C K/. In particular, (3.15) implies that ru can be continuously
extended to zero in ¹u D 0º \Q1=2.

To complete the proof, it is enough to show that ru is Lipschitz in space; that is,

jru.x; t/ � ru.z; t/j � Ljx � zj for all .x; t/; .z; t/ 2 Q1=2 (3.16)

for some constant L > 0 depending only on n and K. Indeed, (3.16) implies that

kD2ukL1.Q1=2/ � L;

which combined with the fact that u is a weak solution to (3.9) and kf kL1.Q1/ �K, gives
the bound k@tukL1.Q1=2/ � LCK.

In the next argument, we will use the parabolic distance. For points .x; t/; .y; �/ 2
RnC1, it is defined as

distp..x; t/; .y; �// WD inf
®
� > 0 W .y; �/ 2 Q�.x; t/

¯
:

For a point .x; t/ 2 RnC1 and a set A � RnC1, we set

distp..x; t/; A/ WD inf
.y;�/2A

distp..x; t/; .y; �//:

Let us establish (3.16). To do it, let .x; t/; .z; t/ 2Q1=2. If both .x; t/; .z; t/ 2 ¹uD 0º,
the claim is trivial since ru D 0 in ¹u D 0º \Q1=2. Hence, we may assume that .x; t/ 2
¹u > 0º. By symmetry, we may also assume

d WD distp..x; t/; ¹u D 0º/ � distp..z; t/; ¹u D 0º/:
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On the one hand, assume that distp..x; t/; .z; t//� d=2. Then, .z; �/ 2Qd=2.x; t/� ¹u >
0º, and thus, by (3.14), we have

jru.x; t/ � ru.z; t/j �

Z 1

0

jD2u.sx C .1 � s/z; t/jds � jx � zj � C jx � zj:

On the other hand, if distp..x; t/; .z; t// � d=2, then (3.15) yields

jru.x; t/ � ru.z; t/j � jru.x; t/j C jru.z; t/j � 2Cd

� 4C distp..x; t/; .z; t// D 4C jx � zj:

Therefore, (3.16) follows with L WD 4C .

3.3. Proof of Theorem 1.3

In this section, we combine all the ingredients introduced above to prove our main result.

Proof of Theorem 1.3. Let ¹u"º"2.0;1/ be the family of minimizers of E" in U0. Then, by
Proposition 2.1, there are "j ! 0 and u 2 U0 such that u"j converge to u in the sense of
(2.1) and, by Lemma 3.1, each u"j satisfies (3.1) for every j 2 N. For simplicity, we set
uj WD u"j for j 2 N.

Step 1: Local uniform convergence of the sequence of minimizers. First, up to passing to
another subsequence, we may assume that for every r > 0 and every .x0; t0/ 2 Q such
that Qr .x0; t0/ b Q

kuj kC˛;˛=2.Qr=2.x0;t0// � Cr
�˛
�
1C r�

nC2
2 kuj kL2.Qr .x0;t0//

�
for some ˛ 2 .0; 1/ and C > 0 depending only on n (the parabolic Hölder norm k�kC˛;˛=2
is quite standard; see, for instance, [3, Appendix C] for the definition). This easily follows
by combining the (re-scaled) estimates in [3, Propositions 3.1 and 4.1] with

U" D u"j D uj ; f" D 0; F" D ��¹u"j >0º; p D q D1; and a D 0

(see footnote2). Further, the sequence ¹uj ºj2N is uniformly bounded inL2.QCr / for every
r > 0—see the argument leading to (2.5)—and thus,

kuj kC˛;˛=2.Qr=2.x0;t0// � C;

for some other constant C > 0 independent of j . Therefore, combining the Arzelà–Ascoli
theorem with a standard covering argument, and up to passing to another subsequence, we
deduce that

uj ! u locally uniformly in Q;

which, in particular, implies that u is continuous in Q.

2Notice that [3, Proposition 4.1] can be applied here since u"j ! u in Cloc.0;1 W L
2.Rn// (this is

an immediate consequence of (2.6)–(2.7) and [33, Corollary 8]), and thus, the assumption (4.1) in [3] is
satisfied.
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Step 2: Conclusion for 
 2 .1; 2/. We show that u is a strong solution to (1.1). Notice
that, if 
 2 .1; 2/, the nonlinearity f
 is continuous. Hence, we may pass to the limit in
(3.1) by dominated convergence, combining (2.6) and Proposition 2.1 with the continuity
of f
 , and deduce that u satisfies (1.7), i.e., (1.1), in the sense of Definition 1.2.

Step 3: Limit problem for 
 D 1. In the rest of the proof, we assume that 
 D 1. Since
�¹uj>0º are bounded in L1.Q/ uniformly in j 2 N, there exists a nonnegative function
� 2 L1.Q/ such that �¹uj>0º *

? � in L1.Q/ up to passing to a subsequence. Conse-
quently, passing to the limit in (3.1) as above and recalling that L1.Q/ D L1.Q/?, we
have Z

Q

.@tu�Cru � r�C ��/ dxdt D 0

for every � 2 C1c .Q/. Hence, to conclude, it is enough to show that

� D �¹u>0º a.e. in QR; (3.17)

where QR is any cylinder such that Q2R � Q and R > 0.
To check (3.17), on the one hand, we notice that if .x; t/ 2 ¹u > 0º \ QR, then

�¹uj>0º.x; t/ D 1 for j large enough, by uniform convergence. Therefore, � D 1 in ¹u >
0º \QR. On the other hand, we claim that, for any ı 2 .0;R2=4/, if .x; t/ 2 ¹uD 0º \QR
with dist..x; t/; ¹u > 0º/ > ı, then

�¹uj>0º.x; t/ D 0

for j large enough. Indeed, if we assume that this is not true, there exist ¹.xk ; tk/ºk2N �

QR with dist..xk ; tk/; ¹u > 0º/ > ı and .xk ; tk/ 2 ¹uk > 0º for k 2 N. Then, by our
uniform non-degeneracy estimate (3.7), we have

uk.zk ; �k/ D sup
Bı=2.xk ;tk/

uk � cı
2

for some .zk ; �k/ 2 Bı=2.xk ; tk/ and some c > 0 independent of k. Up to passing to a
subsequence, we have that .xk ; tk/! .x0; t0/ and .zk ; �k/! .z; �/ 2Bı=2.x0; t0/b ¹u >
0ºc . Thus, u.x0; t0/ D 0, but this contradicts the fact that uk.zk ; �k/! u.x0; t0/ � cı

2

(which follows from uniform convergence). Consequently, the claim is proved, and we
conclude that � D 0 in int.¹u D 0º/ \QR, where int.A/ denotes the interior of a set A.

Summing up, we have that u 2 C.QR/ is a weak solution to @tu ��u D �� in QR,
where �2L1.Q/ is nonnegative, �D 1 in ¹u>0º\QR, and �D 0 in int.¹uD 0º/\QR
(in particular, u fulfills the assumptions of both Lemma 3.3 and Corollary 3.5 with f D�).

To prove (3.17), it remains to show that @¹u > 0º \QR has zero measure, which is
what we do next, in the spirit of [34, Theorem 5.1].

Step 4: Measure of the free boundary. We first prove that for every .x; t/2 @¹u> 0º \QR
and every r 2 .0; R=4/, we have

LnC1.¹u > 0º \Qr .x; t//

LnC1.Qr .x; t//
� c? > 0; (3.18)
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where LnC1 denotes the .n C 1/-dimensional Lebesgue measure and c? is a constant
depending only on n and KR WD max¹1; kukL1.QR/º. To show (3.18), we notice that
Lemma 3.3 yields the existence of .y; �/ 2 ¹u > 0º \Qr=2.x; t/ such that

u.y; �/ �
cı

4
r2; (3.19)

where cı > 0 depends only on n. Now, we claim that QQcr .y; �/ � ¹u > 0º \Qr .x; t/ if
Qc 2 .0; 1

2
/ is small enough depending only on n andKR. Indeed, given .z; �/ 2QQcr .y; �/,

setting 
.s/ WD s.y; �/C .1 � s/.z; �/ for s 2 Œ0; 1�. By Corollary 3.5 (applied with f D
�� and K D KR), we have

u.y; �/ � u.z; �/

D

Z 1

0

.ru.
.s//; @tu.
.s/// � .y � z; � � �/ ds

� sup
s2Œ0;1�

jru.
.s//j � jy � zj C sup
s2Œ0;1�

j@tu.
.s//j � j� � � j � Cr � Qcr C C � . Qcr/
2

� 2C Qcr2;

where C > 0 is the constant appearing in (3.12) and (3.13) and depends only on n and
KR. Setting Qc WD min¹ cı

16C
; 1
2
º and combining the bound above with (3.19), we obtain

u.z; �/ �

�
cı

4
� 2C Qc

�
r2 > 0;

and our claim is proved. The fact that QQcr .y; �/ � ¹u > 0º \Qr .x; t/ readily implies
(3.18).

Once (3.18) is established, let us show that the free boundary has zero measure. By
contradiction, we assume that LnC1.@¹u > 0º \QR/ > 0. Now, since the set @¹u > 0º is
measurable, �@¹u>0º is integrable in QR, and thus, for almost every point .x; t/ 2 @¹u >
0º \QR,

LnC1.@¹u > 0º \Er .x; t//

LnC1.Er .x; t//
! 1 as r # 0; (3.20)

where Er .x; t/ WD Br .x/ � .t � r; t C r/. Let us take one of such points .x; t/ (recall
that this is allowed by our assumption of LnC1.@¹u > 0º \QR/ being positive). Up to
a translation, we may assume that .x; t/ D .0; 0/. Let us also take rı > 0 such that, for
r < rı, LnC1.@¹u > 0º \Er=2/ � LnC1.Er=2/=2.

Now, we take a sequence rk ! 0 such that 1=.2rk/ 2 N. For each of these rk (which
from now on we will denote simply by r), we decompose the cylinder Er=2 (up to a
set of zero measure) into 1=r disjoint parabolic cylinders Qr=2.0; ti / for some ¹tiºi . If
r < rı, then it is not difficult to see that the number of cylindersQr=2.0; ti /which intersect
@¹u > 0º, which we denote by N , satisfies N � 1=r . From such N cylinders, we can
take another collection ¹Qr=2.0; tj /ºj with cardinality at least N=4 such that the distance
between each pair of cylinders in the collection is greater than r2. Thus, we can build
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another collection of parabolic cylinders ¹Qr=2.zj ; �j /ºj , with the same cardinality, such
that .zj ; �j / 2 @¹u > 0º \Qr=2.0; tj /. For each of these cylinders, we can use the density
property (3.18) and, adding up (using that the cylinders are pairwise disjoint), we get

LnC1.@¹u > 0º \Er /

�

N=4X
jD1

LnC1.@¹u > 0º \Qr=2.zj ; �j // � c?
N

4
LnC1.Qr=2/ � NcL

nC1.Er /;

for some constant Nc > 0 depending only on n and KR. Note that in the last inequality we
have used that N � 1=r . As a consequence,

LnC1.@¹u > 0º \Er /

LnC1.Er /
� Nc > 0;

which combined with (3.20)—recall that we assume .x; t/ D .0; 0/—yields

lim
r#0

LnC1.¹u > 0º \Er /

LnC1.Er /
> 1;

a contradiction.

4. Extensions

In this final section, we explain how to modify the arguments above to construct strong
solutions to 8̂̂<̂

:̂
@tu ��u D �f
 .u/ in � � .0;1/;

u D 0 in @� � .0;1/;

ujtD0 D u0 in �;

(4.1)

where � � Rn is a bounded domain. Before starting with the proof, there are a couple of
remarks:

• The notion of strong solution to (4.1) is exactly the one given in Definition 1.2, replac-
ing Rn with �, Q with �1 WD � � .0;1/, and H 1.Rn/ with H 1

0 .�/.

• As the reader will easily see, the argument below applies with small changes if we
impose homogeneous Neumann conditions on the parabolic boundary, instead of the
Dirichlet ones (see also [5]).

Now, the idea we follow is basically the same as the one used in the above sections:
we consider the family of functionals

QE".w/ WD

Z 1
0

e�t="

"

�Z
�

."j@twj
2
C jrwj2/ dx C 2

Z
�

w


C dx

�
dt; (4.2)
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with " 2 .0; 1/, and we seek for minimizers in the space

QU0 WD
®
u 2 QU W ujtD0 D u0 and u.�; t / D 0 on @� for a.e. t > 0

¯
;

where
QU WD

\
r>0

H 1.�Cr / with �Cr WD � � .0; r
2/;

and the initial data satisfies

u0 2 H
1
0 .�/ \ L


 .�/ and u0 � 0 a.e. in �: (4.3)

Exactly as above, since each element u 2 QU has all (first) weak derivatives in L2.�Cr / for
every r > 0, the equations ujtD0 D u0 and u.�; t / D 0 on @� for a.e. t > 0, appearing in
the definition of QU0, must be intended in the sense of traces.

Given these definitions, we may state and prove the following corollary of Theo-
rem 1.3.

Corollary 4.1. Let n � 1, 
 2 Œ1; 2/, u0 as in (4.3), and f
 as in (1.2). Then, there exist
a sequence of minimizers ¹u"j ºj2N of (4.2) in QU0 and a strong solution u 2 QU0 to (4.1),
continuous in �1, such that

u"j * u weakly in QU

u"j ! u locally uniformly in �1:

Proof. We summarize the proof in three remarks as follows:

• The methods used to prove Lemma 2.2 apply in this setting too with minor changes:
the assumptions on u0 allow us to use it as competitor and obtain the estimate (2.3),
while the proof of existence of minimizers (for fixed " 2 .0; 1/) is the same, once we
replace Br with � and QCr with �Cr .

• Also the energy estimates stated in Proposition 2.3 hold for minimizers of QE" in QU0 if
we replace Rn with �. Indeed, it is enough to replace Rn with � in the definitions of
I and R, below formula (2.8). The rest of the proof is exactly the same.

• Finally, we notice that the proofs of Lemma 3.1, Lemma 3.2, Lemma 3.3, Lemma 3.4,
and Corollary 3.5 are purely local and do not depend on the boundary behavior of
minimizers. Therefore, minimizers of QE" in QU0 satisfy the same statements with Q
replaced by �1.

Taking into account the remarks above and proceeding as in the proof of Theorem 1.3,
we readily obtain the claimed result.

Acknowledgments. We thank the anonymous referee for the careful reading of the first
version of this article and for the helpful comments he/she gave us.

Funding. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska–Curie grant agreement



Elliptic regularization of some semilinear parabolic free boundary problems 157

892017 (LNLFB-Problems) and from the European Research Council (ERC) under the
grant agreement 948029. The first author is supported by the INDAM-GNAMPA project
number CUP-E53C22001930001. The second author is supported by grants PID2020-
113596GB-I00, PID2021-123903NB-I00 and RED2018-102650-T funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF: A Way of Making Europe”.

References

[1] G. Akagi and U. Stefanelli, A variational principle for gradient flows of nonconvex energies.
J. Convex Anal. 23 (2016), no. 1, 53–75 Zbl 1342.49008 MR 3510216

[2] H. W. Alt and D. Phillips, A free boundary problem for semilinear elliptic equations. J. Reine
Angew. Math. 368 (1986), 63–107 Zbl 0598.35132 MR 850615

[3] A. Audrito, On the existence and Hölder regularity of solutions to some nonlinear Cauchy–
Neumann problems. J. Evol. Equ. 23 (2023), no. 3, article no. 58, 45 pp. Zbl 1521.35065
MR 4629496

[4] A. Audrito and T. Kukuljan, Regularity theory for fully nonlinear parabolic obstacle problems.
J. Funct. Anal. 285 (2023), no. 10, article no. 110116, 57 pp. Zbl 07740617 MR 4630909

[5] A. Audrito, E. Serra, and P. Tilli, A minimization procedure to the existence of segregated
solutions to parabolic reaction-diffusion systems. Comm. Partial Differential Equations 46
(2021), no. 12, 2268–2287 Zbl 1479.35047 MR 4321582

[6] V. Bögelein, F. Duzaar, and P. Marcellini, Existence of evolutionary variational solutions via
the calculus of variations. J. Differential Equations 256 (2014), no. 12, 3912–3942
Zbl 1288.35007 MR 3190487

[7] V. Bögelein, F. Duzaar, P. Marcellini, and S. Signoriello, Parabolic equations and the bounded
slope condition. Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 2, 355–379
Zbl 1372.35161 MR 3610936

[8] L. Caffarelli, A. Petrosyan, and H. Shahgholian, Regularity of a free boundary in parabolic
potential theory. J. Amer. Math. Soc. 17 (2004), no. 4, 827–869 Zbl 1054.35142
MR 2083469

[9] L. A. Caffarelli, The regularity of free boundaries in higher dimensions. Acta Math. 139
(1977), no. 3-4, 155–184 Zbl 0386.35046 MR 454350

[10] L. A. Caffarelli, Some aspects of the one-phase Stefan problem. Indiana Univ. Math. J. 27
(1978), no. 1, 73–77 Zbl 0393.35064 MR 466965

[11] L. A. Caffarelli and A. Friedman, Continuity of the temperature in the Stefan problem. Indiana
Univ. Math. J. 28 (1979), no. 1, 53–70 Zbl 0406.35032 MR 523623

[12] H. J. Choe and G. S. Weiss, A semilinear parabolic equation with free boundary. Indiana Univ.
Math. J. 52 (2003), no. 1, 19–50 Zbl 1055.35147 MR 1970019

[13] E. De Giorgi, Conjectures concerning some evolution problems. Duke Math. J. 81 (1996),
no. 2, 255–268 MR 1395405

[14] D. De Silva and O. Savin, Compactness estimates for minimizers of the Alt–Phillips functional
of negative exponents. Adv. Nonlinear Stud. 23 (2023), no. 1, article no. 20220055, 19 pp.
Zbl 1512.35138 MR 4567389

[15] D. De Silva and O. Savin, Uniform density estimates and �-convergence for the Alt–Phillips
functional of negative powers. Math. Eng. 5 (2023), no. 5, article no. 086, 27 pp.
MR 4604131

https://zbmath.org/?q=an:1342.49008
https://mathscinet.ams.org/mathscinet-getitem?mr=3510216
https://zbmath.org/?q=an:0598.35132
https://mathscinet.ams.org/mathscinet-getitem?mr=850615
https://doi.org/10.1007/s00028-023-00899-7
https://doi.org/10.1007/s00028-023-00899-7
https://zbmath.org/?q=an:1521.35065
https://mathscinet.ams.org/mathscinet-getitem?mr=4629496
https://doi.org/10.1016/j.jfa.2023.110116
https://zbmath.org/?q=an:07740617
https://mathscinet.ams.org/mathscinet-getitem?mr=4630909
https://doi.org/10.1080/03605302.2021.1931884
https://doi.org/10.1080/03605302.2021.1931884
https://zbmath.org/?q=an:1479.35047
https://mathscinet.ams.org/mathscinet-getitem?mr=4321582
https://doi.org/10.1016/j.jde.2014.03.005
https://doi.org/10.1016/j.jde.2014.03.005
https://zbmath.org/?q=an:1288.35007
https://mathscinet.ams.org/mathscinet-getitem?mr=3190487
https://doi.org/10.1016/j.anihpc.2015.12.005
https://doi.org/10.1016/j.anihpc.2015.12.005
https://zbmath.org/?q=an:1372.35161
https://mathscinet.ams.org/mathscinet-getitem?mr=3610936
https://doi.org/10.1090/S0894-0347-04-00466-7
https://doi.org/10.1090/S0894-0347-04-00466-7
https://zbmath.org/?q=an:1054.35142
https://mathscinet.ams.org/mathscinet-getitem?mr=2083469
https://doi.org/10.1007/BF02392236
https://zbmath.org/?q=an:0386.35046
https://mathscinet.ams.org/mathscinet-getitem?mr=454350
https://doi.org/10.1512/iumj.1978.27.27006
https://zbmath.org/?q=an:0393.35064
https://mathscinet.ams.org/mathscinet-getitem?mr=466965
https://doi.org/10.1512/iumj.1979.28.28004
https://zbmath.org/?q=an:0406.35032
https://mathscinet.ams.org/mathscinet-getitem?mr=523623
https://doi.org/10.1512/iumj.2003.52.2124
https://zbmath.org/?q=an:1055.35147
https://mathscinet.ams.org/mathscinet-getitem?mr=1970019
https://doi.org/10.1215/S0012-7094-96-08114-4
https://mathscinet.ams.org/mathscinet-getitem?mr=1395405
https://doi.org/10.1515/ans-2022-0055
https://doi.org/10.1515/ans-2022-0055
https://zbmath.org/?q=an:1512.35138
https://mathscinet.ams.org/mathscinet-getitem?mr=4567389
https://mathscinet.ams.org/mathscinet-getitem?mr=4604131


A. Audrito and T. Sanz-Perela 158

[16] S. Dipierro, A. Karakhanyan, and E. Valdinoci, Classification of global solutions of a free
boundary problem in the plane. Interfaces Free Bound. 25 (2023), no. 3, 455–490
Zbl 07761252 MR 4642020

[17] R. Durastanti and L. Giacomelli, Spreading equilibria under mildly singular potentials: pan-
cakes versus droplets. J. Nonlinear Sci. 32 (2022), no. 5, article no. 71, 61 pp.
Zbl 1503.35158 MR 4470285

[18] X. Fernández-Real and X. Ros-Oton, Regularity theory for elliptic PDE. Zur. Lect. Adv. Math.
28, EMS Press, Berlin, 2022 Zbl 07643646 MR 4560756

[19] A. Figalli, X. Ros-Oton, and J. Serra, The singular set in the Stefan problem. 2021,
arXiv:2103.13379

[20] A. Friedman and D. Kinderlehrer, A one phase Stefan problem. Indiana Univ. Math. J. 24
(1974/75), no. 11, 1005–1035 Zbl 0334.49002 MR 385326

[21] T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature. Mem.
Amer. Math. Soc. 108 (1994), no. 520, x+90 Zbl 0798.35066 MR 1196160

[22] G. M. Lieberman, Second order parabolic differential equations. World Scientific, River Edge,
NJ, 1996 Zbl 0884.35001 MR 1465184

[23] J.-L. Lions, Sur certaines équations paraboliques non linéaires. Bull. Soc. Math. France 93
(1965), 155–175 Zbl 0132.10601 MR 194760

[24] L. K. Martinson, The finite velocity of propagation of thermal perturbations in media with
constant thermal conductivity. U.S.S.R. Comput. Math. Math. Phys. 16 (1976), no. 5, 141–149

[25] A. Mielke and U. Stefanelli, Weighted energy-dissipation functionals for gradient flows.
ESAIM Control Optim. Calc. Var. 17 (2011), no. 1, 52–85 Zbl 1218.35007 MR 2775186

[26] O. A. Oleı̆nik, On a problem of G. Fichera. Dokl. Akad. Nauk SSSR 157 (1964), 1297–1300
MR 171061

[27] D. Phillips, Hausdorff measure estimates of a free boundary for a minimum problem. Comm.
Partial Differential Equations 8 (1983), no. 13, 1409–1454 Zbl 0555.35128 MR 714047

[28] D. Phillips, A minimization problem and the regularity of solutions in the presence of a free
boundary. Indiana Univ. Math. J. 32 (1983), no. 1, 1–17 Zbl 0545.35013 MR 684751

[29] D. Phillips, Existence of solutions of quenching problems. Appl. Anal. 24 (1987), no. 4, 253–
264 Zbl 0633.35036 MR 907341

[30] R. Rossi, G. Savaré, A. Segatti, and U. Stefanelli, Weighted energy-dissipation principle for
gradient flows in metric spaces. J. Math. Pures Appl. (9) 127 (2019), 1–66 Zbl 1423.35007
MR 3960137

[31] E. Serra and P. Tilli, Nonlinear wave equations as limits of convex minimization problems:
proof of a conjecture by De Giorgi. Ann. of Math. (2) 175 (2012), no. 3, 1551–1574
Zbl 1251.49019 MR 2912711

[32] E. Serra and P. Tilli, A minimization approach to hyperbolic Cauchy problems. J. Eur. Math.
Soc. (JEMS) 18 (2016), no. 9, 2019–2044 Zbl 1355.35125 MR 3531669

[33] J. Simon, Compact sets in the space Lp.0; T IB/. Ann. Mat. Pura Appl. (4) 146 (1987), 65–96
Zbl 0629.46031 MR 916688

[34] G. S. Weiss, Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic
free boundary problems. SIAM J. Math. Anal. 30 (1999), no. 3, 623–644 Zbl 0922.35193
MR 1677947

[35] G. S. Weiss, The free boundary of a thermal wave in a strongly absorbing medium. J. Differ-
ential Equations 160 (2000), no. 2, 357–388 Zbl 0944.35112 MR 1736999

https://doi.org/10.4171/ifb/494
https://doi.org/10.4171/ifb/494
https://zbmath.org/?q=an:07761252
https://mathscinet.ams.org/mathscinet-getitem?mr=4642020
https://doi.org/10.1007/s00332-022-09826-5
https://doi.org/10.1007/s00332-022-09826-5
https://zbmath.org/?q=an:1503.35158
https://mathscinet.ams.org/mathscinet-getitem?mr=4470285
https://doi.org/10.4171/zlam/28
https://zbmath.org/?q=an:07643646
https://mathscinet.ams.org/mathscinet-getitem?mr=4560756
https://arxiv.org/abs/2103.13379
https://doi.org/10.1512/iumj.1975.24.24086
https://zbmath.org/?q=an:0334.49002
https://mathscinet.ams.org/mathscinet-getitem?mr=385326
https://doi.org/10.1090/memo/0520
https://zbmath.org/?q=an:0798.35066
https://mathscinet.ams.org/mathscinet-getitem?mr=1196160
https://doi.org/10.1142/3302
https://zbmath.org/?q=an:0884.35001
https://mathscinet.ams.org/mathscinet-getitem?mr=1465184
https://zbmath.org/?q=an:0132.10601
https://mathscinet.ams.org/mathscinet-getitem?mr=194760
https://doi.org/10.1016/0041-5553(76)90144-0
https://doi.org/10.1016/0041-5553(76)90144-0
https://doi.org/10.1051/cocv/2009043
https://zbmath.org/?q=an:1218.35007
https://mathscinet.ams.org/mathscinet-getitem?mr=2775186
https://mathscinet.ams.org/mathscinet-getitem?mr=171061
https://doi.org/10.1080/03605308308820309
https://zbmath.org/?q=an:0555.35128
https://mathscinet.ams.org/mathscinet-getitem?mr=714047
https://doi.org/10.1512/iumj.1983.32.32001
https://doi.org/10.1512/iumj.1983.32.32001
https://zbmath.org/?q=an:0545.35013
https://mathscinet.ams.org/mathscinet-getitem?mr=684751
https://doi.org/10.1080/00036818708839668
https://zbmath.org/?q=an:0633.35036
https://mathscinet.ams.org/mathscinet-getitem?mr=907341
https://doi.org/10.1016/j.matpur.2018.06.022
https://doi.org/10.1016/j.matpur.2018.06.022
https://zbmath.org/?q=an:1423.35007
https://mathscinet.ams.org/mathscinet-getitem?mr=3960137
https://doi.org/10.4007/annals.2012.175.3.11
https://doi.org/10.4007/annals.2012.175.3.11
https://zbmath.org/?q=an:1251.49019
https://mathscinet.ams.org/mathscinet-getitem?mr=2912711
https://doi.org/10.4171/JEMS/637
https://zbmath.org/?q=an:1355.35125
https://mathscinet.ams.org/mathscinet-getitem?mr=3531669
https://doi.org/10.1007/BF01762360
https://zbmath.org/?q=an:0629.46031
https://mathscinet.ams.org/mathscinet-getitem?mr=916688
https://doi.org/10.1137/S0036141097327409
https://doi.org/10.1137/S0036141097327409
https://zbmath.org/?q=an:0922.35193
https://mathscinet.ams.org/mathscinet-getitem?mr=1677947
https://doi.org/10.1006/jdeq.1999.3678
https://zbmath.org/?q=an:0944.35112
https://mathscinet.ams.org/mathscinet-getitem?mr=1736999


Elliptic regularization of some semilinear parabolic free boundary problems 159

Received 20 March 2023; revised 23 May 2023.

Alessandro Audrito
Dipartimento di Scienze Matematiche (DISMA), Politecnico di Torino, Corso Duca degli Abruzzi
24, 10129 Torino, Italy; alessandro.audrito@polito.it

Tomás Sanz-Perela
Departamento de Matemáticas, Universidad Autónoma de Madrid, Ciudad Universitaria de
Cantoblanco, 28049 Madrid, Spain; tomas.sanz@uam.es

mailto:alessandro.audrito@polito.it
mailto:tomas.sanz@uam.es

	1. Introduction
	1.1. Functional setting and main result

	2. Energy estimates and Compactness
	2.1. Existence of minimizers
	2.2. Proof of Proposition 2.1

	3. Proof of the main theorem
	3.1. Euler–Lagrange equations and uniform non-degeneracy
	3.2. Non-degeneracy and optimal regularity: parabolic setting
	3.3. Proof of thm:MainIntro

	4. Extensions
	References

