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Functional inequalities and strong Lyapunov functionals
for free surface flows in fluid dynamics

Thomas Alazard and Didier Bresch

Abstract. This paper is motivated by the study of Lyapunov functionals for the Hele-Shaw and
Mullins-Sekerka equations describing free surface flows in fluid dynamics. We prove that the L2-
norm of the free surface elevation and the area of the free surface are Lyapunov functionals. The
proofs combine exact identities for the dissipation rates with functional inequalities. We introduce
a functional which controls the L2-norm of three-half spatial derivative. Under a mild smallness
assumption on the initial data, we show that the latter quantity is also a Lyapunov functional for
the Hele-Shaw equation, implying that the area functional is a strong Lyapunov functional. Precise
lower bounds for the dissipation rates are established, showing that these Lyapunov functionals are
in fact entropies.

1. Introduction

The equations

Consider a time-dependent surface † given as the graph of some function h so that, at
time t � 0,

†.t/ D ¹.x; y/ 2 Td � RI y D h.t; x/º;

where Td denotes a d -dimensional torus. We are interested in several free boundary prob-
lems described by nonlinear parabolic equations. A free boundary problem is described
by an evolution equation which expresses the velocity of† at each point in terms of some
nonlinear expressions depending on h. The most popular example is the mean-curvature
equation, which stipulates that the normal component of the velocity of † is equal to the
mean curvature at each point. It follows that

@thC
p
1C jrhj2� D 0; where � D � div

�
rhp

1C jrhj2

�
: (1.1)

The previous equation plays a fundamental role in differential geometry. Many other free
boundary problems appear in fluid dynamics. Among these, we are chiefly concerned
with the equations modeling the dynamics of a free surface transported by the flow of
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an incompressible fluid evolving according to Darcy’s law1. We begin with the Hele-Shaw
equations with or without surface tension. One formulation of this problem reads

@thCG.h/.ghC ��/ D 0; (1.2)

where � is as in (1.1), g and � are real numbers in Œ0; 1�, and G.h/ is the (normalized)
Dirichlet-to-Neumann operator, defined as follows: for any functions h D h.x/ and  D
 .x/,

G.h/ .x/ D
p
1C jrhj2@nH . /

ˇ̌
yDh.x/

;

where r D rx , @n D n � r, and n is the outward unit normal to † given by

n D
1p

1C jrhj2

�
�rh

1

�
;

and H . / is the harmonic extension of  in the fluid domain, solution to´
�x;yH . / D 0 in � WD ¹.x; y/ 2 Td � R W y < h.x/º;
H . /jyDh D  :

(1.3)

Given f D f .x; y/, we use f jyDh as a short notation for x 7! f .x; h.x//.
When g D 1 and � D 0, equation (1.2) is called the Hele-Shaw equation without

surface tension. Hereafter, we will refer to this equation simply as the Hele-Shaw equation.
If gD 0 and�D 1, the equation is known as the Hele-Shaw equation with surface tension,
also known as the Mullins-Sekerka equation. Let us record the terminologies

@thCG.h/h D 0 .Hele-Shaw/;

@thCG.h/� D 0 .Mullins-Sekerka/:

1.1. Lyapunov functionals and entropies

Our main goal is to find some time monotonicity properties for the previous free boundary
flows in a unified way. Before going any further, let us fix the terminology used in this
paper.

Definition 1.1. (a) Consider one of the evolution equations stated above and a function

I W C1.Td /! Œ0;C1/:

We say that I is a Lyapunov functional if the following property holds: for any smooth
solution h in C1.Œ0; T � � Td / for some T > 0, we have

8t 2 Œ0; T �;
d

dt
I.h.t// � 0:

The quantity � d
dt
I.h/ is called the dissipation rate of the functional I.h/.

1A long version of our paper exists on arXiv (see [4]) which makes the link with functional inequalities
(some classical, some not) for other problems with free boundaries in fluid dynamics.
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(b) We say that a Lyapunov functional I is an entropy if the dissipation rate satisfies,
for some C > 0,

�
d

dt
I.h.t// � CI.h.t//:

(c) Eventually, we say that I is a strong Lyapunov functional if

d

dt
I.h.t// � 0 and

d2

dt2
I.h.t// � 0:

This means that t 7! I.h.t// decays in a convex manner.

Remark 1.2. (i) The Cauchy problems for various free boundary equations have been
studied by different techniques, for weak solutions, viscosity solutions, or also classical
solutions. We refer the reader to [5, 6, 16–20, 23, 25, 28, 29, 31, 32, 34, 35, 37, 39]. Thanks
to the parabolic smoothing effect, classical solutions are smooth for positive times (the
elevation h belongs to C1..0; T � � Td /). This is why we consider functionals I defined
only on smooth functions C1.Td /.

(ii) Assume that I is an entropy for an evolution equation and consider a global in time
solution of the latter problem. Then, t 7! I.h.t// decays exponentially fast. In the litera-
ture, there are more general definitions of entropies for various evolution equations. The
common idea is that entropy dissipation methods allow to study the large-time behavior
or to prove functional inequalities (see [9, 11–15, 24, 26, 33, 41, 42]).

(iii) To say that I.h/ is a strong Lyapunov functional is equivalent to saying that the
dissipation rate � d

dt
I.h/ is also a Lyapunov functional. This notion was introduced in [3]

as a tool to find Lyapunov functionals which control higher order Sobolev norms (see
also Pazy [38]). Indeed, in general, the dissipation rate is expected to be a higher-order
energy because of the smoothing effect of a parabolic equation. Notice that the idea to
compute the second-order derivative in time is related to the celebrated work of Bakry and
Émery [10].

1.2. Examples

For the reader’s convenience, we begin by discussing some examples which are well
known in certain communities.

Example 1.3. Consider the heat equation @th ��h D 0. The energy identity

1

2

d

dt

Z
Td
h2dx C

Z
Td
jrhj2dx D 0

implies that the square of the L2-norm is a Lyapunov functional. It is in addition a strong
Lyapunov functional since, by differentiating the equation, the quantity

R
Td jrhj

2dx is
also a Lyapunov functional. Furthermore, if one assumes that the mean value of h.0; �/
vanishes, then the Poincaré inequality implies that the square of theL2-norm is an entropy.
Now, let us discuss another important property, which holds for positive solutions. Assume
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that h.t; x/ � 1 and introduce the Boltzmann entropy, defined by

H.h/ D

Z
Td
h log hdx:

Then,H.h/ is a strong Lyapunov functional. This classical result (see Evans [27]) follows
directly from the pointwise identities

.@t ��/.h log h/ D �
jrhj2

h
;

.@t ��/
jrhj2

h
D �2h

ˇ̌̌̌
r2h

h
�
rh˝rh

h2

ˇ̌̌̌2
:

Recall that the L1-norm of jrhj2=h, called the Fisher information, plays a key role in
entropy methods and information theory (see Villani’s lecture notes [40] and his book [41,
Chapters 20, 21, and 22]).

Example 1.4 (Mean-curvature equation). Consider the mean curvature equation

@thC
p
1C jrhj2� D 0:

If h is a smooth solution, then

d

dt
Hd .†/ � 0; where Hd .†/ D

Z
Td

p
1C jrhj2dx: (1.4)

This is proved by an integration by parts argument

d

dt
Hd .†/ D

Z
Td
rx.@th/ �

rhp
1C jrhj2

dx D

Z
Td
.@th/�dx

D �

Z
Td

p
1C jrhj2�2dx � 0:

In fact, the mean-curvature equation is a gradient flow for Hd .†/; see [22].

Example 1.5 (Hele-Shaw equation). Consider the equation @thCG.h/hD 0. Recall that
G.h/ is a non-negative operator. Indeed, denoting by ' D H . / the harmonic extension
of  given by (1.3), it follows from Stokes theorem thatZ

Td
 G.h/ dx D

Z
@�

'@n'dHd
D

“
�

jrx;y'j
2dydx � 0: (1.5)

Consequently, if h is a smooth solution to @thCG.h/h D 0, then

1

2

d

dt

Z
Td
h2dx D �

Z
Td
hG.h/hdx � 0:

This shows that
R

Td h
2dx is a Lyapunov functional. In [6], it is proved that in fact

R
Td h

2dx

is a strong Lyapunov functional and also an entropy. This result is generalized in [3] to
functionals of the form

R
Td ˆ.h/dx, where ˆ is a convex function whose derivative is

also convex.
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Example 1.6 (Mullins-Sekerka). Assume that h solves @thCG.h/� D 0, and denote by
Hd .†/ the area functional (see (1.4)). Then, (1.5) implies that

d

dt
Hd .†/ D

Z
Td
.@th/�dx D �

Z
Td
�G.h/�dx � 0;

so Hd .†/ is a Lyapunov functional. In fact, the Mullins-Sekerka equation is a gradient
flow for Hd .†/; see [7, 30].

2. Statements of the main results

Our main goal is to study the decay properties of several natural coercive quantities for
the Hele-Shaw and the Mullins-Sekerka equations.

2.1. Entropies for the Hele-Shaw and Mullins-Sekerka equations

The first two coercive quantities which we want to study are the L2-norm and the area
functional (that is, the d -dimensional surface measure)�Z

Td
h.t; x/2dx

� 1
2

; Hd .†/ D

Z
Td

p
1C jrhj2dx:

Our first main result states that these are Lyapunov functionals for the Hele-Shaw and
Mullins-Sekerka equations in any dimension.

Theorem 2.1. Let d � 1, .g; �/ 2 Œ0;C1/2, and assume that h is a smooth solution to

@thCG.h/.ghC ��/ D 0: (2.1)

Then,
d

dt

Z
Td
h2dx � 0 and

d

dt
Hd .†/ � 0:

Remark 2.2. The main point is that this result holds uniformly with respect to g and �.
For comparison, let us recall some results which hold for the special cases, where either
g D 0 or � D 0.

(i) When g D 0, the fact that the area functional Hd .†/ decays in time follows from a
well-known gradient flow structure for the Mullins-Sekerka equation. However, the decay
of the L2-norm in this case is new.

(ii) When � D 0, the decay of the L2-norm follows from an elementary energy esti-
mate. However, the proof of the decay of the area functional t 7! Hd .†.t// requires
a more subtle argument. It is implied (but only implicitly) by some computations by
Antontsev, Meirmanov, and Yurinsky in [8]. The main point is that we will give a differ-
ent approach which holds uniformly with respect to g and �. In addition, we will obtain
a precise lower bound for the dissipation rate showing that Hd .†/ is an entropy when
� D 0 and not only a Lyapunov functional.
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To prove these two uniform decay results, the key ingredient will be to study the
following functional:

J.h/ WD

Z
Td
� G.h/hdx:

It appears naturally when performing energy estimates. Indeed, by multiplying equa-
tion (2.1) with h or � and integrating by parts, one obtains

1

2

d

dt

Z
Td
h2dx C g

Z
Td
hG.h/hdx C �J.h/ D 0;

d

dt
Hd .†/C gJ.h/C �

Z
Td
�G.h/�dx D 0:

(2.2)

We will prove that J.h/ is non-negative. Since the Dirichlet-to-Neumann operator is a
non-negative operator (see (1.5)), this will be sufficient to conclude that the L2-norm and
the area functional Hd .†/ are non-increasing along the flow.

An important fact is that J.h/ is a nonlinear analog of the homogeneous H 3=2-norm.
A first way to give this statement a rigorous meaning consists in noticing that G.0/h D
jDxjh D

p
��xh and the linearized version of � is ��xh. Therefore, if h D "�, then

J."�/ D "2
Z

Td

�
jDxj

3=2�
�2
dx CO."3/:

We will prove a functional inequality (see Proposition 3.4 below) which shows that J.h/
controls the L2.�/-norm of the Hessian of the harmonic extension H .h/ of h, given
by (1.3) with  D h. Consequently, J.h/ controls three-half spatial derivative of h in L2

by means of a trace theorem.

2.2. The area functional is a strong Lyapunov functional

As seen in Example 1.4, for the mean-curvature equation in space dimension d D 1, there
exist Lyapunov functionals which control all the spatial derivatives of order less than 2.
On the other hand, for the Hele-Shaw and Mullins-Sekerka equations, it is more diffi-
cult to find higher-order energies which control some derivatives of the solution. This is
because it is harder to differentiate these equations. For the Mullins-Sekerka problem, one
can quote two recent papers by Chugreeva–Otto–Westdickenberg [21] and Acerbi–Fusco–
Julin–Morini [1]. In both papers, the authors compute the second derivative in time of
some coercive quantities to study the long-time behavior of the solutions in perturbative
regimes. Here, we will prove a similar result for the Hele-Shaw equation. However, the
analysis will be entirely different. On the one hand, it is easier in some sense to differenti-
ate the Hele-Shaw equation. On the other hand, we will be able to exploit some additional
identities and inequalities which allow us to obtain a result under a very mild smallness
assumption.

Here, we consider the Hele-Shaw equation

@thCG.h/h D 0:
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It is known that the Cauchy problem for the latter equation is well posed on the Sobolev
spacesH s.Td / provided that s > 1C d=2, and moreover, the critical Sobolev exponent is
1C d=2 (see [6, 19, 36, 37]). On the other hand, the natural energy estimate only controls
the L2-norm. It is thus natural to seek higher-order energies, which are bounded in time
and which control Sobolev norms H�.Td / of order � > 0. It was proved in [3, 6] that
one can control one-half derivative of h by exploiting some convexity argument. More
precisely, it is proved in the previous references that

d

dt

Z
Td
hG.h/hdx � 0:

This inequality gives a control of a higher-order Lyapunov functional of order 1=2. Indeed,Z
Td
hG.h/hdx D

“
�

jrx;yH .h/j2dydx;

where H .h/ is the harmonic extension of h (solution to (1.3), where  is replaced by h).
Hence, by using a trace theorem, it follows that

R
Td hG.h/hdx controls the H 1=2-norm

of h.
The search for higher-order functionals leads to interesting new difficulties. Our strat-

egy here is to try to prove that the area functional is a strong Lyapunov functional. This
means that the function t 7! Hd .†.t// decays in a convex manner. This is equivalent to
d2Hd .†/=dt2 � 0. Now, remembering (cf. (2.2)) that

d

dt
Hd .†/C J.h/ D 0; where J.h/ D

Z
Td
�G.h/hdx;

the previous convexity argument suggests that dJ.h/=dt � 0, which implies that J.h/
is a Lyapunov function. This gives us a very interesting higher-order energy since the
functional J.h/ controls three-half spatial derivative of h (as seen above, and as will be
made precise in Proposition 3.4). The next result states that the previous strategy applies
under a very mild smallness assumption on the first-order derivatives of the elevation h at
time 0.

Theorem 2.3. Consider a smooth solution to @thCG.h/h D 0. There exists a universal
constant cd depending only on the dimension d such that if initially

sup
Td
jrh0j

2
� cd ; sup

Td
jG.h0/h0j

2
� cd ;

then
d

dt
J.h/C

1

2

Z
Td

.jr2hj2 C jr@thj
2/

.1C jrhj2/3=2
dx � 0:

Remark 2.4. (i) The constant cd is the unique solution in Œ0; 1/ to

2cd .d C .d C
p
d/cd /C 4

�
cd .d C .d C 1/cd /

�
36.d C 1/

1 � cd
C 1

�� 1
2

D
1

2
:
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(ii) Since
d

dt
J.h/ D �

d2

dt2
Hd .†/;

it is equivalent to say that the area functional Hd .†/ is a strong Lyapunov functional.

3. Uniform Lyapunov functionals for the Hele-Shaw and
Mullins-Sekerka equations

In this section, we prove Theorem 2.1.

3.1. Maximum principles for the pressure

In this paragraph, the time variable does not play any role, and we ignore it to simplify
notations.

We will need the following elementary result.

Lemma 3.1. Consider a smooth function h in C1.Td /, and set

� D ¹.x; y/ 2 Td � R W y < h.x/º:

For any � in C1.Td /, there is a unique function � 2 C1.x�/ such that rx;y� 2 L2.�/,
solution to the Dirichlet problem´

�x;y� D 0 in �;

�.x; h.x// D �.x/ for all x 2 Td :
(3.1)

Moreover, for any multi-index ˛ 2 Nd and any ˇ 2 N with j˛j C ˇ > 0, one has

@˛x@
ˇ
y� 2 L

2.�/ and lim
y!�1

sup
x2Td
j@˛x@

ˇ
y�.x; y/j D 0: (3.2)

Proof. The existence and smoothness of the solution � is a classical elementary result.
We prove only property (3.2).

Let y0 be an arbitrary real number such that Td � ¹y0º is located underneath the
boundary @�D¹yD hº, and then set .x/D �.x;y0/. This function belongs toC1.Td /
since � belongs to C1.x�/. Now, in the domain … WD ¹.x; y/I y < y0º, � coincides with
the harmonic extension of  by the uniqueness of the harmonic extension. Since … is
invariant by translation in x, we can compute the latter function by using the Fourier
transform in x. It results that

8x 2 Td ; 8y < y0; �.x; y/ D .e.y�y0/jDx j /.x/: (3.3)

(Here, for � < 0, e� jDx j denotes the Fourier multiplier with symbol e� j�j.) Indeed, the
function .e.y�y0/jDx j /.x/ is clearly harmonic and is equal to  on ¹y D y0º. Then,



Functional inequalities and strong Lyapunov functionals 9

for j˛j C ˇ > 0, it easily follows from (3.3) and the Plancherel theorem that @˛x@
ˇ
y�

belongs to L2.…/. On the other hand, on the strip ¹.x; y/I y0 < y < h.x/º, the function
@˛x@

ˇ
y� is bounded and hence square integrable. By combining the two previous results,

we obtain that @˛x@
ˇ
y� belongs to L2.�/. To prove the second half of (3.2), we use again

formula (3.3) and the Plancherel theorem to infer that @˛x@
ˇ
y�.�; y/ converges to 0 in any

Sobolev space H�.Td / (� � 0) when y goes to �1. The desired decay result now fol-
lows from the Sobolev embedding H�.Td / � L1.Td / for � > d=2.

Let us fix some notations used in the rest of this section. Now, we consider a smooth
function h D h.x/ in C1.Td / and set

� D ¹.x; y/ 2 Td � R W y < h.x/º:

We denote by ' the harmonic extension of h in x�. This is the solution to (3.1) in the
special case, where � D h. Namely, ' solves´

�x;y' D 0 in �;

'.x; h.x// D h.x/ for all x 2 Td :
(3.4)

Introduce QW x�! R defined by

Q.x; y/ D '.x; y/ � y:

We call Q the pressure. In this paragraph, we gather some results for the pressure which
are all consequences of the maximum principle. For further references, the main result
states that @yQ < 0 everywhere in the fluid.

Proposition 3.2. (i) On the free surface † D ¹y D h.x/º, the function Q satisfies the
following properties:

@nQ D �jrx;yQj and n D �
rx;yQ

jrx;yQj
;

where n denotes the normal to †, given by

n D
1p

1C jrhj2

�
�rh

1

�
: (3.5)

Moreover, the Taylor coefficient a defined by

a.x/ D �@yQ.x; h.x//

satisfies a.x/ > 0 for all x 2 Td .
(ii) For all .x; y/ in x�, there holds

@yQ.x; y/ < 0: (3.6)



T. Alazard and D. Bresch 10

Furthermore,
inf
x�

.�@yQ/ � min
®

inf
x2Td

a.x/; 1
¯
: (3.7)

(iii) The function jrx;yQj belongs to C1.x�/.
(iv) We have the following bound:

sup
.x;y/2x�

jrx;yQ.x; y/j
2
� max

Td

.1 �G.h/h/2

1C jrhj2
: (3.8)

Remark 3.3. Consider the evolution problem for the Hele-Shaw equation

@thCG.h/h D 0:

Then, in [6], it is proved that

inf
x2Td

a.t; x/ � inf
x2Td

a.0; x/; sup
x2Td
jG.h/h.t; x/j � sup

x2Td
jG.h/h.0; x/j:

Therefore, (3.7) and (3.8) give two different control of the derivatives of the pressure,
which are uniform in time.

Proof. In this proof, it is convenient to truncate the domain � to work with a compact
domain. Consider ˇ > 0 such that the line Td � ¹�ˇº is located underneath the free
surface † D ¹y D h.x/º, and set

�ˇ D ¹.x; y/ 2 Td � RI �ˇ < y < h.x/º:

We will apply the maximum principle in �ˇ and then let ˇ goes toC1.
(i) This point is well known in certain communities, but we recall the proof for the

reader’s convenience. We begin by observing that, since QjyDh D 0, on the free surface
we have jrx;yQj D j@nQj. So, to prove that @nQ D �jrx;yQj, it remains only to prove
that @nQ � 0. To do so, we begin by noticing that Q is solution to the following elliptic
problem:

�x;yQ D 0; QjyDh D 0:

We will apply the maximum principle in �ˇ with ˇ large enough. In view of (3.2), there
is ˇ > 0 such that

8y � �
ˇ

2
; k@y'.�; y/kL1.Td / �

1

2
:

In particular, on ¹y D �ˇº, there holds

8x 2 Td ; @yQ.x;�ˇ/ D @y'.x;�ˇ/ � 1 � �
1

2
: (3.9)

On the other hand, by using the classical maximum principle for harmonic functions
in �ˇ , we see that Q reaches its minimum on the boundary @�ˇ . In light of (3.9), the
minimum is not attained on ¹y D �ˇº, so it is attained on †. SinceQ vanishes there, this



Functional inequalities and strong Lyapunov functionals 11

means that Q � 0 in �ˇ . This immediately implies the wanted result @nQ � 0. In addi-
tion, since the boundary is smooth, we can apply the classical Hopf–Zaremba principle to
infer that @nQ < 0 on †.

Let us now prove that a > 0. Recall that, by notation, r denotes the gradient with
respect to the horizontal variable only, r D .@x1 ; : : : ; @xd /

t . Since Q vanishes on †, we
have

0 D r.QjyDh/ D .rQ/jyDh C .@yQ/jyDhrh; (3.10)

which implies that, on y D h, we have

a D �.@yQ/jyDh D �
1

1C jrhj2

�
@yQjyDh � rh � .rQ/jyDh

�
D �

1p
1C jrhj2

@nQ

ˇ̌̌̌
yDh

: (3.11)

Since @nQ < 0 on †, this implies that a is a positive function. Eventually, remembering
that n D 1p

1Cjrhj2

�
�rh
1

�
and using (3.10), we verify that

n D �
rx;yQ

jrx;yQj

ˇ̌̌̌
yDh

�

This completes the proof of statement (i).
(ii) Since the function �@yQ is harmonic in �, the maximum principle applied in �ˇ

implies that �@yQ reaches its minimum on the boundary @�ˇ , so

�@yQ � min
®
inf
†
.�@yQ/; inf

¹yD�ˇº
.�@yQ/

¯
:

By letting ˇ go toC1, we obtain (3.7) since �@yQ converges to 1 (see (3.2) applied with
˛ D 0 and ˇ D 1). This in turn implies (3.6) in view of the fact that a > 0, as proved in
the previous point.

(iii) Since we assume that h is smooth, the functionQ belongs to C1.x�/. As a conse-
quence, to prove that jrx;yQj is smooth, it is sufficient to prove that jrx;yQj2 is bounded
from below by a positive constant, which is an immediate consequence of (3.6).

(iv) Since Q is an harmonic function, we have

�x;y jrx;yQj
2
D 2jr2x;yQj � 0:

Consequently, the maximum principle for sub-harmonic functions implies that

sup
x�ˇ

jrx;yQj
2
D sup
@�ˇ

jrx;yQj
2;

where �ˇ is as above. By letting ˇ go toC1, we obtain that

sup
x�

jrx;yQj
2
D max

®
sup
†

jrx;yQj
2; 1

¯
; (3.12)
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where we used as above the fact that jrx;yQj tends to 1 when y goes to �1. We are thus
reduced to estimating jrx;yQj2 on †. To do so, observe that the identity (3.10) implies
that, on †, we have

jrx;yQj
2
D .1C jrhj2/.@yQ/

2
D .1C jrhj2/a2: (3.13)

Using the computations already performed in (3.11) and remembering that Q D ' � y,
we obtain

a D �
1

1C jrhj2

�
� 1C @y'jyDh � rh � .r'/jyDh

�
:

On the other hand, since ' is the harmonic extension of h, by definition of the Dirichlet-
to-Neumann operator G.h/, one has

G.h/h D @y'jyDh � rh � .r'/jyDh:

We conclude that

a D
1 �G.h/h

1C jrhj2
;

which in turn implies that

.1C jrhj2/a2 D
.1 �G.h/h/2

1C jrhj2
:

By combining this with (3.12) and (3.13), we conclude the proof of statement (iv).

3.2. The key functional identity

Let us recall some notations: we denote by � the mean curvature

� D � div
�

rhp
1C jrhj2

�
: (3.14)

Also, we denote by ' D '.x; y/ the harmonic extension of h in � given by (3.4), and we
use the notation

Q.x; y/ D '.x; y/ � y:

Proposition 3.4. Let d � 1, assume that hWTd ! R is a smooth function, and set

J.h/ WD

Z
Td
� G.h/hdx:

Then,

J.h/ D

“
�

jrx;yQj
2jr2x;yQj

2 � jrx;yQ � rx;yrx;yQj
2

jrx;yQj3
dydx � 0: (3.15)

Remark 3.5. (i) Since jrx;yQj � j@yQj, it follows from (3.6) and the positivity of the
Taylor coefficient a (see statement (i) in Proposition 3.2) that jrx;yQj is bounded by
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a positive constant on x�. On the other hand, directly from (3.2), the function

jrx;yQj
2
jr
2
x;yQj

2
� jrx;yQ � rx;yrx;yQj

2

belongs to L2.�/. It follows that the right-hand side of (3.15) is a well-defined integral.
(ii) To clarify notations, set @i D @xi for 1 � i � d and @dC1 D @y . Then,8̂̂̂<̂

ˆ̂:
jr
2
x;yQj

2
D

X
1�i;j�dC1

.@i@jQ/
2;

jrx;yQ � rx;yrx;yQj
2
D

X
1�i�dC1

� X
1�j�dC1

.@jQ/@i@jQ
�2
:

So, it follows from the Cauchy–Schwarz inequality that

jrx;yQ � rx;yrx;yQj
2
� jrx;yQj

2
jr
2
x;yQj

2:

This shows that J.h/ � 0.
(iii) If d D 1, then one can simplify the previous expression. Remembering that

�x;yQ D 0;

one can verify that

J.h/ D
1

2

“
�

jr2x;yQj
2

jrx;yQj
dydx:

Notice that, for the Hele-Shaw equation, one has a uniform in time estimate for jrx;yQj
as explained in Remark 3.3. Consequently, J.h/ controls theL2-norm of the second-order
derivative of Q.

Proof. To prove Proposition 3.4, the main identity is given by the following result.

Lemma 3.6. There holds

J.h/ D

Z
†

@njrx;yQjdHd ; (3.16)

where † D ¹y D h.x/º.

Proof. By definition of the Dirichlet-to-Neumann operator, one has

G.h/h D
p
1C jrhj2@n'jyDh;

so Z
Td
� G.h/hdx D

Z
Td
� @n'

p
1C jrhj2dx:

Using expression (3.5) for the normal n, we observe that

@nQ D @n' �
1p

1C jrhj2
:
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Directly from definition (3.14) of �, we get thatZ
Td
�dx D 0:

So, by combining the previous identities, we deduce that

J.h/ D

Z
Td
� .@nQ/jyDh

p
1C jrhj2dx;

which can be written under the form

J.h/ D

Z
†

� @nQdHd : (3.17)

Now, we recall from Proposition 3.2 that, on the free surface †, we have

@nQ
ˇ̌
†
D �jrx;yQj

ˇ̌
†

and n D �
rx;yQ

jrx;yQj

ˇ̌̌̌
†

:

Notice thatm D � rx;yQ
jrx;yQj

is defined not only on the graph but also in some neighborhood
of points .x0; h.x0// on †. Since

� D div† n D trace..Id � n.x0; h.x0//˝ n.x0; h.x0///.rx;ym/.x0; h.x0///

at a point .x0; h.x0//, it follows that

� D trace.rx;ym.x0; h.x0/// � trace.n.x0; h.x0//˝ n.x0; h.x0//.rx;ym/.x0; h.x0///

and therefore the formula

� D � divx;y

�
rx;yQ

jrx;yQj

�ˇ̌̌̌
†

because m is a unit vector field near x0 which implies

trace.n.x0; h.x0//˝ n.x0; h.x0//.rx;ym/.x0// D 0:

Indeed,

trace.n.x0; h.x0//˝ n.x0; h.x0//.rm/.x0; h.x0///

D

X
i;j

ni .x0; h.x0//nj .x0; h.x0//.@imj /.x0; h.x0//

D
1

2

X
i

ni .x0; h.x0//@i

�X
j

jmj j
2
�
.x0; h.x0// D 0:

In conclusion, we getZ
†

�@nQdHd
D

Z
†

div
�
rx;yQ

jrx;yQj

�
jrx;yQjdHd : (3.18)
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Remembering that divx;y rx;yQ D 0, one can further simplify

divx;y

�
rx;yQ

jrx;yQj

�
jrx;yQj D divx;y

�
rx;yQ

jrx;yQj
jrx;yQj

�
�
rx;yQ

jrx;yQj
� rx;y jrx;yQj

D divrx;yQ �
rx;yQ

jrx;yQj
� rx;y jrx;yQj

D �
rx;yQ

jrx;yQj
� rx;y jrx;yQj�

Now, we use again the identity n D � rx;yQ
jrx;yQj

to infer that, on †, we have

divx;y

�
rx;yQ

jrx;yQj

�
jrx;yQj D n � rx;y jrx;yQj D @njrx;yQj:

Consequently, it follows from (3.17) and (3.18) that

J.h/ D

Z
†

@njrx;yQjdHd :

This completes the proof of the lemma.

We have proved that J.h/ is equal to the integral over † of @njrx;yQj. This suggests
applying the Stokes theorem. To do so, as in the proof of Proposition 3.2, it is convenient
to truncate the domain� to work with a compact domain. Again, we consider ˇ > 0 such
that the hyperplane ¹y D �ˇº is located underneath the free surface † and set

�ˇ D ¹.x; y/ 2 Td � TI �ˇ < y < h.x/º:

Let us check that the contribution from the fictitious bottom disappears when ˇ goes
toC1.

Lemma 3.7. Denote by �ˇ the bottom �ˇ D ¹.x; y/ 2 Td � RI y D �ˇº. Then,

lim
ˇ!C1

Z
�ˇ

@njrx;yQjdHd
D 0: (3.19)

Proof. We haveZ
�ˇ

@njrx;yQjdHd
D �

Z
Td
@y jrx;yQjdx D �

Z
Td

rxQ � rx@yQC @yQ@
2
yQ

jrx;yQj
dx:

As we have seen in Remark 3.5, the function jrx;yQj is bounded from below by a positive
constant in �. Consequently, it is bounded from below on �ˇ uniformly with respect to
ˇ. On the other hand, it follows from (3.2) that

lim
ˇ!C1

k.rxQ � rx@yQC @yQ@
2
yQ/.�;�ˇ/kL1.Td / D 0:

This immediately gives the wanted result.
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Now, we are in a position to conclude the proof. It follows from (3.16) that

J.h/ D

Z
@�ˇ

@njrx;yQjdHd
�

Z
�ˇ

@njrx;yQjdHd :

Now, remembering that jrx;yQj belongs to C1.x�/ (see statement (iii) in Proposition
3.2), one may apply the Stokes theorem to infer that

J.h/ D

Z
�ˇ

�x;y jrx;yQjdydx �

Z
�ˇ

@njrx;yQjdHd :

Since jrx;yQj>0 belongs toC1.x�/, one can compute�x;y jrx;yQj. To do so, we apply
the general identity

�x;yu
2
D 2u�x;yuC 2jrx;yuj

2;

with u D jrx;yQj. This gives that

�jrx;yQj D
1

2jrx;yQj

�
�x;y jrx;yQj

2
� 2jrx;y jrx;yQjj

2
�

D
1

2jrx;yQj

�
�x;y jrx;yQj

2
� 2
jrx;yQ � rx;yrx;yQj

2

jrx;yQj2

�
:

On the other hand, since �x;yQ D 0, one has

�x;y jrx;yQj
2
D

X
1�j;k�dC1

@2j .@kQ/
2
D 2

X
1�j;k�dC1

.@j @kQ/
2
D 2jr2x;yQj

2:

By combining the two previous identities, we conclude that

�jrx;yQj D
1

jrx;yQj3

�
jrx;yQj

2
jr
2
x;yQj

2
� jrx;yQ � rx;yrx;yQj

2
�
:

As we have seen in Remark 3.5, the previous term is integrable on �. So, we can
use the dominated convergence theorem and let ˇ go to C1. Then, (3.19) implies that
the contribution from the bottom disappears from the limit, and we obtain the wanted
result (3.15). This completes the proof.

3.3. Proof of Theorem 2.1

We are now ready to prove Theorem 2.1. Let .g; �/ 2 Œ0;C1/2, and assume that h is a
smooth solution to

@thCG.h/.ghC ��/ D 0:

We want to prove that

d

dt

Z
Td
h2dx � 0 and

d

dt
Hd .†/ � 0:
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Multiplying the equation @thC G.h/.ghC ��/ D 0 by h and integrating over Td ,
one obtains that

1

2

d

dt

Z
Td
h2dx D �g

Z
Td
hG.h/hdx � �

Z
Td
hG.h/�dx: (3.20)

The first term in the right-hand side is non-positive since G.h/ is a non-negative opera-
tor. Indeed, as we recalled in the introduction, considering an arbitrary function  and
denoting by ' its harmonic extension, it follows from Stokes theorem thatZ

Td
 G.h/ dx D

Z
@�

'@n'dHd
D

“
�

jrx;y'j
2dydx � 0: (3.21)

This proves that

�g

Z
Td
hG.h/hdx � 0:

We now prove that the second term in the right-hand side of (3.20) is also non-positive.
To see this, we use (3.15) and the fact that G.h/ is self-adjoint to obtainZ

Td
hG.h/�dx D

Z
Td
�G.h/hdx D J.h/ � 0:

This proves that
d

dt

Z
Td
h2dx � 0:

It remains to prove that d
dt

Hd .†/ � 0. Write

d

dt
Hd .†/ D

d

dt

Z
Td

p
1C jrhj2dx

D

Z
Td
rx.@th/ �

rhp
1C jrhj2

dx

D

Z
Td
.@th/�dx

to obtain
d

dt
Hd .†/ D ��

Z
Td
�G.h/�dx � gJ.h/ � 0;

where we used again (3.15) and the property (3.21) applied with  D �.
This completes the proof.

4. Strong decay for the Hele-Shaw equation

In this section, we prove Theorem 2.3 about the monotonicity of J.h/ for solutions of the
Hele-Shaw equation. Recall that, by notation,

J.h/ D

Z
Td
�G.h/hdx; where � D � div

�
rhp

1C jrhj2

�
:
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We want to prove that J.h/ is non-increasing under a mild smallness assumption on rx;th
at initial time.

Proposition 4.1. Assume that h is a smooth solution to the Hele-Shaw equation @thC
G.h/h D 0. Then,

d

dt
J.h/C

Z
Td

jr@thj
2 C jr2hj2

.1C jrhj2/3=2
dx �

Z
T
��dx � 0; (4.1)

where

� D G.h/

�
jrt;xhj

2

1C jrhj2

�
� div

�
jrt;xhj

2

1C jrhj2
rh

�
; (4.2)

with jrt;xhj2 D .@th/2 C jrhj2. In addition, if d D 1, then (4.1) is in fact an equality.

Proof. If h solves the Hele-Shaw equation @thCG.h/h D 0, one can rewrite J.h/ under
the form

J.h/ D �

Z
Td
�@thdx:

Consequently,
d

dt
J.h/C

Z
Td
�t@thdx C

Z
Td
�ht tdx D 0: (4.3)

Let us compute the first integral. To do so, we use the Leibniz rule and then integrate by
parts to obtainZ

Td
�t@thdx D �

Z
Td

div
�

r@thp
1C jrhj2

�
rh � r@th

.1C jrhj2/3=2
rh

�
@thdx

D

Z
Td

.1C jrhj2/jr@thj
2 � .rh � r@th/

2

.1C jrhj2/3=2
dx:

Now, the Cauchy–Schwarz inequality implies that

.1C jrhj2/jr@thj
2
� .rh � r@th/

2
� jr@thj

2:

(Notice that this is an equality in dimension d D 1.) It follows from (4.3) that

d

dt
J.h/C

Z
Td

jr@thj
2

.1C jrhj2/3=2
dx C

Z
Td
�ht tdx � 0: (4.4)

We now move to the most interesting part of the proof, which is the study of the
second term

R
�ht t . The main idea is to use the fact that the Hele-Shaw equation can be

written under the form of a modified Laplace equation. Let us pause to recall the argument
introduced in [3]. For the reader’s convenience, we begin by considering the linearized
equation, which reads @thC G.0/h D 0. Since the Dirichlet-to-Neumann operator G.0/
associated to a flat half-space is given byG.0/D jDj, that is, the Fourier multiplier defined
by jDjeix�� D j�jeix�� , the linearized Hele-Shaw equation reads

@thC jDjh D 0:
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Since �jDj2 D �, we find that

�t;xh D @
2
t hC�h D 0:

The next result generalizes this observation to the Hele-Shaw equation.

Theorem 4.2 (From [3]). Consider a smooth solution h to @thCG.h/h D 0. Then,

�t;xhC B.h/
�
�
jrt;xhj

2
�
D 0; (4.5)

where B.h/� is the adjoint (for the L2.Td /-scalar product) of the operator defined by

B.h/ D @yH . /jyDh;

where H . / is the harmonic extension of  , solution to

�x;yH . / D 0 in �; H . /jyDh D  :

We next replace the operator B.h/� by an explicit expression which is easier to han-
dle. Directly from the definition of B.h/ and the chain rule, one can check that (see, for
instance, [6, Proposition 5.1])

B.h/ D
G.h/ Crh � r 

1C jrhj2
�

Consequently,

B.h/� D G.h/

�
 

1C jrhj2

�
� div

�
 

1C jrhj2
rh

�
:

It follows that
B.h/�

�
jrt;xhj

2
�
D �; (4.6)

where � is as defined in the statement of Proposition 4.1.
We now go back to the second term in the right-hand side of (4.4) and write thatZ

Td
�ht tdx D

Z
Td
��t;xhdx �

Z
Td
��hdx:

(To clarify notations, recall that � denotes the Laplacian with respect to the variable x
only.) By plugging this in (4.4) and using (4.5)–(4.6), we get

d

dt
J.h/C

Z
Td

jr@thj
2

.1C jrhj2/3=2
dx �

Z
T
��dx �

Z
Td
��hdx � 0:

As a result, to complete the proof of Proposition 4.1, it remains only to show that

�

Z
Td
��hdx �

Z
Td

jr2hj2

.1C jrhj2/3=2
dx: (4.7)
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Notice that, in dimension d D 1, we have

� D �
@2xh

.1C .@xh/2/3=2
;

so (4.7) is in fact an equality. To prove (4.7) in arbitrary dimension, we begin by applying
the Leibniz rule to write

�� D
�hp

1C jrhj2
�
rh˝rh W r2h

.1C jrhj2/3=2
; (4.8)

where we use the standard notations

rh˝rh D ..@ih/.@jh//1�i;j�d ; r
2h D .@i@jh/1�i;j�d

together with A W B D
P
i;j aij bij . So,

�

Z
Td
��hdx D

Z
Td

.�h/2p
1C jrhj2

dx �

Z
Td

.�h/rh˝rh W r2h

.1C jrhj2/3=2
dx: (4.9)

On the other hand, by integrating by parts twice, we getZ
Td

.�h/2p
1C jrhj2

dx D
X
i;j

Z
Td

.@2i h/.@
2
j h/p

1C jrhj2
dx

D

X
i;j

Z
Td

.@i@jh/
2p

1C jrhj2
dx

C

X
i;j;k

.@ih/.@kh/.@
2
j h/.@i@kh/ � .@ih/.@kh/.@i@jh/.@j @kh/

.1C jrhj2/3=2
dx

D

Z
Td

.1Cjrhj2/jr2hj2C.�h/rh˝rh W r2h�.rh � r2h/2

.1C jrhj2/3=2
dx:

By combining this with (4.9) and simplifying, we obtain

�

Z
Td
��hdx D

Z
Td

.1C jrhj2/jr2hj2 � .rh � r2h/2

.1C jrhj2/3=2
dx:

Now, by using the Cauchy–Schwarz inequality in Rd , we obtain the wanted inequal-
ity (4.7), and the proposition follows.

In view of the previous proposition, to prove that J.h/ is non-increasing, it remains to
show that the last term in the left-hand side of (4.1) can be absorbed by the second one.
It does not seem feasible to get such a result by exploiting some special identity for the
solutions, but, as we will see, we do have an inequality which holds under a very mild
smallness assumption. We begin by making a smallness assumption on the space and time
derivatives of the unknown h. We will next apply a maximum principle to bound these
derivatives in terms of the initial data only.
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Lemma 4.3. Let cd < 1, and assume that

sup
t;x
jrh.t; x/j2 � cd ; sup

t;x
.@th.t; x//

2
� cd : (4.10)

Then, Z
Td
��dx � 
d

Z
Td

jr@thj
2 C jr2hj2

.1C jrhj2/3=2
dx (4.11)

with


d D 2cd .d C
p
d/C 4

�
cd .d C .d C 1/cd /

�
36.d C 1/

1 � cd
C 1

�� 1
2

:

Proof. To shorten notations, let us set

H WD

Z
Td

jr@thj
2 C jr2hj2

.1C jrhj2/3=2
dx;

and

� WD
jrt;xhj

2

1C jrhj2
D
.@th/

2 C jrhj2

1C jrhj2
:

Then, by definition of � (see (4.2)), we have

� D G.h/� � div.�rh/ D I1 C I2

with
I1 D ���h

and
I2 D G.h/� � r� � rh:

We will study the contributions of I1 and I2 to
R
��dx separately.

.1/ Contribution of I1. We claim that

�

Z
Td
���hdx �

Z
Td
�
�
d C .d C

p
d/jrhj2

� jr2hj2

.1C jrhj2/3=2
dx: (4.12)

To see this, we use again (4.8) to write

����h D �
.�h/2p
1C jrhj2

� �
.�h/rh˝rh W r2h

.1C jrhj2/3=2
:

Then, we recall that for all vWRd 7! Rd

.div v/2 D
X
i

X
j

@ivi@j vj �
X
i

X
j

1

2

�
.@ivi /

2
C .@j vj /

2
�
� d jrvj2;

and therefore,
.�h/2 � d jr2hj2: (4.13)

Then, by using the Cauchy–Schwarz inequality, we prove claim (4.12).
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Now, observe that, by definition of �, we have � � jrt;xhj2. So, by assumption (4.10),
we deduce that

�
�
d C .d C

p
d/jrhj2

�
� jrt;xhj

2 d C .d C
p
d/jrhj2

1C jrhj2

� 2cd .d C
p
d/:

Therefore, it follows from (4.12) that

�

Z
Td
���hdx � 2cd .d C

p
d/H: (4.14)

.2/ Contribution of I2. We now estimate the quantityZ
Td
�
�
G.h/� � r� � rh

�
dx: (4.15)

We will prove that the absolute value of this term is bounded by

4

�
cd .d C .d C 1/cd /

�
36.d C 1/

1 � cd
C 1

�� 1
2

H: (4.16)

By combining this estimate with (4.14), this will imply the wanted inequality (4.11).
To begin, we apply the Cauchy–Schwarz inequality to bound the absolute value of

(4.15) by �Z
Td
.1C jrhj2/3=2�2dx

� 1
2
�Z

Td

.G.h/� � r� � rh/2

.1C jrhj2/3=2
dx

� 1
2

:

We claim that Z
Td
.1C jrhj2/3=2�2dx � 2.d C .d C 1/cd /H; (4.17)

and Z
Td

.G.h/� � r� � rh/2

.1C jrhj2/3=2
dx � 8cd

�
36.d C 1/

1 � cd
C 1

�
H: (4.18)

It will follow from these claims that the absolute value of (4.15) is bounded by (4.16),
which in turn will complete the proof of the lemma.

We begin by proving (4.17). Recall from (4.8) that

�� D
�hp

1C jrhj2
�
rh˝rh W r2h

.1C jrhj2/3=2
;

and therefore, using the inequality .�h/2 � d jr2hj2 (see (4.13)),

�2 � 2
�
d C .d C 1/jrhj2

� jr2hj2

.1C jrhj2/3
;

which implies (4.17), remembering that jrhj2 � cd , by assumption (4.10).
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We now move to the proof of (4.18). Since

.G.h/� � r� � rh/2

.1C jrhj2/3=2
� 2.G.h/�/2 C 2jr�j2;

it is sufficient to prove thatZ
Td
.G.h/�/2dx C

Z
Td
jr�j2dx � 4cd

�
36.d C 1/

1 � cd
C 1

�
H: (4.19)

To establish (4.19), the crucial point will be to bound the L2-norm of G.h/� in terms
of the L2-norm of r�. Namely, we now want to prove the following estimate: if

jrhj2 � cd

with cd < 1, then Z
Td
.G.h/�/2dx �

12.d C 1/

1 � cd

Z
Td
jr�j2dx: (4.20)

To do so, we will exploit the following Rellich-type inequality (proved in Appendix A):Z
Td
.G.h/�/2dx �

Z
Td
.1C jrhj2/jr� �Brhj2dx; (4.21)

where

B D
G.h/� Cr� � rh

1C jrhj2
: (4.22)

The previous identity is a Rellich-type identity which gives a control on the boundary of
the normal derivative in terms of the tangential one. Then, by replacing B in (4.21) by its
expression (4.22), we obtain thatZ

Td
.G.h/�/2dx

�

Z
Td
.1C jrhj2/

ˇ̌̌̌
.1C jrhj2/Id � rh˝rh

1C jrhj2
r� �

rh

1C jrhj2
G.h/�

ˇ̌̌̌2
dx:

So, expanding the right-hand side and simplifying, we getZ
Td

1

1C jrhj2
.G.h/�/2dx

D

Z
Td

j..1C jrhj2/Id � rh˝rh/r�j2

1C jrhj2
dx

� 2

Z
Td
rh �

...1C jrhj2/Id � rh˝rh/r�/
1C jrhj2

G.h/�dx:
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Hence, by using the Young inequality,Z
Td

1

1C jrhj2
.G.h/�/2dx �

Z
Td

ˇ̌
.1C jrhj2/Id � rh˝rh

ˇ̌2
1C jrhj2

jr�j2dx

C

Z
Td

jrhj2

1C jrhj2
.G.h/�/2dx

C

Z
Td

j.1C jrhj2/Id � rh˝rhj2

1C jrhj2
jr�j2dx:

Now, we write

j..1C jrhj2/Id � rh˝rh/j2

1C jrhj2
� .d C 1/

.1C 2jrhj2/2

1C jrhj2

to obtain Z
T

1 � jrhj2

1C jrhj2
.G.h/�/2dx � 2.d C 1/

Z
T

.1C 2jrhj2/2

1C jrhj2
jr�j2dx:

Now, recalling that jrhj2 � cd < 1, we getZ
T
.G.h/�/2dx � 2.d C 1/

.1C cd /.1C 2cd /
2

1 � cd

Z
T
jr�j2dx �

36.d C 1/

1 � cd

Z
T
jr�j2dx:

In view of (4.20), to prove the wanted inequality (4.19), we are reduced to establishingZ
T
jr�j2dx � 4cd

Z
T

jr@thj
2 C jr2hj2

.1C jrhj2/3=2
dx:

Since

r� D 2
@th

.1C jrhj2/1=4
r@th

.1C jrhj2/3=4
C 2

.1 � .@th/
2/rh

.1C jrhj2/5=4
�

r2h

.1C jrhj2/3=4
;

the latter inequality will be satisfied provided that

..1 � .@th/
2/jrhj/2

.1C jrhj2/5=2
� cd ;

.@th/
2

.1C jrhj2/1=2
� cd :

The latter couple of conditions are obviously satisfied when

jrhj2 � cd ; j@thj
2
� cd with cd < 1: (4.23)

This completes the proof of Lemma 4.3.

We are now in a position to complete the proof. Recall that Proposition 4.1 implies
that

d

dt
J.h/C

Z
Td

jr@thj
2 C jr2hj2

.1C jrhj2/3=2
dx �

Z
T
��dx:
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On the other hand, Lemma 4.3 implies thatZ
T
��dx � 
d

Z
Td

jr@thj
2 C jr2hj2

.1C jrhj2/3=2
dx

with


d D 2cd .d C
p
d/C 4

�
cd .d C .d C 1/cd /

�
36.d C 1/

1 � cd
C 1

�� 1
2

provided that
sup
t;x
jrh.t; x/j2 � cd ; sup

t;x
.@th.t; x//

2
� cd : (4.24)

We now fix cd 2 Œ0; 1/ by solving the equation 
d D 1=2 (the latter equation has a unique
solution since cd 7! 
d is strictly increasing). It follows that

d

dt
J.h/C

1

2

Z
Td

jr@thj
2 C jr2hj2

.1C jrhj2/3=2
dx � 0:

The expected decay of J.h/ is thus seen to hold as long as the solution hD h.t;x/ satisfies
assumption (4.24). Consequently, to conclude the proof of Theorem 2.3, it remains only
to show that assumption (4.24) on the solution will hold provided that it holds initially. To
see this, we use the fact that there is a maximum principle for the Hele-Shaw equation for
space and time derivatives (the maximum principle for spatial derivatives is well known
(see [6,16,34]); the one for time derivative is given by [6, Theorem 2.11]). This means that
assumption (4.23) holds for all time t � 0 provided that it holds at time 0. This concludes
the proof of Theorem 2.3.

A. A Rellich-type estimate

This appendix gives a proof of inequality (4.21).

Lemma A.1. For any smooth functions h and � in C1.Td /, there holdsZ
Td
.G.h/�/2dx �

Z
Td
.1C jrhj2/jr� �Brhj2dx; (A.1)

where

B D
G.h/� Cr� � rh

1C jrhj2
: (A.2)

Remark A.2. (i) It is elementary to extend this inequality to functions which are not
smooth.

(ii) This extends an estimate proved in [2] when d D 1 for the Dirichlet-to-Neumann
operator associated to a domain with finite depth. When d D 1, the main difference is that
this is an identity (and not only an inequality). This comes from the fact that, in the proof
below, to derive (A.4) we use the inequality .rh � V/2 � jrhj2 � jV j2, which is clearly an
identity when d D 1.
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Proof. We follow the analysis in [2]. Set

� D ¹.x; y/ 2 Td � RIy < h.x/º;

and denote by � the harmonic function defined by´
�x;y� D 0 in � D ¹.x; y/ 2 T � RI y < h.x/º;
�.x; h.x// D �.x/:

As recalled in Lemma 3.1, this is a classical elliptic boundary problem, which admits a
unique smooth solution. Moreover, it satisfies

lim
y!�1

sup
x2Td
jrx;y�.x; y/j D 0: (A.3)

Introduce the notations

V D .r�/jyDh; B D .@y�/jyDh:

(We parenthetically recall that r denotes the gradient with respect to the horizontal vari-
ables x D .x1; : : : ; xd / only.) It follows from the chain rule that

V D r� �Brh;

while B is given by (A.2). On the other hand, by definition of the Dirichlet-to-Neumann
operator, one has the identity

G.h/� D .@y� � rh � r�/jyDh;

so
G.h/� D B � rh � V :

Squaring this identity yields

.G.h/�/2 D B2
� 2Brh � V C .rh � V/2:

Since .rh � V/2 � jrhj2 � jV j2, this implies the inequality

.G.h/�/2 � B2
� jV j2 � 2Brh � V C .1C jrhj2/V2: (A.4)

Integrating this givesZ
Td
.G.h/�/2dx �

Z
Td
.1C jrhj2/jV j2dx CR;

where
R D

Z
Td

�
B2
� jV j2 � 2Brh � V

�
dx:
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Since jV j D jr� �Brhj, we immediately see that, to obtain the wanted estimate (A.1),
it is sufficient to prove that R D 0. To do so, we begin by noticing that R is the flux
associated to a vector field. Indeed,

R D

Z
@�

X � nd�;

where X W�! RdC1 is given by

X D
�
� .@y�/r�I jr�j

2
� .@y�/

2
�
:

Then, the key observation is that this vector field satisfies divx;y X D 0 since

@y
�
.@y�/

2
� jr�j2

�
C 2 div..@y�/r�/ D 2.@y�/�x;y� D 0;

as can be verified by an elementary computation. Now, we see that the cancellation of
R D 0 comes from the Stokes theorem. To rigorously justify this point, we truncate � in
order to work in a smooth bounded domain. Given a parameter ˇ > 0, set

�ˇ D ¹.x; y/ 2 Td � TI �ˇ < y < h.x/º:

An application of the divergence theorem in �ˇ gives that

0 D

“
�ˇ

divx;y Xdydx D RC
Z
¹yD�ˇº

X � nd�:

Sending ˇ toC1 and remembering thatX converges to 0 uniformly when y goes to �1
(see (A.3)), we obtain the expected result R D 0. This completes the proof.
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