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ABSTRACT. The main purpose of this paper is the construction in motivic
cohomology of the cyclotomic, or classical polylogarithm on the projective
line minus three points, and the identification of its image under the regula-
tor to absolute (Deligne or [-adic) cohomology. By specialization to roots of
unity, one obtains a compatibility statement on cyclotomic elements in mo-
tivic and absolute cohomology of abelian number fields. As shown in [BIK],
this compatibility completes the proof of the Tamagawa number conjecture
on special values of the Riemann zeta function.

The main constructions and ideas are contained in Beilinson’s and Deligne’s
unpublished preprint “Motivic Polylogarithm and Zagier Conjecture”
([BD1]). We work out the details of the proof, setting up the foundational
material which was missing from the original source: the paper contains
an appendix on absolute Hodge cohomology with coefficients, and its inter-
pretation in terms of Saito’s Hodge modules. The second appendix treats
K-theory and regulators for simplicial schemes.

1991 Mathematics Subject Classification: Primary 19F27; Secondary 11R18,
11R34, 11R42, 14D07, 14F99.
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INTRODUCTION

The aim of this work is to present the construction of the class of the cyclotomic, or
classical polylogarithm in motivic cohomology. It maps to the elements in Deligne and
[-adic cohomology defined and studied in Beilinson’s “Polylogarithm and cyclotomic
elements” ([B4]). The latter elements can be seen as being represented by a pro—
variation of Hodge structure, or a pro—/—adic sheaf on the projective line minus three
points.

1See correction on page 297 of this volume.
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28 ANNETTE HUBER, JORG WILDESHAUS

Our main interest lies in the specialization of these sheaves to roots of unity:
they represent the “cyclotomic” one—extensions of Tate twists already studied by
Soulé ([Sou5]), Deligne ([D5]) and Beilinson ([B2]).

Let us be more precise: denote by Y the set of primitive d-th roots of unity in
Q(ua) = Q[T]/®4(T), d > 2. We get an alternative proof of the following theorem of
Beilinson’s:

COROLLARY 9.6. Assume n > 0, and denote by rp the regulator map

Hj,(SpecQ(pa),Qn + 1)) — P  C/@mi)""'R.
0:Q(pa)—C

There is a map of sets

€nt1 1 1y — H ) (Spec Q(pa), Q(n + 1))

such that
Ppo€nit g — @ C/(2mi)" 'R
0:Q(pa)—C
maps a root of unity w to (—Liy41(ow)), = (— e>1 %) .
- (o

Now fix a d-th primitive root of unity ¢ in Q. This choice allows to identify
continuous étale cohomology H}, ., (Spec Q(ita), Q (n + 1)) with a @ —subspace of

Gal(Q(ui=,6)/Q(¢))
tim Q) /(@ ))" @ uZ") 92, Q

r>1

Note that there is a distinguished root of unity 7' in Q(ug). As was observed already
in [B4], the study of the cyclotomic polylogarithm gives a proof of [BIK], Conjecture
2 (cf. [Sou5], Théoreme 1 for the case n = 1; [Gr], Théoreme IV.2.4 for the local
version if (I,d) = 1):
COROLLARY 9.7. Let €,41 be the map constructed in 9.6. Under the above
inclusion, the [-adic regulator

ry: H./l\/f (Spec Q(:U‘d)a @(TL + 1)) — Hclont(spec @(Md)a(@l (TL + 1))

maps €,41(T?) to

| 2 -al@ @)

™ — b
al”=¢ ”

This result implies in particular that Soulé’s cyclotomic elements in the group
Kopnt1(F) ®z Z; (for an abelian number field F' and a prime [) are induced by el-
ements in K—theory itself (Corollary 9.8). Furthermore, the case d = 2 of 9.7 forms a
central ingredient of the proof of the Tamagawa number conjecture modulo powers of
2 for odd Tate twists Q(n), n > 2 ([BIK], §6). Finally, as shown in [KNF], Theorem
6.4, the general case of 9.7 implies the modified version of the Lichtenbaum conjecture
for abelian number fields.
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CLASSICAL MOTIVIC POLYLOGARITHM 29

The main ideas necessary for both the construction of the motivic polylogarithm
and the identification of the realization classes, together with a sketch of proof, are
contained in the unpublished preprint “Motivic Polylogarithm and Zagier Conjecture”
([BD1]) and its predecessors [B4], [BD1p]. Our aim in this paper is to work out the
details of the proofs. To do this we have to set up a lot of foundational material, which
was missing from the original sources: K-theory of simplicial schemes, regulators to
absolute (Hodge and I-adic) cohomology of simplicial schemes, and an interpretation
of the latter as Ext groups of Hodge modules and [-adic sheaves respectively. This
material is contained in the two appendices which we regard as our main contribution
to the subject. We hope they prove to be useful in other contexts than that treated
in the main text.

Other parts of [BD1] deal with (the weak version of) the Zagier conjecture. We
do not treat this since a complete proof has been given by de Jeu ([Jeu]), although
by somewhat different means from those used in [BD1].

We see two main groups of papers related to polylogarithms:

The first deals with mixed sheaves, i.e., variations of Hodge structure or [—adic
mixed lisse sheaves. Maybe the nucleus of these papers is Deligne’s observation that
the analytic and topological properties of the dilogarithm Lis, viewed as a multivalued
holomorphic function on P'(C)\{0, 1,00}, can be coded by saying that Lis is an entry
of the period matrix of a certain rank three variation of Q-Tate—Hodge structure on
PL\{0,1,00}.

We refer to [Rm], section 7.6 for a nice survey of the construction of a pro—
variation on PL\ {0,1,00} containing all Li;. The étale analogue is constructed in
Beilinson’s “Polylogarithm and Cyclotomic elements” ([B4]), where he defined pro-
objects in the categories of [-adic sheaves on P*\{0, 1, 0}. In both settings, the fibres
at roots of unity different from 1 coincide with the cyclotomic extensions mentioned
above.

The hope and indeed, the motivation underlying these papers is that once a
satisfactory formalism of motivic sheaves is developed, the definition of polylogarithms
should basically carry over. We would thus obtain polylogarithmic classes in Ext
groups of motives, these groups being supposedly closely connected to K—theory, of
which everything already defined on the level of realizations would turn out to be the
respective regulator.

Nowhere is this hope documented more manifestly than in Beilinson’s and
Deligne’s “Interprétation motivique de la conjecture de Zagier reliant polylogarithmes
et régulateurs” ([BD2]): if there is such a motivic formalism, then the weak version of
Zagier’s conjecture necessarily holds: not only the values at roots of unity of higher
logarithms, but also appropriate linear combinations of arbitrary values must lie in
the image of the regulator.

For the time being, and in each case separately, honest work is needed to perform
the K—theoretic constructions, and calculate their images under the regulators.

The second class of papers is concerned with precisely that task. In analogy with
the above, one should first mention Bloch’s “Application of the dilogarithm function
in algebraic K—theory and algebraic geometry” ([Bl]).

Beilinson’s “Higher regulators and values of L—functions” ([B2]) provided the
K—theoretic construction of cyclotomic elements, together with the computation of
their images in Deligne cohomology (loc. cit., Theorem 7.1.5, [Neu], [E]).
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30 ANNETTE HUBER, JORG WILDESHAUS

As for Zagier’s conjecture, we mention Goncharov’s “Polylogarithms and Motivic
Galois Groups” ([Go]), where Zagier’s conjecture, including the surjectivity statement
is proved for K5 of a number field, and de Jeu’s “Zagier’s Conjecture and Wedge
Complexes in Algebraic K—theory” ([Jeu]), which contains the proof of the weak
version of Zagier’s conjecture, independently of motivic considerations, for Ks,_1 of
a number field, and arbitrary n > 2.

Typically, the objects of interest in this class of papers are complexes, cocy-
cles, and symbols, i.e., objects which do not constantly afford a geometric, or sheaf-
theoretic interpretation. It is by no means easy to see, say, how a concrete element
in some Deligne cohomology group can be interpreted as an extension of variations
of R-Hodge structure. These and similar difficulties present, themselves to the reader
willing to translate from one class to the other.

The authors like to think of the present article as an attempt to bridge the gap
between the two disciplines.

In a sense, the coarse structure of the article follows the above scheme: sections
1-6 are entirely sheaf-theoretic. Anything we say there is therefore a priori restricted
to the level of realizations, i.e., non—motivic. In sections 7-9, K—theory enters. The
appendices provide the foundations necessary to connect the two points of view.

Given that quite a lot has been said about the [-adic and Hodge theoretic incar-
nations of the classical polylogarithm ([B4], [BD2], [WilV]), the reader may wonder
why sheaf theoretic considerations still take up one third of this work.

Indeed, the construction of the motivic polylog could be achieved much more eas-
ily if a satisfactory formalism of mixed motivic sheaves were available. The necessity
to replace a simple geometric situation by a rather complicated one, in order to replace
complicated coefficients like Log by Tate twists, should be seen as the main source of
difficulty in any attempt to the construction of motivic versions of polylogarithms.

We now turn to the description of the finer structure of the main text (sections
1-9):

In section 1, we normalize the sheaf theoretic notations used throughout the
whole article.

Section 2 gives a quick axiomatic description of the logarithmic sheaf Log, and
the (small) polylogarithmic extension pol. The universal property (2.1) is needed
only to connect the general definition of the logarithmic sheaf as a solution of a
representability problem to the somewhat ad hoc, but much more geometric definition
of section 4. A reader prepared to accept the results on the shape of the Hodge
theoretic and [-adic incarnation of the polylogarithm (2.5, 2.6) may therefore take
the constructions in sections 4 and 6 as a definition of both Log and pol, and view
section 2 as an extended introduction providing background material.

In section 3, we establish the geometric situation used thereafter. As section 1,
it is mainly intended for easier reference.

In section 4, we construct a pro-unipotent sheaf G on U = P!\ {0,1,00} as
projective limit of relative cohomology objects of powers of G, over U relative to
certain singular subschemes. The transition maps are given by the boundary maps in
the relative residue sequence (4.9). The universal property 2.1 then allows to identify
G with the restriction of Log to U (4.11).

Section 5 contains a geometric proof of the splitting principle (5.2): the fibres
of Log at roots of unity have split weight filtration. Since we need a proof which
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CLASSICAL MOTIVIC POLYLOGARITHM 31

translates easily to the motivic situation, we return to Beilinson’s original approach
to the splitting principle ([B4], 4.2) which consists of an analysis of the action of the
multiplication by natural numbers on our absolute cohomology groups.

The main objective of section 6 is the description of pol in terms of geometric
data. The Leray spectral sequence suggests that one-extensions of Q(0) by Log
should be described as elements of the projective limit of cohomology groups with
Tate coefficients of powers of G, relative to certain subschemes. The main result 6.6
allows to identify pol under this correspondence.

In Section 7 our main tool, the residue sequence is constructed in the setting of
motivic cohomology (Proposition 7.2 and Lemma 7.3). The arguments are very much
parallel to those used for absolute cohomology of realizations in section 4. However,
we have to replace the singular schemes by explicit simplicial schemes with regular
components. This is where the material of Appendix B enters.

Section 8 is the K—theoretic analogue of section 6. We consider a certain pro-
jective system of motivic cohomology groups. In order to identify its projective limit
(Corollary 8.8) we use bijectivity or at least controlled injectivity of the regulator
to Deligne cohomology, and the results of section 6. We are then able to define the
universal motivic polylog (8.9).

In the final section 9 the motivic version of the splitting principle is shown (9.3).
Again we strongly use the known behaviour of the regulator to show that the action
of multiplication by natural numbers splits into eigenspaces. Applied to the universal
motivic polylogarithm this induces the cyclotomic elements in motivic cohomology. In
the light of section 5 it is clear from their very construction that they induce the right
elements not only in Deligne but also in continuous étale cohomology. We conclude
by drawing the corollaries which are the main results announced at the beginning
(9.6-9.9).

The Appendices can be read independently of the main text and of each other.
They are meant to be used as a reference, but a careful reader might actually want
to read them first. We refer to the respective introductions for an account of their
content.

The reader might find it useful to consult [HW] for an overview of the strategy
of the proof of the main results.
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1 MIXED SHEAVES

We start by defining the sheaf categories which will be relevant for us. For our
purposes, it will be necessary to work in the settings of mixed /—adic perverse sheaves
([H2]), and of algebraic mixed Hodge modules over R (A.2). Since the procedures are
entirely analogous, we introduce, for economical reasons, the following rules: whenever
an area of paper is divided by a vertical bar

the text on the left of it will concern the Hodge theoretic setting, while the text on
the right will deal with the [-adic setting. Of course, we hope that before long, there
will be a satisfactory formalism of mixed motivic sheaves providing a third setting to
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CLASSICAL MOTIVIC POLYLOGARITHM 33

which our constructions can be applied. We let

| := a fixed prime number ,

A=R, 1
A::Z{—] ,

Fi=Q, l

F:=Q

and set B := Spec(A).
For any reduced, separated and flat scheme X of finite type over B, we let

Xiop := X(C) as a topol. space, Xiop =X ®4Q,

Sh(Xyop) 1= Perv(Xiop, Q) , ‘ Sh(Xiop) := Perv(Xiop, Q)

the latter categories denoting the respective categories of perverse sheaves on Xiop
([BBD], 2.2).

Next we define the category Sh(X): in the [-adic setting, we fix a pair (S, L) con-
sisting of a horizontal stratification S of X ([H2], §2) and a collection L = {L(S)| S €
S}, where each L(S) is a set of irreducible lisse I-adic sheaves on S. For all S € S
and F' € L(S), we require that for the inclusion j : S < X, all higher direct images
R"™j.F are (S, L)—constructible, i.e., have lisse restrictions to all S € S, which are
extensions of objects of L(S). We assume that all F' € L(S) are pure.

We can make this more explicit: in our computations X will always be a lo-
cally closed subscheme of some A™; the stratification is by the number of vanishing
coordinates in A”; L(S) is the set of all Tate sheaves on S.

Following [H2], § 3, we define D?S’L) (X, Q) as the full subcategory of D%(X, Q)
of complexes with (S, L)—constructible cohomology objects. Note that all objects will
be mixed. By [H2], §3, D?S’L) (X, Q) admits a perverse t-structure, whose heart we
denote by Perv(g 1)(X, Q).

Sh(X) := MHMg(X/R) Sh(X) := Pervs 1) (X, Q) .
(see A.2.4)

Because of the horizontality requirement in the [-adic situation we have the full
formalism of Grothendieck’s functors only on the direct limit D? (Ux, Q) of the
D?S’L)(XU,QZ), for U open in B, and (S, L) as above (see [H2], §2). However, for a
fixed morphism

m: X —Y,
we have a notion of e.g. m.—admissibility for a pair (S, L): this is the case if
Dis 1)(X,Q) = D, (Ux, Q) = D, (Uy, Q)

factors through some DE’TJ() (Y, Q). Our computations will show, at least a posteriori,

that for our choice of (S, L) all functors which appear are admissible. We will not
stress these technical problems and even suppress (S, L) from our notation.
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As in [BBD], we denote by ., 7*, Hom etc. the respective functors on the cate-
gories

D?Sh(X) := D’ MHMg(X/R), | D Sh(X) := D{g 1,(X,Q),

and H? for the (perverse) cohomology functors.
We refer to objects of Sh(X) as sheaves, and to objects of Sh(Xi,p) as topological
sheaves. Let us denote by
V- Vtop

the forgetful functor from Sh(X) to Sh(Xiop). If we use the symbol W., it will always
refer to the weight filtration.
If X is smooth, we let

Sh®(X) := Varg(X/R) C Sh(X) Sh*(X) := Etg™(X) C Sh(X) ,
(see A.2.1) , the category of lisse
Sh*®(Xiop) := the category of mixed (—sheaves on X,
Q-local systems on Xiop. Sh®(Xiop) := the category of
lisse —sheaves on Xygp.

We refer to objects of Sh®(X) as smooth sheaves, and to objects of Sh®(Xiop) as
smooth topological sheaves. Denote by USh®(X) the category of unipotent objects
of Sh®(X), i.e., those smooth sheaves admitting a filtration whose graded parts are
pullbacks of smooth sheaves of Sh®(B) via the structure morphism. Similarly, one
defines USh*(Xiop)-

REMARK: Note that in the [-adic situation, the existence of a weight filtration, i.e.,
an ascending filtration W. by subsheaves indexed by the integers, such that Grnw{ is
of weight m, is not incorporated in the definition of Sh® — compare the warnings in
[H2], §3. In the Hodge theoretic setting, the existence of a weight filtration is part of
the data.

REMARK: We have to deal with a shift of the index when viewing e.g. a variation as
a Hodge module, which occurs either in the normalization of the embedding

Varg(X/R) — D’ MHMg(X/R)

or in the numbering of cohomology objects of functors induced by morphisms between
schemes of different dimension. In order to conform with the conventions laid down
in appendix A and [Wil], chapter 4, we chose the second possibility: a variation is
a Hodge module, not just a shift of one such. Similarly, a lisse mixed (y—sheaf is a
perverse mixed sheaf. Therefore, if X is of pure relative dimension d over B, then the
embedding

Etg,"(X) — D}, (8hx, Q)

associates to V the complex concentrated in degree —d, whose only non—trivial coho-
mology object is V.

As a consequence, the numbering of cohomology objects of the direct image (say)
will differ from what the reader might be used to: e.g., the cohomology of a curve
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is concentrated in degrees —1, 0, and 1 instead of 0, 1, and 2. Similarly, one has to
distinguish between the “naive” pullback (7%)* of a smooth sheaf and the pullback
7* on the level of D? Sh(X): (7°)* lands in the category of smooth sheaves, while 7*
of a smooth sheaf yields only a smooth sheaf up to a shift.

In the special situation of pullbacks, we allow ourselves one notational inconsis-
tency: if there is no danger of confusion (e.g. in Theorem 2.1), we use the notation
m* also for the naive pullback of smooth sheaves. Similar remarks apply for smooth
topological sheaves.

For a scheme a : X — B, we define
F(n)x := a*F(n) € D’ Sh(X),

where F'(n) is the usual Tate twist on B.
If X is smooth, we also have the naive Tate twist

F(n) € Sh*(X) C Sh(X)
on X. If X is of pure dimension d, then we have the equality
F(n) = F(n)x[d]
In order to keep our notation transparent, we have the following

DEFINITION 1.1. For any morphism ©m : X — S of reduced, separated and flat
B-schemes we let

Rs(X, - ) :=m, :D"Sh(X) — D’ Sh(S) ,
HL(X, -) :=H'm, :D’Sh(X) — Sh(S) .

DEFINITION 1.2. For a closed reduced subscheme Z of a separated, reduced, flat B—
scheme X of finite type, with complement j : U < X, and an object M- of D® Sh(X),
define

a) RTabs(X, M) := RHom ps gy (x) (F(0)x, M),
(X, M) := H RDa,s (X, M),

the absolute complex and absolute cohomology groups of X with coefficients in M.

b) RTapns(X,n) := Rlaps(X, F(n)x) ,
H;bs(Xv n) = Hzibs(XaF(n)X) .
C) Rl“abs(X rel Z, n) = Rl“abs(X, ]lF(’n)U) y

Hibs(X rel Zan) = zibs(Xaj!F(n)U) )

a

the relative absolute complex and relative absolute cohomology with Tate coefficients.
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In the Hodge setting, absolute cohomology with Tate coefficients coincides with
Beilinson’s absolute Hodge cohomology over R (Theorem A.2.7). In the l-adic set-
ting, it yields continuous étale cohomology (see the remark following Definition B.4.2).

REMARK: If X is a scheme over S, then we have the formulae

RPabS(Xa : ) = Rrabs (S, RS(Xa : )) ;
;bs(Xa : ) = ;bs(‘SaRS(Xa ’ )) :

2 THE LOGARITHMIC SHEAF, AND THE POLYLOGARITHMIC EXTENSION

We aim at a sheaf theoretic description of the (small) classical polylogarithm on
P\ {0,1,00}. The first step is an axiomatic definition of the logarithmic pro—sheaf.
We need the following result:

THEOREM 2.1. Let X be the complement in a smooth, proper B—scheme of an NC—
divisor relative to B ([SGA1], Exp. XIII, 2.1), all of whose irreducible components
are smooth over B. Let x € X(B), and write a : X — B. The functor

x* : USh*(X) — Sh*(B)
is representable in the following sense:
a) There is a pro—object
Gen, € pro-USh*(X) ,

the generic pro—unipotent sheaf with basepoint x on X, which has a weight
filtration satisfying

Geng /W_,,Gen, € USh*(X) foralln .
Note that this implies that the direct system
(ROa*Hom(genm/W,ngenm,V))nEN

of smooth sheaves on B becomes constant for any V € USh®(X).

This constant value is denoted by
R%a,Hom(Gen,,V) .
b) There is a section
1 eI (B,z*Gen,) .

¢) The natural transformation of functors from USh®*(X) to Sh®(B)
",

ev;ROa*Hom(Qenx,_) —
© — (2%p)(1)
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is an isomorphism. Similarly for the transformation of functors from USh® (Xiop)
to Shs (Btop)

ev: R°a,Hom ((Geng)iop, -) — 2%,
o — (z"p)(1).

Consequently, the pairs (Geng,1) and ((Geng)iop, 1) are unique up to unique
isomorphism.

d) The natural transformations of functors
HomUShS(X) (Qenx, _) — HomShs(B) (F(O), :L”*_) and
HomUShs(me) ((genm)topa —) — F(Btopa x*—)
from USh®(X) and USh®(Xy,p) respectively are isomorphisms.

Proof. For a)—c), we refer to

[Wil], Remark d) after Theorem 3.6, | [Wil], Theorem 3.5.),

and loc. cit., Theorem 3.5.ii). Apply the functors Homgp: gy (F(0), -) and T'(Biop, -)
to the result in ¢) in order to obtain d). O

REMARK: In the Hodge setting and for the constant base B, Theorem 2.1 is
equivalent to the classification theorem for admissible unipotent variations of Hodge
structure ([HZ], Theorem 1.6). In this case, Gen, is the canonical variation with base
point x of loc. cit., section 1.

Now let
Gm = Um,B , U::]P%\{O,].,OO}B,
j: U= G, ,
p:G, — B, p:=poj:U— B.
We may form the generic pro—unipotent sheaf with basepoint 1 on Gy, .
DEFINITION 2.2. Log := Gen; € pro-USh®(G,,) is called the logarithmic pro—sheaf.
As we shall see below, there is an isomorphism
kGt Log = HF(k) .
k>0

Agsuming this for the moment, we now describe the higher direct images
Hiy(U, j*Log(1)):

THEOREM 2.3.  a) HE(U,j*Log(1)) =0 for g # 0.

b) H% (U, j*Log(1)) has a weight filtration, and W_; (H% (U, j* Log(1))) is split.
More precisely, any isomorphism k as above induces an isomorphism

W_y (H(U,j* Log(1))) = [ F(k) -
E>1
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REMARK: By these statements on the higher direct images of the pro—sheaf j* Log(1),
we mean the following:

a) For ¢ # 0, the projective system
H (U, 5" (Log/W_nLog)(1)) >,
is M L—zero.

b) & induces a morphism of projective systems

H (U, " (Log/W_2mL0og)(1)) 5, — (H F(k)>
k=0 m>1

of sheaves with a weight filtration, such that the weight < —1-parts of the
projective systems of kernels and co-kernels are M L—zero.

Proof. One uses the exact triangle

JxJ*
or rather, Hz(Gy,, -) of it, and the fact that Hz (G, , Log) is easily computable. For

the details, see [Willl], Theorem 1.3. Or use 4.11 and 6.2, whose proof is independent

A fixed choice of
k: G Log = HF(k)
k>0

induces in particular an isomorphism of Grr‘iV2 Log and F(1). The theorem then en-
ables one to define the small polylogarithmic extension as the extension

pol € ExtlUShs(U) (GrKV2 Log|u, Log(1) lv)

mapping to the natural inclusion F(1) < [],~, F(k) under the isomorphism

Extgyy (F(1), Log(1) [v) = Homps sy (F(1)u, Log(1) v)
Homps Sh(U) (p*F(1),5"Log(1))

—  Homgyp | F(1), H F(k)
k>1

induced by the projective limit of the edge homomorphisms in the Leray spectral
sequence for p, and the isomorphism of 2.3.b). Note that the definition of pol is
independent of the choice of k. For the details, we refer to [Willl], Theorem 1.5 — as
there, we define

Extgy o) (F(1), Log(1) |y) == (li_mEXtéh(U) (F(1),(Log/W_nLog)(1) 1) -

n
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A description of Log and pol, in both incarnations, was given by Beilinson and Deligne;
see [B4], 2.1, 3.1 and [BD1], §1 for the Hodge version and [B4], 3.3 for the I-adic
setting. The reader may find it useful to also consult [WilV], chapters 3 and 4,
setting N = 1 in the notation of loc. cit.
We recall the “values” of pol at spectra of cyclotomic fields: let d > 2, and
C := Spec(R), where R := A[%,T]/®4(T), where ®4(T) is the d-th cyclotomic
polynomial.
C' is canonically a closed, reduced subscheme of G,, ® 4 A[%]. For any integer b
prime to d, there is an embedding
1
i

Since d is invertible on C, the image of i, is actually contained in U, and hence we
may form the pullback of pol via iy,

ip: C = C—G,®sA

¢ — (.

poly € Extgys ey (F(1), Logy(1))

where Log, denotes the pullback of Log.
Now we have the following

THEOREM 2.4 (SPLITTING PRINCIPLE). Logy splits (uniquely) into a direct product

Logy = H ar'%, (Logy)
k>0

and Gr'%,, (Logy) is isomorphic to F (k) for any k > 0.

Proof. [B4], 4, or [BD1], 3.6, or [WiIV], Lemma 3.10. Or use 4.11 and 5.2, whose
proof is independent of 2.4. O

In order to identify pol, with an element of

[T Extlye o) (F(1). F ()

k>1

we need to fix an isomorphism

Ky Gr' Logy = H F(k) .
k>0

By definition, x; is the pullback via ¢ of the isomorphism

k: G Log = HF(k)
k>0

of pro—sheaves on G, of [WilV], chapters 3 and 4, which we briefly describe now:
By 2.1.d), there is a canonical projection

e: Log — F(0) .
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Furthermore, there is a canonical isomorphism
v : Gr", Log =5 p*HY (G, F(0))Y

given by the fact that both sides are equal to p* of the mixed structure on the
(abelianized) fundamental group 71 (Gm top, 1) (see [Wil], chapter 2).
Observe that there is an isomorphism

res : H% (G, F(0)) — F(1)
given by the map “residue at 0”.

Finally, both Gr"¥' Log and [0 F'(k) carry a canonical multiplicative structure:
for Gr"V Log, this is a formal consequence of

[Wil], Corollary 3.4.ii) | [Wil], Corollary 3.2.ii)

(see Remark b) at the end of chapter 3 of loc. cit.).
Our isomorphism
K Gr" Log = HF(k)
k>0
is the unique isomorphism compatible with &, (res)¥oy, and the multiplicative struc-
ture of both sides.
Using the framing of Log, given by kp, we may identify pol, with an element of

H Extéhs(o) (F(1), F(k)) ,

k>1

or, after twisting and forgetting the component “k = 0”, as an element of

1 Extéue (e (F(0), F(k)) .
E>1

Note that in the Hodge setting we do not lose any information by forgetting the
component “k = 0” as there are no non—trivial extensions in Sh*(C) of F(0) by itself.
This latter statement fails to hold in the [-adic context. It is however true that the
zero—component of poly is trivial. One way to see this is via [WIiIIl], Corollary 2.2,
where it is proved that there is in fact a mixed realization pol, of which the above
extensions are merely the Hodge and l-adic components. In the category of mixed
realizations, there is a good concept of polarization, which ensures that there are
no non—trivial extensions of pure realizations of the same weight. Alternatively, one
uses Theorem 9.5, where it is proved that our pol, lie in the image of the respective
regulators. The claim then follows from the vanishing of H},(C,0).

THEOREM 2.5 (BEILINSON). Under the isomorphism of A.2.12, we have in the Hodge
setting:

+

poly = (-D*Lix (") € [[ | D C/em)*Q|

E>1 \weC(0)

where Lig(z) := 32,5, fl—: for |z2| <1 and z #1.
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Proof. [B4], 4.1, or [BD1], 3.6.3.i), or [WilV], Theorem 3.11. O

Note that one may identify C(C) with {0 : Q(uq) — C} by associating to w the
unique embedding mapping T € Q(uq) = Q[T]/®4(T) to w.
In the [-adic situation, choose a geometric point ¢ € C(Q). It allows to identify

C and
Spec (Z {{, %]) ,

and, furthermore, the category of continuous (y —-modules under the Galois group of
Q(¢) that are mixed and unramified outside Id, and the category Sh®(C) = Eté@'l”(C’)

Given this, we think of Extéhs(o) (Q(0),Q (k)) as sitting inside

Hclont (Q(C)a @l (k)) .

Together with the natural map of Lemma B.4.9 we thus have an inclusion of
Extgpe ) (Q (0), Q (k)) into
Gal(Q(ure0,¢)/Q(¢))
tim (QUu= O/ Q=) © i) @2, Q

r>1

THEOREM 2.6 (BEILINSON). Under the above inclusion, we have in the
l-adic setting:

1 1
— _1\k—1 | . . _ d\®(k—1)
poly = | (-0 iy gy 3 (1) (@)
al"=¢b rk>1
Proof. [B4], 4.1, or [BD1], 3.6.3.ii), or [WilV], Theorem 4.5. O

REMARKS: a) Using the defining property of pol, one can show (see [B4], 2.12 or
[BD1], proof of 3.1.1) that it coincides with a specific subquotient of the generic
pro-unipotent sheaf on U. The specializations to spectra of cyclotomic fields of this
subquotient were already studied in [D5], section 16. In particular, Theorems 2.5 and
2.6 are equivalent to the Hodge and [-adic versions of [D5], Théoreme 16.24.

b) One of the main results of this work will be (Theorem 9.5) that the elements in 2.5
and 2.6, for fixed b and d, are the respective regulators of one and the same element
in motivic cohomology. This implies that Soulé’s construction of cyclotomic elements
in the K—theory with Z;—coefficients of an abelian number field ([Sou2], Lemma 1,
[Sou5]) actually factors over the image of K—theory proper (Corollary 9.8). As shown
in [BIK], § 6, Theorem 9.5 also implies that the Tamagawa number conjecture modulo
powers of 2 is also true for odd Tate twists (see our Corollary 9.9). Finally, 9.5 is used
in [KNF], Theorem 6.4 to prove the modified version of the Lichtenbaum conjecture
for abelian number fields.

c) There are relative versions of 2.1 and 2.3 for schemes over a base scheme S smooth
over B. They allow to directly define the small polylogarithmic extension polg on
U xp S, which however turns out to be the base change to S of pol.
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REMARK: In our definition of pol, we chose not to follow [BD1], 3.1. The approach via
the universal property of Log and the computation of its cohomology rather imitates
that of Beilinson and Levin in the elliptic case ([BL], 1.2, 1.3). In fact, one of the
predecessors of loc. cit. contains a unified definition of Log and pol for relative curves
of arbitrary genus ([BLp], 1).

3 THE GEOMETRIC SET-UP

For easier reference, we assemble the notation used in the next sections.
As before, we let

| := a fixed prime number,

A:=R, A:=Z|:1:|
l )

B :=Spec(A) ,
Gm =Um,B , U:= ]PlB\{O,].,OO}B .

Furthermore, we let S denote a smooth separated scheme over B of pure relative
dimension d(S5),

Q,ge Gm(ﬁ)a

S C S the open subscheme of S where o and 3 are disjoint. We assume S to be dense
in S.

j:S—=S,
i:S\S—=S,

where S\ S is equipped with the reduced scheme structure.
Z:=a(S)UpB(S)

with the reduced scheme structure,
V:i=Gns\Z.

For n > 0, define

P :GhLs =S,
vV G s,

2.z~ Grs\V" =Gy, s,

where Z(™ carries the reduced scheme structure. (So QO =" =idg, and JARES 0.)
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The base change of the above objects and morphisms to S is denoted by the same
letters not underlined:

a,B:5 = Gys ,
Z:=a(S)IB(S) ,
V::Gm’S\Z,

p":Gp s — S,

V"V = Gy e,

RN AEE S ¢
Also, we define partial compactifications of p™:

9" : G5 = Ay,

A H™ = AT\ G, ¢ — AL,
where again H(™ has the reduced structure,

pt AL = S,

Vi=A5\Z,

TV A%,

=0 . 7™ AZ\T" = AT,
where Z™ is equipped with the reduced structure. (So 7 = 70 = Z.)

REMARKS: a) The underlined objects should remind the reader that the partial com-
pactification comes from the compactification j of the base S. The Gverlined objects
refer to compactification upstairs, induced from g".
b) For fixed n, we have a natural action of the symmetric group &,, on our geometric
situation.

For the purposes of K-theory in section 7 we will have to replace the singular
scheme Z(") by some smooth simplicial scheme. Put

2" =7 x5 Gl i UGmys x Z xs G 21 TG & x5 Z
Note that Zén) is a proper covering of Z(™). This is the easiest case of a morphism
of schemes with cohomological descent, meaning that for any reasonable cohomology

theory the cohomology of Z(™) will agree with the cohomology of the smooth simplicial
scheme

ZM = coske (25 /G, )
ie.,

Z,g") = Zé") XGp ottt XEn, Zé") (k + 1-fold product).
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Put Z_(O) = % (corresponding to the empty scheme). We will also use the simplicial

(n)

scheme Z  which is attached to 7(n) sitting in A% in the same way. Finally let

Gy = Cone(Z™ — G, §)
AY" = Cone(Z" — AZ)
where the cone is taken in the category of pointed simplicial sheaves on the big Zariski

site (cf. the discussion in appendix B.1).

4  GEOMETRIC ORIGIN OF THE LOGARITHMIC SHEAF
In section 2, we defined a pro—sheaf

Log € pro —U Sh*(G,,)
and an element

pol € Extly(F(1), Log(1) |o)
= Jim Extdy ) (F(1), (Log /W Log) (1) |o) .

n

The aim of this section is to identify Log |y, or rather, its Noetherian quotients,
as relative cohomology objects with coefficients in Tate twists of certain schemes over
U (Theorem 4.11).

Recall that according to our conventions, we have

F(0) = FO)ul1] ,
and hence we may view pol as an element of
Hom p» Sh(U)(F(O)Ua Log |v) = Hgbs(Ua Log |v)

where we have used the notation introduced in Definition 1.2.
For the schemes of section 3, we have the following

DEFINITION 4.1. Forn > 0,

G .= 1Y ( Z’S,v,nF(n))Sgn - Hg+d(§) (G g, vl F(n)y=)*" |

m,S >

where the superscript sgn refers to the sign—eigenspace under the natural action of
the symmetric group &,, on Gy, ¢ and V™.
Observe in particular that G(©) = F(0).

The following is an immediate consequence of the Kiinneth formula:

LEMMA 4.2. There is a canonical isomorphism

G = Sym” g
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We want to compute G(™, and simultaneously construct, for each n > 1, a
projection

g(n) s g(nfl)

via the “residue at 0”, whose projective limit over n we shall then identify, for special
a and (3, and S = U, with the restriction Log |y of the logarithmic pro—sheaf to U.

Let H(n) be the singular part of H™ and Hr(gl) = H() \Hs(ffl)g the smooth part.

sing
For any subscheme of A%, the subscript reg will mean the complement of Hg:l)g. We
work with the following geometric arrangement:

—=n n —=n
Vieg NHY —— Vi —— V"
(n) grneg N

(n) reg s n ¢
Hreg A&S,reg m,S
Both squares are cartesian. All maps are either open or closed immersions, and each
line gives in fact a smooth pair of S—schemes.

LEMMA 4.3. For any complex M € D° Sh(AS ,ey) such that (vj,)*M is a shift of a

smooth sheaf on Vrzg,

there is an exact triangle

(B @ reg) (Phrreg o W) M(=1)[=2] — (Wi ()™M
(*) LN
(atg)e o7 (07 gthg) "M

Proof. This is (Dyq,)1 applied to the exact triangle obtained from purity for the closed
immersion
Vieg VHT) — Vi,

of smooth schemes. O

We apply this lemma to M = F(n) AL and evaluate the cohomological functors

Hi (A% 1og> )" on the triangle (x). Following 1.2.c), we write everything as relative

cohomology with Tate coefficients:

e Hip (A oy el Zo0) )" —s Hiy (GF, s rel Z() p)sen

— HEVHD vel (Z™ 0 HD), 0 - 1)

abs reg reg

i = (n)

—)Hgsl( g,reg rel Z o, ,n)%8 — .

We refer to this as the absolute residue sequence.
Application of the cohomological functors Hg(A&reg, - )%™ to the same exact

triangle yields a long exact sequence of sheaves on S that we call the relative residue
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sequence:
. sgn . n
LM (A e ) Fn) ) — HE (Gl 5, o F(m)yn) ™
. sgn
— HlS ! (Hr(eg)7 (UH reg)'F( 1) Vregmnggg))

i sgn
_>7{S+1( 2 rog» (Do F (10 )Vreg) — ...

Note that G(®) = n+d(s) ( m, S Ul F(n)vn)sgn occurs in this sequence.
We are now going to further analyse, and reshape these sequences. The final
form will be achieved in Proposition 4.8 and Theorem 4.9.
First, we need to identify the terms
Hz 1(H—(n) rel( (n)

abs reg

sgn
/Hl ! ( re?g)a (UHreg)'F(n - )VregﬂHr(en)) » n>1.

g

NHM)n—1)%" n>1

reg )

The complement of Z™ n H{Z) in HY) is given by

T vt Vieg N HI — H

reg reg reg

Since V. N Hr(:g) = II;—, V" ! under the identification

reg

n

(n) n—1

Hreg - Gm S
k=1

and these components are permuted transitively by &,,, we conclude

LEMMA 4.4.

n
a) (E}-LLreg)!F(n - ]‘) VregﬂHr(:g = (H > n - 1)]_[;;:1 yn—1.

b)  HIZNEH® rel (Z™ AH®)), 0 - 1) @H”G”Slrdz(“)n—n

abs reg reg abs

(n)

and hence the sign—eigenspace H'; ! (Hr(gg) rel (Z''N Hr(glg)), n —1)%" is isomorphic to

abs

HTH(GY é rel Z("=Y p —1)%n

abs

where the last sgn refers to the action of &,,_1. The isomorphism is given by projection
onto the components unequal to k, for some choice k € {1,... ,n}. It is independent
of the choice of k.

0 R (HE, @ ro): F(n = Dpn i) = @RS(G:;;, TR = D).
k=1
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J25S0)

sgn
As in b), the sign-eigenspace H ! ( veg s (Vf] peg )1 F'(n — 1) ) is canoni-

Vi NHZ)

cally isomorphic to
sgn

H! (Gnmsla “HE(n = 1)yn- 1)

For i = n+ d(S), the latter equals G("~1).

Proof. The only point that remains to be shown is the independence of the isomor-
phisms in b) and c) of the choice of k. Recall the identity

sgn

R (G”

m,

516l 20,0} = RTas (8,Rs (G, 5,0/ F(n)v+))

We are going to prove in 4.6.d) that H§(G}}, 5, v/"F(n)y=)*" = 0 for ¢ # n + d(S).
So the associated spectral sequence degenerates, and shows that the independence of
the map in b) follows from that of the map in c).

For c), we only need to consider G") = 'Hn+d(s)( .5 U F(n)ya)®t. There, our
claim follows from Lemma 4.2, and the graded— compatlblhty of the cup product with
boundary morphisms ([GH], Proposition 2.2 and Corollary 2.3). O

REMARK: The arguments of this section would become simpler if we could use an
object RE" in ¢). However, we do not know whether it is possible to make a decom-
position into eigenspaces in our triangulated categories.
By the identification of the lemma, the residue sequences define canonical residue
maps
res : H, (G, s rel ZM nysen s Hi- (G s rel Z(n= p —1)%E"

abs
sgn

res : His (GI g, v F(n)yn)*" — M (G; L P F(n = 1) yas )

fitting into the relative and absolute residue sequences. In particular, observe that

we have a residue map
res : g(") — g(”*l) .

Now we concern ourselves with the identification of the remaining terms

(n) )sgn,n>0,

i n
abs( S,reg rel Zreg7 =

. sgn
HlS( Sregv( reg)'F( )Vreg) 2> 0

of the residue sequences.
We use the following filtration of A% by open subschemes:

FrpA% = {(x1,... ,2,) € A% |at most k coordinates vanish} .

So we have F,A§ = A and FoA§ = G, 5.
The “graded pieces” of this filtration are

GkAg = FkAg \Fk_lﬁg
= {(x1,...,zn) € AG | precisely k coordinates vanish} .
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G A% is equipped with the reduced scheme structure. Note that it splits into several
disjoint, pieces. For k > 2 and any such piece, there is a transposition of &,, acting
trivially. By using triangles similar to (x) for the inclusions

GkAg — FkAg A Fk_lAg y

(n)

we conclude inductively that the sign—eigenpart of the cohomology of Hg\y is trivial:

LEMMA 4.5. The adjunction morphism induces isomorphisms

H;bs(Ag‘ rel 7(”),n)sgn L) Hlbs(Ag ,reg rel Zr(eT;)a )sgn,
. sgn
His (62,5 F(n)72)*" 5 1 (A o (Bt Fm) 7 )

By 4.4.b) and 4.5, the absolute residue sequence takes the form

s HL (A% rel ZU ) s HE(GR o rel Z(W), p)ysen
H;b;(G” & el 207N i — 1)
SHFLNAL vl Z™ ) o
Similarly, the relative residue sequence looks as follows:
= HG (AR, F(n) o)™ — M (G, g, 0" F(n)ya)™"
r _ sgn
S HE (G o T (= 1)y
—HE (AL, 9" F(n)5n)™" — ...
For the computation of the term
M (AL, 0" F(n) )",
we use the Kiinneth formula:

LEMMA 4.6. a) Rg (AZ,0"F(n)) = H% (A%,5"F(n))[0], and the Kiinneth formula
gives an isomorphism

Hs (A, 0" F(n)) = Hg (A%, 5" F(n))*" — Sym"Hg (Ag, 7] F(1)) .
b) The choice of an ordering of the sections o and 8 gives an isomorphism
Rs (AL, 9 F(1)) = HE (AL F(1)) [0] = F(1)[0] -

Up to sign, it is canonical.
c) The isomorphisms of a) and b) induce an isomorphism

,Hn+d(S) (A%, T F (n)gn) = H%( %L T F(n)) — F(n) .

It depends on the choice made in b) only up to the sign (—1)". The group &,, acts
on these objects via the sign character.
d) Fori # 0, we have

HG S (G5 ol F(n)vn) ™ = HE (G500 F(n) ™" = 0.
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Proof. For b), consider the long exact cohomology sequence associated to the triangle

v F(1) — F(1)

We have
1 (44, F0) = {

and

Pra, i=o

w5 (45,20 F () = - »
, ]

The long exact cohomology sequence thus reads

0— Hg' (As, 01 F(1)) —>@F — HE (A, F(1)) - 0.

If we let {a, 8} = {s1, 52}, then we identify the cokernel of

2

) —@Fra)=FQ
o3

i=1

with F(l) by mapping (f317f32) € @?:1 F(l) to fo, — fs1-

a) follows from b) since @" F (1) = Sym" F(1).

c) is a consequence of a) and b).

d) follows from a) and the relative residue sequence by induction on n. O

On the level of absolute cohomology, the isomorphism of 4.6.c) induces an iso-
morphism

abs abs

sgn .
H””( 2yl 7™ ) H”“( 2 pel Z™ ) y HE, (S,n) .
This gives the final shape of the absolute residue sequence:

s Hip(S,n) =2 HEP (G, g el 2, pysen
res H;—é-sn 1(Gm_, rel Z(nfl),n _ 1)sgn
—HITY(S,n) s -

abs

By 4.6.d), the relative residue sequence collapses into the short exact sequence
of sheaves on S:

0 — F(n) — ¢ X5 g 0.

In order to identify the long exact absolute cohomology sequence associated to
this sequence with the absolute residue sequence, we need the following;:
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LEMMA 4.7. Let K € D®Sh(X) be a complex of sheaves on a separated, reduced and
flat B—scheme X. Suppose there is an action of a finite group G on K. Let x be
the character of an absolutely irreducible representation of G over F'. For any object
V with a G-action of an F-linear abelian category, denote by V(x) the x—isotypical
component of V, i.e., the image under the projector

1
ex == xlg7)g.
X #G gezG
Suppose that (H'K)(x) vanishes for all i # 0. Then
Hom pe (F, K [i])(x) = Homps (F, (H"K) (x)[i])

Proof. By applying e, and 1 — e,, one checks the statement for a complex of the
special form K = H°K. For the general case, consider the spectral sequence for
Hom pe (F, - [i]) induced by the truncation functors 7<,,. It degenerates after applying

ey- O

Now that we know that formation of absolute cohomology commutes with for-
mation of sign eigenspaces, we have:

ProprosiTIiON 4.8. The absolute residue sequence is the long exact sequence in abso-
Iute cohomology attached to the short exact sequence

0— F(n) — ¢ B g 0,
We conclude the computational part of this section by collecting our results:
THEOREM 4.9. a) For n > 0, we have

M ( Zz,savgnF(n))sgn =g

and HY (G, ¢, v F(n))™" =0 for i #0.
b) The residue at 0, i.e., the boundary map of (), gives an epimorphism

res: G — g(n=Y

forn > 1.
c) The Kiinneth formula gives an isomorphism

Hs (A5, 0" F(n)) = Hg (A%, 5" F(n))™®" — ker(res)
forn > 1. A choice of an ordering of the sections « and (3 induces an isomorphism
F(n) = ker(res) ,

which depends on this choice only up to the sign (—1)™.
d) Let G =5 Sym"G(") be the canonical isomorphism of 4.2, and
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the isomorphisms given by multiplication. Then the diagrams

¢gm  —  F(0)
1 T
Sym"G()  —  Sym"F(0)

and

F(n) — G
K 2
Sym"F(1) —s Sym"G(")

commute. Here, the horizontal maps are given by the successive residue maps, and
by c) respectively.
e) Let W_o,,1 g .=,

W_ok G = W_opr1 G i=ker(¢"™ — ¢+ V) for 1<k<n,

and Wo G := G(") . The choice in ¢) induces isomorphisms

G g = P FG)

i=0

which by their construction fit into commutative diagrams
Gr¥¥res | J can
G gD S @ F(i)

The filtration W. is therefore the weight filtration of G(").

Proof. a), b) and ¢) follow from the previous results. The commutativity of the first
diagram in d) follows from the definition of the residue map. For the second diagram,
we use the fact that the Kiinneth formula of 4.2 is compatible with the Kiinneth
formula of the proof of 4.6.a). For e), apply induction on n. O

Recall that S is the open subscheme of S where the sections a and 8 of Gy, s
are disjoint. For special S, o and 3, the following is the main step towards the
identification of the projective limit of the G with the restriction Log |u of the
logarithmic sheaf:

LEMMA 4.10. a) There is a unique smooth sheafg(”) on S extending G™. Tt has a
weight filtration.
b) There is a canonical isomorphism

G = Sym"gM |

and a unique isomorphism

n™ G g = (P FG),

=0
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which is compatible with the isomorphism of 4.9.e).
c) The weight filtration of i*G™ is split: there is a canonical isomorphism

n

i*g™ = G g™ b—”)> F(i).
=0

Here, i denotes the inclusion of S\ S into S.
d) There is an exact sequence

0 — i F(1) — HE (G5, 0t F(1)) — G — 0
of sheaves on S.

Proof. If there is any smooth sheaf as in a), then it will automatically be unique, and
hence b) follows from a), and 4.9.d), €). Also, it will suffice, because of 4.9.d), to show
the lemma for the case n = 1.

There we have the following diagram

0
i F(1)
H — 5 F(1) —2 K s HO s F(0) —— 0
D, F1)
0

where

K =H"" Cone(s : (D F()s[d(S)] = i F(1)s\s[d(S)))
o,

with §(v1,v2) := v1 —v2 (in terms of constructible sheaves this is just Ker § shifted in
the appropriate degree to define a perverse sheaf). The horizontal sequence is, as in
the proof of 4.6.b), the long exact cohomology sequence on S associated to the short
exact sequence on Gy, s

() 0—2zMF1) 5ol F(1) » F(1) -0,

where we have set » »
H = H’i (Gm,g,y!lF(l)) .

We thus get the equality
Rs (Gm,s,v F(1)) = Hg (Gm,s, 01 F(1)) 0],
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and an exact sequence of sheaves on S
0— K/A(F(1)) = HS (Gm,s,v/ F(1)) = F(0) = 0,
whose restriction to S is isomorphic, via the choice of an ordering of a and g, to
0= F(1) = ¢W 5 F0)—0.

Push out of the above via the morphism
K/A(F(L) = [ D F(1) | /AF)),
a,B

whose kernel is i, F'(1) (recall again that we use perverse indices), gives the desired
extension G, By construction b) and d) hold. Applying i* to the pushout diagram
and taking cohomology, we see that the sheaf i*G™[—1] is the pushout of F(0) via

0— F(1),
and we get c). O

We now specialize our geometric situation: we let

9

= Um,B ,
=1:Gnp »B—=Gn,p,
= id:G,mB _>Gm7B-

' IR

So we have S = U and S\ S = 1g, the closed subscheme of G, g given by the
immersion 1 of B into G, B.

After having made precise which choice of normalization we have and in how far
it affects our identifications, we now fix it: we let

s;:=a=1and s2 :=  =id in 4.9.c).

We thus get a projective system (G (n))nZO of smooth Tate sheaves on G, g with
g(n) lis = @F(Z) :
i=0

By the universal property of Log (Theorem 2.1.d)), there is a unique morphism

@:ﬁogﬁg::(h_mg(”)

n

such that ¢ |1y sends 1 € T'(B, Log |1,) to

oo

1:F(0) = [[F() = G lus) -

=0
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THEOREM 4.11. ¢ is an isomorphism.

Proof. The claim can be shown on the level of the underlying topological sheaves. The
[-adic statement follows from the statement for the topological spaces of C-valued
points by comparison — recall that we are dealing with locally constant sheaves.
Over C, the fibre at 1 of the pro-local system Logiop equals the completion of the
group ring Q[m | of 71 := 71 (G, (C), 1) =2 Z with respect to the augmentation ideal a.
The representation of my is given by multiplication; compare the general construction
in [Wil], 2.5-2.7. In particular, we have

Logiop = lim Sym"™ (Logiop,>—2) ,
S

where Logiop,>—2 := Logiop/a? is of dimension two. Now in the category of unipotent
local systems on Gy, (C), the pro—sheaf Logiop has the universal property of Theorem
2.1.d).

We apply this universal property to Qt0p72—2 = QE});
Prop- Since pr ~_, is two-dimensional, the representation of Q[r] is necessarily

. The resulting map factors over

trivial on a2, and we get a morphism of local systems

Ptop,>—2 : LOGtop,>—2 — gtop,272

giving rise to a morphism

(li_m Symn((ptop72—2) : ‘Cogtop — Qtop .

n

Again because of the universal property of Logyop, this morphism is identical to pgop.
It therefore suffices to show that ¢gop >—2 is bijective, which amounts to saying that

the coinvariants of G, ., under the action of m; are one-dimensional. But taking

coinvariants under m; of a unipotent variation V amounts to computing singular

cohomology
H' (G (C),V) = Heeom)(Gmr, V) -

Firstly, we claim that

Hepeo(i) (Gmz % Gyl F(1)) = { 07( ), i o
e.g., identify the left hand side with

H™2 (G (C) x G (0), A(Gm (C) U ({1} x G (D)), F(1))
&~ fit2 (Gm ((C) X G, ((C), (Gm ((C) X {1}) U ({1} X Gy, ((C)),F(l)) ,

and apply the Kiinneth formula. From the proof of 4.10, we recall — remember that
we have § = G,,:

RGM‘: (Gm,R X Gm,RaﬂglF(]-)) = %?;m’j (Gm,R X Gm,RaQ!lF(]-)) [O] )
from which we conclude:

7=

i F(-1 )
HSpec(R) (Gm’R,HOm‘E (Gm,R X Gm,R)QIlF(]-))) = { 07( ) 7 7é 0
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The long exact sequence obtained by applying Rgpec(r) (Gm,r, -) to the exact se-
quence of 4.10.d)

0— LF1) — HL . (Gmr X Gmr,0l F(1)) — ¢ — 0
then shows that
ngec(R)(Gm,Rag(l)) = F(_]-) :
O

REMARK: The geometric situation used in this section is identical to the one of
[BD1], 4.1-4.3 (see in particular loc. cit., 4.1.9). The comparison statement of our
Proposition 4.8 is implicit in loc. cit., 4.3.3. We mention that basically the same
geometric arrangement was used in [Jeu]. More precisely, writing down the iterated
cone construction of loc. cit., one arrives at a simplicial object which is homotopy
equivalent to Beilinson’s and Deligne’s construction used here.

5 THE SPLITTING PRINCIPLE REVISITED

In order to be able to translate easily to the motivic context, we recall Beilinson’s
original proof ([B4], 4) of the splitting of the logarithmic pro-sheaf over spectra of
cyclotomic fields (Theorem 2.4).

First, we return to the general situation considered at the beginning of section
4. For N > 1, we have the morphism of S-schemes

¢ : Gm,S — Gm,S )

z — N,

and for each n > 0, the induced morphism
"Gy — G 5.
We work under the additional assumption
(A) poa=a, gof=4.
If this is the case, we have (¢™) (V™) C V™, and hence get a morphism
(@")" o' F(n) — v'F(n),
and hence a morphism
(@™ : o' F(n) — ¢luF(n),
which after application of p? and projection onto the sign-eigenpart induces
(¢™)F : ¢ — g |

We need to understand the action of (¢™)* on G, and on absolute cohomology.
First, we establish in how far (¢™)* is compatible with the residue at 0:
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LeEMMA 5.1. a) Under any isomorphism
n
G ¢ = P FG) ,
i=0
the map Gr" (¢™)! is multiplication by N"~¢ on F ().
b) For any n > 1, the diagram

g W )

res, l lresn

gin—1) NV o)

commutes.

Proof. Since the morphisms in b) are strict with respect to the weight filtration, it
suffices to check that

Gr% (res,)o Gr! (¢")f = N - Gr! (4" )% Gr' (res,,) .

But if we choose the isomorphism of 4.9.e), then Gr_W(resn) is simply the canonical
projection

D i)~ D FG) .
=0 =0

and therefore b) follows from a). For a), we note first that it suffices to show the
statement for one choice of isomorphism

G g = @B FG) .
=0

This time, we use the isomorphism on graded objects induced by 4.2, thereby reducing
ourselves to the case n = 1. There, we consider the long exact cohomology sequence
associated to the exact sequence

0 2"F(1) 5 vl F(1) > F(1) >0,
and the cohomological functors H%(Gy,,s, + ). We know the cohomology of Gy, :

' F(l) , 1=-—1
/HTS‘ (Gm,SaF(]-)) = F(O) , =0

0, i¢{-1,0}
Of course, we know the cohomology of two points:
. F(1) , i=0
Hi (G5, 2 F(1)) = 62
0 , 1#£0
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We get an exact sequence

0= F(1) 3P F) = GY =1 (Gs, v F(1)) = F(0) > 0.
B

and because of assumption (A), it carries an action of (¢™)f. But this action can be
identified on HY (G, s, F (1)) and Hi (Gm’s,z,gl)F(l)): it is trivial on the F(1), and
multiplication by N on F(0). O
Certainly (A) is only satisfied in very special situations, namely if o and § are
supported in the schemes of (N — 1)-torsion of Gy, 5.
Let again d > 2, C' := Spec(R), where R := A[%,T]/®4(T) as in section 2. For
b prime to d, consider
ib : C L) C — Gm )
¢ — .

The pullback Logy of the pro-sheaf Log |y on U via iy is identical to the projective
limit of the sheaves Q,E") obtained by setting

ﬁ::Ca
a:=1:C »>B<=G,,,
g:zib.

Since (A) is satisfied with N = d + 1, we may apply 5.1, and conclude:

COROLLARY 5.2. g,E”) splits into a direct sum
n
6" = B et of
i=0
Therefore, there is a unique isomorphism
n
0" g = P FG),
=0

which is compatible with the isomorphism n(”) of 4.10.b).
Proof. F(i) C Qén) is the eigenspace of (d 4+ 1)"~% under the morphism (¢")%. O

We conclude with the implications of 5.1 and 5.2 for absolute cohomology with
coefficients. For this, recall the absolute residue sequence for n > 1

o Hia(Com) = B (G, m)™ ™S HAT NG 0 — 1) — .

introduced after 4.6, where we have set
MG n)®™ = H G o rel 200 )

abs abs

thus saving enough space to get the above sequence into a single line.
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COROLLARY 5.3. a) For n > 1, the absolute residue sequence splits into short exact
sequences

0 — H, (C,n) — H MGyl n)®™ — H ' 1(@%”01, —1)%" 0.

abs abs

b) For N = d + 1, the map (¢™)* acts on the short exact sequences of a): there is a
commutative diagram

(Con) = HEMGY o n) HAP (G n—1)%

abs abs abs
id | (67)" j (@+1)- (¢ )|
Hyo(Con) = HEN (Gl )" = Hy b= (Glgh n — 1)

Proof. By 4.8, the absolute residue sequence is the absolute cohomology sequence for
the exact sequence of sheaves on C

0 F(n) —» g™ <% gin=")

Therefore, a) follows from 5.2, while b) follows from 5.1.b) and the fact that under
the identification of 4.9.a)

Habs(Cag(n)) —) H+n(Gm [eXL )sgn ;

abs

the map induced by
(6" : 6" = 6"
is the map (¢™)* of the absolute cohomology groups. O

It follows that the eigenvalues of (¢™)* on H. :Jsl((GV” n)%e" are

1,d+1,...,(d+ 1)". The eigenspace decomposition yields

(n) H—n+1 (GmC’7 )sgn H—n+1 (Gn c rel Z sgn ;) abs ,

abs abs

which in sheaf theoretic terms corresponds to the decomposition
my") : Extdy e (F(0),6,") = @) Extdy o) (F(0), F(0))
i=0

given by Corollary 5.2.
The pullback poly, of the small polylogarithmic extension pol on U is an element

of
lim Extd o (F(0), G\") = lim lim HEH (G, o vel 20, n)en
n>1 nZl
= lim H:,;:l(((}v” n)sen .
nZl
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We have shown that, using the eigenspace decomposition for the action of the (¢™)%,
these groups are isomorphic to

[T Exténe) (F = [[ i (C. 1)

k>0 k>0

2.5 and 2.6 describe pol;, as an element in this group.
Actually, in order to relate the above decomposition to the one used for 2.5 and
2.6, we shall need to compare the isomorphism

n —hmn : GV Q—)HF
nZl k>0

of 4.10.b) to the isomorphism

kG G =GrW Log = HF(k)
k>0

of section 2.
A priori, we know that the isomorphisms

N2k , K2k : GrKV%Q = F(k)
satisfy an identity of the type
N—2k = q—2k - K-2k

for a constant q_op € F™.

We remark that in order to prove the main results announced in the introduction,
all one needs to know is that g_s; is a rational number, which is independent of
whether we work in the Hodge or the [-adic setting.

In order to exhibit the precise relation of the motivic analogue of pol (see section
8) to the cyclotomic elements in K—theory (see Corollary 9.6.b)), we need to identify
q—2k-

ProproSITION 5.4. We have the equality
N—or = k! K_op .
Proof. Because of the compatibility of kg with the canonical projection
€:G— F(0),
we have 19 = k9. In order to show n_s = k_5 we compare the classes of Q(l) in
Extdy g, ) (F(0), F(1))
induced by n_» and k_» respectively. Let

K :=C, | K:=Q
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and choose any K—valued point ¢ of U. Of course, the value of ¢_» can still be detected
from the extensions of

mixed Q-Hodge structures | Galois modules

given by the pullback t*g(l) of Q(l) via t. In both settings, there is a natural morphism
of K* ®z F into the respective Ext® (F(0), F(1)) (see e.g.

[WilV], Theorem 3.7). | [WilV], Theorem 4.6).
By
[WilV], Proposition 3.13.a), | [WilV], Proposition 4.7.a),

the class of t*G (1), calculated in the framing given by k_», equals the image of ¢t € K*
under this morphism. By [Sch], 2.7, the same holds for the framing given by 7_o —
note that here it is vital to choose the ordering of the sections a and g in the way we
did before 4.11. For k > 2, let B

<,0(()k) : Q(k) 5 Sym* Q(l)
be the isomorphism of 4.10.b). By 4.9.d), the diagram

g®  —  F(0)

o) L R
Sym*gY  —  SymFF(0)

commutes. By [WilV], Theorem 3.12.a), the commutativity of this diagram char-
(k)

acterizes @y
diagram

uniquely. From loc. cit., Theorem 3.12.b) and c¢), we know that the

e

R 1
F(k) RN g
t 14 of”
k-1
Sym* F(1) Sy g Sym*g™)
commutes. So our identity
N-ok = k! K 2

follows from 4.9.d). O

6 PorLyLoGS IN ABSOLUTE COHOMOLOGY THEORIES

In section 4, we showed that the logarithmic pro—sheaf is the projective limit of
relative cohomology objects with coefficients in Tate twists of certain schemes over
U. The Leray spectral sequence suggests that is should be possible to recover pol as
a projective limit, of elements in absolute cohomology with Tate coefficients of these
schemes, and indeed this is what we do in Theorem 6.6. That the coefficients are Tate
is of course the central point: it allows us, in section 7, to imitate the construction
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of this section, and thus to define a motivic version of pol. This detour is necessary
because we know, up to date, of no satisfactory formalism of mixed motivic sheaves,
whose absolute cohomology with Tate coefficients would give back motivic cohomology
defined via K-theory.

We return to the geometric situation set up before 4.11, and start by computing
the higher direct images of the restriction of Log to U:

LEMMA 6.1. a) The inclusion F(1) < G and the projection
G — F(0) induce natural isomorphisms

F)p = Mg (Gn,gY)

Hy (€n 60) = HY (Cn, FO)
and the latter group is isomorphic to F(—1)p via the map “residue at 0”.
b) The inclusion F(n) < G and the projection G™ — F(0) induce natural identi-
fications

. F(n)B ’ i =—1
Hi, (Gm,g<”>) —{ F(-1)p, i=0
0, i¢ {-1,0}

Proof. The statements need only be checked on the level of local systems. Part a)
is shown in the proof of 4.11. From there, we also recall that we have to compute
the invariants and coinvariants under the action of the group m = 71 (G, (C), 1), or
equivalently, of a generator of 7. Using 4.10.b), we may deduce b) from a). O

COROLLARY 6.2.

(o) {1

For i = 0, the sheaf HY (U,G™) is the direct sum of @ F(k — 1) and an object
k=1
which is an extension of F(—1)p by itself.

Proof. By [Wil], Theorem 4.3, there is a weight filtration on H% (U, Q(")). Now use
the exact triangle

L1 — idg, .
(1 v
JxJ*
purity, and 4.10.c). O

REMARK: In the setting of Hodge modules, where a concept of polarization is avail-
able, any extension of pure objects of the same weight is necessarily split.

The map HY% (U, Q(")) — F(0) of the corollary yields in particular a map “residue
at 1g7, forn > 1,

res : HO,.(U,G) = o (B, Ri(U,G™)) = HY,(B,0)
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DEFINITION 6.3. Let n > 1. The map

res : HOp (U, GM™) = HIEN(GE,  rel 2™, n)%" — HY, (B, 0)

abs m
is called the total residue map.

For later reference, we note

COROLLARY 6.4. H} (G, ; rel ZW,1) = 0.

abs

Proof. We have

H1, (G, rel ZW 1) = H7 (U,gW)
which because of 6.2 equals HY, (B, F(1)) = 0. -
Next we have

LEMMA 6.5. i) The transition morphism
res : G — g(»=D)
satisfies

Hg' (Uyres) = 0: F(n)p = F(n =g ,
HY (U ves) : HY (U, GM) — Wy (U, gD

is surjective with kernel F(n — 1)p.
In particular, the total residue for n > 2 factors over the total residue for n — 1:
there is a commutative diagram

res
H? —

abs (37 0) Hs?bs (U7 g(n))

res~\_ J res
Hp, (U,GY)

ii) The Leray spectral sequences, for n > 0, give exact sequences
0 — Hjpo(Byn) = H, (U,G™) I HY, (B,0) — 0.
The map
d: H;bs(Ban) - H&?bs([Ua g(n))

1s(U,n) = HY, (U, F(n)) and the map induced
by the inclusion of F(n) into G, in other words, the same noted map of the residue
sequence.

The projective limit of the above sequences identifies

is the composition of H)\ .(B,n) — H}

Hz?bs(Ua Eog |U) = (h_m Hgbs(Uv g(n))

n

and HY, (B,0).
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iii) There are unique splittings
Sn : Habs(B 0) abs(U g(n))

of the sequences in ii), for any n > 0, such that for any n > 1 we have a commutative
diagram

(B,0) % HY (U,GM)
Sn-1 N\ b es
abs(U g e 1))

HO

abs

Proof. i) The first statement is clear. For the second, either go through the construc-
tion or observe that the direct image of the morphism Uyop, — Biop has cohomological
dimension one, hence H%(U, - ) is right exact on smooth sheaves.

ii) We have the Leray spectral sequence

EPY = H?

abs

(BAHEW,GM)) = HE(U,GM),
whose low-term sequence reads

0— H;bs(Bﬂl) - Hg ( g(n)) - Habs(B 0) H bs(Ban) .

a

By i), the Mittag-Leffler condition is satisfied for the projective system
(HL<(B,n))n>0, and therefore,

abs

Hibs (U Logly) = Jim ker(d5”) = Hyj, (B 0)
since the projective system (im(dg")))nzo C (H2,,(B,n))n>0 is M L-zero.
But then any of the
abs (U g(n)) - Habs (B7 0)

must be surjective as well.
iii) Apply ii). O

Denote by pol™ the image of the small polylogarithmic extension pol under
abs([U ﬁog |U) - Habs(U g )
THEOREM 6.6. a) Under the isomorphism
H3,,(U, Log ) — Has(B,0)

of 6.5 ii), the small polylogarithmic extension pol is mapped to 1.
b) For each n > 0, the map

Sp t Hz?bs(B70) abs(U g )

maps 1 to pol™.
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Proof. This is the definition of pol and the s,,. O
Recall (4.9.a)) that we may identify

Hz?bs(U7g(n)) = Hgbs( :sz’,U!nF(n))sgn
= HE G g, ol F(n)ye )"

abs m,U>

= H:btl( m.u el Z(”),n)Sgn .

In section 8, we are going to prove a motivic analogue of 6.5.ii), and then define
pol as the element in

lim H (G vel 2, p)sen

n

mapping to 1 under the isomorphism to HY,(B,0).
In order to prove a motivic version of 6.5.ii), we shall frequently use injectivity
of the Beilinson regulator on certain motivic cohomology groups, and two technical

results on H_; , that will occupy the rest of this section.

While this may appear artificial at first sight, we remind the reader that in the motivic
setting, we cannot make use of any sheaf theoretic means like Leray spectral sequences.

An important means will be the localization sequence associated to the geometric
situation

{0,1}p = Ay < U.
It is the result of the degeneration of the Leray spectral sequence and reads
U _)Hz;bs(AlBap) - He.ibs(Uap) — Hz;gsl({oa ]-}Bap - ]-)
—H {1 (A, p)— ...

LEMMA 6.7. a) The structure morphism is an isomorphism
Hz;bs(va) l> Hs.xbs(A}?ap) .
b) The boundary map is trivial, i.e., we have short exact sequences

1
0= Hypo(B,p) = Hypo(U,p) > P H 5 (B,p—1) > 0.

abs
=0

Proof. For a), note that Rp (AlB,F(p)A}B) = F(p)gl[0].
b) follows from the fact that there are B-valued points of U. (|

In particular, for p = 1, we have the exact sequence

1
0 — Hyo(B,1) — HY, (U, 1) 5 @ HY, (B,0) — 0.
i=0
The last map equals the map of Ext groups
8 : Bxtgy, ) (F(0), F(1)) — Homgp(g) (F(0), Hy (U, F(1)))
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obtained from the Leray spectral sequence; observe that the residues at Op and 1p
provide an isomorphism

HY (U, F(1)) = ’ F(0) .

We have a natural map
O(U)* - H;bs(Ua 1) .

Its composition with

a:Hal @ abs

associates to a function on U its orders at 0 and 1 respectively.
We need to understand the composition

resod : Hyo(U, 1) = Extgy, g (F(0), F(1))

— HomSh(B) (F(O), HOB (U, Q(l))) .
Observe that due to 6.2, the last group is equal to Hgbs (B,0). Furthermore, we recall

from the proof of 6.2 and the definition of res that the composition
@F =Y (U, F(1) — H (U,6D) = F(0)
is given by projection onto the “1”—component of 69;:0 F(0). We have thus proved:

LEMMA 6.8. Consider the non—vanishing functions t and 1 —t on U. We have
resod(t) =0, resod(1—t)=1.
In particular, the map

62 Hipe(U,1) — H3(U,6M) = H2,q (Gl rel 29,1)

does not map 1 —t € O(U)* to zero.
Proof. Observe that reso 0 factorizes through 4. O

REMARK: The main technical result of this section, 6.5.ii) corresponds to [BD1],
3.1.6.ii). Observe that pol and the polylogarithmic class I of loc. cit. do not quite
agree: in our notation,

H¢ € Hgbs (U7 £09(1)|U) 5

while pol € HY (U, Log|y). The connection is as follows: there is a canonical
monomorphism

t: Log(l) — Log
(identifying Log(1) with W_»Log), and pol is the push out of II; via ¢. The present
definition of the polylog seems more natural since it is an element of an HY, (B, 0)-
module of rank one, which is canonically trivialized. By contrast, HY (U, Log(1)|v)

is of rank two.
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7 CALCULATIONS IN K-THEORY

The next step is to do the constructions of section 4 with K-groups, or more precisely,
with relative K-cohomology as introduced in appendix B.2. For technical reasons we
will have to use simplicial schemes to replace the singular schemes that appeared be-
fore. All constructions will be compatible with the regulator maps to absolute Hodge
cohomology (appendix A and B.5.8) and to continuous étale cohomology (appendix
B.4.6).

A priori these regulators have values in absolute cohomology groups for the same
simplicial object (cf. B.4.2 and B.5.2). Using B.4.5 and B.5.7 these absolute cohomol-
ogy groups are then identified with (relative) cohomology of singular schemes. This
identification is made tacitly.

Let B = Spec(Z) and S a smooth affine B-scheme. We will work in the category
of smooth S-schemes. K-cohomology is taken on the Zariski site over B.

Before returning to the geometric situation introduced in section 3, we have to
check a technical lemma. Let us consider the following general construction: Let X
be a smooth quasi-projective S-scheme and Y a closed subscheme of X which is itself
also smooth over S. Put

Vi =V xg XM ITX xgV x X201 ITX" xgY .
Note that Yo(n) is a proper covering of the singular scheme
Yy = X (X NY)".

This is the easiest case of a morphism of schemes with cohomological descent, meaning
that for any reasonable cohomology theory the cohomology of V(") will agree with
the cohomology of the smooth simplicial scheme

Y_(”) = cosko(YO(")/X”) ,
ie.,

Yk(”) = YO(”) X xn cer X xn YO(”) (k + 1-fold product).

For étale cohomology and absolute Hodge cohomology, the corresponding results are
B.4.5 and B.5.6 respectively.

We will work in the setting of spaces, i.e., pointed simplicial sheaves of sets
on the Zariski site of smooth B-schemes. We refer to appendix B.1 for details and
terminology. We use the notation

XY™ = Cone(Y™) — X7

for the space that computes relative cohomology for the closed embedding (cf. B.1.5).
The space Y_(”) does not become degenerate above any simplicial degree. How-
ever, we have:

LEMMA 7.1. a) Y"") is isomorphic in HosT to a simplicial scheme which is degen-
erate above degree n — 1.
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b) In particular,. Y ") and XV" are K-coherent.

c) X V™ is a space constructed from schemes in a finite diagram over X™ in the sense
of B.2.13.

d) If T is another closed subscheme of X which is smooth over S and disjoint of Y,
then the inclusions

Tixg X"t — X"
are tor-independent of all morphisms in the diagram in c).

Proof. By definition
YW =vi1-.-11Y,

where Y; is the reduced closed subscheme of X of those points, whose i-th coordinate
lies in Y. This induces a decomposition of Yk(n) into disjoint subschemes of the form
Yi, Xxn -+ Xxn Y;, . Actually this subscheme is canonically isomorphic to

Yiin--nYy, ={(x1,...,20p) € X" |xy; €Y for 1 <j <k}.

We get the following more familiar form of the simplicial scheme

Yk(n) = H ﬂ Y.

Te{1,...,n}k i€l
Let A(n) be the simplicial set with

An)g = {(ig, .. ix) |1 <ip <+ <.

We define the simplicial scheme Y_A(”) by

vt = I Nv

IeA(n) i€l

It is degenerate above the simplicial degree n— 1 and from our previous considerations
we see that it is a natural subspace of Y_("). We consider these simplicial schemes as
spaces in the sense of appendix B.1 by adding a disjoint base point *.

For a scheme U in the big Zariski site over B we consider the morphism of simplicial
sets

YAM @) — vM(U) .

By the combinatorial Lemma B.6.2 it induces an isomorphism of homotopy sets.
Hence the inclusion is a weak homotopy equivalence of spaces.

b) is an immediate consequence of a) and B.2.3.b). Recall that Y and X were assumed
smooth over B. We already have seen that all components of X V" are disjoint unions
of X"-schemes of the form Y;, N---NY;, and a disjoint base point. All morphisms
between the scheme components are given by the natural closed immersions between
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them. The condition on the tor-dimension required in B.2.13 follows because are
schemes are regular. T, Y and X are all flat over S, hence the maps in the diagram

XXSY

l

TxsgX —— X xgX

are easily seen to be tor-independent. The inclusions of T' and Y into X are trivially
tor-independent because this is a local condition. O

Basically this lemma tells us that all conditions hold that are needed to apply
the machinery of appendix B.2. We have a well-behaved relative motivic cohomology
theory (cf. B.2.11).

Now we return to the geometric situation set up in section 3. We consider

zm G s

| !

Z" ——

where Z = Z = «(S) 11 B(S) with disjoint S-rational points a and 3 of G, s. There
is a simplicial operation of &™ on the situation which induces an operation on relative
K-cohomology and on motivic cohomology.

ProproSITION 7.2. There is a natural residue map

Hiy (G, s rel ZU™, j)%" 220 HIG N (Ghd rel Z1,j — 1)%"

where sgn means the sign eigen-space under the operation of the respective symmetric

group.
Moreover, there is a long exact sequence

c o H (G el 20070 = 1) s H (AG rel 2 )
— Hiy(G}, 5 rel Z™, j)*"

— Hio (G rel 2071 j—1)%" —

Under the regulators, the long exact sequences are compatible with the ones in abso-
lute cohomology (after 4.5).

REMARK: Recall that Z(® = x and hence H},(G), g rel Z(©),j) = H%,(S,j) by
definition.

Proof. We filter A% by the open subschemes Fj, A% defined just before Lemma 4.5.
In particular, FoAS = G}, 5. Again GLAS = F A \ Fp_1A%. We use the notation
F,AV™ and G AY" for the induced open respectively locally closed subspaces of AY"™.
Note that the situation is still symmetric under permutation of coordinates. Hence
there is a compatible operation of the symmetric group on the space constructed from

schemes Fj,AV"™.
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The closed immersion G AY™ — F,AY™ satisfies the first condition in (TC) in B.2.13.
The maps we have to consider for the rest of (TC) are locally of the form considered
in 7.1.d). Hence B.2.19 applies, i.e., we can use the localization sequences for motivic
cohomology induced by the triples Fj,_1 AY"™ — FLAY" <« G AY". We get

o —Hi(GRAY™ ) — HYP(FLAY™ j + 1) — HP (F 1A j + 1)
— HH(GrAY™ ) — ...

The sequence remains exact when we take sign—eigenspaces. Now let us compute one
of the groups involved.

H}VI(GICAVTL’]) = @ H}Vt(Avn X An Gm75(a’17' - '7a'k)aj)
{1<a1<az<-<ap<n}
where
Gm,s(a1,...,a;) = {(z1,...,2n) | 2; = 0 if i = a; for some j; 2; # 0 else } .

The decomposition corresponds to the decomposition of G A™ into its connected
components. The notation AY™ x g» Gy, s (a1, ..., ar) means the open subspace lying
over the locally closed scheme. Now consider the operation of the symmetric group.
If £ > 1, then there is for each component some transposition which acts trivially,
namely one that interchanges two vanishing coordinates. Hence the sign—eigenspace
vanishes altogether. For k£ = 1, the decomposition has the form

Hi (GiA™, )= @B Hi (A" xan (G 5 x {0} x G2 2),4) -

a=1,--,n

The operation of the symmetric group permutes the factors transitively. The stabilizer
of one summand is the symmetric group &~ '. We get

Hj((GLAY™ )" = Hiy (G5, )"

where the sign eigenspace on the right hand side is taken with respect to the smaller
symmetric group &"~!. We have a choice of isomorphism here and use the one that
identifies G”m_sl with ”m_sl x {0}. Putting these results in the long exact sequences
we get iteratively

oy

Hiy (A" xel 7\ )58 = Hiy(F A" )5 S5 Hig (A, )"

So the above sequence, for k = 1, gives the desired residue sequence. We can do the
same construction for absolute cohomology (Hodge or l-adic) considered as general-
ized cohomology theories. By B.4.6, B.5.8 and B.3.7, the long exact sequences for
motivic cohomology will be compatible via the regulator with the ones in generalized
cohomology. The next step is to pass from generalized cohomology to cohomology of
abelian sheaves. By B.4.5 and B.5.7 this can be done. In fact we get precisely the
residue sequence for absolute cohomology constructed in section 4. O
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REMARK: a) By B.2.19, we have the same maps and long exact sequences for the
K-cohomology groups themselves. However, note that there is a Riemann-Roch hid-
den in the compatibility of the localization sequence in K-cohomology and absolute
cohomology.

b) We shall show injectivity of the Beilinson regulator on

HX,,H(G”m,S rel Z_(”),n)Sgn
in Proposition 8.7. Together with Lemma 4.4.b), it shows that the residue map on

Hi,(GE, g rel Z(™ j)sen

m,S

does not depend on the choice of embedding of GZ’Sl in

U G.ix{opxaye

a=1,,n

of the above proof, if (¢,7) = (n + 1,n). Since we are only interested in these special
indices, we chose to exclude from the statement of 7.2 the dependence of res,, in the
general case from the above choice.

LEMMA 7.3. Let 2j > k. Then
(n)

HY (A% rel Z.7, ) = HY ™ (S, )
where the isomorphism is induced by a choice of ordering of the sections o and (3. It
is compatible with the identification in 4.6 under the regulator map. &,, operates by

sign on the left hand side.

REMARK: Here and in the sequel we put H{,(S,7) = 0 if j < 2i. This makes sense
as S is regular and the corresponding K—group vanishes (see B.2.3).

Proof. Fix j. We consider the skeletal spectral sequence B.2.12. We have
EP? = Hi((As")p, ) -
We will show that the only non-trivial FEs-terms are concentrated in one vertical line
E3"=H{,(S,j) .

This means that the spectral sequence converges in the strongest possible way. This
yields isomorphisms as stated. Before we can check this we need some preparation.
If X is a space constructed from schemes, we denote by Cp(X.) the simplicial set of

its connected components. C’p(??n)) has the same singular cohomology as Cp(Z_A(n))
(cf. proof of 7.1) which is the simplicial set attached to a CW-complex dual to the
boundary of the n-dimensional hypercube (note that Z has two disjoint components).

This means that C’p(ZA(n)) has a 1-vertex for every (n — 1)-cell of the cube etc. In
particular we see that it has the homotopy type of an (n — 1)-sphere. Cp(A%) is of
course contractible. It follows that Cp(AY™) has singular cohomology concentrated
in degree n where it is one-dimensional.
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Let us make this more explicit:
In order to compute the cohomology of a cosimplicial group it suffices to consider

. . . —A .
the sub-complex corresponding to nondegenerate simplices. Cp(Z (n)) is completely
degenerate from cosimplicial degree n on. In degree n — 1, there is one nondegenerate
simplex for each vertex of the hypercube. They are indexed by {«, 3}". Hence any

element of H"Cp(AY") = H”_l(C’p(ZA(n))) is represented by an element of

K1 = @ @

{a,ﬁ}n

Let g be a generator of the cohomology group. C’p(??n)) does not become degenerate.
The nondegenerate part in degree n—1 is given by one copy of {a, }™ for each possible
permutation of the numbers 0,...,n — 1. Tt is easy to see that ((—1)*%2(?)g), is in

the kernel of the differential. It represents the generator of cohomology of C’p(?Fn)).
We see that &,, operates by the sign of the permutation.
We choose the generator g of cohomology given by the tuple

(_1)s(i1)+---+s(in) € Qi1 X+ X,

where i, € {«,} and s(a) = 1, s(8) = 0. This choice of generator amounts to
picking the ordering a < 8 and extending it by the Kiinneth-formula. Now let us
analyze our E;-term: For fixed ¢ we have the complex attached to the cosimplicial
abelian group HY,((A4")p, j)pen,- All connected components of AY™ are isomorphic
to a copy of some power of Al. By the homotopy property of K-theory we have

H}(((As)y)™, i)pene = Hi, (S, 5) @0 CV"

where CV™ is the cosimplicial vector space computing singular cohomology of
Cp(AY™). By the previous considerations we already know its cohomology. It also
follows that the operation of &, on our motivic cohomology is by the sign.

Now compare our isomorphism to the one constructed in the realization. We have the
same spectral sequence there (attached to the weight filtration). The identification of
the Fs-term also uses Kiinneth-formula and choice of an ordering of the sections. O

Using this identification we obtain the motivic residue sequence:
co = H(S, ) — HYy (G, )" — Hy (Gl g = 1)
— Hi (S, ) — ..
for 2j > k. By construction, we have the following:

THEOREM 7.4. Under the regulator, the motivic residue sequence maps to the abso-
Iute residue sequence of section 4.

Note that the residue sequences for all indices k and n organize into a spectral
sequence connecting the relative motivic cohomology of A¥? and the relative motivic
cohomology of GY’. In particular for each n there is the converging cohomological
spectral sequence

EPT = HY{T (S, p) = HYU(Gyls,n) = HY{U(GR,  rel 2, n) .
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This is the motivic version of the weight spectral sequence in absolute cohomology.
We refer to it as the motivic residue spectral sequence.
REMARK: As in section 6, the residue sequence, or equivalently, the residue spectral
sequence turns out to be the central technical tool in the construction of the motivic
polylog (see Definition 8.9). The spectral sequence is identical to the one constructed
in [BD1], 4.2.6. The definition and basic properties of motivic cohomology of simplicial
schemes (B.1, B.2) allow to justify the construction.

At this point, we should stress that the proof of the innocent looking Theorem
7.4 requires the whole of the theory covered in the appendices.

8 TUNIVERSAL MoOTIVIC POLYLOGARITHM

We now return to the special situation used in section 6. Let B = Spec(Z). We
consider now the case S = U. Let a = 1, and 3 the diagonal section of U xg Gy, 5.

First we compute the motivic cohomology of U. We use the embedding of U into
Al to do so. The long exact localization sequence B.2.18 reads

e HY 2 (0(B) LL(B), j — 1) — H}y(Ag,j) — H(U,j)
—HyN(0B)II1(B),j —1) — ...
By the homotopy property of K-theory we get

. —HY(B,j) — HY(U,j) — Hy '(B,j —1) @ Hy ' (B,j — 1)
—HY (B, j) — ...
The Gysin map for the inclusion of a point in the affine line vanishes by [Q2] Thm
8 ii. Hence we are actually dealing with a system of short exact sequences. As all
motivic cohomology groups of B vanish for n > 1 this sequence only gives non-trivial
cohomology of U for n =0, 1, 2.

LeEMMA 8.1. For B = Spec(Z) we have

. Q ifi=0,
Hﬁ)\/t(U’l) - {0 else
0 for j <1,

Hjy(U,j) ={QeQ  forj=1,
H},(B,j) forj>1,
Hy(U,5) =0ifn > 2.

Proof. Clear from the above using B.2.20 O
By Borel’s Theorem (B.5.9) the Beilinson regulator
H)((X,j) @9 R — Hy, (Xz/R, j)

is injective for X = Spec(Z), even an isomorphism but in the one case H},(B,1)
where the codimension is one. (We call Beilinson regulator what strictly speaking is
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its tensor product with R.) This implies that it is also an isomorphism for Hi (U, k)
with the exception of the indices (1,1) and (2,2) where the codimension is 1 resp. 2.

This means that many of the residue maps are actually isomorphisms. The
following computations are carried out in the case B = Spec(Z). With a little more
effort they generalize to the case of the ring of integers of a number field.

Consider the residue sequence for n = j =1 and S = U.

0=H3(U,1) — H,(Gyly, 1) — HR,(U,0)
— Hi(U,1) 2 H3,(GYly,1) — H},(U,0) = 0.

The Beilinson regulator induces a map between the above sequence and the residue
sequence in section 4. On HY,(U,0) ® R, the regulator is an isomorphism, and on
H},(U,1) ® R it is injective of codimension one. By 6.4, the absolute Hodge coho-
mology group Hg, (G /R, 1) vanishes. Hence the map from the first to the second
line is injective and the regulator is injective of codimension one on H3,(Gy 'y, 1).
Furthermore, this last group is one dimensional.

The image of § under the Beilinson regulator is the map occurring in 6.8 for
n=1.

DEFINITION 8.2. Let s; be the composition of the maps
Q = HWBO 5 @PHWBO = HLUD 5 HuGly1)
i=0,1
where i1 is the inclusion of the 1-summand and § is the map of the residue sequence.
LEMMA 8.3. s; is an isomorphism.

Proof. Because of dimension reasons we only have to check that § does not vanish on
the image of 7;. This follows from 6.8. (]

DEFINITION 8.4. Let res; be the inverse of s;. We define the total residue map
res : Hyf ' (Gl ,n)®" — Q .
by composition of the residue maps in our long exact sequence 7.2 with res; .

We now have to check that the total residue map deserves its name. By definition
and 6.5.1) it suffices to consider res;.

LEMMA 8.5. The regulators map the motivic res; to res; in absolute cohomology.
Proof. Let us consider the situation of 6.8. The morphism
o — H}jp (Ur/R, 1)
factors through H},(U,1) = K;(U)g. There is a commutative diagram
Hg,(Ur/R 1) —— 691 Hyy ,(Br/R,0)

=0,

I d ,

oW ——  Hy(U,1) —— @ H(B,0)
i=0,1
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hence the functions ¢ and 1 —¢ on U correspond to the canonical generators of the two
summands. We consider the commutative diagram for absolute Hodge cohomology

op resp
H}, (Uz/R,1) —— HZ,(Gyly /R1) —— HJ,(B=/R,0)

I &

5
}_6091 H.;.\A(Bvo) — H./Q\A(Gynl,[[hl)

By 6.8 the composition from the bottom left to the top right corner is given by the
projection to the 1-component tensored by R. It follows that (resgor) ® R is an
isomorphism. In turn § vanishes on the O-component and is an isomorphism on the
1-component. But then by definition res; od is also the projection to the 1-summand.
As ¢ is surjective, this suffices. The same argument works in the étale situation. O

LEMMA 8.6. There is a short exact sequence
0 — Hj(B,2) — H3,(G)7y,2)%" =5 Q — 0
and the Beilinson regulator is an isomorphism on the middle term.

Proof. This is nothing but the residue sequence using our computation of
H3, (GL{U, 1). The zeroes on both sides come from vanishing cohomology groups.
Comparison with the short exact sequence 6.5.ii) shows that the regulator is an
isomorphism. O

PROPOSITION 8.7. There are short exact sequences

0 — H),(B,n) 2 HEH G, n)*®" 25 Q — 0.
The Beilinson regulator is injective on all H7f! (G, )" It is even an isomorphism
forn > 1.

Proof. The n =1 and n = 2 cases are the previous lemmas. By induction, one checks
that all H},(G,";,n)%" vanish for n > 1. Hence the residue sequence reads

0 — H),(B,n) LN HX,,H(GX[}U,n)sg“—) HY, (ze’fujl,n —1)¢"— H3,(U,n).

By the five lemma and inductive hypothesis we see that the regulator is an isomor-
phism on the middle term for n. We need the previous lemma to get started.

Now consider the sequences of the proposition. All maps are well-defined. It follows
from 6.5.ii) that the sequence is exact. O

COROLLARY 8.8. There are canonical splittings s, : Q — Hﬁ,,*l(([}mw,n)sg" such
that the diagram

HQ(B,0) % HUFY(GYM,n)="
Sn—1"\ | res

H (Gt n — 1%

commutes. They are compatible with the ones in 6.5.iii). Furthermore, the group
@Hﬁjl((}yﬁj, n)®8" is canonically isomorphic to Q.
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Proof. Im(resy) is isomorphic to Q by the total residue on H}a‘l(Gny, n)%&8, This
induces the same splitting as in 6.5. (]

DEFINITION 8.9. For n € N the system pol, = s,(1) defines the universal motivic
polylogarithm.

By construction pol,, is mapped to the polylogarithmic system in absolute Hodge
cohomology and continuous étale cohomology.
REMARK: The main result of this section, 8.7 is identical to [BD1], 4.3.4. Although
part of the argument involves only constructions within K-theory, the proof of 8.7
relies heavily on a detailed analysis of the behaviour of the regulator between the
motivic and absolute residue sequences.

9 THE CycrLoToMIic CASE

Let d > 2. As before let R = A[1/d,T]/®4(T) the ring of d-integers of the cyclotomic
field of d-th roots of unity. Put C' = Spec R. Let ¢ be a primitive d-th root of unity
in Q, and b an integer prime to d. We work in the situation S = C, a =1 € G,,, (C),
and 3 =i, € Gy, (C) as in section 5.
LEMMA 9.1. a) For n >0 we have

Hy(Gylo,n)™ = Hy(Gy, ¢ rel Z™,n)®" =Q .

m

The Beilinson and the l-adic regulators are isomorphisms.

b) Forn > 1, the residue sequence induces short exact sequences
0 — H)(C,n) — HyH(GYo,m)*" — HRy(Gys' n —1)%" — 0 .
The l-adic regulator is injective on the group Hﬁl(Grvn’?C ,n)%" forn > 1.

Proof. For n = 0 we have H}((G/’,0) = H},(C,0), which is canonically isomorphic
to Q by B.2.20. In particular both regulator are isomorphisms.

H} (G2, 0) and its counterpart in absolute cohomology vanish.

Consider the following bit of the residue sequence for n > 1:

HyH (Godhn + 1% — HYY(Gyl'o,n)*8" — Hjy(Cyn + 1)

m

The first map is injective since HY,(C,n + 1) = 0. The l-adic regulator is always
injective on the last term by B.4.8. By inductive hypothesis it is an isomorphism on
the middle term. By Cor. 5.3, the last map vanishes in absolute cohomology. This
implies a) for n + 1. In the next bit of the long exact sequence

Hy(Con) — HIT'(Gple,n)®™ — HU(Gchn — 18" — ()

m

the first map is injective by a). For n > 2 we have (x) = H3,(C,n) = 0, while for
n =1 the term

HR(Gyret n—1) = Hj, (C,0)

vanishes. Hence in any case we end up with the short exact sequence in b). The
regulator maps it to the short exact sequence 5.3. By induction and B.4.8 we can
control the injectivity of the I—adic regulator. O
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REMARK: The Beilinson regulator is not injective on H},(C, 1) because d is inverted
in C.

Consider the morphism ¢ : Gp,,c = Gy, that raises points to the d+1-th power.
As in section 5 it induces a morphism of spaces ¢™ : AY" — AZ™. By contravariance
it induces an operation on motivic cohomology.

LeMMA 9.2 ([BD1], REMARK (II) ON PAGE T78).
(¢™)* operates on the short exact sequence of the previous lemma as follows:

Hj(Con) —— H ' (Gylo,n)™ —— Hy(Glct n—1)%"

idl (w)*l l(dﬂ)(w—l)*.

Hj(Con) —— H (Gl )™ —— Hy (Gt n—1)%"

Proof. This description follows immediately from the injectivity of the l-adic regulator
and Cor. 5.3.b). O

REMARK: The operation (¢")* on H),(C,n) is given by the operation on
Hﬁ'l(AXﬂ,n) It is easy to check that it is trivial by considering the operation
on the starting terms of the degenerating skeletal spectral sequence. To understand
the compatibility with the residue map in terms of K-theory is a lot harder. The
factor d+ 1 is induced by a push-forward from a non-reduced scheme to its reduction.
The theory in Appendix B is not even set up to handle such schemes.

As in the case of absolute cohomology it follows that the eigenvalues of (¢™)* on
H Gy vel Z0) n)%™ are 1,d +1,...,(d+ 1)"".

LEMMA 9.3. The eigenspace decomposition yields a splitting

W H G ™ =5 @) HL(C),
1<i<n

which is compatible with the splitting nlgn) after Cor. 5.3. There is a canonical
isomorphism

mp < lim H (G, n) " = [ HA(CLi) -
i>1

Proof. The first assertion is clear by construction. The second follows because the
eigenspace decomposition is compatible with the residue map. O

DEFINITION 9.4. Let iy, : C — U be as before. Let pol, be the pullback of the univer-
sal polylogarithm system pol defined in 8.9 to the inverse limit lim H ot (G, )" =

@HXJI(G”WC rel Z(™) n)%", Via the isomorphism n, of 9.3, we have constructed
an element in [[,~, H,(C,i).

THEOREM 9.5. Under the regulators, the element

poly € lim Hy P (G )™ = [ ] Hi(C, 1)

i>1
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is mapped to the elements

poly € lim HIEH (G, n)*8” = [ | Hape(C4)
i>1

constructed at the end of section 5.

Proof. This follows from the construction. O

We list the consequences of this result: denote by u the set of primitive d-th roots

of unity in Q(ugq).-
Firstly, the description of the regulator to absolute Hodge cohomology yields an
alternative proof of the following:

COROLLARY 9.6. Assume n > 0.

a) ([B2], 7.1.5, [Neu], IL.1.1, [E], 3.9.)
There is a map of sets

€nt1 ¢ Hg g H./l\/l(can +1)
(= Hi(SpecQlua)on + 1) forn > 1)

such that

Ppo€nit & Uy — H%;,(Spec Q(pa)r/Ryn +1)
+

= P @R

A.2.12
7:Q(pq)—=C
maps a root of unity w to (—Lin41(ow)),. For n > 1, this property characterizes the
map €41 uniquely.
b) For a root of unity T® € Q(uq) = Q[T]/®4(T), the element
ens1(T") € Hog(Cyn + 1)

is given by

€ns1(T?) == (=1)" - - ( (n + 1)—component of poly) .

(n +1)!

Proof. Note that a) really is Beilinson’s formulation of the result: his normalization
of the isomorphism

+
H{, (Spec Q(ug)r/Ron + 1) (@ C/(2mi) "“R)

differs from ours by the factor —1. The unicity assertion is a direct consequence of
the injectivity of the regulator. So our claim follows from 2.5, and from 5.4. O
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In [B2], the above compatibility statement is used to prove Gross’s conjecture
about special values of Dirichlet L-functions. An alternative proof of this conjecture,
using an entirely different geometric construction, is given in section 3 of [Den].

Recall that the [-adic regulator r; factorizes as follows:

K3n1(C) ®2Q = Hj(Con + 1) <= Hy (Cppy,n + 1)
— Heone (Ciiysm + 1)
< H, oy (Spec Q(pua),n +1)
where we let C(y) := C ®z Z[7].

For the rest of this section, we fix ( € C(Q). As was observed already in [B4],
the study of the cyclotomic polylog yields a proof of the following result:

COROLLARY 9.7. Assume n > 0.

a) ([Soud], Théoreme 1 for the case n = 1; [Gr], Théoreme IV.2.4 for the local version
if (I,d) =1.)

Let d and €,41 be asin 9.6. Let | be a prime. Under the embedding of 2.6, the [-adic
regulator

ri: Hy(Con +1) — H},\pi(Spec Q(pa ), n + 1)

maps e,41(T%) to

| 2 -al@ @)

al”=¢b

b) Conjecture 6.2 of [BIK] holds.

r

Proof. a) is 2.6 and 5.4. As for b), it remains to check the comparison statement of
[BIK], Conjecture 6.2 for the root of unity 1. For this, observe the relations

2n
ent1(1) = ﬁcnﬂ(—l) ;
2n
Cnt1,2(1) = mcn+1,2(_1)
in the notation of loc. cit., if n > 1 ([D5], Proposition 3.13.1.i)). O

Soulé has constructed maps
o1 : g = Kong1 (Coy) @224

for any prime [ (see end of Appendix B.4 for more details).
The [—adic regulator

71 Kony1(Clpy) ®2 Q@ = H,, i (Spec Q(pa),n + 1) (Prop. B.4.10)

takes ¢;(T?) to the cyclotomic element in continuous Galois cohomology

Z [1—a]® (a®)®

I _ b
al”=¢ r

defined by Soulé and Deligne (cf. [Sou2], page 384, [D5], 3.1, 3.3).
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COROLLARY 9.8. For each d and n, there is a unique map

@ pug = Kony1(Spec Q(ua))

such that for each prime number [, the map

o1 : g = Kon1(Coy) ©2 24
> Kant1(Spec Q(pa)) ®z Zy

equals the composition of ¢ and the natural map

K2n+1 (SpeC @(lld)) — K2n+1(SpeC @(Hd)) ®z Zl .

Furthermore, the map ¢ ®z Q agrees with

€nt1 : Ha = Hy(Spec Qpa),n +1)
given by d" -n!-€,11.

Proof. The uniqueness assertion is a formal consequence of the finite generation of
Ko, 11(SpecQ(iq)): to give an element in a finitely generated abelian group M is the
same as giving elements in M ®z Q and all M ®z Z;, which coincide in M ®z Q. By
9.7, the maps 770, and ry0€;,,; agree for all I. From Theorem B.4.8, we conclude
that ¢; and €], agree as maps to Kopi1 ®z Q. O

As shown by Bloch and Kato, Corollary 9.7 implies the validity of the following
also for even n:

COROLLARY 9.9. Let n > 1.
Then the Tamagawa number conjecture ([BIK], Conjecture 5.15) is true modulo a
power of 2 for the motif Q(n + 1).

Proof. [BIK], Theorem 6.1.1) gives the complete proof for odd n, which is independent
of anything said in the present article. In loc.cit., Theorem 6.1.ii), it is shown that
the conjecture holds for even n if [BIK], 6.2 holds. But the latter is the content of
9.7. O

Finally, the compatibility statement of 9.7 forms a central ingredient in the
proof of the modified version of the Lichtenbaum conjecture for abelian number fields
([KNF], Theorem 6.4).

A ABSOLUTE HoDGE COHOMOLOGY WITH COEFFICIENTS

The aim of this appendix is to provide a natural interpretation of absolute Hodge
cohomology as extension groups in the category of algebraic Hodge modules over R
(A.2.7). That such a sheaf-theoretic interpretation should be possible was already
anticipated by Beilinson ([B1], 0.3), long before Hodge modules were defined.

The appendix is divided into two subsections. The first (A.1) starts with a

summary of those parts of Saito’s theory relevant to us. The central result is A.1.8,
where we prove that for a smooth scheme a : U — Spec(C), the polarizable Hodge
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complex RI'(U, F') of [D3], (8.1.12) and [B1], §4 is a representative for a.F(0)y, the
object in the derived category of polarizable F-Hodge structures defined via Saito’s
formalism ([S2], 4.3). As a consequence, we are able (A.1.10) to identify absolute
Hodge cohomology of a smooth scheme U over C, as defined in [B1], §5: it equals
the Ext groups of Tate twists in the category of algebraic Hodge modules on U. The
compatibility between the approaches of Deligne—Beilinson and of Saito will come as
no surprise to the experts (see e.g. [S3], (2.8)). However, we were unable to find a
quotable reference.

In A.2, we turn to the variant of the theory we really need: algebraic Hodge
modules over R. These live on the complexification of separated, reduced schemes of
finite type over R, and are basically the objects fixed by the natural involution on
the category of mixed Hodge modules given by complex conjugation. The compari-
son statement for absolute Hodge cohomology over R (Theorem A.2.7) then follows
formally from A.1.10.

A.1 AvLGEBRAIC MIXED HODGE MODULES

In [S2], §4, the category MHM 4 (X)) of algebraic mixed A—Hodge modules is defined,
where A is a field contained in R, and X a separated reduced scheme of finite type
over C.

Saito’s construction admits the full formalism of Grothendieck’s functors m, 7',
7, 7., Hom, ®, D on the level of bounded derived categories D* MHM 4 ([S2], 4.3,
4.4) and a forgetful functor

rat : MHM 4 (X) — Pervy(X)

to the category of perverse sheaves on the topological space X underlying X (C), which
have algebraic stratifications such that the restrictions of their cohomology sheaves
to the strata are local systems. By the definition of MHM 4, which we shall partly
sketch in a moment, rat is faithful and exact. The functor rat on the level of derived
categories is compatible with Grothendieck’s functors ([S2], 4.3, 4.4).

For smooth X, one constructs MHM 4 (X') as an abelian subcategory ([S1], Propo-
sition 5.1.14) of the category MF,W(Dx, A), whose objects are

((M7 FI) W)7 (K) W)7a) )

where (M, F") is an object of the category MF,(Dx), i.e., a regular holonomic alge-

braic Dx-module M together with a good filtration F', and K € Perv4(X). W. is a
locally finite ascending filtration, and « is an isomorphism

DR(M) =5 K ®4 C

respecting W.. Here, DR denotes the de Rham functor from the category of Dx—
modules to the category of perverse sheaves.

We note that by definition, the weight graded objects of all algebraic Hodge
modules satisfy a certain polarizability condition (see [S1], 5.2.10).

Call an algebraic Hodge module on a smooth variety smooth if the underlying
perverse sheaf is a local system up to a shift.
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THEOREM A.l1.1 (SAITO). Let X be smooth and separated. Then there is an equiv-
alence

Var 4 (X) = MHM 4(X)?

between the category of admissible variations of mixed A-Hodge structure ([Ks]) and
the category of smooth algebraic A—Hodge modules on X .

Proof. This is the remark following [S2], Theorem 3.27. O

In particular, we see that MHM 4 (Spec(C)) is the category MHS,4 of polarizable
mixed A-Hodge structures.

If V is a variation on X with underlying local system For(V), then the perverse
sheaf underlying the Hodge module V under the correspondence of A.1.1 is

For(V)[d]

if X is of pure dimension d.
It turns out that the definition of Tate twists in MHM 4 (X) is compatible with
the above equivalence only up to shift:

DEFINITION A.1.2 ([S2], (4.5.5)). Let n € Z, and A(n) € MHS, the usual Tate
twist. For a separated reduced scheme a : X — Spec(C), define

A(n)x :=a*A(n) € D" MHM 4(X) .

If X is smooth and of pure dimension d, then A(n)x|[d] is the variation of Hodge
structure, which one denotes A(n).

For arbitrary X, the complex A(n)x will not even be the shift of a Hodge module,
but a proper element of D® MHM 4(X), whose cohomology objects H? A(n)x are a
priori trivial only for p > dim X ([S2], (4.5.6)).

We note again that we follow Saito’s convention and write e.g. 7, for the functor
on derived categories

DY MHM 4(X) — D® MHM4(Y)

induced by a morphism 7 : X —» Y.
In order to compare the Hodge structures on Betti cohomology given by Saito’s
and Deligne’s constructions, we need to go into the details of [S2]:

THEOREM A.1.3 (SAITO). Let j : U — X be an open immersion of smooth sepa-
rated schemes over C, with Y := X \ U a divisor with normal crossings. If X is of
pure dimension d, then

7+ A0)[d] = H?j. A(0)y € MHM4(X) C MF,W(Dx, A)
equals the object
('LUX(*Y), (jtop)*AU[d]7 O[) )

where wx (*Y') denotes the Dx-module Q% (logY'), and (jiop)« the direct image for
the derived category of perverse sheaves.

DOCUMENTA MATHEMATICA 3 (1998) 27-133



82 ANNETTE HUBER, JORG WILDESHAUS

The de Rham complex with logarithmic singularities is quasi-isomorphic to
wx (xY) (}L@DX Ox[—d] = DR(wx (*Y))[—d], hence
DR(wx (+Y)) = Qx (log Y)[d]
(compare [Bo3], VIII, 13.1), and
a : Ux (log V)[d] = (jtop)«Cld]
is the usual quasi-isomorphism
Qx (10gY) = (jrop)«Qiy ¢— (frop)+C

(compare [D2], 3.1), shifted by d.

The Hodge filtration F" on wx (xY") is induced from the stupid filtration, while
the weight filtrations W. on wx (*Y) and (jiop)«C[d] are those induced from the
canonical filtration on (jiop)«Qu, shifted by d.

Proof. The equation j,A(0)y[d] = H?j.A(0)y follows from the faithfulness of rat
and the fact that the corresponding statement for (jiop)« is true since j is affine. In
our geometric situation, the explicit construction of j, of any admissible variation of
A-Hodge structure is carried out in the proof of [S2], Theorem 3.27. For A(0)y, it
specializes to our claim. O

In [B1], 3.9, Beilinson extends Deligne’s notion of Hodge complexes ([D3], 8.1)
to the polarizable situation:

DEFINITION A.1.4 (BEILINSON). A mixed A-Hodge complex
K = ((KC7F.7W-)7 (K7 W.),Oé)

is called polarizable if the cohomology objects of the weight n Hodge complexes
GrY (K) are polarizable A~Hodge structures.

REMARK: The weight filtration W. of a mixed Hodge complex K induces mixed
Hodge structures on its cohomology. Observe however that Gr,I;V (H'K) is of weight
n+ 1.

As in the non—polarizable situation, Beilinson proves:

THEOREM A.1.5 ([B1l], LEMMA 3.11). There is an equivalence of categories be-
tween D’ MHS, and the derived category of polarizable A-Hodge complexes.

Let X be smooth and separated over C. Forgetting part of the structure of a
Hodge module yields a functor

For : C* MHM4(X) — T(X) .
Here, T(X) is the category of triples

M = (M, F", W), (K", W.),a’) ,
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where (M, F~, W) is a class in the filtered derived category D*W (MF(Dx)) of
MF,(Dx), and (K',W:) a class in the filtered derived category of sheaves of A-
vector spaces on X (C), denoted by D*W (X (C), A). Furthermore, the map ' is an
isomorphism

DR(M) =5 K ®4C
respecting W .

Recall that in order to obtain a class in D*W (X (C), A) from a complex of perverse
sheaves, one applies the realization functor of [BBD], 3.1.9.

The global section functor T' can be derived on D*W (X (C), A). By [S1], 2.3, we
have a functor RT' on D*W (MF,(Dx)) if X is proper, and the two constructions are
compatible with the comparison isomorphism «' of any object in T'(X) ([S1], 2.3.7).
We end up with an object

RTM = (RU(M',F", W), RU(K", W), RTa)
of T'(Spec(C)). The functor
RT := RTsFor : C* MHM 4(X) — T(Spec(C))

factorizes through D® MHM 4 (X).
Our second comparison result is the following:

THEOREM A.1.6. Let a : X — Spec(C) be smooth and proper, and M’ an object of
DY MHM 4 (X). Write

For M = (M, F",W’),(K',W),a’) € T(X) .

RTM = (RU(M ,F,W ), RT'(K ,W.),RlTa’)
is a mixed polarizable A—Hodge complex.

b) The class of RT'M" in the derived category of polarizable Hodge complexes is
canonically isomorphic, under the identification of A.1.5, to

a.M € D" MHS, .

c) Let f:Y — X be a (proper) morphism of smooth and proper schemes over C,
and let b denote the structure morphism of Y, such that

bzaof.

For any N° € D*MHM4(Y) together with a morphism 1 : M" — f.N" in
DY MHM 4 (X), the morphism

axn :a M = RCM" — RIUN = b, N = a,fu N’
equals, under the isomorphism of a), the morphism
(RT'n, RT'n, RT'n)

of A-Hodge complexes.
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Proof. a) We may assume that M is pure of some weight. Using [S2], (4.5.4), we are
reduced to the case where M = M is a Hodge module of weight n, and we have to
show that RT'M is a polarizable Hodge complex of the same weight. Axiom (CH 1)
of [D3], (8.1.1) follows from [S2], Proposition 2.16, in particular (2.16.5), applied to
pr* M, where

pr:chA(%j — X .

Furthermore, by the remark following [S2], (4.2.9), and by loc. cit., 2.15, we have
isomorphisms in MF,W (Dgpec(c), 4)

RTM = (R'T(M,F ,W.[i]), RT(K,W.[i]), R"Ta) — H'a.M .

Since the right hand side is a polarizable Hodge structure of weight i+n ([S2], (4.5.2)),
we have (CH 2), and in addition, polarizability.
b) In the proof of a), we constructed a functor

al = RT : D* MHM4(X) — D’ MHS, ,
such that
HiaT = Hla, : MHM 4(X) < D* MHM 4(X) — MHS,

for all i. Composition with j, : D* MHM 4(U) — D* MHM 4(X) for open immersions
j:U <= X defines

(acj)y := aloj. : D" MHM 4 (U) — D" MHS, .
But for affine U, (aoj). is the left derived functor of
HO(aoj)s : MHM 4 (U) — MHS,

([S2], proof of Theorem 4.3.). If U is affine, then so is j : U — X, and hence j, is
exact. Therefore,

. 0
HO(ao0j)s = H awoj, : MHM 4 (U) 2= MHM 4 (X) "% MHS,

coincides with H%(aoj)7’, and we get a natural transformation
(@oj)x — (aoj)y

which is an isomorphism, since this is true on the level of cohomology objects, as
one checks on the level of vector spaces. Observe that this natural transformation is
compatible with restriction to smaller affine subschemes of X. Now recall ([S2], proof
of 4.3) that the functor a, is constructed using the Cech complex associated to an
affine covering of X (for details, see [B3], 3.4). In the same way, the functor a} is
recoverable from the (aoj);. We end up with an isomorphism of a, and a}’, which is
independent of the covering.

c¢) In the proof of b), we constructed a natural isomorphism

K@, — ay,
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of functors from D® MHM 4(X) to D® MHS4. For f = id, our claim is therefore
proved. For the general situation, we use the same techniques as in the proof of b) to
first construct a natural isomorphism

b* L) a:of*
of functors from D®* MHM 4(Y') to D® MHS,, and then to see that the triangle
b* — a*of*
Nk
a:of*
commutes. O

COROLLARY A.1.7 (cF. [S3], (2.8)). Let j : U — X be a smooth compactification
of a smooth and separated scheme a : U — Spec(C), such thatY := X \U is a divisor
with normal crossings.

a) a,A(0)y € D*MHS, is isomorphic, under the identification of A.1.5, to the
class of the mixed polarizable A—Hodge complex

RL(U, A) := RL(DR™'Qx (logY), (jiop)« v, @)
of [D3], (8.1.12) and [B1], § 4 (with the same notation).

b) If f : X — X' is a morphism of compactifications j : U < X and j' : U < X'
of U as in a), then f induces an isomorphism

RL(DR™'Qx: (logY"), (jiop)+ Av) — RL(DR™'Qx (10g '), (jeop)« Av)
([D3], remark preceding (8.1.17)), so RT'(U, A) depends only on U.
The isomorphism in a) also depends only on U.
¢) In particular, the Hodge structures on
rat(H"a.A(n)v) = Hg(U(C), (2mi)" A)
given by Deligne’s and Saito’s constructions coincide.

Proof. a) Combine A.1.3 and A.1.6.b).
b) Use A.1.6.c).
c) follows from a) and b). O

Actually, the statement A.1.6.c) implies the functoriality property we were after:
we have two functors

(Sm/C)° — D" MHS, ,
where (Sm/C) denotes the category of smooth separated schemes over C:

RI(.,A): U~ RL(U, A),
«(A) : (a: U — Spec(C)) > a. (A(0)y) .
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COROLLARY A.1.8. The isomorphism of A.1.7.a) is functorial in U € Sm/C. In
other words, there is a natural isomorphism

«(4) = RL(-, A)

of functors from (Sm/C)° to D’ MHS,.

Proof. Let
v L x
Y
v odox

be a commutative diagram of smooth and separated schemes over C, where X' and
X are proper, and Y/ := X'\ U’ and Y := X \ U are divisors with normal crossings.
We have a morphism

(%) 7+ A0)r — fe(7.AO0) ) -
Application of (ax)« gives the morphism
(av)«A(0)u — (av)«A(0)v

belonging to the functoriality requirement for ,(A). Our claim follows from A.1.6.c),
applied to a shift of the morphism (x). O

DEFINITION A.1.9. Let X/C be separated, reduced and of finite type, and M an
object of D®* MHM 4(X).

a) The absolute Hodge complex of X with coefficients in M is

Rrﬁp (X, M) = RHome MHM 4 (X) (A(O)X, M) .

b) Its cohomology groups
Hi,(X,M'):=H'RT¢(X,M)
are called absolute Hodge cohomology groups of X with coefficients in M.
c) We denote absolute Hodge cohomology with coefficients in Tate twists by

Hi,(X,n) = H:,p (X, A(n)x) .

d) For a closed reduced subscheme Z of X with complement j : U < X, we define
relative absolute Hodge cohomology with coefficients in Tate twists as

Hj;)p (X rel Z, TL) = H;)p(X,ng(n)U) .
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Note that if X is smooth and of pure dimension d, and if
M =M € MHM4(X) ,
then the right hand side of A.1.9.b), being equal to
Hom pe v, (x) (A(0) x [d], M[d +d])

admits an interpretation as the group of (d+ ¢)—extensions of Hodge modules modulo
Yoneda equivalence.

COROLLARY A.1.10. If X is smooth and separated over C, and n € Z, then

Rl (X,n) = RUgp (X, A(n)x) and Hg,(X,n) = Hg,p (X, A(n)x)
coincide functorially with the same noted objects of [B1], § 5.
Proof. This follows from A.1.8 and the adjunction formula

RHom pe i, (x) (A(0)x, M) = RHomps s, (A(0),a.M) .
O
REMARK: The Leray spectral sequence for a : X — Spec(C) yields exact sequences
0 — Extyps, (A(0),H™') — HE, (X, A(n)x) — Homwmmus, (A(0), H) -0

(with H* := HE (X (C), (2mi)" A)) since MHS4 has cohomological dimension one ([B1],
Corollary 1.10). Comparing them with the analogous sequences for H jij, we see that

Hy (X, A(n)x) = Hy, (X, A(n)x)

(in the notation of [B1], §5) if H5 '(X(C), (2mi)™ A) has weights smaller than zero,
which is the case if i <n (i <2n if X is proper).

Observe that this is the same range of indices where Deligne cohomology coincides
with H{ (X, R(n)x ) ([N], (7.1)): we have natural morphisms

Hi, (X, R(n)x) — HE(X,R(n)x) — HpH(X,R(n)x),

both of which are isomorphisms if i < n (i < 2n if X is proper).

A.2 ALGEBRAIC MIXED HODGE MODULES OVER R

Algebraic Hodge modules over R are defined as the category of Hodge modules fixed
under a certain involution given by complex conjugation. We start by constructing
this involution:

Let X/C be smooth, and let “X denote the complex conjugate scheme. We have
an equivalence

1* 2 Vars (X)) — Vars(X)
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of the categories of admissible variations, induced by complex conjugation
t: X(C) — 'X(C),

and defined as follows:

The local system and the weight filtration on X (C) are the pullbacks via ¢ of the
local system and the weight filtration on *X(C), and the Hodge filtration on X (C) is
the pullback of the conjugate of the Hodge filtration on ‘X (C).

t* preserves admissibility, and behaves, in an obvious sense, involutively.

In particular, if X is defined over R, we get an involution ¢* on Vars (X ®g C).

DEFINITION A.2.1. Let X/R be smooth and separated.

a) The category Vary(X/R) consists of pairs (V,Fy), where V is an object of
Var 4 (X ®r C), and Fy, is an isomorphism

V= v

of variations such that 1*F,, = F_'.

In the category Var}(X/R), we may define Tate twists A(n): Fy acts via

multiplication by (—1)™.

b) Vara(X/R), the category of admissible variations of mixed A—Hodge structure
over R, is the full subcategory of Varj (X /R) of pairs (V, Fw,) which are graded—
polarizable: for n € 7, there is a morphism

GrWV(V, Fo) @4 GtV (V, Fop) — A(—n)
in Var{ (X/R), such that the induced morphism
GrV Vo, GtV V — A(-n)
is a polarization in the usual sense.

REMARK: We note that implicit in our definition is a descent datum over R of the
bifiltered flat vector bundle on X ®r C underlying any admissible variation (V, F)
of mixed A-Hodge structure over R:

For this claim to make sense, recall first ([D1], IT, Théoreme 5.9) that any flat
analytic vector bundle on X (C) carries a canonical algebraic structure. If the vector
bundle underlies an admissible variation, then the Hodge filtration is a filtration by
algebraic subbundles ([Ks], Proposition 1.11.3).

Now the descent datum is given by the anti-linear isomorphism

cpR = Fait (Foo)oCoo = CoooFuif (Fo) @ Fair (V) — Faig (L*V)

of the C*°—bundles underlying V and +*V. Here, ¢y, denotes the anti-linear involutions
given by complex conjugation of coefficients, and Fy;g is the forgetful functor to C'>°—
bundles.

LEMMA A.2.2. The category Vara(Spec(R)/R) equals the category MHS] of mixed
polarizable A-Hodge structures over R ([B1], § 7).
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Proof. Straightforward. O

Our aim is to generalize our definition of sheaves over R to algebraic Hodge
modules.

For smooth and separated X/C, recall that MHM 4 (X)) is an abelian subcategory
of MF,W(Dx, A). Objects of the latter are

(M, F,W.),(K,W.),

)

a)
where (M, F") is an object of the category MFj(Dx) of regular holonomic algebraic
Dx-modules with a good filtration, and K € Perv4(X). W. is a locally finite ascend-
ing filtration, and « is an isomorphism

DR(M) =5 K ®4 C

respecting W.
The equivalence

A MFhW(DLx, A) ;> MFhW(Dx,A)

is constructed componentwise:

The perverse sheaf and the weight filtration on X (C) are the pullbacks via ¢ :
X(C) = 'X(C) of the perverse sheaf and the weight filtration on X (C).

The equivalence

L* : MOdDLX L) MOdDX N

which by construction will respect holonomicity, comes about as follows:

Given a D.x—module N, we may form the inverse image (in the sense of sheaves
of abelian groups) ¢:=!N, which is a 1~'D.x-module. All we therefore need is an
isomorphism ¢y, : ¢~ 'D.x — Dx of sheaves of rings extending the isomorphism
Coo : 1T1O0x —5 Ox given by complex conjugation of coefficients — we then define

VN :=1"'"N®,-1p,, Dx .

Of course, the map ¢, is itself given by conjugation of coefficients: in local coordinates
T1,...,%n, we have

Coo (Z fa8;’> =) (oo faor) .

«

Altogether, we get
A MFhW(DLx,A) ;> MFhW(Dx, A) )

which again behaves involutively.
Going through the definition, one checks that +* induces

VF  MHM 4 (X)) =5 MHM 4(X) .

Using local embeddings as in [S2], 2.1, we can define * for any scheme X, which is
separated, reduced and of finite type over C. Furthermore, if X is defined over R, we
get an involution +* on MHM4 (X ®g C).
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THEOREM A.2.3. Let X andY be separated and reduced schemes of finite type over
C.

a) (* is compatible with Hom, ®, and I: e.g., for M",N* € D* MHM 4(‘X), we
have

Hom y (¢* M ,0*N') = *Hom. (M ,N°) .

b) If 7 : X — Y is a morphism, then 1* is compatible with m, @', ©*, 7,: e.g., for
M- € D" MHM 4(*X), we have

()M =7, (M) € DP MHM 4(Y) .

Proof. This follows from the definitions. O

DEFINITION A.2.4. a) Let a : X — Spec(R) be smooth and separated. The
category MHM7{ (X/R) consists of pairs (M, Fy), where M is an object of
MHM 4 (X ®gr C), and F is an isomorphism

M = M

such that 1*Fo, = F L.
By A.2.3.b), we have a' A(n) € MHM, (X/R).

b) Let a : X — Spec(R) be smooth and separated. MHM 4(X/R), the category
of algebraic mixed A—Hodge modules over R on X, is the full subcategory of

MHM7 (X/R) of pairs (M, Fy,) which are graded—polarizable: for any n € 7,
there is a morphism

GrYV (M, Fy) ®4 Grl (M, Fy,) — a'A(—n)
in MHM7 (X/R), such that the induced morphism
Gr M @4 Grl' M —s a'A(—n)

is a polarization in the sense of [S1], 5.2.10.

As in A.1.1, we identify the category of smooth objects in MHM 4 (X /R) with
Var4 (X/R).

c) For an arbitrary separated and reduced scheme X of finite type over R, one
defines the category MHM 4 (X/R) using local embeddings as in [S2], 2.1.

REMARK: a) As in the case of variations over R, we get a descent datum over R for
the bifiltered Dy g.c—module underlying any Hodge module over R on a smooth and
separated scheme X over R.

b) As in [S2], (4.2.7), the category MHM4(Z/R), for any closed reduced subscheme
Z of X, is equivalent to the category of Hodge modules over R on X with support in
Z.
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THEOREM A.2.5. There is a formalism of Grothendieck’s functors m, =*, ©*, =,
Hom, ®, D on D®* MHM 4(-/R). It is compatible with the forgetful functor

D* MHM 4(-/R) — D* MHM 4 (- ®g C) .
Proof. By A.2.3, we may e.g. define
m(M,F) = (mM ,mF,) .
O

DEFINITION A.2.6. Let X/R be separated, reduced and of finite type, and M an
object of D® MHM 4(X/R).

a) The absolute Hodge complex of X /R with coefficients in M is

RTUg» (X/R, M") := RHomps pum 4 (x/m) (A(0)x, M)

b) Its cohomology groups
Hip(X/R,M") := H'RT s (X /R, M")
are called absolute Hodge cohomology groups of X /R with coefficients in M".
c) We denote absolute Hodge cohomology with coefficients in Tate twists by

Hip(X/R,n) == Hip (X/R, A(n)x) -

d) For a closed reduced subscheme Z of X with complement j : U — X, we define
relative absolute Hodge cohomology with coefficients in Tate twists as

Hiy (X rel Z/R,n) := Hep (X/R, 1 A(n)y) -

Again, if X is smooth and of pure dimension d, and M = M € MHM4(X), we have
H, (X/R M) = Extifiy ) (A) x[d], M) .

We have statements analogous to A.1.1-A.1.10 for the situation over R. For
reference, we note explicitly:

THEOREM A.2.7. If X is smooth and separated over R, and n € 7Z, then
RT4»(X/R,n) and Hg,(X/R,n)

coincide functorially with the absolute Hodge complex and cohomology groups of [B1],
§ 7.

Next, we have
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LeEmMA A.2.8. Let X/R be separated, reduced and of finite type, and M an object
of D MHM 4(X/R). Then the forgetful functor

D® MHM 4(X/R) — D® MHM 4(X @ C)
induces functorial isomorphisms

RTgp(X/R, M) <5 RTgw(X @ C, M),

Hy (X/R,M') — Hep (X @ C,M )T .
Here, the superscript + denotes the fixed part of the action of the involution +* on
RHomps mam, (x@.0) (A(0) xe.c, M) .

In particular, the category MHS;,|r has cohomological dimension one since this is
true for MHS,4. Furthermore, observe that the above action of Z/2Z on RI'gr (X ®r
C, A(n)xg.c) is precisely that of [B1], §7.

COROLLARY A.2.9. Let X/R be separated, reduced and of finite type. The forgetful
functor

rat : MHM 4 (X/R) — Perv4 (X ®gr C)
is faithful and exact.

REMARK: Again we have
HL, (X/R,A(n)x) = H(X/R, A(n)x)
if i <n (i <2nif X is proper). We have natural morphisms
Hgy (X/R,R(n)x ) — Hg(X/R,R(n)x) — Hp(X/R,R(n)x),

which are isomorphisms in the same range of indices.

We conclude with an explicit formula for Ext' in MHM 4(X/R) of a finite scheme
X/R.

THEOREM A.2.10. For any H € MHS], there is a canonical isomorphism

(WoHe/(WoHy + WoF°He)) ™ = Extyps s (4(0), H)

= HY, (Spec(R)/R, H),
where the superscript + on the left hand side denotes the fixed part of the de Rham—
conjugation
= WoHc/(WoHa + WoF' Hc)
Wo t*He | (Wo 1*Ha + WoF°1"He)
Wo

He/(WoHa + WoF°He) .

WoHc /(WoHa + Wy F°He)

LEN
F
Foo
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The isomorphism is given by sending the class of h € Wy H¢ to the extension described

by the matrix
1 0
—h idyg /) °

This means that we equip C® H¢ with the diagonal weight and Hodge filtrations, and
the A-rational structure extending the A-rational structure Hy of Hg by the vector

1-heCo®He,

thereby obtaining an extension E of A(0) by H in the category MHSy.
The conjugate extension 1*E € Extyyg, (A(0),.*H) is given, with the same

notation, by the matrix
1 0
—F(h) idyg )

and the extension of Fy, to an isomorphism
Fyw:E = *E
sends 1 — h to 1 — F,(h). Thus
(Feo)c =id®(Fso)c : CH He — C® " He .

Proof. Using [B1], §1 or [Jn3], Lemma 9.2 and Remark 9.3.a), we see that there is
an isomorphism

WoHc/(WoHa + WoF°He) — Extyys, (A(0), H).

Note that our normalization follows that of Jannsen, and therefore differs from that
of Beilinson by the factor —1.

In general, if h € Wy H¢ corresponds to an extension E in MHS,, then cooh € Woi* He
corresponds to ¢*F, and its pullback via

Fy:W"H — H

is described by Figcooh. The action of the involution on Extyyg, (A(0), H) therefore
corresponds to Fics on the left hand side of the above isomorphism. O

COROLLARY A.2.11. Let X/R be finite and reduced, and M € MHM 4 (X/R). Then
there is a canonical isomorphism
+

P WoM..c/(WoMya + WoF° M, c)
zeX (0

Hiy (X/R,M) .
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Proof. The last isomorphism is given by the observation that we have

MHMA(X) = € MHS, .
zeX(C)

COROLLARY A.2.12. For X/R finite and reduced, and n > 1, we have

+

@ C/(2mi)"A — Ethl\/IHMA(X/R)(A(O)XaA(n)X)
zeX(C)

= H{,(X/R,n) .

Here, the superscript + denotes the fixed part with respect to the conjugation on both
X (C) and C/(2mi)"A, and the isomorphism associates to (z:),ex(c) the extension,
whose stalk at © € X (C) is given by the matrix

(s 1)
_(2771i)n‘2z 1

if eg and e, are the base vectors 1 € F C C and (2mi)™ € (2mi)"A C C, then the
Hodge structure is specified by

F°:=(eg)c, W_2n®4aC=(en)c,

and the A-rational structure is generated by e, and

€O—W'2m€n.

Proof. This is A.2.11 and A.2.10, using the basis (ey) of A(n). O

B K-THEORY OF SIMPLICIAL SCHEMES AND REGULATORS

We start with a presentation of K-theory (B.2.1) for simplicial schemes in terms
of generalized cohomology. Applied to a regular scheme, we get back its K-groups
(cf. B.2.3.a)). Next we define A-operations on K-cohomology (cf. B.2.10). Motivic
cohomology of simplicial schemes, in particular relative motivic cohomology (B.2.11)
is introduced as graded pieces of the ~y-filtration with respect to these A-operations.
This discussion is based on the extremely useful (unfortunately unpublished) paper
[GSo1] by Gillet and Soulé. More often than not the results in B.1 and B.2 will be due
to them. The wish for a complete published reference made us go over the material
again. Meanwhile an alternative approach to K-theory of simplicial schemes and A-
operations was also worked out by Levine [Le]. De Jeu was the first to use the setting
of [GSol] to define motivic cohomology of simplicial objects. In his article [Jeu] he
proves Riemann-Roch in this setting. We give a more general version in B.2.18.

We then construct regulators (i.e., Chern classes) from K-cohomology to con-
tinuous étale cohomology (B.4) and to absolute Hodge cohomology (B.5) in this sit-
uation. Our main interest is the construction of a long exact sequence for relative
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K-cohomology of simplicial schemes as well as for their motivic cohomology which is
mapped to the corresponding long exact sequences in sheaf cohomology (B.3.8).

We would like to thank the referee for her or his competent and detailed comments
and corrections.

B.1 GENERALIZED COHOMOLOGY THEORIES

We need a framework which is general enough to treat K-theory and the usual coho-
mology theories in parallel. It turns out such a framework is given by homotopical
algebra as axiomatized by Quillen in [Q1].

We define cohomology of spaces (=simplicial sheaves of sets) with coefficients in
another space (B.1.4). We then construct a long exact sequence for relative cohomol-
ogy in this context (B.1.6). Finally we deduce the spectral sequence relating general-
ized cohomology of a space to generalized cohomology of its components (B.1.7).

A systematic investigation of generalized cohomology for Grothendieck topologies
was carried out by Jardine, in particular [Jr2]. We recapitulate the definitions for the
convenience of the reader. A first introduction to the necessary simplicial methods is

We fix a regular affine irreducible base scheme B of finite Krull dimension. In
our applications B is either a field or an open subscheme of the ring of integers of
a number field. We fix a small category of noetherian finite dimensional B—schemes
which is closed under finite disjoint unions and contains all open subschemes of all
its objects. We turn it into a site using the Zariski topology. Typically this will be a
subcategory of all smooth schemes over the base B.

Let T be the topos of sheaves of sets on our Zariski site over B. Let sT be

the category of pointed simplicial T-objects. Its objects will be called spaces in the
sequel. We denote the final and initial object of sT by x.
REMARK: A space is given by a simplicial sheaf of sets X, and a simplicial map ¢ from
* (the constant simplicial sheaf all of whose components are given by the constant
sheaf * attached to the set with one element) to X .. Equivalently we can consider it
as a simplicial object in the category of sheaves pointed by *.

Let X be a scheme. We can also see it as an object of T. The corresponding
constant simplicial object pointed by a disjoint base point,

U — Morg(U, X) U {x} for connected U € T,

will also be denoted X.

DEFINITION B.1.1. A space is said to be constructed from schemes if all components
are representable by a scheme in the site plus a disjoint base point.

Note that any simplicial scheme (whose components are schemes in the site)
gives rise to a space constructed from schemes but there are many spaces constructed
from schemes which do not come from simplicial schemes. The main example is the
mapping cone of a map of schemes taken in sT (cf. B.1.5 below).

If P is a property of schemes and if the space X is constructed from schemes, we
say X has P if the scheme parts of the components have P.

The easiest way to define the homotopy sets m, (X, z) of a simplicial set X with
basepoint z € X is to take the homotopy sets of its geometric realization. 7, (X, x)
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is a group for n > 1, even abelian for n > 2. If X is a space and K a finite simplicial
set (i.e., all K, are finite), then we define the space X ® K componentwise as the sum
of pointed sheaves

n— \/ Xn .
ceK,

DEFINITION B.1.2 (BROWN, GERSTEN, GILLET, SOULE). Let X be a space and f :
X =Y be a map of spaces.

a) f is called a weak equivalence if all stalks fp : Xp — Yp are weak equivalences of
simplicial sets, i.e., if fp induces an isomorphism on all homotopy sets for all
choices of base point.

b) f is called a cofibration if for all schemes U in T the induced map f(U) : X(U) —
Y (U) is injective.

c) f is called a fibration if it has the following lifting property: given a commutative
diagram

A— X

l lf

B ——Y

where i is a cofibration and a weak equivalence, there exists a map B — X that
makes the diagram commute.

d) For two spaces X and Y, let Hom (X,Y) be the pointed simplicial set
n — Homgr (X ® A(n),Y)
where A(n) is the standard simplicial n-simplex (e.g. [M] 5.4) pointed by zero.

This is the pointed version of the global theory discussed in [Jr2] §2.

Quillen’s notion of a closed model category axiomatizes the properties which
are needed in order to pass to a homotopy category which behaves similar to the
homotopy category of CW-spaces.

ProposITION B.1.3 (BROWN, GERSTEN, JOYAL). sT is a pointed closed simplicial
model category in the sense of Quillen [Q1].

Proof. For a model category we need fibrations, cofibrations and weak equivalences
satisfying a set of axioms ([Q1] I Def. 1). This is [GSol] Theorem 1. Gillet and
Soulé attribute this theorem to Joyal (letter to Grothendieck). For simplicial sheaves
a published proof of all properties can be found in [Jr2] Cor. 2.7. It is an abstract
non-sense fact that with the category of simplicial sheaves the category of pointed
simplicial sheaves is also a model category. It is pointed by x. The simplicial structure
([Q1] II Def. 1) is given by B.1.2.d). O
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TECHNICAL REMARK: Note that the unique map x — X is always a cofibration,
i.e., all spaces are cofibrant. A space will be called fibrant if the unique map X — *
is a fibration. If a space is fibrant, than its sections X (U) over a scheme U form
a simplicial set satisfying Kan’s extension condition (cf. [M] 1.3). However, this
property does not suffice to make X fibrant. Part of the proof of the proposition is
the existence of fibrant resolutions. In fact, the construction in [Jr2] Lemma 2.5 is
even functorial.

Let Ho(sT) be the homotopy category associated to the model category sT by
localizing at the class of weak equivalences. As usual we will write [X,Y] for the
morphisms from X to Y in the homotopy category. If Y is fibrant, then this set is
given by the set of morphisms from X to Y in sT up to simplicial homotopy. For
general Y, we compute [X,Y] by [X,Y] where Y is a fibrant resolution of Y.
REMARK: The category of pointed presheaves with the same notions as in B.1.2 is
also a pointed model category. By [Jr2], Lemma 2.6 the map from a presheaf to its
sheafification is a weak equivalence and we get the same homotopy category from
presheaves or sheaves.

If X is a space, then its suspension SX is given by X ® A(1)/ ~ where ~ is
the usual equivalence relation generated by (z,0) ~ (z,1). By [Q1] Ch. I 2, the loop
space functor Q is right adjoint to S on the homotopy category.

There are two natural ways of thinking about Ho(sT). From the point of view of
algebraic topology it corresponds to the category of CW-complexes with morphisms
up to homotopy. From the point of view of homology theory it corresponds to the
category of homological complexes which are concentrated in positive degrees with
morphisms up to homotopy. S and (2 shift the complexes. This second point of view
is not quite precise - note that in general morphisms in Ho(sT) form pointed sets
rather than groups.

DEFINITION B.1.4. For any space A we define cohomology of spaces with coefficients
in A by setting

HL'(X,A)=[S"X,A] form >0 .
This is a pointed set for m = 0, a group for m > 0 and even an abelian group for
m > 1. If A belongs to an infinite loop spectrum, i.e., if there are spaces A; fori >0

with Ag = A and weak equivalences A; — QA;,1, then we also define cohomology
groups with positive indices by setting

HIZ™(X,A)=[S"X,A,] form,n>0 .

Note that the set only depends on n —m because the suspension S and the loop
functor Q are adjoint.

DEeFINITION B.1.5. Let f : X — Y be a map of spaces. Then the mapping cone of f
is the space

C(f) =X @A) ITY/ ~

where ~ is the usual equivalence relation of the mapping cone (i.e., (z,1) ~ f(z),
(z,0) ~ x). For any map of spaces f : X — Y, we define relative cohomology by

H_"(Y rel X,A) = H1"(C(f),A)
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C(f) is the standard construction of the homotopy cofibre of a map.

ProPOSITION B.1.6. For any morphism f : X — Y of spaces there is a long exact
cohomology sequence:

- H MY, A) — H (X, A) — H (Y rel X, A) — H M (Y, A) .

Proof. By [Q1] Ch. I 3 we have the above long exact sequence attached to the triple
of spaces

X5y V' vy

if i is a cofibration. The mapping cylinder of f is defined as X ® A(1)Vx Y. It is weakly
equivalent to Y, and the induced mapping X — X ® A(1) Vx Y is a cofibration. The
mapping cone of f is nothing but the cofibre of this inclusion. Hence the long exact
sequence of the lemma is a special case of Quillen’s with Y/ = X @ A(1)vx Y. O

If A is only a space, then the sequence will end at the index zero. There is no
reason for the last arrow to be right exact. The H2p. are only pointed sets. The
HSTI} are groups, all others are even abelian groups. However, if A is an infinite loop
spectrum, then all cohomology groups will be abelian groups and the sequence is
unbounded in both directions.

We will consider a couple of spectral sequences which are constructed by means
of homotopical algebra. Their differentials are

N 5/ 2] p+r,qg+r—1
d,: EPY — EF

We refer to this behaviour as homological spectral sequence as opposed to a cohomo-
logical spectral sequences with differentials

. P,q p—r,g—r+1
d, : EPY —s EP

In the same way as with the long exact sequences which involve pointed sets we
also have to be careful about our spectral sequences. They will be constructed by the
method of Bousfield-Kan (cf. [BouK] Ch. IX §§4-5). We refer to them as spectral
sequences of Bousfield-Kan type. We give an overview over their properties. They
look like this:

EXt=L"? q¢>p>0,r>1
with homological differentials.

are abelian groups if g —p > 2;
LTP EP% = ¢ are groups ifg—p=1,
are pointed sets ifg—p=0.

We have EV, = KerdP?/imdP "% "+ (Treat non-existing E?' as zero for this
formation.) By [BouK] IX 4.2.iv) this makes also sense for p = q. Let

Pd — 15 Pyq — P.q
ER¢ =lim, EP = (| EP7.
r>p
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There is a descending cofiltration @, on the limit term L” (i.e., @;L™ is a quotient of
L™). Let

eld = Ker (QpL777 — Q,—1L*7P) .

In general, there will be an injection e?:9 — EP:7. Convergence is a more complicated
question. The spectral sequence stabilizes if all projective systems (EP'?),, become
eventually stable. Then we have complete convergence ([BouK] IX 5.3). Hence the
cofiltration on the limit term is exhaustive (imQ,L" = L"), and we have isomor-
phisms

et S ERY forp—q > 0.

Note that even then the case p = ¢ has to be discussed separately. We refer to this
problem and more generally the fact that pointed sets rather then groups appear as
the fringe effect.

ProPOSITION B.1.7. a) Let X and A be spaces. The filtration of X by its skeletons
sq, X induces a spectral sequence of Bousfield-Kan type for its A-cohomology

EPY = H (X, A) = H "7 (X, A) forg>p>0.

It converges completely if X is degenerate above some degree (i.e., if there is N
such that for n > N, X,, is covered by the image of the degeneracy maps.).

b) If A is an infinite loop spectrum and X as in a), then we have a converging
homological spectral sequence

EP = H (X, A) = H "7 (X, A) forp>0.

Proof. This is the hypercohomology spectral sequence of [GSol] 1.2.3. We sketch
their proof: We can assume A to be fibrant. We can construct a weak equivalence
X" — X such that sk, X'/skp—1X' =2 SPX,. The Hom (sk,X', A) form a tower of
fibrations of simplicial sets converging to Hom_ (X, A). The attached Bousfield-Kan
spectral sequence ([BouK] §4 -§5) has starting terms

Efyq — 7Tq—n Hom_ (Sk’pX’/Sk/'p—lea A)
= my—p Hom, (SP X, A) = H 7 (X, A)

This finishes the construction of the spectral sequence. In order to discuss convergence
we consider the same spectral sequence attached to X itself. It stabilizes by the
assumption on degeneracy (see [BouK] §5). Both spectral sequences agree from r = 2
on.

For b) we consider the spectral sequence in a) for each space in the spectrum. By
shifting ¢ accordingly we get a direct system of spectral sequences whose limit is the
one we are interested in. O

REMARK: It would be much nicer to work with spectra and their homotopy category
throughout. It would be a triangulated category. It would help to get rid of the fringe
effects. However, the question of convergence of the spectral sequences does not get
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easier, the reason behind this being that all these spectral sequences are constructed
for some kind of homotopy limit, and projective limits are not exact. However, the
literature we want to use is in the setting of spaces. The reason is that we want to
use the A-ring structure in order to define motivic cohomology and the A-operators
do not deloop.

B.2 K-THEORY

We now introduce higher algebraic K—theory of spaces as a generalized cohomology
theory. It gives back usual K-theory in the case of regular schemes (B.2.3). We then
define A-operators on these K-cohomology groups (B.2.10). This allows definition of
motivic cohomology of spaces as graded parts of the y-filtration (B.2.11). We then
prove a Grothendieck-Riemann-Roch type theorem (B.2.18). As a consequence we
get a long exact localization sequence for motivic cohomology (B.2.19).

Recall that all schemes in the site underlying T are assumed to be noetherian
and finite dimensional.

Let K be the space Z X Z..BGI where Z ,,BGI is the simplicial sheaf associated
to the simplicial presheaf U — ZBGI(U) = lim ZoBGl,(U). K is pointed by
0 x ligBGln(En). It is in fact part of an infinite loop spectrum. We also need the
“unstable” spaces KN = Z x Z-,BGly. There are natural transition maps KV —
KN+ — K. As K-groups commute with direct limits, the stalk of K in a point P
on U € T is weakly equivalent to

Kp = 7 x ZooBGI(Op) .

where Op is the stalk of the structural sheaf.

REMARK: Even though it is well-known that K-theory is defined by a spectrum, it
is not completely trivial to define it as a functor from schemes to spectra (rather
than just a functor up to homotopy). We refer to [GSo02], 5.1.2 for the details of this
construction. For a different account of K-theory as a presheaf and its properties
(including the product structure) we also refer to Jardine’s book [Jr4].

DEFINITION B.2.1 (GILLET, SOULE). For any space X in sT we define its K-
cohomology

HI'(X,K)=[S"X,K] form¢€Z

and the unstable K-groups H ;"*(X,K") form > 0. Following [GSo1] we call a space
K-coherent if lim H 7" (X, K") —» H_"(X,K) for m >0 is an isomorphism.

PROPOSITION B.2.2 (BROWN). Let K, be the sheafification of the presheaf ¥ +»
H_(YV,K). Let X be a scheme in T. There is a homological spectral sequence

BN = H A" (X,K)
with
E3T = Hy,q(X,Kq)

It converges completely.
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Proof. For ¢ — p > 0 this is the spectral sequence [GSol] Prop. 2. The basic version
for the small Zariski site was constructed in [BrG] Theorem 3. Our generalization
follows from the proof of [Jr2] 3.4 and 3.5, which deals with the étale topology. The
key is to construct a Postnikov-tower for K. This is done as in in the proof of [BrG]
Thm 3. We then have to check that the homotopy sheaves of K are isomorphic to
the homotopy sheaves of the limit of its Postnikov-tower. It suffices to check this
for the small Zariski site Zar /Y for all schemes Y in T. Hence we are reduced to
the situation considered in loc. cit. Note that Y was assumed to be noetherian and
finite dimensional. We extend to arbitrary p,q using the full K-theory spectrum.
Convergence follows because X has finite cohomological dimension. O

REMARK: We could generalize the spectral sequence to arbitrary spaces X.
HY?, x(X,K,) would have to be understood as in B.3. Convergence would not be
guaranteed anymore.

The most important application of this proposition is that it allows to transport
properties which are well-known for cohomology with coefficients in an abelian sheaf
to cohomology with coefficients in a space. One such property is the comparison
between different Zariski sites.

PROPOSITION B.2.3 (GILLET, SOULE, DE JEU). a) Let X be a noetherian regular
finite dimensional scheme in the site. Then one has the equality H 1"(X,K) =
K, (X), where the right hand side means Quillen K-theory of the scheme X.
In particular, H ;" (X,K) =0 for m < 0.

b) Let X be a space constructed from schemes. Assume that all components are
regular Noetherian finite dimensional schemes and that X is degenerate above
some simplicial degree. Then X is K -coherent.

Proof. The constant case is proved in [GSol] 2.2.2 Prop. 5. We sketch a slightly
different argument: We use the converging Brown spectral sequence and comparison
theorems for sheaf cohomology to show that it suffices to prove the proposition in
the case of T = Zar/X. (Note that the existence of the whole spectrum means we
do not have to worry about fringe effects.) In this case we have a Mayer-Vietoris se-
quence for K-theory ([Q2] Rem. 3.5) and hence the presheaf defining K-cohomology
is pseudo-flasque in the sense of Brown and Gersten ([BrG] p. 285). By loc. cit.
Thm. 4 this implies a) for the site Zar /X.

The vanishing follows because the K-theory spectrum is connective. The general-
ization to spaces constructed from schemes using the skeletal spectral sequence was
carried out in [Jeu] 2.1 (1) and Lemma 2.1. O

COROLLARY B.2.4. If X is a space meeting the conditions of part b) of the proposi-
tion, then its K-cohomology does not depend on the category of schemes underlying
the topos.

Proof. If X is constant, then we always get its K-theory. For more general X we

have to use the converging skeletal spectral sequence. There are no fringe problems
because K is an infinite loop spectrum. O
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The direct sum of matrices (cf. [Lo] 1.2.4) together with addition on Z induces
a compatible system of maps

KVxKY 5K.

Our aim is to show that its direct limit defines an H-group structure on K. It will
be used to define addition on K-cohomology.

LEMMA B.2.5. Let G,G' be algebraic groups over 7, E a subgroup of G with E =
[E,E]. Let f1,f» : G = G be homomorphisms which differ by conjugation by a
global section of E. Then the induced maps

f1,f
Z.oBG' 22 7., .BG
agree in the homotopy category of spaces.

Proof. The construction in [Lo] A.3. is functorial. Hence it yields a free homotopy 7
between Bf; and Bfs. By construction we get a commutative diagram

77|A(1)><*
e

A1) x * ZBE

| gl
A(1) x ZoBG' —'— 7Z..BG .

The composition of n with d : ZBG — C(i) is a homotopy between df; and dfs.
Now it suffices to show that d is a weak equivalence, i.e., that Z,BFE is contractible.
This can be checked on stalks. As homotopy groups commute with direct limits it is
enough to show that Z.,BE(U) is contractible for all affine schemes U. We consider
the diagram

BEU) —%— BE®U)*

! !

7 .BEU) 2= 7. BEWU)* .

By definition of Quillen’s +-construction (see [Lo] ch. 1.1) ¢ induces an isomorphism
on homology. Hence Z..(¢) is a weak equivalence ([BIK] Ch. I, 5.5). BE(U)™ is con-
tractible because [E(U), E(U)] = E(U) ([Lo] Proposition 1.1.7). Hence Z,BE(U)"
is also contractible. (]

The standard application of this lemma is with G' = Gl,, G = Gl and E the
subgroup generated by elementary matrices (which contains all even permutation
matrices), see [Lo] 1.1.10.

PROPOSITION B.2.6. The direct sum of matrices induces an H-group structure on
K.

Proof. The same proof as in [Lo] Theorem 1.2.6 allows to check the identities of an
H-space. On finite level, they hold up to conjugation with a permutation matrix.
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By the previous lemma this implies that they hold in the homotopy category. We
use that the transition maps KV — KN+ are cofibrations in order to show that the
maps on finite level define one on K. For the existence of a homotopy inverse we
argue differently. An H-space is an H-group if and only if the shear map

KxK—->KxK ,(k‘l,k'g) '—)(k‘l,k1+k2)

is a weak equivalence. This can be checked on stalks. But the stalks of K are the
simplicial sets computing K-theory of local rings. They are H-groups with the same
addition by the affine case [Lo] 1.2.6. O

REMARK: We now have two H-group structures on K: the explicit one we just have
constructed and one because K is a loop space as part of a spectrum. We expect
them to be equal but have not been able to prove it. They certainly induce the same
addition on higher K-cohomology groups. On H25.(X,K) they agree at least if X is
represented by a scheme because they do for K-theory of schemes. This is enough for
our needs. In the sequel the addition on K-cohomology is the one of the proposition.

The next aim is the definition of a multiplicative structure on K. We start with
the operation of Z on K. The H-group structure on K allows to define a map of
spaces

gz ZxK 5K .

It vanishes on Z x *V « x K and hence factors over Z A K.

The construction of the Loday product [Lo] 2.1.5
ZooBGINn(U) A ZooBGIN(U) — ZooBGI(U)

is functorial in U. Together with the product pz on the factor Z it defines a system
of maps

pi c KYN AKY 5 K
(compatible up to homotopy), which defines a product
v, K] x [V, K] - [V,K]

for all K—coherent spaces Y. It turns all H_{'(Y,K) for n > 0 into a ring, possibly
without unity.

REMARK: Note that this product on [V, K] is zero on H_{'(V,K) for n > 0 (cf. [Kr]
Ex. 1 p. 243). The same map ux of spaces also induces a non-trivial product

[S"Y, K] x [S™Y, K] — [S"*™Y,K] .

This is the one which is usually called Loday product. We do not need it in the sequel.

Let S° be the simplicial version of the O-sphere, i.e., the constant simplicial sheaf
associated to {0,1} pointed by 0. We will use the notation Ko(sT) for Hop(S°, K).
It is a ring with unity where the ring structure is induced by the ring structure on Z.
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LEMMA B.2.7. If the site underlying T has a final object X, then
Ko(X) =2 Ko(sT) .
Proof. If X is the final object of the site, then the space we denote by X is equal to
SO, O
The following lemma generalizes an operation of Ko(X) which was explained to
us by de Jeu in the case where Y is constructed from X—schemes.

LEMMA B.2.8. LetY be aspacein sT. Then the ring Ko(sT) operates on H_;'(Y,K)
for n > 0 and makes it into an Ko(sT)-algebra.

Proof. If Y is a space in sT, then there is canonical isomorphism ¥ =2 S° AY. The
product a € Ko(sT) with 8 € H_1'(Y,K) is defined by the composition

Y 5 SOAY M KAK M5 K

O
LEMMA B.2.9 (GILLET, SOULE). Let G be a group over Z. Let Rz(G) be the
Grothendieck group of representations of G on free Z—modaules of finite type.

a) Let A be an N-dimensional representation of G. There is a canonical class in
[Z x Z~BG,K] which depends only on the equivalence class of A. The direct
sum of representations is mapped to the sum of classes.

b) The map in a) induces an algebra homomorphism
r: Rz(G) = [Z x Z-oBG,K] .

Proof. We follow [GSol] 3.2 or the affine case [Kr] 3. By choice of a basis of an
N-dimensional representation A induces a map of sheaves

A:G - Gly
and hence by functoriality a map
r'(A) : ZooBG — {N} x ZooBGly — KV .
For different choices of basis the maps differ by conjugation with an element of o €
Gly. The matrix <g a91> is in the perfect subgroup E = [GI, GI] hence by Lemma

B.2.5 the image of 7/(A) in [Z+BG,K?*N] does not depend on the choice of matrix.
Viewed as map to K, this r'(A4) extends to the factor Z using the above product puz.
The last statement of a) follows by definition of the H-group structure on K.

For b) we have to check that the relations of the Grothendieck-group are mapped to
zero and that the multiplicative structure is well-behaved. We first prove the analogue
of [Kr] Theorem 3.1: The canonical maps

7 0\ +—— 707
all ) Sall )
induce weak equivalences of simplicial sheaves after applying Z..B. This can be

checked on stalks and is hence reduced to the affine case. From now, the proof works
precisely as in the affine case, see [Kr] Cor. 3.2. O
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Ky(sT) is a A-ring, i.e., the axioms in [Kr] Def. 4.1 are satisfied. If R is a
K (sT)-algebra, then it is called a Ky(sT)-\—algebra if it is equipped with operators
Aé for i > 1 such that Ko(sT) @ R is a A-ring (cf. [Kr] 5.). Note that \° has to have
the constant value 1. If R itself does not have a unity, then it cannot be a A-ring.

THEOREM B.2.10 (GILLET, SOULE). Let Y be a K—coherent space. For k > 1 and
m > 0 there are maps

AN HIMY,K) — H(Y,K) .
They turn H 1" (Y,K) into a Ko(sT)-A-algebra.

Proof. This is essentially [GSol] Prop. 8. Put G = Gl,, in the previous lemma. Let
7" = [2}) — [n- 1] € Rz(Gl,) where Z7, is the canonical representation of Gl,, on
7" and 1 is the trivial representation. We define \¥ = r(\¥(Z")). By composition it
induces a map Ak : H_"*(Y,K") — H_""(Y,K). These form a projective system and
hence define an operation on K—cohomology of a K—coherent space. Well-definedness
and all properties of a A-ring are checked on the universal level (i.e., on K" for varying
n) and hence as in the affine case [Kr] Thm 5.1. For example, we want to show

k
Ne(@ +y) = Zki(fv)kj (y) -

Assume that x,y are represented by elements in [Y,K"]. On Rz(Gl,, x Gl,) we have
the A-ring identity

k
Mo => NaX.
=0

We evaluate this identity in Z" and get an equality of elements in Rz(Gl, x Gl,,).
By the previous lemma it induces the same equality of elements in [K™ x K" K].
Composed with (z,y) this is the required equality. O

REMARK: A more conceptual proof was suggested to us by Soulé and the referee.
One should use the integral completion functor constructed by Goerss and Jardine
[Goelr]. Tt has a universal property similar to the one of the +-construction and
hence allows to copy directly Kratzer’s arguments.

TECHNICAL REMARK: When we try to define A° in the same way, then we still get a
map

A\ ZowBGlny — 7 x ZoBGI .

It does not extend to the factor Z because \° : Z — Z does not respect the base
point - in fact it maps 0 to 1. This reflects the fact that the ring Ky(Y) does not
have a unity for a general space Y. The most striking example is Y = C(i) where
i+ Z — X is a morphism between regular schemes (cf. [Soud] 4.3). Then Ky (Y) =
Ker (Ko(X) = Ko(Z)) does not contain 1.

Gillet and Soulé ([GSol] Prop. 8) consider the structure as a Hop (Y, K)-A-algebra.
This only makes sense if HET (Y, K) happens to have a unity. However, we can check
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in general that the operation of Hopn(Y,K) on H_"(Y,K) is compatible with the
Ky (sT)-A-algebra structure of both groups.

Note that the A-structure is compatible with the contravariant functoriality of
K-cohomology. This means that the long exact sequences for relative K-theory are
compatible with the A-operation where it is defined.

Once we have A-operations we get as usual a y-filtration and Adams-operators
on the A-module H¢.(Y,K) for n < 0. If the y-filtration is locally finite, then we
have in particular the Chern character

ch: Hix(YV,K)g — @ Gr) Hip (Y, K)g for n <0,
J€No
which is an isomorphism. For a quick survey cf. [T] pp. 117-123.

DEFINITION B.2.11. Let Y be a K-coherent space. Suppose that the vy-filtration is
locally finite and hence that rationally K-cohomology splits into Adams-eigenspaces.
Then we put for j > n/2

Hy(Y,j) = Gl HIZ Y (V,K)q ,

the motivic cohomology of the space Y. Ifi : X — Y is a morphism of spaces then
we define relative motivic cohomology by

HYy (Y rel X,j) = Hy(Cone(s), j) .

REMARK: We restrict to this range of indices because we did not define Adams-
eigenspaces for K-cohomology with positive indices (=K-theory with negative in-
dices). However, if these K-groups vanish we can simply define the corresponding
motivic cohomology groups to be zero. This is the case if X is a regular scheme.
The long exact sequence for relative cohomology (B.1.6) together with the above
remarks on the A-operation give a long exact sequence for relative motivic cohomology

— Hy"(Y,A) — Hy" (X, A) — Hy" (Y rel X, A) — Hy " MY, A) .

LEMMA B.2.12. Let X be a space degenerate above some simplicial degree. We
assume the conditions of the previous definition. Fix an integer j. There is a coho-
mological spectral sequence with starting terms

Es7t — H;\/l(XSm]) for s Z 07 2.] Z t;
! 0 else.

It converges to Hi{' (X, j) for 2j > s + .

Proof. Consider the skeletal spectral sequence B.1.7.a) with coefficients in the space
K. It reads

EP' = HA(X,,K) = Hi" " (X,K)

for p > 0. By carefully checking the construction of the spectral sequence, we see that
all differentials dP? are induced by functoriality in the first argument. Hence they
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are morphisms of A-modules. For ¢ — p > 0 the limit terms are also A-modules and
by construction the morphisms e£:? — EP>? are compatible with this structure. They
are isomorphisms for ¢ > p. Note, however, that we do not get enough information
on the limit terms on the p = g¢-line. Convergence only implies that eZ? injects into
EP:P. We want to show that it is even a bijection. In order to see this we consider the
skeletal spectral sequence with coefficients in the spectrum K. The spectral sequences
agree where the first is defined, in particular convergence of the second spectral se-
quence implies our isomorphism. (There is an issue here with the H-group structure.
A priori the two spectral sequences use different group laws. But on all initial terms
they give the same addition and hence also on all higher terms.)

Now we take Adams-eigenspaces. By re-indexing s = p,t = —¢ + 2j we get a coho-
mological spectral sequence as stated. Note that we use the terms below the p = ¢-
diagonal to compute the terms on it but we do not consider their limit terms. O

The same spectral sequence also shows that the conditions in the definition of
motivic cohomology hold if X is a space constructed from schemes and degenerate
above some degree.

The next thing we need is pushout at least for certain closed immersions and a
Riemann-Roch theorem. Over a field push-forward was defined by de Jeu in [Jeu] 2.2.
We adapt his method to more general bases and formalize the geometric situation.

DEFINITION B.2.13. Let S be a regular irreducible Noetherian affine scheme. Let X
be smooth and quasi-projective over S. A finite diagram Dx over X is a category
of finitely many smooth quasi-projective S-schemes with final object X such that all
Morp, (Y,Y") are finite sets and such that all morphisms in Dx are of finite Tor-
dimension.

By the small Zariski site Zarp, we mean the category of all finite disjoint unions of
open subschemes of objects in Dx with the induced morphisms between them. It is
equipped with the Zariski-topology. The corresponding topos will be denoted T x .

An easy case of such a diagram is a single morphism Y — X that meets the
conditions.

We consider the following situation: Let i : Z — X be a closed immersion of
smooth quasi-projective S-schemes and Dx a finite diagram over X. We assume the
following conditions, corresponding to the ones formulated by de Jeu in [Jeu] 2.2:

(TC) For all X' in Dx, the pullback X' xx Z is S—smooth. If f : X; — X, is a
morphism in Dy, then in the cartesian diagram

Z1:X1XXZ—)X1

st I

Zo=Xo Xx Z ——3 X,

the maps f and ¢ are tor-independent, i.e.,
Tory,, (Oz,,0x,) =0

for £ > 0. (mk denotes the sheaf of tor-groups.)
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LEMMA B.2.14. The pullback Dy of Dx by Z satisfies the conditions for a finite
diagram over Z.

Proof. Finite Tor-dimension in Dy follows from Tor-independence and the same prop-
erty in Dx. O

Let Y. be a space in sTx. Let j : U — X be the open complement of Z in X.
Let Y, x x U be the pointed version of j1j*Y, i.e., the sheaf associated to the presheaf

Vs Y(V) ifV->UCcCX,
0 else.

It is a space in sTx. Let Y. xx Z =i~'Y, a space in sTz. If Y. is constructed from
schemes, then so are Y, xx U and Y, xx Z. The scheme components are given by
the base change with U or Z respectively. Note that i (Y, x x U) is empty, i.e., only
consists of the base point.

ProOPOSITION B.2.15 (DE JEU). Let i : Z — X be a closed immersion with open
complement U. Let Dx be a finite diagram over X such that (TC) holds with respect
toi. Then for Y € sT:

a) There is a natural pushout map

HEp (V.o xx Z,K) — Hip (V. K).

b) Let Y. be a space in sTx which is constructed from schemes. We assume that it
is degenerate above some simplicial degree. Then

Y xx Z=C{Y. xxUCY)xxZ
and the pushout
HE (Y. xx Z,K) — Hbip (Y. rel Y. xx U, K)
is an isomorphism.

Proof. For an object V of the site Zarp, let M (V) be the category of all coherent
sheaves on V. In it let P(V,Dx) be the subcategory of those sheaves F satisfying

Torl, (Oy+,F) =0

for all j > 0 and all V! — V in Dx. Note that there are only finitely many conditions
as our diagram is finite. The nice thing about P(V,Dx) is that it is contravariantly
functorial. Hence Quillen’s QBQP( - ,Dx) (loop space of the classifying space of the
Q-construction) defines a presheaf of simplicial sets on the site by [Q2] §7 2.5. It is
here where we use the fact that all schemes are quasi-projective. Let QBQP% be the
space in sTx defined by its sheafification. By Quillen’s Resolution Theorem ([Q2]
Thm 3, Cor 3, p. 27) there is a weak equivalence of spaces QBQ Py — Kx. (Basically
this is the fact that K'-theory and K-theory agree for regular schemes.)

We also have the space QBQP}, in sT z. For the closed immersioni: VxxZ — V
the pushout i, is exact on the category of coherent sheaves. Because of (T'C'), it maps
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the the subcategory P(V x Z,Dyz) to P(V,Dx). In fact we get a morphism of spaces
in sTx

i.(QBQPY) % QBQPY .
Using the weak equivalences to K- this defines a map in the homotopy category
i(Kz) 25 Ky .
If Y, is a space in sTx, then we get the map in a) as

Hhip ('Y, Kz) — Hip (i 'Y, i.Kz) — Hip (V. Kx) .

sTx

In the special case of a scheme Y part b) is nothing but Quillen’s pushout isomorphism
K.(i™'Y) — K,(Y rel Y xx U)

for regular schemes [Q2] §7 Prop. 3.2 (recall that all schemes in the site are regular).
This generalizes to the case of spaces constructed from schemes by the skeletal spectral
sequence. 0

LemMA B.2.16. Consider a cartesian diagram of smooth quasi-projective S-schemes

1
3

7 —t . x
le fxl
Z — 4 X

where i is a closed immersion. Let Dx be a finite diagram on X. Assume that the
pullback Dx: defines a finite diagram over X' and that both i and i’ satisfy (TC).
We also assume that for all V in Dx the maps

VXXXI—)V
and
Vxx 22—V

are tor-independent.
Then for all spaces Y. in sTx there is a commutative diagram

HfTZ, (f}Z*Y,K) — HfTX, (f;(Ya K)

i) [
Hby, (*Y,K) —2—  HYy (V,K)

sTx

Proof. We have to refine the categories P(V, D) used in the proof of B.2.15 further.
Let P"(V,Dz) be the subcategory of P'(V, D) of those coherent sheaves F satisfying

Torl,, (07, F) =0.
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The induced space QBQ P} is again weakly equivalent to Kz. By [Q2] §7 2.11 there
is a commutative diagram of spaces in sTx

i, fx «QBQP, —— fx .QP%
QBQP; —— QBQPy
This proves the lemma. |

We also need the following lemma from algebraic geometry.
LEMMA B.2.17. Suppose we are given a cartesian diagram

-
(2

7z —— X'

L

of smooth S-schemes where i is a closed embedding, then the blow-up of X' in Z' is
the base change by f of the blow-up of X in Z provided i and f are tor-independent.

Proof. In order to see this, note that by [EGAII] 3.5.3 we have to check that f*(Z") =
I™ ®py Ox is isomorphic to J" where 7 is the sheaf of ideals of Z in X and J the
one of Z' in X'. This follows from tor-independence in the case n = 1. Note that in
general we have a surjection f*7"™ — J™. Let K, be the kernel. Pull-back by f* is
right exact, i.e., we have an exact sequence

7 = J — f(Z)T*) = 0.

Together with the above surjectivity this implies f*(Z/Z°%) = J/J?%. As X respec-
tively X’ are regular and 7 respectively Z' are locally given by regular sequences, the
structural theorem [Ha] IT Theorem 8.21A e) implies

f*(In/Zn+1) =~ jn/jn—i-l .

By the snake lemma K, 1 — K, is surjective and hence f*(Z"/I"tk) =~ gn/gntk
for all k. But then

jn o~ mjn/jrwrk o~ LLnf*Z”/lm f*In+k o~ LLnf*I”/jkf*I” o~ f*In .
O

Push-forward is not a A-ring morphism but it does respect the y-filtration up to a
shift, at least under good conditions. This is made precise in the following Riemann-
Roch Theorem, which is a slight generalization of de Jeu’s in [Jeu] 2.3. He considers
a special type of diagram and restricts to a base field. De Jeu imitates the proof in
[T] Theorem 1.1, which is over a field. However, his arguments work for our base as
well. Indeed, the original article [Soud] Thm 3 treated the more general case.
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THEOREM B.2.18 (GROTHENDIECK-RIEMANN-ROCH). Let S be a regular irre-
ducible Noetherian affine scheme S. Let i : Z — X be a closed immersion of
constant codimension d of quasi-projective smooth S-schemes. For 7 = X, Z let
td(?) € Gr}, Ko(?)g be the usual Todd classes (e.g. [T] p. 135). Let a finite diagram
Dx be given that satisfies the conditions (TC) with respect to i. Finally let Y. be a
space constructed from schemes in sT x.

a) The homomorphism i, : K,(i7'Y)g — K,(Y.)o has degree —d with respect to
the ~v-filtration, i.e.,

FIK,(i7'Y)g =5 FIT1K,(Y)g

b) The following diagram commutes:

Ko (im'V)g 2% Grt K, (71Y)q

.| B

td(X)ch "
Ka(V)o 2% arr K, (V)

REMARK: td(?) is a unit with augmentation 1. Hence the horizontal maps in b) are
isomorphisms.

Proof. We essentially have to prove classical Riemann-Roch for the inclusion Z — X.
The conditions on our situation are chosen in a way that the diagrams we drag along do
not make any difficulties. Note also that we can replace Y. by the cone of Y. xU — Y,
i.e., we can assume that all pushout maps are isomorphisms. Having observed this
we can follow de Jeu’s arguments in [Jeu] 2.3.

The first step is to prove the analogue of [T] Theorem 1.2 or [Jeu] Proposition
2.5 (“Riemann-Roch without denominators”). We only sketch the idea: Because
of functoriality B.2.16 and the homotopy property of K'-theory we can make the
transformation to the normal cone. Hence we can assume without loss of generality
that i is a section of a projective bundle over Z. The existence of the projection
p which is a left-inverse of i allows to make explicit calculations. All details of the
argument can be found in [Jeu] 2.5 when replacing Ko(Yp) (= Ko(Xo) there) by
Ko(X) = Ko(sTx). The necessary compatibility of blow-up and base change is
guaranteed by the previous lemma.

We then show that up to multiplication with the appropriate Todd class i, has
the required behaviour with respect to Adams eigenspaces. The argument is the same
as in [Jeu] Proposition 2.3 or [T] Lemma 2.2. Now the theorem follows by the same
formal manipulations as in the proof of [T] Lemma 2.3. (|

COROLLARY B.2.19. Let i : Z — X (closed immersion of constant codimension d)
and Y. be as in the theorem. Let U = X \ Z. Then there is a natural localization
sequence

i — K (Zxx YY) — Kn(Y)o — Kn(U xx Y))o
— Kn1(ZxxY)g— ...
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or in terms of motivic cohomology

— Hi? (Z xx Y., j—d) — Hi(Y.,j) — Hiy (U x Y., j)
— Hi 2" Z xx Y., j—d) — ...

Proof. Part b) of Theorem B.2.18 implies that

i @ Gr] K (Y. el Y. x U) — P GrJ K (V. x 2)
J€ENo JENo

is an isomorphism, i.e., Hi, (Y, rel Y, x U, j) = Hj\ZQd(Z xx Y.,j—d).

We consider the long exact sequence of relative K-cohomology or relative motivic
cohomology for the open embedding U x Y, C Y.. We can use i, to identify the
relative cohomology with cohomology of the closed complement. O

Only a few K-groups are known. However, the ranks of the K-groups of number
fields are understood.

THEOREM B.2.20 (BOREL). Let K be a number field with ring of S-integers og
where S is a finite set of primes of K. Let B = Specog. As usual ry is the number of
real places of K and ry the number of complex places. Then the motivic cohomology
has the following ranks:

HY,(B,0) 1

H_/l\/t(B,l) #S+T’1—|—’I"2—1

H3,(B,n) Ty n > 1, even ;

H},(B,n) T4 Ty n > 1, odd;
H',(B,j) 0 else .

Proof. The computation of Ko(B) and K (B) is classical ([Ba] Ch. IX, Prop. 3.2 and
Ch. X, Cor. 3.6). The higher K-groups for the ring of integers o were calculated by
Borel ([Bol], Prop 12.2). It follows from Quillen’s computation of the K-groups of
finite fields that the ranks are not changed by localizing at finite primes. O

B.3 COHOMOLOGY OF ABELIAN SHEAVES

We now show how the usual cohomology theories fit in the set-up of generalized
cohomology. This is well documented in the literature [BrG], [G], [Jeu]. In the
case of a cohomology theory defined by a pseudo-flasque complex of presheaves F,
we compare the different possible points of view. These are Zariski-cohomology of
the associated complex of sheaves, generalized cohomology of the associated space or
simply cohomology of the sections. We always get the same cohomology groups (B.3.2
and B.3.4). If the complex of presheaves F is part of a twisted duality theory (B.3.7),
we define Chern classes from K—cohomology of spaces to cohomology with coefficients
in F. Finally we check compatibility of the localization sequence in K—cohomology
with the one for cohomology of spaces with coefficients in F (B.3.8).

By a complex we always mean a cohomological complex. Of course it can also
be considered as a homological complex by inverting the signs of the indices.

The Dold-Puppe functor [M] Thm 22.4 attaches to a complex of abelian groups G
which is concentrated in non-positive degrees a simplicial abelian group K (G) pointed
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by 0 whose homotopy groups m;(K (G),0) agree with the cohomology groups b~ (G).
It induces an equivalence between the homotopy category of simplicial abelian groups
and the homotopy category of complexes of abelian groups concentrated in non-
positive degrees. By construction of the functor K there is a natural weak equivalence
of spaces

Cone(K(G) — x) — K(Cone(G — 0)) = K(G[1])

and hence a natural map QK(G[1]) - K(G) in the homotopy category of pointed
simplicial sets, which is a homotopy equivalence. If G is an arbitrary complex of
abelian groups, let 7< G be the canonical sub-complex in degrees less or equal to IV.
We put

K(G)n = K(r<nGIN]) -
The natural map 7<ny—1G[N] = 1< xG[N] induces
K(G)Nfl = QK(TSNflG[N]) — QK(G)N s

which is a weak equivalence. This means the K (G)y form an infinite loop spectrum
whose homotopy groups reflect all cohomology groups of the complex.

DEFINITION B.3.1. Let G be a cohomological complex of sheaves of abelian groups
on the big Zariski site. The sheafified version of the above construction yields an
infinite loop spectrum of spaces K (G) with

h™H(G) = m;(K(G),0)
where the right hand side is the sheafification of the presheaf
U m(K(G)(U),0) .

As a spectrum K (G) defines generalized cohomology groups with indices in Z for
any space X.

PRrROPOSITION B.3.2. Let G be a bounded below complex of sheaves on the big Zariski
site. Let X be a scheme. Then

;T(XaK(g)) = H%AR(Xag) '

Proof. As G is bounded below it has a bounded below resolution by flasque sheaves.
Now the proof proceeds as in [BrG] Prop. 2. The main ingredient is that K(Z) is a
fibrant space if Z is a flasque sheaf. O

DEFINITION B.3.3.  a) Following [BrG], Sect. 2 a complex F of abelian presheaves
on the big Zariski site is called pseudo-flasque if it has the Mayer-Vietoris prop-
erty, i.e., for open subschemes U and V' of some scheme X, we have a long exact
sequence of abelian groups

.= W (FUUV)) — b (FU) & F(V)) — K (F(UNV))
— BT FUUY)) — ...
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More precisely, the square

FUNV) —  F{)

! !

FV) —— FUUV)
is homotopically cartesian.

b) Let F be a complex of abelian presheaves. For the object x 11U in T where U
is a scheme, we put

FOU)=F{U).
Let X be a space constructed from schemes. Then we put
F(X) = Tot; F(X;) .
the total complex of the cosimplicial complex F(X;)ien, -

Taking the total complex of a bicomplex as in b) of course involves a choice of
signs which we fix once and for all. Different choices of signs differ by a canonical
isomorphism of the total complex.

LEMMA B.3.4. Let F be a bounded below pseudo-flasque complex of abelian
presheaves. Let F be its sheafification. Then

Hip (X, K(F)) = h'(F(X))
for all spaces X constructed from schemes.

Proof. Let T be a (bounded below) flasque resolution of F. This is in particular a
pseudo-flasque complex of presheaves that is quasi-isomorphic to F as a complex of
presheaves because both compute Zariski-cohomology of F. As in the proof of [BrG]
Theorem 4, the simplicial sheaf K (Z) is a fibrant resolution of K (F). Hence we can
assume without loss of generality that F itself is a complex of flasque sheaves.

For the case of a scheme X the lemma is the reformulation of [BrG] Theorem 4 in the
easier case of simplicial presheaves that come from a complex of abelian presheaves.

In the general case

Hip(X,K(F)) = 7_; Hom (X, K (F))
= m_; Hom_(hocolim X, K (F))
= 7_; holim Hom, (X;, K (F)) [BouK] XII Prop. 4.1
= h'(Tot F(X;)) = h'(F(X)) .

O

This means if we define a cohomology theory by a pseudo-flasque complex of
presheaves on the big Zariski site we can freely change from the point of view of
generalized cohomology to ordinary Zariski-cohomology or cohomology of the sections
of the presheaf.
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If X — Y is a morphism of schemes, we consider as usual its Cech-nerve
cosko(X/Y), i.e., the simplicial Y-scheme given by

cosko(X/Y)p = (X Xy -+ xy X) n + 1-fold product
with the natural boundary and degeneracy morphisms.

DEFINITION B.3.5. We say that a morphism X — Y of schemes has cohomological
descent for the cohomology theory given by the complex of abelian Zariski-sheaves G
if the natural morphisms

Hip (Y, K(G)) — Hp(cosko(X/Y), K(G))
are isomorphisms for all i € 7..
This is of course a very special case of the general notion of cohomological descent.

LEMMA B.3.6. Let j : U = X be an open immersion with closed complement Y.
Let F be a pseudo-flasque complex of presheaves on ZAR x with sheafification F.

a) There are natural isomorphisms
Hip(X rel Y, K (F)) — Hyap(X, 1" F)) .

b) If Y — Y is a morphism with cohomological descent for F , then we get a natural
isomorphism

Hin(X rel cosko(¥/Y), K(F)) = Hiun (X, 5" F)

Proof. By B.3.4 the left-hand side of a) is canonically isomorphic to the cohomology
of

F(O 25 X)) = Cone (]-'(X) EAUN ]-'(Y)) (1]

where the right hand side is the cone in the category of cohomological complexes. We
assume without loss of generality that F is a flasque complex. The key point is the
short exact sequence of complexes of sheaves on X

0— jij*F — F — i,i*F — 0 .
It induces a canonical quasi-isomorphism of complexes
jij*F —s Cone (ﬁ = ’L’L.7:) =i

We now take RT'z, (X, -) of the right-hand side. Because F was assumed to be
pseudo-flasque the morphism

Cone (F(X) — F(Y)) —> Cone (ﬁ(X) - f-(Y)) .

is a quasi-isomorphism. This last fact follows from B.3.4 and B.3.2. (Of course it can
also be proved, even more easily, in terms of complexes of abelian groups rather than
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simplicial abelian groups.) In the case of a morphism YV — Y with cohomological
descent the left hand side of the statement is by B.3.4 given by the cohomology of

Cone (]-'(X) - f(cosko(ff/y)) —1] .

The natural morphism F (V') —s F(cosko (Y /Y)) is a quasi-isomorphism by definition
and Lemma B.3.4. O

THEOREM B.3.7 (GILLET, DE JEU). Let F = @,., F(i) be a pseudo-flasque com-
plex of abelian presheaves on the big Zariski site. Assume that F defines a twisted
duality theory, i.e., the extra data of [G] Def. 1.1 exist and all conditions of loc. cit.
Def. 1.2 are fulfilled. Then:

e There are Chern class maps of spaces

¢j: K— K(F(j)[2]) -
They induce morphisms
¢j : Hip(Y,K) — Hp" (Y, K(F(j)))
for all spaces Y in sT.

e If'Y is a K-coherent space, then the total Chern class cr is a morphism of
A-algebras on K—cohomology of Y.

e Leti:Z — X a closed immersion of smooth S—schemes with open complement
U. The map iy : i.F(r) |z— F(r + d) |x [2d] required in [G] Def. 1.2. induces
push-forward on generalized cohomology. If Y, is a space over X as in B.2.18,
then the diagram

G KoY. xx Z)g ~ —2— Gl K, (V)

C;l lcj+d

HAT(Y. xx Z,K(F(j)))o —— HA (Y, K(F(j +d))o
is commutative.

Proof. The construction of the Chern classes is [G] Thm 2.2. Gillet’s formulation is
for schemes but he constructs in fact a morphism of spaces (loc. cit. p. 225) so the
results hold for more general spaces (see also [GSo1] 4.1). The assertion on the A-ring
structure is [GSol] Thm. 7. We sketch the idea: Everything is defined on the level
of coefficients, so it does not depend on Y. Compatibility with multiplication is [G]
2.3.2. Compatibility with y-operators can be checked on the level of universal Chern
classes, i.e., for elements C; y € H2:(BGl,, F(i)). Now use the splitting principle
([G] 2.4).

The last part of the proposition is a generalization of Gillet’s Riemann-Roch Theorem
[G] 4.1 to spaces of our special type. The proof carries over by the same method as in
the proof of Riemann-Roch for K-cohomology B.2.18. Mutis mutanda the statement
can be found in [Jeu] Lemma 2.13. O
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REMARK: This will allow to define regulator maps from K-cohomology to the coho-
mology theories we are interested in.

COROLLARY B.3.8. Let X, Z,d, Y. and F be as in the theorem. In addition assume
that F is pseudo-flasque. Let U be the complement of Y in X. We abbreviate

Yo=Y xxU,Yz =Y. xx Z and F; = K(F(j)). Then there is a natural morphism
of long exact sequences

HiZ (Yu,j) —— Hi? (Vz,j —d) —— Hiy(Y.,j) —— Hi, (Yo, j)
HiZ Yy, Fj) —— HZ*Y(Yz, Fj_y) —— Hip (Y., F;)—— Hig (Yo, Fj)
W F(§) (Vo) ——— W2 4F (= d)(Yz) —— WF(j)(Y.) —— h'F(5)(Yv)

Proof. We start with the long exact sequences for relative cohomology (B.1.7) with

coefficients in the spectrum K and in the spectrum K (.7:') Their compatibility is
nothing but functoriality. Relative cohomology is replaced by cohomology of Y. X x Z
using B.3.7. Finally we pass to graded pieces of the v-filtration. Note that the indices
in the definition of motivic cohomology are chosen in a way that they agree with the
indices of other cohomology theories under Chern class maps. Equality of the last
two lines is B.3.4 O

Note that the last line has nothing to do with generalized cohomology or spaces.

B.4 ConTINUOUS ETALE COHOMOLOGY

There are different ways of defining continuous étale cohomology. We will see that
they all give the same thing.

Fix a number field K and a prime [. Let B be an open subscheme of Spec ox[1/]]
where ok is the ring of integers of K.

PropoSITION B.4.1 (DELIGNE, EKEDAHL). Let f : Y — X be a morphism of B-
schemes of finite type. Then there are triangulated categories D®(X —7Z;) and D.(Y —
Z,) admitting the following: there is a t-structure whose heart are the constructible
l-adic systems. There are functors

fis fo: DUY = Z) — DUX —Zy)
and

F* ' DUX = Zy) — DY = Z4)
having all the usual properties of Grothendieck functors.

Proof. This is [Ek] Thm 6.3. In the case B = Specog[1/1] the category was already
constructed in [D4], 1.1.2. O

DOCUMENTA MATHEMATICA 3 (1998) 27-133



118 ANNETTE HUBER, JORG WILDESHAUS

REMARK: D%(X — Z;) should be thought of as the bounded derived categories of
constructible l-adic sheaves on X.;. By Ekedahl’s construction D%(X — Z;) is a sub-
category of a localization of a subcategory of the derived category of the abelian
category (Xe;)N — Z;. By this notation Ekedahl means the category of projective sys-
tems of étale sheaves on X ringed by the projective system Z/I™. The four functors
are defined on the level of this last derived category. Ekedahl then shows that they
induce well-defined functors on D%(X — Z;). In the case B open in Specox[1/1], we
get away with Deligne’s more straightforward construction.

DEFINITION B.4.2 (1. VERSION). a) For k € Z let Z (k) be the constructible l-adic
sheaf on B given by the projective system ,uf?lk .

b) We define continuous étale cohomology of s : X — B by

Hgont(Xa k) = HomDE(X—Zl) (S*Zl(0)7 S*Zl(k)[l]) :
c) If j: U —» X is an open immersion with complement Y we define relative contin-
uous étale cohomology by

H,(X rel Y k) = Hom pe(x _7,)(s*Z1(0), i (s 0 §)*Zu(Kk)[i]) .

d) More generally, let M be an object of D%(X — 7Z;). We define continuous étale
cohomology of X with coefficients in M as
Hcl:ont(Xa M) = HomD’C’(X—Zl) (S*Zl(o)a M[Z]) :

This definition allows to derive all the usual spectral sequences from the calculus
of the Grothendieck functors.
REMARK: As checked in [H2] §4 this definition coincides with Jannsen’s original one
in [Jnl] sect. 3. In our case continuous étale cohomology with coefficients in a
constructible l-adic sheaf (), is nothing but the naive lim HJ, (X, 7,,) because all
HT(X,F,) are finite.

Let us now define continuous étale cohomology in a way that fits in with the
setting of the previous section.

DEFINITION B.4.3 (2. VERSION). Consider the projective system of sheaves
(u%k)neN on the big étale site over B. Let I be an injective resolution in the
category of projective systems. It is given by a projective system Z,, of injective res-
olutions of ,ufik on the big étale site with split surjective transition morphisms ([Jnl]
1.1). By taking sections we get a projective system of complexes of Zariski-presheaves
RT (k) - The functor Rlim turns it into a complex Fi(k) of Zariski-presheaves.
For any space X put

Hi

cont

(X, k) = Hip(X, K(Fi(k)))
In particular if + : Y — X is a morphism of spaces, then we put

Hcl:ont(X rel Y7 k) = H;T(C(L)aK(}M—l(k))) -
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LEMMA B.4.4. If X is a B-scheme, then both versions of the definition of continuous
étale cohomology agree canonically. If Z — X is a closed immersion, then the same
is true for both definitions of relative continuous étale cohomology.

Proof. F;(X) is nothing but an explicit version of the derived functor Rlim RT'(X,, -)
from the derived category of projective systems of étale sheaves to the derived category
of abelian groups. Hence the complex F;(X) computes the first version of continuous
étale cohomology. In particular it has the Mayer-Vietoris property. Hence we can
apply the lemmas of the previous section (B.3.4) and get

Hp(X,K(F)) = h'(F(X))

To extend the result to relative étale cohomology we use essentially the same
argument as in B.3.6.b). O

REMARK: When we say that the isomorphism is canonical, we think in particular of
the following situation: The cartesian diagram of schemes

.1 ./

U —L 5 X' Yy’

Lo
I

17 11
13

U J s X ¢ Yy

(f, j open, g, i closed complements) induces a map

(X rel Y,n) ANy 53

cont

Hi

cont

(X'rel Y')n)

which is compatible with the identification. If all schemes are smooth and X" inter-
sects Y transversally, then we also get the same long exact sequence

s HZ2UX " rel Y n —d) — Hiy(X vel Yin) — HE (X rel YV n)
— HFL2A(X el Y \n—d) — ---

using either definition of relative cohomology.

LEMMA B.4.5. If Y — Y is a proper covering (i.e., a proper and surjective map),
then it has cohomological descent for continuous étale cohomology. In particular if
Y — X is a closed embedding and Y a proper covering of Y, then there is a natural
isomorphism

Hi

cont

(X rel Y,j) — H!

i (X rel cosko (YY), )
where the right hand side is taken in the sense of spaces.

Proof. Cohomological descent is a consequence of the same descent for étale coho-
mology with torsion coefficients prime to the characteristic of the schemes ([SGA4,IT],
Exp. Vbis, 4.1.6). By B.3.6.b) the second part follows. O
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PROPOSITION B.4.6. On the Zariski site of smooth schemes over B, the presheaf
Fi has the properties of a twisted duality theory. There are regulator maps from
K -cohomology to continuous étale cohomology

Hj\/l(ij) — Hcl:ont(Yaj)

for all K—coherent spaces Y. They are compatible with pullback, i.e., if f : Y — Y’
is a map of K—coherent spaces, we get commutative diagrams

i . f i .
HM(Y,)J) — HM(Yaj)

l l

Hcl:ont(Ylvj) f—> Hcl:ont(ij)

Ifi: Z — X is a closed immersion of smooth schemes (constant codimension d) with
open complement U and Y. a space constructed form schemes over X as in B.2.18,
then the regulator is compatible with pushout, i.e., the diagram

HE WY, xx Z,j — d) =5 Hy, (Y., )
o -
H?o?z%d(y Xx Za.] - d) i) Hg)nt(yaj)
is commutative.

Proof. We restrict to smooth schemes for simplicity. We have to define the extra-
structure from [G] 1.1 and 1.2. We put

Hi(X,j) = H25H(X,d - j)

cont

for a d-dimensional smooth connected scheme. Pull-back on cohomology and pushout
on homology are induced from the functors on sheaves on the étale site. We do not
work out the details. For a single étale sheaf u;» this is actually one of Gillet’s
examples 1.4 (iii). O

There is really only one case when this regulator is understood.

LEMMA B.4.7. Let K be a number field, ox be its ring of integers and | a prime.
Assume 2i — k > 2, then Soulé’s I-adic regulator

Kai_r(og[1/1)) ® Z;y — HE . (Specog[1/1],4)

agrees with the one obtained from Prop. B.4.6.

Proof. Put A = og[1/1]. Soulé’s definition in [Sou2] is the composition

Ko (A) — lim Kai 5 (A, Z/1") ~— lim HE (4, 2/17(7))
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where ©;r is as in [Soul] IL.2.3. There is a natural map of presheaves F;(i) —
RI'(-,Z/1*(i)). Hence in Gillet’s definition of Chern classes, we get a commutative
diagram

KQi—k(A) i) Hfont(spec Aal)

N\
HY, (Spec A, 2/17(3))

Hence we only have to consider finite coefficients. Furthermore in this simple case of
a regular commutative ring, we do not really need to consider the sheafified versions
and generalized cohomology. Gillet’s construction boils down to a composition of the
Hurewicz-map with universal Chern classes.

For 2i — k > 2, the map ¢;, is defined by the same type of composition ([Sou2] II
2.3.) with the same universal Chern classes.

By the definition of K-theory with coefficients, we have a commutative diagram (loc.
cit. I11.2.2) with X = Z BGI(A):

— s mX) 2 (X)) —— (X, 21—

| | I
—— Hy(X,2) == Hu(X,2) —— Ha(X,Z/q) ——
For the prime 2 compare also [We]. O

THEOREM B.4.8 (SOULE). Let K be a number field, o be its ring of integers and [
any prime. Let S’ be a finite set of prime ideals of o and S = S" U {l}. Let og be
the localization of o at S. The regulator map

cj: Hi(Specogr,j) ®o Q — H,,,(Specos,j)o

is always injective and an isomorphism for i = 1 and j > 1. We have the following
behaviour for pairs of indices (i,7):

JEL isomorphism

j<1 mot. coh. vanishes, I-adic does not in general
injective of finite codimension

j>1 isomorphism

j < 1| conjectured to be isom., i.e., etale coh. to vanish
injective of finite codimension

j>1 isomorphism, i.e., both vanish

else both vanish

~

A~ TN TN N AN N N

NN N O
A T O R R S o N N
N e e e e e e

Proof. We have

H!,..(Specos, j)o = H (Gs,Q(j))

where Gg is the Galois group of the maximal extension of K that is unramified
outside of S. We first check that these groups vanish for ¢ > 2: By [Mi] I Cor. 4.15
all H (G, uf?ﬂ) are finite. This means that the projective systems for varying n are
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Artin-Rees. We do not get a m L_contribution to continuous cohomology. Moreover,

by loc. cit. I. 4.10.c) the H(Gs, ufij) for 4 > 3 are 2-torsion. This implies that their
projective limit is 2-torsion. In total we have vanishing cohomology H'(G's,Q (5))
for ¢ > 3.

The case i = 0 is trivial. H'(Gs,Q (1)) = Es ® Q@ where Eg are the S-units, while
H},(Specog,1) = 0%, ®Q . For H*(Gg,Q (1)) (the S-Brauer-group) the codimension
is the same as in the (1,1)-case by Euler-Poincaré duality (cf. the discussion in
[Jn2] Lemma 2 and Cor. 1.). In the remaining cases, neither motivic (B.2.20) nor
continuous étale cohomology ([Jn3] Lemma 4) is changed by the inversion of S’, at
least up to torsion. We assume S’ = (). For odd I, the cases (1,7) and (2,5) for
j > 1 are Soulé’s result in [Sou2] Theorem 1. Note that we are in the range where
the previous lemma applies.

For [ = 2, we have to refine the argument. On the level of Q,-coefficients we may, by
Galois descent, assume that K contains /—1 — note that the only prime which could
possibly ramify in this quadratic extension has been inverted, and hence we get an
étale extension of rings. By [DwF], Theorem 8.7 and the succeeding remark, we have
surjectivity even for [ = 2.

To conclude, we need to show that the Qy-vector spaces have the right dimension.
Let 7 > 1. By [Jn2], proof of Lemma 1, the dimension of

Héont(spec OK[l/Q]aj)Q

equals the corank of
H_oni(Spec ok [1/2], Qz /Z2(j)) -

By [Sou3], 1.2 and Proposition 2, this corank, for ¢ = 1, equals the rank of the
K—group if and only if

Hgont(spec OK[1/2]5 Q2 /Z2(.7))

is torsion. This in turn follows from [We], Theorem 7.3. O

Finally we want to discuss Soulé’s elements in K-theory with coefficients. Every-
thing is in the setting of simplicial sets and spectra in the usual sense. Generalized
cohomology does not enter. Let ¥ be the sphere spectrum and [” a prime power. By
definition of the Moore spectrum there is a cofibration sequence

IS NG, AL
Recall that for the ring of integers in a number field A
Kn(A,Zi) =im Ky (A, Z /1) = lim (K A My )
The Moore spectrum has a unique product for [ > 2. For [ = 2,7 > 2 there are two
projective systems of regular product structures on M;- ([O], Theorem 2 (a), (b)

and Lemma 5). Together with the product structure on K this defines a product on
K,(A,Z)) for 1 > 2.
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For d > 2, we define R = Z(uq,1/dl). Recall ([Sou2], Lemma 1, [Sou5|, 4.1-4.3)
Soulé’s construction of maps

@ : primitive elements of g — Kopy1(R,Z;) = Kopy1(R) @7 72 .

The original statement is for odd primes [, but using the above 2-adic product the
construction works without any changes for [ = 2. For a primitive d-th root of unity
w, choose some (a,);>1 € lim pgr satisfying af = w. Let (8,)r>1 € lim K5(R, Z/1")
be the projective system of Bott elements with jor(83,) = a, € K;(R). Using the
formalism of norm compatible units developed in [Sou2], one lets ¢;(w) denote the
projective system

(N (1= ) U (BHM), € lim Konan (R, Z/U'Z)

REMARK: It is not clear to the authors whether the 2-adic Soulé elements depend on
the choice of product on the Moore spectrum. By [O] pp. 263-264, the difference
between the two regular products p and p' on Ms- is given by

. . 2 .
Mor A Myr 222089275 g3 A S50 5 53 275 0y,

LEMMA B.4.9. Let ¢ be a root of unity and n > 0. The restriction map from

Hclont (Q(C)a Ql (T’L + 1)) into

H gy (Qru ,€), Qi (1 + 1)) S QL 0/01)
Gal(Q(ui,6)/Q(¢))

= | i (Hlone (QUue .0y pur) © p2") 92, Q
r>1
Gal(Q(p1e=,¢)/Q(¢))

= m (@0 /(@ ) @ 0E") 02,0

r>1
is injective.

Proof. Note that the argument given in the discussion preceding [WilV], Theorem
4.5 is incorrect since the transition maps

H g (Quam, Q12" ) — Hl (Quimss ), 2™
are in general not injective. The kernel of the restriction map is given by
H oy (Qpu=, Q)/QC), Qu(n +1))
Since [Q(u1,¢) : Q(¢)] is prime to [, we have to show that

Hgont (Q(:U‘loc' ) C)/Q(:U‘l ) C)a Zl(n + 1))

is torsion. But the Galois group G of Q(u=,()/Q(u,¢) is isomorphic to Z;, and
hence its first cohomology equals the functor of coinvariants. Our claim follows since
n > 0. O
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ProOPOSITION B.4.10. Let ¢ be a fixed d-th root of unity. The l-adic regulator

Ty K2n+1(R) ®zQ — Hiont(@(“d):@l (TL + 1))

takes ¢;(¢®) to the cyclotomic element in continuous Galois cohomology

> [l—a]l®(@@h)®"

I b
al”=¢ r

(in the description of the last lemma) defined by Soulé and Deligne (cf. [Sou2], page
384, [D5], 3.1, 3.3).

Proof. If | is odd, then this is [Soul], Théorémes 1 and 2. For [ = 2 the same is true
using the properties of the 2-adic regulator (see [We]). O

B.5 ABSOLUTE HODGE COHOMOLOGY

Let B = Spec C or B = SpecR in this section.

In A.1.9 a definition of absolute Hodge cohomology and relative cohomology for
general varieties over C was given. The variant over R was A.2.6.

By A.1.10 resp. A.2.7 absolute Hodge cohomology of smooth varieties is given
functorially by Beilinson’s complexes RT¢» (- /B, n).

LeMMA B.5.1. These form a pseudo-flasque complex of presheaves on the Zariski site
of smooth B-schemes.

Proof. By construction [B1] they form a presheaf on pairs (U,U) where U is a com-
pactification with complement an NC-divisor. (For more details cf. [H1] Prop. 8.3.3.)
Taking the limit over all choices of U we get the desired presheaf. To say it is pseudo-
flasque means that absolute Hodge cohomology has the Mayer-Vietoris property. In
the context of A.1.9 and A.2.6 it is a formal consequence of the existence of triangles
(i.i',id, j.«j*) for open immersions j with closed complement 4. In the context of [B1]
it follows from the Mayer-Vietoris property of De Rham-cohomology and singular
cohomology. O

We now consider the corresponding generalized cohomology.

DEFINITION B.5.2 (2. VERSION). If X is a space over B, then we define absolute
Hodge cohomology by

Hi,(X/B,n)=H.p(X,K(RTgs( - /B,n)) .
If f: Z — X is a morphism of spaces, then we define relative cohomology
Hi, (X rel Z/B,n) = Hix(Cone(f), K(RTqs( - /B,n)) .

LEMMA B.5.3. There is a functorial isomorphism between both definitions of absolute
Hodge cohomology for a smooth variety X. If Y — X is a closed immersion of smooth
schemes, then the same is true for relative cohomology.
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Proof. Lemma B.3.4 and Lemma B.3.6.a). (|

In order to get the same equalities at least for some singular varieties we have
to check a descent property for Hodge modules. For this we need functoriality of
ix1* with values in complexes of Hodge modules rather than objects in the derived
category.

LeMMA B.5.4. Let X/C be smooth and i : Y — X a closed reduced subscheme of
pure codimension 1. Let Y = J;_,Y;. For I C {0,...,n} and M € MHMp(X) let

iV =Y —X
iel
jreUr=X~Jvi —X
=
My Zj]!]‘}‘M € MHMF(X) .
All' Y7 are equipped with the reduced structure. Then i.ijM defines a functor
{subsets of {0,...,n}} — C*(MHMp (X)) .

Proof. As jr is affine both j; and jn map Hodge modules to such. Note that locally
each Y; is given by a function f; on X. The functor i7.i} has an explicit description
for closed subschemes of the type Y; given in the proof of [S2] Prop. 2.19. In fact

Z[*Z;M:—) @ MII—) @ MI/—)M
I'crh|I'|=2 I'crh|r|=1
where the complex sits in degrees less or equal to zero. O

PROPOSITION B.5.5. Let X/C be smooth and i : Y — X a closed subscheme as in
the lemma. Let Y =Yy II---11Y,, and

Y. = cosko(V/Y) SV,
ie.,

V=YV Xy - -xy Y (k + 1 factors) .

Then the functor s.s* defined by the total complex of the cosimplicial complex
(Sn«8k)neN, is isomorphic to i.i*.
Proof. Note that
= JI W
1¢{0,... n}k+1

where Y7 = Y;; .} in the notation of the previous lemma. Let M be in MHMp (X).
By the previous lemma we get indeed a cosimplicial complex hence s,s*M is a well-
defined complex of Hodge modules. Let Y= be the simplicial subscheme given by

<
VS = 11 Y 5y
I=(io<i1 <---<iy)
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By the Hodge module version of the combinatorial Lemma B.6.2, the morphism
$.8*M — s5s<*M is a quasi-isomorphism. By definition ([S2] 2.19)

i*’i*M = M{O,...,n} - M s

and this complex is canonically quasi-isomorphic to the total complex of the constant
cosimplicial complex ¢,i* M. It is easy to see that the natural morphism

Tot i i* M — s=sS*M
is a quasi-isomorphism. O

COROLLARY B.5.6. Let X/B be smooth. Suppose Y — X is an NC-divisor over B
all of whose irreducible components are smooth over B. Then the group H., (Y /B, j)
as defined in A.1.9 resp. A.2.6 is isomorphic to the generalized cohomology group
H{,(Y./B,j) and to the same noted group in [BI].

Proof. The condition on Y ensures that Y, is indeed a smooth simplicial scheme. It
gives rise to a space over B. Cohomological descent for the coefficients as in B.5.5
implies cohomological descent for their global sections in the sense of B.3.5. We can
use Y. as the smooth proper hyper-covering needed in Beilinson’s definition. Equality
to the generalized cohomology version is again B.3.4. O

This is of course cohomological descent for a closed Cech-covering. We have
restricted to this case which is built into the very definition of Hodge modules for
simplicity. There is no reason why there should not be cohomological descent in the
same generality as for constructible sheaves.

LEMMA B.5.7. Let X/B be smooth, and Z C X a closed immersion of an NC-
divisor all of whose irreducible components are smooth over B. Let Z_ be the smooth
simplicial scheme of B.5.5, then there is a canonical isomorphism

Hi,(X rel Z/B,n) = Hi,(X rel Z./B,n)
where we use the original definition on the left and the second on the right.
Proof. This follows by the general method of B.3.6.b) from the descent property that
we have just established. O
REMARK: If we had checked cohomological descent in general, then we would get
B.5.6 for arbitrary varieties and B.5.7 for arbitrary closed immersions.

THEOREM B.5.8. On the site of smooth schemes over B, the presheaves
RT¢»( - /B,n) have the properties of a twisted duality theory. There are regu-
lator maps from K-cohomology to absolute Hodge cohomology

H}\/{(Ya.y) — H%;,(Y/B,_])

for all K—coherent spaces Y. They are compatible with pullback, i.e., if f: Y — Y’
is a map of K—coherent spaces, we get commutative diagrams

. . f* . i

l l

Hi,(Y'/B,j) —— Hi,(V/B,j)

DOCUMENTA MATHEMATICA 3 (1998) 27-133



CrassicaL MoTIvic POLYLOGARITHM 127

Ifi: Z — X is a closed immersion of smooth schemes (constant codimension d) with
open complement U and Y, a space constructed form schemes over X as in B.2.18,
then the regulator is compatible with pushout, i.e., the diagram

HYP(Y. xx Z,j—d)  —2—  HY(Y.,))

C]‘_dl lcj'
HIPUY. xx Z/B,j —d) —— HZ,(Y./B,j)

is commutative.

Proof. We use Gillet’s method B.3.7. All axioms of a twisted duality theory hold e.g.
[H1] Ch. 15. Granted this the proof proceeds as in the l-adic case (B.4.6). O

REMARK: Recall ([N], (7.1)) that there is a natural transformation from absolute
Hodge to Deligne cohomology. The composition of the above regulator with this
transformation was already constructed in [Jeu], 2.5.

THEOREM B.5.9 (BOREL). Let K be a number field with ry real and ry pairs of
complex embeddings into C. We consider the ring of integers o as a scheme over 7.
Then the Beilinson regulator

H}Vt (Specog,j) ®o R — H%p ((Specok)r/R, j)

is an isomorphism for all pairs (i,j) # (0,0),(1,1). It is injective of codimension
r1+re—1for (i,7) = (0,0), and injective of codimension one in the case (i,j) = (1,1).

Proof. Note that the cohomological dimension of the category of Hodge structures is
1. The case i = 0 is trivial, and the case (1,1) is Dirichlet’s classical result. In [Bo2],
the claim (and much more) is proved for the Borel regulator instead of the Beilinson
regulator. By [Rp], Corollary 4.2, the two regulators coincide up to a non—vanishing
rational factor. O

B.6 A COMBINATORIAL LEMMA

This section gives a purely combinatorial proof why two conceivable definitions of the
Cech-nerve of a covering are homotopically equivalent. This is well-known at least
for open coverings and Cech-cohomology (and probably in general). But for lack of
finding an appropriate reference we work out the combinatorics here.

Let C'(n) be the following simplicial set:

C(n)k = {17 . '7n}k+1

with the obvious face and degeneracy maps. Let C'(n)< be the simplicial subset of
simplices whose entries are ordered by <. In fact this is the simplicial version of the
n-simplex.

Suppose we are given a covariant functor from the category of subsets of
{1,...,n} to the category of sets. We get simplicial sets by setting

A(n)k = U AI

IeC(n)g

.
Ay = UIeC(n)gAI
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where Ay is the value of our functor on the set I = {io,...,ir}. Note that the elements
of C'(n)y are ordered tuples but the value of Ay does not depend on the ordering.

LEMMA B.6.1. If the functor has constant value A, then both simplicial sets have
the homotopy

A ifi=0,

T (A(n)‘?,*) = {0

else.

Proof. Obviously it is enough to consider the case A = «, i.e., of the simplicial sets
C(n)S — C(n) themselves. Both simplicial sets satisfy the extension condition [M]
1.3 rather trivially. Hence we can use the combinatorial computation of the homotopy
groups given in [M] Def. 3.6. We immediately get the result. O

PROPOSITION B.6.2. For a general functor A the injection A(n)S — A(n) of simpli-
cial sets is a weak homotopy equivalence.

Proof. We filter the simplicial sets C'(n)” by the simplicial subsets F'C(n)’ of sim-
plices in which at most ¢ different integers occur. This induces a filtration of the simpli-
cial sets A(n)”. Let G*A(n)” be the cofibre of the cofibration F~' A(n)? c FiA(n)’.
It consists of simplices in which precisely ¢ different integers occur. We argue by
induction on i for all functors A at the same time. There is a long exact homotopy
sequence attached to the cofibration sequence

Fi=lA(n)" — F'A(n)" — G*A(n)" .

By induction it suffices to show that all cofibres G' A(n)/(G*A(n)<) are weakly equiv-
alent to the final object x. The cofibre decomposes into a union of simplicial sets
corresponding to a different choice of 7 elements in {1,...,n} each. If suffices to
prove acyclicity for one choice e.g for the subset {1,...,i}. Hence we only have to
consider G*A(i)/G*A(i)S. But this last cofibre is isomorphic to G¢B(i)/G*B(i)<
where B is the functor with constant value Ay ;3. For i > 1 it is easy to see that
oG B(i)/G'B(i)S = . By B.6.1 the quotients B(n)/B(n)< are acyclic for all n. Us-
ing the same cofibration sequence as for A and the inductive hypothesis this implies
that all G*B(i)/G'B(i)< are acyclic. O

Note that A could also be a functor to the category of abelian groups or to the
dual of the category of abelian groups.

REFERENCES
[Ba] H. Bass, “Algebraic K—theory”, Benjamin Inc., 1968.
[B1] A.A. Beilinson, “Notes on absolute Hodge cohomology”, in “Applications

of Algebraic K-theory to Algebraic Geometry and Number Theory”, Pro-
ceedings of a Summer Research Conference held June 12-18, 1983, in
Boulder, Colorado, Contemp. Math., vol. 55, Part I, AMS, Providence,
pp. 35-68.

[B2] A A. Beilinson, “Higher regulators and values of L-functions”, Jour. So-
viet Math. 30 (1985), pp. 2036—2070.

DOCUMENTA MATHEMATICA 3 (1998) 27-133



[B3]

[B4]

[BBD]

[BD1]
[BD1p]

[BD2]

[BL]

[BLp]

[BI]

[BIK]

CrassicaL MoTIvic POLYLOGARITHM 129

A.A. Beilinson, “On the derived category of perverse sheaves”, in
Yu.I. Manin (ed.), “K-Theory, Arithmetic and Geometry”, LNM 1289,
Springer—Verlag 1987.

A.A. Beilinson, “Polylogarithm and Cyclotomic Elements”, typewritten
preprint, MIT 1989.

A.A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, in B.
Teissier, J.L. Verdier, “Analyse et Topologie sur les Espaces singuliers”
(I), Astérisque 100, Soc. Math. France 1982.

A.A. Beilinson, P. Deligne, “Motivic Polylogarithm and Zagier Conjec-
ture”, preprint, 1992.

A.A. Beilinson, P. Deligne, “Polylogarithms and Regulators — the very
preliminary version”, handwritten preprint, 1991.

A.A. Beilinson, P. Deligne, “Interprétation motivique de la conjecture
de Zagier reliant polylogarithmes et régulateurs”, in U. Jannsen, S.L.
Kleiman, J.-P. Serre (eds.), “Motives”, Proceedings of the Research Con-
ference on Motives held July 20 — August 2, 1991, in Seattle, Washington,
Proc. of Symp. in Pure Math. 55, Part 1T, AMS 1994, pp. 97-121.

A.A. Beilinson, A. Levin, “The Elliptic Polylogarithm”, in U. Jannsen,
S.L. Kleiman, J.—P. Serre, “Motives”, Proceedings of the Research Con-
ference on Motives held July 20 — August 2, 1991, in Seattle, Washington,
Proc. of Symp. in Pure Math. 55, Part 1T, AMS 1994, pp. 123-190.

A.A. Beilinson, A. Levin, “Elliptic Polylogarithm” | typewritten preprint,
MIT 1992.

S. Bloch, “Application of the dilogarithm function in algebraic K-theory
and algebraic geometry”, in Proc. Int. Symp. Alg. Geometry, Kyoto, 1977,
pp. 103-115.

S. Bloch, K. Kato, “L-functions and Tamagawa Numbers of Motives”,
in P. Cartier et al. (eds.), “The Grothendieck Festschrift”, Volume I,
Birkh&user 1990, pp. 333-400.

A. Borel, “Stable real cohomology of arithmetic groups”, Ann. Sc. Ec.
Norm. Sup. 7 (1974), pp. 235-272.

A. Borel, “Cohomologie de SL,, et valeurs de fonctions zéta”, Ann. Scuola
Normale Superiore di Pisa 4 (1977), pp. 613-636.

A. Borel et al., “Algebraic D-modules”, Perspectives in Mathematics 2,
Academic Press 1987.

A K. Bousfield, D.M. Kan, “Homotopy Limits, Completions and Local-
izations”, LNM 304, Springer 1972.

K.S. Brown, “Abstract homotopy theory and generalized sheaf cohomolo-
gy”, Trans. AMS 186 (1974), pp. 419-458.

K.S. Brown, S.M. Gersten, “Algebraic K—theory as generalized sheaf co-
homology”, in Alg. K—Theory I, LNM 341, pp. 266-292, Springer 1973.
W. Browder, “Algebraic K—theory with coefficients Z/p”, in M.G. Bar-
ratt, M.E. Mahowald (eds.), “Geometric Applications of Homotopy The-
ory I”, Proceedings Evanston 1977, LNM 657, Springer—Verlag 1978, pp.
40-84.

DOCUMENTA MATHEMATICA 3 (1998) 27-133



130

[D1]

[D2]
[D3]

[D4]

[D3]

[Den]
[DwF]
[E]
[EGATI]
[EL]
[GH]
[G]
[GSol]

[GSo2]
[Goelr]

ANNETTE HUBER, JORG WILDESHAUS

P. Deligne, “Equations Différentielles & Points Singuliers Réguliers”, LNM
163, Springer—Verlag 1970.

P. Deligne, “Théorie de Hodge, IT”, Publ. Math. THES 40 (1971), pp. 5-57.
P. Deligne, “Théorie de Hodge, III”, Publ. Math. THES 44 (1974), pp.
5-717.

P. Deligne, “La Conjecture de Weil. IT”, Publ. Math. THES 52 (1981), pp.
313-428.

P. Deligne, “Le Groupe Fondamental de la Droite Projective Moins Trois
Points”, in Y. Thara, K. Ribet, J.—P. Serre, “Galois Groups over @, Pro-
ceedings of a Workshop held March 23-27, 1987, at the MSRI, Berkeley,
California, Springer 1989, pp. 79-297.

C. Deninger, “Higher regulators and Hecke L-series of imaginary quadratic
fields. IT”, Ann. of Math. 132 (1990), pp. 131-158.

W.G. Dwyer, E.M. Friedlander, “Algebraic étale K-theory”, Trans. Am.
Math. Soc. 292, no. 1 (1985), pp. 247-280.

H. Esnault, “On the Loday Symbol in the Deligne-Beilinson Cohomolo-
gy”, K-Theory 3 (1989), pp. 1-28.

A. Grothendieck, J. Dieudonné, “Eléments de géométrie algébrique 117,
Publ. Math. THES 8 (1961).

T. Ekedahl, “On the Adic Formalism”, in P. Cartier et al. (e ds.), “The
Grothendieck Festschrift”, Volume II, Birkh&user 1990, pp. 197-218.

J. Gamst, K. Hoechsmann, “Products in sheaf cohomology”, To6hoku
Math. J. 22 (1970), pp. 143-162.

H. Gillet, “Riemann—Roch theorems for higher algebraic K—theory”, Adv.
in Math. 40 (1981), pp. 203-289.

H. Gillet, C. Soulé, “Filtrations on higher algebraic K—theory”, unpub-
lished; revised version in preparation.

H. Gillet, C. Soulé, “Descent, Motives and K—Theory”, Preprint 1995.
P.G. Goerss, J.F. Jardine, “Localization theories for simplicial
presheaves”, preprint, 1997.

A.B. Goncharov, “Polylogarithms and Motivic Galois Group”, in U.
Jannsen, S.L. Kleiman, J.—P. Serre, “Motives”, Proceedings of the Re-
search Conference on Motives held July 20 — August 2, 1991, in Seattle,
Washington, Proc. of Symp. in Pure Math. 55, Part II, AMS 1994, pp.
43-96.

M. Gros, “Régulateurs syntomiques et valeurs de fonctions L p-adiques.
I1”, Invent. Math. 115, pp. 61-79 (1994).

R.M. Hain, S. Zucker, “Unipotent variations of mixed Hodge structure”,
Inv. math. 88 (1987), pp. 83-124.

R. Hartshorne, “Algebraic Geometry”, Graduate Texts in Mathematics
52, Springer Verlag 1977.

A. Huber, “Mixed Motives and Their Realization in Derived Categories”,
LNM 1604, Springer 1995.

A. Huber, “Mixed Perverse Sheaves for Schemes over Number Fields”,
Comp. Math. 108 (1997), pp. 107-121.

DOCUMENTA MATHEMATICA 3 (1998) 27-133



[HW]

[Jeu]
[Jnl]

[In2]

[Jn3]

[Jr1]

912
913
a4
[Kn]

[KNF]

[Kr]

[Lo]

[M]
[Mi]
[N]

CrassicaL MoTIvic POLYLOGARITHM 131

A. Huber, J. Wildeshaus, “The Classical Polylogarithm”, Abstract of a
series of lectures given at the workshop on polylogs in Essen, May 1-4,
1997, available under http://www.math.uiuc.edu/K-theory/229.

R. de Jeu, “Zagier’s Conjecture and Wedge Complexes in Algebraic K-
theory”, Comp. Math. 96 (1995), pp. 197-247.

U. Jannsen, “Continuous étale cohomology”, Math. Ann. 280 (1988), pp.
207-245.

U. Jannsen, “On the l-adic Cohomology of Varieties over Number Fields
and its Galois Cohomology”, in Y. Thara, K. Ribet, J.-P. Serre, “Galois
Groups over @, Proceedings of a Workshop held March 23-27, 1987, at
the MSRI, Berkeley, California, Springer 1989, pp. 315-360.

U. Jannsen, “Mixed Motives and Algebraic K— Theory”, LNM 1400,
Springer—Verlag 1990.

J.F. Jardine, “Simplicial objects in a Grothendieck topos”, in “Applica-
tions of Algebraic K—theory to Algebraic Geometry and Number Theory”,
Proceedings of a Summer Research Conference held June 12-18, 1983, in
Boulder, Colorado, Contemp. Math., vol. 55, Part I, AMS, Providence,
pp. 193-239.

J.F. Jardine, “Simplicial presheaves”, Journal of Pure and Appl. Algebra
47 (1987), pp. 35-87.

J.F. Jardine, “Stable homotopy theory of simplicial presheaves”, Can. J.
Math. 39 (1987), pp. 733-747.

J.F. Jardine, “Generalized Etale Cohomology Theories”, Progress in
Mathematics 146, Birkhduser—Verlag 1997.

D. Kan, “Onc. s. s. complexes”, Am. Journ. Math. 79 (1957), pp. 449-476.
M. Kolster, T. Nguyen Quang Do, V. Fleckinger, “Twisted S-units, p-adic
class number formulas, and the Lichtenbaum conjectures”, Duke Math. J.
84 (1996), pp. 679-717.

C. Kratzer, “A—strucure en K—théorie algébrique”, Comm. Math. Helv.
55 (1980), no 2, pp. 233-254.

M. Kashiwara, “A study of variation of mixed Hodge structure”, Publ.
RIMS, Kyoto Univ. 22 (1986), pp. 991-1024.

M. Levine, “Lambda-operations, K-theory and motivic cohomology”, in
V.P. Snaith (ed.), “Algebraic K-theory”, papers from the 2nd Great Lakes
conference, Canada, March 1996, in memory of R.W. Thomason, Provi-
dence, RI, AMS, Fields Inst. Comm. 16 (1997), pp. 131-184.

J.-L. Loday, “K-théorie algébrique et représentations de groupes”, Ann.
scient. Ec. Norm. Sup., 4e série, t. 9 (1976), pp. 309-377.

P. May, “Simplicial objects in algebraic topology”, Van Nostrand 1967.
J.S. Milne, “Arithmetic Duality theorems”, Academic Press 1986.

J. Nekovar, “Beilinson’s Conjectures”, in U. Jannsen, S.L. Kleiman, J.—P.
Serre, “Motives”, Proceedings of the Research Conference on Motives held
July 20 — August 2, 1991, in Seattle, Washington, Proc. of Symp. in Pure
Math. 55, Part I, AMS 1994, pp. 537-570.

DOCUMENTA MATHEMATICA 3 (1998) 27-133



132

[Neu]

[Rp]

[S1]
[52]

[S3]

[Sch]

[SGA1]

[SGA4,IT]

[SGA4,ITI]

[Soul]

[Sou2]

[Sou3]

ANNETTE HUBER, JORG WILDESHAUS

J. Neukirch, “The Beilinson Conjecture for Algebraic Number Fields”, in
M. Rapoport, N. Schappacher, P. Schneider (eds.), “Beilinson’s Conjec-
tures on Special Values of L-Functions”, Perspectives in Mathematics 4,
Academic Press 1988, pp. 193-247.

S. Oka, “Multiplications on the Moore Spectrum”, Memoirs of the Fac. of
Sciences, Kyushu Univ., Ser. A, Vol. 38, No. 2 (1984), pp. 257-276.

D. Quillen, “Homotopical Algebra”, LNM 43, Springer 1967.

D. Quillen, “Higher Algebraic K—Theory”, in “Alg. K—Theory I”, LNM
341, Springer 1973 (1988), pp. 207-245.

D. Ramakrishnan, “Regulators, algebraic cycles, and values of L-
functions”, in M. R. Stein, R. Keith Dennis (eds.), “Algebraic K-Theory
and Algebraic Number Theory”, Proc. of a Seminar held at the East-West
Center in Honolulu, Hawaii on Jan. 12-16, 1987, Cont. Math. 83 (1988),
pp. 183-310.

M. Rapoport, “Comparison of the regulators of Beilinson and of Borel”,
in M. Rapoport, N. Schappacher, P. Schneider (eds.), “Beilinson’s Con-
jectures on Special Values of L-Functions”, Perspectives in Mathematics
4, Academic Press 1988, pp. 169-192.

Morihiko Saito, “Modules de Hodge Polarisables”, Publ. RIMS, Kyoto
Univ. 24 (1988), pp. 849-995.

Morihiko Saito, “Mixed Hodge Modules”, Publ. RIMS, Kyoto Univ. 26
(1990), pp. 221-333.

Morihiko Saito, “Hodge Conjecture and Mixed Motives. I”, in J.A. Carl-
son, C.H. Clemens, D.R. Morrison, “Complex Geometry and Lie Theory”,
Proc. of Symp. in Pure Math. 53, AMS 1991, pp. 283-303.

A.J. Scholl, “Height pairings and Special Values of L—functions”, in U.
Jannsen, S.L. Kleiman, J.—P. Serre, “Motives”, Proceedings of the Re-
search Conference on Motives held July 20 — August 2, 1991, in Seattle,
Washington, Proc. of Symp. in Pure Math. 55, Part I, AMS 1994, pp.
571-598.

A. Grothendieck et al., “Revetements Etales et Groupe Fondamental”,
LNM 224, Springer—Verlag 1971.

M. Artin, A. Grothendieck, J.I.. Verdier et al., “Théorie des Topos et
Cohomologie Etale des Schémas”, Tome 2, LNM 270, Springer—Verlag
1973.

M. Artin, A. Grothendieck, J.I.. Verdier et al., “Théorie des Topos et
Cohomologie Etale des Schémas”, Toéme 3, LNM 305, Springer—Verlag
1973.

C. Soulé, “K—théorie des anneaux d’entiers de corps de nombres et coho-
mologie étale”, Inv. Math. 55 (1979), pp. 251-295.

C. Soulé, “On higher p-adic regulators”, in E. M. Friedlander, M. R.
Stein (eds.), “Algebraic K—theory”, Proceedings Evanston 1980, LNM
854, Springer—Verlag 1981.

C. Soulé, “The rank of étale cohomology of varieties over p—adic and
number fields”, Comp. Math. 53 (1984), pp. 113-131.

DOCUMENTA MATHEMATICA 3 (1998) 27-133



[Soud]
[Sou5]

[T]

[We]

[Wi]
[WiI]
[WiITI]

[WiIV]

CrassicaL MoTIvic POLYLOGARITHM 133

C. Soulé, “Operations en K-théorie algébrique”, Can. Jour. Math. 37
(1985), no 3, pp. 488-550.

C. Soulé, “Eléments cyclotomiques en K—théorie”, Astérisque 147-148
(1987), pp. 225-257.

G. Tamme, “The Theorem of Riemann-Roch”, in M. Rapoport, N. Schap-
pacher, P. Schneider (eds.), “Beilinson’s Conjectures on Special Values of
L-Functions”, Perspectives in Mathematics 4, Academic Press 1988, pp.
103-168.

C. Weibel, “Etale Chern classes at the prime 2”, in P.G. Goerss and J.F.
Jardine (eds.), “Algebraic K-Theory and Algebraic Topology”, Proc. Lake
Louise 1991, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 407, Kluwer
Acad. Publ. 1993, pp. 249-286.

J. Wildeshaus, “Realizations of Polylogarithms”, LNM 1650, Springer-
Verlag 1997.

J. Wildeshaus, “Mixed structures on fundamental groups”, in [Wi], pp.
23-76.

J. Wildeshaus, “Polylogarithmic Extensions on Mixed Shimura varieties.
Part I: Construction and basic properties”, in [Wi], pp. 141-197.

J. Wildeshaus, “Polylogarithmic Extensions on Mixed Shimura varieties.
Part IT: The classical polylogarithm”, in [Wi], pp. 199-248.

Annette Huber

Math. Institut

Einsteinstr. 62

48149 Miinster

Germany
huber@math.uni-muenster.de

Jorg Wildeshaus

Math. Institut

Einsteinstr. 62

48149 Miinster

Germany
wildesh@math.uni-muenster.de

DOCUMENTA MATHEMATICA 3 (1998) 27-133



134

DOCUMENTA MATHEMATICA 3 (1998)



