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Asymptotic growth patterns for class field towers

Arindam Bhattacharyya, Vishnu Kadiri, and Anwesh Ray

Abstract. Let p be an odd prime number. We study growth patterns associated with finitely ramified
Galois groups considered over the various number fields varying in a Zp-tower. These Galois groups
can be considered as non-commutative analogues of ray class groups. For certain Zp-extensions in
which a given prime above p is completely split, we prove precise asymptotic lower bounds. Our
investigations are motivated by the classical results of Iwasawa, who showed that there are growth
patterns for p-primary class numbers of the number fields in a Zp-tower.

1. Introduction

1.1. Motivation from Iwasawa theory

Let L be a number field and p be an odd prime number. Choose an algebraic closure xL
of L. Let Hp.L/ be the maximal abelian unramified p-extension of L, and let Ap.L/
denote the Galois group Gal.Hp.L/=L/. By class field theory, Ap.L/ is naturally isomor-
phic to the p-primary part of the class group of L. Setting hp.L/ WD #Ap.L/, we refer to
hp.L/ as the p-class number of L. We set Zp to denote the ring of p-adic integers. A Zp-
extension of a number field L is an infinite Galois extension L1=L, such that Gal.L1=L/
is isomorphic to Zp (as a topological group). Given a Zp-extension L1=L, and n 2 Z�0,
we set Ln=L to be the extension such that Ln � L1 and ŒLn W L� D pn. The field Ln is
the n-th layer, and we obtain a tower of number fields

L D L0 � L1 � � � � � Ln � LnC1 � � � � :

Let en 2 Z�0 be such that pen D hp.Ln/. In his seminal work, Iwasawa [6] showed that
there are constants �; � 2 Z�0 and � 2 Z, such that for all large enough values of n, one
has that en D pn�C n�C �.

Thus, Iwasawa’s results show that there are interesting growth patterns for p-class
numbers in certain infinite towers of number fields. These results motivate the study
of asymptotic growth properties of p Hilbert class field towers along Zp-extensions.
Throughout, p will be a fixed odd prime number, and let L1=L be a Zp-extension.
Set F .Ln/ to denote the maximal unramified pro-p extension of Ln, and set Gn WD
Gal.F .Ln/=Ln/. We identify the abelianization of Gn with

Ap.Ln/ D Gal
�
Hp.Ln/=Ln

�
:
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The field F .Ln/ contains a p Hilbert class field tower over Ln. In greater detail, for
j 2 Z�0, define H .j /

p .Ln/ inductively as follows:

H .0/
p .Ln/ WD Ln;

H .1/
p .Ln/ WD Hp.Ln/;

H .j /
p .Ln/ WD Hp

�
H .j�1/
p .Ln/

�
for j � 2:

In this way, we obtain a tower of p-extensions of Ln whose union is equal to F .Ln/. The
field F .Ln/ is infinite if and only ifH .j /

p .Ln/¨H
.jC1/
p .Ln/ for all j � 1. These Hilbert

class field towers, when viewed along the Zp-extension, are represented by the following
diagram:
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:::
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Iwasawa studied asymptotic growth patterns for the degrees ŒHp.Ln/ W Ln� considered
along the tower that is the second column (from the left margin) in the above diagram. In
the spirit of Iwasawa theory, we consider natural growth questions for the pro-p groups
Gn as n!1. We define the exponential growth number �.G/ of a finitely generated pro-
p group G, which is a natural invariant associated with its Hilbert series. In this context,
there is a natural analogy with the Hilbert series of an algebraic variety. Let �.G/ denote
the mod-p Iwasawa algebra associated to G, defined as the inverse limit lim

 �U
FpŒG=U �,

where U ranges over all finite index normal subgroups of G. Let IG be the augmentation
ideal of �.G/, and for n � 0, set cn.G/ WD dimFp .I

n
G=I

nC1
G /, where it is understood that

c0.G/ WD 1. Let
H.GI t / D

X
n�0

cn.G/t
n

denote the Hilbert series associated to G, cf. Definition 2.1. If G is finite, then cn.G/ D 0
for large enough values of n. When G is a p-adic analytic group of dimension d > 0, we
find that cn.G/ D O.nd / (cf. [1, Section 12.3, p. 307]). On the other hand, if a group G
has infinite rank, the numbers cn.G/ grow at an exponential rate (cf. Proposition 12.17
of loc. cit.). In practice, the Galois groups that arise from infinite p Hilbert class field
towers may not be p-adic analytic groups. For many of the Galois groups constructed in
this article, the numbers cn.G/ increase at an exponential rate. The radius of convergence
of H.GI t / is given by

RG D �.G/
�1;

where �.G/WDlim supn!1jcn.G/j
1
n. It is understood that RG WD1 when �.G/D0, and in

this case,H.G;t/ is an entire function.The constant �.G/ measures the exponential growth
of subgroups in the Zassenhaus filtration ofG. It is clear that if �.G/ > 1, thenG is not an
analytic pro-p group. It is shown, in various contexts that pro-p Hilbert class field towers
are infinite via an application of the Golod–Shafarevich–Vinberg criterion (cf. [4, Theo-
rem 1.2]). This strategy is developed and employed in [4,5,7,8,15,16]. The class of pro-p
groups for which it can be shown that �.G/ > 1, via the Golod–Shafarevich–Vinberg
criterion have special properties, and are known as Golod–Shafarevich groups (cf. Defini-
tion 2.4). We refer to [2] for an introduction to the theory of Golod–Shafarevich groups.

Given a number field L, its root discriminant is defined to be D1=n
L , where DL is its

absolute discriminant, and n D ŒL W Q�. It is an old question as to whether there exists
an infinite tower of number fields, unramified away from a finite set of primes, for which
the root discriminant is bounded. Since the root discriminant is constant in unramified
extensions, the above question is related to the constants of Martinet [11] and Odlyzko’s
bounds [14]. In the number field extensionsL=Ln such thatL� F .Ln/, the root discrim-
inant remains bounded. Hajir and Maire [3] construct tamely ramified Golod–Shafarevich
Galois groups and are able to improve upon Martinet’s constants. These root discriminant
bounds are further refined by Hajir, Maire and Ramakrishna in [5]. One is thus interested
in constructing infinite unramified Galois pro-p groups G, such that �.G/ is large. In this
paper, we study the following question.
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Question 1.1. Let L be a number field and p be a prime number. Given a Zp-extension
L1=L, what can one say about the growth of �.Gn/, as n!1?

1.2. Main results

We consider a variant of the above question, for certain natural Zp-extensions in which
one of the primes above p is infinitely split. For k � 0, let F Œk�.Ln/ be the maximal pro-p
extension of Ln for which

• all primes v−p are unramified,

• all decomposition groups at primes vjp are abelian,

• for all primes vjp, every element of the decomposition group of v has order divid-
ing pk .

Note that F .Ln/ � F Œ0�.Ln/. For k � 1, there is finite ramification in the extension
F Œk�.Ln/=Ln. As a consequence, there is an intermediate extension Ln�L0n�F Œk�.Ln/,
such that L0n=Ln is a finite extension, and F Œk�.Ln/=L0n is unramified (cf. the proof of
[4, Proposition 1.5]). In particular, for all number fields contained in F Œk�.Ln/, the root
discriminant is bounded. We shall set G Œk�.Ln/ WD Gal.F Œk�.Ln/=Ln/, and �Œk�.Ln/ WD
�.G Œk�.Ln//.

Let L be a number field extension of Q and let p be an odd prime. Let r1 (resp. r2) be
the number of real embeddings (resp. complex embeddings) of L. Let p D p1;p2; : : : ;pg
be the primes of L that lie above p, and assume that g � 2. Set ei WD e.pi=p/ (resp.
fi WD f .pi=p/) to denote the ramification index (resp. inertial degree) of pi over p. Note
that

di WD ŒLpi W Qp� D eifi :

Let Ui WD O�Lpi
and U .1/i the principal local units in Ui . We set U to denote the productQg

iD2 U
.1/
i , and xE to denote the p-adic closure of the image of the group of global units

O�L in U. Setting ı WD rankZp .
xE/, we note that ı � rank O�L D r1 C r2 � 1. We set

m WD rankZp .U= xE/ � 1 D ŒL W Q� � d1 � ı � 1;

and assume that m � 1. It follows from a standard application of global class field theory
that there exists a Zp-extension L1=L in which p is completely split. Note that when L is
totally imaginary, the conditionm� 1 is automatically satisfied when ŒL WQ�� 2.d1C 1/.

Theorem 1.2. Assume that the following conditions are satisfied

(1) p is odd and there are g > 1 primes of L that lie above p,

(2) L contains �p , the p-th roots of unity,

(3) ŒL W Q� � 2.d1 C 1/,

(4) .ŒL W Q�C 2/2 > 8.
Pg
iD2 d

2
i /.

Then, there exists a Zp-extension L1=L in which p1 is totally split. Moreover, there exists
a constant C > 0 (independent of n and k) and n0 2 Z�0, such that for all n � n0 and
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k � 1, we have that
�Œk�.Ln/ � Cp

n:

Let �.L1=L/ denote the Iwasawa �-invariant for the Zp-extension L1=L. Let T1 be
the number of primes of L that lie above p, that are infinitely decomposed in L1. The
constant C can be chosen to be any value such that

0 < C <
2
�Pg

iD2 d
2
i

��
2T1 C ŒL W Q�C 2�.L1=L/

� :
Remark 1.3. Following the above result, we make the following remarks.

• We observe that the hypotheses imply that

2
�Pg

iD2 d
2
i

��
2T1 C ŒL W Q�C 2�.L1=L/

� < � ŒL W Q�C 2
4

�
:

• Note that condition (2) implies that L is totally imaginary and (3) implies that m � 1.

We prove Theorem 1.2 by adapting the strategy of Hajir, Maire and Ramakrishna [4].
The following result illustrates Theorem 1.2.

Corollary 1.4. Let p � 3 and ` � 11 be distinct primes and set L WD Q.�p`/. Let p be
any prime of L that lies above p. Assume that there are g D .` � 1/ primes of L that lie
above p, i.e., `� 1 mod p. Then, there exists a Zp-extension L1=L in which p is totally
split. Let T1 be the number of primes of L that lie above p, that are infinitely decomposed
in L1. For any constant

0 < C <
2.` � 2/.p � 1/2�

2T1 C .p � 1/.` � 1/C 2�.L1=L/
� ;

we have that
�Œk�.Ln/ � Cp

n

for all k � 1, and all large enough values of n.

We also define another notion measuring the sizem.G/ of a Golod–Shafarevich group
G (cf. Definition 2.6). We prove an analogous result for the growth of the numbers

mŒk�.Ln/ WD m
�
G Œk�.Ln/

�
;

cf. Theorem 3.4.

1.3. Organization

Including the introduction, the manuscript consists of three sections. In Section 2, we
introduce preliminary notions. In greater detail, we develop the Golod–Shafarevich theory
of pro-p groups. We prove an explicit criterion (cf. Proposition 2.4) which gives an explicit
lower bound for the exponential growth number �.G/ for a Golod–Shafarevich group G.
In Section 3, we apply the results from Section 2 to prove Theorem 1.2, Corollary 1.4 and
Theorem 3.4.
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2. Pro-p groups and their Hilbert series

We review some preliminaries and set up some basic notation in this section. Throughout,
p shall be an odd prime. LetG be a finitely generated pro-p group, set�.G/ to denote the
completed group algebra of G over Fp . More precisely, �.G/ is defined to be the inverse
limit

�.G/ WD lim
 �
U

FpŒG=U �;

where U runs over all finite index normal subgroups ofG. We refer to�.G/ as the mod-p
Iwasawa algebra of G. Many properties of the group G are captured by algebraic prop-
erties of �.G/. We consider the Hilbert series associated with �.G/. Given a normal
subgroup U of G, there is a natural map �U W G ! FpŒG=U �, which sends g 2 G to the
element Ng � 1. Here, Ng is the congruence class of g modulo U . The map � W G ! �.G/ is
the inverse limit � WD lim

 �U
�U . The augmentation map ˛ W�.G/! Fp maps each element

of the form �.g/ to 1. We shall, by abuse of notation, simply let g 2 �.G/ simply denote
the element �.g/. Set IG to denote the augmentation ideal of �.G/, i.e., the kernel of the
augmentation map. For n � 1, �.G/=I nG is a finite dimensional Fp-vector space.

Definition 2.1. For n� 1, let cn.G/ WD dimFp .I
n
G=I

nC1
G /, and set c0.G/ WD 1. The Hilbert

series H.GI t / is a formal power series defined by H.GI t / WD
P
n�0 cn.G/t

n. Setting
�.G/ WD lim supn!1 jcn.G/j

1
n , we note that the radius of convergence of H.GI t / is

given by

RG WD

´
�.G/�1 if �.G/ <1I

0 if �.G/ D1:

Given x 2 G such that x ¤ 1, the depth of x is defined as follows

!G.x/ WD max¹n j x � 1 2 I nGº:

We set !G.1/ WD 1.

Definition 2.2. The Zassenhaus filtration is defined as follows

Gn WD ¹g 2 G j !G.g/ � nº:

The sequenceGn is a sequence of open normal subgroups ofG. The quotientGn=GnC1
is a finite dimensional Fp vector space, set an.G/ WD dimFp .Gn=GnC1/. The quantity
�.G/ measures the order of exponential growth of the quotients .I nG=I

nC1
G / as n!1.

These numbers are related to the growth of groups in the Zassenhaus filtration. There is
an explicit relationship between the numbers ¹an.G/º and ¹cn.G/º, established by Mináč,
Rogelstad and Tân [12].

Assume that G is a finitely presented pro-p group, and let

d.G/ WD dimFp H
1.G;Fp/;

r.G/ WD dimFp H
2.G;Fp/:
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Remark 2.1. We identify H 1.G;Fp/ with Hom. G
ŒG;G�Gp

;Fp/, and thus,

d.G/ D dimFp

�
G

ŒG;G�Gp

�
:

If G is a quotient of G, then, it is clear that d.G / � d.G/.

Consider a minimal presentation

1! R! F
'
�! G ! 1 (2.1)

of G. Here, F D h�1; : : : ; �d i is a free pro-p group generated by d D d.G/ elements.
The subgroup R of F is the normal subgroup h�1; : : : ; �riNorm generated by r D r.G/

elements. Given a choice of minimal presentation of G, we define the associated Golod–
Shafarevich polynomials. Let �.F / be the mod-p Iwasawa algebra associated to F , and
IF be the augmentation ideal of �.F /. By a theorem of Lazard [10], the algebra �.F / is
isomorphic to the algebra of power series Fphhu1; : : : ; ud ii. Here ui is identified with the
element .�i � 1/. The augmentation ideal IF is generated by u1; : : : ; ud . Let !F be the
depth function on F , defined by setting

!F .x/ WD max¹n j x � 1 2 I nF º;

for x ¤ 1, and !F .1/ WD 1. The map ' induces a surjection �.F / ! �.G/, whose
kernel we denote by J . Identify�.G/ with the quotient�.F /=J and IG with IF =J . The
depth filtration !G is related to !F as follows

!G.x/ D max
®
!F .y/ j '.y/ D x

¯
;

cf. [10, Lemma 3.4 and Theorem 3.5, pp. 204–205] for further details.

Proposition 2.2. The depth function !F W F ! Z�1 [ ¹1º and associated filtration
¹Gnºn satisfies the following properties

(1) for x 2 F , !F .xp/ � p!F .x/. Therefore, if x 2 Gn, then, xp 2 Gnp .

(2) For x 2 Gn and y 2 Gm, one has Œx; y� 2 GnCm.

(3) For x; y 2 G, we have that !F .xy/ � min.!F .x/; !F .y//.

Proof. The above mentioned result is [5, Propositions 1 and 2], also see [9, Section 7.4].

Definition 2.3. The Golod–Shafarevich polynomial associated with the minimal presen-
tation (2.1) is defined as follows

P.GI t / WD 1 � dt C

rX
iD1

t!F .�i /:

Note that since the filtration is minimal, the depth !F .�i / � 2, cf. [4, p. 3, l.–9].
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Theorem 2.3 (Vinberg’s criterion). LetG be a pro-p group and letH.GI t / be the Hilbert
series associated to G. Choose a minimal presentation (2.1) of G and let P.GI t / be the
associated Golod–Shafarevich polynomial. Recall that RG is the radius of convergence
of H.GI t /, and set R0G WD min¹1; RGº. Then, for any value t 2 .0; R0G/, the following
inequality is satisfied

H.GI t /P.GI t / � 1:

Proof. This result is well known. We refer to [2, Theorem 2.1] and [17] for a proof of the
above statement.

The next result shows that if P.GI t / takes a negative value t0 in the interval .0; 1/,
then, �.G/ > 1. Furthermore, it gives us a lower bound for �.G/, and can therefore be
viewed as a refinement of the Golod–Shafarevich–Vinberg criterion (cf. [4, Theorem 1.2]).

Proposition 2.4. Suppose that for some t0 2 .0; 1/, the value P.GI t0/ is negative. Then,
the order of growth satisfies the lower bound �.G/ � 1

t0
.

Proof. Let RG be the radius of convergence of the Hilbert series H.GI t / and set R0G WD
min¹1; RGº. By definition, the coefficients of H.GI t / are all non-negative. Then, for
t 2 .0; R0G/, the series H.GI t / converges absolutely to a positive value. By Vinberg’s
criterion, P.GI t /H.GI t / � 1 for all t 2 .0; R0G/. Since P.GI t0/ < 0, it follows that
H.GI t / does not converge absolutely at t D t0. In other words, t0 lies outside the domain
of convergence. Therefore, t0 � R0G . Since t0 < 1, it follows that RG D R0G < 1 and
therefore, t0 � RG D �.G/�1. Therefore, we conclude that �.G/ � 1

t0
.

Definition 2.4. A pro-p group G is said to be a Golod–Shafarevich group if for some
minimal presentation

1! R! F
'
�! G ! 1;

there is a value t0 2 .0; 1/ so that P.GI t0/ < 0. Proposition 2.4 shows that if G is a
Golod–Shafarevich group withP.GI t0/ < 0, then the order of exponential growth satisfies
�.G/� t�10 >1. In particularG is infinite since the numbers cn.G/ grow at an exponential
rate as n!1.

At this point, we introduce a new definition which measures the size of a Golod–
Shafarevich group. Let G be a Golod–Shafarevich group and

1! R! F
'
�! G ! 1

be a minimal presentation of G. We consider quotients G0 of G such that d.G0/ D d.G/.
Suppose that

G0 D G=hx1; : : : ; xmi
Norm:

Then, following [4, p. 4, ll. 10–17], we get a new minimal presentation as follows. Lift
each xi to yi 2 F , and let R0 D h�1; : : : ; �r ; y1; : : : ; ymiNorm to be the normal subgroup
of F generated by R and the elements y1; : : : ; ym. Since it is assumed that d.G0/ D
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d.G/, this gives a minimal presentation of G0. In particular, note that !F .yi / � 2 for all
i D 1; : : : ; m. Following loc. cit., we say that we have cut the group G by the elements
y1; : : : ; ym. Let '0 W F ! G0 be the composite of ' with the quotient map G ! G0. With
respect to the new presentation

1! R0 ! F
'0

�! G0 ! 1;

we find that for t 2 .0; 1/,

P.G0I t / � 1 � d.G/t C r.G/t2 C

mX
iD1

t!F .yi /:

Definition 2.5. Let G be a Golod–Shafarevich group, and choose a minimal presentation
forG such that P.GI t / attains a negative value on .0; 1/. We say that a set ¹y1; : : : ; ymº �
F is an admissible cutting datum if !F .yi / � 2 for all i .

Given an admissible cutting datum ¹y1; : : : ; ymº, set xi WD '.yi / and

G0 WD G=hx1; : : : ; xmi
Norm:

Definition 2.6. Let G be a Golod–Shafarevich group, and choose a minimal presentation

M W 1! R! F ! G ! 1

for G such that P.GI t / attains a negative value on .0; 1/. We define mM.G/ to be the
smallest valuem2Z�0 such that there exists an admissible cutting datum ¹y1; : : : ;ymC1º,
such that P.G0I t / � 0 for all t 2 .0; 1/. If no suchm exists, we setmM.G/ WD 1. We set

m.G/ WD min
®
mM.G/ jM

¯
;

where the minimum is taken over all minimal presentations M of G.

Remark 2.5. We note that the definition of m.G/ does not, to our knowledge, appear in
the literature prior to this.

Thus, for any admissible cutting datum ¹y1; : : : ; ykº, with k � m.G/, the associated
quotient G0 is a Golod–Shafarevich group, and thus in particular is infinite. Like �.G/,
the number m.G/ gives one a measure of the size of a Golod–Shafarevich group G.

3. Growth asymptotics for split prime Zp-extensions

Let L be a number field which satisfies the conditions of Theorem 1.2. In this section, Sp
(resp. S1) denote the primes of L that lie above p (resp.1). Set S to denote the union.
LetL=L be a Galois number field extension and let S.L/ (resp. Sp.L/) be the set of places
of L which lie above S (resp. Sp). We shall denote by LS the maximal pro-p algebraic
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extension of L in which the primes w … S.L/ are unramified. We denote by GS .L/ the
Galois group Gal.LS=L/. Set HS .L/ to be the maximal abelian unramified extension of
L in which the places v 2 S.L/ are split. The S class group of L is the Galois group
ClS .L/ WD Gal.HS .L/=L/, and is identified with a quotient of the class group Cl.L/. For
v 2 Sp , let .ev.L=L/; fv.L=L/; gv.L=L// denote the ramification invariants of v in L. In
other words, v splits into gv.L=L/ primes in OL, each with ramification index ev.L=L/.
The quantity fv.L=L/ WD ŒOL=w WOK=v� is independent of the choice of primewjv ofL.
We note that ev.L=L/fv.L=L/gv.L=L/ D ŒL W L�.

Theorem 3.1. Let L=L be a finite Galois extension. With respect to the above notation,
the following relations hold

dimFp H
1
�
GS .L/;Fp

�
D

gX
iD1

gpi .L=L/C
ŒL W Q�

2
C dim

�
ClS .L/˝ Fp

�
;

dimFp H
2
�
GS .L/;Fp

�
D

gX
iD1

gpi .L=L/ � 1C dim
�
ClS .L/˝ Fp

�
:

Proof. The above is a special case of [13, Theorem 10.7.3].

We order the set of primes above p such that pi is infinitely decomposed L1 for
i 2 Œ1; T1� and infinitely ramified for i 2 ŒT1 C 1; T2�. The primes pi for i 2 ŒT2 C 1; g�
are unramified and finitely decomposed in L1. We shall set gi .n/, ei .n/ and fi .n/ to
denote gpi .Ln=L/, epi .Ln=L/ and fpi .Ln=L/ respectively. We find that

g1.n/ D p
n; e1.n/ D f1.n/ D 1;

gi .n/ � p
n for i 2 Œ2; T1�;

gi .n/ D O.1/ for i > T1:

(3.1)

We set

d.n/ WD dimFp H
1
�
GS .Ln/;Fp

�
and r.n/ WD dimFp H

2
�
GS .Ln/;Fp

�
:

Before stating the next result, we clarify some standard conventions with regard to our
notation. Let f; g; h W Z�0 ! R�0 be non-negative functions. We write f .n/ D g.n/C
O.h.n// to mean that there is a positive constant C > 0, independent of n, such that
for all n 2 N, jf .n/ � g.n/j � Ch.n/. We write f .n/ � g.n/CO.h.n// (resp. f .n/ �
g.n/C O.h.n//) to mean that f .n/ � g.n/C Ch.n/ (resp. f .n/ � g.n/ � Ch.n/) for
some absolute constant C > 0.

Corollary 3.2. The following relations hold

d.n/ � pn
�
1C

ŒL W Q�

2

�
;

d.n/ � pn
�
T1 C

ŒL W Q�

2
C �.L1=L/

�
C o.pn/;

r.n/ D O.pn/:
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Proof. It follows from Iwasawa’s theorem that

dimFp

�
Cl.Ln/˝ Fp

�
� �.L1=L/p

n
C o.pn/:

The result follows therefore as an immediate consequence of Theorem 3.1 and (3.1).

For n � 0 and v 2 Sp.Ln/, set nv WD dimFp .L
�
n;v ˝ Fp/. We choose an embedding of

� W xLn ,! xLn;v;

or equivalently, a prime v0 of xLn that lies above v. We shall refer to the decomposition
group of v0jv as the decomposition group at v. The inclusion � prescribes an inclusion of
Gal.xLn;v=Ln;v/ into GLn , and the image of this embedding is identified with the decom-
position group at v. Note that the pro-p completion of the decomposition group at v is
generated by nv elements. For ease of notation, we set di WD ŒLpi W Qp�. We note that
since �p is contained in L,

nv D dimFp .L
�
n;v ˝ Fp/ D ŒLn;v W Qp�C 2;

D
�
ei .n/fi .n/ŒLpi W Qp�C 2

�
if vjpi ;´

D .d1 C 2/ if vjp1;

� .pndi C 2/ if vjpi for i � 2:

(3.2)

Let zLn be the maximal pro-p extension of Ln unramified at all primes v … S.Ln/. Denote
by Ln the maximal pro-p extension of Ln unramified at all primes v … S.Ln/ and such
that for all primes v 2Sp.Ln/, the decomposition group is abelian. For k � 0, let F Œk�.Ln/
be the maximal subfield of Ln in which all the elements in the decomposition groups at
primes v 2 Sp.Ln/ have order dividing pk . It is thus understood that F Œ0�.Ln/ is the
maximal unramified pro-p extension of Ln in which all primes v 2 S.Ln/ are completely
split. We have the following containments

Ln � F Œ0�.Ln/ � F Œ1�.Ln/ � � � � � F Œk�.Ln/ � F ŒkC1�.Ln/ � � � � � Ln �
zLn:

Set zGn, Gn and G
Œk�
n D G Œk�.Ln/ denote the Galois groups Gal. zLn=Ln/, Gal.Ln=Ln/ and

Gal.F Œk�.Ln/=Ln/ respectively. We begin with a minimal filtration

1! R! F
'
�! zGn ! 1 (3.3)

of zGn. The group Gn is obtained from zGn upon cutting by the commutators of the genera-
tors of all decomposition groups for primes v 2 Sp.Ln/. In greater detail, for each prime
v 2 Sp.Ln/, let z.v/1 ; : : : ; z

.v/
nv be a set of elements in F mapping to a set of generators of

the decomposition group at v. For 1� i < j � nv , we let z.v/i;j 2 F denote the commutator

Œz
.v/
i ; z

.v/
j �. It follows from Proposition 2.2 that

!.z
.v/
i;j / � !.z

.v/
i /C !.z

.v/
j / � 2: (3.4)



A. Bhattacharyya, V. Kadiri, and A. Ray 152

We represent Gn as the quotient

Gn D
zGn˝

'.z
.v/
i;j / j 1 � i < j � nv; v 2 Sp.Ln/

˛Norm ;

and we obtain a new presentation

1! R0 ! F ! Gn ! 1; (3.5)

where
R0 D R

˝
z
.v/
i;j j 1 � i < j � nv; v 2 Sp.Ln/

˛Norm
:

Going modulo the pk-th powers of all generators of decomposition groups, we obtain a
presentation

1! R00 ! F ! G Œk�n ! 1; (3.6)

where
R00 D R0

˝
.z
.v/
i /p

k

j 1 � i � nv; v 2 Sp.Ln/
˛Norm

:

Set zPn.t/ WD P . zGn; t /, Pn.t/ WD P .Gn; t /, and P
Œk�
n .t/ WD P .G

Œk�
n ; t / to be the Golod–

Shafarevich polynomials associated with the minimal filtrations (3.3), (3.5) and (3.6)
respectively. It follows from Remark 2.1 that

d.n/ D d. zGn/ � d.Gn/ � d.G
Œk�
n /

for all k � 0. Since we successively cut by elements with depth � 2, we have that

d.n/ D d. zGn/ D d.Gn/ D d.G
Œk�
n /;

(cf. [5, Proposition 5]).

Proposition 3.3. For t 2 .0; 1/, Pn.t/ � 1 �Dnt C Rnt
2, where Dn; Rn are constants

satisfying

Dn � p
n

�
1C

ŒL W Q�

2

�
;

Dn � p
n

�
T1 C

ŒL W Q�

2
C �.L1=L/

�
C o.pn/;

Rn D p
2n

�Pg
iD2 d

2
i

2

�
CO.pn/:

Proof. The group Gn is obtained from zGn by quotienting by the commutators of each of
the decomposition groups at primes v 2 Sp.Ln/. At each prime v, we cut by

�
nv
2

�
elements®

z
.v/
i;j j 1 � i < j � nv; v 2 Sp.Ln/

¯
;
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where we recall that an upper bound for nv is given by (3.2). Furthermore, it follows from
(3.4) that !.z.v/i;j / � 2. Therefore, we find that for t 2 .0; 1/,

Pn.t/ � zPn.t/C

� X
v2Sp.Ln/

�
nv

2

��
t2

� zPn.t/C

�
pn
�
d1 C 2

2

�
C

gX
iD2

�
pndi C 2

2

��
t2

� 1 � d.n/t C

�
r.n/C pn

�
d1 C 2

2

�
C

gX
iD2

�
pndi C 2

2

��
t2

� 1 �Dnt CRnt
2;

where

Dn WD d.n/;

Rn WD r.n/C p
n

�
d1 C 2

2

�
C

gX
iD2

�
pndi C 2

2

�
D p2n

�Pg
iD2 d

2
i

2

�
CO.pn/:

Here, we have invoked the bounds for d.n/ and r.n/ from Corollary 3.2.

Proof of Theorem 1.2. It follows from Proposition 3.3 that for t 2 .0; 1/,

Pn.t/ � 1 �Dnt CRnt
2;

where

Dn � p
n

�
1C

ŒL W Q�

2

�
;

Dn � p
n

�
T1 C

ŒL W Q�

2
C �.L1=L/

�
C o.pn/;

Rn D p
2n

�Pg
iD2 d

2
i

2

�
CO.pn/:

(3.7)

For k � 1, the group G
Œk�
n is obtained from Gn by quotienting by the pk-th powers of the

generators of the decomposition groups at the primes v 2 Sp.Ln/. The total number of
elements we quotient by is

R0n WD
X

v2Sp.Ln/

nv

� pn.d1 C 2/C

gX
iD2

.pndi C 2/ D p
n

 
gX
iD1

di C 2

!
CO.1/:

(3.8)
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Let y1; : : : ; yR0n be the elements that generate the decomposition groups at the primes
v 2 Sp.Ln/. By Proposition 2.2, we have that

!F .y
pk

i / D pk!F .yi / � p
k :

Therefore, for t 2 .0; 1/, we find that

P Œk�
n .t/ � Pn.t/CR

0
nt
pk
� Pn.t/CR

0
nt
p:

Consider the polynomial Q.t/ WD 1 �Dnt C Rnt2 C R0nt
p . Setting tn WD Dn

2Rn
, note

that the quadratic part 1 �Dnt C Rnt2 of Q.t/ attains it minimum value at tn. We find
that

Q.tn/ D 1 �
D2
n

4Rn
C
R0nD

p
n

2pR
p
n

:

We require that Q.tn/ < 0, i.e.,

D2
n > 4Rn C

R0nD
p
n

2p�2R
p�1
n

;

i.e.,
2p�2Rp�1n D2

n > 2
pRpn CR

0
nD

p
n : (3.9)

It follows from the bounds (3.7) that as n!1,

D2
n � Ap

2n;

Rn D Bp
2n
CO.pn/;

(3.10)

where

A D

�
1C

ŒL W Q�

2

�2
;

B D

�Pg
iD2 d

2
i

2

�
:

Note that by (3.8),R0n DO.p
n/. We estimate both sides of the inequality (3.9). Therefore,

we obtain the following asymptotic estimates

2p�2Rp�1n D2
n � 2

p�2Bp�1Ap2pn CO.p.2p�1/n/;

R0nD
p
n D O.p

.pC1/n/;

2pRpn D 2
pBpp2np CO.p.2p�1/n/:

(3.11)

Since 2p � 1 � p C 1, it follows that R0nD
p
n D O.p

.2p�1/n/. By condition (4) of Theo-
rem 1.2,

2p�2Bp�1A

2pBp
D

A

4B
D

�
2C ŒL W Q�

�2
8.
Pg
iD2 d

2
i /

> 1:
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Therefore, for large enough values of n, we have that Q.tn/ < 0. By the estimates in the
statement of Proposition 3.3,

Dn � p
n

�
T1 C

ŒL W Q�

2
C �.L1=L/

�
C o.pn/;

Rn D p
2n

�Pg
iD2 d

2
i

2

�
CO.pn/:

(3.12)

Therefore, in particular, we find that tn 2 .0; 1/ for all large enough values of n. Since
P
Œk�
n .t/ � Q.t/ for all t 2 .0; 1/, it follows that P

Œk�
n .tn/ < 0 for all large enough values

of n, and all values of k � 1.
With respect to notation above,

t�1n D
2Rn

Dn
:

Let C > 0 be a constant for which

C <
2.
Pg
iD2 d

2
i /�

2T1 C ŒL W Q�C 2�.L1=L/
� :

Then, we find that for all large enough values of n, we find that t�1n >Cpn. Since for large
enough values of n, P

Œk�
n .tn/ < 0 and tn 2 .0; 1/, it follows from Proposition 2.4 that

�Œk�.Ln/ � t
�1
n ;

and this proves the result.

Proof of Corollary 1.4. We show that the conditions of Theorem 1.2 are satisfied.

(1) It is assumed that g D ` � 1, in particular, g > 1.

(2) Clearly, L WD Q.�p`/ contains �p .

(3) Note that di D .p � 1/ for all i . Since ` � 5, we find that

ŒL W Q� D .` � 1/.p � 1/ � 2.d1 C 1/ D 2p:

(4) We find that .ŒL WQ�C 2/2 D ..`� 1/.p � 1/C 2/2 > .`� 1/2.p � 1/2 and that

8

� gX
iD2

d2i

�
D 8.` � 2/.p � 1/2:

Clearly, ` � 11 implies that .` � 1/2 > 8.` � 2/, and therefore,

�
ŒL W Q�C 2

�2
> 8

� gX
iD2

d2i

�
:

Next, we set mŒk�.Ln/ WD m.G
Œk�
n /, where we recall that G

Œk�
n WD G Œk�.Ln/. The fol-

lowing result gives an asymptotic lower bound for the numbers mŒk�.Ln/, as n!1.
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Theorem 3.4. Let p be a prime number and L be a number field for which the conditions
of Theorem 1.2 are satisfied. Then, there exists a constant c > 0 (independent of n and k)
and n0 2 Z�0, such that for all n � n0 and k � 1, we have that

mŒk�.Ln/ � cp
n:

Proof. We set mn WD m.G
Œk�
n /, and assume without loss of generality that mn <1. We

obtain a lower bound on mn. Choose a minimal presentation

1! R! F
'
�! G Œk�n ! 1

such that there exists t0 2 .0; 1/ for which P
Œk�
n .t/ WD P.G

Œk�
n ; t0/ < 0 for the associated

Golod–Shafarevich polynomial. Let ¹y1; : : : ; ymC1º � F be an admissible cutting datum.
Note that by definition,!F .yi /� 2 for all i . Setting xi WD '.yi /, denote byG0 the quotient
G
Œk�
n =hx1; : : : ; xmC1i

Norm. By definition, the admissible cutting datum ¹y1; : : : ; ymC1º can
be chosen so that P.G0; t / � 0 for all t 2 .0; 1/. From the proof of Theorem 1.2, we have
that P

Œk�
n .t/ � Q.t/, where Q.t/ WD 1 �Dnt C Rnt2 C R0nt

pk . For t 2 .0; 1/, we find
that

P.G0; t / � P Œk�
n .t/C .mC 1/t2

� Q.t/C .mC 1/t2

D 1 �Dnt C .Rn CmC 1/t
2
CR0nt

pk

� 1 �Dnt C .Rn CmC 1/t
2
CR0nt

p:

In what follows, we set an WD Dn
2.RnCmC1/

. From the estimates (3.12), it follows that an 2
.0; 1/ for large enough values of n. Therefore, assume that n is large enough so that an 2
.0; 1/. Then, P.G0; an/ � 0, i.e.,

1 �Dnan C .Rn CmC 1/a
2
n CR

0
na
p
n � 0:

We find that

1 �Dnan C .Rn CmC 1/a
2
n CR

0
na
p
n

D
2p.Rn CmC 1/

p � 2p�2.Rn CmC 1/
p�1D2

n CR
0
nD

p
n

2p.Rn CmC 1/p
:

This implies that

.Rn CmC 1/ �
D2
n

4
�

R0nD
p
n

2p.Rn CmC 1/p�1

�
D2
n

4
�
R0nD

p
n

2pR
p�1
n

;
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and therefore, we get the inequality

m �
D2
n

4
�Rn �

R0nD
p
n

2pR
p�1
n

� 1: (3.13)

By (3.10),

D2
n � Ap

2n;

Rn D Bp
2n
CO.pn/;

(3.14)

where

A D

�
1C

ŒL W Q�

2

�2
;

B D

�Pg
iD2 d

2
i

2

�
:

Furthermore, by (3.11),

R0nD
p
n

2pR
p�1
n

D O.p.3�p/n/ D O.1/: (3.15)

Therefore, combining (3.13), (3.14) and (3.15), we have that

m � .A=4 � B/p2n � Cpn;

for some large enough constant C > 0. Recall that mn is the minimum value of m over
all possible minimal presentations. We choose a minimal presentation such that mn D m.
It follows from the condition (4) of Theorem 1.2 that A > 4B . Setting c WD A=4� B , the
result follows.
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