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Big mapping class groups with uncountable integral
homology

Martin Palmer and Xiaolei Wu

Abstract. We prove that, for any infinite-type surface S , the integral homology of the closure of the
compactly-supported mapping class group PMapc.S/ and of the Torelli group T .S/ is uncountable
in every positive degree. By our results in [arXiv:2211.07470] and other known computations, such
a statement cannot be true for the full mapping class group Map.S/ for all infinite-type surfaces S .
However, we are still able to prove that the integral homology of Map.S/ is uncountable in all posit-
ive degrees for a large class of infinite-type surfaces S . The key property of this class of surfaces is,
roughly, that the space of ends of the surface S contains a limit point of topologically distinguished
points. Our result includes in particular all finite-genus surfaces having countable end spaces with a
unique point of maximal Cantor–Bendixson rank ˛, where ˛ is a successor ordinal. We also observe
an order-10 element in the first homology of the pure mapping class group of any surface of genus 2,
answering a recent question of G. Domat.

1. Introduction

There has been a recent wave of interest in big mapping class groups (mapping class
groups of infinite-type surfaces); see [2] for a survey. In [24], the authors recently com-
puted the homology of a large family of big mapping class groups, namely the families of
(1-holed or punctured) binary tree surfaces (see the introduction of [24] for this termin-
ology). Precisely, the mapping class group of every 1-holed binary tree surface is acyclic
and the homology of the mapping class group of every punctured binary tree surface is
periodic with Z in every even degree and zero in every odd degree. One instance of this
result says that the mapping class group Map.D2XC/ is acyclic and thatHi.Map.R2XC//

is Z for i even and zero for i odd, where C is a Cantor set embedded in the interior of the
disc. In particular, in all of these examples, the homology groups Hi .Map.S// are finitely
generated for each i . Some earlier results on the homology of big mapping class groups
– in degrees 1 and 2 – include: H1.Map.S X C// Š H1.Map.S// if C is a Cantor set
embedded in the interior of a finite-type surface S [8] (see also [28] for three special cases
of this) and H2.Map.S2 X C// Š Z=2 [7].
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In this paper we prove a contrasting result: for many infinite-type surfaces S , the group
Hi .Map.S// is uncountable for all i > 0. In addition, we prove – for all infinite-type
surfaces S – that Hi .PMapc.S// and Hi .T .S// are uncountable for all i > 0, where
PMapc.S/ and T .S/ denote, respectively, the closure of the compactly-supported map-
ping class group and the Torelli group of S .

Our proofs are built on ideas from [1, 11, 18]. In [1], Aramayona, Patel and Vlamis
determined H 1.PMap.S// for any infinite-type surface S of genus at least 2; in partic-
ular, they showed that it is countable. (This was extended to genus 1 in [12], where it
was also shown that H 1.PMap.S// is uncountable when S has genus 0.) Along the way
they proved that, when S has infinitely many non-planar ends, its pure mapping class
group PMap.S/ admits a split-surjection onto the Baer–Specker group ZN . Later, Domat
proved that big pure mapping class groups PMap.S/ are never perfect [11]. Moreover,
he showed that H1.PMap.S// is uncountable for many infinite-type surfaces S and that
H1.T .S// andH1.PMapc.S// are uncountable for all infinite-type surfaces S . Malestein
and Tao [18] were able to push the results of Domat further and prove that the first homo-
logy of the full mapping class group H1.Map.S// is uncountable for a certain class of
surfaces S , including S D R2 X Z.

Uncountable homology

Given a surface S , recall that its pure mapping class group PMap.S/ is the subgroup
of its mapping class group Map.S/ D �0.Homeo.S// consisting of all those mapping
classes that fix the ends of S pointwise. Its Torelli group T .S/ is the kernel of the natural
homomorphism Map.S/!Aut.H1.S//. Recall also that PMapc.S/ denotes the subgroup
of Map.S/ of mapping classes that admit representative homeomorphisms with compact
support, and PMapc.S/ denotes its closure in Map.S/ in the quotient topology induced
by the compact-open topology on Homeo.S/. We note that in general we have inclusions
T .S/ � PMapc.S/ � PMap.S/ � Map.S/. (The only non-obvious inclusion is the first
one: it is explained during the proof of Theorem 5.10 below.) Our first result concerns the
first two groups of this nested sequence and holds for all infinite-type surfaces S .

Theorem A (Corollary 5.5 and Theorem 5.10). Let S be any infinite-type surface. Then
the integral homology groups

Hi
�
PMapc.S/

�
and Hi

�
T .S/

�
are uncountable for every i � 1. Moreover, they each contain

L
c Z in every degree, where

c denotes the cardinality of the continuum.

Remark 1.1. One might hope that our methods could be used to prove that the homology
of the pure mapping class group Hi .PMap.S// is also uncountable for every i � 1 and
for any infinite-type surface S . However, the methods of the present paper can only prove
this result in the case when S has at most one or infinitely many non-planar ends; see
Remark 5.7 for more information. When S has n non-planar ends for 1 < n < 1, one
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can in fact prove that the (uncountably many) elements constructed in Domat’s paper
[11, Theorem 6.1] all vanish in H1.PMap.S//; see Remark 5.9 for more information.

In order to state our result for the full mapping class groups Map.S/, we first recall
some background about ends of surfaces; more details are given in Sections 2 and 3. Every
surface S has a space of ends E, which is a compact, separable, totally disconnected
topological space. The key hypothesis in our main theorem is a condition on the structure
of the space E.

Definition 1.2. For points x; y 2 E, we write x � y and say that x is similar to y if
and only if there are open neighbourhoods U , V of x, y respectively such that .U; x/ and
.V; y/ are homeomorphic as based spaces. A point x 2 E is topologically distinguished if
it is not equivalent to any other point of E under this equivalence relation.

Definition 1.3. For a topological space E, write ‡C.E/ D E! C 1, where E! means a
countably infinite disjoint union of copies of E and X C 1 means the one-point compac-
tification of X .

Theorem B. Let S be a connected, finite-genus surface with finitely many boundary com-
ponents, whose space of ends E is of the form

E D E1 t ‡
C.E2/;

where E2 has a topologically distinguished point x and no point of E1 is similar to x.
Then the integral homology group

Hi
�

Map.S/
�

is uncountable for every i � 1. In fact, there is an injective homomorphism of graded
abelian groups

ƒ�
�M

c

Z
�
! H�

�
Map.S/

�
;

where ƒ� denotes the exterior algebra on an abelian group.

Remark 1.4. In the course of the proof of Theorem B, we also prove the same statement
with S replaced by the Loch Ness monster surface L, see Proposition 5.3.

Remark 1.5. All countable end spaces of surfaces (equivalently: countable compact
Hausdorff spaces) are of the form E D !˛:n C 1 for a countable ordinal ˛ and a pos-
itive integer n [21]. Hence a surface S of finite genus with this end space satisfies the
assumption of Theorem B whenever n D 1 and ˛ is a successor ordinal.

Thus for a large class of infinite-type surfaces S with countably many ends we know
that Map.S/ has uncountable integral homology in all positive degrees. This suggests the
following question.

Question 1.6. Let S be an infinite-type surface with countably many ends. Is the homo-
logy of Map.S/ uncountable in all positive degrees?
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Remark 1.7. Without the hypothesis on the structure of the space of ends E of S , the
conclusion of Theorem B is false. For example, as mentioned above, we prove in [24] that

Hi
�

Map.R2 X C/
�
Š

´
Z i even;

0 i odd:

Remark 1.8. The hypotheses of this paper and the hypotheses of [24] are in some sense
opposite, with opposite conclusions. In [24] we consider 1-holed binary tree surfaces,
whose end spaces are Cantor compactifications .E!/C (see [24, Section 1.2] for the defin-
ition), which are highly self-similar (in particular .E!/C Š C if E D¿ or E D C , which
is homogeneous), and we prove that Hi .Map.S// D 0 for all i > 0. On the other hand, in
this paper we consider surfaces S whose end spaces E satisfy the “homogeneity break-
ing” hypothesis of Theorem B (roughly:E has a limit point of topologically distinguished
points), and conclude that Hi .Map.S// is uncountable for all i > 0.

Non-trivial torsion

So far, the elements that we have constructed in the homology of big mapping class groups
all have infinite order. It would be interesting also to find some torsion elements. In fact,
the following question was asked by Domat in [11, Question 11.3].

Question 1.9. Let S be an infinite-type surface. Do there exist any torsion elements in
H1.PMapc.S//?

Recall that PMapc.S/ denotes the subgroup of Map.S/ of mapping classes that admit
representative homeomorphisms with compact support, and PMapc.S/ denotes its closure
in Map.S/ in the quotient topology induced by the compact-open topology on Homeo.S/.
Also recall that PMapc.S/ � PMap.S/ coincides with PMap.S/ if and only if S has at
most one non-planar end [25, Theorem 4]. Our third result answers Domat’s question in
the positive.

Theorem C. Let S be an infinite-type surface of genus 2 and with finitely many (possibly
zero) boundary components. Then the homology groupsH1.PMap.S//DH1.PMapc.S//
andH1.Map.S// both contain an order-10 element. Moreover, the cyclic group generated
by this element is a direct summand.

Remark 1.10. By comparing the stable homology of (orientable, finite-type) mapping
class groups with rational coefficients [17] and with mod-p coefficients [15], one sees
that there are also many torsion elements in the integral homology of mapping class groups
in the stable range. Using this and Lemma 7.2, one may find many higher-degree torsion
elements in the homology of mapping class groups of infinite-type surfaces of finite genus.

In a sense, our answer to Domat’s question is “cheating”, since we simply show that
a certain torsion element in the homology of the mapping class group of a finite-type
subsurface of S injects into the homology of the mapping class group of S . Together with
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our uncountability results above (Theorems A and B), this suggests two refinements of
Domat’s question.

Question 1.11. Let S be an infinite-type surface. Do the homology groupsH1.PMapc.S//
or H1.PMap.S// contain torsion elements that are not supported on any finite-type sub-
surface of S?

Question 1.12. Let S be an infinite-type surface. Do the homology groupsH1.PMapc.S//
or H1.PMap.S// contain an uncountable torsion subgroup?

We note that a positive answer to Question 1.12 would imply a positive answer to
Question 1.11, since torsion admitting finite-type support can only account for countably
many torsion elements.

Outline

We begin with two sections of background: Section 2 on infinite-type surfaces and big
mapping class groups and Section 3 on notions of topologically distinguished points. In
Section 4 we prove a basic lemma that gives a sufficient criterion for the homology of a
group to contain an embedded copy of the exterior algebra on a direct sum of continuum
many copies of Z. We also discuss techniques of [11] that may be used to construct the
inputs for this lemma.

Theorems A and B are then proven in Sections 5–6. In Section 5 we prove uncount-
ability of the homology of the mapping class group of the Loch Ness monster surface,
which is the first step in the proof of Theorem B. We then adapt these techniques to prove
Theorem A on the homology of the closure of the compactly-supported mapping class
group and the Torelli group of an arbitrary infinite-type surface S . In Section 6 we apply
the results of Section 5, together with a covering space argument inspired by a technique
of Malestein and Tao [18], to complete the proof of Theorem B. The covering space argu-
ment in this section is the step in which we use in an essential way the hypothesis on the
structure of the end space of the surface.

We prove Theorem C on torsion elements in Section 7. Finally, in Section 8, we record
some related open questions, in particular discussing the cohomology of mapping class
groups in Section 8.2. Appendix A gathers some basic facts about abelian groups that are
needed in several of our proofs.

2. Surfaces, ends and mapping class groups

2.1. Infinite-type surfaces

All surfaces will be assumed to be second countable, connected, orientable and to have
compact boundary. If the fundamental group of S is finitely generated, we say that S has
finite type, otherwise it has infinite type. The classification of surfaces of possibly infinite
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type was proven by von Kerékjártó [29] and Richards [27]. Recall that an end of a surface
S is an element of the set

Ends.S/ D lim
 �

�0.S nK/;

where the inverse limit is taken over all compact subsets K � S . The Freudenthal com-
pactification of S is the union

xS D S t Ends.S/

equipped with the topology generated by U t ¹e 2 Ends.S/ j e < U º for all open subsets
U � S . Here e < U means that there is a compact subset K � S such that U contains
the component of S n K hit by e under the canonical map Ends.S/! �0.S n K/. The
induced subspace topology on Ends.S/ coincides with the limit topology induced from
the discrete topology on each term in the inverse system. With this topology, Ends.S/ is
homeomorphic to a closed subset of the Cantor set. We call an end e 2 Ends.S/ planar
if it has a neighbourhood (in the topology of xS ) that embeds into the plane, otherwise we
call it non-planar. The (closed) subspace of non-planar ends is denoted by Endsnp.S/ �
Ends.S/.

Theorem 2.1 ([27, Theorems 1 and 2]). Let S1; S2 be two surfaces of genus g1; g2 2
N [ ¹1º and with b1; b2 2N boundary components. Then S1Š S2 if and only if g1D g2,
b1 D b2 and there is a homeomorphism of pairs of spaces�

Ends.S1/;Endsnp.S1/
�
Š
�
Ends.S2/;Endsnp.S2/

�
:

Conversely, given g 2N [ ¹1º, b 2N and a pair X � Y of closed subsets of the Cantor
set, where we require that g D 1 if and only if X ¤ ¿, there exists a surface S of genus
g with b boundary components such that .Ends.S/;Endsnp.S// Š .Y;X/.

2.2. Mapping class groups

For a surface S, the mapping class group of S is the group of isotopy classes of orientation-
preserving diffeomorphisms of S fixing the boundary of S pointwise, i.e.

Map.S/ WD �0
�
DiffC.S; @S/

�
:

The pure mapping class group PMap.S/ of S is the subgroup of Map.S/ consist-
ing of all elements whose induced action on Ends.S/ is the identity. It follows from the
construction of [27, Theorem 2] (or, more precisely, from the naturality of this construc-
tion) that every homeomorphism of Ends.S/ sending the subspace Endsnp.S/ onto itself
is induced by some homeomorphism of S . This implies that we have the following short
exact sequence.

Proposition 2.2. Let S be any surface. Then there is a short exact sequence of groups

1! PMap.S/! Map.S/! Homeo
�
Ends.S/;Endsnp.S/

�
! 1;

where Homeo.Ends.S/;Endsnp.S// denotes the group of homeomorphisms of the pair of
spaces .Ends.S/;Endsnp.S//.
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Figure 1. The 3-valent vertices of this graph are globally topologically distinguished but not topo-
logically distinguished, since they are similar (but not globally similar) to each other.

3. Topologically distinguished points

We now recall from the introduction the notion of topologically distinguished points
(Definition 1.2) and compare it to a weaker notion of globally topologically distinguished
points.

Definition 3.1. Let E be a topological space. Two points x; y 2 E are called similar if
there are open neighbourhoods U and V of x and y respectively and a homeomorphism

U Š V

taking x to y. This is an equivalence relation on E. A point x 2 E is called topologically
distinguished if its equivalence class under this relation is ¹xº, in other words it is similar
only to itself.

Definition 3.2. Let E be a topological space. Two points x; y 2 E are called globally
similar if there is a homeomorphism ' 2 Homeo.E/ with '.x/ D y. This is an equival-
ence relation on E. A point x 2 E is called globally topologically distinguished if its
equivalence class under this relation is ¹xº, in other words it is globally similar only to
itself. Equivalently, x 2 E is globally topologically distinguished if it is a fixed point of
the action of Homeo.E/ on E.

Remark 3.3. We record two immediate observations:

• If x and y are globally similar then they are similar.

• If x is topologically distinguished then it is globally topologically distinguished.

The converses of these two statements are false in general. For example, the two vertices
of valence 3 in the graph pictured in Figure 1 are similar but not globally similar; also,
both of them are globally topologically distinguished but not topologically distinguished.
However, for zero-dimensional (Hausdorff) spaces the converse does hold.

Lemma 3.4. Suppose that E is Hausdorff and zero-dimensional, i.e. it has a basis for its
topology consisting of clopen subsets. Then two points x; y 2 E are similar if and only
if they are globally similar. Thus x 2 E is topologically distinguished if and only if it is
globally topologically distinguished.

Proof. The second statement follows from the first one, so we only have to prove the
first statement, that x; y 2 E are similar if and only if they are globally similar. One
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implication is obvious; we will prove the opposite implication. So let us assume that x;y 2
E are similar and choose open neighbourhoods U and V of x and y respectively and a
homeomorphism 'WU ! V taking x to y. Assume that x ¤ y (otherwise the result is
obvious). Since E is zero-dimensional, we may assume, by shrinking them if necessary,
that U and V are clopen. Since E is Hausdorff, we may assume, by shrinking them if
necessary, that U and V are disjoint. We may therefore extend ' to a homeomorphism
x' 2 Homeo.E/ by:

• x'.e/ D '.e/ for e 2 U ;

• x'.e/ D '�1.e/ for e 2 V ;

• x'.e/ D e for e 2 E X .U t V /.

This bijection is continuous since ¹U; V; E X .U t V /º is an open cover of E and x' is
continuous when restricted to each of these subsets. Its inverse is continuous for the same
reason, so it is a homeomorphism ofE taking x to y. Thus x and y are globally similar.

Remark 3.5. End spaces of surfaces are always Hausdorff and zero-dimensional, so
Lemma 3.4 implies that topologically distinguished and globally topologically distin-
guished are the same for end spaces.

Lemma 3.6. If a space E has a topologically distinguished point, then E! C 1 has a
globally topologically distinguished point. In fact, the point at infinity is globally topolo-
gically distinguished.

Proof. Let 1 denote the point at infinity of the one-point compactification E! C 1 of
E! D

F
! E. Let ' 2 Homeo.E! C 1/. We just need to show that '.1/ D 1, since it

will then follow that1 is a globally topologically distinguished point ofE!C 1. Suppose
for a contradiction that '.1/ ¤1. Write Ei D E for each i 2 N, and identify

E! D
G
i2N

Ei :

By assumption, '.1/ 2 Ej for some j 2 N. Let x 2 E be a topologically distinguished
point. Every open neighbourhood U of1 2 E! C 1 contains infinitely many points that
are similar to x, since, by definition of the one-point compactification, U must contain Ei
for infinitely many i . Since ' is a homeomorphism, it must also be true that every open
neighbourhood of '.1/ 2 E! C 1 contains infinitely many points that are similar to x.
But Ej is an open neighbourhood of '.1/ 2 E! C 1 and it contains only one point that
is similar to x, a contradiction.

Corollary 3.7. Suppose that E is Hausdorff and zero-dimensional. If E has a topologic-
ally distinguished point, then the point at infinity ofE!C 1 is topologically distinguished.

Proof. By Lemma 3.6, the point at infinity of E! C 1 is globally topologically distin-
guished. Hausdorffness and zero-dimensionality of E automatically imply Hausdorffness
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and zero-dimensionality of E! C 1, so Lemma 3.4 then implies that the point at infinity
of E! C 1 is topologically distinguished.

Remark 3.8. There is another, a priori different, equivalence relation on topological
spaces, defined by [19]. They define, for points x; y 2 E:

x � y”8 open neighbourhoods U 3 y; 9z 2 U W z � x;

where z � x means that z and x are similar in the sense of Definition 3.1. This is a pre-
order on E, so it induces an equivalence relation

x � y” x � y and y � x

onE and a poset structure on the quotientE=�. Clearly x � y implies x � y. Also, if we
now assume that E is the end space of a surface †, it is not hard to see (using Lemma 3.4
and Proposition 2.2) that x � y if and only if there is a homeomorphism of † taking x
to y. Theorem 1.2 of [19] says that if x � y then there is a homeomorphism of† taking x
to y. It follows that� and� are the same equivalence relation onE if it is the end space of
a surface. In [20], the authors often consider the condition that “† has a unique maximal
end”, i.e. there is a unique maximal equivalence class Œx� 2 E=� and the equivalence
class Œx� has size 1. The condition that we require in this paper is however much weaker,
namely that “† has a topologically distinguished end”, i.e. there is an equivalence class
Œx� 2 E=� of size 1 (but it need not be maximal in the poset structure of E=�).

4. Tools for proving uncountability

We start with a key lemma, which we use several times to conclude uncountability of the
homology of a given group G in all positive degrees.

Notation 4.1. Let us fix some notation that will be used throughout the rest of the paper.

• For an abelian group A, denote by ƒ�.A/ the exterior algebra on A.

• We denote by c the cardinality of the continuum.

Lemma 4.2. Let G be a group, denote by ˛WG� Gab D H1.G/ the quotient onto its
abelianisation and let �W

L
c Z!G be a homomorphism. Suppose that there is an embed-

ding
f W
M

c

Q ,! H1.G/

such that the diagram L
c Z G

L
c Q H1.G/

�

˛

f
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commutes, where
L

c Z ,!
L

c Q is the canonical inclusion. Then there is an injective
homomorphism of graded abelian groups

ƒ�
�M

c

Z
�
,! H�.G/:

In particular, Hi .G/ is uncountable for all i � 1.

Proof. By Lemma A.1, the embedding f admits a retraction. Hence the canonical inclu-
sion M

c

Z ,!
M

c

Q

factors through G. It follows that the induced homomorphism of graded abelian groups

H�

�M
c

Z
�
! H�

�M
c

Q
�

factors through H�.G/. The integral homology of a torsion-free abelian group A is nat-
urally isomorphic to the exterior algebra ƒ�.A/ (see [6, Theorem V.6.4 (ii)]), so we have
homomorphisms of graded abelian groups

ƒ�
�M

c

Z
�
! H�.G/! ƒ�

�M
c

Q
�
;

whose composition is injective by Lemma A.3. In particular the first map must be inject-
ive.

In order to apply Lemma 4.2, we will need to be able to construct embeddings of
direct sums of copies of Q into the first homology of big mapping class groups. The
key topological input for this is a theorem of Domat, which we recall below and whose
proof uses the machinery of Bestvina, Bromberg and Fujiwara [4]. We first make some
definitions that are implicit in the statement of [11, Theorem 6.1].

Definition 4.3. Let S be a connected surface with at least two ends. Let us call a sequence
¹iºi2N of isotopy classes of simple closed curves on S an escaping sequence if:

• each i is end-separating, i.e., cutting along it disconnects S into two non-compact
surfaces;

• i and j have pairwise-disjoint representatives for i ¤ j ;

• the sequence 1; 2; : : : eventually leaves every compact subset of S , i.e., if K � S is
a compact subset then only finitely many i may be isotoped to lie in K.

An escaping sequence ¹iºi2N is well-spaced if there exists another escaping sequence
¹ 0i ºi2N such that:

•  0i is not isotopic to i ;
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Figure 2. The once-punctured Loch Ness monster surface equipped with a sequence ¹i ºi2N of
simple closed curves that is a well-spaced, escaping sequence in the sense of Definition 4.3. The
fact that it is well-spaced is witnessed by the associated sequence of simple closed curves ¹ 0i ºi2N

given by  0i D T˛i .i /.

Figure 3. The flute surface equipped with a sequence ¹i ºi2N of simple closed curves that is an
escaping sequence in the sense of Definition 4.3. After passing to the subsequence ¹2i ºi2N , it
becomes well-spaced, as explained in Example 4.6.

•  0i and j have pairwise-disjoint representatives for i ¤ j ;

• there is a (necessarily non-trivial) element gi 2 PMapc.S/ taking i to  0i .

Remark 4.4. It follows from the classification of surfaces that an escaping sequence
exists on S if and only if S has infinite type. In addition, any escaping sequence becomes
well-spaced after passing to an appropriate subsequence.

Example 4.5. In the key example of S D L0 the once-punctured Loch Ness monster sur-
face, we may for example take ¹iºi2N to be the sequence of curves pictured in Figure 2.
Each i is clearly end-separating, they are pairwise disjoint and no compact subset of L0

contains more than finitely many of them, so this sequence is escaping. Moreover, taking
 0i D T˛i .i / using the curves ˛i also pictured in Figure 2, we obtain another escaping
sequence ¹ 0i ºi2N witnessing that ¹iºi2N is well-spaced.

Example 4.6. As another example, we may consider the flute surface depicted in Figure 3,
together with the curves i illustrated. These form an escaping sequence ¹iºi2N , but this
is not a well-spaced escaping sequence: for example, one may attempt to construct another
escaping sequence witnessing that it is well-spaced by setting  0i D T˛i .i / using the
curves ˛i illustrated, but then  0i intersects  0iC1, so ¹ 0i ºi2N is not an escaping sequence
as in Definition 4.3. However, the subsequence ¹2iºi2N is well-spaced, as witnessed by
the subsequence ¹ 02iºi2N .

Theorem 4.7 ([11, Theorem 6.1]). Let S be an infinite-type surface with at least two ends
and let ¹iºi2N be a well-spaced escaping sequence of simple closed curves on S . Let
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a1; a2; : : : be an unbounded sequence of positive integers. Then

1Y
iD1

.Ti /
ai 2 PMapc.S/

projects to a non-zero element in .PMapc.S//
ab .

In fact, what is used in practice in [11] is the following stronger fact, in the case when
S has genus at least three. It is implicit in [11, Section 8.1.1]; here we make the statement
and the details of the proof explicit.

Corollary 4.8. Let S be an infinite-type surface of genus at least three with at least two
ends and let ¹iºi2N be a well-spaced escaping sequence of simple closed curves on S .
Let a1; a2; a3; : : : be a strictly increasing sequence of positive integers. Then there is an
injective homomorphism 'WQ ,!

�
PMapc.S/

�ab sending 1=n 2 Q to the element

1Y
iDrn

.Ti /
ai Š=n 2

�
PMapc.S/

�ab
;

where rn � 1 is any integer sufficiently large so that ai � n for all i � rn.

Proof. Using the presentation QŠ hx1; x2; x3; : : : j .xn/nD xn�1i, where xn corresponds
to 1=nŠ 2Q, we see that in order to define a homomorphism 'WQ! G, for any group G,
it suffices to choose an element '.1/ of G, a square root '.1=2Š/ of '.1/, a cube root
'.1=3Š/ of '.1=2Š/, etc. We begin by choosing

'.1/ D

1Y
iD1

.Ti /
ai Š 2

�
PMapc.S/

�ab
:

This is non-trivial by Theorem 4.7, since the sequence .ai Š/ is unbounded. In fact, The-
orem 4.7 implies that '.1/ has infinite order, since the sequence .nai Š/ is unbounded for
all n � 1. We next need to choose a square root '.1=2Š/ of this element. First choose
r2 � 1 so that ai � 2 for all i � r2 (this is possible since .ai / is strictly increasing). Then
set

'.1=2Š/ D

1Y
iDr2

.Ti /
ai Š=2Š 2

�
PMapc.S/

�ab
and notice that

'.1/

2'.1=2Š/
D

r2�1Y
iD1

.Ti /
ai Š 2

�
PMapc.S/

�ab
:

This is a finite product of Dehn twists, so it is the image of the corresponding element
of PMapc.S/

ab . Restricting further, choose a compact subsurface S 0 � S containing the
curves 1; : : : ; r2�1 in its interior and having genus at least three. The element above is
then the image of the corresponding element of Map.S 0/ab . But the mapping class group
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of any compact, orientable surface of genus at least three is perfect [5,26], so Map.S 0/ab D
0 and hence '.1/ D 2'.1=2Š/. Continuing in the same way, we construct a cube root of
'.1=2Š/, etc. Thus we have constructed a homomorphism ' from Q.

Recall that any homomorphism defined on Q is injective as long as its restriction to
Z � Q is injective. We observed above that '.1/ has infinite order; hence ' is injective.
Finally, the formula for '.1=n/ in the statement follows immediately from the construc-
tion, noting again that we may remove finitely many terms from the infinite product
without changing the element of the abelianisation.

The following corollary is again implicit in [11, Section 8.1.1], but we prefer to make
the statement and the details of the proof explicit. Let the surface S and the sequences
¹iºi2N and ¹aiºi2N be as in Corollary 4.8. For any infinite subset F � N, denote by

'F WQ ,!
�
PMapc.S/

�ab
the embedding obtained by applying Corollary 4.8 to the sequences ¹iºi2N and ¹aiºi2N .

Corollary 4.9. Let F be a family of infinite subsets of N such that any two of them have
finite intersection. Then the homomorphism

ˆF D

M
F 2F

'F W
M
F 2F

Q!
�
PMapc.S/

�ab
is also injective.

Proof. Let .rF /2 ker.ˆF /. Since the domain ofˆF is a direct sum, there are only finitely
many F 2 F such that rF ¤ 0; let us enumerate these as F1; : : : ; Fs . Also choose n � 1
so that mF WD nrF 2 Z. We therefore have

0 D ˆF

�
n.rF /

�
D ˆF

�
.mF /

�
D

Y
i2F1

�
.Ti /

ai Š
�mF1 � � �Y

i2Fs

�
.Ti /

ai Š
�mFs :

By Theorem 4.7, this product can only be zero if it is a finite product. But each F1; : : : ; Fs
is infinite. Moreover, two terms of the product can only cancel if they are indexed by an
element of one of the pairwise intersections Fp \ Fq for p ¤ q 2 ¹1; : : : ; sº, all of which
are finite by assumption. Thus only finitely many cancellations can occur, so the only
possible way for this product to be zero is if s D 0, which means that .rF / D 0. Thus ˆF

is injective.

5. Proof of Theorem A

We are now ready to prove Theorem A. The tools of the previous section imply almost
immediately the following result.
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Proposition 5.1. Let S be an infinite type surface of genus at least three with at least two
ends. Then there is an injective homomorphism of graded abelian groups

ƒ�
�M

c

Z
�
,! H�

�
PMapc.S/

�
:

Proof. Choose a well-spaced escaping sequence ¹iºi2N of simple closed curves on S
(such a sequence always exists by Remark 4.4) and set ai D i . Choose a family F of
infinite subsets of N such that any two of them have finite intersection, and such that the
family F has the cardinality of the continuum. (For example, we may identify N with Q
and choose for each a 2 R a sequence of distinct rationals converging to a.) There is then
a commutative diagram L

F Z PMapc.S/

L
F Q

�
PMapc.S/

�ab
;

ˆF

(5.1)

where the bottom horizontal mapˆF is injective by Corollary 4.9 and its lift to PMapc.S/
after restricting to Z � Q in each summand is given by sending the generator 1 2 Z of
the summand corresponding to F 2 F to the elementY

i2F

.Ti /
iŠ
2 PMapc.S/:

The result then follows by an application of Lemma 4.2.

Remark 5.2. Proposition 5.1 also holds without the assumption that S has genus at least
3. This follows from an analogue of Corollary 4.8 that involves a sequence of pseudo-
Anosov elements supported on pairwise-disjoint compact subsurfaces of S instead of
Dehn twists; see [11, Section 8.1.2] for more details of this construction. One then obtains
a diagram of the form (5.1), where the horizontal maps are defined using infinite products
of powers of these pseudo-Anosov elements instead of Dehn twists, and the result then
follows from Lemma 4.2.

We next deduce the analogue of Theorem B for the Loch Ness monster surface L and
the surface L0 obtained by removing one puncture from L.

Proposition 5.3. The graded abelian groups H�.Map.L0// and H�.Map.L// each con-
tain an embedded copy of the exterior algebra ƒ�.

L
c Z/.

Proof. Since L0 has at most one non-planar end, [25, Theorem 4] implies that

PMapc.L0/ D PMap.L0/:

We also have PMap.L0/ D Map.L0/ since L0 has only two punctures, which cannot be
interchanged by a homeomorphism of L0 since exactly one of them is non-planar. Thus
the result for L0 is a special case of Proposition 5.1. In this case, the sequence of simple
closed curves i may be taken to be those illustrated in Figure 2 (see Example 4.5).
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In order to deduce the result for L, we use the Birman exact sequence, which takes the
form

1! �1.L/! Map.L0/! Map.L/! 1: (5.2)

Since abelianisation is a right-exact functor, it follows that the kernel of H1.Map.L0//!
H1.Map.L// is a quotient of H1.L/; in particular it is countable. Consider the diagramL

F Z Map.L0/ Map.L/

L
F Q

�
Map.L0/

�ab
.Map.L//ab;

ˆF .�/

(5.3)

where the left-hand square is (5.1) in the case S D L0 and the right-hand square is induced
by (5.2). We know that .�/ has countable kernel by the discussion above, so Lemma A.2
implies that, after removing countably many terms from the direct sum on the left-hand
side, the composition across the bottom of (5.3) is also injective. We therefore obtain a
diagram L

c Z Map.L/

L
c Q

�
Map.L/

�ab
;

.�/0

(5.4)

where .�/0 is injective and the direct sums on the left-hand side are still indexed by a set
with the cardinality of the continuum. The result for L thus follows from Lemma 4.2.

Remark 5.4. We noted in Remark 5.2 that Proposition 5.1 holds without the assumption
on the genus of S , i.e. it holds for any infinite type surface S with at least two ends. On
the other hand, if S is an infinite type surface with at most one end, it must be the Loch
Ness monster surface S D L, and the result then follows from Proposition 5.3 (see also
[11, Appendix]). Thus, in fact, Proposition 5.1 holds for any infinite type surface S . This
is the first part of Theorem A:

Corollary 5.5. Let S be any infinite-type surface. Then the graded abelian group
H�.PMapc.S// contains an embedded copy of the exterior algebra ƒ�.

L
c Z/, induced

by an embedding
L

c Z ,! PMapc.S/.

Remark 5.6. There are two points where this proof is not entirely constructive. The first
is the choice of the family F D ¹ƒa j a 2 Rº of infinite subsets of N. However, this
may easily be made explicit by choosing an explicit bijection between N and Q and then
letting ƒa � Q, for a 2 R, be the sequence of rational numbers converging to a 2 R
given by truncating the binary expansion of a (to avoid ambiguity and to ensure that ƒa
is infinite, we specify that if a has a binary expansion ending in a sequence of 0’s, we
choose its other binary expansion ending in a sequence of 1’s). The second point where
it is non-constructive is in passing from diagram (5.3) to diagram (5.4) by throwing away
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countably many real numbers indexing the direct sum on the left-hand side. However,
looking carefully at the proof of Lemma A.2, one may make this step constructive too.

Remark 5.7. When S has at most one non-planar end, the pure mapping class group
PMap.S/ coincides with PMapc.S/, by [25, Theorem 4]. Thus Corollary 5.5 says that
H�.PMap.S// is uncountable in every positive degree when S has at most one non-planar
end. This statement also holds when S has infinitely many non-planar ends. Indeed, by
[1, Corollary 6], we have in this case that

PMap.S/ Š PMapc.S/ Ì ZN :

In particular, ZN is a retract of PMap.S/, so the natural induced map

Hi .Z
N/! Hi .PMap.S//

is split-injective in every degree. The fact that H�.PMap.S// is uncountable in every
positive degree in this case is therefore an immediate corollary of the following lemma.

Lemma 5.8. The homology groupHi .ZN/ contains a direct summand isomorphic to ZN

in every degree i > 0. Hence it contains a subgroup isomorphic to
L

c Z in every degree
i > 0.

Proof. The first statement follows from the Künneth theorem applied to the decomposi-
tion ZN Š ZN � Zi . The second statement then follows from the fact that ZN contains
free abelian groups of rank c. To see this, choose a family F , of cardinality jF j D c,
of infinite subsets of N such that any pair have finite intersection. (For example, as in the
proof of Proposition 5.1, we may identify N with Q and choose for each a 2R a sequence
of distinct rationals converging to a.) It is then easy to check that the collection

¹�F 2 ZN
j F 2 F º;

where �F WN ! ¹0; 1º � Z denotes the indicator function of F � N, is Z-linearly inde-
pendent and hence generates a subgroup of ZN isomorphic to

L
c Z.

Remark 5.9. When S has n non-planar ends with 1 < n < 1, by [1, Corollary 6] we
have:

PMap.S/ Š PMapc.S/ Ì Zn�1; (5.5)

where Zn�1 is freely generated by n � 1 handle shifts h1; : : : ; hn�1. As indicated in the
proof of [1, Theorem 5], one may choose the handle shifts hj to have pairwise disjoint
support. Let Yj be the support of hj . Recall that each Yj is a subsurface homeomorphic to
the result of gluing handles onto R � Œ0; 1� periodically with respect to the transformation
.x; y/ 7! .x C 1; y/. For convenience, we shall require that the i -th handle is attached to
Œi; i C 1� � Œ0; 1� and that hj maps the i -th handle to the .i C 1/-st handle. See Figure 4
for an illustration. The semi-direct product decomposition (5.5) implies that

H1
�

PMap.S/
�
Š H1

�
PMapc.S/

�
Zn�1
˚ Zn�1;
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Figure 4. A surface with n non-planar ends e1; : : : ; en for 2 � n <1. The top and bottom edges
are identified to obtain a sphere, then the points e1; : : : ; en (together with a set of planar ends, which
is not pictured) are removed, then we take a connected sum with a torus along each of the (infinitely
many) small grey discs. The planar ends (not pictured) may have some or all of the non-planar
ends e1; : : : ; en as limit points, but in any case lie outside of the subsurfaces Y1; : : : ; Yn�1, which
support the handle shifts h1; : : : ; hn�1. The curves 1; 2; 3; : : : are chosen as illustrated such that
the handle shift h1 sends i to iC1 (up to isotopy).

where .�/Zn�1 denotes the coinvariants under the action of the handle shifts. By The-
orem 4.7, choosing the sequence of curves i as illustrated in Figure 4 and any unbounded
sequence of positive integers ai , the infinite product of Dehn twists

f D

1Y
iD1

.Ti /
ai 2 PMapc.S/

represents a non-trivial element in the abelianisation H1.PMapc.S//. But it vanishes in
H1.PMap.S// – in other words, in the coinvariants under the action of the handle shifts –
since Œf � D Œg� � Œh1gh�11 �, where g D

Q1
iD1.Ti /

bi , bi D †ijD1aj .

Recall that the Torelli group T .S/ is the kernel of the natural homomorphism

Map.S/! Aut
�
H1.S/

�
:

Theorem 5.10. Let S be an infinite-type surface. The integral homology groupHi .T .S//
is uncountable for every i � 1. In fact it contains an embedded copy of

L
c Z in every

positive degree.

Proof. By Corollary 5.5, there is an embeddingL
c Z ,! PMapc.S/ (5.6)

that induces on homology an embedding ofƒ�
�L

c Z
�

intoH�.PMapc.S//. It will there-
fore suffice to show that (5.6) factors through the Torelli group T .S/.

We first note that the Torelli group is contained in PMapc.S/�Map.S/: it clearly lies
in PMap.S/ since any non-trivial action on the space of ends of S implies a non-trivial
action on H1.S/; then the fact that it lies in PMapc.S/ follows from [1, Corollary 6],
which decomposes PMap.S/ as a semi-direct product of PMapc.S/ and a direct product
of copies of Z generated by handle shifts, together with the fact that handle shifts act
non-trivially on H1.S/.
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Figure 5. The branched double covering (6.1). After removing the subset marked in red (which
includes the branch points), this restricts to the (genuine) double covering (6.2).

Finally, we just have to note that the elements of PMapc.S/ used to define the homo-
morphism (5.6) actually lie in T .S/. When the genus of S is at least 3, these elements
are infinite products of Dehn twists around (pairwise disjoint) separating curves; hence
they act trivially on H1.S/. When the genus is at most 2, we instead use infinite products
of (pairwise disjointly-supported) pseudo-Anosov elements, as explained in Remark 5.2.
These elements are of the form T 2˛ T

2
ˇ
T �2˛ T �2

ˇ
for a pair of separating curves ˛; ˇ that fill

a finite-type subsurface of S , as explained in [11, p. 715], and they also act trivially on
H1.S/.

Remark 5.11. In degree one, H1.T .S// contains an embedded copy of
L

c Q, by [11,
Theorem 9.1].

6. Descending along double branched covers

In this section we generalise techniques of Malestein and Tao [18] – who proved uncount-
ability of homology in degree 1 for the mapping class group of R2 XN – to higher degrees
and to the more general class of surfaces from Theorem B, completing the proof of that
theorem. To do this, we will need the notion of a ray surface associated to a surface †.

Definition 6.1. Let † be any connected surface without boundary and write †1 (respect-
ively †2) for the surface obtained by removing one (respectively two disjoint) open discs
from †. The ray surface R.†/ is the surface obtained by gluing together infinitely many
copies of †2 and “capping off” in one direction with a single copy of †1. See the top
half of Figure 5 for an example where † D T 2 is the torus; thus R.T 2/ is the Loch Ness
monster surface.



Big mapping class groups with uncountable integral homology 177

Remark 6.2. This is the same as the surface denoted by L.†/ in [24] with its boundary
capped off by a disc.

Before proving Theorem B in general, we will prove it under certain stronger hypo-
theses on the surface S . Namely, we assume that the surface S has genus 0, empty
boundary and that its space of ends is of the form ‡C.E/,1 where E has a topologically
distinguished point. This means that S may be written as R.S2 XE/, using the construc-
tion R.�/ of ray surfaces from Definition 6.1 above.

Denote byL the Loch Ness monster surface and consider its branched double covering
L! R2 depicted in Figure 5. This may also be written as

L Š S2]R.T 2/! S2]R.S2/ Š R2: (6.1)

This decomposition corresponds to cutting along the curves depicted in the figure. Notice
that there are exactly two branch points (of order 2) in each copy of S2 in R.S2/ and
one additional branch point in the copy of S2 in the extra connected summand. Let us
now choose once and for all a topologically distinguished point x 2 E (this exists by
hypothesis) and embed pairwise disjoint copies of E into S2]R.S2/ so that:

• each copy of E lies entirely in one of the copies of S2,

• the point x 2 E is sent to a branch point of (6.1),

• each branch point of (6.1) is in the image of one of the embeddings of E.

We denote by X the complement of these embedded copies of E and we denote by Y �
S2]R.T 2/ the pre-image of X � S2]R.S2/ under (6.1). Notice that:

Y Š .S2 X V /]R
�
T 2 X .V t V /

�
X Š .S2 XE/]R

�
S2 X .E tE/

�
Š R.S2 XE/ Š S;

where V denotes the wedge sum of two copies of E at the basepoint x. Since we have
in particular removed all branch points of the branched double covering, we obtain by
restriction a (genuine) double covering

Y ! X (6.2)

depicted in Figure 5.
We fix compatible basepoints on X and Y and denote by H the index-2 subgroup of

�1.X/ corresponding to this double covering. We also write Map�.X/ and Map�.Y / for
the based mapping class groups of X and Y , given by isotopy classes of self-homeomor-
phisms that fix the basepoint.

Lemma 6.3. The action of Homeo�.X/ on �1.X/ preserves the subgroup H .

1Recall that the notation ‡C.�/ was defined in Definition 1.3.
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Proof. We first describe the subgroup H � �1.X/ intrinsically. A based loop  in X lies
in H if and only if its lift to Y is a closed loop. This occurs if and only if the sum of its
winding numbers around all branch points of the branched double covering (6.1) is even.
We therefore have to show that if the sum of these winding numbers is even for  , then
the same is true for ' ı  , where ' is any based self-homeomorphism of X .

A subtle point here is the meaning of winding number (which we only need to define
mod 2): a simple loop in the surface X has winding number ˙1 around an end e ¤ 1
if it separates X into two pieces, one containing e and the other containing the end 1.
Here 1 denotes the end corresponding to going off to infinity to the right in Figure 5.
More precisely, recall that the end space ofX is the one-point compactification ‡C.E/D
E! C 1 of a countably infinite disjoint union of copies of E and 1 denotes the point
at infinity of this one-point compactification. By Corollary 3.7 and our assumption that
E has a topologically distinguished point, the point 1 2 E! C 1 is also topologically
distinguished. Thus any self-homeomorphism ' of X fixes1, meaning that the notion of
“winding number” is preserved by '.

Let us now show that if the sum of the winding numbers of  around all branch points
of X is even, then the same is true for ' ı  . The end space E! C 1 of X has a topo-
logically distinguished subset ¹xº! given by the copy of the topologically distinguished
point x in each copy of E. But this is precisely the set of branch point of the branched
double covering (6.1). Thus the self-homeomorphism ' must send each end of X corres-
ponding to a branch point to another end of X corresponding to a branch point. Its effect
on winding numbers around branch points is therefore simply to permute them; so in par-
ticular their sum is preserved. Hence if the sum of winding numbers around branch points
is even for  , then the sum of winding numbers around branch points will also be even for
' ı  .

Remark 6.4. The proof of Lemma 6.3 is where our assumption that the space E has a
topologically distinguished point is used decisively. The lemma would be false without
this assumption. See also Remark 6.5.

We may now complete the proof of Theorem B under the stronger assumptions that
we are currently making (we explain how to remove these assumptions at the end of this
section).

Proof of Theorem B under additional assumptions. It follows from Lemma 6.3 that each
based homeomorphism of X lifts uniquely to a based homeomorphism of Y , giving us a
continuous map Homeo�.X/! Homeo�.Y /, which on �0 induces

Map�.X/! Map�.Y /: (6.3)

Filling in all planar ends of a surface is a functorial operation on the category of sur-
faces, so by filling in all planar ends of Y we obtain a continuous map Homeo�.Y /!
Homeo�.L/ (see Proposition B.2), which on �0 induces

Map�.Y /! Map�.L/: (6.4)
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Composing (6.3) and (6.4) with the forgetful map Map�.L/! Map.L/, we obtain

Map�.X/! Map.L/: (6.5)

Let ˛1; ˛2; : : : be the collection of simple closed curves on X depicted in Figure 5. Since
i is a double covering of ˛i , we see that

.T˛i /
2
7�! Ti

under (6.5). Now recall that in Section 5 (see diagram (5.4)) we factored the inclusionL
c Z �

L
c Q through a map

L
c Z! Map.L/ that sends the generator 1 2 Z of each

summand to a certain infinite product of Dehn twists around the curves i from the top
of Figure 5. Replacing each Ti with .T˛i /

2 in this infinite product, we obtain a mapL
c Z! Map�.X/ making the following triangle commute:L

c Z

Map�.X/ Map.L/;
(6.5)

where the right-hand diagonal map is part of a factorisation
L

c Z! Map.L/!
L

c Q
of the standard inclusion. We have therefore shown that the standard inclusion of

L
c Z

into
L

c Q also factors through Map�.X/. Now consider the diagramL
c Z Map�.X/

L
c Q

Map.X/;

'

(6.6)

where the middle vertical map forgets the basepoint. This is part of the Birman exact
sequence for X , and its kernel is �1.X/, which is in particular countable. Let us denote
this kernel by K and consider its image '.K/ �

L
c Q. Since '.K/ is countable and

each of its elements has only finitely many non-zero coordinates in
L

c Q (because it is
a direct sum), it is contained in the subgroup of

L
c Q given by the direct sum of only

countably many of the copies of Q. If we take the quotient by this subgroup, the resulting
group is again isomorphic to

L
c Q and the homomorphism ' now descends to Map.X/.

On the left-hand side of (6.6), we may compose with the inclusion of the corresponding
sub-direct-summand of

L
c Z (which is again isomorphic to

L
c Z); this ensures that the

composition across the top row of the following diagram is still the standard inclusion ofL
c Z into

L
c Q:

L
c Z

L
c Z Map�.X/

L
c Q

L
c Q:

Map.X/

'
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Figure 6. A modification of the branched double covering depicted in Figure 5.

Thus we have shown that the standard inclusion of
L

c Z into
L

c Q factors through
Map.X/. This standard inclusion induces an injection on homology in all degrees, by
Lemma A.3 and the fact that

H�.A/ D ƒ
�.A/

for torsion-free abelian groups A, so it follows that we have an injection

ƒ�
�M

c

Z
�
D H�

�M
c

Z
�
,! H�

�
Map.X/

�
D H�

�
Map.S/

�
:

This completes the proof of Theorem B under the additional assumptions on the surface S .

We finish this section by showing how to modify the argument above to allow the more
general surfaces S considered in the theorem.

Proof of Theorem B in general. The proof follows exactly the same strategy as the proof
in the special case above, so we just explain the steps that differ slightly.

In general, the surface S is of the form pictured at the bottom of Figure 6, where we
have taken a connected sum of the surface considered previously with another surface of
finite genus having finitely many boundary components, such that none of the points of its
end space are similar to the topologically distinguished point x 2 E. We may correspond-
ingly modify the total space of the double covering by taking two connected sums with
this surface (no new branch points are introduced).
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Lemma 6.3 generalises directly to this setting, giving us a homomorphism that lifts
(based) mapping classes up the double covering. Filling in all planar ends upstairs, as well
as the finitely many boundary components, we obtain (as before) the Loch Ness monster
surface L. With these modifications, the rest of the proof is identical to the proof in the
special case given above, using the constructions of Section 5.

Remark 6.5. It is essential to assume in Theorem B that E2 has a topologically distin-
guished point. Indeed, if we do not assume this, then the theorem is false. For example,
without this assumption, the theorem would assert that the homology of Map.S2 X C/

is uncountable in all positive degrees, since ‡C.C/ Š C . However, the first and second
homology groups of Map.S2 X C/ are known to be 0 and Z=2 respectively [7].

7. Torsion elements

We prove in this section that, whenever the surface S has genus 2, both H1.PMap.S//
and H1.Map.S// contain an element of order 10 that generates a direct summand. We
first recall that, for compact surfaces of genus 2, the first homology of their mapping class
groups is precisely Z=10. Denote by Sg;b the connected, compact, orientable surface of
genus g with b � 1 boundary components. When g D 2, we have the following.

Theorem 7.1 ([16, Section 5]; see also [22]). For any b � 0, we have

H1
�

Map.S2;b/
�
Š Z=10;

generated by ŒT˛�, where ˛ is any non-separating simple closed curve in S2;b .

Proof of Theorem C. If S has genus 2, there is an embedding S2;1 � S . Also, filling in
the ends of S (all of which are planar since it has finite genus) to construct its Freudenthal
compactification results in the compact surface S2;b , where b � 0 is the number of bound-
ary components of S . We therefore have homomorphisms

Map.S2;1/! PMap.S/ � Map.S/! Map.S2;b/; (7.1)

where the first is given by extending homeomorphisms of S2;1 by the identity on S X S2;1
and the second is given by the unique extension of homeomorphisms to the Freudenthal
compactification (see Proposition B.2). Let ˛ be a non-separating simple closed curve
in S2;1. By Theorem 7.1, the composition across (7.1) induces a map Z=10! Z=10 on
first homology. Moreover, it clearly sends ŒT˛� to itself, so it sends a generator of the first
Z=10 to a generator of the second Z=10; thus it is an isomorphism. Since we have factored
an isomorphism of Z=10 through H1.PMap.S// and H1.Map.S//, it follows that these
groups both contain Z=10 as a direct summand.

We record here a related general fact that (for example) allows one to embed torsion
elements of the homology of mapping class groups of compact surfaces into the homology
of mapping class groups of surfaces of infinite type.
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Lemma 7.2. Let S and S 0 be two surfaces with non-empty (compact) boundary and
assume that S 0 is planar. Then there are embeddings of direct summands

H�
�
PMap.S/

�
,! H�

�
PMap.S\S 0/

�
and H�

�
Map.S/

�
,! H�

�
Map.S\S 0/

�
; (7.2)

where �\� denotes the boundary connected sum along one chosen interval in the bound-
ary of each of the two surfaces.

Proof. Since S 0 is planar, it must be of the form S 0D S0;b XE, where b � 1 is the number
of its boundary components andE is its space of ends. We therefore have homomorphisms

PMap.S/! PMap.S\S 0/! PMap.S\S0;b/! PMap.S\S0;1/ Š PMap.S/; (7.3)

where the first is given by extending homeomorphisms by the identity on S 0, the second
is given by the unique extension of homeomorphisms to the Freudenthal compactification
(see Proposition B.2) and the third is given by filling in all boundary components of S0;b
with discs, except the one along which we have taken the boundary connected sum, and
extending homeomorphisms by the identity on these new discs. The isomorphism on the
right-hand side is induced by a homeomorphism S\S0;1 Š S given by pushing the disc
S0;1 into a collar neighbourhood of the boundary of S . The composition across (7.3) is
given by extending homeomorphisms of S by the identity on S0;1 and then conjugating by
the homeomorphism S\S0;1 Š S . This is clearly isotopic to the identity, so, applyingH�,
we have factored the identity map of H�.PMap.S// through H�.PMap.S\S 0//, which
provides the first embedding of (7.2). The second embedding follows by an identical argu-
ment, replacing PMap.�/ with Map.�/ everywhere.

8. Some open problems

In this section we propose some open questions, in addition to Questions 1.6, 1.11, and
1.12 discussed in the introduction. We divide them into Section 8.1 on homology and
Section 8.2 on cohomology.

8.1. Homology

So far, our calculations suggest the answer to the following question could be positive.

Question 8.1. Let S be an infinite-type surface. Suppose that, for some i � 1, the group
Hi .Map.S// is countable. Is Hi .Map.S// finitely generated for all i?

This would imply a dichotomy between those S for which Hi .Map.S// is finitely
generated for all i � 1 and those S for which Hi .Map.S// is uncountable for all i � 1.

Question 8.2. Let Sg;1 be the connected, compact, orientable surface of genus g and with
one boundary component. Does the forgetful map Map.Sg;1 X C/! Map.Sg;1/ induce
isomorphisms on homology in all degrees?
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Remark 8.3. When g D 0, a positive answer follows from [24, Theorem B]. The answer
in degree one (and for any g) has been proven to be positive in [8, Theorem 2.3]. On
the other hand, the answer would be negative if we considered the sphere instead of Sg;1,
sinceH2.Map.S2 XC//ŠZ=2 by [7, Theorem A.2]. It would also be negative if we took
the plane instead of Sg;1, sinceHi .Map.R2 XC//ŠZ for all even i by [24, Theorem A].

By [24, Theorem C], the mapping class groups of 1-holed binary tree surfaces are
acyclic. One may wonder whether these are the only acyclic mapping class groups of
infinite-type surfaces with connected boundary:

Question 8.4. Let S be an infinite-type surface with a single boundary component and
suppose that its mapping class group Map.S/ is acyclic. Is S necessarily a 1-holed binary
tree surface?

8.2. Cohomology

Most of the results of this paper may be summarised as follows. For any infinite-type
surface S , the natural inclusion

L
c Z �

L
c Q factors asM

c

Z! T .S/ � PMapc.S/!
M

c

Q; (8.1)

and similarly for the full mapping class group Map.S/ if S satisfies the conditions of
Theorem B or if it is the Loch Ness monster surface (Proposition 5.3). Our results about
integral homology then follow from the fact that the natural inclusion

L
c Z �

L
c Q

induces an injective homomorphism of exterior algebras ƒ�.
L

c Z/ � ƒ�.
L

c Q/ on
homology (Lemma A.3). It is therefore natural to consider also the effect of the factor-
isation (8.1) on integral cohomology. However, this factorisation does not tell us anything
about cohomology, since the composition across (8.1) induces the zero map on cohomo-
logy:

Lemma 8.5. For each i � 1, we have:

H i
�M

c

Z
�
Š

Y
c

Z;

H i
�M

c

Q
�
Š

´
0 if i D 1;L
2c Q if i � 2:

In particular, the inclusion
L

c Z �
L

c Q induces the zero map on H i .

Proof. The last statement follows from the two calculations, since the induced map on
H i has a rational vector space as its domain, which is a divisible group. Its image must
therefore also be divisible, but the only divisible subgroup of

Q
c Z is the trivial group.

It therefore remains to check the two calculations. The first one follows from the
fact that Hi .

L
c Z/ Š

L
c Z for all i � 1, the universal coefficient theorem, the fact
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that HomZ.�;�/ and ExtZ.�;�/ take direct sums to products in the first variable and
HomZ.Z;Z/ Š Z and ExtZ.Z;Z/ D 0.

For the second calculation, we again use the universal coefficient theorem, where this
time we use the facts that HomZ.Q;Z/D 0 and that ExtZ.Q;Z/ is a rational vector space
of dimension c (see for example [30]). Thus for i � 2 we have

H i
�M

c

Q
�
Š

Y
c

�M
c

Q
�
;

which is a divisible and torsion-free abelian group, hence a rational vector space, of car-
dinality (and hence also dimension) cc D 2c.

Since the composition across (8.1) induces the zero map on cohomology, we cannot
deduce anything aboutH�.PMapc.S// from this. However, we wonder whether the right-
hand map of (8.1) is nevertheless injective on cohomology. If it is, it would positively
answer the first part of the following question.

Question 8.6. Let S be an infinite-type surface and i � 2. Do the groupsH i .PMapc.S//
or H i .PMap.S// contain a rational vector space of dimension 2c?

The second part of this question is motivated by the observation that, in the case when
S has infinitely many non-planar ends, the answer is yes. In fact, we have:

Proposition 8.7. Let S be a surface with infinitely many non-planar ends and let i � 2.
Then there is an embeddingM

2c

Q˚
M
2c

Q=Z ,! H i
�
PMap.S/

�
:

Proof. By [1, Corollary 6], PMap.S/ admits a split-surjection onto the Baer–Specker
group ZN , so H i .ZN/ is a summand of H i .PMap.S//. By the universal coefficient the-
orem, H i .ZN/ has a direct summand of the form ExtZ.Hi�1.ZN/;Z/ and we know by
Lemma 5.8 that Hi�1.ZN/ contains a direct summand isomorphic to ZN . Putting this
together, it follows thatH i .PMap.S// has a direct summand isomorphic to ExtZ.ZN ;Z/.
This group is isomorphic to

L
2c Q˚

L
2c Q=Z, by [23, Theorem 5] (see also [14, Exer-

cise 2 of Section 99]).

A. Abelian groups

We collect here a few facts about abelian groups that are needed in our proofs. For a
comprehensive treatment of the theory of abelian groups, we refer to [13, 14].

Recall that an abelian group A is called divisible if for each element a 2 A and pos-
itive integer n, there is another element b 2 A such that a D nb. An abelian group A
is called injective if for every injective homomorphism of abelian groups �WB ! C and
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homomorphism f WB ! A, there is a homomorphism gWC ! A such that g ı � D f .
By [13, Theorems 21.1 and 24.5], an abelian group is divisible if and only if it is injective.
In particular:

Lemma A.1. Every injective homomorphism from a divisible abelian group to another
abelian group admits a retraction.

Proof. LetA be a divisible abelian group and let �WA!C be an injective homomorphism.
Since A is injective, taking B D A and f D id above, we obtain a retraction of �.

Lemma A.2. Suppose that we have homomorphisms of abelian groupsM
c

Q
f
�! A

g
�! B;

where f is injective and g has countable kernel. Then, after restricting the direct sum on
the left to a subcollection of the same cardinality, the composition g ı f is also injective.

Proof. Consider the subgroup K WD ker.g ı f / D f �1.ker.g// �
L

c Q. Since ker.g/
is countable and f is injective, K is a countable subgroup of

L
c Q. Each element of

K has only finitely many non-zero coordinates in the direct sum and K has countably
many elements; thus K is contained in the sub-direct-sum given by countably many Q
summands. After removing these summands from the direct sum, the composition g ı f
is injective.

Lemma A.3. For any set I , the canonical inclusion
L
I Z ,!

L
I Q induces an injective

map of graded abelian groups

ƒ�
�M
I

Z
�
,! ƒ�

�M
I

Q
�
: (A.1)

To prove this, we first recall the following basic calculation:

Lemma A.4. ƒ�.Z/ Š ZŒ0�˚ ZŒ1� and ƒ�.Q/ Š ZŒ0�˚QŒ1�.

Proof. The only non-obvious statement is thatƒi .Q/D 0 for i � 2. To see this, first recall
that

Q˝Z Q˝Z � � � ˝Z Q Š Q (A.2)

via an isomorphism that sends a1 ˝ a2 ˝ � � � ˝ ai 7! a1a2 � � � ai . The Z-module ƒi .Q/
is the quotient of this tensor power by the sub-Z-module generated by all elements a1 ˝
a2 ˝ � � � ˝ ai with aj D ak for some j ¤ k. Thus to prove that ƒi .Q/ D 0 we have to
show that every rational number is a Z-linear combination of rational numbers of the form
b2a3 � � �ai . For i � 3 this is obvious, as we may take b D 1. For i D 2, consider a rational
number p

q
, where p; q 2 Z with q ¤ 0. Lagrange’s four-square theorem implies that we

have pq D a2 C b2 C c2 C d2 for integers a, b, c, d . Dividing by q2, we deduce that p
q

is a sum of four rational squares.
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Proof of Lemma A.3. By [6, Sections V.6.2, V.6.3], for any abelian group A we have

ƒ�
�M
I

A
�
Š ƒ�

�
colim
J�I

M
J

A
�
Š colim

J�I
ƒ�
�M
J

A
�
Š colim

J�I

O
J

ƒ�.A/; (A.3)

where the colimit is taken over finite subsets J of I . For any finite set J , the canonical
map O

J

ƒ�.Z/!
O
J

ƒ�.Q/

is injective by Lemma A.4 and the natural isomorphisms (A.2). Thus (A.1) is also injective
since the colimit on the right-hand side of (A.3), for A D Z or A D Q, is taken over a
direct system in which all maps are inclusions of direct summands.

B. Extending homeomorphisms to Freudenthal compactifications

Notation B.1. For a surface S , recall that we denote by xS its Freudenthal compactific-
ation (see Section 2.1). We will write P .S/ D Ends.S/ X Endsnp.S/ for its space of
planar ends. We will also write yS � xS for the subspace xS X Endsnp.S/ where we have
removed all non-planar ends from xS . Equivalently, it is the subspace of xS consisting of all
of its locally Euclidean points: in other words it is the maximal subspace that is a surface.
Intuitively, yS is the result of “filling in” all planar ends P .S/ of S .

Since every homeomorphism of S extends (necessarily uniquely) to xS and every
homeomorphism of xS sends yS onto itself, we have well-defined injective functions

Homeo.S/! Homeo. xS/! Homeo. yS/: (B.1)

Proposition B.2. With respect to the compact-open topology, the left-hand function in
(B.1) is a topological embedding and the right-hand function is a homeomorphism.

Proof. The fact that the left-hand map is a topological embedding follows from Proposi-
tion B.5 below applied to X D S . To deal with the right-hand map, first note that xS is the
Freudenthal compactification of yS (as well as of S ), so we have a well-defined function

Homeo. yS/! Homeo. xS/; (B.2)

given by extending homeomorphisms uniquely. It is evidently a set-theoretic inverse for
the restriction map Homeo. xS/!Homeo. yS/; hence both (B.2) and this restriction map are
bijections. Now applying Proposition B.5 to X D yS , we deduce that (B.2) is a topological
embedding. Since it is also a bijection, this means that it is a homeomorphism, and hence
so is its inverse, which is the restriction map on the right-hand side of (B.1).

Corollary B.3. There is an isomorphism of topological groups

Homeo.S/ Š Homeo. yS;P .S//:
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Proof. This follows directly from Proposition B.2, together with the observation that the
image of the composite topological embedding (B.1) is precisely Homeo. yS;P .S//, the
subspace of Homeo. yS/ of homeomorphisms sending P .S/ onto itself.

Remark B.4. Corollary B.3 says that filling in the planar ends of a surface and then
fixing them setwise does not change anything at the level of homeomorphism groups.
This generalises the usual dichotomy between thinking of punctures (isolated planar ends)
either as punctures or as marked points.

Proposition B.5. Let X be a connected, locally connected, locally compact, Hausdorff
and second countable space, write xX for its Freudenthal compactification and give all
homeomorphism groups the compact-open topology. Then the injective function

Homeo.X/! Homeo. xX/

given by unique extensions of homeomorphisms is a topological embedding, in particular
it is continuous.

Proof. We begin by rephrasing the statement. The topology on Homeo.X/ induced from
the compact-open topology on Homeo. xX/ via the injection Homeo.X/ ! Homeo. xX/
is called the F-topology. What we must show is that the F-topology coincides with the
compact-open topology. (For the weaker statement that Homeo.X/ ! Homeo. xX/ is
continuous, rather than a topological embedding, we would just have to show that the
compact-open topology is finer than the F-topology.)

The collection of topologies on Homeo.X/ making both the group operation and
the evaluation map Homeo.X/ � X ! X continuous was studied in [3], where it was
proven that there exists a minimum such topology if X is locally compact and Hausdorff.
Moreover, ifX is also locally connected, this minimal topology is the compact-open topo-
logy. On the other hand, it is proven in [9] that, if X is rim-compact, Hausdorff and xX is
locally connected at any ideal point, then the F-topology is minimal. Thus, if both sets of
hypotheses are satisfied, we may conclude that the F-topology coincides with the compact-
open topology, as desired. Indeed, the assumptions of the proposition do imply both sets
of hypotheses: in particular rim-compactness is weaker than local compactness (which we
have assumed) and our assumptions also imply that the Freudenthal compactification xX is
locally connected at any ideal point; see the paragraph before Theorem 9 in [10].
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Institutul de Matematică Simion Stoilow al Academiei Române, 21 Calea Griviţei,
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