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Motivic cohomology of the Nisnevich classifying space
of even Clifford groups

Fabio Tanania

Abstract. In this paper, we consider the split even Clifford group �Cn and compute the mod 2
motivic cohomology ring of its Nisnevich classifying space. The description we obtain is quite
similar to the one provided for spin groups in [Math. Z. 301 (2022), no. 1, 41–74]. The fundamental
difference resides in the behaviour of the second subtle Stiefel–Whitney class that is non-trivial for
even Clifford groups, while it vanishes in the spin-case.

1. Introduction

Subtle characteristic classes were introduced by Smirnov and Vishik in [8] to approach the
classification of quadratic forms by using motivic homotopical techniques. In particular,
these characteristic classes arise as elements of the motivic cohomology ring of the Nis-
nevich classifying space BG of a linear algebraic group G over a field k. They naturally
provide invariants for Nisnevich locally trivial G-torsors, which take value in the motivic
cohomology of the base. What is probably more interesting is that they also provide invari-
ants for étale locally trivial G-torsors, which take value this time in a more complicated
and informative object, namely the motivic cohomology of the Čech simplicial scheme of
the torsor under study.

In [8], the authors compute the motivic cohomology ring with Z=2-coefficients of
BOn, i.e. the Nisnevich classifying space of the split orthogonal group. Similarly to the
topological picture, this cohomology ring is a polynomial algebra over the motivic coho-
mology of the ground field generated by certain classes u1; : : : ; un called subtle Stiefel–
Whitney classes. These invariants detect the power I n of the fundamental ideal of the Witt
ring a quadratic form belongs to. In particular, the triviality of all subtle Stiefel–Whitney
classes implies the triviality of the quadratic form itself. Besides, from the computation
of H.BOn/ it follows that the mod 2 motivic cohomology of BSOn is also a polynomial
algebra generated by all subtle Stiefel–Whitney classes but the first.

Following [8], we studied the motivic cohomology rings of the Nisnevich classify-
ing spaces of unitary groups in [9], of spin groups in [11] and of projective general
linear groups in [10]. This paper is a natural follow-up of [11]. In fact, we focus here
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on computing the motivic cohomology of the Nisnevich classifying space of even Clifford
groups. These algebraic groups are closely related to spin groups. On the level of torsors,
this is visible from the fact that a spin-torsor yields a quadratic form in I 3 through a sur-
jective map with trivial kernel, while the torsors of the even Clifford groups are exactly
the quadratic forms in I 3.

The topological counterpart of the even Clifford group �Cn is the Lie group Spinc.n/.
The singular cohomology of the classifying space of Spinc.n/ was computed by Harada
and Kono in [3]. The main result we obtain in this article is a motivic version of [3,
Theorem 3.5]. More precisely, we prove the following.

Theorem 1.1. Let k be a field of characteristic different from 2 containing a square root
of�1. Then, for any n�2, there exists a cohomology class e2l.n/ in bidegree .2l.n/�1/Œ2l.n/�
such that the natural homomorphism of H -algebras

H.BSOn/=I ıl.n/ ˝H HŒe2l.n/ �! H.B�Cn /

is an isomorphism, where I ı
l.n/

is the ideal generated by �1; : : : ; �l.n/�1 and l.n/D ŒnC1
2
�.

The assumption on the characteristic of the ground field is necessary since the mod 2
motivic cohomology of the point and the mod 2 motivic Steenrod algebra are well under-
stood in characteristic different from 2 (see [13]). Moreover, we require also that k con-
tains a square root of �1, since in this case the action of the mod 2 motivic Steenrod
algebra on the mod 2 motivic cohomology of the point is trivial, making our computation
easier. Anyways, we suspect that a result similar to Theorem 1.1 would still hold after
dropping this last assumption, but with more complicated relations involving Steenrod
operations and � D Sq1� , where � is the class of �1 in mod 2 Milnor K-theory and � is
the generator of H 0;1 Š Z=2.

The similarity between Theorem 1.1 and the computation for the spin-case (see The-
orem 2.10) is clear. Nonetheless, a crucial difference is that, while u2 is trivial in the
cohomology ringH.BSpinn/, it is not inH.B�Cn /where the ideal of relations I ı

l.n/
is gen-

erated by the action of the motivic Steenrod algebra over u3 D Sq1u2. This also explains
the gap between k.n/ in Theorem 2.10 and l.n/ in Theorem 1.1, which is due to discrep-
ancies in the maximal length of the regular sequences in H.BSOn/ obtained by applying
certain Steenrod operations to u2 and u3, respectively.

We conclude by pointing out that understanding the motivic cohomology of Nisnevich
classifying spaces also helps in obtaining information about the structure of the Chow ring
of étale classifying spaces BétG (see [12]), which is an interesting object of study that is
particularly challenging to fully grasp. For example, the Chow ring of Bét�

C
n has been

recently investigated by Karpenko in [4] where he proves a conjecture that allows him, as
a consequence, to compute the exponent indexes of spin grassmannians. In our case, we
will show how to apply Theorem 1.1 to compute the subring generated by Chern classes of
the Chow ring mod 2 of Bét�

C
n , modulo nilpotents, sheding new light on its complicated

structure.
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Outline. In Section 2, we report notations and preliminary results that we will use in
this paper. In particular, we recall the Thom isomorphism in the triangulated category of
motives over a simplicial base, which provides Gysin long exact sequences in motivic
cohomology. Besides, we recall definitions and properties of classifying spaces in motivic
homotopy theory, as well as the computation of the mod 2 motivic cohomology of BOn,
BSOn and BSpinn. In Section 3, we investigate regular sequences in H.BSOn/ construc-
ted starting from u3 by acting with specific Steenrod operations. Finally, in Section 4, we
exploit the Gysin sequence relating B�Cn and BSpinn, and the regular sequences studied
before, in order to fully compute the mod 2 motivic cohomology of B�Cn . After that, we
also obtain a complete description of the reduced Chern subring of the Chow ring mod 2
of Bét�

C
n .

2. Notation and preliminaries

We start by fixing some notation we will regularly use in this paper.

k field of characteristic different from 2 containing
p
�1

R commutative ring with identity
Y� smooth simplicial scheme over k

Spc�.Y�/ category of pointed motivic spaces over Y�
Hs.k/ simplicial homotopy category over k

DM�eff.k; R/ triangulated category of effective motives over k with R-coefficients
DM�eff.Y�; R/ triangulated category of effective motives over Y� with R-coefficients

T unit object in DM�eff.k; R/

Htop.�/ singular cohomology with Z=2-coefficients
H.�/ motivic cohomology with Z=2-coefficients

H motivic cohomology with Z=2-coefficients of Spec.k/
KM .k/=2 Milnor K-theory of k mod 2

wi i th Stiefel–Whitney class in Htop.BSOn/
ui i th subtle Stiefel–Whitney class in H.BSOn/
�j the element Sq2

j�1
Sq2

j�2
� � �Sq2Sq1w2 in Htop.BSOn/

�j the element Sq2
j�1
Sq2

j�2
� � �Sq2Sq1u2 in H.BSOn/

�Cn even Clifford group

The collection of results [13, Theorem 6.1, Corollaries 6.9 and 7.5] implies that H Š
KM .k/=2Œ��, where � is the non-trivial class in H 0;1 Š Z=2 and Hn;n Š KMn .k/=2.

Note that, since we are working over a field containing the square root of �1, all
Steenrod squares Sqi , as defined in [14], act trivially on H .

Since we will mainly work in the triangulated category of motives over a simplicial
scheme defined by Voevodsky in [15], we recall a few definitions and propositions about
it that will be useful later on to prove our main results.
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Definition 2.1. For any smooth simplicial scheme Y� over k, denote by c W Y�! Spec.k/
the projection to the base. Then, we can define the Tate objects T .q/Œp� in DM�eff.Y�; R/

as c�.T .q/Œp�/.

Definition 2.2. A smooth morphism of smooth simplicial schemes � W X�! Y� is called
coherent if there is a cartesian square

Xj
�j
//

X�

��

Yj

Y�

��

Xi �i
// Yi

for any simplicial map � W Œi �! Œj �.

Denote by CC.Y�/ the simplicial set obtained from Y� by applying the functor CC
that sends any connected scheme to the point and respects coproducts.

Proposition 2.3. Let � W X� ! Y� be a smooth coherent morphism of smooth simplicial
schemes over k and A a smooth k-scheme such that:

(1) X0 is isomorphic to Y0 �A and, under this isomorphism, �0 becomes equal to the
projection map Y0 � A! Y0;

(2) H 1.CC.Y�/; R
�/ Š 0;

(3) M.A/ Š T ˚ T .r/Œs � 1� in DM�eff.k; R/ for arbitrary integers r and s.

Then, M.Cone.�// Š T .r/Œs� in DM�eff.Y�; R/ where Cone.�/ is the cone of � in
Spc�.Y�/. Hence, we get a Thom isomorphism of H.Y�; R/-modules

H��s;�
0�r .Y�; R/! H�;�

0�
Cone.�/; R

�
:

Proof. See [11, Proposition 4.2].

Definition 2.4. We call Thom class of � and denote by ˛ the image of 1 under the Thom
isomorphism of Proposition 2.3.

The following result guarantees that the Thom isomorphism from Proposition 2.3 is
functorial.

Proposition 2.5. Suppose there is a cartesian square

X�
� //

pX

��

Y�

pY

��

X 0�
� 0
// Y 0�

such that Y0 is connected, pX and pY are smooth, � and � 0 are smooth coherent with
fiber A satisfying all conditions from Proposition 2.3. Then, the induced homomorphism
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in motivic cohomology

H
�
Cone.� 0/; R

�
! H

�
Cone.�/; R

�
maps ˛0 to ˛, where ˛0 and ˛ are the respective Thom classes.

Proof. See [11, Proposition 4.3 and Corollary 4.4].

We now recall from [6] the definitions of the Nisnevich and étale classifying spaces of
linear algebraic groups.

Let G be a linear algebraic group over k and EG the simplicial scheme defined by

.EG/n D GnC1;

with partial projections as face maps and partial diagonals as degeneracy maps. The space
EG is endowed with a right free G-action provided by the operation in G.

Definition 2.6. The Nisnevich classifying space of G is the quotient BG D EG=G.

The morphism of sites � W .Sm=k/ét ! .Sm=k/Nis induces an adjunction between
simplicial homotopy categories

Hs

�
.Sm=k/ét

�
�� "# R��

Hs

�
.Sm=k/Nis

�
:

Definition 2.7. The étale classifying space of G is defined by BétG D R���
�BG.

Let H be an algebraic subgroup of G. Then, we can define the simplicial scheme
yBH D EG=H with respect to the embeddingH ,!G. Denote by j the induced morphism
BH ! yBH .

Proposition 2.8. Let H ,! G be such that all rationally trivial H -torsors and G-torsors
are Zariski-locally trivial. If the map

HomHs.k/

�
Spec.K/;BétH

�
! HomHs.k/

�
Spec.K/;BétG

�
has trivial kernel for any finitely generated field extension K of k, then j is an isomorph-
ism in Hs.k/.

Proof. See [11, Proposition 5.1, Corollary 5.2, and Proposition 5.3].

Remark 2.9. Note that the obvious map � W yBH ! BG is smooth coherent with fiber
G=H .

By using the Gysin sequence induced by the Thom isomorphism, one can compute by
induction the following motivic cohomology rings.
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Theorem 2.10. The motivic cohomology rings of BOn, BSOn and BSpinn are, respect-
ively, given by

H.BOn/ Š HŒu1; : : : ; un�;

H.BSOn/ Š HŒu2; : : : ; un�;

H.BSpinn/ Š H.BSOn/=Ik.n/ ˝H HŒv2k.n/ �;

where the i th subtle Stiefel–Whitney class ui is in bidegree .Œ i
2
�/Œi �, the class v2k.n/ is in

bidegree .2k.n/�1/Œ2k.n/�, Ik.n/ is the ideal generated by �0; : : : ; �k.n/�1 and k.n/ depends
on n as in the following table.

n k.n/

8l C 1 4l

8l C 2 4l C 1

8l C 3 4l C 2

8l C 4 4l C 2

8l C 5 4l C 3

8l C 6 4l C 3

8l C 7 4l C 3

8l C 8 4l C 3

Proof. See [8, Theorem 3.1.1] and [11, Proposition 5.6 and Theorem 8.3].

3. Regular sequences in H.BSOn/

In this section, we want to use the techniques developed in [11, Section 7] to produce
other regular sequences in the motivic cohomology of BSOn that will be relevant later to
deal with the case of even Clifford groups.

Let V be an n-dimensional Z=2-vector space, B a bilinear form over V and ?V its
right radical, i.e.

?V D
®
y 2 V W B.x; y/ D 0 for any x 2 V

¯
:

Fix a basis ¹e1; : : : ; enº for V and let xi and yj be the coordinates of x and y in V ,
respectively. Then,

B.x; y/ D

nX
i;jD1

B.ei ; ej /xiyj

is a homogeneous polynomial of degree 2 in Z=2Œx1; : : : ; xn; y1; : : : ; yn�.

Proposition 3.1. The sequence B.x; y/; B.x; y2/; : : : ; B.x; y2
h�1
/ is a regular sequence

in the polynomial ring Z=2Œx1; : : : ; xn; y1; : : : ; yn�, where h D n � dim.?V /.

Proof. See [11, Corollary 7.3].
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Recall from [11, Section 7] that there are commutative squares

H.BO2m/
˛2m //

2m

��

H.BO2/˝m

ı2m

��

S2m
ˇ2m

// R2m

H.BO2mC1/
˛2mC1

//

2mC1

��

H.BO2/˝m ˝H.BO1/

ı2mC1

��

S2mC1
ˇ2mC1

// R2mC1

where

H.BOn/ Š HŒu1; : : : ; un�;

H.BO2/˝m Š HŒx1; y1; : : : ; xm; ym�;

H.BO2/˝m ˝H H.BO1/ Š HŒx1; y1; : : : ; xm; ym; xmC1�;

Sn D Z=2Œu1; : : : ; un�;

R2m D Z=2Œx1; y1; : : : ; xm; ym�;

R2mC1 D Z=2Œx1; y1; : : : ; xm; ym; xmC1�;

xi is in bidegree .0/Œ1� and yi is in bidegree .1/Œ2� for any i , ˇn is obtained from ˛n by
tensoring with Z=2 overH , n and ın are the reduction homomorphisms alongH!Z=2.

In particular the following formulas hold:

ˇ2m.u2j / D �j .y1; : : : ; ym/;

ˇ2m.u2jC1/ D

mX
iD1

xi�j .y1; : : : ; yi�1; yiC1; : : : ; ym/;

ˇ2mC1.u2j / D �j .y1; : : : ; ym/;

ˇ2mC1.u2jC1/ D

mX
iD1

xi�j .y1; : : : ; yi�1; yiC1; : : : ; ym/C xmC1�j .y1; : : : ; ym/;

where �j is the j th elementary symmetric polynomial.

Lemma 3.2. Let f W A D Z=2Œa1; : : : ; am� ! B D Z=2Œb1; : : : ; bn� be a ring homo-
morphism, where deg.bi / D 1 for any i and f .aj / is a homogeneous polynomial in B of
positive degree j̨ for any j . Moreover, let r1; : : : ; rk be a sequence of elements of A. If
f .r1/; : : : ; f .rk/ is a regular sequence in B , then r1; : : : ; rk is a regular sequence in A.

Proof. See [11, Lemma 7.4].

Theorem 3.3. The sequence

n.u1/; n.u3/; n.Sq
2u3/; : : : ; n.Sq

2l.n/�2Sq2
l.n/�3

� � �Sq2u3/

is regular in Sn, where l.n/ D ŒnC1
2
�.
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Proof. By Lemma 3.2 it is enough to show the regularity of the sequence

ˇnn.u1/; ˇnn.u3/; ˇnn.Sq
2u3/; : : : ; ˇnn.Sq

2l.n/�2Sq2
l.n/�3

� � �Sq2u3/

in Rn.
First, consider the case nD 2m. Then, ˇ2m2m.u1/Dˇ2m.u1/D

Pm
iD1xi . Moreover,

since � is zero in R2m, we have ˇ2m2m.u3/ D
Pm
i¤jD1 xiyj and

ˇ2m2m.Sq
2l
� � �Sq2u3/ D ı2m˛2m.Sq

2l
� � �Sq2u3/

D ı2m
�
Sq2

l

� � �Sq2˛2m.u3/
�

D

mX
i¤jD1

ı2m
�
Sq2

l

� � �Sq2.xiyj /
�

D

mX
i¤jD1

xiy
2l

j

for l � 1. Modulo ˇ2m2m.u1/, ˇ2m2m.u3/D B.x;y/D
Pm�1
iD1 xi .yi C ym/ is a bilin-

ear form over an m-dimensional Z=2-vector space V and ˇ2m2m.Sq2
l
� � � Sq2u3/ D

B.x; y2
l
/ for any l � 1.

From yi C ym D B.ei ; y/ for any i � m � 1, it follows that ?V Š h.1; : : : ; 1/i and
Proposition 3.1 implies that the sequence

ˇ2m2m.u1/;ˇ2m2m.u3/;ˇ2m2m.Sq
2u3/; : : : ;ˇ2m2m.Sq

2l.2m/�2Sq2
l.2m/�3

� � �Sq2u3/

is regular in R2m where l.2m/ D m D Œ2mC1
2
�.

Now, consider the case n D 2mC 1. Then,

ˇ2mC12mC1.u1/ D ˇ2mC1.u1/ D

mC1X
iD1

xi :

Moreover, since � is zero in R2mC1, we have

ˇ2mC12mC1.u3/ D

mX
i¤jD1

xiyj C xmC1

mX
jD1

yj ;

ˇ2mC12mC1.Sq
2l
� � �Sq2u3/ D ı2mC1˛2mC1.Sq

2l
� � �Sq2u3/

D ı2mC1
�
Sq2

l

� � �Sq2˛2mC1.u3/
�

D

mX
i¤jD1

ı2mC1
�
Sq2

l

� � �Sq2.xiyj /
�

C

mX
jD1

ı2mC1
�
Sq2

l

� � �Sq2.xmC1yj /
�

D

mX
i¤jD1

xiy
2l

j C

mX
jD1

xmC1y
2l

j
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for l � 1. Modulo ˇ2mC12mC1.u1/, ˇ2mC12mC1.u3/ D B.x; y/ D
Pm
iD1 xiyi is a

bilinear form over an m-dimensional Z=2-vector space V and

ˇ2mC12mC1.Sq
2l
� � �Sq1u2/ D B.x; y

2l /

for any l � 1. In this case ?V Š 0, since yi D B.ei ; y/ for any i �m, and Proposition 3.1
implies that the sequence

ˇ2mC12mC1.u1/; ˇ2mC12mC1.u3/; ˇ2mC12mC1.Sq
2u3/; : : : ;

ˇ2mC12mC1.Sq
2l.2mC1/�2Sq2

l.2mC1/�3

� � �Sq2u3/

is regular in R2mC1 where l.2mC 1/ D mC 1 D Œ2mC2
2
�. This completes the proof.

Corollary 3.4. The sequence �; �1; : : : ; �l.n/�1 is regular in H.BSOn/, where l.n/ D
ŒnC1
2
�.

Proof. Since �j is inductively computed from �1D u3 by using only Wu formula (see [11,
Proposition 5.7]) and Cartan formula, we know that �j is an element of Z=2Œ�;u2; : : : ; un�
for any j . The regularity of the sequence in Z=2Œ�; u2; : : : ; un� follows from Theorem 3.3
by noticing that, modulo � and u1, �j D n.Sq2

j�1
� � �Sq1u2/ in Sn. This clearly implies

also the regularity of the sequence in H.BSOn/.

Recall from [11, Section 7] the homomorphisms i W Htop.BSOn/ ! H.BSOn/, h W
Htop.BSOn/! H.BSOn/ and t W H.BSOn/! Htop.BSOn/, where i is the ring homo-
morphism defined by i.wi / D ui , h is the linear map defined by h.x/ D � Œ

pi.x/
2 �qi.x/�i.x/

for any monomial x, where .qi.x//Œpi.x/� is the bidegree of i.x/, and t is the ring homo-
morphism defined by t .ui / D wi , t .�/ D 1 and t .KMr .k/=2/ D 0 for any r > 0.

Lemma 3.5. For any homogeneous polynomials x and y in Htop.BSOn/, we have that
h.xy/ D �"h.x/h.y/, where " is 1 if pi.x/pi.y/ is odd and 0 otherwise.

Proof. See [11, Lemma 7.7].

Lemma 3.6. For any j , t .�j / D �j and h.�j / D �j .

Proof. See [11, Lemma 7.9].

Definition 3.7. Let I ıj be the ideal in H.BSOn/ generated by �1; : : : ; �j�1 and I ı;top
j the

ideal in Htop.BSOn/ generated by �1; : : : ; �j�1.

Theorem 3.8. The canonical homomorphism

Htop.BSOn/=I
ı;top
l.n/
˝ Z=2

�
e.�n/

�
! Htop.BSpincn/

is an isomorphism, where l.n/ D ŒnC1
2
� and e.�n/ is the Euler class of the complex spin

representation �n.

Proof. See [3, Theorem 3.5].
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The following is the main result of this section.

Theorem 3.9. The sequence �1; : : : ; �l.n/�1 is regular in H.BSOn/ and �l.n/ 2 I ıl.n/,
where l.n/ D ŒnC1

2
�.

Proof. Corollary 3.4 immediately implies that �1; : : : ; �l.n/�1 is a regular sequence in
H.BSOn/.

By Theorem 3.8, we know that

�l.n/ D Sq
2l.n/�1�l.n/�1

vanishes in Htop.BSpincn/, and so �l.n/ 2 I
ı;top
l.n/

. It follows that

�l.n/ D

l.n/�1X
iD1

�i�i

for some homogeneous �i 2 Htop.BSOn/ and, after applying h, we obtain that

�l.n/ D

l.n/�1X
iD1

h.�i /�i

by Lemmas 3.5 and 3.6. Thus, �l.n/ 2 I ıl.n/, which completes the proof.

Remark 3.10. Note that either l.n/ D k.n/ or l.n/ D k.n/C 1. If l.n/ D k.n/, then

�k.n/ 2 I
ı
k.n/:

On the other hand, if l.n/ D k.n/ C 1, then the sequence �1; : : : ; �k.n/ is regular in
H.BSOn/, and so �k.n/ … I ık.n/.

4. The motivic cohomology ring of B�C
n

In this last section, we prove our main result that describes the structure of the motivic
cohomology of the Nisnevich classifying space of even Clifford groups.

Before proceeding, recall from [1, Section 3] that �Cn -torsors are in one-to-one cor-
respondence with quadratic forms with trivial discriminant and Clifford invariant, i.e.
quadratic forms in I 3, where I is the fundamental ideal of the Witt ring. Moreover, for any
n� 2, we have the following short exact sequences of algebraic groups (see [5, Chapter VI,
Section 23.A])

1! Gm ! �Cn ! SOn ! 1; 1! Spinn ! �Cn ! Gm ! 1: (4.1)

Lemma 4.1. For any n � 2, BSpinn Š yB Spinn with respect to the embedding Spinn ,!
�Cn .
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Proof. First, note that, by [2,7], rationally trivial Spinn-torsors and �Cn -torsors are locally
trivial. Moreover, recall from [6, Section 4.1] that

HomHs.k/

�
Spec.K/;BétG

�
Š H 1

ét.K;G/

for any Nisnevich sheaf of groups G. Therefore, it follows from [1, Section 3] that

HomHs.k/

�
Spec.K/;Bét Spinn

�
! HomHs.k/

�
Spec.K/;Bét�

C
n

�
is surjective with trivial kernel, for any finitely generated field extension K of k. Hence,
we can apply Proposition 2.8 to the case that G and H are, respectively, �Cn and Spinn,
which provides the aimed result.

Proposition 4.2. For any n � 2, there exists a Gysin long exact sequence of H.B�Cn /-
modules

� � � !H��1;�
0

.BSpinn/
h�

�!H��2;�
0�1.B�Cn /

�u2
��!H�;�

0

.B�Cn /
g�

�!H�;�
0

.BSpinn/! � � �

such that the homomorphism H 2;�0.BSOn/! H 2;�0.B�Cn /, induced by the map �Cn !
SOn in (4.1), is injective.

Proof. Let M be M.B�Cn ! BSOn/ and N be Cone.M ! T /Œ�1� in DM�eff.BSOn/.
From the motivic Serre spectral sequence [10, Theorem 5.12] associated to the sequence

BGm ! B�Cn ! BSOn (4.2)

it follows that H 1;�0.N / Š 0. Therefore, the homomorphism

H 2;�0.BSOn/! H 2;�0.B�Cn /

is injective. In particular, u2 is non-trivial in H 2;1.B�Cn /.
Now, consider the sequence

Gm ! BSpinn ! B�Cn :

By Proposition 2.3, Remark 2.9 and Lemma 4.1, it induces a Gysin long exact sequence
of H.B�Cn /-modules

� � � !Hp�1;q.BSpinn/
h�

�!Hp�2;q�1.B�Cn /
f �

��!Hp;q.B�Cn /
g�

�!Hp;q.BSpinn/! � � � :

Since g� is an isomorphism in bidegree .1/Œ1�, we have that f �.1/ is the only non-trivial
class in H 2;1.B�Cn / that vanishes in H 2;1.BSpinn/. It follows that

f �.1/ D u2;

which completes the proof.
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Lemma 4.3. For any n � 2, Hp;�0.BSOn/! Hp;�0.B�Cn / is surjective for p < 2k.n/.

Proof. We proceed by induction on p. For p D 0, the Serre spectral sequence associated
to (4.2) implies that H 0;�0.BSOn/ Š H 0;�0.B�Cn /, which provides the induction basis.
Now, suppose that H.BSOn/! H.B�Cn / is surjective in topological degrees less than
p < 2k.n/, and consider a class x in Hp;�0.B�Cn /. Since by Theorem 2.10 the homo-
morphismHp;�0.BSOn/!Hp;�0.BSpinn/ that factors throughHp;�0.B�Cn / is surjective
for p < 2k.n/, we have that

g�.x/ D g�.y/

for some y in the image of Hp;�0.BSOn/ ! Hp;�0.B�Cn /. Hence, by Proposition 4.2,
there exists a class z inHp�2;�0�1.B�Cn / such that xD yCu2z. By induction hypothesis,
z is in the image of Hp�2;�0�1.BSOn/! Hp�2;�0�1.B�Cn /, from which it follows that
x is in the image of Hp;�0.BSOn/! Hp;�0.B�Cn / that is what we wanted to show.

Definition 4.4. Denote by !n the class h�.v2k.n// in H 2k.n/�1;2k.n/�1�1.B�Cn /.

Remark 4.5. It follows from Lemma 4.3 that !n belongs to the image of H.BSOn/!
H.B�Cn /. Moreover, Proposition 4.2 implies that u2!n D 0 in H.B�Cn /.

Proposition 4.6. The motivic cohomology ring of B�C2 is given by

H.B�C2 / Š HŒu2; e2�;

where e2 is a lift of v2 in H.BSpin2/ under the homomorphism H.B�C2 /! H.BSpin2/.

Proof. Consider the Gysin long exact sequence from Proposition 4.2

� � � !H��1;�
0

.BSpin2/
h�

�!H��2;�
0�1.B�C2 /

�u2
��!H�;�

0

.B�C2 /
g�

�!H�;�
0

.BSpin2/! � � � :

Since H.BSpin2/ Š HŒv2�, with v2 in bidegree .1/Œ2�, g� is a ring homomorphism and
H 1;0.B�C2 /Š 0, we have that h� is zero, the multiplication by u2 is injective inH.B�C2 /
and the quotient of H.B�C2 / modulo the ideal generated by u2 is HŒv2�. This concludes
the proof.

Lemma 4.7. For any n � 3, u3 D 0 inH.B�Cn /. Moreover, there exists a unique element
x1 in H 2;1.N / that maps to u3 in H 3;1.BSOn/.

Proof. By Proposition 4.2 we have a Gysin long exact sequence

� � � !H��1;�
0

.BSpinn/
h�

�!H��2;�
0�1.B�Cn /

�u2
��!H�;�

0

.B�Cn /
g�

�!H�;�
0

.BSpinn/! � � � :

Since u3 is trivial in H.BSpinn/ and H 1;0.B�Cn / Š 0, we have that u3 is trivial also in
H.B�Cn /. Moreover, note that, for n � 3,

H 2;1.B�Cn / Š Z=2 � u2:
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Now, consider the long exact sequence

� � � ! H��1;�
0

.B�Cn /! H��1;�
0

.N /! H�;�
0

.BSOn/! H�;�
0

.B�Cn /! � � � :

The homomorphism
H 2;1.BSOn/! H 2;1.B�Cn /

is bijective. Since u3 is trivial in H.B�Cn /, we deduce that H 2;1.N /! H 3;1.BSOn/ is
an isomorphism, which finishes the proof.

Definition 4.8. For any j � 2 and n � 3, let xj be the class in H 2j ;2j�1.N / defined by
xj D Sq

2j�1 � � �Sq2x1 and denote by hx1; : : : ; xj�1i the H.BSOn/-submodule of H.N/
generated by x1; : : : ; xj�1.

Lemma 4.9. For any j � 2 and n � 3, xj … hx1; : : : ; xj�1i.

Proof. This follows by noticing that xj maps to the respective class defined for spin
groups in [11, Lemma 8.2].

Proposition 4.10. Suppose there exists a class e in H.B�Cn / such that g�.e/ is a monic
homogeneous polynomial c in v2k.n/ with coefficients in H.BSOn/, and denote by p the
obvious homomorphism H.BSOn/˝H HŒe�! H.B�Cn /.

(1) If im.h�/ D im.p/ � !n, then

ker.p/ D J ık.n/ C .u2!n/;

where J ı
k.n/

is I ı
k.n/
˝H HŒe�.

(2) If moreover ker.h�/ D im.g�p/, then there is an isomorphism

H.BSOn/=
�
I ık.n/ C .u2!n/

�
˝H HŒe�! H.B�Cn /:

Proof. We start by proving (1). It immediately follows from Remark 4.5 and Lemma 4.7
that J ı

k.n/
C .u2!n/ � ker.p/. We show the opposite inclusion by induction on the topo-

logical degree. Proposition 4.2 provides the induction basis. Now, suppose that x is in
ker.p/ and every class in ker.p/ with topological degree less than the topological degree
of x belongs to J ı

k.n/
C .u2!n/. We can write x as

Pm
jD0 �j e

j for some �j 2 H.BSOn/.
Then,

mX
jD0

�j c
j
D g�p.x/ D 0;

and so �j D 0 in H.BSpinn/ for any j since by hypothesis c is a monic polynomial
in v2k.n/ . Therefore, �j 2 Ik.n/ D I ık.n/ C .u2/ by Theorem 2.10. Hence, there are  j 2
H.BSOn/ such that �j C u2 j 2 I ık.n/, from which it follows that xC u2z 2 J ık.n/ where

z D

mX
jD0

 j e
j :
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Thus, u2p.z/ D 0 which implies that p.z/ 2 im.h�/ D im.p/ � !n, and so there exists an
element y inH.BSOn/˝H HŒe� such that p.z/Dp.y!n/. Therefore, zC y!n 2 J ık.n/C
.u2!n/ by induction hypothesis. It follows that z 2 J ı

k.n/
C .!n/ and x 2 J ı

k.n/
C .u2!n/.

We now move to (2). We prove by induction on the topological degree that, if ker.h�/
D im.g�p/, then im.p/ D H.B�Cn /. Lemma 4.3 provides the induction basis. Let x be a
class in H.B�Cn / and suppose that p is an epimorphism in topological degrees less than
the topological degree of x. From g�.x/ 2 ker.h�/ D im.g�p/ it follows that there is an
element � in H.BSOn/˝H HŒe� such that g�.x/ D g�p.�/. Therefore,

x C p.�/ D u2z for some z 2 H.B�Cn /:

By induction hypothesis z D p.�/ for some element � 2 H.BSOn/˝H HŒe�, hence x D
p.�C u2�/ that is what we aimed to show.

Remark 4.11. SinceH.BSpinn/ is generated by the powers vi
2k.n/

as aH.BSOn/-module,
we have that im.h�/ is generated by h�.vi

2k.n/
/ as a H.BSOn/-module.

Lemma 4.12. For any m � 0, we have

Sqm!n 2 h!ni;

where h!ni is the H.BSOn/-submodule of H.B�Cn / generated by !n.

Proof. We proceed by induction on m. For m D 0 we have that Sq0!n D !n and for
m>2k.n/ � 1we have that Sqm!nD 0 by [11, Corollary 5.8]. Suppose that Sqi!n 2 h!ni
for i < m � 2k.n/ � 1. Then, by Cartan formula, in H.BSOn/ we have that

Sqm.u2!n/ D u2Sq
m!n C �u3Sq

m�1!n C u
2
2Sq

m�2!n:

Therefore, from Remark 4.5 and Lemma 4.7 we deduce that u2Sqm!n D 0 in H.B�Cn /,
since by induction hypothesis Sqm�2!n 2 h!ni. It follows that Sqm!n 2 im.h�/. By
Remark 4.11, we know that Sqm!n D

P
i�1 �ih

�.vi
2k.n/

/ for some �i 2 H.BSOn/. But,
for any i � 2, the topological degree of h�.vi

2k.n/
/ is

i2k.n/ � 1 > 2k.n/C1 � 2 � mC 2k.n/ � 1

that is the topological degree of Sqm!n. Hence, Sqm!n D �1h�.v2k.n// D �1!n that is
what we aimed to prove.

Lemma 4.13. It exists an element �n in H.B�Cn / such that vj
2k.n/
D g�.�

Œ
j
2 �
n /v

j�2Œ
j
2 �

2k.n/
in

H.BSpinn/ for any j � 0.

Proof. For j D 0; 1 the statement is tautological. For j D 2, by Cartan formula, we have
that

h�.v2
2k.n/

/ D h�.Sq2
k.n/

v2k.n// D Sq
2k.n/.!n˛/ D

2k.n/X
iD0

� i mod 2Sq2
k.n/�i!nSq

i˛;
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where ˛ is the Thom class of the map BSpinn ! B�Cn . Note that, by Proposition 4.2 and

Lemma 4.3, Hp�2;�0�1.B�Cn /
�u2
��! Hp;�0.B�Cn / is a monomorphism for p � 2k.n/. This

implies, in particular, that Sq1˛ D 0 and Sq2˛ D u2˛. Moreover, Sqi˛ D 0 for i � 3,
since ˛ is in bidegree .1/Œ2�, and Sq2

k.n/
!n D 0. Therefore, we have that

h�.v2
2k.n/

/ D Sq2
k.n/�2!nu2˛ D 0

since, by Lemma 4.12, Sq2
k.n/�2!n 2 h!ni and u2!n D 0 by Remark 4.5. Hence, v2

2k.n/
2

im.g�/.
Let �n be a class inH.B�Cn / such that g�.�n/D v22k.n/ . Suppose the statement is true

for i < j , then

v
j

2k.n/
D v2

2k.n/
v
j�2

2k.n/
D g�.�n/g

�.�
Œ
j�2
2 �

n /v
j�2�2Œ

j�2
2 �

2k.n/
D g�.�

Œ
j
2 �
n /v

j�2Œ
j
2 �

2k.n/

that concludes the proof.

Remark 4.14. It immediately follows from Lemma 4.13 that

h�.v
j

2k.n/
/ D

8<: 0; for j evenI

�
j�1
2
n !n; for j odd:

The following is the main result of this paper.

Theorem 4.15. Let k be a field of characteristic different from 2 containing
p
�1. Then,

for any n � 2, there exists a cohomology class e2l.n/ in bidegree .2l.n/�1/Œ2l.n/� such that
the natural homomorphism of H -algebras

H.BSOn/=I ıl.n/ ˝H HŒe2l.n/ �! H.B�Cn /

is an isomorphism, where I ı
l.n/

is the ideal generated by �1; : : : ; �l.n/�1 and l.n/D ŒnC1
2
�.

Proof. For n D 2 this is given by Proposition 4.6, so suppose from now on that n � 3.
If !n D 0, then there is a class e2k.n/ in H.B�Cn / such that g�.e2k.n// D v2k.n/ . Let p

be the homomorphism

H.BSOn/˝H HŒe2k.n/ �! H.B�Cn /:

Then, im.h�/ D 0 D im.p/ � !n and ker.h�/ D H.BSpinn/ D im.g�p/. Hence, Propos-
ition 4.10 implies that the homomorphism

H.BSOn/=I ık.n/ ˝H HŒe2k.n/ �! H.B�Cn /

is an isomorphism. Since �k.n/ vanishes in H.B�Cn / we have that �k.n/ 2 I ık.n/, which
means that k.n/ D l.n/ by Remark 3.10.

If !n ¤ 0, then set p W H.BSOn/˝H HŒ�n�! H.B�Cn / where �n is the class from
Lemma 4.13. It follows from Remarks 4.11 and 4.14 that im.h�/ D im.p/ � !n. Then, by
Proposition 4.10, we obtain that ker.p/ D J ı

k.n/
C .u2!n/.
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Since !n ¤ 0, we can extend the result in Lemma 4.3 to the degree p D 2k.n/, i.e. we
have that

H 2k.n/;2k.n/�1.BSOn/! H 2k.n/;2k.n/�1.B�Cn /

is surjective. Hence, we deduce that the homomorphism

H 2k.n/;2k.n/�1.B�Cn /! H 2k.n/;2k.n/�1.N /

is zero and so the homomorphism H 2k.n/;2k.n/�1.N /! H 2k.n/C1;2k.n/�1.BSOn/ is inject-
ive. It follows that �k.n/ … I ık.n/, since xk.n/ … hx1; : : : ; xk.n/�1i by Lemma 4.9, and
k.n/ C 1 D l.n/ by Remark 3.10. Observe that, as we have already shown, ker.p/ D
J ı
k.n/
C .u2!n/ and �k.n/ vanishes in H.B�Cn /. Therefore, �k.n/ C u2!n 2 I ık.n/, which

implies that ker.p/ D J ı
k.n/C1

D J ı
l.n/

.
Now, it remains to prove that ker.h�/ D im.g�p/. Obviously, im.g�p/ � ker.h�/, so

we only have to prove the other side inclusion. Let x be an element of ker.h�/. We can
write x as

Pm
jD0 j v

j

2k.n/
with j 2 H.BSOn/. Then, by Remark 4.14, we have that

mX
jD1; odd

j�
j�1
2
n !n D 0:

Denote by � the element
Pm
jD1; odd j�

j�1
2
n in H.BSOn/˝H HŒ�n�. From p.�!n/ D 0

we deduce that �!n 2 J ık.n/C1, since we have shown that ker.p/D J ı
k.n/C1

. Thus, �!n DPk.n/
jD1 �j �j for some �j 2 H.BSOn/˝H HŒ�n� and, multiplying by u2, we obtain that

u2�!n C u2�k.n/�k.n/ 2 J
ı
k.n/

. On the other hand, �k.n/ C u2!n 2 I ık.n/, from which it
follows by multiplying by � that ��k.n/ C u2�!n 2 J ık.n/. Hence, .� C u2�k.n//�k.n/ 2
J ı
k.n/

. Theorem 3.9 implies that � C u2�k.n/ 2 J ık.n/, from which it follows that

� 2 J ık.n/ C .u2/ D Jk.n/:

Therefore, g�p.�/ D 0 in H.BSpinn/ and by Lemma 4.13

x D

mX
jD1; odd

jg
�.�

j�1
2
n /v2k.n/ C

mX
jD0; even

jg
�.�

j
2
n /

D g�p.�/v2k.n/ C

mX
jD0; even

jg
�.�

j
2
n / D

mX
jD0; even

jg
�.�

j
2
n /

is an element of im.g�p/.
Rename the class �n by e2l.n/ . Then, by Proposition 4.10 we have that the homo-

morphism
H.BSOn/=I ıl.n/ ˝H HŒe2l.n/ �! H.B�Cn /

is an isomorphism, and the proof is complete.

Definition 4.16. Denote by Chern.Bét�
C
n / the subring of the Chow ring Ch.Bét�

C
n / with

Z=2-coefficients generated by the Chern classes of the representation �Cn ! SOn.
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For any 2 � i � n, let Qwi be the Stiefel–Whitney class in H i;i .BétSOn/. Recall from
[8, Theorem 3.1.1] that the homomorphism H.BétSOn/ ! H.BSOn/, induced by the
canonical map BSOn ! BétSOn, sends Qwi to � Œ

iC1
2 �ui .

Lemma 4.17. The homomorphism H.BétSOn/! H.Bét�
C
n / maps Sq1 Qw2 to 0.

Proof. Note that the homomorphism H 3;2.Bét�
C
n /! H 3;2.B�Cn / is injective, since the

change of topology

H 3;2.Bét�
C
n /! H

3;2
ét .Bét�

C
n / Š H

3;2
ét .B�

C
n /;

which factors through H 3;2.B�Cn /, is a monomorphism by [13, Corollary 6.9].
On the other hand, the homomorphismH 3;2.BétSOn/!H 3;2.BSOn/maps Sq1 Qw2 to

Sq1.�u2/D �u3 that vanishes inH 3;2.B�Cn /. Hence, Sq1 Qw2 maps to 0 inH 3;2.Bét�
C
n /

that completes the proof.

Remark 4.18. As noted in [11, Remark 11.3], the class ��2i belongs to the Chern subring
Chern.BétSOn/ Š Z=2Œc2; : : : ; cn�, for any i � 1.

Then, [11, Lemma 11.2] and Lemma 4.17 imply that

��2i D �Sq
1�iC1 D Sq

1Sq2
i

� � �Sq1 Qw2

vanishes in Chern.Bét�
C
n / for all i � 1.

The following result provides a complete description of Chern.Bét�
C
n / modulo nilpo-

tents.

Corollary 4.19. There exists a ring isomorphism

Chern.Bét�
C
n /red Š Z=2Œc2; : : : ; cn�=

q
.��21 ; : : : ; ��

2
l.n/�1

/;

where ci D � i mod 2u2i is the i th Chern class in H.BSOn/.

Proof. Let 	ın be the kernel of the epimorphism Z=2Œc2; : : : ; cn�! Chern.Bét�
C
n /. Then,

by Remark 4.18 we have that .��21 ; : : : ; ��
2
l.n/�1

/ � 	ın. On the other hand, since the epi-
morphism Z=2Œc2; : : : ; cn�! Chern.B�Cn / factors through Chern.Bét�

C
n /, Theorem 4.15

implies that 	ın � �
�1.I ı

l.n/
/, where � W Z=2Œc2; : : : ; cn�! H.BSOn/ is the inclusion of

the Chern subring of H.BSOn/.
Now, observe that

q
.��21 ; : : : ; ��

2
l.n/�1

/ D
q
��1.I ı

l.n/
/. Therefore, we obtain that

Chern.Bét�
C
n /red Š Z=2Œc2; : : : ; cn�=

p
	ın Š Z=2Œc2; : : : ; cn�=

q
.��21 ; : : : ; ��

2
l.n/�1

/

that is what we aimed to show.

Remark 4.20. Note that the relations appearing in Corollary 4.19 are also expressible
in terms of the action of some Steenrod operations on c2. More precisely, we have that
��2j D Sq

2j Sq2
j�1
� � �Sq4Sq2c2, for any j � 1.
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