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Relativistic stable operators with critical potentials

Tomasz Jakubowski, Kamil Kaleta, and Karol Szczypkowski

Abstract. We give local in time sharp two sided estimates of the heat kernel associated with the
relativistic stable operator perturbed by a critical (Hardy) potential.

1. Introduction

Let d 2 N WD ¹1; 2; : : :º and ˛ 2 .0; 2 ^ d/. For ı 2 .0; d � ˛/ we consider the operator

L D �.��C 1/˛=2 C Vı.x/; (1.1)

where

Vı.x/ D
2˛=2�

�
d�ı
2

�
�
�
d�ı�˛
2

� K ıC˛
2

�
jxj
�

K ı
2

�
jxj
� jxj�˛=2: (1.2)

� denotes the Gamma function andK� is the modified Bessel function of the second kind.
The potential Vı arises naturally as a critical (Hardy) potential for the relativistic operator
when implementing the approach developed in Bogdan et al. [10]. For ı D d�˛

2
it was

derived and investigated by Roncal [59] from three different perspectives.
The main purpose of the present paper is to analyze the heat kernel corresponding toL,

that is, the fundamental solution to the parabolic equation @tuDLu. Analogous problems
were studied for the classical Hardy operator � C �jxj�2 and its fractional counterpart
�.��/˛=2 C �jxj�˛ with ˛ 2 .0; 2/, see Section 1.3 for related literature. Contrary to
the latter two, the operator �.��C 1/˛=2 C Vı.x/ is not homogeneous; the kinetic term
�..��C 1/˛=2 � 1/ manifests properties of both operators: � and �.��/˛=2. This gen-
erates new challenges and requires the development of an appropriate methodology. The
methods we propose allow us to treat in a common framework other important operators,
e.g., the relativistic operator with Coulomb potential

�
p
��C 1C �jxj�1:

1.1. Main results

In our first result, we address the question of the existence of the heat kernel corresponding
to the operator L. We use the notation Rd0 D Rd n ¹0º.
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Proposition 1.1. Let ı 2 .0; d � ˛/. There is a Borel function QpW .0;1/ � Rd0 � Rd0 !
.0;1/ such that for every s 2 R, x 2 Rd0 and � 2 C1c .R �Rd / we haveZ 1

s

Z
Rd

Qp.u � s; x; z/
�
@u � .��z C 1/

˛=2
C Vı.z/

�
�.u; z/ dzdu D ��.s; x/:

The double integral is absolutely convergent.

The function Qp is constructed in Section 2.1 by the use of the perturbation technique
of kernels. Our main result is Theorem 1.2, which is concerned with the estimates of Qp.
For t > 0, x 2 Rd0 we define

H 0.t; x/ D 1C tı=˛jxj�ı if ı 2
�
0; d�˛

2

�
;

H 0.t; x/ D 1C t .d�˛�ı/=˛jxj�.d�˛�ı/ if ı 2
�
d�˛
2
; d � ˛

�
:

Let p be the heat kernel for the operator �.��C 1/˛=2 (see (2.6) withmD 1). Here, and
in what follows, we write f � g on D if f; g � 0 and there is a (comparability) constant
c � 1 such that c�1g � f � cg holds on D.

Theorem 1.2. Let ˛ 2 .0; 2^ d/ and ı 2 .0; d � ˛/. The function Qp is jointly continuous
on .0;1/ �Rd0 �Rd0 and for every T > 0 we have

Qp.t; x; y/ � p.t; x; y/H 0.t; x/H 0.t; y/

on .0; T � � Rd0 � Rd0 . The comparability constant can be chosen to depend only on
d; ˛; ı; T .

Note that local in time sharp estimates of p are known. Namely, for every T > 0 we
have

p.t; x; y/ �

 
t�d=˛ ^

tK dC˛
2

�
jx � yj

�
jx � yj

dC˛
2

!
on .0;T ��Rd �Rd , see Section B. We first prove Theorem 1.2 for ı 2 .0; d�˛

2
� in Theo-

rem 4.12, and then in Theorem 5.1 we obtain an extended version of Theorem 4.12, which
in particular covers the case ı 2 Œd�˛

2
; d � ˛/, but also potentials of the form �jxj�˛ .

We give another property that relates the operator �.��C 1/˛=2 and the potential Vı ,
and formally provides the representation of the quadratic form of LD�.��C1/˛=2CVı .
For f 2 L2.Rd / we let

Ptf .x/ D

Z
Rd

p.t; x; y/f .y/ dy and E.f; f / D lim
t!0C

1

t
hf � Ptf; f i:

SincePt is a strongly continuous contraction semigroup onL2.Rd/, then E is the quadratic
form corresponding to �.�� C 1/˛=2, see [37, Lemma 1.3.4]. As already mentioned,
the potential Vı is constructed by using the approach developed in Bogdan et al. [10],
therefore as a consequence we get the following Hardy identity (see [10, Theorem 2]. For
ı D d�˛

2
this result was obtained by Roncal [59] via different methods.
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Corollary 1.3. Let ı 2 .0; d � ˛/. Then for every f 2 L2.Rd /,

E.f; f / D

Z
Rd

f 2.x/Vı.x/ dx

C
1

2

Z
Rd

Z
Rd

�
f .x/

hı.x/
�
f .y/

hı.y/

�2
hı.y/hı.x/�.x � y/ dydx;

where

hı.x/ D cd;˛;ı jxj
� ı2K ı

2

�
jxj
�
; �.x/ D

2
˛�d
2 C1

�d=2
ˇ̌
�
�
�
˛
2

�ˇ̌ K dC˛
2

�
jxj
�

jxj
dC˛
2

:

The exact value of the constant cd;˛;ı > 0 is given in Lemma 2.3, but it does not matter
in Corollary 1.3 due to cancelations taking place in the double integral expression.

The role of the function hı and its properties are important also in other places of our
reasoning. For instance, in Theorem 4.9, we prove that for each ı 2 .0; .d � ˛/=2�, for all
t > 0 and x 2 Rd0 , Z

Rd

Qp.t; x; y/hı.y/ dy D hı.x/:

The latter is crucial in the proof of the lower bound in Section 4.3. In light of that equality,
the identity in Corollary 1.3 may be interpreted as the ground state representation for the
quadratic form of the operator L.

Remark 1.1. The above results can be extended to heat kernels Qpm corresponding to oper-
ators �.��Cm2=˛/˛=2 C V m

ı
.x/,m > 0, by proper scaling as explained in Lemmas 2.2

and 2.4. In particular, for every ı 2 .0; d � ˛/ and T > 0 we have

Qpm.t; x; y/ � pm.t; x; y/H 0.t; x/H 0.t; y/

on .0; T=m� � Rd0 � Rd0 with comparability constant independent of m > 0 (in fact, that
depends only on d; ˛; ı; T ). The heat kernel pm is defined in (2.6), see also Lemma 2.2.
Additionally, by taking m! 0C we can recover the estimates of Qp0.t; x; y/ from [11,
Theorem 1.1], see Proposition 3.5.

1.2. Methods

As mentioned in Remark 1.1, the sharp two-sided heat kernel estimates for �.��/˛=2 C
�ı jxj

�˛ were obtained in [11]. The potential �ı jxj�˛ is the critical perturbation of the
fractional Laplacian, that is, the value of �ı significantly affects the behavior of the cor-
responding heat kernel. In particular, if �ı > �� (certain explicit constant) the heat kernel
becomes instantaneously infinite.

The methods used in [11] cannot be transferred to our problem and, for this reason, we
have to find a new strategy. Below, we outline main steps that led to the sharp two-sided
estimates in Theorem 1.2. We start with the following upper estimates:
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(U1) upper heat kernel estimates for �.��/˛=2 C Vı.x/ (Proposition 3.4),

(U2) upper heat kernel estimates for �.��C 1/˛=2 C Vı.x/ (Theorem 4.6).

We take the heat kernel estimates from [11] as the starting point, and after a care-
ful analysis of the potential Vı.x/, in particular of the difference Vı.x/ � �ı jxj�˛ (see
Lemma 2.10), by applying perturbation technique we arrive at .U1/. The latter is again
non-trivial, not only because Vı.x/� �ı jxj�˛ > 0 (Vı.x/ is larger than �ı jxj�˛), but also
since the difference is unbounded (singular) in the neighborhood of zero if ı < ˛, while
the heat kernel of �.��/˛=2 C �ı jxj�˛ is already singular at zero. The standard real-
ization of the perturbation procedure fails, because the kernel of this operator does not
satisfy the 3G inequality typically used in the first step of the method. When proceeding
towards .U2/, one encounters certain technical difficulties. For instance, the heat kernel
p of �.��C 1/˛=2 does not have scaling, and has exponential decay in the spatial vari-
able, which is harder to retain compared to the power-type nature of the heat kernel of the
fractional Laplacian, which has scaling. We develop a new integral method to take into
account that faster decay, and combine it with .U1/, to finally obtain the proper outcome
in .U2/. From that we also get:

(U �2 ) upper heat kernel estimates for �.��C 1/˛=2 C �ı jxj�˛ (Theorem 5.1).

Since sharp bounds of p are only known locally in time, this is reflected in our results.
Here are the key steps for the lower estimates:

(L1) invariance of hı (Theorem 4.9),

(L2) lower heat kernel estimates for �.��C 1/˛=2 C Vı.x/ (Theorem 4.11).

First of all, the formulae for hı and Vı are not accidental, see Section 2.3. They are com-
puted according to a general procedure proposed in [10], which we used specifically to
the operator �.��C 1/˛=2. From [10] it is known that hı is the so-called super-median.
In .L1/ we prove more, namely that hı is actually invariant for the relativistic semigroup
perturbed by Vı.x/. As far as .L1/ is intuitively expected, the proof is technical, espe-
cially if ı D d�˛

2
(in view of blow-up result this value of ı may be regarded as critical).

The step .L1/ is inevitable in order to carry out an exact integral analysis and prove .L2/.
Let us point out that in .L1/, as in the whole Section 4, we require ı 2 .0; d�˛

2
�. To prove

.L2/ for ı 2 .d�˛
2
; d � ˛/ additional work is needed, see Remark 2.2.

We comment on the steps for the lower heat kernel estimates of the relativistic operator
with Coulomb potential:

(L�1) two-sided heat kernel estimates of �.��C 1/˛=2 C Vı.x/,

(L�2) lower heat kernel estimates of �.��C 1/˛=2 C �ı jxj�˛ .

We note that the potential Vı.x/ is tailor-made for �.�� C 1/˛=2, which manifests in
.L1/ and .L2/. Clearly, .L�1/ is a consequence of .U2/ and .L2/. In order to prove .L�2/,
we perturb the heat kernel of �.�� C 1/˛=2 C Vı.x/ by (possibly singular) potential
�ı jxj

�˛ � Vı.x/ < 0. To succeed, we heavily rely on .L�1/ and adapt the new integral
method used to prove .U2/.
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In Section 5, we summarize all the estimates and explain the blow-up phenomenon,
that is, the criticality of the parameter ı� WD d�˛

2
.

1.3. Historical and bibliographical comments

The analysis of heat kernels corresponding to operators with the so-called critical poten-
tials goes back to Baras and Goldstein [6], where the existence of non-trivial non-negative
solutions of the heat equation @tu D �uC �jxj�2u in Rd was established for 0 � � �
.d � 2/2=4, and non-existence (explosion) for bigger constants �. The operator was also
studied by Vazquez and Zuazua [68] in bounded subsets of Rd as well as in the whole
space. Sharp estimates of the heat kernel were obtained by Liskevich and Sobol [50] for
0< � < .d � 2/2=4, and by Milman and Semenov [54, Theorem 1] for 0< � � .d � 2/2=4,
see also [55]. Sharp estimates in bounded domains were given by Moschini and Tesei [57]
in the subcritical case, and by Filippas et al. [32] for the critical value .d � 2/2=4. Further
generalizations for local operators were given in a series of papers by Metafune et al. that
include [52,53]. Asymptotics of solutions to the Cauchy problem by self-similar solutions
were proved by Pilarczyk [58].

Another operator that drew attention in this context was the fractional Laplacian with
Hardy potential �.��/˛=2 C �jxj�˛ . Abdellaoui et al. [1, 2] proved that if

� > �� D 2˛�

�
d C ˛

4

�
=�

�
d � ˛

4

�
;

then the operator has no weak positive supersolution, while for 0 < � � �� non-trivial
non-negative solutions exist. In the latter case Bogdan et al. [11] obtained sharp two-sided
estimates of the heat kernel, namely that it is comparable on .0;1/ � Rd0 � Rd0 to the
expression

p0.t; x; y/H 0.t; x/H 0.t; y/:

Here p0 is the heat kernel of the fractional Laplacian and satisfies on .0;1/ �Rd �Rd ,

p0.t; x; y/ �

�
t�d=˛ ^

t

jx � yjdC˛

�
:

The estimates from [11] were a key ingredient in the analysis of Sobolev norms by Frank et
al. [35], Merz [51], and Bui and D’Ancona [19]. They were also used by Bui and Bui [18]
to study maximal regularity of the parabolic equation, and by Bhakta et al. [8] to represent
weak solutions. Hardy spaces of the operator were investigated by Bui and Nader in [20].
Bogdan et al. [14] found asymptotics of the heat kernel by studying self-similar solutions.
Cholewa et al. [26] studied the parabolic equation (also of order greater than 2) in the
context of homogeneity. We also refer to BenAmor [7], Chen and Weth [22], Jakubowski
and Maciocha [43] for the fractional Laplacian with Hardy potential on subsets of Rd ,
and to Frank et al. [34], where the operator jxj�ˇ .�.��/˛=2 C �jxj�˛ � 1/, for certain
ˇ > 0, was treated. Perturbations of the fractional Laplacian, and more general operators,
by negative critical potentials were considered by Jakubowski and Wang [44], Cho et
al. [25], Song et al. [65].
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The relativistic operator
p
��Cm2 is an important object in physical studies, because

it describes the kinetic energy of a relativistic particle with massm. In quantum mechanics
it was used in problems concerning the stability of relativistic matter, in particular, the rel-
ativistic operator with Coulomb potential

p
��Cm2 � �jxj�1 is of interest, see Weder

[70, 71], Herbst [40], Daubechies and Lieb [27, 28], Fefferman and Llave [31], Carmona
et al. [21], Frank et al. [33, 36], Lieb and Seiringer [49]. We note in passing that in Sec-
tion 5.1 we provide local in time sharp estimates of the heat kernel corresponding to that
operator and in [42] we prove pointwise estimates of its eigenfunctions.

The relativistic stable operators �..�� C m2=˛/˛=2 � m/, ˛ 2 .0; 2/, m > 0, were
investigated by Ryznar [60], who obtained Green function and Poisson kernel estimates
on bounded domains as well as Harnack inequality. Kulczycki and Siudeja [48] stud-
ied intrinsic ultracontractivity of the associated Feynman-Kac semigroup. After these two
papers the topic was intensely studied and resulted in rich literature concerning such oper-
ators and corresponding stochastic processes, see e.g. [4, 5, 23, 24, 39, 45, 47, 64, 66]. The
undertaken topics involve also linear or non-linear mostly elliptic equations or systems of
equations with or without critical potentials, and with certain focus on the unique continu-
ation properties, see for instance Fall and Felli [29,30], Secchi [63], Ambrosio [3], Bueno
et al. [17] and the references therein. The list is far from being complete. Results more
closely related to the present paper can be found in Grzywny et al. [38], where perturba-
tions of non-local operators by a proper Kato class potentials are considered, and include
relativistic stable operators.

1.4. Notation and organization

We use WD to indicate the definition. As usual a ^ b WD min¹a; bº, a _ b WD max¹a; bº.
For a function f .x/ which is radial, i.e. its value depends only on r D jxj, we use the
same letter to denote its profile f .r/ WD f .x/. We write c D c.a; : : :/ to indicate that
the constant c depends only on the listed parameters. We also recall that Rd0 D Rd n ¹0º.
In certain parts of the presented theory the functions, series or integrals are allowed to
attain the infinite value. On the other hand, we often avoid it by restricting the domain
to Rd0 . It is though sometimes replaced by Rd , for instance in the integration regions,
since one point is of the Lebesgue measure zero. For n 2 N we denote by C0.Rn/ the
space of continuous functions f WRn!R that vanish at infinity, and C1c .R

n/ are smooth
functions with compact support.

The paper is organized as follows. The preliminary section (Section 2) is divided into
four parts. First, in Section 2.1, we introduce the general framework of Schrödinger per-
turbations of transition densities, which is used in the paper. In Section 2.2, we provide the
context for the relativistic stable operator. Next, in Section 2.3, we present computations
that give rise to Vı and hı and we prove Corollary 1.3. Finally, in Section 2.4, we study
properties of the potential Vı . Section 3 is mainly devoted to the analysis of the heat kernel
corresponding to the fractional Laplacian perturbed by Vı . In the same section, we prove
Proposition 1.1. In Section 4, which consists of four parts, we focus on the heat kernel
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corresponding to the relativistic stable operator perturbed by Vı for ı 2 .0; d�˛
2
�. In sub-

sequent subsections, we show upper bounds, invariance of hı with respect to perturbed
semigroup and lower bounds. In Section 4.4, we prove Theorem 4.12. In Section 5, we
extend Theorem 4.12 to other transition densities and potentials, and we discuss blow-up
phenomenon. In the appendix, we collect known properties of the modified Bessel func-
tion of the second kind and of the heat kernel and the Lévy measure corresponding to the
relativistic stable operator.

2. Preliminaries

2.1. Schrödinger perturbation

The following subsection is general and independent of more specific framework of Sec-
tion 1. Let pW .0;1/�Rd0 �Rd0 ! Œ0;1� be a Borel function satisfying for all 0 < s < t
and x; y 2 Rd0 , Z

Rd

p.s; x; z/p.t � s; z; y/ dz D p.t; x; y/:

We call p a transition density. For a Borel function

qWRd0 ! Œ0;1�;

we define the Schrödinger perturbation of p by q as

Qpq D

1X
nD0

pn;

where, for t > 0, x; y 2 Rd0 , we let p0.t; x; y/ D p.t; x; y/ and

pn.t; x; y/ D

Z t

0

Z
Rd

pn�1.s; x; z/q.z/p.t � s; z; y/ dz ds; n � 1:

From the general theory developed in [12], based solely on the algebraic structure of the
above series and the Fubini–Tonelli theorem, the Duhamel’s formula,

Qpq.t; x; y/ D p.t; x; y/C

Z t

0

Z
Rd

Qpq.s; x; z/q.z/p.t � s; z; y/ dz ds; (2.1)

and the Chapman–Kolmogorov equation,Z
Rd

Qpq.s; x; z/ Qpq.t � s; z; y/ dz D Qpq.t; x; y/; (2.2)

hold. In particular, Qp is a transition density. Furthermore, for every q1; q2 � 0 we have

Qpq1Cq2 D
A. Qpq1/q2 : (2.3)
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Namely, the perturbation of p by q1 C q2 may be realized in two steps: first by obtain-
ing Qpq1 , and then by perturbing Qpq1 by q2. Suppose that �1 and �2 are two transition
densities such that �1 � c�2 on .0; T � � Rd0 � Rd0 for some T > 0 and c � 0. Then on
.0; T � �Rd0 �Rd0 we have

z�1q � c z�
2
c�q : (2.4)

We also consider (similarly to above) perturbations by singed q. In that case we have
to make sure that the series converges properly and that it is non-negative. For convenience
we merge arguments used in [12] in such a way that fits well our setting and applications.

Lemma 2.1. Suppose that q1 � 0 and Qpq1.t;x;y/ <1 for every t > 0, x;y 2Rd0 . Assume
that there are " 2 Œ0; 1=2/ (for q2 � 0 we only require that " 2 Œ0; 1/) and � > 0 such that
for all t 2 .0; ��, x; y 2 Rd0 ,Z t

0

Z
Rd

Qpq1.s; x; z/
ˇ̌
q2.z/

ˇ̌
Qpq1.t � s; z; y/ dz ds � " Qpq1.t; x; y/:

Then Qpq1Cq2 DA. Qpq1/q2 is a finite transition density. Furthermore, for every T > 0 there
exists a constant c D c."; �; T / > 0 such that Qpq1Cq2 � c Qpq1 on .0; T � �Rd0 �Rd0 .

Proof. Clearly, Qpq1 is a finite transition density, therefore by [12, Theorem 2] the series
A. Qpq1/q2 is a transition density. By (2.3) and [12, Theorem 2], we have

Qpq1Cjq2j D
A. Qpq1/jq2j � c Qpq1 <1

on .0; T � � Rd0 � Rd0 for any T > 0. This guarantees the absolute convergence of the
series and by [12, Lemma 8] gives Qpq1Cq2 DA. Qpq1/q2 . Now, for q2 � 0, like in [12, (25)]
we have

A. Qpq1/q2 � .1 � "/ Qpq1 ;
and for general (signed) q2 we get

A. Qpq1/q2 �
�
1 � "=.1 � "/

�
Qpq1 ;

on .0; �� �Rd0 �Rd0 , which extends to .0; T � �Rd0 �Rd0 by the Chapman–Kolmogorov
equation.

2.2. The relativistic stable operator

We briefly recall fundamental properties of the relativistic stable operator

�
�
.��Cm2=˛/˛=2 �m

�
;

where ˛ 2 .0; 2/, m � 0. In fact, we focus on the operator

�.��Cm2=˛/˛=2f D F �1.� m Of /; f 2 C1c .R
d /; (2.5)

where
 m.�/ D

�
j�j2 Cm2=˛

�˛=2
:
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The function � m is called the symbol or the Fourier multiplier of the operator (2.5).
The value  m.0/ D m is known as the killing rate. We refer the reader to [16, 61, 62] for
a broader perspective and details of the material presented below. It is well known that
the operator (2.5) uniquely generates a translation invariant Feller semigroup .Pmt /t�0 or
(equivalently) vaguely continuous convolution semigroup of measures pmt .dx/ or (equiv-
alently) a Lévy process .Xmt /t�0 with exponential killing rate m. For f 2 C0.Rd / we
have that

Pmt f .x/ D

Z
Rd

f .x C z/pmt .dz/ D Ef .x CXmt / and cpmt .�/ D e�t m.�/:
Due to the latter equality,  m is also referred to as the characteristic exponent and admits
the Lévy–Khintchine representation m.�/DmC

R
Rd n¹0º

.1� cosh�; zi/�m.z/dz, where

�m.x/ D
2
˛�d
2 C1

�d=2
ˇ̌
�
�
�
˛
2

�ˇ̌ m dC˛
˛ K dC˛

2

�
m

1
˛ jxj

�
�
m

1
˛ jxj

� dC˛
2

; m > 0;

and

�0.x/ D
2˛�

�
.d C ˛/=2

�
�d=2

ˇ̌
�.�˛=2/

ˇ̌ jxj�d�˛
may be obtained by taking the limit asm! 0C, see (A.1). The measure �m.x/dx is called
the Lévy measure. Since cpmt is integrable we have pmt .dx/Dp

m
t .x/dx and the heat kernel

pm.t; x; y/ D pmt .y � x/ corresponding to the operator (2.5) may be recovered from the
symbol by using the inverse Fourier transform

pm.t; x; y/ D .2�/�d
Z

Rd

e�ihy�x;zi e�t  
m.z/ dz: (2.6)

It will be convenient for us to use an alternative equivalent approach to the semigroup
.Pmt /t�0 (or the process .Xmt /t�0) by the subordination technique. Before we move fur-
ther, we note that .Pmt /t�0 is a strongly continuous contraction semigroup on C0.Rd /, its
infinitesimal generator has C1c .R

d / as a core and for f 2 C1c .R
d / it coincides with the

operator (2.5) which is a non-local integro-differential operator

�.��Cm2=˛/˛=2f .x/ D �mf .x/C P.V.
Z

Rd n¹0º

�
f .x C z/ � f .x/

�
�m.z/ dz:

Let �t .s/ be the probability density of the ˛=2-stable subordinator and

….ds/ D
˛=2

�.1 � ˛=2/

1s>0

s1C˛=2
ds

be the corresponding Lévy measure. The Laplace transform of e�m
2=˛s�t .s/ is equal toZ 1

0

e��se�m
2=˛s�t .s/ ds D e�t�

m.�/;
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where the Laplace exponent �m is a Bernstein function and admits the following Lévy–
Khintchine representation

�m.�/ D .�Cm2=˛/˛=2 D mC

Z 1
0

.1 � e��s/e�m
2=˛s….ds/:

Let gt .x/ D .4�t/�d=2 exp¹�jxj2=.4t/º be the Gauss-Weierstrass kernel. The Bochner
subordination of the Gaussian semigroup with respect to �m results in the following rela-
tions

 m.�/ D �m
�
j�j2

�
; �m.x/ D

Z 1
0

gs.x/e
�m2=˛s….ds/;

and

pm.t; x; y/ D

Z 1
0

gs.x � y/e
�m2=˛s�t .s/ ds; t > 0; x; y 2 Rd : (2.7)

Note that it is a sub-probabilistic kernel, namely
R

Rd p
m.t;x;y/dyD e�mt , t > 0. Clearly,

it is also a finite transition density as defined in Section 2.1. In Section B, we collect further
important properties of �1.x/ and p1.t; x; y/.

2.3. Derivation of Vı and hı

As already announced in the introduction we use the approach proposed in [10]. We
assume that ˛ 2 .0; 2 ^ d/ and m � 0. For x 2 Rd0 and ˇ 2 .0; d/ we let

hmˇ .x/ WD

Z 1
0

t
d�˛�ˇ
˛ pm.t; x; 0/ dt;

and for ˇ 2 .�˛; d � ˛/,

Nhmˇ .x/ WD

Z 1
0

.t
d�˛�ˇ
˛ /0pm.t; x; 0/ dt D

d � ˛ � ˇ

˛
hmˇC˛.x/:

Finally, for ˇ 2 .0; d � ˛/ we define

V mˇ .x/ WD
Nhm
ˇ
.x/

hm
ˇ
.x/
D
d � ˛ � ˇ

˛

hm
ˇC˛

.x/

hm
ˇ
.x/

:

Lemma 2.2. For ˇ 2 .0; d � ˛/,m > 0 and x; y 2 Rd0 we have for Nf .x/ D f .x=m1=˛/,
f 2 C1c .R

d /,

�m.x/ D m
dC˛
˛ �1.m

1
˛ x/; .��Cm2=˛/˛=2f .x/ D m

�
.��C 1/˛=2 Nf

�
.m

1
˛ x/;

and

pm.t;x;y/Dm
d
˛ p1.mt;m

1
˛ x;m

1
˛ y/; hmˇ .x/Dm

ˇ
˛ h1ˇ .m

1
˛ x/; V mˇ .x/DmV

1
ˇ .m

1
˛ x/:

Proof. The first equality is trivial. The second one follows from the first and represen-
tation of the operator as a non-local integro-differential operator. Recall that �st .u/ D
s�2=˛�t .s

�2=˛u/. Together with (2.7) this leads to the second line of equalities above.
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In view of Lemma 2.2, in what follows we fix m D 1 and we remove it from the
notation,

�.x/ D �1.x/; p.t; x; y/ D p1.t; x; y/; hˇ .x/ D h
1
ˇ .x/; Vˇ .x/ D V

1
ˇ .x/:

Lemma 2.3. For ˇ 2 .0; d/, x 2 Rd0 we have

hˇ .x/ D
2
ˇ
2C1�

�
d�ˇ
˛

�
.4�/d=2�

�
d�ˇ
2

� jxj� ˇ2K ˇ
2

�
jxj
�
:

The function hˇ .r/ is decreasing in r > 0.

Proof. We have
R1
0
t .d�˛�ˇ/=˛�t .s/ dt D �.

d�ˇ
˛ /

�.
d�ˇ
2 /
s
d�ˇ
2 �1 by [10, (23)]. Thus

hˇ .x/ D

Z 1
0

Z 1
0

gs.x/e
�st .d�˛�ˇ/=˛�t .s/ ds dt

D
�
�
d�ˇ
˛

�
�
�
d�ˇ
2

� Z 1
0

gs.x/e
�ss

d�ˇ
2 �1 ds D

�
�
d�ˇ
˛

�
.4�/d=2�

�
d�ˇ
2

� Z 1
0

e�s�
jxj2

4s s�
ˇ
2�1 ds:

The final formula follows from the definition of K� , see Section A. Since Kˇ=2.r/ is
decreasing so is hˇ .r/, see Section A.

Remark 2.1. It is now clear that Vı D Nhı=hı as constructed above coincides with (1.2).

Recall that Qp is the Schrödinger perturbation of p by Vı for ı 2 .0; d � ˛/ according
to Section 2.1. We show how to recover the case of m > 0 from that with m D 1.

Lemma 2.4. Let Qpm be the Schrödinger perturbation of pm by V m
ı

, and .pm/n be the
summand of the corresponding series. Then for all t > 0, x; y 2 Rd0 , n D 0; 1; : : : and
m > 0,

.pm/n.t; x; y/ D m
d
˛ pn.mt;m

1
˛ x;m

1
˛ y/;

and
Qpm.t; x; y/ D m

d
˛ Qp.mt;m

1
˛ x;m

1
˛ y/:

Proof. By Lemma 2.2 the first equality holds for n D 0. Then by induction

.pm/nC1.t; x; y/

D

Z t

0

Z
Rd

.pm/n.s; x; z/V
m
ı .z/p

m.t � s; z; y/ dz ds

D m
2d
˛ C1

Z t

0

Z
Rd

pn.ms;m
1
˛ x;m

1
˛ z/Vı.m

1
˛ z/p.mt �ms;m

1
˛ z;m

1
˛ y/ dz ds

D m
d
˛

Z mt

0

Z
Rd

pn.u;m
1
˛ x;w/Vı.w/p.mt � u;w;m

1
˛ y/ dz ds

D m
d
˛ pnC1.mt;m

1
˛ x;m

1
˛ y/:

Summing over n D 0; 1 : : : gives the second equality.
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From [10, Theorem 1] we immediately obtain the following inequality.

Corollary 2.5. For ı 2 .0; d � ˛/ and all t > 0, x 2 Rd0 ,Z
Rd

Qp.t; x; y/hı.y/ dy � hı.x/:

Proof of Corollary 1.3. Due to a direct application of [10, Theorem 2, formula (16)] it
suffices to verify that

lim
t!0C

Z
Rd

Z
Rd

p.t; x; y/

2t

�
f .x/

hı.x/
�
f .y/

hı.y/

�2
hı.y/hı.x/ dy dx

D
1

2

Z
Rd

Z
Rd

�
f .x/

hı.x/
�
f .y/

hı.y/

�2
hı.y/hı.x/�.x � y/ dy dx: (2.8)

Since by (B.3) and Lemma B.4 we have p.t; x; y/=t � c�.x � y/ and p.t; x; y/=t !
�.x � y/ as t ! 0C, equality (2.8) holds by the dominated convergence theorem if the
right hand side of (2.8) is finite, and by Fatou’s lemma in the opposite case.

2.4. Analysis of the potential

We assume that ˛ 2 .0; 2 ^ d/. In view of Lemmas 2.2 and 2.3, and Remark 2.1 we have
for ˇ 2 .0; d � ˛/, m > 0 and x 2 Rd0 ,

V mˇ .x/ D �ˇ jxj
�˛

�
�
ˇ
2

�
�
�
ˇC˛
2

�K ˇC˛
2

�
m1=˛jxj

�
K ˇ

2

�
m1=˛jxj

� �m1=˛jxj
2

�˛=2
;

where

�ˇ D
2˛�

�
ˇC˛
2

�
�
�
d�ˇ
2

�
�
�
ˇ
2

�
�
�
d�ˇ�˛
2

� :

Note that �ˇ jxj�˛ is the Hardy potential for the fractional Laplacian. We write

�1 D ˇ=2; �2 D .ˇ C ˛/=2:

The following two properties stem from [41, Lemma 2.6] and [72, Theorem 2.9],
respectively,

Vˇ .x/

�ˇ jxj�˛
is radial increasing in x, and decreasing in ˇ 2 .0; d � ˛/: (2.9)

We proceed with the analysis of Vˇ .

Lemma 2.6. For ˇ 2 .0; d � ˛/ we have

lim
jxj!0

Vˇ .x/

�ˇ jxj�˛
D 1:
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Proof. The result follows from the asymptotic behavior of the function K�.r/ given in
(A.1).

Corollary 2.7. For ˇ 2 .0; d � ˛/ and x 2 Rd0 we have Vˇ .x/ � �ˇ jxj�˛ > 0.

Proof. The inequality follows from Lemma 2.6 and (2.9).

Since Vˇ is radial we write Vˇ .r/ D Vˇ .x/ for r D jxj.

Lemma 2.8. For ˇ 2 .0; d � ˛/ and r > 0 we have V 0
ˇ
.r/ < 0.

Proof. Note that Vˇ .r/ D cr�˛=2
K�2 .r/

K�1 .r/
. Therefore,

V 0ˇ .r/ D �.˛=2/r
�1Vˇ .r/C Vˇ .r/

�
K 0�2.r/

K�2.r/
�
K 0�1.r/

K�1.r/

�
: (2.10)

Using (A.2) we get

V 0ˇ .r/ D Vˇ .r/

�
K�1C1.r/

K�1.r/
�
K�2C1.r/

K�2.r/

�
:

The result follows from (A.4).

Lemma 2.9. For ˇ 2 .0; d � ˛/ and x 2 Rd0 we have

Vˇ .x/ � �ˇ jxj
�˛
D �ˇ jxj

�˛

Z jxj
0

Vˇ .s/

�ˇ s�˛

�
K�1�1.s/

K�1.s/
�
K�2�1.s/

K�2.s/

�
ds:

Proof. By Lemma 2.6,

Vˇ .x/ � �ˇ jxj
�˛
D jxj�˛

Z jxj
0

�
s˛Vˇ .s/

�0ds;
where �

s˛Vˇ .s/
�0
D ˛s˛�1Vˇ .s/C s

˛V 0ˇ .s/:

We use (2.10) and (A.3) to get

V 0ˇ .s/ D �˛s
�1Vˇ .s/C Vˇ .s/

�
K�1�1.s/

K�1.s/
�
K�2�1.s/

K�2.s/

�
:

This ends the proof.

Lemma 2.10. For ˇ 2 .0; d � ˛/ we have on ¹x 2 Rd W 0 < jxj � 1=2º,

Vˇ .x/ � �ˇ jxj
�˛
�

8̂̂<̂
:̂
jxj2�˛; ˇ > 2;

jxj2�˛ log
�
1=jxj

�
; ˇ D 2;

jxjˇ�˛; ˇ 2 .0; 2/:
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�

V � �����

V � �����
�

(a) jxj D 0:1
�

V � ���

V � ���
�

(b) jxj D 1

Figure 1. Comparison of Vˇ .x/ and V 0
ˇ
.x/ D �ˇ jxj

�˛ for d D 3, ˛ D 1=2.

Proof. By the asymptotics given in Section A we have

lim
r!0C

K��1.r/

K�.r/
.r=2/�1 D

1

� � 1
; � > 1;

lim
r!0C

K��1.r/

K�.r/
.r log.1=r//�1 D 1; � D 1;

lim
r!0C

K��1.r/

K�.r/
.r�1C2�/�1 D 21�2�

�.1 � �/

�.�/
; � 2 .0; 1/:

Therefore, from the two expressionsK�1�1.r/=K�1.r/ andK�2�1.r/=K�2.r/ the one with
�1 dominates the other when r ! 0C. Then by Lemmas 2.6 and 2.9, and using the above
limits with � D ˇ=2 we obtain the comparability.

As shown in [10, Proof of Proposition 5], the function ˇ 7! �ˇ is increasing on
.0; .d � ˛/=2� and decreasing on Œ.d � ˛/=2; d � ˛/. The mapping ˇ 7! Vˇ .x/ does
not have that property. Combining [10] and (2.9), we get the following observation, which
we also depict on Figure 1.

Remark 2.2. For ˇ 2 .d�˛
2
; d � ˛/ and ˇ0 D d � ˛ � ˇ 2 .0; d�˛

2
/, we have

�ˇ D �ˇ 0 and Vˇ < Vˇ 0 :

We will later on need the following technical result that provides the upper bound of
the difference Vˇ .x/ � �ˇ jxj�˛ , which is uniform in the parameter ˇ.

Lemma 2.11. Let 0<ˇ0<˛ ^ .d � ˛/. There exists c>0 such that for all ˇ2 Œˇ0; d � ˛/
and 0 < jxj � 1,

Vˇ .x/ � �ˇ jxj
�˛
� cjxjˇ0�˛:

Proof. By Lemma 2.9, (2.9) and (A.5),

Vˇ .x/ � �ˇ jxj
�˛
� � d�˛

2
jxj�˛

Vˇ0.1/

�ˇ0

Z jxj
0

K ˇ0
2 �1

.s/

K ˇ0
2

.s/
ds:

Then we use the third limit from the proof of Lemma 2.10.



Relativistic stable operators with critical potentials 223

3. Heat kernel of �.��/˛=2 C Vı

In this section we assume that ˛ 2 .0; 2 ^ d/. Before treating the heat kernel for the
operator (1.1), we first analyze the one corresponding to �.��/˛=2 C Vı . Namely, we
consider the heat kernel p0 of �.��/˛=2, see (2.7) for the definition, and we concentrate
on Qp0Vı that is the Schrödinger perturbation of p0 by Vı . As an auxiliary function, we use
Qp0
V 0
ı

that is the Schrödinger perturbation of p0 by V 0
ı
.z/D �ı jzj

�˛ , which was thoroughly

investigated in [11]. By Corollary 2.7 we have for ı 2 .0; d � ˛/ that

0 � V 0ı � Vı and Qp0
V 0
ı

� Qp0Vı :

In Proposition 3.4 below, we show that the converse of the latter inequality holds up to
multiplicative constant. We first prove two auxiliary results.

Lemma 3.1. Let ˇ 2 .0; d/ and  2 Œˇ � ˛;1/. There is a constant c > 0 such that for
all t > 0, x 2 Rd ,Z t

0

Z
Rd

s=˛p0.s; x; z/jzj�ˇ dz ds � c

´
t .C˛/=˛

�
t�ˇ=˛ ^ jxj�ˇ

�
for  > ˇ � ˛;

log
�
1C tˇ=˛jxj�ˇ

�
for  D ˇ � ˛:

Proof. By [11, Lemma 2.3],Z
Rd

p0.s; x; z/jzj�ˇdz � c
�
s�ˇ=˛ ^ jxj�ˇ

�
:

Hence, for jxj˛ � t ,Z t

0

Z
Rd

s=˛p0.s; x; z/jzj�ˇdz ds � cjxj�ˇ
Z t

0

s=˛ds D
c˛

 C ˛
t .C˛/=˛jxj�ˇ :

Let jxj˛ < t . For  > ˇ � ˛,Z t

0

Z
Rd

s=˛p0.s; x; z/jzj�ˇdz ds

� cjxj�ˇ
Z jxj˛
0

s=˛ds C c
Z t

jxj˛
s.�ˇ/=˛ds � ct .C˛�ˇ/=˛:

The same steps lead to the second estimate for  D ˇ � ˛.

Lemma 3.2. Let ı 2 .0; d�˛
2
� \ .0; ˛/. There is a constant c > 0 such that for all t > 0,

x; y 2 Rd0 ,Z t

0

Z
Rd

Qp0
V 0
ı

.s; x; z/jzjı�˛ Qp0
V 0
ı

.t � s; z; y/ dz ds � ctı=˛ Qp0
V 0
ı

.t; x; y/:

Proof. Recall from [11, Theorem 1.1 and (2.4)] that

Qp0
V 0
ı

.t; x; y/ � p0.t; x; z/H 0.t; x/H 0.t; y/; (3.1)
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where H 0.t; x/ D 1C tı=˛jxj�ı as introduced in Section 1. Note that for 0 < s < t , we
have H 0.t � s; y/ � H 0.t; y/ and

H 0.s; x/H 0.s; z/H 0.t � s; z/

� H 0.s; z/H 0.s; x/H 0.t; z/

� H 0.s; z/

�
H 0.t; x/H 0.s; z/C

tı=˛

jzjı

�
D H 0.t; x/

�
1C

2sı=˛

jzjı
C
s2ı=˛

jzj2ı

�
C tı=˛

�
1

jzjı
C
sı=˛

jzj2ı

�
:

By Lemma 3.1 we get for k 2 ¹0; 1; 2º,Z t

0

Z
Rd

skı=˛p0.s; x; z/jzj�kı jzjı�˛ dz ds � ctı=˛;

and for k 2 ¹0; 1º, Z t

0

Z
Rd

skı=˛p0.s; x; z/jzj�.kC1/ı jzjı�˛ dz ds

� c log
�
1C

�
t jxj�˛

�kı=˛C1�
� cH 0.t; x/:

Thus Z t

0

Z
Rd

p0.s; x; z/H 0.s; x/H 0.s; z/H 0.t � s; y/H 0.t � s; z/jzjı�˛ dz ds

� ctı=˛H 0.t; x/H 0.t; y/:

Similarly,Z t

0

Z
Rd

p0.t � s; z; y/H 0.s; x/H 0.s; z/H 0.t � s; y/H 0.t � s; z/jzjı�˛dz ds

� ctı=˛H 0.t; x/H 0.t; y/:

Finally, the result follows from the latter two inequalities combined with

Qp0
V 0
ı

.s; x; z/ Qp0
V 0
ı

.t � s; z; y/

� cp0.t; x; y/
�
p0.s; x; z/Cp0.t � s; z; y/

�
H 0.s; x/H 0.s; z/H 0.t � s; y/H 0.t � s; z/;

which holds by (3.1) and 3G-inequality for p0.t; x; y/, see [13, Theorem 4].

We show that Vı � V 0ı can be conveniently used to perturb Qp0
V 0
ı

.

Corollary 3.3. Let ı 2 .0; d�˛
2
�. For every T > 0 there is a constant c > 0 such that for

all t 2 .0; T � and x; y 2 Rd0 ,Z t

0

Z
Rd

Qp0
V 0
ı

.s; x; z/
�
Vı.z/�V

0
ı .z/

�
Qp0
V 0
ı

.t � s; z; y/ dz ds�cmax¹t; tı=˛º Qp0
V 0
ı

.t; x; y/:
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Proof. Let q.z/ WD Vı.z/ � V 0ı .z/ D Vı.z/ � �ı jzj
�˛ � 0, see Corollary 2.7. If ı � ˛

the inequality is trivial, because due to Lemmas 2.8 and 2.10 the function q is bounded,
and Qp 0

V 0
ı

satisfies Chapman–Kolmogorov equation (2.2). If 0 < ı < ˛, then q is bounded
for jzj � 1=2, while for jzj � 1=2, we can use Lemmas 2.10 and 3.2 to obtain the desired
inequality.

Proposition 3.4. Let ı 2 .0; d � ˛/. For every T > 0 there is a constant c > 0 such that
for all t 2 .0; T � and x; y 2 Rd0 ,

Qp0
V 0
ı

.t; x; y/ � Qp0Vı .t; x; y/ � c Qp
0
V 0
ı

.t; x; y/:

Proof. According to (2.3) we treat Qp0Vı as the perturbation of Qp0
V 0
ı

by

qı.z/ WD Vı.z/ � V
0
ı .z/ D Vı.z/ � �ı jzj

�˛
� 0;

see Corollary 2.7. If ı 2 .0; d�˛
2
� the result follows from [12, Theorem 2] since q is

relatively Kato for Qp0
V 0
ı

by Corollary 3.3. If ı 2 Œd�˛
2
; d � ˛/ the same argument applies,

because 0 � qı � qı 0 with ı0 D d � ˛ � ı 2 .0; d�˛
2
�, see Remark 2.2. The lower bound

follows from the trivial inequality Qp0
V 0
ı

� Qp0Vı
, see the comment preceding Lemma 3.1.

We will use the following observation several times throughout the paper.

Remark 3.1. Let ı 2 .0; d � ˛/. Recall that Qp WD QpVı is the Schrödinger perturbation of
p WD p1 by Vı WD V 1ı . Directly from (2.7) we have p � p0, and by Proposition 3.4,

Qp � Qp0Vı � c Qp
0
V 0
ı

holds on .0; T � �Rd0 �Rd0 , whenever ı 2 .0; d � ˛/ and T > 0 are fixed.

We are ready to show Proposition 1.1. The essence of the proof is to take a similar
equality for the original transition density p and the operator @u � .��z C 1/˛=2, and
to use the algebraic structure of the perturbed transition density Qp. That idea goes back
to [12, (39)], [15, Lemma 4] and [9, Lemma 2.1]. In doing so one should ensure that
certain integrals converge absolutely. This can be guaranteed using Proposition 3.4 and
[11, Proposition 3.2].

Proof of Proposition 1.1. Recall that Qp WD QpVı that is the perturbation of p WD p1 by
Vı WD V

1
ı

. For s 2 R and x 2 Rd0 we define

Pf .s; x/ D

Z 1
s

Z
Rd

p.u � s; x; z/f .u; z/ dzdu;

zPf .s; x/ D

Z 1
s

Z
Rd

Qp.u � s; x; z/f .u; z/ dz du;

Vıf .s; x/ D Vı.x/f .s; x/:
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for a jointly measurable function f such that the integrals converge absolutely. Let .u;z/
D .@u � .��z C 1/

˛=2/�.u; z/. It is well known that for all s 2 R, x 2 Rd and � 2
C1c .R �Rd / we have (see [9, Theorem 4.1 and (1.16)])Z 1

s

Z
Rd

p.u � s; x; z/
�
@u � .��z C 1/

˛=2
�
�.u; z/ dz du D ��.s; x/:

Hence, P D ��. Then,

zP . C Vı�/ D .P C zPVıP / C zPVı� D �� C zPVıP C zPVı.�P / D ��;

which is the desired equality, but we need to make sure that the integrals converge abso-
lutely. We consider

zP 0f .s; x/ D

Z 1
s

Z
Rd

Qp0
V 0
ı

.u � s; x; z/f .u; z/ dz ds:

Note that the function  is bounded [61, p. 211] and zero if juj is large. By Remark 3.1,
for every s 2 R and x 2 Rd0 there is c such that

zP j j.s; x/ � c zP 0j j.s; x/ <1:

The finiteness follows from [11, Proposition 3.2] and because zP 0 is the same for ı and
ı0 D d � ˛ � ı, see Remark 2.2. This implies that P j j, zP j j, zPVıP j j and zPVı j�j
are finite. Indeed, by (2.1) we have

P j j C zPVıP j j D zP j j <1 and zPVı j�j � zPVıP j j <1:

Proposition 3.5. Let ı 2 .0; d � ˛/. If m # 0, then for all t > 0, x; y 2 Rd0 ,

pm.t; x; y/ " p0.t; x; y/; V mı .x/ # V
0
ı .x/; Qpm.t; x; y/! Qp0.t; x; y/:

Proof. The convergence and monotonicity of pm follows from (2.7). The convergence of
V m
ı

stems from Lemmas 2.6 and 2.2, and the monotonicity from (2.9). To prove the third
convergence we use the dominated convergence theorem. To justify its use we note that
pm�p0 and V m

ı
�V 1

ı
ifm2 .0;1�, and we let Qp0Vı (the Schrödinger perturbation of p0 by

Vı D V
1
ı

) to be the majorant, see also Proposition 3.4 for summability or integrability.

4. Heat kernel of �.��C 1/˛=2 C Vı

Under the constraint in the whole section that ˛ 2 .0; 2 ^ d/ and ı 2 .0; d�˛
2
� we finally

consider the heat kernel Qp for the operator (1.1). As specified after Theorem 4.12 and
in the comment preceding Lemma 2.4, we investigate Qp WD QpVı that is the Schrödinger
perturbation of p WD p1 by Vı WD V 1ı .



Relativistic stable operators with critical potentials 227

4.1. Upper bound

We consider the following function

H.t; x/ WD 1C
hı.x/

hı.t1=˛/
:

Note that for every T > 0 we have on .0; T � �Rd0 (see Lemma 2.3 and (A.1)),

H.t; x/ � H 0.t; x/: (4.1)

Proposition 4.1. For every T;R > 0 there exists a constant c such that for all t 2 .0; T �
and x; y 2 Rd0 satisfying jx � yj � R,

Qp.t; x; y/ � cp.t; x; y/H.t; x/H.t; y/:

Proof. By Remark 3.1 and (3.1), we have Qp.t; x; y/ � cp0.t; x; y/H 0.t; x/H 0.t; y/.
Now, due to (4.1), it suffices to observe that

p0.t; x; y/ � c

�
t�d=˛ ^

t

jx � yjdC˛

�
� cp.t; x; y/;

whenever t 2 .0; T � and jx � yj � R, see e.g. [11, (2.4)] and (B.4).

Recall that Vı is radial decreasing (see Lemma 2.8) thus we can define the inverse of
its radial profile, which we denote by V �1

ı
.

Lemma 4.2. For all t > 0 and x; y 2 Rd0 ,

Qp.t; x; y/ � 2p.t; x; y/C 2

Z t

0

Z
jzj�V �1

ı
. 12t /

Qp.t � s; x; z/Vı.z/p.s; z; y/ dz ds: (4.2)

Proof. By Duhamel’s formula (2.1), the monotonicity of Vı and Chapman–Kolmogorov
equation (2.2), for any R > 0 we have

Qp.t; x; y/ D p.t; x; y/C

Z t

0

Z
jzj�R

Qp.t � s; x; z/Vı.z/p.s; z; y/ dz ds

C

Z t

0

Z
jzj>R

Qp.t � s; x; z/Vı.z/p.s; z; y/ dz ds

� p.t; x; y/C

Z t

0

Z
jzj�R

Qp.t � s; x; z/Vı.z/p.s; z; y/ dz ds

C tVı.R/ Qp.t; x; y/:

It suffices to take Vı.R/ D 1=.2t/.

Proposition 4.3. Let T > 0. There exists a constant c such that for all t 2 .0; T �, x 2 Rd0 ,Z
Rd

Qp.t; x; y/ dy � cH.t; x/: (4.3)
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Proof. Integrating (4.2) we getZ
Rd

Qp.t; x; y/ dy � 2C 2
Z t

0

Z
jzj�V �1

ı
. 12t /

Qp.t � s; x; z/Vı.z/ dz ds:

Note that by Lemma 2.6 there is c1 such that V �1
ı
. 1
2t
/ � c1t

1=˛ for all t 2 .0; T �. Thus,
by (B.4) there is c2 > 0 such that for all 0 < s < t � T and jzj � V �1

ı
. 1
2t
/,

c2 �

Z
jyj�2c1t1=˛

p.s; z; y/ dy:

Then, by (2.1) in the second inequality,Z
Rd

Qp.t; x; y/ dy

� 2C
2

c2

Z
jyj�2c1t1=˛

�Z t

0

Z
jzj�V �1

ı
. 12t /

Qp.t � s; x; z/Vı.z/p.s; z; y/ dz ds
�

dy

� 2C
2

c2

Z
jyj�2c1t1=˛

Qp.t; x; y/ dy:

Now, by the monotonicity of hı and Corollary 2.5 we getZ
jyj�2c1t1=˛

Qp.t; x; y/ dy �
1

hı.2c1t1=˛/

Z
jyj�2c1t1=˛

Qp.t; x; y/hı.y/ dy �
hı.x/

hı.2c1t1=˛/
:

Finally, note that hı.2c1t1=˛/ � hı.t1=˛/ for t 2 .0; T �.

In what follows, for T > 0 we set

R0 WD max
®
1; V �1ı

�
1=.2T /

�¯
:

We shall also use �.x/ defined in Corollary 1.3.

Lemma 4.4. Let T >0. There exists a constant c such that for all t 2 .0;T �,R 2 ŒR0;2R0�
and 0 < jxj � R, jyj � RC 1,

Qp.t; x; y/ � ct�.x � y/H.t; x/:

Proof. Since jxj � 2R0, jyj � R0 C 1, using (B.3) and (B.1), we get

p.s; z; y/ � cs�.x � y/ for all s 2 .0; T � and jzj � R0:

Thus, by (4.2) we have

Qp.t; x; y/ � 2p.t; x; y/C 2

Z t

0

Z
jzj�R0

Qp.t � s; x; z/Vı.z/p.s; z; y/ dz ds

� ct�.x � y/C ct�.x � y/

Z t

0

Z
jzj�R0

Qp.t � s; x; z/Vı.z/ dz ds:
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Furthermore, by (2.1) and (4.3) we haveZ t

0

Z
Rd

Qp.t � s; x; z/Vı.z/ dz ds �
Z

Rd

Qp.t; x; y/ dy � cH.t; x/:

Proposition 4.5. Let T > 0. There exists a constant c such that for all t 2 .0; T � and
jxj _ jyj � 3R0,

Qp.t; x; y/ � ct�.x � y/H.t; x/H.t; y/:

Proof. By the symmetry of Qp we may and do assume that jyj � 3R0. The case of jxj �
2R0 is covered by Lemma 4.4 withRD 2R0. From now on we consider jxj � 2R0. Using
the symmetry of Qp again, we get by (4.2) that

Qp.t; x; y/ � 2p.t; y; x/C 2

Z t

0

Z
jzj�R0

Qp.t � s; z; y/Vı.z/p.s; z; x/ dz ds:

Furthermore, by Lemma 4.4 with R D R0, we have by the monotonicity of hı that for
0 < s < t � T and jzj � R0,

Qp.t � s; z; y/ � cT �.z � y/H.T; z/:

Thus, by (B.3) and (B.2) we have

Qp.t; x; y/ � ct�.x � y/C cT 2
Z t

0

Z
jzj�R0

�.z � y/H.T; z/Vı.z/�.x � z/ dz ds

� ct�.x � y/C cT 2�.x � y/

Z t

0

Z
jzj�R0

H.T; z/Vı.z/ dz ds

D ct�.x � y/C ct�.x � y/ T 2
Z
jzj�R0

H.T; z/Vı.z/ dz:

Finally, notice that
R
jzj�R0

H.T;z/Vı.z/dz <1 since ˛ < d , andH.t;x/H.t;y/� 1.

Theorem 4.6. Let T > 0. There exists a constant c such that for all t 2 .0; T � and x; y 2
Rd0 ,

Qp.t; x; y/ � cp.t; x; y/H.t; x/H.t; y/:

Proof. If jx � yj � 6R0, the inequality follows from Proposition 4.1. If jx � yj � 6R0,
then jxj _ jyj � 3R0 and the inequality holds by Proposition 4.5 and (B.5).

4.2. Invariance of hı

We show that in fact there is equality in Corollary 2.5 if ı 2 .0; d�˛
2
�. Recall that the

functions hˇ WD h1ˇ and Nhˇ WD Nh1ˇ are defined in Section 2.3.

Lemma 4.7. For all ˇ 2 .0; d � ˛/ and t > 0, x 2 Rd0 ,Z
Rd

p.t; x; y/hˇ .y/ dy C
Z t

0

Z
Rd

p.s; x; y/ Nhˇ .y/ dyds D hˇ .x/:
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Proof. Let f .t/ D t
d�˛�ˇ
˛ . Then,Z t

0

Z
Rd

p.s; x; y/ Nhˇ .y/ dy ds D
Z t

0

Z 1
0

p.s C r; x; 0/f 0.r/ dr ds

D �

Z t

0

Z 1
0

@s p.s C r; x; 0/f .r/ dr ds

D

Z 1
0

�
p.r; x; 0/ � p.t C r; x; 0/

�
f .r/ dr

D hˇ .x/ �

Z
Rd

p.t; x; y/hˇ .y/ dy:

The first equality above follows from the Chapman–Kolmogorov equation and the defini-
tion of Nhˇ . In the second equality we used integration by parts and that

p.s C r; x; 0/f .r/ � p0.s C r; x; 0/f .r/

vanishes at zero and at infinity as a function of r . In the third equality we used Fubini’s
theorem, which was justified becauseZ t

0

Z 1
0

ˇ̌̌̌
@

@s
p.s C r; x; 0/f .r/

ˇ̌̌̌
dr ds <1;

see Lemma B.3.

Here is how Lemma 4.7 propagates onto Qp.

Proposition 4.8. For all ˇ 2 .0; d � ˛/ and t > 0, x 2 Rd0 ,Z
Rd

Qp.t; x; y/hˇ .y/ dy C
Z t

0

Z
Rd

Qp.s; x; y/ Nhˇ .y/ dy ds

D hˇ .x/C

Z t

0

Z
Rd

Qp.s; x; y/Vı.y/hˇ .y/ dy ds:

Proof. By Duhamel’s formula (2.1),Z
Rd

Qp.t; x; y/hˇ .y/ dy D
Z

Rd

p.t; x; y/hˇ .y/ dy

C

Z t

0

Z
Rd

Qp.s; x; z/Vı.z/

Z
Rd

p.t � s; z; y/hˇ .y/ dy dz ds;

and Z t

0

Z
Rd

Qp.s; x; y/ Nhˇ .y/ dyds

D

Z t

0

Z
Rd

p.s; x; y/ Nhˇ .y/ dyds

C

Z t

0

Z
Rd

Z s

0

Z
Rd

Qp.u; x; z/Vı.z/p.s � u; z; y/ dzdu Nhˇ .y/ dyds
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D

Z t

0

Z
Rd

p.s; x; y/ Nhˇ .y/ dyds

C

Z t

0

Z
Rd

Qp.u; x; z/Vı.z/

Z t�u

0

Z
Rd

p.r; z; y/ Nhˇ .y/ dydr dzdu:

It suffices to add the above expressions and apply Lemma 4.7.

Recall that we assume ı 2 .0; d�˛
2
�. Given the equality in Proposition 4.8, we would

like to put ˇD ı and to cancel the double integrals, because Nhı.x/D Vı.x/hı.x/, x 2Rd0 .
That would require the finiteness of these integrals. We also note that the case ı D d�˛

2

is more challenging than that of ı < d�˛
2

. We prove both cases at once by a limiting
procedure.

Theorem 4.9. For all t > 0 and x 2 Rd0 ,Z
Rd

Qp.t; x; y/hı.y/ dy D hı.x/:

Proof. By the definition of hm
ˇ

in Section 2.3 we have

hˇ .y/ � h
0
ˇ .y/ D

2ˇ�
�
d�ˇ
˛

�
�
�
ˇ
2

�
.4�/d=2�

�
d�ˇ
2

� jyj�ˇ :
Thus, by Remark 3.1 and [11, (3.3)], for 0 < ˇ < ı the integrals on the left hand side of
the equality in Proposition 4.8 are finite, hence the one on the right hand side is also finite,
and we can rewrite the equality asZ

Rd

Qp.t; x; y/hˇ .y/ dy D hˇ .x/C
Z t

0

Z
Rd

Qp.s; x; y/
�
Vı.y/ � Vˇ .y/

�
hˇ .y/ dy ds:

Fix 0 < ˇ0 < ˛ ^ ı. For ˇ 2 Œˇ0; ı� we have hˇ .x/ � supˇ2Œˇ0;ı� h
0
ˇ
.1/.jxj�ı C 1/,

therefore by Remark 3.1 and [11, (3.2) and Proposition 3.2] we can apply the dominated
convergence theorem to the integral on the left-hand side,

lim
ˇ"ı

Z
Rd

Qp.t; x; y/hˇ .y/ dy D
Z

Rd

Qp.t; x; y/hı.y/ dy:

Now, we split the integral on the right hand side,Z t

0

Z
Rd

Qp.s; x; y/
�
Vı.y/ � Vˇ .y/

�
hˇ .y/ dy ds D I1 C I2 C I3 C I4;

where

I1 D

Z t

0

Z
jyj�r0

Qp.s; x; y/
�
Vı.y/ � Vˇ .y/

�
hˇ .y/ dy ds;

I2 D .�ı � �ˇ /

Z t

0

Z
jyj<r0

Qp.s; x; y/jyj�˛hˇ .y/ dy ds;
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I3 D

Z t

0

Z
jyj<r0

Qp.s; x; y/
�
Vı.y/ � �ı jyj

�˛
�
hˇ .y/ dy ds;

I4 D �

Z t

0

Z
jyj<r0

Qp.s; x; y/
�
Vˇ .y/ � �ˇ jyj

�˛
�
hˇ .y/ dy ds;

and the value of r0 2 .0; 1� will be specified later. Clearly, I2 � 0 and I3 � 0. All the
following inequalities will be uniform in ˇ 2 Œˇ0; ı�. By Lemma 2.11 for all 0 < jyj � 1,ˇ̌

Vˇ .y/ � �ˇ jyj
�˛
ˇ̌
hˇ .y/ � cjyj

ˇ0�˛ sup
ˇ2Œˇ0;ı�

hˇ .1/jyj
�ı
D c0jyjˇ0�ı�˛:

Fix " > 0. Since by [11, (3.3)] with ˇ D ı � ˇ0 the latter expression is integrable against
Qp0
V 0
ı

.s; x; y/ dy ds on .0; t � � Rd , by Remark 3.1 there is r0 2 .0; 1� such that �I4 � ".
Now, for that choice of r0 2 .0; 1� and all jyj � r0,ˇ̌

Vı.y/ � Vˇ .y/
ˇ̌
hˇ .y/ � sup

ˇ2Œˇ0;ı�

�
Vı.r0/C Vˇ .r0/

�
hˇ .r0/ <1:

Combined with (4.3) it justifies the usage of the dominated convergence theorem, and we
get limˇ"ı I1 D 0. Finally, we haveZ

Rd

Qp.t; x; y/hı.y/ dy � hı.x/ � ":

Since " was arbitrary, and in view of Corollary 2.5, we obtain the desired equality.

4.3. Lower bound

We adapt methods developed in [11, Section 4.2]. Let

�.t; x; y/ WD
Qp.t; x; y/

H.t; x/H.t; y/
and �t .dy/ WD

�
H.t; y/

�2dy:

Using
R

Rd Qp.t; x; y/dy �
R

Rd p.t; x; y/dy � e�t and Theorem 4.9 we get for all t > 0,
x 2 Rd0 ,Z

Rd

�.t; x; z/ �t .dz/ D
1

H.t; x/

Z
Rd

Qp.t; x; y/H.t; y/dy

D
1

H.t; x/

�Z
Rd

Qp.t; x; y/ dy C
1

hı.t1=˛/

Z
Rd

Qp.t; x; y/hı.y/ dy
�

�
1

H.t; x/

�
e�t C

hı.x/

hı.t1=˛/

�
� e�t : (4.4)

By Chapman–Kolmogorov equation (2.2) and (4.1), for all t 2 .0; T � and x; y 2 Rd0 ,

�.2t; x; y/ � c

Z
Rd

�.t; x; z/�.t; z; y/ �t .dz/: (4.5)
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Lemma 4.10. Let T > 0. There are r 2 .0; 1/, R � 2 such that for all t 2 .0; T � and
0 < jxj � .4t/1=˛ , Z

r�
jzj

t1=˛
�R

�.t; x; z/ �t .dz/ �
e�T

2
:

Proof. By Theorem 4.6, we have �.t; x; z/ � cp.t; x; z/ � cp0.t; x; z/, and H.t; z/ �
cH 0.t; z/. Using the scaling of p0, we get from [11, Section 4.2] that the integral of c3p0

over ¹jzj � rt1=˛º [ ¹jzj � Rt1=˛º does not exceed e�T =2. Therefore, the result follows
from (4.4).

Theorem 4.11. Let T > 0. There exists a constant c such that for all t 2 .0; T � and
x; y 2 Rd0 ,

Qp.t; x; y/ � cp.t; x; y/H.t; x/H.t; y/:

Proof. If jxj; jyj � t1=˛ we have H.t; x/H.t; y/ � 4, so

�.t; x; y/ �
1

4
Qp.t; x; y/ �

1

4
p.t; x; y/: (4.6)

Now, let r and R be taken from Lemma 4.10, which will be used twice below. We first
assume that 0 < jxj � .4t/1=˛ and jyj � r.2t/1=˛ . Then by (4.5), (4.1), (B.6) and (B.3)
we get for all t 2 .0; T �,

�.2t; x; y/ � c

Z
r�

jzj

t1=˛
�R

�.t; x; z/�.t; z; y/ �t .dz/

� c

Z
r�

jzj

t1=˛
�R

�.t; x; z/
p.t; z; y/�
H 0.1; r/

�2 �t .dz/
�

c�
H 0.1; r/

�2�Z
r�

jzj

t1=˛
�R

�.t; x; z/ �t .dz/
�
p.t; x; y/

� cp.t; x; y/ � cp.2t; x; y/:

In particular, for all 0 < jxj � .2t/1=˛ , jyj � rt1=˛ and t 2 .0; T �,

�.t; x; y/ � cp.t; x; y/: (4.7)

Now, we assume that 0 < jxj; jyj � .2t/1=˛ . Then by (4.5), the symmetry and (4.7) applied
to �.t; y; z/, and again (B.6) and (B.3), we get for all t 2 .0; T �,

�.2t; x; y/ � c

Z
r�

jzj

t1=˛
�R

�.t; x; z/�.t; z; y/ �t .dz/

� c

Z
r�

jzj

t1=˛
�R

�.t; x; z/p.t; z; y/ �t .dz/

� c

�Z
r�

jzj

t1=˛
�R

�.t; x; z/ �t .dz/
�
p.t; x; y/ � cp.t; x; y/ � cp.2t; x; y/:
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In particular, for all 0 < jxj, jyj � t1=˛ and t 2 .0; T �,

�.t; x; y/ � cp.t; x; y/: (4.8)

Note that (4.7) covers the case 0 < jxj � t1=˛ , jyj � t1=˛ . Thus, due to the symmetry the
inequalities (4.6), (4.7) and (4.8) cover all cases.

4.4. Theorem 1.2 for ı 2 .0; .d � ˛/=2�

Theorem 4.12. Let ˛ 2 .0; 2 ^ d/ and ı 2 .0; d�˛
2
�. The function Qp is jointly continuous

on .0;1/ �Rd0 �Rd0 and for every T > 0 we have

Qp.t; x; y/ � p.t; x; y/H 0.t; x/H 0.t; y/

on .0; T � � Rd0 � Rd0 . The comparability constant can be chosen to depend only on
d; ˛; ı; T .

Proof. The estimates follow from Theorems 4.6 and 4.11, see (4.1). The continuity of Qp
essentially follows from that of p.t; x; y/, the Duhamel’s formula (2.1) and integrability
properties similarly to [11, Lemma 4.10], which are assured by the inequalities given in
Remark 3.1. We omit details.

5. Further analysis and consequences

In the whole section, we assume that ˛ 2 .0; 2 ^ d/.

5.1. Four transition densities

Note that we have two heat kernels p0 and p WD p1 as well as two potentials V 0
ı

and
Vı WD V

1
ı

. That amounts to four possible transition densities as Schrödinger perturbations.
In [11], the authors studied Qp0

V 0
ı

. We have already discussed Qp0
V 1
ı

for ı 2 .0; d � ˛/ in

Section 3 and Qp1
V 1
ı

for ı 2 .0; d�˛
2
� in Section 4. The remaining one is Qp1

V 0
ı

, that is the one

corresponding to the operator �.��C 1/˛=2 C �ı jxj�˛ .

Kernel
Potential

V 0
ı

V 1
ı

p0.t; x; y/ Qp0
V 0
ı

Qp0
V 1
ı

p1.t; x; y/ Qp1
V 0
ı

Qp1
V 1
ı

Table 1. Heat kernels, potentials and Schrödinger perturbations.

Several trivial inequalities between transition densities in Table 1 follow from

p1 � p0 and 0 � V 0ı � V
1
ı :

Namely, the function increases if we move to the right or upwards.
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Theorem 5.1. Let ı 2 .0; d � ˛/. For every T > 0, we have on .0; T � �Rd0 �Rd0 that

Qp0
V 1
ı

.t; x; y/ � Qp0
V 0
ı

.t; x; y/ � p0.t; x; y/H 0.t; x/H 0.t; y/

and
Qp1
V 1
ı

.t; x; y/ � Qp1
V 0
ı

.t; x; y/ � p1.t; x; y/H 0.t; x/H 0.t; y/:

Each function is jointly continuous on .0;1/ �Rd0 �Rd0 .

The main new ingredient in the proof of Theorem 5.1 is Corollary 5.5, see below. It is
a counterpart of Corollary 3.3 and its proof is based on similar ideas used in Section 4.1.

Lemma 5.2. Let ı 2 .0; d�˛
2
�. For every T;R > 0 there exists a constant c such that for

all t 2 .0; T � and x; y 2 Rd0 satisfying jx � yj � R,Z t

0

Z
Rd

Qp1
V 1
ı

.s; x; z/
�
V 1ı .z/ � V

0
ı .z/

�
Qp1
V 1
ı

.t � s; z; y/ dz ds

� cmax¹t; tı=˛º Qp1
V 1
ı

.t; x; y/:

Proof. Using Remark 3.1 and applying Corollary 3.3 we can bound the left-hand side by
cmax¹t; tı=˛º Qp0

V 0
ı

. Now, exactly like in the proof of Proposition 4.1, we get that

Qp0
V 0
ı

� c Qp1
V 1
ı

if t 2 .0; T � and x; y 2 Rd0 satisfy jx � yj � R.

Remark 5.1. Let ı 2 .0; d�˛
2
�. There exists a constant c such that for all t > 0 and x; y 2

Rd0 ,Z t

0

Z
jzj�1=2

Qp1
V 1
ı

.s; x; z/
�
V 1ı .z/ � V

0
ı .z/

�
Qp1
V 1
ı

.t � s; z; y/ dz ds � ct Qp1
V 1
ı

.t; x; y/:

The inequality simply follows from boundedness of V 1
ı
� V 0

ı
for jzj � 1=2 and the

Chapman–Kolmogorov equation (2.2) for Qp1
V 1
ı

.

Lemma 5.3. Let ı 2 .0; d�˛
2
� and 0 < ı < ˛. For every T > 0 there exists a constant c

such that for all t 2 .0; T �, R 2 Œ1; 2� and 0 < jxj � R, jyj � RC 1,Z t

0

Z
jzj�1=2

Qp1
V 1
ı

.s; x; z/
�
V 1ı .z/ � V

0
ı .z/

�
Qp1
V 1
ı

.t � s; z; y/ dz ds

� ctı=˛C1�.x � y/H 0.t; x/:

Proof. We apply Theorem 4.6, (4.1) and Lemma 2.10 to obtain the following upper bound
of the left-hand side

c

Z t

0

Z
jzj�1=2

p1.s; x; z/H 0.s; x/H 0.s; z/jzjı�˛ p1.t � s; z; y/

�H 0.t � s; z/H 0.t � s; y/ dz ds:
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Using p1.s; x; z/ � p0.s; x; z/ and p1.t � s; z; y/ � ct�.x � y/, see (B.3) and (B.1), we
further bound it by

ct�.x�y/

Z t

0

Z
jzj�1=2

p0.s; x; z/H 0.s; x/H 0.s; z/H 0.t�s; z/H 0.t�s; y/jzjı�˛ dz ds

� ctı=˛C1�.x � y/H 0.t; x/H 0.t; y/;

where the latter follows from the same inequality as in the proof of Lemma 3.2. We finally
notice that H 0.t; y/ is bounded under our assumptions.

Proposition 5.4. Let ı 2 .0; d�˛
2
�\ .0; ˛/. For every T > 0 there exists a constant c such

that for all t 2 .0; T � and x; y 2 Rd0 satisfying jxj _ jyj � 3,Z t

0

Z
jzj�1=2

Qp1
V 1
ı

.s; x; z/
�
V 1ı .z/ � V

0
ı .z/

�
Qp1
V 1
ı

.t � s; z; y/ dz ds

� cmax¹t; tı=˛º t�.x � y/H 0.t; x/H 0.t; y/:

Proof. By the symmetry of Qp1
V 1
ı

we may and do assume that jyj � 3. The case of jxj � 2

is covered by Lemma 5.3 withRD 2. From now on we consider jxj � 2. By Theorem 4.6,
(4.1) and (B.3) for 0 < s < t � T and 0 < jzj � 1=2 we have

Qp1
V 1
ı

.s; x; z/ � cs�.x � z/H 0.s; z/;

Qp1
V 1
ı

.t � s; z; y/ � c.t � s/�.z � y/H 0.t � s; z/;

which together with Lemma 2.10 give us the following bound on the left hand side

ct2
Z t

0

Z
jzj�1=2

�.x � z/H 0.s; z/jzjı�˛ �.z � y/H 0.t � s; z/ dz ds:

Using (B.2) it can be further bounded by

ct2�.x � y/ T

Z
jzj�1=2

�
H 0.T; z/

�2
jzjı�˛ dz:

Finally, note that Z
jzj�1=2

�
H 0.T; z/

�2
jzjd�˛ dz <1

since ˛ < d , and H 0.t; x/H 0.t; y/ � 1.

Corollary 5.5. Let ı 2 .0; d�˛
2
�. For every T > 0 there is a constant c > 0 such that for

all t 2 .0; T � and x; y 2 Rd0 ,Z t

0

Z
Rd

Qp1
V 1
ı

.s; x; z/
�
V 1ı .z/ � V

0
ı .z/

�
Qp1
V 1
ı

.t � s; z; y/ dz ds

� cmax¹t; tı=˛º Qp1
V 1
ı

.t; x; y/:
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Proof. If ı � ˛ the inequality is trivial, because due to Lemma 2.10 the function V 1
ı
� V 0

ı

is bounded, and Qp1
V 1
ı

satisfies Chapman–Kolmogorov equation (2.2). Suppose that

0 < ı < ˛:

If jx � yj � 6, the inequality follows from Lemma 5.2. If jx � yj � 6, then also jxj _ jyj
� 3 and the inequality holds by Remark 5.1, Proposition 5.4, (B.5), Theorem 4.11 and
(4.1).

Now we use V 0
ı
� V 1

ı
to perturb Qp1

V 1
ı

in order to analyze Qp1
V 0
ı

and to complement the

picture.

Proof of Theorem 5.1. The estimates for Qp0
V 0
ı

with ı 2 .0; d � ˛/ are given in [11, Theo-

rem 1.1], see Remark 2.2. For Qp0
V 1
ı

with ı 2 .0; d � ˛/ the estimates are given in Propo-

sition 3.4. For Qp1
V 1
ı

with ı 2 .0; d�˛
2
� they are given in Theorem 4.12. For Qp1

V 0
ı

with ı 2

.0; d�˛
2
� the upper estimates follow from Qp1

V 0
ı

� Qp1
V 1
ı

and the lower bound Qp1
V 0
ı

� c Qp1
V 1
ı

is

due to Corollary 5.5 and Lemma 2.1 with q1D V 1ı and q2D V 0ı � V
1
ı

. If ı 2 Œd�˛
2
; d � ˛/

the estimates follow from the case ı 2 .0; d�˛
2
�, because by Remark 2.2 we have

Qp1
V 0
ı0
D Qp1

V 0
ı

� Qp1
V 1
ı

� Qp1
V 1
ı0
;

where ı0 D d � ˛ � ı 2 .0; d�˛
2
�. The proof of the continuity goes by similar lines to that

in the proof of Theorem 4.12, see Section 4.4.

5.2. Blowup

In this subsection, we explain why the value ı� WD d�˛
2

of the parameter ı in Vı can be
regarded as critical. Note that out of the four transition densities discussed in Section 5.1
the function Qp1

V 0
ı

is the smallest and Qp0
V 1
ı

is the largest. We start with a blowup result.

Corollary 5.6. Let q D .1C "/V 0
ı�

for " > 0. Then

Qp1q.t; x; y/ D1 for all t > 0; x; y 2 Rd0 :

Proof. Clearly, Qp1q � Qp
1
V 0
ı�

. By Theorem 5.1,

Qp1
V 0
ı�
.t; x; y/ � cp1.t; x; y/t .d�˛/=˛jxj�.d�˛/=2jyj�.d�˛/=2: (5.1)

According to (2.3), we consider Qp1q as a perturbation of Qp1
V 0
ı�

by "V 0
ı�

. Then, by the

Duhamel’s formula (2.1) and (5.1) we get

Qp1q.t; x; y/

D Qp1
V 0
ı�
.t; x; y/C

Z t

0

Z
Rd

Qp1q.s; x; z/"V
0
ı�.z/ Qp

1
V 0
ı�
.t � s; z; y/ dz ds
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� "�ı�

Z t

0

Z
Rd

Qp1
V 0
ı�
.s; x; z/jzj�˛ Qp1

V 0
ı�
.t � s; z; y/ dz ds

� c
�
jxjjyj

��.d�˛/=2 Z t

0

�
s.t � s/

�.d�˛/=˛ Z
Rd

p1.s; x; z/jzj�d p1.t � s; z; y/ dz ds

D1:

In the last equality, we used the fact that for each 0 < s < t and x; y 2 Rd0 there is c > 0
such that p1.s; x; z/p1.t � s; z; y/ � c for all jzj � 1, and

R
jzj�1
jzj�ddz D1.

Now, we give a no-blowup result. Recall that �ı attains its maximum at ı D ı�.

Corollary 5.7. Let ı 2 .0; d � ˛/ and ı ¤ ı�. If " 2 .0; �ı���ı
�ı

/ and q D .1C "/V 1
ı

, then

Qp0q.t; x; y/ <1 for all t > 0, x; y 2 Rd0 .

Proof. We have q D V 0
ı
C .1C "/.V 1

ı
� V 0

ı
/C "V 0

ı
D q1C q2C q3. First, we construct

Qp0q1 D Qp
0
V 0
ı

:

Next, we perturb it by q2. Proceeding like in the proof of Proposition 3.4, we see that q2
is relatively Kato for Qp0q1 , and thus by [12, Theorem 2] we get Qp0q1Cq2 � .1C �/ Qp

0
q1

for
arbitrarily small fixed � > 0 on .0; t0� �Rd0 �Rd0 . We assure that ".1C �/ � �ı���ı

�ı
and

we perturb Qp0q1Cq2 by q3. Note that

.1C �/q3.x/ �
�ı� � �ı

�ı
V 0ı .x/ D .�ı� � �ı/jxj

�˛
DW q4.x/:

Therefore, by (2.4), on .0; t0� �Rd0 �Rd0 we get

Qp0q D
C. Qp0q1Cq2/q3 � .1C �/A. Qp0q1/.1C�/q3 � .1C �/A. Qp0q1/q4 D .1C �/ Qp0V 0

ı�
:

Finally, the finiteness holds for all t >0 by the latter inequality and Chapman–Kolmogorov
equation (2.2).

Appendix

Despite the obvious collision, we shall use the well established notation for the Bessel
function K�.r/ and the Lévy measure �.r/. It is always self explanatory which object is
in use and should cause no confusion.

A. The Bessel function

The modified Bessel function of the second kind K� is given by

K�.r/ D
1

2

�
r

2

�� Z 1
0

u���1e�u�
r2

4u du; � 2 R; r > 0:
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It holds that K� D K�� and K1=2.x/ D K�1=2.x/ D
p
�=2 x�1=2e�x . The asymptotics

of K� at the origin and at infinity are well known,

lim
r!0C

K0.r/

log.1=r/
D 1;

lim
r!0C

K�.r/

r��
D 2��1�.�/; for � > 0; (A.1)

lim
r!1

K�.r/
p
rer D

p
�=2; for � � 0:

It is not hard to see that K�.r/ is decreasing in r > 0. We will use two representations of
the derivative of K�.r/ for r > 0, see [69, page 79] or [67, (4.24)],

K 0�.r/ D �K�C1.r/C .�=r/K�.r/; (A.2)

K 0�.r/ D �K��1.r/ � .�=r/K�.r/: (A.3)

From [41, Lemma 2.2] we have that for r > 0,

� 7! K�C1.r/=K�.r/ is increasing; (A.4)

� 7! K��1.r/=K�.r/ is decreasing: (A.5)

B. The relativistic stable kernel

We assume that ˛ 2 .0; 2/. Recall that �.x/D �1.x/ and p.t; x;y/D p1.t; x; y/. Accord-
ing to [42, Example 2.3 (a)] the function � is an example of a density of a Lévy measure
satisfying the assumptions [42, (A1)–(A2)], thus the first two lemmas below follow from
[42, Lemma 5.1]. We note that the estimates (B.3) were established in [24, Theorem 4.1],
for more general approach see also [46].

Lemma B.1. LetR�1. There is a constant c such that for all jx�zj�1 and jw�zj�2R,

�.x � z/ � c �.x � w/; (B.1)

and for all jxj; jyj � 2R and jzj � R,

�.x � z/�.z � y/ � c �.x � y/: (B.2)

Lemma B.2. Let T;R > 0. For all t 2 .0; T � and x; y 2 Rd ,

p.t; x; y/ � min
®
t�d=˛; t�.x � y/

¯
: (B.3)

For all t 2 .0; T � and jx � yj � R,

p.t; x; y/ � min
®
t�d=˛; t jx � yj�d�˛

¯
: (B.4)

For all t 2 .0; T � and jx � yj � R,

p.t; x; y/ � t�.x � y/: (B.5)
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For every a > 0 there is c > 0 such that for all t 2 .0; T �, z; y 2 Rd and jwj � at1=˛ ,

p.t; z C w; y/ � cp.t; z; y/: (B.6)

Lemma B.3. There is a constant c such that for all t � 1 and x; y 2 Rdˇ̌
@tp.t; x; y/

ˇ̌
� ce�t :

For every x ¤ y there is a constant c such that for all t 2 .0; 1�,ˇ̌
@tp.t; x; y/

ˇ̌
� c:

Proof. Note that

p.t; x; y/ D e�t .2�/�d
Z

Rd

e�ihy�x;zi e�t‰.z/ dz;

where ‰.x/ D .jxj2 C 1/˛=2 � 1. Both, the above integral and its derivative in t , are
bounded for t � 1, proving the first statement. Now, notice that

‰.x/ D
�
jxj2 C 1

�˛=2
� 1 � jxj2 ^ jxj˛:

This allows us to use [56, Propositions C.1 and C.5], which givesˇ̌
@t e

tp.t; x; y/
ˇ̌
� ct�1‡t .x � y/ � c;

see [56, Section 3] for the definition of ‡t . This proves the second part.

Lemma B.4. For all x ¤ y we have limt!0C
p.t;x;y/

t
D �.x � y/.

Proof. By [61, Corollary 8.9], we haveZ 1
0

f .s/
�t .s/

t
ds !

Z 1
0

f .s/….ds/

as t ! 0C for any bounded continuous f vanishing in the neighborhood of zero. See
Section 2.2 for the definition of ….ds/. It is then not hard to verify that together with
(2.7), for x ¤ y we have

p.t; x; y/

t
D

Z 1
0

gs.x � y/e
�s �t .s/

t
ds

t!0C

����!

Z 1
0

gs.x � y/e
�s….ds/

D �.x � y/:
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