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Simple modules of small quantum groups at dihedral
groups

Gastón A. García and Cristian Vay

Abstract. Based on previous results on the classification of finite-dimensional Nichols algebras
over dihedral groups and the characterization of simple modules of Drinfeld doubles, we compute
the irreducible characters of the Drinfeld doubles of bosonizations of finite-dimensional Nichols
algebras over the dihedral groups D4t with t � 3. To this end, we develop new techniques that
can be applied to Nichols algebras over any Hopf algebra. Namely, we explain how to construct
recursively irreducible representations when the Nichols algebra is generated by a decomposable
module, and show that the highest-weight of minimum degree in a Verma module determines its
socle. We also prove that tensoring a simple module by a rigid simple module gives a semisimple
module.

1. Introduction

This paper is devoted to study the representations of certain families of Hopf algebras
D.V;Dm/, which are given by Drinfeld doubles of bosonizations of finite-dimensional
Nichols algebras B.V / over dihedral groups Dm of order 2m with m D 4t � 12. The
Hopf algebras D.V;Dm/ might be considered as analogs of small quantum groups but
with non-abelian torus. This election is based on the classification result in [12] of all
finite-dimensional Nichols algebras over Dm. In particular, V belongs to an infinite family
of reducible Yetter–Drinfeld modules over Dm and B.V / '

V
V .

The small quantum groups or Frobenius–Lusztig kernels uq.g/ are finite-dimensional
quotients of quantum universal enveloping algebras Uq.g/ at a root of unity q for g a
semisimple complex Lie algebra [19], with some restrictions on the order ` of q depend-
ing on the type of g. As it is well known, Uq.g/ can be described as a quotient of the
Drinfeld double of the quantum group Uq.b/ associated with a standard Borel subalgebra
b of g. Consequently, uq.g/ can also be described as a quotient of the Drinfeld double
of the small quantum group uq.b/. The latter is a pointed Hopf algebra over the abelian
group Zn

`
with n D rk g. As such, it is isomorphic to the smash product or bosonization

uq.b/ ' uq.n/#CZn
`

and uq.n/ is a Nichols algebra of diagonal type [1, 6, 25]. In fact,
as a consequence of the classification theorem due to Andruskiewitsch and Schneider [7],
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under mild conditions on the order of the groups, all complex finite-dimensional pointed
Hopf algebras over abelian groups are variations of uq.b/. In these notes, we consider
objects analogous to the small quantum groups uq.b/ but containing a non-abelian torus.
These pointed Hopf algebras are given by bosonizations of finite-dimensional Nichols
algebras over the infinite family of dihedral groups Dm classified in [12]. These Nichols
algebras actually turn out to be exterior algebras over semisimple objects in the braided
category Dm

Dm
YD . See Section 4 for more details.

More generally, one may consider the Drinfeld double D.V;H/ WD D.B.V /#H/ of
the bosonization of a finite-dimensional Nichols algebra B.V / over a finite-dimensional
Hopf algebraH . This kind of generalized small quantum group admits a triangular decom-
position B.V / ˝D.H/ ˝ B. xV / in the sense of Holmes and Nakano [9, 16]. Thus, as
in the classical context, the simple modules can be obtained as quotients of generaliza-
tions of Verma modules and consequently are classified by their highest-weights. Here,
the weights are the simple representations of the Drinfeld double D.H/, which plays the
role of the Cartan subalgebra. In case H D k� is a group algebra of an abelian group,
the weights are one-dimensional and there are several results known, see for example [3,
10, 15, 17, 18]. However, in case � is not an abelian group, the weights are not necessar-
ily one-dimensional and the computations turn out to be more involved. In this case, the
description of the simple modules is only known for B.V /D E3 being the Fomin–Kirillov
algebra over the symmetric group S3 [21]. It is worth pointing out that the category of
graded modules can be endowed with an structure of highest-weight category when H is
semisimple.

In conclusion, with the classification of the irreducible representations at hand, the
central problem to address is to compute their characters, i.e. their weight decomposi-
tion. Our main contribution is the solution to this problem for small quantum groups at
the dihedral groups Dm, see Theorem 5.2. On the way, we develop new techniques and
provide results that can be applied to Nichols algebras over any Hopf algebra.

Specifically, we develop a recursive process based on different triangular decompos-
itions and bosonizations when V is reducible: If V D U ˚W , then the Nichols algebra
B.V / can be described as a braided bosonization B.Z/#B.U / for certain module Z
associated with the adjoint action of U on W , and

B.V /#H ' B.Z/#
�
B.U /#H

�
as Hopf algebras, see [2, 5, 14]. In this situation, we construct first the simple modules of
D.U;H/ D D.B.U /#H/ from the simple D.H/-modules – the weights – and then use
the same proceeding to construct those of D.V;H/ from the former. To use this tool, we
need first to prove some technical results on composition of certain functors that assure
that our recursive process gives the desired answer.

We would like to emphasize other two new results which might help to describe the
simple modules of generalized small quantum groups. First, it is known that the simple
modules can also be obtained as the socle of the Verma modules [21, Theorem 2]; we
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Figure 1. The Verma module MV
H
.�/. The (big) dots represent their (highest-)weights. The shadow

regions indicate submodules generated by highest-weights. In particular, the region on the bottom
is the socle SV

H
.�/ which is generated by the highest-weight of minimum degree. The white region

on the top depicts its unique simple quotient LV
H
.�/.

show in Corollary 3.6 that the socle of a Verma module is generated by its highest-weight
of minimum degree, see Figure 1. Second, a simple D.V;H/-module is said to be rigid
if it is also simple as D.H/-module; we prove in Theorem 3.8 that the tensor product
between a simple module and a rigid simple module is semisimple.

As the category D.V;Dm/M is non-semisimple, this is a first step towards a complete
description of it. Nevertheless, taking into account that the main results needed lots of
computations, we prefer to present the result on simple modules first and leave the study
of the indecomposable modules, tensor products and extensions for future work. Finally,
we point out that the description of the simple modules over D.V; H/ can also be seen
as a first step for finding new finite-dimensional Hopf algebras by using the generalized
lifting method, see for instance [2].

The paper is mostly self-contained and includes figures to lighten the reading. It is
organized as follows. In the preliminaries we collect definitions, notation and basic facts
that are used along the paper. In Section 3 we recall the general framework of Hopf
algebras with triangular decomposition and present the new results mentioned above, cf.
Corollary 3.6 and Theorems 3.8 and 3.11. In Section 4 we summarize some facts about
the category of D.Dm/-modules. We list the simple D.Dm/-modules and compute some
tensor products between them. Dealing with these tensor products is one of the main issues
when the corresponding weights are not one-dimensional. We also recall the classification
due to [12] of the finite-dimensional Nichols algebras B.V / over Dm, cf. Theorem 4.5. We
fix a lighter notation to work with their Drinfeld doubles D.V;Dm/ in the last section and
characterize those which are spherical, see Theorem 4.8. Finally, we compute in Section 5
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the weight decomposition of the simple D.V;Dm/-modules for all V in the classification
of [12], see Theorem 5.2; we first consider the case when V is simple in Section 5.1, and
then prove the recursive step in Section 5.2.

2. Preliminaries

In this section we introduce notation and recall some basic results that are needed along
the paper.

2.1. Conventions

We work over an algebraically closed field k of characteristic zero. All vector spaces are
considered over k and˝D˝k. For n2N, we denote by Zn the ring of integers module n.
We use the same letter to indicate an integer and its class in Zn. Through the work graded
means Z-graded. Let ND

L
n2Z Nn be a graded vector space. For i 2Z, the shift NŒi � of N

is the same vector space N but with shifted grading, where NŒi �n D Nn�i as homogeneous
component of degree n.

We work with Hopf algebrasH over k. As usual, we denote the comultiplication by�,
the antipode by � and the counit by ". The comultiplication is written using Sweedler’s
sigma notation without the summation symbol, i.e.,

�.h/ D h.1/ ˝ h.2/ for all h 2 H:

Analogously, for a left H -comodule .V; �/ we write �.v/ D v.�1/ ˝ v.0/ 2 H ˝ V for
all v 2 V to denote its coaction. We refer to [24] for basic and well-known results in the
theory.

Throughout these notes, we make use of the triangular decomposition associated with
finite-dimensional graded algebras as introduced by Holmes and Nakano [16]. Here we
apply it to Drinfeld doubles of finite-dimensional Hopf algebras. A graded algebra

A D
M
n2Z

An

admits a triangular decomposition if there exist graded subalgebras A�, T and AC such
that the multiplication m W A� ˝ T ˝ AC ! A gives a linear isomorphism and

(td1) A˙ �
L
n2Z˙

An and T � A0;

(td2) .A˙/0 D k;

(td3) B˙ WD A˙T D TA˙.

In our situation, this coincides with [9, Definition 3.1] as T is a split k-algebra because
of our assumptions on k. We denote by AM the category of finite-dimensional left A-
modules and by AG the category of the graded ones with morphisms preserving the
grading. We write AC to refer to either one of these categories. We denote by IrrAC a
complete set of non-isomorphic simple objects in AC .
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3. The general framework

We outline in this section the general framework of our study. Eventually, we will be more
explicit in the successive subsections according to our convenience. For more details we
refer the reader to [6, 9, 27].

3.1. Drinfeld doubles of bosonization of Nichols algebras

Fix H a finite-dimensional Hopf algebra.

3.1.1. Nichols algebras. A left Yetter–Drinfeld module overH is a leftH -module .V; �/
and a left H -comodule .V; �/ that satisfies the compatibility condition

�.h � v/ D h.1/v.�1/�.h.3//˝ h.2/ � v.0/ for all h 2 H; v 2 V:

The finite-dimensional left Yetter–Drinfeld modules over H together with morphisms of
left H -modules and left H -comodules form a braided rigid tensor category denoted by
H
HYD . The braiding is given by cV;W .v ˝ w/ D v.�1/ � w ˝ v.0/ for all v 2 V , w 2 W
with V , W objects in HHYD .

Let V 2 HHYD . Then, the tensor algebra T .V / is a graded braided Hopf algebra in
H
HYD . Roughly speaking, it satisfies the axioms of a Hopf algebra but the structural maps
are morphism in the category. For instance, its comultiplication is determined by setting
�.v/ D v ˝ 1C 1˝ v for all v 2 V .

The Nichols algebra B.V / D
L
n�0 Bn.V / of V is the graded braided Hopf algebra

in H
HYD defined by the quotient B.V / D T .V /=J.V /, where J.V / is the largest Hopf

ideal of T .V / generated as an ideal by homogeneous elements of degree greater than or
equal to 2. By definition, we have that B0.V /Dk and B1.V /D V . In case B.V / is finite-
dimensional, we denote by ntop its maximum degree. It is well known that �V WDBntop.V /

is one-dimensional (in fact, B.V / satisfies the Poincaré duality); in particular, it is a simple
H -module and H -comodule. A fixed linear generator vtop 2 Bntop.V / is usually called a
volume element. We refer to [1] for more details on Nichols algebras.

3.1.2. Bosonization. The bosonization of B.V / over H is a usual Hopf algebra whose
underlying vector space is

B.V /#H WD B.V /˝H

and it is endowed with a Hopf algebra structure which is a sort of semidirect product. It is
generated by V and H as an algebra, whereas its multiplication and comultiplication are
completely determined by

hv D .h.1/ � v/#h.2/ and �.v/ D v ˝ 1C v.�1/ ˝ v.0/

for all v 2 V and h 2 H . In particular, H D 1#H is a Hopf subalgebra and B.V / D

B.V /#1 is a subalgebra which coincides with the subalgebra of left coinvariants associ-
ated with the projection B.V /#H ! H given by �.b#h/ D ".b/h for all b 2 B.V / and
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h 2H . Note that the adjoint action ofH on V coincides with the action as Yetter–Drinfeld
module. That is, for all h 2 H and v 2 V we have that

ad.h/.v/ D h.1/v�.h.2// D .h.1/ � v/#h.2/�.h.3// D h � v:

3.1.3. Drinfeld double. The Drinfeld double of H is the Hopf algebra defined on the
vector space

D.H/ WD H ˝H�

in such a way that H D H ˝ 1 and H� op D 1 ˝H� op are Hopf subalgebras, and the
elements h 2 H and f 2 H� obey the multiplication rule

f h D hf.1/; h.1/i
˝
f.3/; �.h.3//

˛
h.2/f.2/:

By convention we write hf D h˝ f for all h 2 H , f 2 H�, cf. [20, Theorem 7.1.1].
The Drinfeld double D.H/ is a quasitriangular Hopf algebra with R-matrix given by

R D
P
i fi ˝ hi 2 D.H/˝D.H/, where ¹hiº � H and ¹fiº � H� are dual bases of

H and H�, respectively. Also, it holds that R�1 D
P
i �.fi / ˝ hi . Thus, the category

D.H/M of D.H/-modules is braided with braiding

cM;N .m˝ n/ D
X
i

.hi � n/˝ .fi �m/

for allm2M , n2N withM;N 2D.H/M. As the braiding is invertible, one may consider
also D.H/M as braided category with braiding c�1.

It is possible to relate the categories HHYD , D.H/M and D.H/

D.H/
YD by means of the

following functors:

H
HYD

F //
�

D.H/
M; c

� FR // D.H/

D.H/
YD

H� op

H� op YD
xF //

�
D.H/

M; c�1
� FR�1

66

Explicitly, F is the braided equivalence which transforms M 2 H
HYD into a D.H/-

module with the action
.hf / �m D hf;m.�1/ih �m.0/;

for all h 2 H , f 2 H� and m 2 M . Analogously, xF transforms M 2 H
� op

H� op YD into a
D.H/-module with the action

.hf / �m D
˝
.f �m/.�1/; �.h/

˛
.f �m/.0/:

The functors FR and FR�1 are both fully faithful and are defined as follows: For
M 2 D.H/M, the object FR.M/ (resp. FR�1.M/) coincides with M as D.H/-module,
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whereas the D.H/-coaction is provided by the action of theR-matrixR (resp.R�1) given
by

m.�1/ ˝m.0/ D
X
i

hi ˝ .fi �m/
�

resp.
X
i

�.fi /˝ .hi �m/
�

(3.1)

for all m 2M .
Note that the braidings of V and FR ı F.V /D V coincide as linear maps for any V 2

H
HYD . This implies that the Nichols algebras B.V / and B.FR ıF.V // are isomorphic as
braided Hopf algebras [26]. In particular, they are isomorphic as algebras and coalgebras.
In the sequel, we identify both Nichols algebras and consider B.V / 2

D.H/

D.H/
YD .

Let V � be the D.H/-module dual to V . We define

xV D FR�1.V
�/ 2

D.H/

D.H/
YD :

As above, the Nichols algebras B. xV / in D.H/

D.H/
YD and B.V �/ in .D.H/M; c�1/ are

isomorphic as braided Hopf algebras. Besides, there is an isomorphism of D.H/-module
algebras

B. xV / ' B
�
FR.V

�/
�
; (3.2)

where the algebra on the right-hand side is the Nichols algebra of FR.V �/ in D.H/

D.H/
YD , or

equivalently the Nichols algebra of V � in .D.H/M; c/. This follows from [5, Lemma 1.11],
see also [27, (4.9)].

Actually, one may consider V � 2 H
� op

H� op YD with action and coaction defined by

hf � ˛; xi D
˝
f; ��1.x.�1//

˛
h˛; x.0/i and h˛; h � xi D h˛.�1/; hih˛.0/; xi

for all f 2 H�op , h 2 H , x 2 V and ˛ 2 V �. Then xF .V �/ is the dual object of V as
D.H/-module and hence

xV D FR�1 ı xF .V
�/:

The Nichols algebras B. xV / and B.V / in D.H/

D.H/
YD play a central role in the rest of

the paper. In case they are finite-dimensional, they are related by the fact that there is an
isomorphism of Hopf algebras�

B.V /#H
�� op
' B. xV /#H� op

(adapt the proof of [21, Lemma 5]).

3.1.4. A generalized quantum group. From now on, we denote by D.V;H/ the Drin-
feld double of B.V /#H with B.V / a finite-dimensional Nichols algebra in H

HYD . We
describe its Hopf algebra structure following [27, Lemma 4.3].

From the very definition of the Drinfeld double, it is possible to show that

D.V;H/ ' B.V /˝H ˝
�
B.V /˝H

��
' B.V /˝H ˝B. xV /˝H�
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as vector spaces. Via this isomorphism, we may assume that D.V;H/ is generated as an
algebra by the elements of V , xV , H and H�. Henceforth, the Hopf algebra structure of
D.V;H/ is completely determined by the following features:

(a) The subalgebra generated by H and H� is a Hopf subalgebra isomorphic to
D.H/.

(b) The subalgebra generated by V (resp. xV ) and D.H/ is isomorphic to the boson-
ization

D�0.V;H/ WD B.V /#D.H/
�
resp. D�0.V;H/ WD B. xV /#D.H/

�
:

In particular, both D�0.V;H/ and D�0.V;H/ are Hopf subalgebras.

(c) If v 2 V and ˛ 2 xV , then

˛v D .˛.�1/ � v/˛.0/ Cˆ˛;v; (3.3)

where ˆ˛;v D h˛; vi � ˛.�1/v.�1/h˛.0/; v.0/i 2 D.H/1.

It turns out that D.V;H/ is a graded Hopf algebra with grading determined by degV D
�1, deg xV D 1, and deg D.H/ D 0. Moreover, there is an isomorphism of graded vector
spaces induced by the multiplication:

D.V;H/ ' B.V /˝D.H/˝B. xV /:

In conclusion, D.V;H/ admits a triangular decomposition with T DD.H/,A� DB.V /

and AC D B. xV /.

3.2. Simple D.V; H /-modules

In this subsection we explain how to compute the simple modules of D.V;H/ by exploit-
ing its triangular decomposition. For more details we refer to [9, 21, 27].

We begin by constructing the proper standard modules which are the images of the
composition of the functors

MVH W D.H/C
InfD

�0.V;H/
D.H/

��������! D�0.V;H/C
IndD.V;H/

D�0.V;H/

��������! D.V;H/C ;

where InfD�0.V;H/

D.H/
is given by the canonical (graded) Hopf algebra epimorphism

D�0.V;H/ � D.H/

and IndD.V;H/

D�0.V;H/
by the inclusion D�0.V;H/ ,! D.V;H/. More explicitly, the proper

standard module of N 2 D.H/C is

MVH .N / D D.H; V /˝D�0.V;H/ InfD�0.V;H/

D.H/
.N / D D.H; V /˝D�0.V;H/ N:

Notice that xV acts by zero on N D 1˝N � MVH .N /.

1This formula is a revised version of [27, (4.5)], see equation (4.5) of arXiv:1808.03799v2.

https://arxiv.org/abs/1808.03799v2
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Composing MVH with the endofunctor given by taking the head, one has the functor

D.H/C
LVH
�! D.V;H/C ; LVH .N / D top

�
MVH .N /

�
;

whose image is the maximal semisimple quotient of MVH .N /. Note that both MVH and LVH
commute with the shift-of-grading functors.

The proper standard modules of simple objects in D.H/C will play a special role in the
classification of those in D.V;H/C . For that reason, we introduce a particular terminology.
We call weights the elements in Irr D.H/C . If � 2 Irr D.H/C is a subobject of N 2D.V;H/C

such that xV � � D 0, we say that � is a highest-weight (of N). An object in D.V;H/C

generated by a highest-weight is called a highest-weight module. We define lowest-weight
(modules) analogously using V instead of xV . Given �2 Irr D.H/C , we call Verma module2

the proper standard module

MVH .�/ D D.V;H/˝D�0.V;H/ �: (3.4)

Thus, any highest-weight module is a quotient of a Verma module.
A classification of the simple modules over algebras with triangular decomposition is

well known, see for instance [9, 16]. In the case of D.V;H/ this is given as follows.

Theorem 3.1. Keeping the notation above, we have:

(a) LVH .�/ is a simple highest-weight module for all � 2 Irr D.H/C .

(b) Any simple object in D.V;H/C is isomorphic to LVH .�/ for a unique weight
� 2 Irr D.V;H/C .

We list some general remarks about simple modules that will be useful later.

Remark 3.2. If N is a highest-weight module of weight �, then N is a quotient of MVH .�/
and the head of N is isomorphic to LVH .�/. This is a direct consequence of the description
above.

Remark 3.3. Let B and xB be linear bases of V and xV , respectively. As the elements of V
and xV act nilpotently, it holds that LVH .�/D �, with V and xV acting trivially, if and only if
ˆ˛;v acts by zero on � for all v 2 B and ˛ 2 xB . These simple modules are called rigid [9].

Remark 3.4. Let vtop 2 Bntop.V / and ˛top 2 Bntop. xV / be non-zero homogeneous ele-
ments; note the maximum degree of these Nichols algebras is the same. By the triangular
decomposition of D.V;H/, there exists ‚ 2 D.H/ such that

˛topvtop �‚ 2
M
n>0

Bn.V /˝D.H/˝Bn. xV /: (3.5)

It holds that3 LVH .�/ D MVH .�/ if and only if ‚ � .1˝ m/ ¤ 0 for some m 2 �. In such
case, these Verma modules are also projective, see [27, Corollary 5.12].

2We change slightly the notation of the Verma modules with respect to [27] to put the emphasis on V
and H as this will be useful for our recursive argument for V decomposable.

3This follows from the proof of [21, Corollary 15], as it holds for any Hopf algebra H .
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3.2.1. The character of the simple modules. For any N 2 D.H/M, the proper stand-
ard module MVH .N / in the category D.V;H/M inherits the grading afforded by D.V;H/.
Explicitly,

MVH .N / D
�ntopM
kD0

�
MVH .N /

�
k

with
�
MVH .N /

�
k
D B�k.V /˝N:

It follows from [13, Proposition 3.5] that the head of MVH .N / in D.V;H/M is a graded
quotient. Moreover, LVH commutes with the grading-forgetful functors. In particular, for
any � 2 Irr D.H/M we have a decomposition

LVH .�/ D
M
n�0

LVH .�/n

making it an object in D.V;H/G .
On the other hand, since D.H/ is concentrated in degree 0, we can consider each

� 2 Irr D.H/M inside D.H/G as an object concentrated in degree 0. Thus, Irr D.H/M �Z
is in bijection with Irr D.H/G via .�; n/$ �Œn�.

Assume now H is semisimple; hence D.H/ also is. Then for each n,

LVH .�/n '
M

�2Irr D.H/M

�˚t�;n

as D.H/-modules. We call the character of LVH .�/ the graded D.H/-module

Res
�
LVH .�/

�
WD

M
n�0

�2Irr D.H/M

�Œn�˚t�;n :

This gives us good information about the simple modules as it is a complete invariant,
since Res.LVH .�// D �˚ .weights in degree < 0/.

3.2.2. The action on the Verma modules. By the paragraphs above, one immediately
realizes that to describe a simple module LVH .�/ one has to deal with the submodules of
the Verma module MVH .�/. For explicit computations, it is convenient to keep in mind the
following key facts.

(a) The action of B.V / and D.H/ on MVH .�/ is given by

z � .v ˝m/ D .zv/˝m and h � .v ˝m/ D .h.1/ � v/˝ .h.2/ �m/

for all z; v 2 B.V /, m 2 � and h 2 D.H/. In particular,

MVH .�/ ' B.V /˝ � D

ntopM
nD0

Bn.V /˝ � (3.6)

is an isomorphism and a decomposition as D.H/-modules, respectively.

(b) Let MVH .�/k D B�k.V /˝ �. Then

V MVH .�/k D MVH .�/k�1 and xV MVH .�/k � MVH .�/kC1:
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(c) To compute the action of B. xV / we use the commutation rule (3.3).

(d) The action of xV on a D.V;H/-module N is a morphism of D.H/-modules:

h.˛m/ D .h.1/ � ˛/.h.2/m/ (3.7)

for all ˛ 2 xV , m 2 N and h 2 D.H/, cf. [21, (31)].

3.2.3. The simple D.V; H /-modules as socles of the Verma modules. We introduce
now the functor

D.H/C
SVH
��! D.V;H/C ; SVH .N / D soc

�
MVH .N /

�
;

i.e. SVH .N / is the maximal semisimple submodule of MVH .N /. As in the case of the head,
it follows from [13, Proposition 3.5] that the socle of a standard module is a graded sub-
module even if N 2 D.H/M, considered as a graded module concentrated in degree 0.
Also, SVH commutes with the grading-forgetful functor and the shift-of-grading functor.

The socles of the Verma modules give us another classification of the simple modules
over D.V;H/. The next result for H being a group algebra is in [21].

Theorem 3.5. Keeping the notation above, we have:

(a) SVH .�/ is a simple lowest-weight module with lowest-weight is �V � for all
� 2 Irr D.H/C

(b) Any simple object in D.V;H/C is isomorphic to SVH .�/ for a unique weight
� 2 Irr D.V;H/C .

Proof. From Section 3.2.2 (a), we see that the socle of MV
H.�/ in D�0.V;H/C is

Bntop.V /˝ �

and this is simple and isomorphic to InfD�0.V;H/

D.H/
.�V �/. This implies (a).

For (b), we first consider the category D.V;H/M in which the number of non-
isomorphic simple modules is # Irr D.H/M by Theorem 3.1. In (a) we have found the
same number of non-isomorphic simple modules as tensoring by �V gives a bijection on
Irr D.H/M. Therefore any simple module in D.V;H/M is isomorphic to SVH .�/ for a unique
� 2 Irr D.H/M:

Let now S 2 D.V;H/G be a simple object and F the grading-forgetful functor. Then
FS ' SVH .�/ for a unique � 2 Irr D.H/M by the above paragraph and hence

S ' SVH .�/Œn� ' SVH
�
�Œn�

�
for some n2Z; the first isomorphism is consequence of [13, Theorem 4.1]. This proves (b)
for D.V;H/G and completes the proof.

Naturally, the socle of a Verma module is isomorphic to a simple highest-weight mod-
ule. We can determine its highest-weight as follows. The next result is very useful to
compute the simple modules.
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Corollary 3.6. Let � 2 Irr D.H/C be a weight and

n D min
®
k 2 Z j there is a highest-weight � in

�
MVH .�/

�
k

¯
:

Then MVH .�/ has a unique highest-weight � in degree n and SVH .�/ ' LVH .�/Œn�.

Proof. As we mentioned, the socle of MVH .�/ is a graded submodule, then

SVH .�/ ' LVH .�/Œk�

for some homogeneous highest-weight � � .MVH .�//k . Let � � .MVH .�//j be another
homogeneous highest-weight. The submodule generated by � contains the socle. In par-
ticular, � � D.V;H/�. Also, by the triangular decomposition,

D.V;H/� D B.V /� D � C
X
i>0

Bi .V /�:

Then Section 3.2.2 (b) implies that either j > k or j D k and � D �, and the corollary
follows.

3.2.4. Example. Exterior algebras are examples of Nichols algebras. They arise when
the braiding of V is �flip, that is cV;V .v ˝ w/ D �w ˝ v for all v; w 2 V . We explain
here a general strategy that applies to exterior algebras of two-dimensional vector spaces.
In Section 3.3.1, we consider any even dimensional vector space, as the Nichols algebras
appearing in the context of the dihedral groups Dm are all exterior algebras of vector
spaces of even dimension.

Fix V 2HHYD a two-dimensional module with basis ¹vC; v�º and braiding�flip. Then

B.V / '
^
V D k˚ V ˚ k¹vtopº

with vtop D vCv�. Let � be a weight with V ˝ � semisimple and let � be the highest-
weight of minimum degree in MVH .�/, recall Corollary 3.6. We have the following three
possibilities:

• If deg� D 0, then � D � and MVH .�/ D LVH .�/ D SVH .�/ is simple projective. This
occurs when‚ acts non-trivially on �, see Remark 3.4. One can compute‚ using vtop

and ˛top D ˛C˛� where ¹˛C; ˛�º is a basis of xV .

• If deg � D �1, then Res.SVH .�// D �Œ�1� ˚ �V �Œ�2�. We depict this situation in
Figure 2. To find �, first one has to decompose V ˝ � as a direct sum of weights and
then determine which is annihilated by xV .

• If deg� D �2, then � D �V � and SVH .�/ D LVH .�V �/Œ�2� is a rigid module. To find
the rigid module, one can use Remark 3.3. For that, one should compute the four
elements ˆ˙;˙ associated with the elements v˙ and ˛˙.

3.2.5. Tensoring by rigids. We observe that any semisimple object in D.V;H/G is of the
form

LVH .M/ WD
M
i

LVH
�
�i Œni �

�
for some semisimple object M D

L
i �i Œni � in D.H/G .
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Figure 2. The big dots represent the weights of B.V / and MV
H
.�/. Their degrees are indicated on

the right. Those in the shadow region form the socle SV
H
.�/ when deg� D �1.

Proposition 3.7. Let ND
L
i�tNi be an object in D.V;H/G with t2Z. If Nt is a semisimple

D.H/-module and generates N as D.V;H/-module, then

top.N/ ' LVH .Nt /:

Proof. We have that xV � Nt D 0 by the grading assumption on N. Then there is an epi-
morphism p W MVH .Nt /! N. Let R be the Jacobson radical of MVH .Nt /, that is,

MVH .Nt /=R ' LVH .Nt /:

Then p induces a projection Np W LVH .Nt /! N=p.R/ and hence N=p.R/ is semisimple. Also,
the homogeneous component of R of degree t is zero. Then NpjNt is injective and therefore
Np so is. This implies LVH .Nt / is a direct summand of top.N/. On the other hand, top.N/ is

a semisimple quotient of MVH .Nt /. Then top.N/ is a direct summand of LVH .Nt /. Thus we
obtain the desired isomorphism.

We now prove that tensoring a simple module by a rigid module yields a semisimple
module when H is semisimple.

Theorem 3.8. Let �;� 2 D.H/M with LVH .�/D � rigid. If �˝ � is a semisimple D.H/-
module, then

LVH .�/˝ LVH .�/ ' LVH .�˝ �/ ' LVH .�˝ �/ ' LVH .�/˝ LVH .�/:

In particular, LVH .�/˝ LVH .�/ is a semisimple D.V;H/-module. Moreover, it is a direct
sum of simple rigid modules if � is also rigid.

Proof. We prove only the last isomorphism, the others follow from the fact that D.H/M

and D.V;H/M are braided categories.
We start by pointing out that, as LVH .�/˝ LVH .�/ D LVH .�/˝ � is a graded D.V;H/-

module, any simple D.V;H/-submodule LVH .�/ is a graded submodule by [13, Proposi-
tion 3.5]. Without loss of generality, we assume that � and � are concentrated in degree 0,
since the functors involved commute with the shift of grading. Then the homogeneous
components are LVH .�/n ˝ � for all n � 0; in particular, its homogeneous component of
degree 0 is �˝ �.
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We prove first that all highest-weights are in degree 0. Let LVH .�/ be a simple graded
D.V;H/-submodule of LVH .�/˝ � and assume � � LVH .�/n ˝ �. We claim that n D 0.
Indeed, we pick

P
k uk ˝ nk 2 � with ¹nkºk2K linearly independent. For ˛ 2 xV , we have

0 D ˛ �
�X

k

uk ˝ nk

�
D

X
k

�
.˛ � uk/˝ nk C .˛.�1/ � uk/˝ .˛.0/ � nk/

�
D

X
k

.˛ � uk/˝ nk I

where the first and the last equality hold because � and� are highest-weights, respectively.
Hence xV � uk D 0 for all k and therefore

xV �
�
D.H/ � uk

�
D D.H/ � . xV � uk/ D 0; for all k:

Being D.H/ �uk an graded D.H/-submodule of LVH .�/which is annihilated by the action
of xV , it must be �. In particular, uk 2 � and � is in degree n D 0.

Let �� LVH .�/˝ L
V
H .�/ be a weight in degree 0. Then it is a highest-weight. Moreover,

the D.V;H/-submodule N generated by � is isomorphic to LVH.�/. Indeed, if ND�˚i<0Ni
is not simple, there should be a highest-weight in degree < 0 which is not possible by the
paragraph above.

In conclusion, the D.V; H/-submodule generated by � ˝ � is semisimple and iso-
morphic to LVH .�˝ �/. We prove next that �˝ � actually generates the whole module

LVH .�/˝ LVH .�/

and hence LVH .�/˝ L
V
H .�/' L

V
H .�˝�/ as we wanted. For that, we fix bases ¹mj ºj2J and

¹nkºk2K of the weights � and �, respectively. Since � is rigid, we have that x � nk D 0 for
any homogeneous element x 2 B.V / of degree � 1. Also, because B.V /#H is a graded
coalgebra, for such an element x one may write its comultiplication by

�.x/ D x ˝ 1C
X
t

yt ˝ zt ;

where the elements zt are homogeneous of degree � 1 for all t . Hence, for all j 2 J and
k 2 K we have that

x � .mj ˝ nk/ D .x �mj /˝ nk C
X
t

.yt �mj /˝ .zt � nk/ D .x �mj /˝ nk :

Since LVH .�/ is generated as a D.V;H/-module by the action of B.V / on ¹mj ºj2J , our
assertion follows.

Lastly, if � is also rigid, then LVH .�˝�/ is concentrated in degree 0. This implies that
LVH .�/ D � for every weight � of �˝ � and hence � is rigid.

Remark 3.9. The hypothesis of LVH .�/ being rigid is necessary. Otherwise, the tensor
product might neither be generated in degree zero nor all its highest-weights be in degree
zero. See for instance [11, Theorem 4.1] or [22, Proposition 4.3].
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3.3. A recursive strategy for V decomposable

We assume here that V D W ˚ U is decomposable as D.H/-module with W ¤ 0 ¤ U .
This situation arises when H is the group algebra of the dihedral group Dm. In par-
ticular, B.W / and B.U / are braided graded Hopf subalgebras of B.V /. Following [2,
Section 2.3], we set

Z D adc B.U /.W / � B.V /;

where adc is the braided adjoint action of a Hopf algebra in D.H/M. Notice that W � Z.
It holds that Z is a Yetter–Drinfeld module over B.U /#H via the adjoint action and
the coaction .�B.U /#H ˝ id/ ı �B.V /#H , where �B.U /#H is the natural projection on
B.U /#H . Besides, it turns out that

B.V /#H ' B.Z/#.B.U /#H/; (3.8)

as Hopf algebras, see loc. cit. or [14, Section 8] for details and references.
Naturally, we can apply the techniques described in the previous sections to the bosoni-

zation on the right-hand side of (3.8), i.e. B.U /#H and Z playing the role of H and V ,
respectively. This gives us a new description of D.V;H/ and its simple modules in terms
of those over D.U;H/, the Drinfeld double of B.U /#H . In this sense, we have

D.Z;U;H/ WD D
�
B.Z/#

�
B.U /#H

��
' D

�
B.V /#H

�
D D.V;H/:

Namely, one may consider another Z-grading on the Drinfeld double D.Z; U;H/ given
by � degZ D deg xZ D 1 and deg D.U;H/ D 0. Then

D.Z;U;H/ ' B.Z/˝D.U;H/˝B. xZ/ (3.9)

yields a new triangular decomposition on D.V;H/. Thus, the simple D.Z; U;H/-mod-
ules can be constructed from the simple D.U;H/-modules as before. Of course, the latter
can also be described by the same proceeding. Then, we have the functors

D.H/M

MUH //

LUH

// D.U;H/M

MZ
B.U /#H

//

LZ
B.U /#H

// D.Z;U;H/M:

For instance, the Verma module associated with the simple module LUH .�/ is

MZB.U /#H
�
LUH .�/

�
D D.Z;U;H/˝D.U;H/˝B. xZ/ L

U
H .�/; (3.10)

where we consider xZ acting by zero on LUH .�/. Observe that MZ
B.U /#H .L

U
H .�// is not

necessarily isomorphic to the Verma module MVH .�/ defined in (3.4). Nevertheless, we
show that their heads are isomorphic. This allows us to construct the simple modules in a
recursive way.

Lemma 3.10. Keeping the notation above, we have MZ
B.U /#H ı M

U
H ' MVH .
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Proof. Let N be a finite-dimensional D.H/-module. Then both MZ
B.U /#H .M

U
H .N // and

MVH .N / are generated by N as D.V; H/-modules. Besides, by definition xZ and xU act
trivially on N inside MZ

B.U /#H .M
U
H .N //. Since xZ contains xW as a D.H/-submodule, it

follows that xV D xW ˚ xU also acts trivially on it. Thus, there exists a D.V; H/-module
epimorphism

�N W MVH .N / � MZB.U /#H
�
MUH .N /

�
;

which is the identity on N . By Section 3.2.2 (a) and (3.8), we have that

Res
�
MZB.U /#H

�
MUH .N /

��
' B.Z/˝B.U /˝N ' B.V /˝N ' Res

�
MVH .N /

�
;

that is both objects have the same dimension. This implies that �N is in fact an isomorph-
ism. Moreover, as �jN D idN , we see that

�Y ı MVH .f / D MZB.U /#H
�
MUH .f /

�
ı �X

for any morphism f WX! Y in D.H/M. Hence, � defines a natural isomorphism between
both functors.

Since D.Z;U;H/'D.V;H/ as Hopf algebras, we may consider the Verma module
MZ

B.U /#H .L
U
H .�// and its head LZ

B.U /#H .L
U
H .�// as graded D.V; H/-modules with the

unique grading satisfying that deg � D 0 thanks to [13]. We prove next that there is a
commutative diagram

MVH .�/ // //

����

LVH .�/

MZ
B.U /#H

�
LUH .�/

�
// // LZ

B.U /#H

�
LUH .�/

�'

whose arrows are epimorphisms of D.V;H/-modules.

Theorem 3.11. Let �2 Irr D.H/M. ThenMZ
B.U /#H .L

U
H .�// and LZ

B.U /#H .L
U
H .�// are both

highest-weight D.V;H/-modules with highest-weight �. Moreover,

LVH .�/ ' LZB.U /#H
�
LUH .�/

�
and the homogeneous components of LVH .�/ and LUH .�/ satisfy as D.H/-modules

LVH .�/n D
M

nD�i�k.jC1/
i;j;k�0

Bk
�

adc Bj .U /.W /
�
LUH .�/�i :

Proof. By definition, we know that xW � xZ and xU act by zero on � D 1˝ � inside

MZB.U /#H
�
LUH .�/

�
:
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That is, � is a highest-weight. Besides, this weight generates MZ
B.U /#H .L

U
H .�//, and hence

also LZ
B.U /#H .L

U
H .�//, as D.V;H/-module. For,

D.V;H/� D B.Z/D.U;H/B. xZ/� D B.Z/D.U;H/�

D B.Z/LUH .�/ D MZB.U /#H
�
LUH .�/

�
:

Then, by the characterization of the highest-weight modules,

MZB.U /#H
�
LUH .�/

�
and LZ

B.U /#H .L
U
H .�// are quotients of MVH .�/. Since LZ

B.U /#H .L
U
H .�// is a simple module,

we get LZ
B.U /#H .L

U
H .�// ' LVH .�/ by Remark 3.2. Finally, by looking at the associated

gradation, we deduce the second assertion.

We have an analogous result for the socle.

Proposition 3.12. Let � 2 Irr D.H/M. Then SVH .�/ ' SZ
B.U /#H .S

U
H .�// as D.V; H/-

modules.

Proof. Let �Z D BnZ .Z/ and �U D BnU .U / be the homogeneous components of max-
imum degree of B.Z/ and B.U /, respectively. These are one-dimensional and simple
as modules over D.U; H/ and D.H/, respectively, recall Section 3.1.1. In particular,
U � �Z D 0. Moreover, �Z�U ' �V as D.H/-modules by (3.8).

Using the triangular decomposition (3.9), Theorem 3.5 says that SZ
B.U /#H .S

U
H .�// is

the unique simple lowest-weight D.Z; U;H/-module with lowest-weight �Z ˝ SUH .�/.
That is, �Z ˝ SUH .�/ is a simple D.U; H/-submodule generating SZ

B.U /#H .S
U
H .�// and

Z � .�Z ˝ SUH .�// D 0. In particular, W � .�Z ˝ SUH .�// D 0.
Also by Theorem 3.5, SUH .�/ is the unique simple lowest-weight D.U; H/�module

with lowest-weight �U�. That is, �U� is a simple D.H/-submodule generating SUH .�/
and U � �U� D 0. Hence U � .�Z ˝ �U�/ D 0. In fact, if u 2 U , then

u � .�Z ˝ �U�/ D u � �Z ˝ �U�C u.�1/ � �Z ˝ u.0/ � .�U�/ D 0I

for the first equality recall (3.6) and the second one follows from the first paragraph.
In conclusion, SZ

B.U /#H .S
U
H .�// is a simple D.V;H/-module with lowest-weight

�Z ˝ �U� ' �V �:

Again by Theorem 3.5 it should be isomorphic to SVH .�/ as desired.

We stress that Theorems 3.1 and 3.5, Corollary 3.6, Remarks 3.2, 3.3 and 3.4 and
Section 3.2.2 also apply to LZ

B.U /#H .L
U
H .�// and MZ

B.U /#H .L
U
H .�//, since one may take

B.U /#H and Z to play the role of H and V , respectively. We will make use of these
remarks under these generalized hypotheses when we consider Nichols algebras over the
dihedral groups Dm. In such a case we refer to them as the recursive version.
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Figure 3. The dots represent the simple D.U; H/-summands of B.W / and MW
B.U /#H .L

U
H
.�//.

Their degrees are indicated on the right. Those in the shadow region form its socle in the case that
deg LU

H
.�/ D �1.

Remark 3.13. The coaction .�B.U /#H ˝ id/ ı�B.V /#H and the adjoint action of H on
W � Z coincide with its structure in H

HYD . Moreover, if cU;W ı cW;U D idW˝U , then
Z D W and hence B.Z/ D B.W / [2, Remark 2.5]. In this case, we have

B.V /#H ' B.W /#
�
B.U /#H

�
:

On the other hand, if W is a simple D.H/-module, then Z ' LUH .W / by [2, Proposi-
tion 2.10]. Thus, W is a rigid D.U;H/-module if cU;W ı cW;U D idW˝U .

Remark 3.14. Assume that ZDW DLUH .W / is simple and rigid; e.g. when cU;W ı cW;U
D idW˝U by Remark 3.13. The Nichols algebras appearing in the present work satisfy this
property. By applying Theorem 3.8, we have that W ˝k is a direct sum of simples rigid
modules and hence so is B.W / D B.Z/. Therefore MW

B.U /#H .L
U
H .�// and its head are

semisimple as D.U;H/-modules for any � 2 Irr D.H/M. The homogeneous components
of its head satisfy for all n � 0 that

LVH .�/n D
�nM
kD0

Bk.W /LUH .�/nCk :

Finally, we point out that the Hopf subalgebra generated by W and H is D.W;H/.

3.3.1. A recursive example. Keep the notation and the assumptions of Remark 3.14.
Assume further thatW 2 HHYD is a simple two-dimensional module with basis ¹wC;w�º
and braiding �flip. For instance, these hypotheses are satisfied by exterior algebras of
vector spaces of even dimension; such is the case for H D kDm. Then we have that
LUH .W / D W is rigid and B.W / D

V
W D k˚W ˚ k¹wCw�º.

Let � 2 Irr D.H/M be such that W ˝ � is semisimple. We explain below how to
describe the socle of MW

B.U /#H .L
U
H .�// using the recursive version of Corollary 3.6. See

Figure 3.
First, we observe thatW ˝ LUH .�/'L

U
H .W ˝�/ by Theorem 3.8. Hence, as D.U;H/-

module, MW
B.U /#H .L

U
H .�// ' LUH .�/˚ LUH .W ˝ �/˚ LUH .�W �/ is semisimple. Pick the
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homogeneous simple D.U;H/-module LUH .�/ of MW
B.U /#H .L

U
H .�// of minimum degree

such that xW � LUH .�/ D 0. Note that it is enough to check for which homogeneous sum-
mand LUH .�/ it holds that xW ��D 0, since the Verma module is semisimple and the action
of xW is a morphism of D.U; H/-modules, by the recursive version of Section 3.2.2. A
similar reasoning can be made using the recursive versions of Remarks 3.3 and 3.4. That
is, it is enough to check that the elements ˆ act trivially on � (resp., ‚ acts non trivially
on �) to conclude that they also act trivially (resp., non-trivially) on all LUH .�/. Thus, as in
Section 3.2.4, we have three possibilities:

• If deg LUH .�/D 0, then �D � and LVH .�/D MW
B.U /#H .L

U
H .�// is simple and projective

as D.V;H/-module.

• If degLUH .�/D�1, then the socle of MW
B.U /#H .L

U
H .�// decomposes into LUH .�/Œ�1�˚

LUH .�W �/Œ�2� as D.U; H/-module. To find �, one has to decompose W ˝ � as a
direct sum of weights and then determine the one that is annihilated by xW . In this
case, one may deduce that W ˝ � D �˚ x� for some weight x� and hence

LVH .�/ D LUH .�/˚ LUH .x�/Œ�1�

as D.U;H/-modules. We leave the computation for the interested reader.

• If deg LUH .�/ D �2, then LUH .�W �/Œ�2� is the socle of MW
B.U /#H .L

U
H .�// and hence it

is a simple D.V;H/-module over which W and xW act trivially.

4. The dihedral groups framework
From now on, we fix a natural number m � 12 divisible by 4 and an m-th primitive root
of unity !. We also set n D m

2
.

The dihedral group of order 2m is presented by generators and relations by

Dm D hx; y j x
2; ym; xyxyi:

It has n C 3 conjugacy classes: Oe D ¹eº with e the identity, Oyn D ¹y
nº, Ox D

¹xyj W j evenº, Oxy D ¹xy
j W j oddº and Oyi D ¹y

i ; y�iº for 1 � i � n � 1.
The algebra of functions kDm is the dual Hopf algebra of kDm. We denote by ¹ıtºt2Dm

the dual basis of the basis of kDm given by the group-like elements, i.e. ıt .s/ D ıt;s for
all t; s 2 Dm. The comultiplication and the counit of these elements are

�.ıt / D
X
s2Dm

ıs ˝ ıs�1t and ".ıt / D ıt;e for all t 2 Dm;

respectively.
We denote by DDm the Drinfeld double of kDm. Since kDm is a commutative algebra,

kDm D .kDm/op and consequently kDm and kDm are Hopf subalgebras of DDm. Thus,
the algebra structure of DDm is completely determined by the equality

ıtst�1 t D tıs for all s; t 2 Dm:

In this case, the R-matrix reads R D
P
t2Dm

ıt ˝ t 2 DDm ˝DDm.
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4.1. The weights of DDm

It is well known that the simple modules over the Drinfeld double of a group algebra are
classified by the conjugacy classes of the group and irreducible representations of their
centralizers, cf. [4] and references therein. Namely, for g 2Dm, write Og for its conjugacy
class and Cg for its centralizer in Dm. Let .U; %/ be an irreducible representation of Cg .
The kDm-module induced by .U; %/,

M.g; %/ D IndDm
Cg
U D kDm ˝kCg U;

is a DDm-module with the kDm -action defined by

f � .t ˝kCg u/ D hf; tgt
�1
it ˝kCg u; for all f 2 kDm , t 2 Dm and u 2 U :

Then the set ƒ consisting of the modules M.g; %/’s is a set of representative of simple
DDm-modules up to isomorphism, that is

ƒ D Irr DDmM:

It is worth noting that a kDm -action on a vector space V is the same as a Dm-grading. In
this sense, a left DDm-module V (or equivalently a left Yetter–Drinfeld module over Dm)
is a kDm-module with a Dm-grading that is compatible with the conjugation in Dm. In our
example, we have that U is concentrated in degree g and the Dm-degree of t ˝kCg u in
M.g;%/ is tgt�1. The action of f 2kDm is performed via the evaluation on the degree. We
will denote by MŒs� the homogeneous component of degree s 2 Dm of a DDm-module.
Although this notation coincides with the shift of a grading, we believe that this would not
confuse the reader since in the latter case s is an integer and here is an element of Dm.

In the following we recall the description of the simple DDm-modules according to
the set of conjugacy classes. We present them by fixing a basis and by describing the action
of x, y and the Dm-grading. We use symbols like jwi to denote elements of a particular
basis for each simple module. For more details, see [12].

4.1.1. The modules M.e; %/. Let e be the identity element in Dm. Since Ce D Dm, we
use the simple representations of Dm to describe the simple DDm-modules. According
to the amount of conjugacy classes of Dm, these are 4 one-dimensional, say �1, �2, �3,
�4, and n � 1 two-dimensional, which we denote by �`, 1 � ` < n. For 1 � i � 4 and
1 � ` � n � 1, the simple DDm-modules are:

F M.e; �i / D k¹jui iº with M.e; �i / DM.e; �i /Œe� and

x � ju1i D ju1i; y � ju1i D ju1iI

x � ju2i D �ju2i; y � ju2i D ju2iI

x � ju3i D ju3i; y � ju3i D �ju3iI

x � ju4i D �ju4i; y � ju4i D �ju4i:
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F M.e; �`/ D k¹jC; `i; j�; `iº with M.e; �`/ DM.e; �`/Œe� and

x � j˙; `i D j�; `i; y � j˙; `i D !˙`j˙; `i:

Note that M.e; �1/ is given by the counit of DDm. To shorten notation, we write

j˙i D j˙; `i

when the parameter ` is clear from the context.

4.1.2. The modules M.yn;%/. SincemD 2n, the element yn is central in Dm. Therefore
the simple DDm-modules associated with yn are given by the simple representations of
Dm. As Dm-modules they coincide with the ones given in Section 4.1.1, but these are
concentrated in degree yn instead of e. Explicitly, for 1 � i � 4 and 1 � ` � n � 1 these
are

F M.yn;�i /D k¹jui ; niºwithM.yn;�i /DM.yn;�i /Œyn� andM.yn;�i /'M.e;�i /
as Dm-modules via jui ; ni 7! jui i.

F M` WDM.y
n; �`/ D k¹jC; n; `i; j�; n; `iº with M.yn; �`/ DM.yn; �`/Œyn�,

x � j˙; n; `i D j�; n; `i and y � j˙; n; `i D !˙`j˙; n; `i:

Again, we write j˙i D j˙; n; `i when both the parameters ` and n are clear from the
context. The latter are the modules M` of [12, Section 2A1].

4.1.3. The modules M.yi ;%/. Let 1� i � n� 1. The conjugacy class of yi is ¹yi ; y�iº
and its centralizer Cyi is the subgroup hyi ' Zm whose simple representations are given
by the characters

�.k/.y/ D !
k

for 0 � k � m � 1. So, the simple DDm-modules associated with yi are

F Mi;k WDM.y
i ; �.k// D k¹jC; i; ki; j�; i; kiº with j˙; i; ki 2Mi;k Œy

˙i �,

x � j ˙ i; ki D j�; i; ki and y � j˙; i; ki D !˙kj˙; i; ki:

Note that here the simple module is not concentrated in a single degree, in fact

dimMi;k D 2 and Mi;k DMi;k Œy
�i �˚Mi;k Œy

Ci �:

These are the modules Mi;k of [12, Section 2A2]. As before, we simply write

j˙i D j˙; i; ki

when the context allows us to simplify notation. Note that the simple modules M` can be
describe as Mn;`, where the elements are concentrated in degree

yn D y�n:

Notation 4.1. Given 1 � i � n and 0 � k �m� 1, we setMi;k DM.y
i ; �.k// for i ¤ n,

and Mn;k DM.y
n; �k/.
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x� sgn.x/s

sgn.x/s sgn.yn/t

sgn.x/s sgn.yn/t

sgn.x/s sgn.yn/t

jn� 1ijn� 2i� � � j n
2
i � � �j2ij1ij0iM0;s;t

y�

sgn.yn/t

Dm -degree x xy2 xy4 xyn xym�4 xym�2

Figure 4. The simple module M0;s;t associated with the conjugacy class of x.

4.1.4. The modules M.x; %/. The conjugacy class of x is ¹xy2j j j 2 Znº and its cent-
ralizer is given by the subgroup

hxi ˚ hyni ' Z2 ˚ Z2:

The irreducible representations are given by the characters sgns˝ sgnt , s; t 2 Z2, where

sgn.x/ D sgn.yn/ D �1

are the corresponding sgn representation of the Z2 summand. Hence, the simple DDm-
modules are

F M0;s;t WDM.x; sgns˝ sgnt / D k¹jj; 0; s; ti j j 2 Znº, see Figure 4, with

x � j0; 0; s; ti D sgns.x/j0; 0; s; ti;

x � jj; 0; s; ti D sgns.x/ sgnt .yn/jn � j; 0; s; ti; for all j ¤ 0;

y � j0; 0; s; ti D sgnt .yn/jn � 1; 0; s; ti;

y � jj; 0; s; ti D jj � 1; 0; s; ti; for all j ¤ 0;

and
jj; 0; s; ti 2M.x; sgns˝ sgnt /Œxy2j �; for all j 2 Zn:

In particular, dimM0;s;t D n and M0;s;t D
L
j2Zn

M0;s;t Œxy
2j � as Dm-graded module.

We write jj i D jj; 0; s; ti when the notation is clear from the context.

4.1.5. The modules M.xy; %/. The conjugacy class of xy is ¹xy2jC1 j j 2 Znº. Its
centralizer is the subgroup

hxyi ˚ hyni ' Z2 ˚ Z2
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x�

sgn.x/s sgn.yn/t

sgn.x/s sgn.yn/t

sgn.x/s sgn.yn/t

jn� 1ijn� 2ijn� 3i� � �j2ij1ij0iM1;s;t

y�

sgn.yn/t

Dm -degree xy xy3 xy5 xym�5 xym�3 xym�1

Figure 5. The simple module M1;s;t associated with the conjugacy class of xy.

whose simple representations are given by the characters sgns˝ sgnt , s; t 2 Z2, where

sgn.xy/ D sgn.yn/ D �1

are the corresponding sgn representation of the Z2 summand. Thus, the simple DDm-
modules are

F M1;s;t WDM.xy; sgns˝ sgnt / D k¹jj; 1; s; ti j j 2 Znº, see Figure 5, with

y � j0; 1; s; ti D sgnt .yn/jn � 1; 1; s; ti;

y � jj; 1; s; ti D jj � 1; 1; s; ti;

x � jj; 1; s; ti D sgns.xy/ sgnt .yn/jn � j � 1; 1; s; ti; for all j 2 Zn;

and
jj; 1; s; ti 2M.xy; sgns˝ sgnt /Œxy2jC1�; for all j 2 Zn:

Here, dimM1;s;t D n and M1;s;t D
L
j2Zn

M1;s;t Œxy
2jC1� as Dm-graded module. Even-

tually, we might simply write jj i D jj; 1; s; ti.

4.2. Some tensor products of weights

The category of DDm-modules is semisimple. As such, any tensor product of two weights
can be written as a direct sum of weights. In order to perform our study on simple modules
over doubles of bosonizations of Nichols algebras, which is carried out in Section 5, by
dealing with Verma modules, we need to know the direct summands of the following
products of simple DDm-modules.

In the following two lemmata, we decompose the tensor product of the simple modules
Mr;s;t with r; s; t 2 Z2 as in Sections 4.1.4 and 4.1.5 with some other families of simple
modules.
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Lemma 4.2. Let Mi;k be a simple DDm-module with 1 � i � n, 0 � k � m � 1 as in
Notation 4.1. Then

Mi;k ˝Mr;s;t 'MrCi;sC1Cıi;nt;tCk ˚MrCi;sCıi;nt;tCk ;

as DDm-modules; here we write r C i , s C 1C ıi;nt , and t C k for their classes in Z2.
Moreover, the simple submodules inside the tensor product are given by

N˙ D k¹ya � n˙ W 0 � a � n � 1º;

where n˙ D !rkj�i˝ j0i˙ jCi˝ ji i, with jni D j0i if i D n, and

NC 'MrCi;sC1Cıi;nt;tCk and N� 'MrCi;sCıi;nt;tCk :

Proof. We prove first the case i < n and r D 0, i.e. M0;s;t is as in Section 4.1.4. Let us
show that the subspacesN˙ are simple DDm-modules. The elements n˙ are eigenvectors
of yn with eigenvalue sgntCk.yn/ because

yn �
�
j˙i˝ j0i

�
D .�1/k sgnt .yn/j˙i˝ j0i

and !n D !�n D �1. Also, it is straightforward to check that

x � n˙ D � sgns.x/yi � n˙: (4.1)

This implies that
N˙ D k¹ya � n˙ W 0 � a � n � 1º

are Dm-submodules ofMi;k ˝Mr;s;t . Moreover, the elements n˙ are homogeneous of the
same degree for

deg
�
j�i˝ j0i

�
D deg j�i deg j0i D y�ix D xyi ;

deg
�
jCi˝ ji i

�
D deg jCi deg ji i D yixy2i D xyi :

Hence degya � n˙ D yaxyiy�a D xyi�2a for all 0 � a � n� 1. This implies that in fact
N˙ are DDm-modules with dimN˙ D n. Moreover, a direct check shows that they are
isomorphic to the simple DDm-modules displayed in Sections 4.1.4 and 4.1.5, depending
on the parity of i . One way to distinguish these modules is by looking at the eigenvalues
of the action of yn and x on the homogeneous component of Dm-degree x if i D 2z is
even, or the action of yn and xy on the homogeneous component of Dm-degree xy if
i D 2z C 1 is odd. In the case of N˙, these homogeneous components are spanned by
yz � n˙, respectively.

If i D 2z is even, then x � .yz � n˙/ D � sgns.x/.yz � n˙/ by (4.1). Hence

M0;s;tCk ' N� and M0;sC1;tCk ' NC:

If i D 2z C 1 is odd, then .xy/ � .yz � n˙/ D � sgns.x/.yz � n˙/ by (4.1). Hence

M1;s;tCk ' N� and M1;sC1;tCk ' NC:
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In both cases the submodules are simple and non-isomorphic. Therefore NC \N� D ¹0º
and consequently, Mi;k ˝M0;s;t D N� ˚NC 'Mi;s;tCk ˚Mi;sC1;tCk .

The strategy to prove the case i < n and r D 1 is similar. We still have that yn � n˙ D
sgntCk.yn/n˙ and, instead of (4.1), we have that x � n˙ D� sgns.xy/.yiC1 � n˙/. In this
case, both n˙ are homogeneous of degree xyiC1. For i even, we haveN� 'M1;s;tCk and
NC 'M1;sC1;tCk , meanwhile for i odd, we haveN� 'M0;s;tCk andNC 'M0;sC1;tCk .
We leave the details for the reader.

The proof for i D n follows mutatis mutandis from the paragraphs above.

We end this subsection with the following lemma.

Lemma 4.3. Let M.e; �2/ be a simple DDm-modules as in Section 4.1.1. Then

M.e; �2/˝Mr;s;t 'Mr;sC1;t ;

as DDm-modules, where we write s C 1 for its class in Z2.

Proof. Straightforward. For instance, since M.e; �2/ DM.e; �2/Œe� we have that�
M.e; �2/˝Mr;s;t

�
Œxy2jCr � DM.e; �2/˝

�
Mr;s;t Œxy

2jCr �
�

for all 0 � j � n � 1. Also, as the action on M.e; �2/ is given by x � ju2i D �ju2i and
y � ju2i D ju2i, the lemma follows easily by the definition of the action on the tensor
product.

4.3. Finite-dimensional Nichols algebras over Dihedral groups

Here we recall the classification of finite-dimensional Nichols algebras in kDm
kDm

YD , or
equivalently in DDmM. Roughly speaking, they are all given by exterior algebras of direct
sums of some families of simple DDm-modules Mi;k , recall Notation 4.1.

The classification in [12, Theorem A] is given in terms of direct sums of three families
of simple modules. To shorten notation, we present them below in just one family by
changing slightly the description.

Notation 4.4. Let 	 be the family of all finite multisets ¹.i1; k1/; : : : ; .ir ; kr /º of pairs
such that 1 � is � n, 0 � ks � m� 1 and !iskt D �1 for all 1 � s; t � r . For I 2 	, we
define

MI D

M
.i;k/2I

Mi;k :

Observe that the families 	, L and K defined in [12] fit in the description above.
Indeed, if there is a pair .n; `/ in a sequence I 2 	 and .i; k/ 2 I , then ` and k must be
odd because !n` D .�1/` D �1 D !nk D .�1/k .

Theorem 4.5. [12] Let B.M/ be a finite-dimensional Nichols algebra in DDmM. Then
M 'MI for some I 2 	 and B.M/ '

V
M .
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Remark 4.6. We stress that if V D MI D W ˚ U is decomposable, then it satisfies
Remarks 3.13 and 3.14. In particular,

B.V /#kDm ' B.W /#
�
B.U /#kDm

�
and Z D W D LUH .W /:

4.4. Drinfeld doubles of bosonizations of Nichols algebras over Dm

Here we present by generators and relations the Drinfeld double of the bosonization
of a finite-dimensional Nichols algebra over Dm by specifying the recipe given in Sec-
tion 3.1.4. For that purpose, we need to set up some notation.

Let V be a DDm-module with dim B.V / <1. We write

D.V / D D
�
B.V /#kDm

�
and xV for the dual object of V as in Section 3.1.3. By Theorem 4.5, we can fix a decom-
position V D

L
.i;k/2I Mi;k and the orthogonal decomposition

xV D
M
.i;k/2I

Mi;k :

Given a (two-dimensional) direct summandMi;k , we write vC and v� the elements of the
basis ¹jCi; j�iº given in Section 4.1.2 or Section 4.1.3, as appropriate. So, we have

x � v˙ D v�; y � v˙ D !
˙kv˙ for v˙ 2Mi;k Œy

˙i �:

Also, we denote by ˛C and ˛� the elements in Mi;k satisfying h˛�; vıi D ı�;ı where
�; ı 2 ¹C;�º. That is, ¹˛˙º and ¹v˙º are dual bases. Then the action of DDm on these
elements is determined by

x � ˛˙ D ˛�; y � ˛˙ D !
�k˛˙ for ˛˙ 2Mi;k Œy

�i �:

Thus,Mi;k 'Mi;k as DDm-modules via the assignment ˛˙ 7! v�. The DDm-coactions
defined by the functors FR and FR�1 on Mi;k and Mi;k , recall (3.1), are

.v˙/.�1/ ˝ .v˙/.0/ D y
˙i
˝ v˙ (4.2)

and

.˛˙/.�1/ ˝ .˛˙/.0/ D

m�1X
sD0

!�skıy�s ˝ ˛˙ C !
�skıy�sx ˝ ˛�:

Proposition 4.7. As an algebra, D.V / is generated by the elements of V , xV , Dm and
kDm subject to relations (4.3)–(4.9) below.

• For s; t 2 Dm and z 2 V [ xV ,

ıtst�1 t D tıs (4.3)

tz D .t � z/t; ıtz D
X
s2Dm

.ıs � z/ıs�1t : (4.4)
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• For v˙ 2Mi;k and ˛˙ 2Mi;k ,

˛CvC D �vC˛C CˆCC with ˆCC D 1 �
m�1X
sD0

!skıysy
i ; (4.5)

˛Cv� D �v�˛C CˆC� with ˆC� D �
m�1X
sD0

!�skıxysy
�i ; (4.6)

˛�vC D �vC˛� Cˆ�C with ˆ�C D �
m�1X
sD0

!skıxysy
i ; (4.7)

˛�v� D �v�˛� Cˆ�� with ˆ�� D 1 �
m�1X
sD0

!�skıysy
�i : (4.8)

• If z; w 2 V , z; w 2 xV or w 2 V and z 2 xV are in orthogonal direct summands,

zw D �wz: (4.9)

Proof. We briefly explain why these relations hold. Relation (4.3) is the commutation
rule in DDm. The commutation rules (4.4) are given by the bosonizations B.V /#DDm
and B. xV /#DDm. The relations (4.5)–(4.8) and (4.9) for generators in orthogonal direct
summands follow from (3.1) and (3.3) by using (4.2). By (3.2), B. xV / is isomorphic as
an algebra to a finite-dimensional Nichols algebra over Dm. Then it as an exterior algebra
like B.V / and hence (4.9) holds.

Later on, in the upcoming section, we describe the simple D.V /-modules using the
strategy developed in Sections 3.2 and 3.3. Among all the relations above, we use only
those involving v˙ and ˛˙. Besides, the following elements of D.V / are going to be
useful: For a fixed a summand Mi;k , we set vtop D vCv�, ˛top D ˛C˛� and define

‚ D �ˆCCˆ�� CˆC�ˆ�C 2 DDm: (4.10)

Using (4.5)–(4.8), a straightforward computation shows that these elements satisfy (3.5)
or its recursive version, as appropriate. Explicitly,

˛topvtop �‚ 2
M
n>0

Bn.W /˝D.U /˝Bn. xW /; (4.11)

where W DMi;k and V D W ˚ U , and D.U / D DDm if V D W .

4.4.1. Spherical. We finish this section by characterizing those Drinfeld doubles D.V /

which are spherical Hopf algebras. This means by [8, Definition 3.1] that D.V / has a
group-like element $ such that

�2.h/ D $h$�1 and trN.#$/ D trN.#$�1/

for all h 2 D.V /, N 2 D.V /M and # 2 EndD.V /.N/. A group-like element satisfying the
first condition is called pivot and, if it fulfills both conditions, it is called spherical. An
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involutive pivot, i.e. $2 D 1, is clearly an spherical element. The pivot is unique up to
multiplication by a central group-like element.

Theorem 4.8. The Drinfeld double D.V / is spherical if and only if V does not contain
a direct summand isomorphic to Mi;k with both i and k even. In such a case, we may
choose $ D yn�3 as the involutive spherical element.

Proof. By [23, Proposition 9], we know that the group of group-like elements of D.V /

equals Dm � ¹�1; �2; �3; �4º. Since �2 is the identity on DDm, a pivot element has to
belong to the subset ¹ynº � ¹�1; �2; �3; �4º, which consist only of involutive elements.
Then, in order to prove the statement, it is enough to analyse the existence of the pivot for
V simple.

Assume V DMi;k for some 1 � i � n and 0 � k < m. Then

�3v˙�3 D .�1/
˙iv˙; �3˛˙�3 D .�1/

�i˛˙; �2.v˙/ D �v˙;

ynv˙y
n
D .�1/˙kv˙; yn˛˙y

n
D .�1/�k˛˙; �2.˛˙/ D �˛˙;

for the generators v˙ 2 Mi;k and ˛˙ 2 Mi;k . Indeed, the formulas for the conjugation
by �3 and yn follow from (4.4). The formulas for �2 are deduced using (4.2) and the
definition of the coaction in a bosonization. Similarly, one can see that �1 is central, �2
commutes with v˙, and ˛˙ and �3�2 D �4. We deduce then that yn�3 is a pivot if i C k
is odd and that there is no pivot when i and k are even. The case i and k both odd cannot
occur because by assumption !ik D �1.

Remark 4.9. The quantum dimension of any simple module in D.V;Dm/M is zero, except
for those simple modules that are rigid.

5. Characters of simple D.V /-modules

In this section we follow the strategy summarized in Sections 3.2 and 3.3 to describe the
simple modules over D.MI / for V D MI D

L
.i;k/2I Mi;k with I as in Notation 4.4.

Recall the set of weight ƒ in Section 4.1. For � 2 ƒ, we set

LI .�/ WD LMI

kDm
.�/;

the simple highest-weight module over D.MI / associated with �. The appearance of
LI .�/ depends on certain subsets of ƒ where the weight � belongs. We present first these
subsets and then state the results.

First, for .i; k/ 2 I , we fix the partition ƒ D ƒr
i;k
[ƒ

p
i;k
[ƒo given in Table 1. The

subset ƒr
i;k

corresponds to the rigid simple modules when I D ¹.i; k/º, that is, those
weights that satisfy L.i;k/.�/ D � as D.Mi;k/-modules, see Lemma 5.4. The subset ƒp

i;k

corresponds to the simple projective modules, that is, those that satisfy

L.i;k/.�/ D M.i;k/.�/ WD MMi;k

kDm
.�/

as D.Mi;k/-modules, see Lemma 5.4.
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ƒr
i;k

ƒ
p
i;k

ƒo

M.e; �j /
j D 1; 2,
j D 3; 4 if i even j D 3; 4 if i odd

—

M.e; �`/ if !i` D 1 if !i` ¤ 1 —

M.yn; �j /
j D 1; 2 if k even,
j D 3; 4 if i C k even

j D 1; 2 if k odd,
j D 3; 4 if i C k odd

—

Mp;q if !iqCpk D 1 if !iqCpk ¤ 1 —

Mr;s;t — — all

Table 1. Partition of the sets of weights with respect to Mi;k .

The rigidity or projectivity of LI .�/ when jI j> 1 is determined by the subsets defined
below.

Definition 5.1. For each � 2 ƒ, we define

I r
� D

®
.i; k/ 2 I j � 2 ƒr

i;k

¯
and I

p
�
D
®
.i; k/ 2 I j � 2 ƒ

p
i;k

¯
:

We also set MI r
�
D
L
.i;k/2I r

�
Mi;k and MI

p
�
D
L
.i;k/2I

p
�
Mi;k .

For �2ƒnƒo, we have that MI DMI
p
�
˚MI r

�
as DDm-modules, because IDI p

�
[I r

�

and ƒr
i;k
\ ƒ

p
i;k
D ; for all .i; k/ 2 I . In particular, we are under the hypothesis of

Section 3.3, with U DMI r
�

and W DMI
p
�
.

Here is our main result which, in particular, gives the characters of the simple D.MI /-
modules. To simplify the notation, we write the associated functors

LJ D LMJ

kDm
and MKJ D MMK

B.MJ /#kDm
if MI DMJ ˚MK :

Theorem 5.2. Let � 2 ƒ and MI D
L
.i;k/2I Mi;k 2 DDmM with I 2 	. The simple

highest-weight D.MI /-modules are described as follows:

(a) If � 2 ƒ nƒo, then LI
r
�.�/ D � is rigid as D.MI r

�
/-modules and

LI .�/ ' M
I

p
�

I r
�

�
LI

r
�.�/

�
as D.MI /-modules. In particular, Res.LI .�// D B.MI

p
�
/˝ � and

dim LI .�/ D 4jI
p
�
j dim�.

(b) If � DMr;s;t 2 ƒ
o, then as graded DDm-modules,

Res
�
LI .Mr;s;t /

�
'

M
J�I

MrCiJ ;sC`JC�J ;tCkJ

�
� jJ j

�
;

where iJD
P
.i;k/2J i , kJD

P
.i;k/2J k, `JD

P
.n;`/2J ` and �JD1 if `J¤0 and

zero otherwise; iJ D kJ D `J D 0 if J D;. In particular, dim LI .Mr;s;t / D 2
jI jn.
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Proof. With the aim of giving a clear exposition, we prove in detail the case in which I
does not contain pairs .n; `/. In particular, `J D 0 and �J D 0. The other case follows
mutatis mutandis.

We proceed by induction on the cardinal of I . The case jI j D 1 is considered in
Section 5.1, see Lemmata 5.4 and 5.5. The inductive step is then proved in Section 5.2,
see Lemma 5.8 for part (a) and Lemma 5.7 for part (b).

As a direct consequence, one gets the description of the rigid and simple projective
modules over D.MI /.

Corollary 5.3. Let � 2 ƒ. Then

(a) LI .�/ D � if and only if I D I r
�

.

(b) LI .�/ D MI .�/ if and only if I D I p
�

.

5.1. The singleton case

We assume here that I D ¹.i; k/º with 1 � i � n� 1, 0 � k � m� 1 and !ik D �1. We
keep the notation of Section 4.4. In particular, V D Mi;k , v˙ and ˛˙ are the generators
of D.Mi;k/ that belong to Mi;k and its dual, respectively. The elements ˆ�;ı with �; ı 2
¹C;�º and‚ defined in (4.5)–(4.8) and (4.10) are instrumental to determine which simple
modules are rigid or projective.

Lemma 5.4. Let � 2 ƒ and LI .�/ be a simple D.Mi;k/-module. Then

(a) LI .�/ D � if and only if � 2 ƒr
i;k

.

(b) LI .�/ D MI .�/ if and only if � 2 ƒp
i;k

.

Proof. By looking at the Dm-degree, one easily sees thatˆ˙;��D 0 for � 2ƒr
i;k
[ƒ

p
i;k

,
but it is non-zero for � 2 ƒo. Besides, one may check that ˆ˙;˙� D 0 for � 2 ƒr

i;k
,

meanwhile it is non-zero for � 2 ƒp
i;k
[ ƒo. Hence (a) follows from Remark 3.3 for

V DMi;k .
Analogously, through a sheer calculation one can show that ‚� ¤ 0 for � 2 ƒp

i;k
and

‚� D 0 for � 2 ƒo. Thus, (b) follows from Remark 3.4 for V DMi;k .

For the remaining simple modules, we proceed as in Section 3.2.4.

Lemma 5.5. Let � DMr;s;t 2 ƒ
o. Then, as graded DDm-modules,

Res
�
LI .Mr;s;t /

�
'Mr;s;t Œ0�˚MrCi;s;tCk Œ�1�;

Res
�
SI .Mr;s;t /

�
'MrCi;sC1;tCk Œ�1�˚Mr;sC1;t Œ�2�:

Moreover, LI .Mr;s;t / ' MI .Mr;s;t /=SI .Mr;s;t /.

Proof. Taking into account (see Figure 6) that

B.Mi;k/ D
^
Mi;k D k˚Mi;k ˚ kvtop
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0

−1

−2

⊗"A ,B,C "A ,B,C

"A+8,B,C+:"A+8,B+1,C+:

"A ,B+1,C

k

"8,:

" (4, j2)

Figure 6. The big dots represent the weights of B.Mi;k/ and M.i;k/.Mr;s;t /. Their degrees are
indicated on the right. Those in the shadow region form the socle S.i;k/.Mr;s;t /; the others the head
L.i;k/.Mr;s;t /.

with B0.Mi;k/ D k, B1.Mi;k/ D Mi;k , B2.Mi;k/ D kvtop, and kvtop ' M.e; �2/ as
DDm-modules, we have that Res.MI .Mr;s;t // is the direct sum of four weights. Indeed,

Res
�
MI .Mr;s;t /0

�
D k˝Mr;s;t DMr;s;t ;

Res
�
MI .Mr;s;t /�1

�
DMi;k˝Mr;s;t 'MiCr;sC1;tCk˚MiCr;s;tCk by Lemma 4.2;

Res
�
MI .Mr;s;t /�2

�
D kvtop˝Mr;s;t 'M.e; �2/˝Mr;s;t 'Mr;sC1;t by Lemma 4.3:

Note that all these weights are in ƒo. Then MI .Mr;s;t / is not simple and its composition
factors are not concentrated in a single degree by Lemma 5.4, as they are not rigid and
consist of more than a weight.

We deduce then that MI .Mr;s;t / has exactly two composition factors, each of them has
to be the direct sum of two weights. One must be the socle SI .Mr;s;t / with

Res
�
SI .Mr;s;t /

�
' �˚ .kvtop ˝Mr;s;t /

as DDm-modules, where � is the unique highest-weight in degree �1 and SI .Mr;s;t / '

LI .�/Œ�1� by Corollary 3.6. The other composition factor is the head LI .Mr;s;t / with

LI .Mr;s;t / ' MI .Mr;s;t /=SI .Mr;s;t /

as D.Mi;k/-modules. Also,

Res
�
LI .Mr;s;t /

�
'Mr;s;t ˚

x�

as DDm-modules, where x� is the complement of � in degree �1.
Hence, we should determine which weight in degree �1 is annihilated by

xV DMik :

By Lemma 4.2, we know these weights are generated by

n˙ D !rkv� ˝ j0i˙ vC ˝ ji i:
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x�

M0;s;t

sgn.x/s

sgn.x/s sgn.yn/t

sgn.x/s sgn.yn/t

sgn.x/s sgn.yn/t

0� � � � � � � � � jn� 1ijn� 2iji ij n
2
ij2ij1ij0i

y�

.�1/� .�1/�

sgn.yn/t

sgn.x/s sgn.yn/tCk

sgn.x/s sgn.yn/tCk

sgn.x/s sgn.yn/tCk

M0;s;tCk �1jn� 1ijn� 2i� � �j n
2
ij i

2
ij2ij1ij0i

sgn.yn/tCk

v˙ ˛˙

x�

y�

� � � � � �

Dm -degree x xy2 xy4 xyi xyn xy2i xym�4 xym�2

Figure 7. L.i;k/.M0;s;t / over D.Mi;k/ for i even.

Using (4.5)–(4.6), we see that

˛Cn˙ D ˛C
�
!rkv� ˝ j0i˙ vC ˝ ji i

�
D �ji i˙ ji i: (5.1)

Then the action of Mik on the weight generated by n� is non-trivial and hence � must be
the weight generated by nC; that is, � DMrCi;sC1;tCk . Therefore, we have that

Res
�
SI .�/

�
'MrCi;sC1;tCk Œ�1�˚Mr;sC1;t Œ�2�

and
Res

�
LI .�/

�
'Mr;s;t Œ0�˚MrCi;s;tCk Œ�1�:

Example 5.6. In Figure 7 above, we depict the simple module LI .M0;s;t / over D.Mi;k/

for i even. The nodes jj i denote the basis elements of the DDm-direct summands M0;s;t

and M0;s;tCk of Res.LI .M0;s;t //. In each node, there should be two arrows going in and
two arrows going out, but we only draw those corresponding to j i

2
i in level �1 to make
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the diagram easy to read. Keep the notation as in the proof of Lemma 5.5, with n˙ D
v� ˝ j0i˙ vC ˝ ji i and j0i; ji i 2M0;s;t . Set

n˙ D v�j0i˙ vCji i

for the images of these elements in the quotient MI .M0;s;t /=SI .M0;s;t /. Since nC D 0,
we have that v�j0i D �vCji i as elements of degree �1. Looking at the DDm-action,
one gets that both elements equal (a non-zero scalar multiple of) j i

2
i in M0;s;tCk inside

Res.LI .M0;s;t //. This is depicted by the two arrows arriving at j i
2
i. Using (4.5) and (4.8),

one may see that ˛Cj i2i D �ji i and ˛�j i2i D j0i, respectively; these are the two arrows
leaving j i

2
i.

5.2. The recursive step

Fix a decomposition MI D
L
.i;k/2I Mi;k with jI j � 1 and keep the notation of Sec-

tion 4.4. As in the preceding subsection, we divide our analysis with respect to a partition
on the set ƒ. Here, we simply take ƒ D ƒo [ .ƒ nƒo/.

The first lemma asserts that � 2 ƒ nƒo is a rigid module over D.MI r
�
/.

Lemma 5.7. Let � 2 ƒ nƒo. Then LI
r
�.�/ ' �, that is, � is a simple D.MI r

�
/-module by

letting MI r
�

and MI r
�

act trivially.

Proof. This follows by induction on the cardinal of I r
�

, using Lemma 5.4 (a) and the
recursive version of Remark 3.3 with MI r

�
DMi;k ˚MI r

�
n.i;k/.

Let �2ƒ nƒo. Using the decompositionMI DMI
p
�
˚MI r

�
and the triangular decom-

position (3.9) associated with it, one may also consider the D.MI
p
�
; MI r

�
;Dm/-module

given by the description (3.10), this is

M
I

p
�

I r
�

�
LI

r
�.�/

�
D M

I
p
�

I r
�
.�/ D D.MI

p
�
;MI r

�
;Dm/˝D.MI r

�
;Dm/˝B.M

I
p
�
/ �:

Then, M
I

p
�

I r
�
.�/ admits a simple quotient L

I
p
�

I r
�
.�/ which is isomorphic to LI .�/ by The-

orem 3.11. In particular, there exists an epimorphism of D.MI /-modules

M
I

p
�

I r
�
.�/ � LI .�/: (5.2)

One could use the recursive version of Remark 3.4 to prove that it is actually an iso-
morphism, by showing that M

I
p
�

I r
�
.�/ D L

I
p
�

I r
�
.�/ is simple. To do so, it would be enough to

compute the element ‚ for MI
p
�
. To avoid the long computation, we prove the simplicity

of M
I

p
�

I r
�
.�/ by induction on jI p

�
j, using the ‚ already computed in the singleton case.

Lemma 5.8. Let � 2 ƒ n ƒo. Then LI .�/ ' M
I

p
�

I r
�
.�/ as D.MI /-modules. In particular,

LI .�/ ' B.MI
p
�
/˝DDm � as B.MI

p
�
/#DDm-modules.
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Proof. We proceed by induction on the cardinal jI p
�
j. If I p

�
D ;, this is Lemma 5.7.

Suppose jI p
�
j � 1. Let .i; k/ 2 I p

�
and set J D I n ¹.i; k/º. If J D ;, then

I D
®
.i; k/

¯
D I

p
�
;

so MI
p
�.�/ ' MI .�/, and by Lemma 5.4 (b) it follows that MI

p
�.�/ D LI .�/. Hence, we

may assume that J ¤ ;. Since jJ p
�
j < jI

p
�
j, by the inductive hypothesis we have that

LJ .�/ ' M
J

p
�

J r
�
.�/ D M

J
p
�

J r
�

�
LJ

r
�.�/

�
D D.MJ ;Dm/˝D.MJ r

�
;Dm/˝B.M

J
p
�
/ �:

Consider the generators v˙ 2Mi;k and ˛˙ 2Mi;k of D.MI ;Dm/ defined as in Sec-
tion 4.4. Then, the commuting relations (4.5)–(4.8) hold in D.MI /, and we may consider
the corresponding element ‚ as in (4.10) satisfying (4.11).

Furthermore, the action of ‚ on LJ .�/ is non-trivial because, by the proof of Lemma
5.4 (b), the action of ‚ on � � LJ .�/ is not so. Then, by Theorem 3.11 and the recursive
version of Remark 3.4 with W DMi;k and U DMJ , we have that

LI .�/ ' L.i;k/J

�
LJ .�/

�
' M.i;k/J

�
LJ .�/

�
' M.i;k/

J
p
�

�
MJ

p
� .�/

�
' MI

p
�.�/;

where the last isomorphism follows by Lemma 3.10.

The following lemma gives the description of LI .�/ for � 2 ƒo. With it, we finish the
proof of Theorem 5.2. Its proof also relies on the recursive argument in Section 3.3. More
explicitly, this fits in the situation of Remark 3.14 and Section 3.3.1.

Lemma 5.9. Let � DMr;s;t 2 ƒ
o. Then, as graded DDm-modules

Res
�
LI .�/

�
'

M
J�I

MrCiJ ;s;tCkJ

�
� jJ j

�
;

where iJ D
P
.i;k/2J i and kJ D

P
.i;k/2J k, with iJ D 0 D kJ if J D ;.

Proof. We proceed by induction on jI j. If jI j D 1, this is Lemma 5.5.
Assume now I D ¹.i; k/º [ E, then MI D Mi;k ˚ME . Following the strategy on

Section 3.3.1, taking U D ME and W D Mi:k , we describe LI .�/ as a quotient of the
induced module

M.i;k/E

�
LE .�/

�
D M.i;k/

B.ME /#kDm

�
LE .�/

�
D D.Mi;k ˚ME /˝D.ME /˝B.Mi;k/

LE .�/:

Moreover, by the recursive version of (3.6), we have an isomorphism of D.ME /-modules
(here Res is the restriction functor to D.ME /)

Res
�
M.i;k/E

�
LE .�/

��
'

2M
jD0

Bj .Mi;k/˝ LE .�/: (5.3)

We first show that LI .�/ is not isomorphic to neither LE .�/ nor M.i;k/E .LE .�//. To
do this, we consider the generators v˙ 2 Mi;k and ˛˙ 2 Mi;k of D.MI / as in Sec-
tion 4.4. Thus, the commuting relations (4.5)–(4.8) hold and the corresponding element‚
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0

−1

−2

⊗L� ("A ,B,C )k

"8,:

" (4, j2)

L� ("A ,B,C )

L� ("A+8,B,C+: )L� ("A+8,B+1,C+: )

L� ("A ,B+1,C )

Figure 8. The dots represent the simple D.ME /-summands of B.Mi;k/ and M.i;k/
E

.LE .Mr;s;t //.
Their degrees are indicated on the right. Those in the shadow region form its socle and the others its
head which is isomorphic to L.i;k/.Mr;s;t /.

as in (4.10) satisfies (4.11). Now, the action of some ˆ˙;˙ is non-zero on � by the proof
of Lemma 5.4 (a) and hence LI .�/ 6' LE .�/ by the recursive version of Remark 3.3. Also,
by the inductive hypothesis and Lemma 4.2, LE .�/ is the direct sum of weights in ƒo. By
Lemma (b), the action of ‚ on them is trivial and hence LI .�/ 6' M.i;k/E .LE .�// by the
recursive version of Remark 3.4.

We next analyse the structure of M.i;k/E .LE .�// as D.ME /-module, similarly as we
did in Lemma 5.5. See Figure 8.

Claim 5.10. M.i;k/E .LE .�// is semisimple as D.ME /-module and

Res
�
M.i;k/E

�
LE .�/

��
' LE .�/˚ LE .MrCi;sC1;tCk/˚ LE .MrCi;s;tCk/˚ LE .Mr;sC1;t /;

where the gradation induced by the new triangular decomposition is

Res
�
M.i;k/E

�
LE .�/

��
0
D LE .�/ D LE .Mr;s;t /;

Res
�
M.i;k/E

�
LE .�/

��
�1
D LE .MrCi;sC1;tCk/˚ LE .MrCi;s;tCk/

Res
�
M.i;k/E

�
LE .�/

��
�2
D LE .Mr;sC1;t /:

Indeed, B0.Mi;k/ D k ' M.e; �1/, B1.Mi;k/ D Mi;k and B2.Mi;k/ ' M.e; �2/

are all rigid simple D.ME /-modules by the inductive hypotheses applied to E. Then
Theorem 3.8 implies that

B0.Mi;k/˝ LE .�/ ' LE .�/;

B1.Mi;k/˝ LE .�/ ' LE .MrCi;sC1;tCk/˚ LE .MrCi;s;tCk/ (see Lemma 4.2),

B2.Mi;k/˝ LE .�/ ' LE .Mr;sC1;t / (see Lemma 4.3)

as D.ME /-modules. Therefore the claim follows from (5.3).
Being a quotient of M.i;k/E .LE .�//, LI .�/ is isomorphic to a direct sum of some of the

simple D.ME /-modules in the claim above.



G. A. García and C. Vay 36

Claim 5.11. As graded D.ME /-modules, we have that

Res
�
LI .�/

�
' LE .Mr;s;t /˚ LE .MrCi;s;tCk/Œ�1� (5.4)

with the gradation induced by the new triangular decomposition.

Indeed, the claim follows by a counting argument similar to the one in the proof of
Lemma 5.5. Using the decomposition (5.3), one can deduce that Res.LI .�// is isomorphic
to LE .�/˚ LE .MrCi;Qs;tCk/Œ�1� as D.ME /-module with either Qs D s or Qs D s C 1. To
determine which Qs is, we can argue as in the proof of Lemma 5.5, see (5.1). Namely, it must
be the simple D.ME /-module over which the action of Mi;k is non-trivial. As in (5.1),
we see that Mi;k acts by zero on the weight MrCi;sC1;tCk and its action is non-zero on
MrCi;s;tCk . Then Mi;k must act trivially over the simple D.ME /-submodule generated
by the former weight, that is LE .MrCi;sC1;tCk/, and hence Qs D s.

Finally, the lemma follows by (5.4) and the inductive hypothesis.
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