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A short proof of an index theorem, II

Yavar Abdolmaleki and Dan Kucerovsky

Abstract. We introduce a slight modification of the usual equivariant KK-theory. We use this to
give a KK-theoretical proof of an equivariant index theorem for Dirac–Schrödinger operators on
a non-compact manifold of nowhere positive curvature. We incidentally show that the boundary of
Dirac is Dirac; generalizing earlier work of Baum and coworkers, and a result of Higson and Roe.

1. Introduction

In this paper, we define a form of approximate equivariance inKK� -theory (Definition 3.4
and Theorem 3.2), and apply it to make the proof of Anghel’s theorem in [25] equivariant.
Some exposition has been added, in order to enhance the readability of this paper and
to motivate and explain the techniques used. The main technical tools are presented in
Sections 3 and 4. The purpose of these tools is to assist in modifying non-equivariant
proofs in KK-theory to the equivariant case, and the non-equivariant proof that we use as
a case study is that of Anghel’s theorem in [25]. The tools are demonstrated in two slightly
different settings: hyperbolic space with SO.n/ acting by isometries, and a Hadamard
manifold with a discrete amenable group acting by isometries (Sections 5 and 6).

We begin with an extended introduction and discussion of Anghel’s index theorem.
Index theorems, generally speaking, express an analytical index in terms of topological
information. An analytical index is usually some generalization of the classical Fredholm
index of a Fredholm operator, and the relevant topological information is usually given
by (the cohomological image of) a K-theory/K-homology pairing. One example is the
Atiyah–Singer index theorem [5, 6], and another is in the cases where the Baum–Connes
conjecture [9] holds.

Anghel’s index theorem is an index formula for the Fredholm index of a Dirac–
Schrödinger operator. These operators are of the form D C iV , where D is a (general-
ized) Dirac operator and iV is a skew-adjoint order zero operator, acting on the complex
L2-sections of some bundle. The reason for being interested in an equivariant form of
Anghel’s theorem is that an equivariant index is much more sensitive than the usual
Fredholm index. The Fredholm index is integer-valued, while the equivariant index takes
values in the representation ring of a group.
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The classic Anghel’s theorem was first proven by Callias [13] for the case of Euclidean
space, and then in the case of warped cones by Anghel [2].

Theorem 1.1 (Anghel’s theorem). Let D C iV be a Dirac–Schrödinger operator over a
warped cone M with compact even-dimensional base N . If V 2 becomes arbitrarily large
outside a compact subset of M , and ŒD; V � is bounded, then D C iV is Fredholm, with
index given by Z

N

OA.TN/ ^ chV Cd.volN /;

where OA denotes Atiyah’sA-genus, and V C is the positive eigenbundle of V over a copy of
N contained in a neighborhood of infinity such that V is invertible in that neighborhood.

The above theorem applies to warped cones. These are manifolds which are isomor-
phic outside a compact set to RC � N with Riemannian metric dr2 C f .r/2zg, where zg
is the Riemannian metric of the compact manifold N , and f is a nondecreasing function
f W RC! RC. We remark that a hyperbolic space HnC1 is naturally a warped cone, and
locally a warped product, of the form Œ0;1/� Sn with metric dr2C sinh2.r/zg. Anghel’s
original proof of his theorem [2] used differential geometry, and a KK-theoretical proof,
which we will generalize in our work here, can be found in [25].

2. Formulation of an Anghel-type theorem

Our aim is to first prove that a certain natural exact sequence maps the class of a Dirac
operator in equivariant K-homology to the class of a Dirac operator, and thus to prove a
simple version of an equivariant Anghel-type theorem. However, one has to formulate the
problem appropriately because otherwise the problem may either lack applications or lack
a solution.

Suppose that a manifold M is a warped cone, as defined just above, whose collar is of
the form .1;1/ �N for some compact manifold N . We can define a C* -algebra C�.M/

consisting of those continuous bounded functions on M whose radial limits at infinity
exist uniformly. In [25] there is a proof of an Anghel-type theorem, in the non-equivariant
case, based on the cyclic exact sequences induced in KK-theory by the semisplit exact
sequence

0! C0.M/! C�.M/! C.N/! 0: (1)

In this short exact sequence the quotient map is the operation of taking the limit as the
radial variable r goes to infinity. The middle term can be viewed as continuous func-
tions on a compactification, M , of M . This particular compactification, M , is a compact
topological manifold with boundary. Since we want to have a discrete group acting by
isometries on the manifolds M and N , it is reasonable to first look at the case where M
is a space of constant curvature, see [14] for more information on these. We will thus first
focus on the case of hyperbolic space for simplicity in exposition, but then give a complete
proof for the general case of a warped cone of nowhere positive curvature.
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We will show the following two facts:

(i) (The boundary of Dirac is Dirac) The short exact sequence (1) maps the K-
homology cycle associated with a Dirac operator DM on M to a K-homology
cycle associated with a Dirac operator DN on N , and

(ii) (Equivariant Anghel) for suitable classes of approximately equivariant potentials
V over M we have ŒDM C iV � D Œf �˝C.N/ ŒDN �, where f is a K-theory ele-
ment over N and the equality is in the representation ring KK�.C;C/.

The proof of the first fact will involve an interesting construction of an equivariant KK-
group that is only approximately equivariant but defines the same group as the usual
definition. We remark that the term used above, that the boundary of Dirac is Dirac,
originates with Baum, Douglas, and Taylor [10, Sect. 4.5]. They construct a geometri-
cal K-homology theory in which it is a fundamental fact that property (i) above holds,
and they show this for both the non-equivariant case and then for the case of equivariance
under a compact Lie group [10, 11, 17].

The next two sections give some preparatory constructions, and we return to the above
topics in Section 5.

3. Approximate equivariance in KK �.A; B/

Generally, the new issues that may arise when adding a group action to a non-equivariant
KK-theoretical proof have to do with the existence of cycles. Thus we begin with some
remarks on approximately equivariant cycles.

Following [22, Ch. 8], recall that a locally compact group � is said to have an action
on a graded C* -algebra B if there is a homomorphism ˛ from � into the degree zero
�-automorphisms of B . The group acts on a Hilbert B-module E by a homomorphism,
also denoted ˛, into the invertible bounded linear transformations on E as a Banach space,
with ˛g.eb/ D ˛g.e/˛g.b/, ˛ghx; yi D h˛gx; ˛gyi. The space of Hilbert module oper-
ators is denoted L.E/ and the ideal of operators that are compact in the Hilbert module
sense is denoted K.E/. Given a representation � of a C* -algebra A on a Hilbert module
E, denote by I� the algebra of operators on E that commute with � modulo compact
operators, and by J� the algebra of operators L 2 L.E/ with �.a/L and L�.a/ compact
for all a 2 A. We recall Kasparov’s well-known definition of the set of bounded equivari-
ant Kasparov cycles, E�.A;B/, for � -unital C* -algebrasA and B and a second-countable
locally compact group � .

Definition 3.1 ([21]). The set E�.A;B/ is given by triples .E; �; F / such that:

(i) E is a countably generated Z2-graded Hilbert B-module with a continuous
degree zero action of �;

(ii) the map � is a graded �-homomorphism � W A! L.E/;

(iii) there is an action of g on A such that ˛g.�.a// D �.˛g.a//;
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(iv) the operator F is such that g 7! �.a/˛g.F / is norm-continuous;

(v) the degree one operator F is in I� , and is such that F 2 � 1, F � F �, and
˛g.F / � F are in J� .

The following theorem shows that condition (iii) can be replaced by the weaker con-
dition

(iii0) there is an action of g on A such that ˛g.�.a// � �.˛g.a// 2K.E/.

Theorem 3.2. For a discrete amenable group � , we obtain the same Kasparov group
KK�.A;B/ from either of the sets of conditions (i), (ii), (iii), (iv), and (v) or (i), (ii), (iii0),
(iv), and (v).

Proof. Recall that there is a group of �-extensions, usually denoted Ext�1� .A;B/. It con-
sists of equivariant Busby maps, modulo an equivalence relation, see [28] for more infor-
mation. These extensions are required to be equivariantly semisplit, as will be explained.
There is a well-known isomorphism of KK�1.A; B/ onto Ext�1� .A;B/, of the form
.E;�;F / 7!�.F�.�/F �/, where � is the natural quotient map � WL.E/!L.E/=K.E/.
This isomorphism takes a Fredholm module to a Busby map, and we could choose to
define the equivalence relations on KK�1.A; B/ through pulling back the equivalence
relations from Ext�1� .A; B/. If we take this point of view, then it is clear that the differ-
ence between the two conditions on Fredholm modules

(iii0) there is an action of g on A such that ˛g.�.a// � �.˛g.a// 2K.E/; and

(iii) there is an action of g on A such that ˛g.�.a// D �.˛g.a//,

disappears under the equivalence relations, because in either case we have

�.F.�.˛g.a///F
�/ D �.F.˛g.�.a///F

�/:

It remains to check the often delicate semisplitting property of the extension that we
obtain under the above isomorphism, while using the weaker condition (iii0). We must
verify that the extension obtained has an equivariant semisplitting. The natural candidate
for such a semisplitting is the map a 7! F�.a/F �, and with condition (iii0), we can imme-
diately only conclude that we have a semisplitting, a 7! F�.a/F �. Baaj and Skandalis
have however shown that in the discrete and amenable case, the existence of a semi-
splitting implies the existence of an equivariant semisplitting , see [8, Prop. 7.13(2)], and
[8, Prop. 7.16].

For the reader’s convenience we recall our earlier definition of equivariant unbounded
cycles in [22, Def. 8.7], and [24, Def. 4.7, p. 272].

Definition 3.3. The set of unbounded equivariant Kasparov modules ‰�.A; B/ is given
by triples .E; �; D/ where E is a Hilbert B-module with �-action; � W A! L.E/ is a
�-homomorphism; and D is an unbounded regular degree one self-adjoint operator on E,
such that
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(i) for each e 2 E, the map g 7! ¹D � ˛g.D/ºe is continuous as a map from �

into E;

(ii) the operator .i CD/�1 is in J� ;

(iii) the homomorphism � satisfies ˛g.�.a/e/ D �.˛g.a//e; and

(iv) for all a in some dense subalgebra of A, the commutator ŒD; �.a/� is bounded
on the domain of D.

Pointwise norm �-continuity (strong continuity in the Hilbert module sense) is all
that is needed in part (i) of the above definition. This definition behaves correctly under
the bounded transform, and the unbounded connection conditions for a Kasparov product
still hold and have the same form in the equivariant case as in the non-equivariant case
[22–24]. Because passing to the bounded transform [7] only affects the operator D, we
can replace, in Definition 3.3 above, condition (iii) by condition (iii0) using Theorem 3.2
applied to the bounded transforms.

The following definition and corollary summarize our discussion.

Definition 3.4. The set of unbounded approximately equivariant Fredholm modules,
‰�.A; B/, is given by triples .E; �; D/ where E is a (graded) Hilbert B-module with
�-action; � W A! L.E/ is a �-homomorphism; and D is an unbounded regular degree
one self-adjoint operator on E, such that

(i) for each e 2 E, the map g 7! ¹D � ˛g.D/ºe is continuous as a map from �

into E;

(ii) the operator .i CD/�1 is in J� ;

(iii0) the homomorphism � satisfies ˛g.�.a// � �.˛g.a// 2K.E/, and

(iv) for all a in some dense subalgebra of A, the commutator ŒD; �.a/� is bounded
on the domain of D.

An alternative form of condition (i) above is given in Corollary A.3 in the Appendix.
The above definition does not require amenability. In the presence of amenability, Theo-
rem 3.2 implies the following corollary.

Corollary 3.5. In the discrete and amenable case, ‰�.A; B/ is isomorphic to the usual
KK�.A;B/ group.

By assuming or omitting invertibility one can avoid the amenability condition.

Remark 3.6. If three cycles satisfy the usual connection conditions when the group action
is forgotten, then they also form a Kasparov product in the equivariant case.
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4. A delocalized L2-space and amenability

In this section, we construct some convenient Hilbert spaces that will be needed in the
proofs of our theorems (specifically, they will be used to define K-homology cycles).
Recall the unital exact sequence of C*-algebras from the introduction, namely

0! C0.M/! C�.M/! C.N/! 0:

This extension is semisplit by the Choi–Effros theorem. If we now equip this extension
with a group action that is compatible with the inclusion map, quotient map, and semisplit-
ting map, it will induce [8, Thm. 7.17] cyclic exact sequences in equivariant KK-theory.
Fortunately, it is not necessary to explicitly verify compatibility of the group action with
the semisplitting: by [8, Sect. 7], see also [27], we can average an non-equivariant semi-
splitting, thus obtaining an equivariant semisplitting. Due to the expander-based coun-
terexample in [18, Sect. 7], some mild condition on the extension or on the group (for
example, amenability) seems to be needed for such a semisplitting. For an example of an
explicit equivariant semisplitting, please see the proof of [26, Thm. 3.4].

Remark 4.1 (On Dirac operators). The topological manifold with boundary M natu-
rally inherits a metric from M , and this metric is singular at the boundary. Bismut and
Cheeger [12] constructed the natural spinor Dirac operator DM on a spinc manifold with
boundary and a radially singular metric at the boundary. Their operator is singular at the
boundary. The spin bundle associated to this singular operator DM restricts to a spin
bundle, say E, over M , and since Dirac operators do not increase support, we obtain a
convenient Dirac operator DM on M . Bismut and Cheeger construct at the same time a
related Dirac operator DN on the boundary. These operators are given by local formulas
of the expected form,

DM D

nX
iD1

e0ir
M
e0i

and

DN D

n�1X
iD1

eir
N
ei
:

The above are formulas 1.6 and 1.7 of [12]. For more information, please see [12, pp. 319–
324], or for general information on Dirac operators see [15].

To define cycles inK-homology we needL2-spaces. Let us use the notationL2.M;E/
for an L2 space with coefficients in a vector bundle E. The following proposition will be
applied to the spinor bundle associated with a Dirac operator, but can as well be stated in
a more general form.
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Proposition 4.2. Consider a semisplit short exact sequence

0 C0.M/ C.M/ C.N/ 0
i

s

equipped with the action of a discrete group � . Suppose that either the group is amenable
or that there exists a �-invariant measure on the spaceM . Given any vector bundleE over
the finite-dimensional manifold with boundary M , there exist equivariant L2-spaces over
M and overN that are compatible with the equivariant quotient map i and its equivariant
semisplitting map s with

L2.M;E/ L2.N; i�.E//.
i�

s

The L2-space map s is injective, the L2-space map i� is surjective, and i� ı s D Id.
There exists also a natural L2-subspace L2.M;E/ � L2.M;E/.

Proof. Suppose we are in the amenable case. Since the middle term C.M/ of the given
short exact sequence

0! C0.M/! C.M/! C.N/! 0

is a unital C* -algebra, it has a weak-* compact state space. Amenability then implies
the existence of a �-invariant state, �, in that state space. In terms of measures rather
than states, this implies the existence of a nontrivial invariant measure on the Gelfand
spectrum M of this C* -algebra. Letting E be the given bundle on M , let L2.M; E/

denote the correspondingL2-space constructed from the bundleE and the above invariant
measure coming from �. If we compose the invariant state � with the linear, unital, and
completely positive map provided by the previously discussed equivariant semisplitting
s W C.N/! C�.M/, we obtain an invariant state � ı s on C.N/. Let i denote the map
of Gelfand spaces induced by the quotient map in our exact sequence. Let i�.E/ denote
the pullback of the Dirac bundle on M to N . Let L2.N; i�.E// denote the L2-space
constructed from the bundle i�.E/ and the invariant state � ı s on C.N/. (This is a special
case of the KGNS construction [20].)

The semisplitting map s W C.N/! C�.M/ is not a homomorphism, but it is a linear
positive map of ordered Banach spaces. Being completely positive, it induces a linear
positive map of the space of sections of trivial bundles overN . By Swan’s theorem and the
compactness of the manifold N , we can regard the space of sections of i�.E/ as a closed
subspace of some trivial bundle over N , and then the map s provides a linear positive
isomorphism with a closed subspace of the space of sections of the bundleE overM . The
map s therefore splits the given extension at the level of equivariant L2-spaces, because



Y. Abdolmaleki and D. Kucerovsky 130

the maps s and i� are at this level respectively an injective map and a surjective map, and
i� ı s D Id. If we are instead given a �-invariant measure on M , then we replace states
by integrals in the above argument.

By the above proposition, the map s embeds L2.N; i�.E// as an L2-subspace in
L2.M; E/, and even provides a splitting map at the level of L2-spaces. We will lighten
the notation by writing, for example, L2.N / � L2.M/ instead of s.L2.N; i�.E/// �
L2.M;E/.

The space L2.N / can be said to be delocalized, or “quantum”, in the sense that it is
not obviously induced by a restriction of L2.M/ to a submanifold of M .

We now turn to applications.

5. The case of hyperbolic space HnC1

The manifoldM will, for the moment, be a finite-dimensional hyperbolic space HnC1, as
in [1], and the manifoldN will be the corresponding boundary Sn. We refer to the bound-
ary points that are in the bounding hyperplane Rn with respect to the half space model
as the real hyperplane, and we denote the remaining boundary point of HnC1 by ¹1º.
In classic hyperbolic geometry, these boundary points are known as ideal points, and can
also be called limit points. Since the space C.M/ is equivalent to C�.M/, in other words,
continuous functions on M with a mild smoothness condition imposed at infinity, isome-
tries of M that preserve this condition extend to uniform homeomorphisms of M . As is
well-known—by Brouwer’s theorem—such a homeomorphism will have a fixed point. In
order to insure smoothness, consider the class of homeomorphisms given by the isome-
tries of M whose extensions are isometries of the real hyperplane into itself, and have
a common fixed point on the boundary; geometrically speaking, these are the elements
of the (amenable) real orthogonal group O.n/ with their natural action on the half-space
model. The fixed point is then exactly the special point defined at the start of this section
and denoted ¹1º. We denote by � some given discrete amenable subgroup of this group:
we regard it as acting by isometries on Sn and on HnC1. We regard the exact sequence (1)
at the beginning of Section 2 as being equipped with an action of the discrete amenable
subgroup � acting by isometries, and moreover we suppose that the isometries preserve
orientation so that they will be compatible with Dirac operators. We will then generalize to
the case of warped cones of nowhere positive curvature. It is interesting to note that in the
case that such a space has constant curvature, it is isomorphic to a quotient of a hyperbolic
or a Euclidean space modulo the action of a discrete subgroup of isometriesG [14, Ch. 8].
The positive scalar curvature case has obstructions [16] and will not be considered further.
In [11, Sect. B.4] it is shown that the boundary of Dirac is Dirac, in the case of equivari-
ance with respect to the action of a compact Lie group. (See [10, 17] for proofs in the
non-equivariant case.) The proof in [11] uses the compactness of the Lie group in several
places, and thus does not generalize in any obvious way to the case of equivariance under
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an action by a discrete group. We aim to prove a similar result in the case of the action of a
discrete amenable group. As already mentioned, we treat first the case of hyperbolic space
M D HnC1, with N D Sn, and a discrete amenable subgroup of SO.n/ acting. Recall
that a hyperbolic space has a natural warped cone structure: namely Œ0;1/ � Sn with
metric dr2 C sinh2.r/zg. In the following theorem, the cycle Œr� 2 KK�1.C.N /;C0.M//

has an operator given by multiplication by the radial variable of this warped cone M . The
Dirac operators below are as in Remark 4.1, and the homomorphism � is defined next in
Proposition 5.2.

Theorem 5.1. LetM be a hyperbolic spaceMDHnC1, and letN be its boundary. Let �
be a discrete amenable subgroup of SO.n/ acting on 0!C0.M/!C�.M/!C.N/!0

by oriented isometries. The Dirac operators over N and over M give KK� -classes
ŒDN � 2KK�

0.C.N /;C/ and ŒDM � 2KK�1.C0.M/;C/, and ŒDN �D Œr�˝ ŒDM �. The
cycle Œr� 2 KK�1.C.N /; C0.M// is given by .C0.M/; �; r/.

The proof will take several lemmas, and concludes in Corollary 5.6. We begin by using
the geometry of a hyperbolic space to construct the �-invariant homomorphism � that is
used in the cycle Œr�. The exact property that is used is the visibility space property.

Proposition 5.2. There exists a �-homomorphism � W C.Sn/!M.C0.HnC1//, and

˛g.�.f // � �.˛g.f // 2 C0.H
nC1/:

Proof. In the half-space model for hyperbolic space, the given function f is defined on
the boundary points (i.e., limit points) of the hyperbolic space. Let n denote a limit point in
the real hyperplane. Consider the geodesic through hyperbolic space from the limit point
n to the limit point ¹1º. This limit point is defined at the beginning of this section. Extend
the domain of the given function f to all of M n ¹1º by defining it to be constant on all
such geodesics. In other words, extend f to a larger domain by making it constant with
respect to the y coordinate of the half-space model, so that f .n; y/ WD f .n/. The function
we obtain is bounded and continuous at all ordinary points of the hyperbolic space, and
thus we can use the function as a multiplier of elements of C0.HnC1/. Let us, for conve-
nience, define �.f / to be zero at the limit point ¹1º, so that we may regard �.f / as a
bounded function on M that is continuous except at the limit point ¹1º. Now we notice
that ˛g.�.f // and �.˛g.f // are equal when restricted to points of the boundary, Sn. But
then ˛g.�.f // � �.˛g.f // is a function that is continuous at all the points of hyperbolic
space and its boundary, except possibly the limit point ¹1º, and moreover it is zero at
all other limit points. This means that this function is in C0.HnC1/ as claimed. Finally,
we remark that the mapping � W C.Sn/ ! M.C0.HnC1// that we have defined is evi-
dently an algebraic �-homomorphism, and algebraic �-homomorphisms of C* -algebras
are automatically bounded (i.e., are continuous �-homomorphisms).
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5.1. A Kasparov product

The next lemma is an version of [25, Lemma 3.1] for an approximately equivariant cycle.
When defining explicit KK-elements, it will be useful to note that the complex Clifford
algebra C1 is isomorphic to C ˚C, with elements of the form .e; e/ having even degree,
and elements of the form .e;�e/ having odd degree. This is sometimes referred to as the
odd grading. The other common grading is the diagonal/off-diagonal grading (for opera-
tors), where operators represented by diagonal 2-by-2matrices have the even grading, and
antidiagonal ones the odd grading. The space of Hilbert module operators is denoted L.E/

and the ideal of operators that are compact in the Hilbert module sense is denoted K.E/.

Lemma 5.3. Let S be a Dirac bundle over the nowhere positive curvature warped cone
M . Let H be the Hilbert space L2.M; S/˚ L2.M; S/ with diagonal/off-diagonal grad-
ing. Let DM be the Dirac operator on S . Let � denote the approximately invariant
homomorphism of Proposition 5.2, and let r denote multiplication by r , the radial coor-
dinate of the warped cone. Then the Kasparov product Œr� ˝ ŒDM � equals ŒDM C ir�,
where

ŒDM � WD

�
H;m;

�
0 DM
DM 0

��
2 KK.C0.M/˝ C1;C/;

Œr� WD

�
C0.M/˝ C1; �;

�
r 0

0 �r

��
2 KK.C.N/; C0.M/˝ C1/;

and

ŒDM C ir� WD

�
H;�;

�
0 DM � ir

DM C ir 0

��
2 KK.C.N/;C/:

Proof. We follow the proof of [25, Lemma 3.1]. The action ofm W C0.M/˝C1!L.H/

is given by

m W b ˚ b 7!

�
b 0

0 b

�
; m W b ˚�b 7!

�
0 �ib

ib 0

�
;

where elements of C0.M/ act onL2.M;S/ as multiplication by functions onM . A calcu-
lation shows that there is a Hilbert module isomorphism that identifies H D L2.M;S/˚
L2.M; S/ with the inner tensor product of C0.M/˝ C1 and H over m.

In order to apply the criterion for an unbounded cycle to be the Kasparov product of
two given cycles [23], we have to verify a semiboundedness condition and a connection
condition. Since these conditions do not explicitly involve the group action, the proof of
the non-equivariant case ([25, Lemma 3.1]) goes through, with Œr� in the place of ŒA� there.
We comment that Œr� is indeed an approximately equivariant cycle, because r � ˛ .r/ is
bounded for each  2 � .
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5.2. A homotopy of virtual spaces

We now make use of these L2-spaces to construct a Kasparov homotopy of K-homology
cycles. This homotopy is an equivariant version of the one used in [25, Lemma 4.1].
The statement of the next lemma uses Proposition 5.2, and this means that the lemma is
at present applicable only to the current case of the hyperbolic space M . However, the
restriction will be removed once we prove Proposition 6.1. The Dirac bundle S in the next
lemma can be taken to be as in Remark 4.1.

Lemma 5.4. Let S be a Dirac bundle over the nowhere positive curvature warped cone
M . Let DM be the Dirac operator on S . Let � be the approximately invariant homomor-
phism of Proposition 5.2, and let r denote multiplication by r , the radial coordinate of the
warped cone. Then Œr�˝ ŒDM � D ŒDN �, where

ŒDM � WD

�
L2.M/˚ L2.M/;m;

�
0 DM
DM 0

��
2 KK.C0.M/˝ C1;C/;

Œr� WD

�
C0.M/˝ C1; �;

�
r 0

0 �r

��
2 KK.C.N/; C0.M/˝ C1/;

and

ŒDN � WD

�
L2.N /˚ L2.N /;m;

�
0 DN
DN 0

��
2 KK.C.N/;C/:

Proof. Lemma 5.3 shows that Œr�˝ ŒDM � D ŒDM C ir�, so we need only to show that
ŒDM C ir� is Kasparov homotopic to ŒDN �. Thus we need to show a suitable homotopy of
L2.M/˚ L2.M/ and L2.N /˚ L2.N /. Proposition 4.2 provides equivariant copies of
L2.N / and L2.M/ embedded in L2.M/. There is a “dimension drop” Hilbert C.Œ0; 1�/
module

E WD ¹f 2 L2.M/˝ C.Œ0; 1�/Wf .0/ 2 L2.N /; f .1/ 2 L2.M/º:

The module consists of the continuous functions from Œ0; 1� into the space L2.M/ which
take endpoint values in the subspaces L2.N / at one endpoint and L2.M/ at the other
endpoint. Since all spaces used are equivariant, the module is equivariant. The Kasparov
triple .E; �; DM C �ir/ together with the evaluation map (at � D 0) denoted by i� in
Proposition 4.2 provides a homotopy in Kasparov’s sense of .L2.M/; �;DM C ir/ and
.L2.N /; �; DN /. Note that the Dirac operator DM can be regarded as a Dirac operator
on M by Remark 4.1. We thus obtain a cycle of the form�

L2.N /˚ L2.N /; �;

�
0 DN
DN 0

��
2 KK.C.N/;C/;

but the homomorphism � in fact acts on L2.N / by ordinary multiplication. Thus we
obtain the cycle ŒDN � D

�
L2.N /˚ L2.N /; m;

�
0 DN
DN 0

��
2 KK.C.N/;C/ as was to

be shown.
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The above shows that if we regard the operation of taking the Kasparov product with
the above cycle Œr� as a K-homological boundary map, then the boundary of the Dirac
operator on M is a Dirac operator on N . This can be attributed in the non-equivariant
case to [10, Sect. 4.5], see also [17, 19], and for the case of a compact Lie group action to
[11, Lemma 3.8].

The proof we have given can be viewed as a version of the original non-equivariant
proof, which consisted of a Kasparov product calculation followed by noticing that the
Busby map associated with their boundary cycle coincides with the Busby map of the
given extension. In order to find a natural candidate for the boundary cycle, and to state
that cycle in a simple way, we introduced a slight generalization of the usual notion of a
Fredholm triple.

Technically speaking, we have yet to relate our boundary cycle Œr� to the extension
0! C0.M/! C�.M/! C.N/! 0. However, the expected equality at the level of
Busby maps does remain valid in the equivariant case. This is because the formula for
computing the Busby map remains the same with or without equivariance.

Proposition 5.5. The Busby map associated with the cycle Œr� 2 KK�1.C.N /; C0.M//

under the isomorphism from the proof of Proposition 3.2 coincides with the Busby map
associated with the equivariant extension 0! C0.M/! C�.M/! C.N/! 0.

Proof. Same as in the non-equivariant case [17, 19].

Concluding this part of the proof, we combine Lemma 5.4 and Proposition 5.5 to
obtain the following.

Corollary 5.6 (The boundary of Dirac is Dirac). The equivariant K-homology cycle
ŒDM � is mapped to ŒDN � under the K-homology map induced by the equivariant exten-
sion 0! C0.M/! C�.M/! C.N/! 0.

The proof of the above result just supposes an amenable discrete group action, act-
ing on finite-dimensional spinc manifolds. If amenability or finite-dimensionality is not
assumed, a proof along our lines runs up against one of the expander-based counterexam-
ples to the Baum–Connes conjecture [18]. These counterexamples are all based on failures
of exactness at the level of K-theory. Thus, we may wonder if these counterexamples do
in fact explicitly manifest at the level of geometric K-homology. More precisely, we have
the following question:

Question 5.7. Is it true that the boundary of Dirac is Dirac, at the level of equivariant
K-homology, for actions of finitely generated groups that may not uniformly embed into
Hilbert space as in [18, Sect. 7]?

Furthermore, incidently, the K-theory boundary map associated with the cycle Œr� 2
KK�

1.C.N /;C0.M// can be written KK� -theoretically as shown below, where C1 acts
on itself in the natural way. See [26, Thm. 3.4] for an ingenious alternative formulation
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in the bounded picture, using a Poisson-type transform in the specific case of hyper-
bolic space.

Proposition 5.8. Let Œr� 2 KK�.C.N /˝ C1; C0.M// denote�
C0.M/˝ C1; � ˝ Id W C.N/˝ C1 ! L;

�
r 0

0 �r

��
:

This cycle will map the K-theory element

ŒA� WD

�
Mn.C.N //˝ C1; 1;

�
A 0

0 �A

��
2 KK�.C; C.N /˝ C1/

to the K-theory element

ŒAC r� WD

�
Mn.C0.M//˝ C1; 1;

�
�.A/C r 0

0 ��.A/ � r

��
2 KK�.C; C0.M//:

Proof. The (inner) tensor product of Hilbert modules .Mn.C.N //˝C1/˝�˝Id C0.M/˝

C1, where Id W C1!L.C1/ denotes the natural action of the complex Clifford algebra C1
on itself, is isomorphic to Mn.C0.M//˝ C1 regarded as a bimodule over C0.M/˝ C1
and over C.N/, where C.N/ acts on C0.M/ through the map �. With respect to this iso-
morphism, the elementary map Tx WC.M/˝C1!Mn.C.N //˝C1˝�˝Id C0.M/˝C1
is �.x/, regarded as a multiplication by a matrix-valued function, x 2 Mn.C.N //; i.e., a
map Tx WC0.M/˝C1!Mn.C0.M//˝C1. The rest of the proof is a routine verification
of the connection conditions.

The case of a degree shift amounts to a factor of C1 as we see in the following propo-
sition.

Proposition 5.9. Let Œr� 2 KK�.C.N /; C0.M/˝ C1/ denote�
C0.M/˝ C1; � W C.N/! L;

�
r 0

0 �r

��
:

This cycle will map the K-theory element

ŒA� WD

�
Mn.C.N //˝ C1; 1;

�
A 0

0 �A

��
2 KK�.C; C.N //

to the K-theory element

ŒAC r� WD

�
Mn.C0.M//˝ C1; 1;

�
�.A/C r 0

0 ��.A/ � r

��
2 KK�.C; C0.M/˝ C1/:
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6. The case of Hadamard manifolds

We started with the case of a hyperbolic space, regarded as a warped cone of constant
curvature, with an action of SO.n/. In replacing the hyperbolic space by a more general
warped cone M of nowhere positive curvature, only one new consideration arises, and
this has to do with defining the approximately equivariant �-homomorphism � W C.N/!

M.C0.M//. The previous proofs go through if we replace Proposition 5.2 above by the
following more general Proposition 6.1, below. We may now assume that � is amenable,
acts by oriented isometries on M and fixes a point in the collar manifold N .

Proposition 6.1. Let M denote a simply connected warped cone of nowhere positive
curvature, with boundary N . Assume that � is amenable, acts by oriented isometries
onM , and fixes a point in the boundary,N . There exists a �-homomorphism � W C.N/!

M.C0.M//, which is approximately equivariant in the sense that ˛g.�.f //��.˛g.f //2
C0.M/.

Proof. By the Cartan–Hadamard theorem [14, Thm. 3.1], our space of nonpositive cur-
vature is equipped with a globally defined exponential map, providing well-behaved geo-
desics radiating outwards from any chosen point. The geodesics extend uniquely to the
closure M .

Consider, thus, the family of geodesics, inM , to points ni on the boundaryN , emanat-
ing from the limit point ¹1º. Two such geodesics with distinct values of ni intersect only
at ¹1º. Let us now extend the domain of the given function f 2 C.N/ to all ofM n ¹1º
by defining it to be constant on all such geodesics. In terms of Figure 1, below, we prop-
agate the values of f upwards along geodesics, obtaining a function that is well-behaved
except possibly at the point ¹1º. The function we so obtain is bounded and continuous
at all regular points of the space M , and so we can use the function as a multiplier of
elements of C0.M/. The remainder of the proof is just as in Proposition 5.2.

Exactly as in the previous section, we deduce the following corollary.

¹1º

M

n1 n2

Figure 1. Two geodesics of M .
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Corollary 6.2 (The boundary of Dirac is Dirac). Let

ŒDM � WD

�
L2.M/˚ L2.M/;m;

�
0 DM
DM 0

��
2 KK.C0.M/˝ C1;C/;

and

ŒDN � WD

�
L2.N /˚ L2.N /;m;

�
0 DN
DN 0

��
2 KK.C.N/;C/;

wherem is the natural action by multiplication. The equivariantK-homology cycle ŒDM �
is mapped to ŒDN � under the K-homology map induced by the equivariant extension
0! C0.M/! C�.M/! C.N/! 0.

6.1. Application to an Anghel-type theorem

We now turn to the topic of an Anghel-type theorem, on a warped cone of nowhere positive
curvature with an amenable discrete group acting quasi-parabolically by oriented isome-
tries. We first recall a classic lemma from the Hilbert space setting. Here, the potential V
is a self-adjoint unbounded multiplier acting on (the sections of) the vector bundle E.

Lemma 6.3. Let DM be a Dirac-type operator on a spin bundle E over the warped
cone M . Let V W �.E/! �.E/ go to infinity at infinity in the warped cone. Then DM ˙
iV , regarded as an unbounded operator on the Hilbert space L2.M; E/, has compact
resolvent.

For a proof of the above lemma, see any of [2–4, 25]. The above lemma was a key
point in showing [25] that DM C iV defines a (non-equivariant) cycle in KK.C;C/. As
shown in the Appendix (Theorem A.2), if Dm C iV does define an equivariant cycle as
in Definition 3.4, then it follows that ˛ .DM � iV / � .DM � iV / is bounded for each
 2 � . So the potential V must satisfy the strong but necessary assumption that for each  ,
the difference ˛ .V / � V is bounded. But, in fact a physically similar condition already
appears in the classic Anghel’s theorem, see Theorem 1.1, where it was assumed that the
gradient of the potential, ŒD; V �, was bounded. Thus the assumption made is plausible.
Lemma 6.3 together with the above discussion implies that the necessary conditions for
an unbounded equivariant cycle (Definition 3.3) hold, as we see in the following.

Lemma 6.4. Let DM be a Dirac-type operator on a spin bundle E over the warped
cone M . Let V W �.E/ ! �.E/ go to infinity at infinity in the warped cone, and let
˛ .V / � V be bounded for each group element  2 � . Then the cycle�

L2.M;E/˚ L2.M;E/; 1;

�
0 DM � iV

DM C iV 0

��
is an equivariant KK�.C;C/ cycle.
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Now, let us recall that:

(i) the Dirac operators over N and over M give KK� -classes

ŒDN � 2 KK�
0.C.N /;C/ and ŒDM � 2 KK�

1.C0.M/;C/;

(ii) the geometrical properties of M give an approximately equivariant KK� -class
Œr� 2 KK�

1.C.N /; C0.M//, as defined in Lemma 5.3,

(iii) a given endomorphism f that defines aK-theory class Œf � 2KK�0.C;C.N //,
and, by Proposition 5.8/5.9, aKK� class ŒV � 2KK�1.C;C0.M//, where V D
f C ir , and

(iv) the index of DM C iV defines a KK� -class ŒDM C iV � 2 KK�.C;C/, see
Lemma 6.4.

Then it follows, from the Kasparov product factorizations in Corollary 5.6, Proposi-
tion 5.8/5.9, and associativity of the Kasparov product that

Ind.DM C iV / WD ŒDM C iV � D ŒV �˝C0.M/ ŒDM �

D Œf �˝C.N/ Œr�˝C0.M/ ŒDM �

D Œf �˝C.N/ ŒDN �:

This shows the following.

Proposition 6.5. Let M be a warped cone of nowhere positive curvature. Let N denote
its collar. Let � be an amenable discrete group acting by oriented isometries on

0! C.N/! Cv.M/! C0.M/! 0;

with a common fixed point in N . Let DN and DM denote Dirac operators on N and M
respectively, and let f denote a potential onN . Then ŒDM C i.r C �.f //� 2KK�.C;C/
factorizes equivariantly as ŒDN �˝C.N/ Œf �, an equivariant K-theory and K-homology
pairing over the compact manifold N .

The above, then, is the basic form of an Anghel-type theorem that takes into account
the restrictions of an equivariant situation. Just as in the non-equivariant case, one can
extend it to an apparently larger class of potentials, namely, the case of any ŒDM C iV �
that is Kasparov homotopic to one of the above form.

We have used hypotheses that are simple to state rather than aiming for maximal gen-
erality. With regard to possible generalizations, we should point out that the only nontrivial
information from Riemannian geometry that was used is:

• existence of Dirac operators, and

• the visibility space property of Hadamard manifolds (i.e., the Cartan–Hadamard theo-
rem).
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The hypothesis of amenability gives a pleasant proof of Proposition 4.2 but can there
be replaced by a more lattice-theoretical hypothesis: the existence of a �-invariant mea-
sure; as already pointed out in (the non-amenable case) of Proposition 4.2. As in Defini-
tion 3.3, one could in the remainder of the work proceed by using cycles at the level of
‰�.A;B/.

A. Appendix: On strongly � -continuous unbounded regular
operators

As a convenience to the reader, we recall a known result in this appendix.

Proposition A.1 ([22, Prop. 8.2]). Let T be a regular operator on a countably gener-
ated Hilbert module E and let � be a locally compact Hausdorff group acting on E by
automorphisms. The following are equivalent:

(i) for each e 2E, the map g 7! .T � ˛g.T //e is continuous as a map from � intoE;
and

(ii) the function g 7! .T � ˛g.T // is in L.C.K;E// for every compact subsetK � � .

Proof. It is clear that (ii) implies (i). For the other direction, we need to prove uniform
boundedness over the compact set K, which we do by using a primæval form of the
Banach–Steinhaus theorem.

Theorem A.2 (Banach–Steinhaus). Suppose that P is a collection of continuous func-
tions ¹p� W X ! Rº�2ƒ, and that X is of second category. Then if each cross-section
� ! p�.x/ is bounded, there is a nonempty open set B0 � X with p�.x/ uniformly
bounded for all � 2 ƒ and x 2 B0.

The above theorem has a standard proof, in consequence of the definition of second
category. Now we return to the proof of the proposition. Let Lg denote the given operator
T � ˛g.T /. We apply the Banach–Steinhaus theorem to the collection of functions ¹py W
�!Rºy2En¹0º defined by py.g/DkLgyk=kyk. These functions are continuous because
of hypothesis (i), and the cross-sections over y 2 E n ¹0º, with g 2 � fixed, are bounded
by kLgk. A locally compact Hausdorff space is a Baire space, so we conclude that there
is an open neighborhood B0 � � with kLgk uniformly bounded on B0.

We show that every point in � will have a neighborhood upon which kLgk is uni-
formly bounded. Every point in � has a neighborhood given by a left translate kB0 of B0,
and

kLkbk D k˛kb.T / � T k D k˛k.Lb � Lk�1/k:

Hence Lkb is uniformly bounded for all b 2 B0, and we complete the proof by covering
a given compact set K with finitely many sets of the form kB0.
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Corollary A.3. The set of unbounded approximately equivariant Fredholm modules
‰�.A; B/ is given by triples .E; �; D/ where E is a (graded) Hilbert B-module with
�-action; � W A! L.E/ is a �-homomorphism; and D is an unbounded regular degree
one self-adjoint operator on E, such that

(i) the function T � ˛g.T / is in L.C.K;E// for every compact subset K � �;

(ii) the operator .i CD/�1 is in J�;

(iii) the homomorphism � satisfies ˛g.�.a// � �.˛g.a// 2K.E/, and

(iv) for all a in some dense subalgebra of A, the commutator ŒD; �.a/� is bounded
on the domain of D.

The notation J� is defined at the start of Section 3.

Acknowledgments. We thank the referee for drawing our attention to the interesting
preprint [27], and for sharing his insights with us.
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