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Higher Kazhdan projections, `2-Betti numbers and
Baum–Connes conjectures

Kang Li, Piotr W. Nowak, and Sanaz Pooya

Abstract. We introduce higher-dimensional analogs of Kazhdan projections in matrix algebras
over group C�-algebras and Roe algebras. These projections are constructed in the framework of
cohomology with coefficients in unitary representations and in certain cases give rise to non-trivial
K-theory classes. We apply the higher Kazhdan projections to establish a relation between `2-Betti
numbers of a group and surjectivity of different Baum–Connes type assembly maps.

Kazhdan projections are certain idempotents whose existence in the maximal group C �-
algebra C �max.G/ of a group G characterizes Kazhdan’s property .T / for G. They have
found an important application in higher index theory, as the non-zeroK-theory class rep-
resented by a Kazhdan projection in K0.C �max.G// obstructs the Dirac-dual Dirac method
of proving the Baum–Connes conjecture. This idea has been used effectively in the coarse
setting [15,16], where Kazhdan projections were used to construct counterexamples to the
coarse Baum–Connes conjecture and to the Baum–Connes conjecture with coefficients.
However, Kazhdan projections related to property .T / are not applicable to the classical
Baum–Connes conjecture (with trivial coefficients), as the image of a Kazhdan projection
in the reduced group C �-algebra vanishes for any infinite group.

The goal of this work is to introduce higher-dimensional analogs of Kazhdan projec-
tions with the motivation of applying them to the K-theory of group C �-algebra and to
higher index theory. These higher Kazhdan projections are defined in the context of higher
cohomology with coefficients in unitary representations and they are elements of matrix
algebras over group C �-algebras. Their defining feature is that their image in certain uni-
tary representations is the orthogonal projection onto the harmonic n-cochains. We show
that the higher Kazhdan projections exist in many natural cases and that they are non-zero.

We then investigate the classes represented by the higher Kazhdan projection in the
K-theory of group C �-algebras. This is done by establishing a connection between the
properties of the introduced projections and `2-Betti numbers of the group. In particular,
we can conclude that the higher Kazhdan projections over the reduced group C �-algebra
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can be non-zero and can give rise to non-zero K-theory classes in K0.C �r .G//. One of
the first cases in which this happens is the group SL.2;Z/, discussed in Section 1.5.1.
In contrast, the classical Kazhdan projection always vanishes in C �r .G/ for every infinite
group G.

To present the connections between the existence of higher Kazhdan projections and
`2-invariants, we recall that, given a finitely generated group G, the subring ƒG � Q is
generated from Z by adjoining inverses of all orders of finite subgroups, as in [23, Theo-
rem 0.3]. The cohomological Laplacian in degree n can be represented by a matrix with
coefficients in the group ring RG, denoted by �n. In the case of the regular representa-
tion � and the reduced group C �-algebra C �r .G/, the operator �n 2Mk.C

�
r .G//, for a

certain k 2 N, is the cohomological Laplacian in degree n in the `2-cohomology of G.
We will say that �n has a spectral gap in a chosen completion of Mk.CG/ if its spec-
trum is contained in ¹0º [ Œ";1/ for some " > 0. Recall that a group G is of type Fn if
it has an Eilenberg–MacLane space with a finite n-skeleton. Denote by kn the number of
n-simplices (or n-cells) in the chosen model of the Eilenberg–MacLane space.

Let ˇn
.2/
.G/ denote the n-th `2-Betti number of G. The following proposition is a

consequence of the existence of the spectral gap for the Laplacian, which then ensures the
existence of a higher Kazhdan projection pn 2Mkn.C

�
r .G//, and the relation

ˇn.2/.G/ D ��.Œpn�/;

where �� is the canonical trace on K0.C �r .G//, as in [23].

Proposition 1. Let G be of type FnC1. Assume that �n 2Mkn.C
�
r .G// has a spectral

gap. If the Baum–Connes assembly map KG0 .EG/! K0.C
�
r .G// is surjective, then

ˇn.2/.G/ 2 ƒ
G :

In particular, if G is torsion-free, then ˇn
.2/
.G/ 2 Z.

The above theorem illustrates a possible strategy for finding counterexamples to the
Baum–Connes conjecture: a group G of type FnC1 such that ˇn

.2/
.G/ …ƒG (in particular,

if ˇn
.2/
.G/ is irrational) with 0 isolated in the spectrum of �n will not satisfy the Baum–

Connes conjecture. More precisely, the Baum–Connes assembly map for G will not be
surjective. We refer to [12, 28] for an overview of the Baum–Connes conjecture. It is
worth noting that such a counterexample, with bounded orders of finite subgroups, would
also not satisfy the Atiyah conjecture, see, e.g., [22].

Our primary application is the construction of classes in the K-theory of the Roe
algebra of a box space of a residually finite groupG and their relation to the Lück approx-
imation theorem. Let ¹Niº be a decreasing sequence of finite index normal subgroups of
a residually finite group G, satisfying\

Ni D ¹eº:

Let �i denote the associated quasi-regular representation of G on `2.G=Ni / and consider
the family N D ¹�; �1; �2; : : :º of unitary representations of G. The C �-algebra C �

N
.G/
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is the completion of the group ring CG with respect to the norm induced by the family
N (see Section 1.1 for a precise definition). We will denote by ˇn.G/D dimC H

n.G;C/
the standard n-th Betti number of G.

Theorem 2. Let G be an exact, residually finite group of type FnC1 and let kn, ¹Niº and
N be as above. Assume that �n 2Mkn.C

�
N
.G// has a spectral gap and that the coarse

Baum–Connes assembly mapKX0.Y /! K0.C
�.Y // for the box space Y D

`
G=Ni of

G is surjective, then
ˇn.2/.Ni / D ˇ

n.Ni /

for all but finitely many i .

Note that the conclusion of the above theorem in fact is a strengthening of Lück’s
approximation theorem [20]. Indeed, the expression in the formula in the above theorem
can be rewritten as

ŒG W Ni �

�
ˇn.2/.G/ �

ˇn.Ni /

ŒG W Ni �

�
D 0:

Theorem 2 thus forces a much stronger equality of the involved Betti numbers. On the
other hand, as shown in [24, Theorem 5.1] there are examples where the speed of conver-
gence of ˇn.Ni /=ŒG W Ni � to ˇn

.2/
.G/ can be as slow as needed.

Theorem 2 in particular provides new strategies for contradicting the coarse Baum–
Connes conjecture. It is an important open question whether there exist such counterex-
amples that do not contain expander graphs. In Section 3 we present several examples of
spaces to which our techniques apply, in particular ones for which higher cohomology can
be used to deduce that the coarse Baum–Connes conjecture fails for them. These exam-
ples are constructed from spaces which contain expanders and thus do not provide new
counterexamples to the conjecture. We do expect however, as expressed in Conjecture 21,
that there are examples of higher-dimensional expanders to which our techniques apply
and which additionally would not contain expander graphs, thus providing essentially new
counterexamples to the coarse Baum–Connes conjecture.

On the other hand, it is also natural to conjecture that Theorem 2 could also lead to
new counterexamples to the Baum–Connes conjecture with coefficients by embedding
a counterexample to the coarse Baum–Connes conjecture, obtained through Theorem 2,
isometrically into a finitely generated group, as in [25]. Such constructions could lead
to new counterexample to the Baum–Connes conjecture with coefficients, by applying
arguments similar to the ones in [16].

Finally, we remark that algebraic conditions implying the existence of gaps in the
spectrum of the operators arising from the cochain complexes with coefficients in uni-
tary representations were recently provided in [4]. Those conditions involve writing the
elements

.�Cn � "�
C
n /�

C
n and .��n � "�

�
n /�

�
n ;

where
�Cn D d

�
n dn and ��n D dn�1d

�
n�1
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are matrices over RG and the two summands of the Laplacian, as sums of squares in
Mk.RG/. Such conditions can be verified using computational methods.

1. Higher Kazhdan projections

Recall that a group has type Fn if it admits an Eilenberg–MacLane space K.G; 1/ with a
finite n-skeleton. The condition F1 is equivalent to G being finitely generated, and F2 is
equivalent to G having a finite presentation.

1.1. Kazhdan projections related to property .T /

We begin with revisiting the classical notion of Kazhdan projections in the context of
property .T /. Let G be a finitely generated group with S D S�1 a fixed generating set.
The real (respectively, complex) group ring of G will be denoted by RG (respectively,
CG). Consider a family F of unitary representations and let the associated group C �-
algebra be the completion

C �F .G/ D CG
k�kF

;

where
kf kF D sup

�2F

k�.f /k:

We will always assume that F is a faithful family (i.e., for every 0 ¤ f 2 CG we have
�.f /¤ 0 for some � 2F ) to ensure that k � kF is a norm. In particular, we obtain the max-
imal group C �-algebra C �max.G/ if F is the family of all unitary representations, and the
reduced group C �-algebra C �r .G/ if F D ¹�º, where � is the left regular representation.

The following is a classical characterization of property .T / for G due to Akemann
and Walter [1]. We will use this characterization as a definition and refer to [5] for a
comprehensive overview of property .T /.

Theorem 3 (Akemann–Walter [1]). The group G has property .T / if and only if there
exists a projection

p0 D p
�
0 D p

2
0 2 C

�
max.G/

with the property that for every unitary representation � of G the image �.p0/ is the
orthogonal projection onto the subspace of invariant vectors of � .

See, e.g., [17, Section 3.7] and [10] for a broader discussion of Kazhdan projections.
We will now interpret Kazhdan projections in the setting of group cohomology. Let � be
a unitary representation of G on a Hilbert space H . Denote by d0 the #S � 1 matrix2641 � s1:::

1 � sn

375 ;
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where si runs through the elements of S , with coefficients in RG and the Laplacian �0 2
RG is

�0 D d
�
0 d0 D 2

�
#S �

X
s2S

s

�
2 RG:

For any unitary representation � of G on a Hilbert space H , we have

ker�.�0/ D ker�.d0/ D H� ;

where H� � H denotes the closed subspace of invariant vectors of � . Note also that the
same space can be interpreted as reduced1 cohomology in degree 0:

ker�.�0/ D H�
' H

0
.G; �/:

The image �.p0/ of the Kazhdan projection is the orthogonal projection

C 0.G; �/ ����!
�.p0/

ker�.�0/:

The Kazhdan projection p0 exists in C �
F
.G/ if and only if �.�0/ has a uniform spectral

gap for all � 2 F . The projection p0 is non-zero if at least one � 2 F has a non-zero
invariant vector.

1.2. Kazhdan projections in higher degree

We will now discuss a generalization of Kazhdan projections in the setting of higher group
cohomology. We will work in the setting of simplicial complexes however, all of our
considerations can be carried out equally in the setting of CW-complexes. Let G be a
group of type FnC1 with a chosen model X of K.G; 1/ with finite nC 1-skeleton.

We can consider the cochain complex for cohomology of G with coefficients in � ,
where

C n.G; �/ D
®
f W X .n/ ! H

¯
:

By Mm�m0.RG/DMm�m0 ˝RG we denote the space ofm�m0 matrices with coef-
ficients in the group ring RG. WhenmDm0 the resulting algebra is denoted by Mm.RG/.
The codifferentials can be represented by elements

dn 2MknC1�kn.RG/;

where ki denotes the number of i -simplices in X , in the sense that for every unitary
representation � the codifferential is given by the operator

�.dn/ W C
n.G; �/! C nC1.G; �/;

where � is applied to an element of Mm�m0.C
�
F
.G// entry-wise.

1Recall that in a setting where the cochain spaces in a cochain complex C n �!
dn

C nC1 are equipped

with a Hilbert space structure coming from a given unitary representation .G;�/, the corresponding reduced
cohomology is defined as the quotient H

n
.G; �/ D ker dn=im dn�1, where im dn�1 is the closure of the

image of the codifferential dn�1. Cohomology is said to be reduced in degree n if H
n
D Hn.
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The Laplacian element in degree n is defined to be

�n D d
�
n dn C dn�1d

�
n�1 2Mkn.RG/;

and we denote the two summands by

�Cn D d
�
n dn; ��n D dn�1d

�
n�1:

In particular, �n, �Cn , and ��n are elements of any completion of Mkn.RG/ such as
Mkn.C

�
max.G// or Mkn.C

�
r .G// (see [4, Section 3]).

More generally, for unitary representation � of G we can now consider the operator
�.�n/ 2 �.RG/ (we will usually skip the reference to � if it will be clear from the
context, as for instance in the previous paragraph). The kernel of �.�n/ is the space of
harmonic n-cochains for � , and we have the standard Hodge–de Rham isomorphism

ker�.�n/ ' H
n
.G; �/;

between that kernel and the reduced cohomology ofG with coefficients in � (see, e.g., [4,
Section 3]).

Similarly, the kernel of the projection �.�Cn / is the n-cocycles for � , and the kernel
of �.��n / is the n-cycles.

Definition 4 (Higher Kazhdan projections). Let F be a family of unitary representa-
tions of a group G. A Kazhdan projection in degree n is a projection pn D p�n D p

2
n 2

Mkn.C
�
F
.G// such that for every unitary representation � 2 F the projection �.pn/ is

the orthogonal projection C n.G; �/! ker�.�n/.
A partial Kazhdan projection in degree n is a projection pCn ;p

�
n 2Mkn.C

�
F
.G//, such

that for every unitary representation � 2 F the projection �.pCn / (respectively, �.p�n /)
is the orthogonal projection onto the kernel of �.dn/ (respectively, onto the kernel of
�.d�n�1/).

In degree 0 in the case when F is the family of all unitary representations, the projec-
tion p0 2 C �max.G/ is the classical Kazhdan projection. Clearly, pn is non-zero if and only
if for at least one � 2 F we have �.pn/ ¤ 0.

From now on we will shorten the subscript kn, denoting the number of n-simplices in
the chosenK.G; 1/, to k, as the dimension will be clear from the context. Similarly to the
case of property .T /, higher Kazhdan projections exist in the presence of a spectral gap.

Proposition 5. Assume that �n 2 Mk.C
�
F
.G// (respectively, �Cn , ��n ) has a spectral

gap. Then the Kazdhan projection pn (respectively, the partial Kazhdan projections pCn ,
p�n ) exists in the C �-algebra Mkn.C

�
F
.G//.

Proof. By assumption, the spectrum of �n satisfies

�.�.�n// � ¹0º [ Œ";1/
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for every unitary representation � 2 F and some " > 0. In particular, �.�n/ � ¹0º [
Œ";1/ when �n is viewed as an element of Mk.C

�
F
.G//.

Due to the presence of the spectral gap, we can apply continuous functional calculus
and conclude that the limit of the heat semigroup

lim
t!1

e�t�n

is the spectral projection pn 2Mk.C
�
F
.G//. By construction, pn has the required proper-

ties.
The proof for the partial projections is analogous.

Note that the fact that the spectrum of �n 2Mk.C
�
F
.G// has a gap implies that both

�Cn and ��n also have spectral gaps and in particular all three higher Kazhdan projections
exist in Mk.C

�
F
.G//. We have the following decomposition for higher Kazhdan projec-

tions.

Lemma 6. Assume that �n 2Mk.C
�
F
.G// has a spectral gap. Then

pn D p
C
n p
�
n :

Proof. It suffices to notice that �Cn and ��n commute in Mk.C
�
F
.G// and satisfy

�Cn �
�
n D �

�
n�
C
n D 0;

using the property that didi�1 D 0 for every i 2 N. Consequently, the corresponding
spectral projections commute and their product is the projection onto the intersections of
their kernels, which is precisely the kernel of �n.

1.3. K -theory classes – a special case

In this section we consider the case when F D ¹�º, where � is the left regular represen-
tation of G on `2.G/ and C �

F
.G/ D C �r .G/ is the reduced group C �-algebra of G. We

refer to [17, 28] for background on K-theory and assembly maps.
The projection pn 2Mk.C

�
r .G// exists if �.�n/ has a spectral gap at 0. In this case

the kernel of the Laplacian �.�n/ is isomorphic to the reduced `2-cohomology of G [22]
(see, e.g., [18, Proposition 3.23]):

ker�.�n/ ' `2H
n
.G/ ' ker�.dn/

ı
im�.dn�1/;

and it is non-trivial if and only if the n-th `2-Betti number ˇn
.2/
.G/ is non-zero.

The projection pn 2Mk.C
�
r .G// gives rise toK-theory class Œpn� 2K0.C �r .G//. We

are interested in the properties of the classes defined by the higher Kazhdan projections
Œpn� 2 K0.C

�
r .G//.

Recall that the canonical trace �G on C �r .G/ is given by

�G.˛/ D h˛ıe; ıei;
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where ıe 2 `2.G/ is the Dirac delta at the identity element e 2 G. For an element ˛ 2 CG
we have �.˛/ D ˛.e/. The induced trace on Mk.C

�
r .G// is defined as

�k;G..aij // D

kX
iD1

�G.ai i /;

and there is an induced map
�� W K0.C

�
r .G//! R

defined by ��.Œp�/ D �k;G.p/, for a class represented by a projection p 2Mk.C
�
r .G//.

Proposition 7. Let G be a group of type FnC1. Assume that �n has a spectral gap in
Mk.C

�
r .G//, then

��.Œpn�/ D ˇ
n
.2/.G/:

In particular, if ˇn
.2/
.G/ ¤ 0, then

Œpn� ¤ 0 in K0.C �r .G//:

Proof. By definition, the n-th `2 Betti number of G is the von Neumann dimension (over
the group von Neumann algebra L.G/) of the orthogonal projection onto the kernel of the
Laplacian. Under our assumptions the projection is now an element of the smaller algebra
Mk.C

�
r .G// �Mk.L.G// and

ˇn.2/.G/ D �k;G.pn/:

Therefore, the induced trace on the group K0.C �r .G// satisfies ��.Œpn�/ D ˇn
.2/
.G/, as

claimed.

A similar argument shows non-vanishing of the classes represented by the partial pro-
jections.

Proposition 8. Assume that 0 is isolated in the spectrum of �Cn (respectively, ��n ) in
Mk.C

�
r .G//. If ˇn

.2/
.G/ ¤ 0, then ŒpCn � ¤ 0 (respectively, Œp�n � ¤ 0) in K0.C �r .G//.

Proof. By assumption pCn exists in Mk.C
�
r .G// and pn exists in Mk.L.G// and we will

compare the values of the trace over the latter algebra. Since �k;G.pn/ ¤ 0 and

im.pn/ � im.pCn /

by monotonicity of the von Neumann dimension over L.G/, we have

�k;G.p
C
n / � �k;G.pn/ > 0:

Consequently,
��.Œp

C
n �/ ¤ 0 in K0.C �r .G//:
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1.4. The Baum–Connes assembly map

The Baum–Connes assembly map is the map

�i W K
G
i .EG/! Ki .C

�
r .G//; i D 0; 1:

The trace conjecture of Baum and Connes and the modified trace conjecture of Lück [23]
predict the range of the composition �� ı �0. In particular, the modified trace conjecture,
formulated and proved by Lück [23], states that �� ı�i takes values in a subringƒG �Q,
generated from Z by adjoining the inverses of cardinalities of finite subgroups. See [12,
28, 30] for more details on this conjecture.

Theorem 9 (Lück [23, Theorem 0.3]). If the Baum–Connes assembly map is surjective,
then the composition �� ı �0 takes values in the ring ƒG � Q.

We can now state the relation between the Baum–Connes conjecture and `2-Betti num-
bers.

Proposition 1. Let G be of type FnC1. Assume that 0 is isolated in the spectrum of �n 2
Mk.C

�
r .G//. If the Baum–Connes assembly map KG0 .EG/! K0.C

�
r .G// is surjective,

then
ˇn.2/.G/ 2 ƒ

G :

In particular, if G is torsion-free then ˇn
.2/
.G/ 2 Z.

Remark 10 (The Euler class). Consider an infinite group G such that K.G; 1/ can be
chosen to be a finite complex. Assume that �.�n/ has a spectral gap in Mk.C

�
r .G// for

every n � 0 (in particular, G is non-amenable). Then we can define the Euler class

„.G/ D
X
i�0

.�1/i Œpi �

in the K-theory K0.C �r .G// so that

��.„.G// D �.2/.G/

is the `2-Euler characteristic of the chosen K.G; 1/.
Atiyah’s L2-index theorem associates the L2-index, analogous to the Fredholm index

but defined via the trace on the von Neumann algebra, to a lift zD of an elliptic operatorD
on a compact manifold M to the universal cover of M . Loosely speaking, in the presence
of the spectral gap the L2-indices of certain operators appearing in the Atiyah L2-index
theorem are in fact traces of their Baum–Connes indices.

1.5. Examples

In case of an infinite group G, the projection �.p0/ 2 C �r .G/ is always 0 since the kernel
of �.�0/ consists precisely of constant functions in `2.G/.

We will now discuss certain cases in which higher Kazhdan projections exist. We will
use the following fact, which is a reformulation of [4, Proposition 16, (2) and (3)].
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Lemma 11. Let � be a unitary representation of G. The Laplacian �.�n/ has a spectral
gap around 0 if and only if the cohomology groups Hn.G; �/ and HnC1.G; �/ are both
reduced.

Sketch of proof. Using the notation of [4], given a cochain complex

� � � ! C n�1 ! C n ! C nC1 ! � � � ;

where the C n have Hilbert space structures and the codifferentials dn W C n ! C nC1 are
bounded operators, we have �n D d�n dn C dn�1d

�
n�1. We have an orthogonal decompo-

sition
C n D CCn ˚ ker�n ˚ C�n ;

where C�n D kerdn \ ker.d�n�1/
? and CCn D kerd�n�1 \ .kerd�n /

?. Then the restrictions
of d�n dn and of dn�1d�n�1 are invertible on CCn and C�n , respectively if and only if the
cohomology groups Hn and HnC1 are reduced [4]. Clearly, the first condition is equiva-
lent to the fact that 0 is isolated in the spectrum of the Laplacian �n.

1.5.1. Free groups. Consider the free group Fn on n � 2 generators. The standard
Eilenberg–MacLane space K.Fn; 1/ is the wedge

W
n S

1 of n circles, whose universal
cover is the tree, the Cayley graph of Fn. Then for Fn the projection p1 2Mk.C

�
r .Fn//

exists and gives rise to a non-zero class in K-theory C �r .Fn/.
Indeed, since n � 2, the free group Fn is non-amenable, we have that the `2-cohomol-

ogy is reduced in degree 1 (i.e., the range of the codifferential into the 1-cochains is
closed). Since K.Fn; 1/ is 1-dimensional, the cohomology in degree 2 is reduced as there
are no 2-cochains. We thus have d1 D 0, pC1 D I, and p1 D p�1 . These facts together with
Lemma 11 imply that the cohomological Laplacian �1 in degree 1 has a spectral gap.

The `2-Betti number of a free group Fn on n generators is

ˇ1.2/.Fn/ D n � 1:

By the previous discussion together with Proposition 7,

Œp1� ¤ 0 in K0.C �r .Fn//:

Moreover, we can identify precisely the class of p1 in the K-theory group. Indeed,
K0.C

�
r .Fn// is isomorphic to Z and generated by 1 2 C �r .Fn/. Because of this, the value

of the trace determines the class of p1 to be

Œp1� D n � 1 2 Z ' K0.C
�
r .Fn//:

The corresponding Euler class (see Remark 10) in K0.C �r .Fn// is given by

„.Fn/ D Œp0� � Œp1� D �Œp1�:

More generally, the argument used in the above example together with [2, Corollary 4.8]
gives the following.
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Corollary 12. Let G be a finitely presented group with infinitely many ends such that
H 2.G; `2.G// is reduced. Then the projection p1.G/ exists in Mkn.C

�
r .G// and

Œp1� ¤ 0 in K0.C �r .G//:

Relation to the identity. Consider the group SL.2;Z/. This group contains the free group
F2 as a subgroup of index 12. The `2-cohomology of SL.2; Z/ in degree 1 and 2 is
reduced. Indeed, in degree 1 this is because the group is non-amenable; in degree 2 it
follows by Shapiro’s lemma. Therefore by Lemma 11 the cohomological Laplacian �1
has a spectral gap in degree 1 and the projection p1 exists in Mk.C

�
r .SL.2;Z///. More-

over, we have
�.Œp1�/ D ˇ

1
.2/.SL.2;Z// D 1=12;

which implies that the K-theory class Œp1� 2 K0.C �r .SL.2;Z/// is not a multiple of the
identity.

This argument applies to other virtually-free groups with non-integral `2-Betti num-
bers.

1.5.2. Kähler groups. The property that the Laplacian has a spectral gap in the analytic
setting (i.e., L2-cohomology defined in terms differential forms) is equivalent to the exis-
tence of the spectral gap in the combinatorial setting was shown in [11], [14, Remark 2],
see also [22, Theorem 2.68] or [21, Section 8]. This is most often phrased in terms of
Novikov–Shubin invariants associated to spectral density functions: spectral gap is equiv-
alent to the Novikov–Shubin invariant being infinite, which is the same as the property
that the spectral density function is constant in the neighborhood of 0. Then it is shown
that the combinatorial and analytic spectral density functions are dilation equivalent, and
in particular, equal in a neighborhood of 0.

Consider now a closed Kähler hyperbolic manifold M and denote G D �1.M/. The
Laplacian acting on L2-differential forms on the universal cover zM has a spectral gap in
every dimension, as shown by Gromov [13], see also [22, Section 11.2.3]. Gromov also
showed that the `2-cohomology of M vanishes except for the middle dimension.

Consequently, ifG is a fundamental group of such a Kähler manifold, then the assump-
tions of Proposition 7 are satisfied and the projection pn exists in Mkn.C

�
r .G// in every

dimension.
Moreover, the Euler class

„.G/ D
X
i�0

.�1/i Œpi � 2 K0.C
�
r .G//

exists and its trace is the `2-Euler characteristic of G.

1.5.3. Lattices in PGLnC1.Qp/. Given n � 2, a sufficiently large prime p and a lattice
� � PGLnC1.Qp/, we have that Hn.�; �/ is reduced for every unitary representation � ,
see [4, Proposition 19]. This fact is equivalent to �.��n / having a spectral gap for every



K. Li, P. W. Nowak, and S. Pooya 324

unitary representation � of � and it is easy to check that such a spectral gap must be then
uniform; i.e., �Cn has a spectral gap in Mk.C

�
max.�//.

At the same time there exists a finite index subgroup � 0 � � such that Hn.� 0;C/ '
Hn.�; `2.�=�

0// ¤ 0.
Finally, since � acts on the Bruhat–Tits building (see, e.g., [27]), there are no cells of

dimension nC 1 and the codifferential dn is 0.
As a consequence we obtain the following.

Proposition 13. Let � � PGLnC1.Qp/ be a lattice, then the Kazhdan projection pn exists
in Mk.C

�
max.�// and is non-zero.

2. The coarse Baum–Connes conjecture

We will now prove our main results and describe the K-theory classes induced by the
higher Kazhdan projections in Roe algebras and their applications to the coarse Baum–
Connes conjecture of a box space of a residually finite group. The arguments we will use
were introduced in [15, 16] and developed further in [29]. We also refer to [30, Chapter
13] for more details.

2.1. Roe algebras, box spaces, and Laplacians

2.1.1. Roe algebras. The Roe algebra C �.X/ of a discrete, bounded geometry metric
space X is the completion in B.`2.X IH0// of the �-algebra CŒX� of finite propagation
operators, which are locally compact; i.e., for a discrete space the matrix coefficients are
compact operators Tx;y 2K.H0/ on a fixed, infinite-dimensional Hilbert space H0.

If G acts on X , then the equivariant Roe algebra is defined to be the closure of the
subalgebra CŒX�G � CŒX� of equivariant finite propagation operators, i.e., satisfying
Tx;y D Tgx;gy , for any g 2 G and x; y 2 X .

The uniform Roe algebra C �u .X/ of X is the completion in B.`2.X// of the �-algebra
CuŒX� of finite propagation operators. The equivariant uniform Roe algebra C�u.X/

G is
defined as before by considering G-invariant operators in CuŒX� and taking the closure
inside C �u .X/.

See [29, Definitions 3.2 and 3.6] for a detailed description of the Roe algebra and the
equivariant Roe algebra.

2.1.2. Laplacians on box spaces. Consider a finitely generated residually finite group
G. Let ¹Niº be a family of finite index normal subgroups of G satisfying

T
Ni D ¹eº.

Consider the space
Y D

a
G=Ni ;

viewed as a box space with d.G=Ni ; G=Nj / � 2iCj .
Let �i be the quasi-regular representation of G on `2.G=Ni / given by pulling back

the regular representation of G=Ni on `2.G=Ni / to G via the quotient map G ! G=Ni



Higher Kazhdan projections, `2-Betti numbers and Baum–Connes conjectures 325

and denote by N the family of representations

N D
®
�; �1; �2; : : :

¯
:

The standing assumption in this section will be that the cohomological n-Laplacian �n
has a spectral gap in Mk.C

�
N
.G//. The cohomological Laplacian element�n 2Mk.CG/

in degree n maps to �i .�n/ in Mk.�i .C
�
N
.G/// and we will denote

�in D �i .�n/:

Define the Laplace element of the box space to be

Dn D
M
i

�in 2
M

Mk.CuŒG=Ni �/ �Mn.CuŒY �/:

Note thatDn has a spectral gap in C �.Y / if and only if all the�in have a spectral gap over
C �

N
.G/.

2.2. The lifting map

From now on we will assume that the group G satisfies the operator norm localization
property. As shown by Sako [26], the operator norm localization property is equivalent to
exactness for bounded geometry metric spaces, in particular for finitely generated groups,
so the assumptions of Theorem 2 guarantee this property for G.

Note that we will only be using a special case of the setup described in [29], as our box
space consists of a family of finite quotients of a single groupG, which naturally serves as
a covering space for all of the finite quotients. This setting is the same as the one in [15],
however we do follow the detailed version of the arguments as in [29].

Willett and Yu in [29, Lemma 3.8] define a lifting map, a �-homomorphism

� W CŒY �!

Q
i CŒG�NiL
i CŒG�Ni

;

into the algebra of sequences of elements of the Ni -invariant subspaces of CŒG� modulo
the relation of being equal at all but finitely many entries.

We have

Mk

�Q
i CŒG�NiL
i CŒG�Ni

�
D

Q
i Mk.CŒG�

Ni /L
i Mk.CŒG�Ni /

and for every k 2 N the map � induces a �-homomorphism

�.k/ WMk.CŒY �/!Mk

�Q
CŒG�NiL
CŒG�Ni

�
;

by applying � entry-wise.
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We recall that in [29, Lemma 3.12] it was shown that if G has the operator norm
localization property then the map � extends to a map

� W C �.Y /!

Q
i C
�.G/NiL

i C
�.G/Ni

;

and similarly induces the corresponding map �.n/ on the k � k matrices over these alge-
bras. Here, Q

i C
�.G/NiL

i C
�.G/Ni

is the algebra of sequences of elements of C �.G/Ni modulo the relation of being asymp-
totically equal.

The same formula as the one for � in [29, Lemma 3.8] gives a uniform version of the
lifting map,

�u W CuŒY �!

Q
i CuŒG�NiL
i CuŒG�Ni

;

which is in the same way a �-homomorphism.
If G has the operator norm localization property (see, e.g., [7,26]), then it also has the

uniform version of that property, as proved by Sako [26]. This implies that �u extends to
a �-homomorphism

�u W C
�
u .Y /!

Q
i C
�
u .G/

NiL
i C
�
u .G/

Ni
:

See [30, Lemma 13.3.11 and Corollary 13.3.12] for the detailed arguments, which apply
verbatim here. Similarly, �.n/u in both cases induces a map on matrices over the respective
algebras.

2.3. Surjectivity of the coarse Baum–Connes assembly map

We will now focus on the lift of the Laplacian Dn. In order to do this, we will use an
argument based on [29, Lemma 5.6].

Lemma 14. LetG be an exact group and assume that�n has a spectral gap overC �
N
.G/.

Denote by
Pn D

M
�i .pn/ 2Mk.C

�
u .Y //

the spectral projection associated to Dn 2Mk.C
�
u .Y //, then

�.k/u .Pn/ D

1Y
iD1

�.pn/;

where �.pn/ is the projection onto the harmonic n-cochains in the `2-cohomology of G.

Proof. The projection Pn is the spectral projection of Dn. The Laplacian element Dn
defined above lifts to an element

�.k/u .Dn/ 2Mk

�Q1
iD1 CuŒG�NiL1
iD1 CuŒG�Ni

�
;
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whose spectrum is contained in ¹0º [ Œ";1/ for some " > 0. Indeed, since the same is
true for Dn 2Mk.C

�
u .Y //, by assumption, and spectral gaps are preserved by homomor-

phisms of unital C �-algebras.
It is easy to see that from the definition of � in the proof of [29, Lemma 3.8] that the

lift of Dn is represented by the constant sequence

�.k/u .Dn/ D

1Y
iD1

�n;

in the algebra Q1
iD1 Mk.CG/L1
iD1 Mk.CG/

�Mk

�Q1
iD1 CuŒG�NiL1
iD1 CuŒG�Ni

�
:

Indeed, this follows from the fact that the size of the support of �in and the formula for
the lift �.u/ are both independent of the particular quotient G=Ni if i is sufficiently large.

Consider now the spectral projection zPn associated to �.k/u .Dn/, then

zPn D lim
t!1

e�t�
.k/
u .Dn/ D lim

t!1
�.k/u

�
e�tDn

�
D �.k/u .Pn/:

Thus the associated spectral projection is of the form

1Y
iD1

�.pn/;

where
�.pn/ 2Mk.C

�
r .G//

is the projection onto the harmonic n-cochains in the `2-cochains of G, as claimed.

We now define the higher Kazhdan projection of the box space Y to be Pn ˝ q 2
Mn.C

�.Y //, where q is any rank one projection on H0. We consider the associated K-
theory class ŒPn˝ q� 2K0.C �.Y //. We will show that under certain conditions this class
is non-zero and does not lie in the image of the coarse Baum–Connes conjecture for Y .

The first thing to notice is that the lift of the projection Pn ˝ q can be described
explicitly as an element of C �.G/G .

Lemma 15. Let q 2K.H0/, then

�.Pn ˝ q/ D �u.Pn/˝ q:

Proof. Let ˛i be a sequence of finite propagation operators such that Pn D limi ˛i , then

�.˛i ˝ q/ D �u.˛i /˝ q;

by the definition of � ([29, Lemma 3.8]). Passing to the limit and using continuity of �
we obtain the claim.
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Following [15, 29] define the map

d� W K0.C
�.Y //!

Q
ZL
Z

by taking the map

d W C �.Y /!

Q
K.`2.G=Ni IH0//L
K.`2.G=Ni IH0//

;

defined by

A 7!

1Y
iD1

QiAQi ;

where Qi W `2.Y /! `2.G=Ni / is the projection on the i -th box G=Ni , and considering
the induced map on K-theory

d� W K0.C
�.Y //! K0

�Q
K.`2.G=Ni IH0//L
K.`2.G=Ni IH0//

�
'

Q
ZL
Z
:

The above map d� can recognize when our K-theory class is non-zero. The map d�
applied to the projection Pn gives the sequence of dimensions of images of �i .pn/.

On the other hand, consider the trace �i on C �.G/Ni ' C �r .Ni /˝K by considering
the tensor product of the standard trace on C �r .Ni / with the canonical trace on K . These
�i induce the map

T W K0

�Q
i C
�.G/NiL

i C
�.G/Ni

�
!

Q
RL
R
:

The following diagram was analyzed in [29].

K0

�Q
i C
�.G/NiL

i C
�.G/Ni

�

KX0.Y /
Q

RL
R

K0.C
�.Y //

Tz�c

�c

��

d�

The next lemma was formulated in [29] for projections in C �.X/, however the proof
applies equally to projections in Mn.C

�.X//.

Lemma 16 ([29, Lemma 6.5]). If p is a projection in Mn.C
�.Y // such that the class

Œp�2K0.C
�.Y // is in the image of the coarse assembly map�0 WKX0.Y /!K0.C �.Y //,

then

d�.Œp�/ D T .��.Œp�// in
Q

RL
R
:
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These maps take values in
Q

R=
L

R viewed as an object in the category of abelian
groups; that is, the equality of the two traces is an equality of coordinates for all but
finitely many i (see [30, Section 13.3]). The next statement allows us to show that when it
is non-compact, the projection Pn gives rise to a non-zero K-theory class in K0.C �.Y //.

Proposition 17. Assume that Hn.G; `2.G=Ni // ¤ 0 for infinitely many i 2 N. Then
d�ŒPn� ¤ 0.

Proof. We have

d�.Pn/ D

1Y
iD1

dim�i .pn/ D

1Y
iD1

dimHn.GI�i /:

Indeed, since
Mn.C

�.Y // D C �.Zn � Y /;

the map

d .n/ WMn.C
�.X//!

Q
Mn.K.`2.G=Ni IH0///L
Mn.K.`2.G=Ni IH0///

can be rewritten as

d W C �.X � Zn/!

Q
K.`2.G=Ni � ZnIH0//L
K.`2.G=Ni � ZnIH0//

:

By the assumption on the cohomology of G with coefficients in �i , the projection p is
non-compact in C �.Y �Zn/ and as shown in the proof of [29, Theorem 6.1, p. 1407], we
have d�Œp� ¤ 0.

The next lemma shows that the trace of the lift is naturally related to `2-Betti numbers.

Lemma 18. The following holds

T .��.ŒPn�// D

1Y
iD1

ŒG W Ni �ˇ
n
.2/.G/ D

1Y
iD1

ˇn.2/.Ni /:

Proof. For a finite index subgroup N � G, the trace �N on C �.G/N is defined as the
tensor product of the canonical trace trN on C �r .N / with the canonical (unbounded trace)
Tr on the compact operators, via the isomorphism

 N W C
�.G/N �!

'
C �r .N /˝K:

The isomorphism  N is defined by considering a fundamental domainD �G forN �G
and for A 2 C �.G/N identifying

A 7!
X
g2N

ug ˝ A
.g/;
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where A.g/ 2K.`2.D;H0// is defined by the formula

A.g/x;y D Ax;gy ;

for x; y 2 D.
With this identification we observe that for an element A 2 C �.G/G of the form A D

˛ ˝ q, where ˛ 2 C �r .G/ and q is a rank 1 projection on H0, we have

�N .A/ D �N

�X
g2N

ug ˝ A
.g/

�
D

X
g2N

tr.ug/Tr
�
A.g/

�
D Tr

�
A.e/

�
:

In our case A.e/ is a D �D matrix defined by restricting A to D. Therefore

Tr.A.e// D
X
x2D

˛.e/x;x � rank.q/ D ŒG W N�˛.e/e;e:

The same relation passes to traces of matrices over the respective C �-algebras. In the case
of the projection Pn, these formulas yield

�N .Pn/ D ŒG W N�ˇ
n
.2/.G/;

as claimed.

Before we summarize this discussion, we will observe one more fact that will allow
to relate our results to Lück’s approximation theorem. Recall that the Betti number of a
group G is the number ˇn.G/ D dimC H

n.G;C/.

Lemma 19. For a finite index subgroup N � G, we have

dimC H
n.G; `2.G=N// D ˇ

n.N /:

Proof. Since N is of finite index in G, we have

CoIndGN C D IndGN C D `2.G=N/;

see, e.g., [6, Proposition 5.9]. Applying Shapiro’s lemma we obtain

Hn.G; `2.G=N// ' H
n.G;CoIndGN C/ ' Hn.N;C/:

We are now in the position to formulate the main theorem of this section.

Theorem 2. LetG be an exact, residually finite group of type FnC1 and let ¹Niº and N be
the family of unitary representations defined above. Assume that �n 2Mkn.C

�
N
.G// has
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a spectral gap and that the coarse Baum–Connes assembly mapKX0.Y /! K0.C
�.Y //

for the box space Y D
`
G=Ni of G is surjective, then

ˇn.2/.Ni / D ˇ
n.Ni /

for all but finitely many i .

Proof. The claim follows from the explicit computation of the values of both traces in
Proposition 17 and Lemmas 18 and 19.

Note that Theorem 2 provides a strengthening of Lück’s approximation theorem [20]
in the case described by the above theorem. Indeed, we can rewrite the conclusion of
Theorem 2 as vanishing of

ŒG W Ni �

�
ˇn.2/.G/ �

ˇn.Ni /

ŒG W Ni �

�
D 0

for all but finitely many i . Compare this with [24, Theorem 5.1], where examples with
slow speed of convergence have been constructed. The speed of convergence of Betti num-
bers of finite quotients to the `2-Betti number of a residually finite group was also studied
in [8], however the techniques used there are different. In our case both the assumptions
and the conclusions are stronger.

Remark 20 (Ghost projections). We can extend the notion of a ghost operator to matrix
algebras over the Roe algebra by defining an element T 2Mn.C

�.Y // to be a ghost if the
coefficients Ti;j 2 C �.Y / are ghost for all 1 � i; j � n. It can be shown that the kernel
of the lifting map �.n/ consists precisely of ghost operators. See [30, Corollary 13.3.14].
This observation provides a new cohomological tool to construct ghost projections in the
case when `2-Betti number of G vanishes. The problem of constructing new examples of
ghost projection was posed by Willet and Yu [29].

3. Examples

Here we will discuss examples that the above theorem applies to.

3.1. Degree 0

We first recall the counterexample to the coarse Baum–Connes conjecture constructed
in [15]. Let G be an infinite, finitely generated, residually finite, and exact group with
property .�/ with respect to a family of finite index (normal) subgroup ¹Niº such thatT
Ni D ¹eº. Then, as shown in [15] and then in [29], the projection p0 exists in the Roe

algebra of the box space �1iD1G=Ni and

d�.Œp0�/ D .1; 1; 1; : : :/:

At the same time ˇ0
.2/
.G/D 0 asG is infinite. As a consequence, the coarse Baum–Connes

assembly map is not surjective.
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3.2. Higher degree

Our second example will show that similar phenomena can also appear in higher cohomol-
ogy and that higher cohomology can also be used to show that the coarse Baum–Connes
conjecture fails.

Consider the free group F2 on 2 generators and let ¹Niº1iD1 be a family of finite index
normal subgroups such that

T
Ni D ¹eº and the family of Cayley graphs of the finite

groups ¹F2=Niº is a family of expanders.
Now take F2 � F2 and the family ¹Ni �Niº. We will use cohomology in degree 1 to

show that the coarse Baum–Connes assembly map is not surjective.
We will work with cellular cohomology. The Eilenberg–McLane space of F2 is the

figure eight space, denoted here byE, with the Cayley graph T of F2 as its universal cover.
Similarly, for F2 � F2 the Eilenberg–McLane space is E � E and T � T is its universal
cover. The cellular structures of these spaces are the obvious ones and are determined by
the structure of E given by a 0-cell and two 1-cells attached via identifying the endpoints
with the 0-cell.

Denote by �i the unitary representation of F2 on `2.F2=Ni /, for convenience we will
also adopt the convention that �0 D �. Observe that for the group F2, each of the families
of operators �i .�0/ and �i .�1/ has uniform spectral gaps, since in the cochain complex

0 �������!
�i .d�1/D0

C 0.F2; �i / ����!
�i .d0/

C 1.F2; �i / ������!
�i .d1/D0

0;

we have�0 D d�0 d0 and�1 D d0d�0 . By the assumption thatG=Ni give rise to expanders
graphs, �i .d0/ have a uniform spectral gap for i � 1, while the same hold true for i � 0
by non-amenability of F2.

Since we are using cellular cohomology and cells in the product are product of cells
of lower dimensions, we have a unitary isomorphism between the chain groups C n.F2 �
F2; �j ˝ �j / and the groups

L
pCqDn C

p.F2; �i / ˝ C
q.F2; �i /. The codifferential is

given by the formula

dn D
M

pCqDn

dp ˝ I C .�1/pI ˝ dq :

Consequently, the Laplacian is given by the formula

�i .�n/ D
M

pCqDn

�i .�p/˝ I C I ˝ �i .�q/:

It follows that the family ¹�i .�n/ºi2N has a uniform spectral gap for every n D 0; 1; 2.
Consequently, the projection p1 exists the Roe algebra of the box space

Y D �.F2 � F2/
ı
.Ni �Ni /:

We now will show that value d�.p1/ as a sequence is not eventually zero. Indeed,
observe that by the classical Lück approximation theorem we haveˇ̌̌̌

ˇ1.Ni /

ŒF2 W Ni �
� ˇ1.2/.F2/

ˇ̌̌̌
! 0:
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Since ˇ1
.2/
.F2/ D 1, we derive that ˇ1.Ni / ! 1. Applying the Künneth theorem to

the cohomology group H 1.F2; `2.F2=Ni / ' H
1.Ni ;C//, we obtain that dimH 1.Ni �

Ni ;C/¤ 0. SinceH 1.Ni �Ni ;C/ is isomorphic toH 1.F2 �F2; `2.F2 �F2=Ni �Ni //,
we obtain the claim.

Finally, we observe that by the Künneth formula for `2-Betti numbers we have

ˇ1.2/.F2 � F2/ D 2ˇ
0
.2/.F2/ˇ

1
.2/.F2/ D 0:

By Theorem 2 we conclude that the class Œp1� 2K0.C �.Y // does not belong to the image
of the coarse Baum–Connes conjecture.

The same arguments apply to k-fold Cartesian products of free groups Fn � � � � � Fn
and the family ¹Ni � � � � � Niº of its finite index subgroups. In that case we obtain that
the projection pk�1 exists in the Roe algebra of the box space

�Fn � � � � � Fn=Ni � � � � �Ni ;

d�.Œpk�1�/ ¤ 0 but T ı ��.Œpk�1�/ D 0 since the `2-Betti number ˇk�1
.2/

of the k-fold
Cartesian product Fn � � � � �Fn vanishes.

We remark that since products of expanders are again expanders, the above counterex-
ample also follows from the method using 0-cohomology, as in the previous example.

3.3. High-dimensional expanders

High-dimensional expanders are simplicial complexes that can be viewed as higher-
dimensional analogs of expander graphs. There are several approaches to defining high-
dimensional expansion, and one of them is via uniform spectral gaps for the Laplacian in
simplicial cohomology. In that sense, an n-dimensional spectral expander is a sequence of
finite simplicial complexes ¹Siº such that a family of operators of type �C

k
has a uniform

spectral gap, see [19] for more details and background.
Our results allow us to propose the following conjecture.

Conjecture 21. High-dimensional spectral expanders do not satisfy the coarse Baum–
Connes conjecture.

A similar conjecture can be made about coboundary expanders, which are defined
using a spectral gap-type notion in cohomology with coefficients in Z2, however at the
moment such a conjecture would be more speculative.

4. Final remarks

Question 22. Is there a spectral gap characterization of the existence of higher Kazhdan
projections over C �

N
.G/?

As mentioned earlier, Kazhdan’s property .T / for G is characterized by either the
vanishing of first cohomology of G with every unitary coefficients, or equivalently, by the
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fact that the first cohomology ofG with any unitary coefficients is always reduced. Related
higher-dimensional generalizations of property .T / were discussed in [3], see also [9].
As pointed out in [4], the generalizations of these two conditions to higher degrees are
not equivalent. The existence of higher Kazhdan projections is related to the property that
cohomology is reduced and to the existence of gaps in the spectrum of the Laplacian rather
than to vanishing of cohomology. Indeed, in our reasoning it is crucial that cohomology
does not vanish. It would be interesting to determine if the existence of higher Kazhdan
projections can be viewed as a higher-dimensional rigidity property.

Remark 23 (Higher Kazhdan projections and K-amenability). Clearly, if for a particular
G we have at the same time that ˇn

.2/
.G/ D 0 and �.�n/ has a non-trivial kernel and a

spectral gap for some � ¤ �, then G cannot be amenable.
Consider the map

K�.C
�
max.G//! K�.C

�
r .G//:

If Œpn� ¤ 0 in the former, but Œprn� D 0 in the latter, then the map above cannot be an
isomorphism. In other words, if ˇn

.2/
.G/ D 0 and we could ensure that the class of Œpn� is

not 0, then the group G would not be K-amenable, as this last condition forces the above
map in K-theory to be an isomorphism.
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