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Chern classes of quantizable coisotropic bundles

Vladimir Baranovsky

Abstract. Let M be a smooth algebraic variety of dimension 2.p C q/ with an algebraic sym-
plectic form and a compatible deformation quantization of the structure sheaf. Consider a smooth
coisotropic subvariety Y of codimension q and a vector bundleE on Y . We show that if the pushfor-
ward of E admits a deformation quantization (as a module), then its “trace density” characteristic
class lifts to a cohomology group associated to the null foliation of Y . Moreover, it can only be
nonzero in degrees 2q; : : : ; 2.p C q/. For Lagrangian Y , this reduces to a single degree 2q. Similar
results hold in the holomorphic category.

1. Introduction

Let .M;!/ be a smooth variety of dimension 2.pC q/ over a field k of characteristic zero,
with an algebraic symplectic form ! (or corresponding holomorphic objects over k D C).
We assume that the structure sheaf OM admits a compatible deformation quantization Oh
and fix a choice of such quantization. In other words, Oh is a sheaf (in the Zariski or
analytic topology, respectively) of complete, separated, and flat kŒŒh�� algebras such that
Oh=hOh ' OM and if a 7! a0 is the quotient map, then

a � b � b � a D hP.da0; db0/ .mod h2/;

where P 2 H 0.M;ƒ2TM / is the Poisson bivector corresponding to the symplectic form
! under the isomorphism TM ! �1M , v 7! �v.!/.

Consider a coherent sheaf Eh of Oh-modules which is complete, separated, and flat
over kŒŒh��. See [18] for a general overview of modules over deformation quantization. We
view Eh as a quantization of its “principal symbol” �.Eh/ D Eh=hEh, a coherent sheaf
of OM -modules. A broad, but difficult, question is to establish necessary and sufficient
conditions which would imply the existence of Eh. One way to simplify the situation is to
assume that the support Y

j
�!M of Eh is smooth, and in fact Eh=hEh is a direct image

j�E of a locally free sheaf E on Y .
A straightforward observation, which we recall below, is that in this case Y should

be coisotropic; i.e., if N is the normal bundle of Y in M , then the projection of P to
H 0.Y;ƒ2N/ should be zero. Then p D 1

2
.dimM � 2 codimY / is a non-negative integer.
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When p D 0, i.e., Y is Lagrangian, papers [1, 3] establish necessary and sufficient condi-
tions for existence of Eh. First, the associated projective bundle P .E/ on Y should admit
a flat algebraic connection. In particular, the Chern character of E equals e � exp.c1.E//
with e D rk E. To formulate the remaining conditions, recall that by [10] a choice of Oh
induces the Deligne–Fedosov class c.Oh/ 2 1

h
H 2
DR.X/ŒŒh�� of the form

c.Oh/ D
1

h
Œ!�C !0 C h!1 C h

2!2 C � � � :

Note that our present indexing of the coefficients is shifted by 1 as compared to that of [1].
The Lagrangian property of Y implies that Œ!� restricts to zero on Y . In [1, 3], it was

shown that the existence of quantization also implies that !i jY D 0, for the cohomology
classes !i with i � 1. This may be viewed as a strengthened Lagrangian condition which
depends on the choice of Oh. As for the cohomology class !0, it admits a canonical lift
(depending on Oh) to H 2

DR.Y;�
�1/ which is involved in the equation

1

e
c1.E/ D !0 C

1

2
c1.KY /; (1)

where KY is the canonical bundle of Y . Square root of the canonical class has appeared
in the contact setting in [17]. In the holomorphic setting, quantization of the square root
of the canonical class is due to D’Agnolo and Schapira [9]. See also [5, 22].

Returning to the case of a non-necessarily Lagrangian smooth coisotropic Y , define
the “quantum Chern character” class considered in [21] (see also [6, 7] for later results):

�.Eh/ WD yA.TM / exp
�
� c.Oh/

�
ch
�
�.Eh/

�
;

where the yA-genus is recalled in Section 2.2. We understand �.Eh/ as a class with values
in the de Rham cohomology H�DR;Y .M/..h// with support at Y , which can be identified
with the de Rham cohomology of Y , due to smoothness. The purpose of this note is the
following result

Theorem 1.1. If the principal symbol sheaf �.Eh/ is isomorphic to the direct image j�E
of a locally free sheafE on a smooth coisotropic subvariety j W Y !M of codimension q,
then the class �.Eh/ 2 H�DR;Y .M/..h// is zero except in degrees 2q; : : : ; 2.p C q/ D
dimkM .

Moreover, if �F � �
1
Y is the sheaf of 1-forms that vanish on the null-foliation (or

characteristic foliation) F �TY andF r��Y is the ideal in the de Rham complex generated
by the r-th power of �F , then �.Eh/ is in the image of the map

pM
r�0

H 2r .Y; F r��Y /..h//!

pM
r�0

H 2r .Y;��Y /..h// '

pM
r�0

H
2rC2q
Y .M;��M /..h//:

Our strategy is an application of formal geometry and the Gelfand–Fuks map: first
use Riemann–Roch theorem to replace �.Eh/ by an element �Y .E/ 2H �DR.Y /..h//; then
show that after completion both the quantized functions and the quantized module are
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isomorphic to standard objects and construct a Harish-Chandra torsor (foliated over F )
and a Lie algebra cohomology class that induces �.Eh/ via Gelfand–Fuks map. At this
point, the vanishing reduces to a vanishing in Lie algebra cohomology for which we use a
Lie algebraic version of the index theorem, cf. [6–8,15,16,21,23], and the fact that in the
symplectic situation the trace map can be defined on negative cyclic homology.

Alternatively, one could use an observation due to B. Tsygan that the Chern character
of a perfect complex factors through negative cyclic homology of its derived endomor-
phism algebra, but in the algebraic geometry setting the Lie algebra cohomology route
seems a bit shorter.

Remarks. (i) In a forthcoming paper with V. Ginzburg, cf. [2], we prove a similar state-
ment for quantizable sheaves with arbitrary support, including the fact that �.Eh/ agrees
with the general Connes–Chern character and that the algebraic index theorem holds for
general algebraic varieties. Since in general a formal completion of a quantized sheaf will
not be isomorphic to a “standard formal model”, methods of formal geometry do not apply
for general sheaves.

(ii) It would be very interesting to relate our main theorem to Bordemann’s criterion
for the existence of second-order quantization (mod h3). This might depend on what can
be said about the Atiyah–Molino class of the characteristic foliation of Y . See [5] for more
details.

The paper is organized as follows. In Section 2, we recall standard constructions
related to foliations, characteristic classes and use Riemann–Roch theorem to reduce the
main result to a cohomology class on Y . In Section 3, we recall definitions related to
Harish-Chandra pairs and torsors and the Gelfand–Fuks map. We further state the Lie
cohomology algebraic index theorem and prove a vanishing result for the class involved.
The conceptual reason for the vanishing is that the Connes–Chern character with values
in periodic cyclic homology lifts to negative cyclic homology. In Section 4, we prove
the main result by constructing two Harish-Chandra torsors that induce the class under
consideration, and then invoking the vanishing of Section 3.

2. Preliminaries and notation

2.1. Null foliation and a filtration on the de Rham complex

We start by assuming that a pair .Oh;Eh/ is given as in the introduction and that �.Eh/D
Eh=hEh is the direct image j�E of a locally free sheaf supported on a smooth subvari-
ety Y . We use the same notation E for associated vector bundle on Y .

If I � OM is the ideal sheaf of functions vanishing on Y and x 2 Oh is a local section
projecting to I , then x � Eh � hEh. If y is another such section, it follows that the com-
mutator .x � y � y � x/ sends Eh to h2Eh and hence the image of 1

h
.x � y � y � x/ in OM

also annihilates j�E; i.e., it belongs to I . Thus, the ideal sheaf I is closed with respect to
the Poisson bracket induced by the Poisson bivector P .
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If N is the normal bundle of Y in M , we can restate this by saying that P jY projects
to the zero section in H 0.Y; ƒ2N/, and then the same restriction defines a section in
H 0.Y; TY ˝N/. We can view the latter as a morphism N_ ! TY and it is easy to check
that it is an embedding of vector bundles. Using j�N_ ' I=I 2, we can write an explicit
local formula for it:

N_ 3 x 7! P jY .dx; �/ 2 TY :

Denote by F � TY the image of this embedding, i.e., the null-foliation of Y . By the above,
this sub-bundle is involutive, i.e., closed with respect to the bracket of vector fields on Y
(since the Poisson bracket on I=I 2 is compatible with the bracket on vector fields).

The involutive property can be restated as follows. Let�F D .TY =F /
_ � �1Y be the

sheaf of 1-forms vanishing along F and denote by F 1�����Y the graded ideal generated
by �F in the sheaf of differential forms on Y , viewed as a sheaf of graded commutative
algebras. By a straightforward application of the formula

d!.v0; v1/ D v0!.v1/ � v1!.v0/ � !
�
Œv0; v1�

�
(2)

the involutive property of F is equivalent to the statement that F 1�� is a subcomplex of
the de Rham complex. It follows that each power of the ideal F k�� WD .F 1��/k is also
a subcomplex.

The main message in this paper is that characteristic classes of interest lift to the
cohomology groupsH 2r .Y;F r��/. Note that the rank of�F is 2p D dimY � rk.F /D
dimM � 2 codimY , hence for r > 2p the relevant cohomology group vanishes as F r��

is the zero subcomplex. Moreover, the particular class �.Eh/ vanishes for r > p.

2.2. Riemann–Roch theorem and reduction to a class on Y

Recall that for a power series G.z/ with constant term 1 and a vector bundle V of rank v,
we can define its multiplicative G-genus as a product

Q
G.zi /, where z1; : : : zv are the

Chern roots of V , i.e., formal variables such that the l-th elementary symmetric function
in zi is equal to the l-th Chern class cl .V /. Recall also that the yA-genus yA.V / and the
Todd genus Td.V / correspond to

G1.z/ D

s
z=2

sinh.z=2/
D

s
z � exp.�z=2/
1 � exp.�z/

and G2.z/ D
z

1 � exp.�z/
;

respectively. The Todd genus is involved in the Grothendieck–Riemann–Roch theorem for
a closed embedding j W Y !M and a coherent sheaf E on Y (see [14, Section 15.2]):

ch.j�E/ D j�Œch.E/Td.N /�1�;

where N is the normal bundle to Y . We use this formula to study the “quantum” class

�.Eh/ D yA.TM / exp
�
� c.Oh/

�
ch.j�E/
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which appears in the index theorem of [6, 21] and the local index formula of [8]. By
Riemann–Roch and the projection formula, we can rewrite this expression as

�.Eh/ D j�

�
yA.TM jY /

Td.N /
exp

�
� c.OhjY /

�
ch.E/

�
:

Note that G1.z/ is an even function of z, hence yA.N/D yA.N_/. Using the multiplicative
property of genus and the short exact sequences

0! TY ! TM jY ! N ! 0; 0! N_ ' F ! TY ! Q! 0

(where the second short exact sequence is the definition of Q), we conclude that

yA.TM jY /

Td.N /
D
yA.Q/ � . yA.N//2

Td.N /
D yA.Q/ exp

�
�
c1.N /

2

�
:

Hence Theorem 1.1 reduces to the statement that the class

�Y .E/ D yA.Q/ exp
�
�
c1.N /

2

�
exp

�
� c.Oh/jY

�
ch.E/

is in the image of
L
H 2r .Y;F r��/!

L
H 2r .Y;��/ and vanishes for r > p. Note that

when M D Y and M is projective, the cohomology groups will be nonzero up to degree
4p D 2 dimM .

3. Lie algebra cohomology and Gelfand–Fuks map

The purpose of this section is to review some known results involving Lie algebra coho-
mology and characteristic classes, as they apply to deformation quantization; and also to
fix the notation.

3.1. Lie algebra cohomology and a version of the Chern–Weil map

We follow [19, Section 10.1] and [13, Chapter 1.3]. For a Lie algebra g over a field k and a
g-module V , the Lie algebra cohomology groups are defined as H�.gIV /DExt�

U.g/.k;V /,
where U.g/ is the universal enveloping algebra. Using the standard Koszul resolution
ƒ�.g/˝U.g/! k overU.g/, these can be computed using Chevalley–Eilenberg cochain
complex C �.gIV /:

� � � ! Homk.ƒ
ng; V /! Homk

�
ƒnC1.g/; V

�
! � � �

with a differential dLie (cf. [19, Section 10.1.6]):

dLie˛.g0; : : : ; gn/ D

nX
iD0

.�1/igi˛.g0; : : : ; Ogi ; : : : ; gn/

C

X
i<j

.�1/iCj˛
�
Œgi ; gj �; g0; : : : ; Ogi ; : : : ; Ogj ; : : : ; gn

�
: (3)
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We view the elements ˛ 2Homk.ƒ
�.g/;V / as skew-symmetric functions on g with values

in V .
For a Lie subalgebra h � g, the subcomplex of relative Lie cochains, cf. [13, Chap-

ter 1.3], C �.g;hIV / is given by the condition that both ˛ and dLie.˛/ vanish when one of
their arguments is in h. Its cohomology groups are denoted by H �.g; hIV /.

When V � is a dg-Module over g, the formula (3) is adjusted by a term involving the
internal differential of V �.

As a preparation for later proof, we state a homotopy lemma for complexes of Lie
cochains.

Lemma 3.1. Let M � and N � be two complexes of modules over a Lie algebra g and let
f WM � ! N �, g W N � !M � be chain maps compatible with an action of a subalgebra
h � g. Suppose that ' W M � ! M ��1 is a homotopy satisfying d' C 'd D gf � 1M .
Denote by

ı W C �.g; hI �/! C �.g; hI �/ and dHom W C
�.g; hI �/! C �.g; hI �/

the first terms in the formula (3) and the combination of the second term of (3) with the
internal differential on M �; N �, respectively (so that dHom can be identified with the Lie
cochain differential for the trivial g-module structure). Let

fHom W C
�.g; hIM �/! C �.g; hIN �/; gHom W C

�.g; hIN �/! C �.g; hIM �/

be the morphisms of complexes with dHom differentials, induced by f , g, respectively, and
'Hom W C

�.g; hIM �/! C �.g; hIM ��1/ a homotopy induced by '.
(i) If g is compatible with g action and the side conditions '' D 0, 'g D 0, f ' D 0

hold, then
Qf D fHom

�
1C .ı'Hom/C .ı'Hom/

2
C .ı'Hom/

3
C � � �

�
is compatible with Lie algebra cohomology differentials dLie D dHom C ı.

(ii) If M � D N �, g D 1M , and f is compatible with the g-action, then fHom is com-
patible with dLie D dHom C ı and

z' D 'Hom
�
1C .ı'Hom/C .ı'Hom/

2
C .ı'Hom/

3
C � � �

�
is a homotopy between 1 and fHom.

Proof. Part (i) is a consequence of the basic perturbation lemma; cf. [20]. Part (ii) is easier
to establish by direct computation although it is also a very degenerate case of the ideal
perturbation lemma; cf. [20].

One source of relative Lie cocycles (see [21, Section 2.2]) arises from an ad.h/-
invariant projection pr W g! h and its curvature

C.u ^ v/ D
�

pr.u/; pr.v/
�
� pr

�
Œu; v�

�
W ƒ2g! h: (4)
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Assume for simplicity that the g action on V is trivial. Then for any h-invariant polynomial
S 2 Syml .h�/h ˝ V , the cochain �.S/ 2 C 2l .gIV / defined by

�.S/.v1 ^ � � � ^ v2l /

D
1

lŠ

X
�2S2l ;�.2i�1/<�.2i/

.�1/�S
�
C.v�.1/; v�.2//; : : : ; C.v�.2l�1/; v�.2l//

�
is relative with respect to h, closed, and its relative cohomology class is independent on
the choice of the projection pr W g! h. This defines the Chern–Weil homomorphism

� W Sym�.h�/h ! H 2�.g; hI k/:

We will need the following examples of relative cocycles:

(1) when h ' gle.k/, set chLie D �.tr.exp.x/// and c1;Lie D �.tr.x// for x 2 h;

(2) when h ' sp2p.k/, set yALie D �
�

det
�

y=2
sinh.y=2/

�1=2� for y 2 h;

(3) for a central extension of Lie algebras

0! a! Qg! g! 0

and a k-vector space splitting Qg ' a ˚ g, the 2-cocycle C W ƒ2g ! a is the
curvature as above. In the cases, we consider that the cocycle may be chosen in
C 2.g; hI a/.

3.2. Torsors over Harish-Chandra pairs and characteristic classes

Definition. A Harish-Chandra pair .g; F / consists of a Lie algebra g, a (pro)algebraic
group F over k, an embedding of Lie algebras f D Lie.F / � g and an action of F on g

which extends the adjoint action of F on f . A module over a Harish-Chandra pair .g;F / is
an F -module V with an F -equivariant Lie morphism g! Endk.V / extending the tangent
Lie morphism on f .

In this paper, f will have finite codimension in g and F ' L Ë U with L a finite
dimensional reductive group and U a pro-unipotent infinite dimensional algebraic group.

Definition. A Harish-Chandra torsor or a flat .g; F /-torsor over a scheme Y is an F -
torsor � W P ! Y with an F -equivariant g-valued 1-form 
 W TP ! g ˝k OP which
restricts to the canonical Maurer–Cartan form (with values in f � g) on the vector fields
tangent to the fibers of � W P ! Y and satisfies the Maurer–Cartan equation

d
 C
1

2
Œ
; 
� D 0;

where d is the de Rham differential on P and the bracket is computed in g. In the infinite
dimensional case, some care must be taken to define such torsors. One possible approach
is to follow the pattern in [24, 25] and work with representable functors. In our case,
eventually we will only need direct images of differential forms from P to Y , and since
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F is a limit of affine groups, all geometric objects on Y can be defined using shaves on
Y with a coaction of functions on F , and so on. See [11, Sections 2 and 3] for a closely
related case.

Assume that 
 W TP ! g˝k OP is onto and has kernel T
 of finite constant rank q.
Note that since 
 is injective on vertical vector fields, the differential of � W P ! X is
injective on T
 . Moreover, since 
 is F -equivariant, for points x;y in the same orbit of F ,
the images .T
 /x and .T
 /y in .TY /�.x/D�.y/ agree. Let F � TY be the resulting rank q
sub-bundle on Y .

Lemma 3.2. In the situation described, let T� D Ker.d�/ � TP be the vector fields
tangent to the fibers. Then the sub-bundles F � TY and G D T� ˚ ker.
/ � TP are
integrable (i.e., stable under the Lie bracket of vector fields). Let �F � �

1
Y be the anni-

hilator of F and �G � �
1
P the annihilator of G . Denote by F r��Y , resp. F r��P , the

graded ideal generated by the r-th power of �F , resp. the r-th power of �G . Then both
F r��Y and F r��P are preserved by the corresponding de Rham differentials and there is
a morphism of complexes of sheaves F r��Y ! ��F

r��P .

Proof. We start with G . If v1, v2 are two vector fields in Ker.
/, then formula (2) for d

and the Maurer–Cartan equation for 
 imply that the bracket Œv1; v2� is also annihilated
by 
 . The fact that vector fields tangent to the fibers are closed with respect to the Lie
bracket holds for any smooth � . Finally, let’s assume that v1 2 Ker.
/ and v2 2 T� . Then
the quadratic term in the Maurer–Cartan equation vanishes on v1 ^ v2 (as 
.v1/ D 0) and
we are left with

0 D d
.v1 ^ v2/ D v1 � 
.v2/ � v2
.v1/ � 

�
Œv1; v2�

�
:

The second term is zero by assumption on v1 and the first is in f ˝k OP � g ˝k OP .
Hence the third term is in f ˝k OP as well, which means Œv1; v2� 2 
�1.f ˝k OP / D G .

In particular, a bracket of two F -equivariant vector fields in Ker.
/ is again an F -
equivariant vector field in Ker.
/. Its F -equivariant descent is a rank q subbundle in the
Atiyah algebra AtP of P on Y (= the F -equivariant descent of all vector fields on P ),
which is also closed under Lie bracket. It projects isomorphically to a sub-bundle F � TY
(as Ker.
/ has trivial intersection with T� ) which is closed with respect to the Lie bracket
sinceAtP ! TP is compatible with brackets. By construction, 1-forms on Y which vanish
on F pull back to F -equivariant 1-forms on P which vanish on G . Hence the morphism
of sheaves of dg algebras��Y ! ���

�
P is compatible with multiplicative filtrations F r��

induced by the two foliations.

Definition. In the situation of the previous lemma, we will say that the Harish-Chandra
torsor .P;
/ is foliated over F �TY . We will see that in this case some of its characteristic
classes what apriori belong to H �DR.Y / admit a lift to cohomology of F r��Y .

Let V be a Harish-Chandra module over .g; F / with trivial action (as will be in our
applications). For a Lie l-cochain ˛ Wƒlg! V , the compositionƒlTP !ƒlg˝k OP !

V ˝k OP may be viewed as a V -valued l-form on P and the Maurer–Cartan equation
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ensures that the resulting Gelfand–Fuks morphism (cf. [13, Chapter 3.1 (C), (D)]) also
agrees with differentials:

GF W C �.gIV /! �.P;��P ˝k V /: (5)

We want to use this observation to study characteristic classes of P in the cohomology
of Y . Note that to obtain classes on Y , we need to work with objects which are invariant
with respect to the reductive subgroup of F .

For a subalgebra h � f D Lie.F / � g, relative cochains in C �.g; hI V / map to the
subcomplex .��˝k V /h-basic of h-basic forms, i.e., forms ˇ such thatLvˇD 0 and �vˇD
0 for any v � h (we use the same letter v for the vertical vector field on P induced by v
via the action of F ).

Lemma 3.3. Assume that F D U Ì H is a semi-direct product of a finite dimensional
connected reductive group H and a pro-unipotent group U . If h D Lie.H/, there exists a
quasi-isomorphism of sheaves of dg-algebras

��Y ! ��
�
.��P /h-basic

�
:

If P is foliated over F � TY , then for any r � 0 the natural morphism of ideal sheaves

F r��Y ! ��
�
.F r��P /h-basic

�
is a quasi-isomorphism of complexes of sheaves.

Sketch of proof. First assume that U is finite dimensional and look at the first quasi-
isomorphism. Since H is connected, the pushforward of h-basic forms from P to Y may
be identified with the pushforward of forms on P=H to Y . But P=H ! Y is a bundle
with affine fibers so the assertion follows from the relative Poincaré lemma (triviality of
relative de Rham cohomology for fibrations by affine spaces). For infinite dimensional
pro-unipotent U , we first consider the finite dimensional unipotent factors and then pass
to a limit, as in [24, Theorem 6.7.1].

In view of the unfiltered quasi-isomorphism, its filtered version reduces to showing
that the maps induced on associated graded quotients are quasi-isomorphisms. First,

F r��Y =F
rC1��Y ' ƒ

r .Q/˝ƒ�F _;

where Q D TY =F and we consider ƒ�F _ as a complex of sheaves with the differential
similar to that in formula (3) (in other words, it is the de Rham differential of the Lie
algebroid F � TY ). On the other hand, since the pullback of F is isomorphic to Ker.
/�
G and the pullback of Q is isomorphic to TP =G , by the projection formula we get

��
�
.F r��P /h-basic

�
=��

�
.F rC1��P /h-basic

�
' ƒr .Q/˝ƒ�F _ ˝OY ��

�
.���/h-basic

�
;

where ��� is the relative de Rham complex of � W P ! Y . Hence we just need to show
that

OY ! ��
�
.���/h-basic

�
is a quasi-isomorphism, which again follows from the relative Poincaré lemma.
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In view of the previous result, passing to cohomology in (5) we obtain an h-relative
version of Gelfand–Fuks map, which we denote also by GF:

GF W H �Lie.g; hIV /! H �DR.Y /˝k V:

Recall that whenever we use GF we assume that g-action on V is trivial, otherwise the
right-hand side would involve the de Rham cohomology of associate vector bundle VP
with a flat connection induced by the Harish-Chandra module structure.

Proposition 3.4. For V D k in the setting of Lemma 3.3, the composition of the Lie alge-
braic Chern–Weil map and the Gelfand–Fuks map

Sym�.h�/h ! C 2�.g; hI k/! H 2�
DR.Y /

is the classical Chern–Weil map of the torsor PH , associated to P via the group homo-
morphism F ! H . If P is foliated over F � TY , for every r � 0 the composition admits
a canonical lift

Symr .h�/h ! H 2r
DR.Y; F

r��Y /:

Proof. Let PU D P=H , then P ! PU may be viewed as the H -torsor pulled back from
Y via PU ! Y . Since PU ! Y induces isomorphism on de Rham cohomology (rela-
tive Poincaré lemma), we can replace Y by PU and assume that U is trivial. Then the
composition

r D pr ı
 W TP ! g˝k OP ! h˝k OP

is a connection onP !PU and the Lie theoretic curvatureC Wƒ2g! h gives the classical
curvature Rr D ƒ2
 ı C W ƒ2TP ! h˝k OP . The assertion follows since the classical
Chern–Weil map may be computed by evaluating invariant polynomials on Rr .

For the second assertion, we observe that relative Lie cochains define a global section
of ��..F r��P /h-basic/ and the result follows by application of Lemma 3.3.

3.3. Algebraic version of the index theorem

Consider the formal Weyl algebra Dp , the completion (at the augmentation ideal) of the
universal enveloping of the Heisenberg Lie algebra with generators x1; : : : ; xp; y1; : : : ; yp;
h, and the only nontrivial commutators given by Œyj ;xi �D ıijh. In other words, as a vector
space Dp is isomorphic to kŒŒx1; : : : ; xpy1; : : : ; yp; h�� but has nontrivial commutation
relations yixi D xiyi C h.

We consider the associative algebra E D gle.Dp/ and the Lie algebra Der.E/ of its
continuous kŒŒh��-linear derivations. Of course, some of the derivations are inner and
hence there is a Lie morphism E ! Der.E/. In addition, any commutator in Dp is divis-
ible by h, so commuting with a scalar 1

h
Dp-valued matrix also gives a derivation of Dp .

We claim a short exact sequence

0!
1

h
kŒŒh��!

�
1

h
Dp C E

�
! Der.E/! 0: (6)
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For e D 1, this is well known; see e.g. [6, Section 2.3] and [4, equation (3.2)]. For gen-
eral e, it follows from the fact that the quotient of all derivations by inner derivations (i.e.,
first Hochschild cohomology group) is a Morita invariant; cf. [19, Chapter 1.2].

The Lie algebra gD . 1
h

Dp CE/ has a reductive subalgebra gle ˚ sp2p (matrices with
values in k �Dp plus an isomorphic copy of sp2p in 1

h
Dp spanned by commutators of 1,

1
h
xixj , 1

h
yixj , 1

h
yiyj ). We also consider the abelian subalgebra a D 1

h
kŒŒh��. To take into

account a\ gle D k, introduce a0 � a with topological basis given by hi , i D�1;1;2; : : : :
Then

h D gle ˚ sp2p ˚ a0

is a Lie subalgebra of g, by Hochschild–Serre spectral sequence

H �.g; hIV / ' H �
�

Der.E/; .gle=k/˚ sp2pIV
�
;

where V is a module over Der.E/ (and thus also a module over g). Below, we are inter-
ested in the cohomology of Der.E/ but we find it easier to do computations in g.

Now we would like to state a vanishing lemma for homogeneous components of a
particular class in H �.g; hI k..h///. Its proof will take the rest of the section. A reader
willing to treat it as a black box may wish skip to Section 4. We follow the notation and
exposition in [16] which deals with a version of algebraic index theorem that is most
convenient for our setting.

This class can be defined via the Chern–Weil construction. To fix a projection

pr W g! h;

we introduce a filtration on g by giving h degree 2 and xi , yj degree 1. Since elements of
g involve infinite sums, g splits into a direct product

Q
i��2 gi . For the first two factors

in h, we project g onto g0 ' gle ˚ sp2p (recall that sp2p is spanned by the commutators
in the degree zero part . 1

h
Dp/0) and set k D h

h
k to be in the kernel on the projection onto

sp2p . For a0 we choose any projection 1
h

Dp! a0 and extend it by 0 to trace zero matrices
in E .

Lemma 3.5. For h D gle ˚ sp2p ˚ a0, let chLie.gle/, yALie.sp2p/, and C.a0/ be the
classes induced by the Chern–Weil construction at the end of Section 3.1, from the respec-
tive factors. Let

�Dp
D chLie.gle/ yALie.spn/ exp

�
� C.a0/

�
2 H even

Lie

�
g; hI k..h//

�
:

Then the components of �Dp
of degree > 2p are equal to zero.

Proof. Our proof is based on the fact that the class of the theorem arises from the study
of periodic cyclic homology of the associative algebra A D gle.Dp/˝kŒŒh�� k..h//. The
vanishing will follow from the fact that this class lifts to the negative cyclic homology of
A. We briefly recall the relevant definitions here, omitting details that do not contribute to
the proof.
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If A is a unital k-algebra, set xA D A=k � 1 and C�l .A/ D A˝ xA˝l . This is the coho-
mological grading, rather than homological grading used in some sources, although the
indices are written as subscripts to avoid confusion with the Hochschild cohomology com-
plex. The standard formulas e.g. in [19, Sections 1.1.1 and 2.1.8] define the Hochschild
and cyclic differentials,

b W C�.A/! C�C1.A/; B W C�.A/! C��1.A/

that satisfy b2 D 0, B2 D 0, Bb C bB D 0. Introducing a formal variable u of cohomo-
logical degree 2, consider two complexes

CC�� .A/ D
�
C�ŒŒu��; b C uB

�
; CC

per
� D

�
C�..u//; b C uB

�
with cohomology defining the negative cyclic homologyHC�� .A/ and the periodic cyclic
homologyHC per

� .A/, respectively. In both cases, 1 2 AD C0.A/ satisfies .bC uB/.1/D
0 and thus gives a cohomology class.

In the case A D gle.Dp/˝kŒŒh�� k..h//, there is a quasi-isomorphism�
C�.A/..u//; b C uB

�
'
�
���..h//..u//; hL� C udDR

�
; (7)

where ��� stands for formal differential forms in x1; : : : ; xp; y1; : : : ; yp and

� D
X

.@=@xi / ^ .@=@yi /

is the standard Poisson bivector. For e D 1 and on the level of Hochschild complexes,
this is essentially the FFS cocycle (cf. [12]) since .���..h//; hL�/ has cohomology only
in the top degree. The cyclic extension of the FFS cocycle was constructed by Pflaum–
Posthuma–Tang (e.g. in [23, Section 2.2]) where the data was interpreted as a cyclic
cohomology class, but Definition 3.5 in loc. cit allows to re-package it as the morphism
from the cyclic chain complex as above.

The Lie algebra Der.E/ of derivations of E D gle.Dp/ acts on periodic and nega-
tive cyclic complexes. The quasi-isomorphism is compatible with the action of pgle.k/˚

sp2p � Der.E/ (see below). Although it is not compatible with the action of the full alge-
bra of derivations, it can be upgraded to a cocycle in the relative Lie algebra cohomology
of Der.E/:

�Lie 2 C
�
�
g; hIHomk..h//

��
CC�� .A/; b C uB

�
;
�
y���..h//ŒŒu��; hL� C udDR

���
: (8)

The case of general e can be obtained by rephrasing [23, Sections 4.2, 4.3 and Proposi-
tion 4.2], while explicit formulas can be found in [16], where the Lie derivative L� D
d�� C ��d is denoted by �. The morphism (7) is given in Definition 3.4 of loc. cit. and
its compatibility with b and B differentials is proved in Lemmas 3.5 and 3.6 of the same
paper. The Lie cochain version can be found in Definition 3.7 and Theorem 3.8 of loc.
cit. (the fact that the Lie cocycle is relative over sp2p follows from the argument in Theo-
rem 3.13 of loc. cit. or [23, Proposition 2.10] and invariance with respect to the other two
factors in the definition of h is immediate from definitions).
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We shift the grading used in [16] assigning �Lie cohomological degree 0. We note
here that the action of g on y���..h// is not h linear (indeed, the element h 2 g acts by
zero, so the action factors through the quotient by h), and all cochains are only k-linear
maps. Although �Lie is constructed in [16] for the periodic cyclic complex (it is denoted by
h�;�iS1int in the definition introduced before Theorem 3.13 of loc. cit.), we emphasize that
at this step no inversion of u is necessary and exactly the same definition works on the level
of negative cyclic complexes. Next, one can construct two g-invariant homomorphisms

gu ı e
� hu �� ; gh ı e

� u
h
!
2Homk..h//

��
y���..h//ŒŒu��; hL� C udDR

�
;
�
y��..h//..u//;dDR

��
which are homotopic in the full Lie algebra cohomology complex.

The first homomorphism needs inversion of u. We first use the identity

e
h
u �� .hL� C udDR/ D .udDR/e

h
u ��

to land in the complex . y���..h//..u//; udDR/. Then we apply the re-grading operator gu
which is an isomorphism of complexes�

y���..h//..u//; udDR
�
!
�
y��..h//..u//; dDR

�
sending an i -form ˛ to u�i˛. Thus, on the left-hand side ˛ has cohomological degree .�i/,
on the right-hand side degree i and adjustment by u�i makes the re-grading a degree 0
operator.

The second homomorphism uses h�1 and the formal symplectic form!D
P
dxi^dyi .

In this case, we start with the identity e�
u
h
!.hL� C udDR/ D hL�e

� u
h
! to land in the

complex . y���..h//ŒŒu�1; u��; hL�/ and then apply a re-grading isomorphism gh�
y���..h//..u//; hL�

�
!
�
y��..h//..u//; dDR

�
which sends an i -form ˛ to hi�n

un
�! .˛/. Here, the symplectic Hodge operator

�! W �
i
! �2p�i

is defined by ˇ ^ �!.˛/ D !nhˇ; ˛i� and h�; �i� is the pairing on i -forms induced by � .
With these preliminaries, we now prove the vanishing claimed in Lemma 3.5 in several

steps

Step 1. First consider that the class

�1 D
X

�
m;l
1 ul 2

M
C 2m

�
g; hI y��2.mCl/..h//ul

�
is obtained by pairing 12C 0Lie.g;hI .CC

�
0 .A/;bCuB//with �Lie defined in (8) (we recall

that the grading on differential forms has been inverted at this step). The range of indices
is m � 0 and 0 � mC l � n. Then move on to the class �2 D e�

h
u �� �1 which lives in the

same complex but with the differential ud
DR

instead of hL� C udDR. The components
�
m;l
2 ul of the class �2 can be nonzero in the same range 0 � m; 0 � mC l � p.
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Step 2. Now consider the regraded class

�3 D gu�2 D
X

�
m;l
2 u�2m�2lul 2

M
C 2m

�
g; hI y�2.mCl/..h//u�2m�l

�
(where the differential forms now have the usual grading) and observe that the expo-
nents of u are in the range .�2p; : : : ; 0/. The next step is to replace the de Rham complex
. y��; dDR/ by a quasi-isomorphic complex .k; 0/. Note that the projection y��! k (which
vanishes on forms of positive degrees and sends a power series in degree zero to its con-
stant term) is not g-equivariant. However, it can be extended to a quasi-isomorphism of
complexes Qf W C �.g; hI y��/! C �.g; hI k/ using Lemma 3.1 (i) above. This leads to a
class

�4 D
X

�4mC2l4 u�.2mCl/ D Qf .�3/ 2
M

C 4mC2l
�
g; hI k..h//u�2m�l

�
:

Note that 0 � m;0 � mC l � p imply that 0 � 4mC 2l � 4p. Now we use the result of
[16] to justify the following.

Claim. If �Dp
D a0 C a2 C a4 C � � � is an expansion into a sum of cochains of even

degrees, deg.a2i / D 2i , set .�Dp
/u D a0 C a2u

�1 C a4u
�2 C � � � : Then on the level of

Lie algebra cohomology classes, one has �4 D .�Dp
/u in H �.g; hI k..h//ŒŒu�1; u��/.

Indeed, [16, Theorem 3.21] asserts equality of two cohomology classes in the same
cohomology group. The right-hand side of loc. cit. is the same as .�Dp

/u by definition,
except for the normalizing power of u which is due to the fact that we shift the classes
to cohomological degree zero, as mentioned above. The left-hand side agrees with our
definition too: Definition 3.10 of loc. cit. matches our transition from �1 to �2 and then on
to �4 (although evaluation at 1 involved in the definition of �1 is introduced in that paper
a bit later).

Step 3. We are finally in position to prove that on the level of cohomology the coefficients
�4kC2l4 vanish when 4k C 2l > 2n. Indeed, instead of

�3 D gue
� hu �� �1

we could consider
� 03 D ghe

� u
h
!�1

which has trivial coefficients of u�.2kCl/, 2k C l � n since the only negative power of u
created is the factor u�n in the definition of gh.

Step 4. To show that �3 and � 03 have the same cohomology class, we use the identity

e
!
uh ı

�
gh ı e

� u
h
!
�
D gu ı e

h
u �� I

which can either be established by direct computation, or by using a basic observation of
Hodge Theory that operators ^! and �� generate an sl2 action on the de Rham complex,
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hence the above identity can be obtained as the image of the group level identity in SL2�
1 0

h 1

�
�

�
0 h�1

�h 0

�
�

�
1 0

h 1

�
D

�
1 h�1

0 1

�
under the action homomorphism.

Finally, we note that e
!
uh is homotopic to identity. This follows from the fact that

! D dDR.˛/, where ˛ D 1
2

P
.xidyi � yidxi / is the Euler vector field converted to 1-

forms using !. Therefore, we have dDR' C 'dDR D e
!
uh , where

' D
X
k�0

˛

uh

!k

.uh/k.k C 1/Š
:

Again, the homotopy does not agree with the g-action (only with the h-action) hence we
use Lemma 3.1 (ii) to obtain a homotopy between identity operator and e

!
uh :

z' W C �
�
g; hI y��..h//..u//

�
! C ��1

�
g; hI y��..h//..u//

�
:

Hence we can use the above class � 03 instead of �3. Since � 03 by construction has at worst
poles of order � n in the u variable, the assertion follows.

4. Proof of the main result

In this section, we prove Theorem 1.1 by studying the characteristic class

�Y .E/ D exp
�
�
c1.N /

2

�
ch.E/ yA.B/ exp

�
� c.Oh/jY

�
2 H �DR.Y /..h//:

For y 2 Y , the preimage of the maximal ideal my � OY;y in the stalk at y, with respect
to the reduction mod h map Oh;y ! OY;y , is a maximal ideal mh;y � Oh;y . Adapting the
classical proof of the Darboux theorem, we show that after completion at this maximal
ideal the triple .Oh;Eh;EndOh.Eh// is isomorphic – non-canonically! – to a similar triple
independent of y or Y . Different choices of isomorphisms will give the Harish-Chandra
torsor PD;M inducing �Y .E/ via the Gelfand–Fuks map. Further, it is actually lifted from
a quotient torsor PE and Theorem 1.1 will be reduced to the study of the class �Dp

, where
one uses Lemmas 3.3 and 3.5.

4.1. Standard formal models: D , M, and E

Below for n D p C q, we will assume that Dq is the Weyl algebra built on the variables
xi ; yi ; h, with i D 1; : : : ; q, that Dp corresponds to the values i D qC 1; : : : ; qC p while
D is the Weyl algebra on the full set of variables with i D 1; : : : ; p C q D n. Fixing
decomposition n D p C q and an integer e � 1, define a left D-module

M WD
�
D=Dhy1; : : : ; yqi

�˚e
'
�
Dq=Dqhy1; : : : ; yqi

� b̋kŒŒh�� D˚ep
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(on the right-hand side, we use completed tensor product).The second presentation implies
the following isomorphism for endomorphisms of M (which we assume to be acting on
the right):

E WD EndD.M/ ' gle.Dp/

Lemma 4.1. For any Y , Oh, Eh as before and y 2 Y , denote by b.� � � / the completion of
a stalk at y with respect to the maximal ideal mh;y .

(1) There exist compatible isomorphisms

�D W
yOh;y ! D ; �E W

bEndOh;y .Eh;y/! E �M W
bEh;y !M

as filtered algebras and modules, respectively. Moreover, if an algebra isomorphism �D

admits a compatible module isomorphism �M, then �D sends the completion bIh of Ih D
Ker.Oh ! OY / to the double sided ideal J � D generated by y1; : : : ; yq; h.

(2) If �D.bIh/ D J, then �D extends to a pair of compatible isomorphisms .�D ; �M/.

Proof. Modulo h, we can construct an isomorphism of yOM;y and kŒŒx1; : : : ;xn;y1; : : :yn��
since y is a smooth point, k has characteristic zero, and X has dimension 2n. Since Y is
smooth, its ideal IY � OM;y is generated by a regular sequence and we can assume that
the isomorphism sends the completion on IY to the ideal generated by y1; : : : ; yq .

We can also adjust the isomorphism to be compatible with the symplectic forms. Let
˛ be a 2-form on Spec.kŒŒx1; : : : ; xn; y1; : : : ; yn��/ induced from ! via the initial isomor-
phism. Decompose it into homogeneous components: ˛ D ˛0 C ˛1 C ˛2 C � � �, where
each ˛i is a 2-form with coefficients of homogeneous degree i . Since Y is coisotropic,
after a linear change of coordinates .x1; : : : ; xn; y1; : : : ; yn/, we can assume that ˛0 DP
dxi ^ dyi .
Note that the ideal J generated by .y1; : : : ; yq/ is Poisson with respect to the bracket

induced by ˛. This means that the coefficients of dxr ^ dxs are in J for each j̨ and
r; s � q. We now want to find a formal vector field � such that the formal diffeomorphism
exp.�/ takes ˛ to ˛0 and preserves J. In fact, we will construct exp.�/ inductively as
the composition of exp.�1/, exp.�2/; : : : ; where �i is a polynomial vector field with
coefficients of homogeneous degree i and

exp.�i�1/ � � � exp.�1/.˛/ D ˛0 C ˇ�i

with ˇ�i a 2-form with coefficients of degree � i . To ensure that J is preserved, we need
to have �i .J/ � J, which is to say, the coefficient of @=@yr in �i is an element of J for
r � q. Considering 
i D ˛0.�i ; �/, we see that 
i needs to be a polynomial differential
form with coefficients of degree i , such that the coefficient of dxr is in J for r � q and
d
i D ˇi , where ˇi is the degreeD i component of ˇ�i .

Note that ˇi is at least closed since this property holds for ˛, is preserved after the
action of exp.�j /, and is just a homogeneous component of the resulting form ˛0 C ˇ�i .
Since the formal de Rham complex is exact in degrees� 0, ˇi D d
i with 
i D �Euˇi , the
contraction with the Euler vector fieldEuD

P
.xr@=@xr C yr@=@yr /. Note that by induc-
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tion, after each formal diffeomorphism J remains a Poisson ideal hence the coefficient of
dxr ^ dxs in ˇi is an element of J for r; s � q. After the Euler field contraction, every
coefficient of dxr in 
i is also in J, as required. Thus we have a formal diffeomorphism
exp.�i / that will eliminate ˇi .

Passing to the formal limit i !1, we get an isomorphism of

yOM;y ' kŒŒx1; : : : ; xn; y1; : : : ; yn��

which takes the completion of IY to the ideal J, and is compatible with the symplectic
forms. This proves the “quasiclassical” part of the statement.

Both yOh and D are deformation quantizations of the same algebra

kŒŒx1; : : : ; xn; y1; : : : ; yn��;

corresponding to two formal Poisson bivectors h.
P
@=@xi ^ @=@yi /C h

2�2 C � � � with
the same h-linear part �1 D

P
@=@xi ^ @=@yi . By the general Maurer–Cartan formal-

ism, Poisson bivectors with fixed linear part correspond to Maurer–Cartan solutions of
the algebra of polyvector fields with the nonzero differential Œ�1; ��. Using ˛0 to convert
polyvector fields to differential forms, we get the complex in which the bracket with �1
becomes the de Rham differential. Since the formal de Rham complex is exact in degree
two, there is a unique quantization with the h-linear part �1. Hence the above isomor-
phism modulo h extends to an isomorphism �D . If it can be extended to pair .�D ; �M/

compatible with the module action, then yIh, resp. J, is the annihilator of yEh;y=h yEh;y ,
resp. M=hM, which implies compatibility with ideals stated in (1).

For existence of �M in part (2), assume that compatibility with ideals does hold, and
first construct the isomorphism modulo h and then lift it inductively modulo higher powers
of h. Indeed, using �M we can view yEh;y=h yEh;y and M=hM as projective (hence free)
modules of the same rank over the local ring yOY;y . Hence there is an isomorphism �0 W

M=hM! yEh;y=h yEh;y
To lift it to yEh;y and M, take the standard space of generators k˚e �M, and choose

any lift � W k˚e ! yEh;y of �0jk˚e . Consider the subalgebra D 0 � D with (topological)
generators x1; : : : ; xn; yqC1; : : : ; yn; h and the map � 0 W D 0 ˝k k˚e ! yEh;y , f ˝ v 7!
f � �.v/. By a version of Nakayama’s lemma, it is an isomorphism of kŒŒh��-modules.
It induces an isomorphism with .D=Dhy1; : : : ; yqi/

˚e DM (as D-modules) precisely
when ys � �.v/D 0 for any v 2 k˚e and s � q. Our goal is to adjust � to achieve this con-
dition inductively, ensuring that the vanishing holds modulo hl for l � 1. This obviously
works for l D 1 as ys acts by zero on yEh;y=h yEh;y . To make an inductive step, suppose
that we have �lC1 W k˚e! yEh;y=hlC1 yEh;y and that by inductive assumption ys � �lC1.v/
is divisible by hl for all v and s � q. Let U D Im.�lC1/ and let u1; : : : ; ue 2 U be the
images of the standard basis vectors. By assumption,

ys � ui D h
l
X
j

f
j
siuj ; f

j
si 2 D 0:
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We are looking for elements

u0i D ui C h
l�1

X
j

g
j
i uj ; g

j
i 2 D 0

which satisfy ys � u0i D 0 in yEh;y=hlC1 yEh;y . For l � 2, this gives

hf
j
si C Œys; g

j
i � D 0 .mod h2/:

Introducing matrices Fs D .f
j
si /, G D .g

j
i / with entries in

D 0=hD 0 ' kŒŒx1; : : : ; xn; yqC1; : : : ; yn��

and using the fact that Œys; �� for s � q acts as h.@=@xs/, we get a system of equations
Fs D @G=@xs on matrices with coefficients in kŒŒx1; : : : ; xn; yqC1; : : : ; yn��. This has a
solution precisely when @Fs=@xt D @Ft=@xs for s; t � q (by vanishing of formal de Rham
cohomology in degree 1). But the latter equation is a consequence of ytys � ui D ysyt � ui .
For l D 1, the equations read

hFs C .ysG �Gys/C hGFs D 0 .mod h2/

which is equivalent to @.log.1CG//=@xs D Fs . As before, we can find a matrix H such
that @H=@xs D Fs and assume that its entries have zero constant terms. Then the matrix
entries of G D exp.H/ � 1 are formal power series with zero constant term. To achieve
ys � ui D 0 .mod hlC1/, we are adjusting ui by adding vectors that vanish .mod hi�1/,
for all l � 1. Hence the limit as l !1 is well defined, and that gives a system of D 0-
generators u1; : : : ; ue which also satisfy ys � ui D 0. This gives an isomorphism �M, as
required.

4.2. Harish-Chandra pairs and torsors associated to .Oh;Eh/

It is clear from the proofs that isomorphisms of Lemma 4.1 are not unique. Two different
choices of the pair .�D ; �M/ are related by automorphisms

ˆD W D ! D ; ˆM WM!M

compatible with the module action and filtrations. The group Aut.D ;M/ formed by all
such .ˆD ; ˆM/ has a natural structure of a proalgebraic group, given by reducing the
automorphism modulo the image of mk �D , where m is the kernel of the algebra homo-
morphism D ! k sending h; xi ; yj to zero. The tangent Lie algebra is formed by pairs
.�D ;�M/, where �D WD!D is a continuous derivation preserving m and �M WM!M

satisfies
�M.f m/ D �D.f /mC f �M.m/:

If we drop the condition that �D should preserve m, we obtain a somewhat larger Lie
algebra Der.D ;M/. The following lemma, established by direct computation, clarifies its
structure.
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Lemma 4.2. The following short exact sequences hold.
(1) The map .�D ; �M/ 7! �D induces a short exact sequence

0! E D gle.Dp/! Der.D ;M/! Der.D/J ! 0; (9)

where Der.D/J is the algebra of continuous derivations of D which sent J to itself.
(2) Commutator of left action of �M with right action of E induces the right arrow in

the short exact sequence

0!
1

h
J ! Der.D ;M/! Der.E/! 0: (10)

(3) The reduction of derivations in Der.E/, resp. in Der.D/J , modulo h, resp. modulo
J, induces short exact sequences:

0! E=
1

h
kŒŒh��! Der.E/! Hamq ! 0;

0!
1

h
J=kŒŒh��! Der.D/J ! Hamq ! 0;

where Hamq is the algebra of Hamiltonian derivations of kŒŒx1; : : : ; xq; y1; : : : ; yq��.
The two compositions Der.D ;M/ ! Hamq agree and this gives rise to a short exact
sequence:

0! kŒŒh��! Der.D ;M/! Der.D/J �Hamq Der.E/! 0: (11)

Following the pattern of [25, Section 5], [24, Section 6] or [11, Sections 2 and 3],
we see that all pairs .�D ; �M/ are parameterized by a Harish-Chandra torsor PD;M over
the pair .Der.D ;M/;Aut.D ;M//. Similarly, all isomorphisms �E are parameterized by
a Harish-Chandra torsor PE over the pair .Der.E/;Aut.E//. We note here that for PD;M

the connection form 
 of Section 3.2 is an isomorphism (such torsors are called transitive)
while for PE the short exact sequence (10) implies that this torsor is foliated over F .

4.3. The class �Y is the image of �Lie

By Proposition 3.4 and [6, Section 4.0.3], the characteristic class

�Y D yA.Q/ exp
�
�
c1.N /

2

�
e�c.Oh/ ch.E/ 2 H �DR.Y /..h//

is equal to the image, with respect to the Gelfand–Fuks map of the torsor PD;M, of the
class

�Lie D yALie.sp2p/ exp
�
�
c1;Lie.glq/

2

�
e�c chLie.gle/;

where the factors other than e�c are defined at the end of Section 3.1 and c is obtained
from the extension class of

0!
1

h
kŒŒh��!

1

h
D ! Der.D/! 0
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by restricting to the subalgebra Der.D/J � Der.D/ and then pulling back under the sur-
jection of (9). For the factors other than e�c , we use the fact that the components of �Y
can be defined by using the Chern–Weil construction on the torsor of symplectic frames in
Q and the torsor of usual frames in N;E. Since these torsors can be induced from PD;M,
we can apply compatibility of Gelfand–Fuks map with induced torsors to reinterpret the
classes via Lie algebra cohomology of Der.D ;M/. We record for future reference that

�Lie 2 H
�
�

Der.D ;M/;glq ˚ glr ˚ sp2p ˚ a0I k..h//
�
:

4.4. Reduction to class �Dp
and end of proof

Lemma 4.3. The cohomology class �Lie is represented by a cocycle which vanishes if one
of its arguments is in 1

h
J. Hence �Lie is a pullback of a cohomology class of Der.E/ via

the surjection in (10) and that class is further equal to the class of Lemma 3.5:

�Dp
2 H �Lie

�
Der.E/;pglr ˚ sp2pI k..h//

�
D H �Lie

�
g;glr ˚ sp2p ˚ a0I k..h//

�
:

Proof. Step 1. We first recall the definitions. Assign the elements in gle.k/ � Der.D ;M/

degree 0 and keep assuming that deg h D 2, deg xi D deg yj D 1. Then any element of
Der.D ;M/ is a possibly infinite sum of homogeneous elements of degree � �1 and the
Lie bracket is homogeneous.

Then gle and sp2p are spanned by elements 1
h
xiyj , 1 � i , j � q and 1

h
xsxt , 1hysyt ,

1
h
.xsyt C ytxs/, qC 1� s, t �pC q, respectively, and the degree zero part of Der.D ;M/

splits as
gle ˚ glq ˚ sp2p ˚W;

where W is spanned by 1
h
yjyt , 1hxsyj with 1 � j � q, 1 � t � .p C q/, .q C 1/ � s �

.p C q/ (we note here that in the specified ranges the variables commute). This gives a
projection

Der.D ;M/! gle ˚ glq ˚ sp2p

sending the elements of nonzero degree to zero, and vanishing on W . We can combine it
with a natural projection to any of the three factors on the right-hand side, to be used for
calculation of classes chLie.gle/, yALie.sp2p/, exp.� c1;Lie.glq/

2
/ in the definition of �Lie.

The curvature defined in (4) is not zero only when its arguments have degrees �1; 0
or 1. The same applies to the degree zero component c0 of c. We recall here that c0 is
computed with respect to the projection onto k which vanishes on elements of non-zero
degrees, trace zero matrices in gle and on the subspaces sp2p , W , and on the elements of
the type 1

h
.xiyj C yjxi /.

Step 2. Let us show that the yALie class is pulled back from the quotient by 1
h

J. In fact,
consider the curvature C.u ^ v/ 2 h for the projection onto h D sp2p and u 2 1

h
J of

degree �1; 0 or 1. It follows from (10) that 1
h

J is a Lie ideal which has zero projection
onto sp2p , so all positive components of yALie.sp2p/ vanish if one of the arguments is in
1
h

J.
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Step 3. Let us prove that the cochain representing the class

chLie.gle/ exp
�
�
1

2
c1;Lie.glq/ � c0

�
is zero if one of its arguments is in 1

h
J. Since c0 vanishes on elements 1

h
.xiyj C yjxi /,

we have

c0

�
1

h

X
bijxiyj

�
D c0

�
1

2h

X
bij .xiyj � yjxi /C

1

2h

X
bij .xiyj C yjxi /

�
D �

1

2

X
bi i :

Since
P
bi i is the invariant polynomial corresponding to c1;Lie.glq/, we conclude that

c0C c1;Lie.glq/ corresponds to the linear function on hD gle ˚ glq which sends .X1;X2/
to 1

e
tr.X1/. Moreover, since chLie.gle/ comes from tr.exp.x// and tr.exp.x � ˛ � I // D

tr.exp.x// exp.�˛/, we can rewrite the above class as the image of the invariant series

S.X1 ˚X2/ D
X
n�0

1

nŠ
tr
�
X1 �

1

e
tr.X1/

�n
under the Chern–Weil map. We denote by xX D X1 � 1

e
tr.X1/ the trace zero part of X1

and by Sl .X/ D 1
lŠ

tr. xX1/l the degree l component of the invariant power series. Recall
that the Chern–Weil class corresponding to Sl .X/ is obtained by polarization of Sl .X/:

�.Sl /.v1 ^ � � � ^ v2l /

D
1

lŠ

X
�

.�1/� tr
�
xC.v�.1/ ^ v�.2// xC

�
.v�.3/ ^ v�.4// � � � xC.v�.2l�1/ ^ v�.2l//

��
;

where the sum is over all permutations � 2 S2n that satisfy �.2i � 1/ < �.2i/. So it
suffices to show that xC D 0 in gle if C D C.u ^ v/ with u 2 1

h
J. This holds since 1

h
J

is a Lie ideal and its projection onto glq lands into the subspace of scalar matrices which
have trivial xX part.

Step 4. It remains to show that the class exp.�.c � c0// is in the image of the pullback
under the projection Der.D ;M/! Der.E/. Recall that c was defined in Section 4.3. Let
� be the pullback of a similar class under Der.D ;M/! Der.E/. Then by the short exact
sequence (11), the sum c � � is zero (the minus sign in front of � is due to the fact that
M was considered as a right E-module or, equivalently, a left Eop-module). We are using
the fact that the sum of two extensions descends to the fiber product over Hamp , that the
pullback of the extension class to the extension algebra Der.D ;M/must be zero, and that
existence of PD;M allows to use the Gelfand–Fuks map associated to this torsor. Hence,
on the level of cohomology c D � and the same holds for each of the coefficients in the
expansion in powers of h, e.g. c0 D �0.

The fact that the class pulled back from Der.E/ is exactly �Dp
follows from the defi-

nition of �Lie and the vanishing proved.
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End of proof of Theorem 1.1. By Section 2.2 (application of Riemann–Roch theorem),
the class �.Eh/ is the image of �Y .E/ in the cohomology of Y .

By Proposition 3.4, the class �Y .E/ in the de Rham cohomology of Y is the image of
a class �Lie under the Gelfand–Fuks map associated to the Harish-Chandra torsor PD;M

of all isomorphisms .�D ; �M/.
By Lemma 4.3, we can replace the pair .�Lie; PD;M/ by the pair .�Dp

; PE/, where the
torsor PE parameterizes isomorphisms �E W End yOh

yEh! E (we note here that a choice of
.�D ; �M/ also induces a choice of �E ).

But PE is a Harish-Chandra torsor foliated over F � TY , hence the characteristic class
�Y admits a lift to

Lp
r�0H

2r .Y; F r��Y /..h// by Proposition 3.4.
Finally, the components of �Dp

vanish in cohomology groups of degrees > 2p by
Lemma 3.5. This finishes the proof of Theorem 1.1
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