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Simplicity of twisted C*-algebras of Deaconu—Renault
groupoids

Becky Armstrong, Nathan Brownlowe, and Aidan Sims

Abstract. We consider Deaconu—Renault groupoids associated to actions of finite-rank free abelian
monoids by local homeomorphisms of locally compact Hausdorff spaces. We study simplicity of
the twisted C*-algebra of such a groupoid determined by a continuous circle-valued groupoid 2-
cocycle. When the groupoid is not minimal, this C*-algebra is never simple, so we focus on minimal
groupoids. We describe an action of the quotient of the groupoid by the interior of its isotropy on
the spectrum of the twisted C*-algebra of the interior of the isotropy. We prove that the twisted
groupoid C*-algebra is simple if and only if this action is minimal. We describe applications to
crossed products of topological-graph C*-algebras by quasi-free actions.

1. Introduction

The purpose of this paper is to characterise simplicity of twisted C*-algebras arising
from continuous 2-cocycles on Deaconu—Renault groupoids of actions of N on second-
countable locally compact Hausdorff spaces. The study of twisted C*-algebras associated
to continuous groupoid 2-cocycles dates back to Renault’s seminal work [36]. They serve
both as a very flexible C*-algebraic framework for modelling dynamical systems, and as
a source of tractable models for classifiable C*-algebras [8,20,32,34]. So it is important
to be able to determine when a given twisted groupoid C*-algebra is simple; but this is in
general a complicated question.

Deaconu—Renault groupoids encode actions of submonoids of abelian groups by local
homeomorphisms of locally compact Hausdorff spaces. In hindsight, the first example of
such a groupoid was the one associated to the one-sided full shift on n letters, introduced
by Renault in [36] as a model for the Cuntz algebra. However groupoids of this type for
generic local homeomorphisms (that is, actions of N) were first studied by Deaconu [12],
and have come to be known as (rank-1) Deaconu—Renault groupoids. Shortly afterwards
they were used as models for graph C*-algebras in [24,25], and later still, Yeend [43]
showed that rank-1 Deaconu—Renault groupoids provide models for the topological-graph
C*-algebras of Katsura [21].
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For the dual reasons that most of the key examples studied had been related to O-
dimensional spaces, and that N embeds in Z, which has trivial cohomology, no work was
done on twisted C*-algebras associated to Deaconu—Renault groupoids for many years.
However, in 2000, Kumjian and Pask [23] introduced higher-rank graphs (or k-graphs)
and demonstrated that the associated C*-algebras can be described as the C*-algebras of
Deaconu—Renault groupoids of actions of N¥. This led to the development [26-28] of
twisted k-graph C*-algebras. Kumjian, Pask, and Sims showed that from a 2-cocycle on
a k-graph, one can construct a 2-cocycle on the associated Deaconu—Renault groupoid so
that the twisted C*-algebras coincide, and they used this model to characterise simplicity
of twisted k-graph C*-algebras [29], as well as to describe applications of this character-
isation to the study of crossed products of graph algebras by quasi-free actions.

Here we build substantially on elements of the analysis of [29] to describe precisely
when the twisted C*-algebra of a Deaconu—Renault groupoid for an action of N¥ by
local homeomorphisms is simple (Theorem 6.1). To demonstrate the applicability of our
main theorem, we use this result to investigate simplicity of crossed products of C*-
algebras associated to rank-1 Deaconu—Renault groupoids by actions of Z induced by
T -valued 1-cocycles (Theorem 7.4), and we specialise to the Deaconu—Renault groupoids
of topological graphs to characterise simplicity of crossed products of topological-graph
C*-algebras by quasi-free automorphisms (Corollaries 7.6 and 7.7).

The paper is organised as follows. In Section 2 we establish background and notation.
In Section 3 we describe the periodicity group Pr of a minimal action 7 of N* on a
second-countable locally compact Hausdorff space X, and we show that the interior of
the isotropy of g7 is isomorphic to the group bundle X x Pr. In Section 4 we show that
every 2-cocycle on §7 is cohomologous to one whose restriction to X x Pr is determined
by a fixed bicharacter w of Pr that vanishes on its own centre Z,,, and we use this to give
a concrete description of the spectral action 6 of 97 /I on X X Zw. Then in Section 6
we state and prove our main theorem. We finish in Section 7 by describing an application
to crossed products of rank-1 Deaconu—Renault groupoid C*-algebras by automorphisms
induced by continuous 1-cocycles. We provide two appendices—one on group cohomo-
logy and one on twisted group C*-algebras—to provide a handy reference to some key
results on these two topics that we need in the body of the paper, and have found difficult
to locate explicitly in the literature.

2. Background

2.1. Group 2-cocycles and bicharacters

Here we briefly recall some key facts about second cohomology for discrete groups. For
more detail see [9, Chapter IV] and [6, 22] (or [3, Chapter 2] for the key points relevant
here collected in one place).

Let G be a discrete group and let A be a multiplicative abelian group. We write
Z2(G, A) for the group of normalised A-valued 2-cocycles on G, B?(G, A) for the sub-
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group of coboundaries, §! for the coboundary map, and H?(G, A) for the second cohomo-
logy group Z2(G, A)/B?(G, A). Given o € Z?(G, A), we write o* for the 2-cocycle
(g.h) — o(h, g)~'. We call o antisymmetric if 0 = o'*.

A bicharacter of G is a map w: G x G — T such that (-, g) and w(g, -) are homo-
morphisms from G — T for each g € G. Every bicharacter is a T -valued 2-cocycle. If G
is a discrete abelian group, then o > 00'* is a homomorphism from Z?2(G, T) to the group
of antisymmetric bicharacters of G, which descends to an isomorphism of H 2(G, T') onto
the same group [33, Proposition 3.2].

In this paper, the centre Z, of a 2-cocycle o on G is the joint kernel of the associated
antisymmetric bicharacter: Z; :=={g € G : (60*)(g,h) = 1forallh € G}.If (g, h) =
1 =o0(h,g) forall g € Z, and h € G, then we say that o vanishes on its centre. An
adaptation of the argument of [33, Proposition 3.2] (see [3, Theorem 2.2.8] for details)
shows that every 2-cocycle on a finitely generated discrete abelian group is cohomologous
to a bicharacter that vanishes on its centre.

2.2. Hausdorff étale groupoids

We refer to a topological groupoid § with a locally compact Hausdorff topology under
which multiplication and inversion are continuous as a Hausdorff groupoid. We write §(©
for the unit space of &, and § @ for the set of composable pairs in §. Given subsets A, B C
g, we write AB = {af : (@.f) € (Ax B)NEP}and 47! == {a~! : a« € A}, and for
y €§,wewrite yA:={y}Aand Ay := A{y}. We say that § is érale if the range and source
maps r,s: & — @ are local homeomorphisms. We call a subset B of § a bisection if B is
contained in an open subset U of & such that r|y and 5|y are homeomorphisms onto open
subsets of €. Every second-countable Hausdorff étale groupoid has a countable basis
of open bisections. For each x € €, we define , := s~!(x) and §* := r~!(x); and
GF := G, NG*. We say that § is minimal if r () is dense in §© for every x € §©. The
isotropy subgroupoid of § is the groupoid Iso(§) ==, cg0 FF ={y €9 :r(y) =s(y)}.
The interior I of the isotropy of a Hausdorff étale groupoid § is itself a Hausdorff étale
groupoid with unit space I© = g© We say that § is effective if I = §©, and we
say that § is topologically principal if {x € §© : ¥ = {x}} is dense in §©. By [7,
Lemma 3.1], every topologically principal Hausdorff étale groupoid is effective, and every
effective second-countable Hausdorff étale groupoid is topologically principal.
The following definition of a groupoid action comes from [18, Definition 1.60].

Definition 2.1. Suppose that § is a topological groupoid and X is a topological space. We
say that § acts continuously on (the left of) X, and that X is a continuous (left) §-space, it
there is a continuous surjective map R: X — ¢ and a continuous map 6: (y, x) > y - x
from§ x» X = {(y,x) € § x X :s(y) = R(x)} to X, satisfying

(A1) if (o, B) € €@ and (B,x) € € * X, then (af, x), (., B - x) € € x X, and we
have o - (B - x) = (af) - x; and
(A2) forall x € X, we have (R(x),x) € § x X,and R(x) - x = x.



B. Armstrong, N. Brownlowe, and A. Sims 268

We refer to the map 6 as a continuous (left) action of § on X. For each x € X, the orbit
of x under 6 is the set
[xlg = {y-x:(r.x) €F» X}.

2.3. Cohomology of groupoids
We now recall the relevant cohomology theory for groupoids from [36, Section I.1].
Definition 2.2. Let § be a topological groupoid, and let A be a topological abelian group
with identity e4.
(i) A continuous A-valued 1-cochain on § is a continuous map b:§ — A. We say
that b is normalised if b(r(y)) = b(s(y)) = eq forall y € §.
(ii) A continuous A-valued 1-cocycle on § is a continuous 1-cochain c: ¥ — A sat-
isfying c(aB) = c(a)c(B) for all (o, B) € €P.
(iii) A continuous A-valued 2-cocycle on § is a continuous map o: §® — A that
satisfies the 2-cocycle identity: o (a, B)o(af,y) = o(a, By)o(B,y) forall «, B,
y € § such that s(a) = r(B) and s(B8) = r(y), and is normalised, in the sense
that o (r(y),y) = o (y,s(y)) = eq4 forall y € §. We write Z2(§, A) for the group
of continuous A-valued 2-cocycles on §.

(iv) The continuous 2-coboundary associated to a continuous normalised A-valued
1-cochain b: € — A is the map §'b: @ — A given by

8'b(, B) = b(@)b(B)b(@p)~".

(v) We say that two continuous 2-cocycles o, 7: €@ — A are cohomologous if there
exists a continuous normalised 1-cochain such that §15(a, B) = o (o, B) "L (a, B)
for all (a, B) € €.

We write T for the multiplicative group of complex numbers of modulus 1. Suppose
that ¢ is a Hausdorff groupoid and take o € Z2(§,T). Let § x, T be the set § x T
endowed with the product topology, and equipped with the multiplication operation

(@, w)(B,2) = (af, o (e, Pwz), 2.1
defined for all (o, B) € €@ and w,z € T, and the inversion operation
(o, w)™ 1= (a_l,o(a,a_l)w), (2.2)

defined for all (o, w) € § x T. Then § x4 T is a Hausdorff groupoid.

2.4. Twisted groupoid C*-algebras

We now recall Renault’s construction of the full twisted groupoid C*-algebra C*(¢, o)
associated to a Hausdorff étale groupoid ¢ and a continuous T -valued 2-cocycle o on §.
Note that Renault gives this construction for groupoids that are not necessarily étale, but
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we specialise to the étale case since we will primarily be dealing with Deaconu—Renault
groupoids, which are étale. Renault also defines reduced twisted groupoid C*-algebras,
but we will only be working with amenable groupoids, and in this setting, the full and
reduced C*-algebras coincide. Let C.(§, o) denote the complex vector space of continu-
ous compactly supported complex-valued functions on §, equipped with multiplication
given by the twisted convolution formula

(S = > o@phf@gB)= Y o@i'nNf©Og¢ "y,
(,f)e8D, tegr)
af=y
and involution given by

@) =o@.y Hfly™.

Then C.(§,0) is a x-algebra. We write fg for the twisted convolution product f % g
when the intended meaning is clear. The full twisted groupoid C*-algebra C*(§,0) is the
completion of C,.(§, o) with respect to the full C*-norm, which is given by

£ 1l := sup {llw( /)|l : 7 is a *-representation of Cc(§,0)}.

Given a locally compact Hausdorff space Y and a function f € C.(Y), we define the
open support of f to be the set osupp(f) := f~1(C\{0}), and the support of f to be the

set supp(f) := osupp(f).

2.5. Deaconu—Renault groupoids

We recall the definition of the Deaconu—Renault groupoid associated to an action of N¥
by local homeomorphisms. Details appear in [40, Proposition 3.1].

Fix k € N\{0}. Let T:n + T" be an action of N¥ on a locally compact Hausdorff
space X by local homeomorphisms. We call the pair (X, T') a rank-k Deaconu—Renault
system. Define

gr={(x,m—n,y)eX xZ*¥ x X :m,n e NF, T™(x) = T"(y)},

and
g7 = {((x,m. y). (w,n,2)) € 7 x Fr : y = w}.

If (x,m,y),(y,n,z2)) € ﬁ}z), then (x,m + n,z), (y,—m, x) € §7. We define multiplic-
ation from ﬁ}z) to §r by (x,m, y)(y,n,z) := (x,m + n, z), and inversion on §7 by
(x,m,y)" ! := (y,—m, x). Then g7 is a groupoid, called a Deaconu—Renault groupoid.
The unit space of &7 is ﬁ}o) = {(x,0,x) : x € X}, and we identify it with X. The range
and source maps of §r are given by r(x,m, y) := x and s(x,m, y) := y. For open sets
UV C X andform,n € Nk, we define

ZUmn,V)y={xm—ny):xeU yeV, andT"(x) =T"(y)}.
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The collection {Z(U,m.,n,V): U,V C X are open, and m,n € N¥} is a basis for a locally
compact Hausdorff topology on §r. The sets Z(U, m,n, V) such that T™|y and T"|y
are homeomorphisms onto their ranges and 7"(U) = T" (V) form a basis for the same
topology. Under this topology, §7 is a locally compact Hausdorff étale groupoid. If X is
second-countable, then &7 is also second-countable.

Remark 2.3. The action of N¥ in the above definition of a Deaconu—Renault system can
be replaced with an action of a more general monoid P contained in a group G, and this
gives rise to a G-graded Deaconu—Renault groupoid. Such groupoids are studied in [15],
but we do not investigate them here.

Lemma 2.4. Let (X, T) be a rank-k Deaconu—Renault system. The map c: (x,n,y) +—n
is a continuous Z* -valued 1-cocycle on §r, and for each x € X, the restriction of ¢ to
(87)7 is injective.

Proof. Fixa = (x,p,y)and B = (y,q,z) € . Then c(af) = p + g = c(@) + c(B),
and so ¢ is a 1-cocycle. Since each ¢|z,m,»,v) is constant, c is locally constant and hence
continuous. m

Definition 2.5. Let (X, T') be a rank-k Deaconu—Renault system. The orbit under T of
xeXis

[x]r == U (T™~Y(T"(x)) = {y e X:T™(y) = T"(x) for some m,n € Nk}.

m,neNk

We say that (X, T') is minimal if [x]7 is dense in X for each x € X. We frequently just
write [x] for [x]r.

Remark 2.6. We have [x] =r (s~ (x)) C 9 and so 7 is minimal if and onlyif (X, T)
is minimal.

Remark 2.7. By [40, Lemma 3.5], every Deaconu—Renault groupoid is amenable, and so
we can discuss the twisted C*-algebra associated to a Deaconu—Renault groupoid and a
continuous 2-cocycle without any ambiguity as to whether we mean the full or reduced
C*-algebra.

Remark 2.8. The C*-algebras studied here are related to previous work. Suppose that A
is a proper, source-free topological k-graph with infinite-path space A®° (as defined in
[5, Section 3]). For each nn € Nk let T": A% — A be the shift map. Then (A%, T) is
a rank-k Deaconu—Renault system, and the associated Deaconu—Renault groupoid g5 :=
Gr is called the boundary-path groupoid of the topological k-graph. The twisted C*-
algebras C* (&4, 0) associated to continuous 2-cocycles o € Z2 (g4, T ) on proper, source-
free topological k-graphs generalise the twisted C*-algebras of discrete k-graphs studied
in [26-29], and are studied in the first-named author’s Ph.D. thesis [3]. In [5], the first- and
second-named authors study an alternative notion of a twisted C*-algebra of a topological
k-graph associated to a continuous 2-cocycle on the topological k-graph itself, which is
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constructed using a product system of Hilbert bimodules. In the case where A is a discrete
k-graph, it is known (see [2, Theorem 7.2.2]) that these two constructions give the same
C*-algebra, but in the more general topological setting, the relationship is unknown.

3. The interior of the isotropy of a Deaconu—Renault groupoid

In this section, we introduce the periodicity group Pr of a minimal Deaconu—Renault
groupoid (X, T'), and we show that the interior I7 of the isotropy of §r can be identified
with X x Pr.

Definition 3.1. Let (X, T) be a rank-k Deaconu—Renault system. For each nonempty
precompact open set U C X, we define

Pr(U) = {m—n:m,n e N¥, and T™|y = T"|y is injective}.

We define
Pr = g Pr(U).
@7#U C X precompact open

Remark 3.2. When k = 1, the set Pr(U) is related to the group Stab®*(x) from [11,
page 29]. Specifically, Stab®*(x) contains Pr(U) for any precompact open set U contain-
ing x; but also, since Stab®**(x) is a subgroup of Z¥, and hence finitely generated, it is not
too hard to check that there is an open cover of X by sets U such that Py (U) = Stab®**(x)
for each x in U.

In addition to being needed for our own arguments, our next result, Proposition 3.5,
plugs a gap in the literature—it is mentioned without proof in [11, Page 30].

Proposition 3.3. Let (X, T') be a minimal rank-k Deaconu—Renault system. Then
Pr={pe VAR (x,p,x) e gy forall x € X},

and Pr is a subgroup of Z*.
In order to prove Proposition 3.3, we need the following lemma.

Lemma 3.4. Let (X, T) be a minimal rank-k Deaconu—Renault system. Suppose that
m,n € N¥ and y € X satisfy T™(y) # T™(y). Then there exists an open neighbourhood
W C X of y such that T™|w and T"|w are injective and T" (W) N T" (W) = @.

Proof. Since X is Hausdorff, we can choose open neighbourhoods U € X of 7" (y) and
V C X of T"(y) such that U NV = @. Define A4 := (T™)"Y(U) N (T")~1(V). Then
y € A. Since T™ and T" are local homeomorphisms, there is an open neighbourhood
W C A of y such that T™|w and T" |y are injective, and we have T (W) N T" (W) C
unv =ga. ]
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Proof of Proposition 3.3. Fix p € Pr. Then there exist m,n € N* and a nonempty open
set U € X suchthat p =m —n,and T™|y = T"|y is injective. Fix z € X. We claim that
(z, p,z) € §r. Since [z] is dense in X, we have U N [z] # @, and so there exist y € U
and a, b € N¥ such that 7%(y) = T?(z). Thus,

T°™(z) = T™(T?(2)) = T™(T*(y)) = T*(T™(y)).

and
TPt (2) = T"(T?(2)) = T"(T*()) = T*(T"(»)).

Since y € U, we have T™(y) = T"(y), and hence 7" (z) = T?+"(z). Therefore,
(z,p,z)=(z,(b+m)—(b+n),z) € §r,and so

Pr C{peZX:(x,p.x)e€rforallx € X}.

We now show that Z*¥ \ Pr € {p € Z* : (x, p. x) ¢ &7 for some x € X}. To see this,
fix p € Z¥ \ Pr.Let (m;,n;)72, be an enumeration of {(m,n) € Nk x N¥:m —n = p).
We must find x € X such that 7™ (x) 5% T" (x) for all i > 1. We claim that there exist
nonempty precompact open subsets Vy, V1, V5, ... of X satisfying

(1) Vi € Vi_y foralli > 1,

2 T’”i|Vi_1 and T"i|Vi_1 are injective for alli > 1, and

B3) T™ (V)N T"(V;) = @ foralli > 1.

To start, let V be a nonempty precompact open subset of X such that 7" |70 and T™ |70
are injective. Now fix i > 1 and suppose that Vy, ..., V;_; satisfy (1)—(3). Since m; —n; =
p ¢ Pr,wehave T™ |y._, # T"|y,_,, and so there exists y € V;_; such that 7™ (y) #
T" (y). Thus, by Lemma 3.4, there exists an open neighbourhood W C V;_; of y such that
T™(W)NnT" (W)= @. Since X is locally compact and Hausdorff and 7™+! and T"i+!
are local homeomorphisms, there is an open neighbourhood V; of y such that ¥; € W and
Tmi+1 |75 and 7"+t |7i are injective. So induction gives the desired sets V;. Each V; is
contained in the compact set Vp, and so the descending intersection N2, V; is nonempty.
Any x € (2, Vi satisfies T™i (x) # T" (x) forall i > 1.

We conclude by showing that Pz is a subgroup of Z*. For all x € X, we have
(x,0,x) € §7(~0) C §r, and so 0 € Pr. Suppose that p,q € Pr. For all x € X, we have
(x, p, x), (x,9,x) € g7, and hence (x, p — ¢, x) = (x, p, x)(x, q, x)~! € 7. Thus
p —q € Pr,and so Pr is a subgroup of Z¥. |

Given a rank-k Deaconu—Renault system (X, T'), we write I7 for the topological
interior of Iso(§7). Since §r is a locally compact Hausdorff étale groupoid, so is I7.
From this point forward, we will assume that X is second-countable (and hence so are §7
and I7). We know from [40, Lemma 3.5] that §7 is amenable, and hence [1, Proposi-
tion 5.1.1] implies that I is amenable.
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Proposition 3.5. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X
is second-countable. Let Pt be as in Definition 3.1. Then

Ir={(x,p,x):xeX,pe Pr} =~ X x Pr.

Proof. For C, fix y € It. Let c: §r — Z¥ be the continuous 1-cocycle defined in Lem-
ma 2.4. Let p := c¢(y) so that y = (x, p, x) for some x € X. We claim that p € Pr. By
Remark 2.6, §r is minimal, and hence [29, Proposition 2.1] implies that for all y € X,

c(Ir N (Er)3) = c(Ir N (E))).
and thus
p=clx.p.x)ec(Ir NEr)}) =c(Ir N (5r))).

So Proposition 3.3 gives p € Pr.

For D, fix x € X and p € Pr. By the definition of Pr, there exist m,n € N¥ and
a nonempty precompact open set U € X such that p = m —n and T"|y = T"|y is
injective. This injectivity forces Z(U,m,n,U) = {(y,p,y):y e U} C Ir.Fixy e U.
Then (y, p, y) € IT, and so [29, Proposition 2.1] implies that

p=c(y.p.y)ec(Irnr))) =c(Ir N &)
and hence (x, p,x) € Ir. |

Remark 3.6. Proposition 3.5 is related to the sets Xy and H(T') of [40] as follows. Let
(X, T) be a minimal rank-k Deaconu—Renault system such that X is second-countable. In
the notation of [40, Section 3], suppose that ¥ = Xx. Then T is an irreducible action of
N¥ on X , and [40, Proposition 3.10] implies that

Ir={(x,p.x):xeX, pe HT)} = X x H(T).
Thus Proposition 3.5 implies that Pr = H(T).

We now present two corollaries of Proposition 3.5.

Corollary 3.7. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Then Gt is effective if and only if Pt = {0}.

Proof. By Proposition 3.5, It = {(x, p,x) : x € X, p € Pr}. Hence
Gr is effective «<— I = §7(~0) < Pr ={0}. n

Corollary 3.8. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Let c: §7 — 7* be as in Lemma 2.4. Then for each p € Pr, we have
(clz;) M (p) = {(x, p,x) : x € X}, and {c|_7T1 (p) : p € Pr)is a collection of mutually
disjoint clopen bisections whose union is 1.
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Proof. Fix p € Pr. Since c is continuous and Z is discrete, c|}T1 (p) isclopen. Fix x € X.
Ifa,B € c|}T1 (p) and r (o) = x = r(B), then s(o) = x = s(B) because o, 8 € Iso(¥r),
and hence o = (x, p,x) = B. So r|c|}1 (p) 1 injective, and a similar argument shows
that s| eIz () is also injective. Consequently c|}T1 (p) is a bisection. By Proposition 3.5,
we have ¢(I7) = Pr, and the result follows. ]

We now prove that when &7 is minimal, we can form the quotient groupoid §7/I7.
As the anonymous referee correctly points out, a more general result is possible—the
salient point is that I7 is a closed normal subgroupoid of the isotropy—but our application
is to simplicity of twisted C*-algebras associated to §7, for which minimality of §r is a
necessary condition (see Theorem 6.1(a)).

Proposition 3.9. Let (X, T') be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Then It is a closed subgroupoid of ST and acts freely and properly on
Gr by right-multiplication. The set H1 := §r /I is a locally compact Hausdorf{f étale
groupoid, with multiplication given by [«][B] := [aB] for («, B) € 9}2), inversion given
by [yI”! == [y~ Y] for y € §r, and range and source maps given by r([y]) = [r(y)] and
s(flyD) = sl

Proof. Together, Remark 2.6 and Lemma 2.4 allow us to apply [29, Proposition 2.1] to
see that I is a closed subgroupoid of §7. Therefore, [40, Proposition 2.5(d)] implies that
Hr is a locally compact Hausdorff étale groupoid under the given operations. ]

We conclude this section with two technical lemmas that we use in the proof of our
characterisation of simplicity of C*(gr, o) in Section 6.

Lemma 3.10. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Let c: 7 — 7* be as in Lemma 2.4. Fix m,n € 7k, and let U and
V be precompact open bisections of § such that U € ¢~ Y(m) and V < ¢~V (n). Then
IrUNV CIrUand I7VNU C I7V.

Proof. Define K :=r(U) x {n —m} x r(U) and W := K N I7. Since r is continuous,
K is compact, and hence closed. Since It is closed by Proposition 3.9, W is closed, and
hence is a compact subset of K and of I7. We claim that IrU NV C WTU. For this,
suppose that y € I7U N V. Then there exist £ € I7 and n € U C ¢~ !(m) such that
y=§&neV Ccl(n). Hence £ = yn~! € ¢~ 1(n —m). We also have r(§) = s(§) =
r(n) er(U),andsof e KNIy =W.Hencey =éne WU, andso IzU NV C WU.
Since W and U are compact, WU is compact, and hence closed. Thus I7rU NV C T TU.
A symmetric argument shows that 7V NU C I7V. |

Lemma 3.11. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Let c: 7 — 7* be as in Lemma 2.4. Fix m,n € Zk, and let U and
V be precompact open bisections of 61 such that U C ¢~ (m) and V C ¢~ '(n). Then
s(ITUNV)=s(IrV NU). Moreover, if V' IrU)N It # @, thenn —m € Pr, and
foreachy € (W=YIzU)N I, we have s(y) € s(IrU NV).
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Proof. We first show that s(I7U NV) = s(I7V N U). By symmetry, it suffices to show
thats(I7U NV) S s(IrV NU). Suppose that x € s(I7U N V). Then there exist{ € I 1
andn € U suchthat{n €V and x = s(¢n) = s(n). Since { ! € I, wehaven=¢"1(¢n) €
IrV NU,and hence x = s(n) € s(IrV NU). Thus s(I7U NV) Cs(ItV NU), as
required.

For the second statement, suppose that y € (V"' I7U) N Ir. Then there exista € U,
B eV, ,and £ € I suchthaty = B~ '€, and hence c(y) = —n + c(§) + m. Since y, £ €
I, wehave c(y),c(§) € Pr by Proposition 3.5, and hence n —m = ¢(§) — c(y) € Pr,
because Pr is a group by Proposition 3.3. Since y € I, we have s(8) = r(y) = s(y) =
r(a™'), and hence (B,a™!) € ‘5;2). Since £ € I, wehave r(Ba™!) =s(B~!) =r(§) =
s(§) = r(a) = s(Ba™'). We also have c(Ba™!) = n —m € Pr, and thus Proposition 3.5
implies that Ba~! € I7.Hence B = (Ba™)a € I7U NV, andsos(y) =r(y) = s(B) €
s(IrUunNVv). |

4. Cohomology of Deaconu—Renault groupoids

In this section, we show that every continuous T -valued 2-cocycle on a minimal Deaconu—
Renault groupoid §7 is cohomologous to a continuous T -valued 2-cocycle o on §r that
is constant on I7 (in the sense of Definition 4.1). We also introduce the spectral action 6
of Hr := &r /I, analogous to [29, Lemma 3.6].

Definition 4.1. Let (X, 7') be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Suppose that 0 € Z2(§r, T). We say that o is constant on I if

o((x,m,x), (x,n,x)) =0o((y,m,y).(y,n,y)) forallx,y € X andm,n € Pr.

If o € Z2(P7,T) is the 2-cocycle satisfying o ((x,m, x), (x,n,x)) = w(m,n) for all x €
X and m,n € Pr, then we say that o is w-constant on IT,and we write U|I(2) = ly X w.
T

The following proposition and the lemmas used in its proof are extensions of cohomo-
logical results from [29, Section 3] about boundary-path groupoids of cofinal, row-finite,
source-free k-graphs to the more general setting of Deaconu—Renault groupoids. Propos-
ition 4.2 is a generalisation of [29, Proposition 3.1], but we have adapted it slightly to
prove that the bicharacter @ € Z2(Pr,T) can be chosen in such a way that it vanishes on
its centre, and hence descends to a bicharacter @ € Z 2(PT /Z,,T).

Proposition 4.2. Let (X, T') be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Suppose that p € Z2 (81, T). For each x € X, define px: Pr x Pr — T
by

ox(m,n) = p((x, m,x),(x,n, x)).
Then px € Z%(Pr,T). There exists a bicharacter w € Z>(Pr, T) such that » vanishes on
Z in each coordinate, and w is cohomologous to py for every x € X. For any such bichar-
acter w, there exists 0 € Z2(§r, T) such that o is cohomologous to p and is w-constant
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on It (in the sense of Definition 4.1), and there exists a bicharacter & € Z*(Pr/Z., T)
such that

o(p+Zw.q+ Zo) =w(p,q) foral p,q e Pr.

In order to prove Proposition 4.2, we need the following two results. The first of these
results is an extension of [29, Lemma 3.2] to the setting of Deaconu—Renault groupoids.

Lemma 4.3. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Fix 0 € Z*(87,T). For each x € X, define 6x: Pr x Pr — T by

ox(m,n) = o((x,m,x), (x,n,x)).

Then oy € Z*(Pr,T). Fory € 97 and y = s(y) € X, define tJ: Pr — T by

w(p)=0o(y.(v.p.»))o(y(y.p.y).y " )oy.y™H. 4.1
(@) Forallm,n € Pr, the map x — ox(m,n) from X to T is continuous.
(b) Foreach p € Pr, the map y v t, (p) from Gr to T is continuous.

(¢) Fixy =(x,m,y) € §r, p € Pr, and w,z € T. Under the multiplication and
inversion operations on §7 Xq T (as defined in equations (2.1) and (2.2)), we
have

. w) (. p.y).2)ow) ™" = ((x., p.x). 75 (p)z). (4.2)
(d) Forally € §7 and p,q € Pr, we have

7, (P +q) = 0r() (P D05y (P )Ty (P) T, ()- (4.3)

(e) Ifw is a bicharacter of Pt such that o is w-constant on I, then ox = oy for all

x,yeX,andy +— 13

Y is a continuous Pr-valued 1-cocycle on §t.

Proof. Routine calculations show that since ¢ is normalised and satisfies the 2-cocycle
identity, we have o € Zz(PT, T) foreach x € X.

For part (a), note that for each m,n € Pr, the map x + ox(m, n) is the composition
of the continuous maps x — ((x,m, x), (x,n,x)) and 0.

For part (b), fix p € Pr.For y € §r,

7 (p) =0 (v.s(). p.s(N)o (y(s(). p.s(¥).y o (y.y™1).

Thus the map y > 7,/ (p) from 7 to T is continuous because it is a product of continuous
functions.
For part (c), fix y = (x,m,y) € §r, p € Pr,and w,z € T. We have

1

Y. p, )y~ = x,m, )y, p,y)(y,—m,x) = (x, p,x),

and hence

¥ w) (. p. ). 2) (o w) ™!
= (Y. p.y).o(.(y.p.y)wz)(y Loy, y Hw)
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= (. p.y)y oy(ry.p.y).y Dol (v. p. y)o(y.y~1)z)
= ((x. . ). T (P)2)-

For part (d), fix y = (x,m,y) € §7 and p,q € Pr.Forall z € T, we have

(. 29 V(3.4 9).2) = (0, . V)04, 7). 0((3, 2, ). (3.4, 1)) 2)
= (. P +4.9),09(p.9)2),

and so, taking z = oy (p, ), we see that

(. 2. ) (. q.¥).05(p.0)) = (. P +q. ). 1). 4.4

Together, equations (4.2) and (4.4) imply that

(. p+4q.x).77(p +q)
=D p+a. ). ) D™
= (o D(O. 22 D) (.4 ¥). 0y (p. ) (. D
= DO 2. ) D@D D529 9). 0 (p. ) (. D7
= ((x. p. %), 70 (P)) ((x. 4. %). T2 (@)0y (P. q))
= ((x, p + 4. %), 0x(p. Doy (P, )75 (D)7} (@),
and hence
(P +4) = 0r () (P 0I5 (P D5 (P)T3 ().

For part (e), since ¢ is w-constant on I 7, forall x,y € X and p,q € Pr, we have

0x(p.q) = o((x. p.x), (x.4. %)) = w(p.q) =0 (v, p.¥), (¥.4.9)) = 0y(p.q).

So oy = oy, and for each y € §7, equation (4.3) reduces to

o, (p+9) =1, (p)T)(q).

Thus 7;: Pr — T is a homomorphism, and so 7 € Pr for each y € §r.
We now show that the map y > ;) is multiplicative. Fix @ = (x,m,u), B = (u,n,y) €
Gr,and p € Pr. Using equation (4.2), we compute

((x. . 2). (PTG (p)) = (et D ((u. pow). T () e D!
= (. DB D(. p.y) B D @ D!
= (@B.o(@. B))((v. p.y).1)(eB. (e, )
= ((x, p.x), 795 (P))-

g

y isa ﬁT -valued 1-cocycle on g7.

0.0 __ o
Hence 7, T3 = Tope andsoy —> T
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¢ is continuous. Fix a finite subset F C

We conclude by showing that the map y — 7,

Pr and an open subset U C T. The set
Sp,(F.U) =1¢ € Pr: ¢(F) C U}

is a typical subbasis element for the compact-open topology on IST, and so it suffices to
show that {y € 9r : 7] € Sﬁr (F,U)} is an open subset of §7. We have

{vedr:tJ(F)cU} = ﬂ {yeér:t)(p) €U},
pPEF

which is open by part (b). ]

The following lemma is an extension of [29, Lemma 3.3] to the setting of Deaconu—
Renault groupoids.

Lemma 4.4. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Fix 0 € Z?(§r,T). As in Lemma 4.3, for each x € X, define o, €
Z*(Pr,T) by

ox(m,n) = o((x,m,x), (x,n,x)).

Then the cohomology class of ox does not depend on Xx.

Proof. By [33, Proposition 3.2], it suffices to show that ox0; = Gyoy* forall x,y € X.
By Proposition 3.3, Pr is a subgroup of the finitely generated free abelian group Z*, and
so Pr =~ 7! for some [ < k. Fix free abelian generators g1, ..., g of Pr. Since each
0x0y is a bicharacter (by [33, Proposition 3.2]), it suffices to show that (ox0})(gi. gj) =
(oyoy*)(g,-, gj) forall i, j e {l,...,I} and x, y € X. To see this, we first show that
0r (10, (8i+ &) = 0s(1)03, (8- g;), forally € g and i, j € {1,....1}.

Let Pr xg T := Pr x T be the semidirect product group, which is equal to P x T
as a set, but has group operation

(p’ w)(qu) = (P +q,0(p,q)wz).

Define ix: T — Pr x4 T by is(z) = (0,z) and ¢4: P7 X T — Pr by q5(p,z) = p.
Consider the bijection M: H?(Pr, T) — Ext(Pr, T) that maps the cohomology class of
a2-cocycle 0 € Z?(Pr,T) to the congruence class of the central extension

1> T2 Prx, T2 Pr—0

(see [9, Theorem 1V.3.12]). Fix y € §r. We aim to prove that oy, and 0, () are cohomo-
logous by showing that their cohomology classes have the same image under M. So we
must find a homomorphism

@y: Pr %o, T — Pr Xq,,, T
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that makes the diagram

PT XUs(y) T

T o Pr 4.5)

PT Xar(y) T

commute. Let ‘L’;,r : Pr — T be the map of Lemma 4.3, and define ¢,: Pr Xoy(p) T —
Pr Xg,,, T by ¢y (m, z) := (m, ;) (m)z). Fix (m, z), (n,w) € Pr Xg,,, T. Recalling
from Lemma 4.3(d) that

Ty (m +n) = 0y(y) (M, n)05(y) (M, n) ) (M)T,) (1),

we obtain

oy ((m.2)(n, w)) = @y (m + n, 04, (m, n)zw)
= (m +n,75(m + n)as(y)(m,n)zw)
= (m + 1,04 (m, n)rl‘,’(m)rl‘,’(n)zw)
= (m, tl‘,’(m)z) (n. r)‘f(n)w)
= @y(m. 2)p,(n, w),
and thus ¢,, is a homomorphism. Since o is normalised, the formula (4.1) from Lemma 4.3

gives 7,(0) = 1, and it follows that the diagram (4.5) commutes. Therefore, 0y() is
cohomologous to 0y(y), and so [33, Proposition 3.2] implies that

(0r197)(€is &) = (050 05) (810 &) foralli, j e f{l,....[},  (4.6)

as claimed.

Now fix x, y € X. Since (X, T') is minimal, there is a sequence (¥, )neN in §7 such that
s(yn) =xforalln € N,and r(y,) — y asn — oo. Fixi,j € {1,...,l}. By Lemma 4.3(a),
the map u — 0y, (gi, gj) is continuous, and hence the map u — (0,0, )(gi, g;) is continu-
ous. So (0,05)(gi, gj) = limy—eo (Gr(yn)o:‘(yn))(gi,g/). Equation (4.6) gives

(00407 ) (8i- 87) = (0x0%) (i 8))
for eachn € N, and so (0y,0)(gi, ) = (0x05)(8&i> &))- m

Proof of Proposition 4.2. Lemma 4.4 shows that p, is a T -valued 2-cocycle on Pr whose
cohomology class is independent of x. So there exists a 2-cocycle w € Z2(Pr, T) whose
cohomology class agrees with that of each p,. As discussed in Section 2.1 (see [3, The-
orem 2.2.8]), we may assume that w is a bicharacter that vanishes on Z,, in each coordin-
ate, and that there is a bicharacter & € Z2(Pr /Z,, T) such that

&(p+Zyw.q+Zy) =w(p,q) forall p,q e Pr.



B. Armstrong, N. Brownlowe, and A. Sims 280

We now construct o € Z2(§r, T) such that o is cohomologous to p, and o is -
constant on Ir. For each x € X, the 2-cocycles p, and w are cohomologous, and so the
map Cx: Pr x Py — T defined by

cx(p.q) = o(p.q)px(p.q)

is a 2-coboundary on Pr. Since Pr is a subgroup of Z¥ (by Proposition 3.3), there is an
integer [ € {1,...,k} such that Pr =~ 7!. Fix free abelian generators g1, ..., g; for Pr.
For m € Pr,let my,...,m; be the unique integers such that m = Zle m; g;. For each
i e{l,..., 1}, wewrite (g; : j <i) for the group generated by the set {g; : 1 < j <i}.
We claim that there are maps by: Pr — T, indexed by x € X, such that x +> b, (m) is
continuous for each m € Pr, and foreachi € {1,...,[}, we have

bx(m)by(m + g;) = Cx(gi.m), wheneverm € (g; : j <1i). 4.7)

To see this, for each x € X define b, (0) := 1 € T. The map x > b, (0) is trivially con-
tinuous. Fix i € {1,...,1}. Suppose inductively that the maps b, have been defined on
(gj : j <1i), and that x — bx(m) is continuous for each m € (g; : j < i). To extend
by to (g; 1 j < i), first observe that bx(m) is already defined when m = Zj’=1 m;g;
and m; = 0. Now suppose inductively that by (m) is defined and x +— by (m) is continu-
ous whenever |m;| < a for some a € N, and that b, satisfies equation (4.7) whenever
|m;|,|m; +1| <a.Fixm e (gj : j <i) suchthat |m;| = a + 1. Define

b (m) = by(m — gi)Cx(gi,m—g;)  ifm; >0,
T beOm + g0)E(gim) ifm; < 0.

Since Lemma 4.3(a) implies that the maps x + Cx(p, ¢) are continuous for all p,q € Pr,
the inductive hypothesis guarantees that x — b, (m) is continuous. Moreover, rearranging
each of the cases in the definition of by () shows that equation (4.7) is satisfied. So the
claim follows by induction.

Recall the coboundary map §' of Definition 2.2(iv). We claim that §'b, = €. To
see this, first choose a normalised 1-cochain Ex: Py — T such that SIEX = Cyx. (This is
possible because Cy is a 2-coboundary on Pr.) Define a,: Pr — T by

l ~
ax(m) = l_[ bx(gi)™.

i=1

A straightforward calculation shows that ay is a 1-cocycle, and so §'ay is trivial. Hence
8 axby) =68'by =Cx. Putting m = 0 in equation (4.7), we see that foreach i € {1,...,1},
bx(gi) = 1. Hence

I
(axby)(0) = (Hﬁx(gm)i}'xm) =1 =b,(0),
i=1
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and foreachi € {1,...,/},

1
(axby)(gi) = (1‘[ Ex<gj)°)(5x<gi)l)5x(g,-) =1 = be(g))
Jj=1,
J#i

Thus, foralli € {1,...,l} and m € (g; : j <1i), we have

(axbx)(m)(axbx)(m + gi) = (axbx)(gi)(axbx)(m)(axbyx)(gi + m)
= §"(axby)(gi,m)
= Cx(gi,m)
= by (m)bx(m + gi).

So by and axb both map 0 and each generator g; to 1, and they also both satisfy equa-
tion (4.7). Hence axby = by, and thus 81by = 8! (axby) = Cx, as claimed.

Since the maps (x, p, x) — x and x — bx(p) are both continuous for each fixed
p € Pr, the map b:Ir - T given by I;(x, P, Xx) = bx(p) is a continuous 1-cochain
on I7. Weextend b to a map b: &7 — T by setting b(y) := 1 for all y € §r\Ir. Since
Ir is a clopen subset of 7 (by Proposition 3.9), this map b is a continuous 1-cochain
on 7. We have b(x,0,x) = b, (0) = 1 for all x € X, and so b is normalised. Thus the map
8'b: ‘5}2) — T given by §'b(a, B) := b(a)b(B)b(aB)~! is a continuous 2-coboundary
on §r. Define 0 € Z%(§7,T) by o(a, B) := p(ct, B)§1b(a, B). Since o and p differ by
the 2-coboundary §!b, they are cohomologous, and so [36, Proposition II.1.2] implies that
C*(87.p) = C*(9r,0). Finally, fix x € X and p.q € Pr. Since §'b, = Cx = pxw, we
have

o((x. p.x). (x.4.%)) = px(p.q)8'bx(p.q) = w(p.q).

and so o is w-constant on I 7. [

The following result is an extension of [29, Lemma 3.6] to the setting of Deaconu—
Renault groupoids.

Proposition 4.5. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X
is second-countable. Suppose that o € Z>(6r,T), and that w € Z>(Pr, T) is a bichar-
acter that vanishes on Z, in each coordinate such that o is w-constant on I, as in
Proposition 4.2. Let y +— t, be the continuous ﬁT-valued 1-cocycle on Gt defined in
Lemma 4.3(e). For all y € It and p € Z,, we have r)‘,’(p) = l.ALet Hr =86r/1r
be the quotient groupoid of Proposition 3.9. There is a continuous Z,-valued 1-cocycle
[v] = %[‘;] on Hr such that f[‘)’,](plz Ty (p) for all y € 7 and p € Zy. There is a
continuous action 0 of Hr on X x Z,, such that

O (). 1) = (r(1).502)  Jorally € §r and € Zo.

We call the action 8 of Proposition 4.5 the spectral action associated to (T, o). We
denote the orbit of (x, y) € X x Z,, under 6 by [x, x]s.
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Proof of Proposition 4.5. Fix y € Ir.Proposition 3.5 implies that there exist y € X and
m € Pr such that y = (y,m, y). We claim that 77 (Z,) = {1}. Fix p € Z,. Using for-
mula (4. 1) from Lemma 4.3, and that w is a bicharacter satisfying o| I(z) = ly X w, and
that ww™ is an antisymmetric bicharacter, we see that

7 (p)=0o(y.(v.p. M) (y(y.p.y).y o (r.y™1)

= U((y,m,y), (yvp»y))a((ysm + pvy)»(y’_mvy))o-((yvm’y)v (yv_m’y))
= w(m, p)o(m + p, —m)w(m, —m)

= w(m, p)o(p,m)
= (ww*)(p.m),

which is 1 because p € Z,. Thus ;] (Zw) = {1}, as claimed.
For any y € gr, we have ;] € PT by Lemma 4.3(e), and so ‘L’U|Zw € Z . Suppose
that o, B € §r satisfy [a] = [/3] Then n = B~ 'a € I7 satisfies o = Bn. For p € Z,, we

have r,‘]’ (p) = 1, and thus, since y — r)‘,’ is a 1-cocycle,

e (p) = 15,(p) = 15 (P)T, (p) = 5 ().

Therefore, there is a map [y] — %[‘;] from J7 to Z, such that %[‘;] (p) = 7, (p) for all
yegrandpe Z,. Fora,f € §rand p € Z,,

%[aa][ﬂ](l’) = %[(;,3](17) = gﬂ (p) = Tg(ﬁ)fg(l’) = 1?[UO,](P)%[C,Tg](17),

and so %[“’x]m] = %[‘;] %[(;7‘3]' Thus [y] — %[‘;] is a Z,,-valued 1-cocycle on Jr.

We claim that [y] — %ﬁ/ ! is continuous on Jr. Fix a finite subset F' € Z,, and an open
subset U C T, so thé’l\t Sy (F, U):={ye Zy: y(F) C U} isatypical subbasis element
for the topology on Z,,. It suffices to show that {[y] € Hr : f[‘;] €Sy, (F,U)}is open in
JCr. Since F is finite,

Sp,(F.U) = {x € Pr: x(F) U}

is open in Pr. By Lemma 4.3(e), the map y +— 1 is continuous on ¥7, and hence {y €
§r 1) €Sp (F U )} is open in §7. Let n7: 7 — H denote the quotient map y +—
] Then nTl({[y] €Sz (F.U}) ={y e ﬁr 7y (F) € U} is open. Thus, by the
definition of the quotlent topology, {[y] : ‘L'[y] . 5 (F,U)} is open 1nAJ€T

It remains to show that 6 is a continuous action of #r on X x Z,. For o, B € G
such that [a] = [8], we have af~! € I7, and hence r(«) = r(f) and s(x) = 5(B). Define
R: X x Zw — J{’}O) by R(x, y) := [x]. Then R is continuous and surjective. Recall from

Definition 2.1 that the fibred product 7 * (X X 4 ») is defined by

Hr « (X x Zo) = {(y). (x, ) : x € X, x € Zs, ¥ € (97)x}.

Since [y] %[‘; ! is a continuous map from K7 to Zo and r: 7 — X is continuous, the
map ([y]. (s(¥). X)) = Op1(s(¥). x) = (r(y). Ty x) from Hr » (X X Zy) to X X Zy is
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continuous. To see that 6 is an action, we must show that conditions (A1) and (A2) of
Definition 2.1 are satisfied.
For (A1), fix (x, x) € X x Zy, and ([¢], [B]) € J€7(~2) such that ([8], (x, y)) € Hr

(X x Z). Then s([a]) = r([]), and s([B]) = R(x, y) = [x]. Hence s([a][B]) = s([8]) =
R(x, ), and so ([«][B], (x, x)) € #H1 * (X x Z,). Since s(B) = x,

9[5]()6, x) = 9[;3](5(/3)» X) = (r(ﬂ), %[(Ei]x)'

Thus
R(6p1(x, 1)) = R(r(B), Ty x) = [r(B)] = r((B]) = s([a]),

and so ([o], Ojg1(x, x)) € Hr * (X x Zw). Finally, since [y] + f[‘;] is a Z,-valued 1-

cocycle on #r, we have %[‘(’x]%[‘,’g] = %[‘;][’3] = %["aﬂ], and hence

011 (O181(x 1)) = Ora1 (O11(5(B). 1)) = Opea (7 (B). T3y %) = Oran (s(@), Tgy x)
= (r(@), Ty E30) = (r(@B). Tp1x) = Olap1(s(@B). x)
= Opip1(x, X)-
Thus, (A1) is satisfied.
For (A2), fix (x, ) € X x Z . Then s(R(x, x)) = s([x]) = [x] = R(x, ), and so

(R(x, %), (x, 0)) € Hr » (X x Z,). Since x € I, we have 9(Z,) = {1}. Thus, for all
p € Z,, we have %[‘;](p) =17(p) =1, and so %[‘;])( = x. Hence

QR(X,X)(-X! X) = e[x] (S(X), X) = (I"(X), %[C;C]X) = (X, X) u

5. Realising C*(I7,0) as an induced algebra

In this section, we realise the twisted C*-algebra associated to the interior I7 of the
isotropy of a Deaconu—Renault groupoid §7 and a continuous 2-cocycle o € Z2(§r,T)
as an induced algebra. We then describe the ideals of this induced algebra. We begin by
introducing a spanning set 87 for C,.(¥7) and then giving a tensor-product decomposition
of C*(Ir,0).

Lemma 5.1. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Let ¢: §7 — Z* be as in Lemma 2.4. Let

Br = {f € C.(9r) : supp(f) is a bisection contained in ¢! (n), for some n € Zk}.
Then C.(§7) = span Br.

Proof. Fix f € C.(§r). Since supp(f) is compact, there is a finite set ¥ of precom-
pact open bisections that cover supp( f). Since each U € ¥ is precompact, there are only
finitely many n € ZF such that U N ¢~'(n) # @. Since each ¢~'(n) N U is open, it is a
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precompact open bisection, so we can assume that ¢ is constant on each U € . Now, as in
the proof of [39, Lemma 9.1.3], fix a partition of unity {gy : U € ¥} on supp( /') subordin-
ate to ¥ . By the Tietze extension theorem, each gy extends to an element gy of C (§7).

Now the pointwise products fyy := gy - f satisfy supp(fy) CU,and ) yesr fu=/. =

Lemma 5.2. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable. For each h € C.(X) and p € Pr, define h-1,: It — C by

(h - 1p)(x,m, x) = §pmh(x).
Thenh -1, € Cc(IT) foreach p € Pr, and C.(I1) =span{h-1,:h e C.(X),p € Pr}.

Proof. Foreachh € C.(X) and p € Pr, we have

osupp(h - 1,) = (osupp(h) x {p} x osupp(h)) N I,

andhence /11, € C.(I7).Fix f € C.(IT). Since supp( f') is compact, there is a finite set
F < Pr such that supp(f) € U,er c|}T1(p). For p € F, define h,: X — C by hy(x) :=
f(x, p,x). Then osupp(hp) = r(c|}T1 (p) Nosupp( f)), and hence A, € C.(X). Moreover,
f= ZpEF hp - 1p. u

Proposition 5.3. Let (X, T) be a minimal rank-k Deaconu—Renault system such that
X is second-countable. Suppose that o € Z*(§7,T), and that w € Z*>(Pr,T) is a
bicharacter that vanishes on Z, in each coordinate and satisfies 0| I(z) = lxy Xw, as
in Proposition 4.2. Let {u, : p € Pr} be the canonical family of genemnng unitaries
for the twisted group C*-algebra C*(Pr, ). There is an isomorphism Y:C*(Ip,0) —
Co(X) @ C*(Pr,w) suchthat Y(h-1,) = h ® up forallh € C.(X) and p € Pr.

Proof. The argument used to prove [29, Lemma 4.1] works here—for more detail and an
alternative approach to proving injectivity, see [3, Proposition 8.1.3]. ]

Before stating the next theorem, we recall the following facts relating to twisted group
C*-algebras. Define B := Pr/Z,. There is a right action of B on Pr such that

@ 0P =¢(Pr(p+Zy) forallg € Pr, ye B, and p € Pr.

This action induces a continuous, free, proper, right action of B on X x Pr given by
(x,9)-x:=(x,¢- x). By [17, Theorem 4.40], the map ¢ - B ¢|z, is an isomorphism
ﬁT/l? ~ Zw. Thus ¢ — ¢|z, is a quotient map from I3T to Zw, and so [13, The-
orem 3.3.17] implies that Q: (x, ¢) — (x, ¢|z,) is a quotient map from X x Pr to
X x 2,,).

Let {Up+z, : p + Z» € B} be the canonical family of generating unitaries for the
twisted group C*-algebra C*(B, @). By the universal property of C*(B, &), there is a
strongly continuous action 88 of BonC *(B, @) such that

BE(Up1z,) = x(p+ Zu)Upyz, forallye Bandpe Pr.
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(See [3, Theorem 4.3.1] for proofs of the existence of these two actions of B .) Recall from
Definition A.1 the definition of the induced algebra IndAXPT (C*(B,®), BB) associated
to the dynamical system (C*(B, @), B, B5).

Theorem 5.4. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Fix o € Z*(§7,T), and let w € Z*(Pr,T) and & € Z*(Pr/Z,. T)
be bicharacters chosen as in Proposition 4.2. Define

xg = kP (C*(B.3). p)
{f eCo(X x Pr.c*(B.8): f(x.9- 1) = (B (f(x.9)
for all (x,¢) € X x Pr and X € E}

There is an isomorphism Y7:C*(I1,0) — X3 such that
Yr(h-1)(x,9) = h(x)p(p)Up+ 2,
forallh € Cc(X), p € Pr, and (x,¢) € X X Pr.

Proof. For brevity, define ¥ = IndgT (C*(B, &), BB). Recall from Proposition 5.3 and
Theorem A.2 the definitions of the isomorphisms

Y:C*(Ir,0) > Co(X) ® C*(Pr,w) and Q:C*(Pr,w)— Y3.
By [35, Propositions B.13 and B.16], there is an isomorphism
I:Co(X) ® C*(Pr,w) — Co(X,¥7)

such that T'(f ® a)(x) = f(x)Q(a) for all f € Co(X), a € C*(Pr,w), and x € X.
Hence
L(Y(h-1p))(x) =T (h ®up)(x) = h(x)Q2(up), 5.1

forall h € Co(X), p € Pr, and x € X. Applications of [35, Propositions B.13, B.15(b),
and B.16, and Corollary B.17] show that there is an isomorphism

A:Co(X, C(Pr,C*(B,®))) — Co(X x Pr,C*(B,&))

given by A(g)(x,¢) = g(x)(¢). (See the proof of [3, Proposition 8.2.2] for details.) We
claim that for each g € Co(X, C(Pr,C*(B, ®))),

A(g) € X7, ifandonlyif g(x)e Y7, forallx € X. 5.2)
To see this, fix g € Co(X, C(ﬁr, C*(B,w))).Forallx € X, ¢ € Pr,and X E B, we have

AQ.g- 1) =g)@- 1) and (BE) 7 (A)(x.9) = (BE) " (g(x)(@)).
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and hence

A)(x.d- 0= (BE) ' (A@)(x.9)) ifandonlyif g(x)(@- 1) =(BE)" (g(x)(9)).

It is now clear from the definitions of X, and Y7, that claim (5.2) holds. Therefore, A
restricts to an isomorphism A: Co(X, Y7,) — X7, and s0

Yr =KAol oY:C*(Ir.0) > Xrw

is an isomorphism. Using equation (5.1) and the definitions of A and Q, we see that for
allh € C.(X), p € Pr,and (x,¢) € X x Pr,

Yr(h-1,)(x.¢) = T(T(h-1,))(x)($) = h(x)Qup) (@) = h(x)p(p)Up+z,. ™
We now give a useful description of the ideals of the induced algebra X7.

Proposition 5.5. Let (X, T') be a minimal rank-k Deaconu—Renault system such that X is
second-countable. Fix o € Z*(§7,T), and letw € Z>(Pr,T) and & € Z*(Pr/Z,. T)
be bicharacters chosen as in Proposition 4.2. Define X% = InngPT (C*(B,®),BE). If
I is an ideal of X%, then

Kr:={(x,¢) € X x Pr: f(x,¢) =O0forall f e}

is a closed subset of X x ﬁT, and we have

I={f€X%’f|KIEO}

In order to prove Proposition 5.5, we need the following special case of [19, Proposi-
tion 32], which Green in turn attributes to a preprint of Kleppner.

Lemma 5.6. Let G be a countable discrete abelian group with identity e, and let ¢ €
Z2(G,T) be a bicharacter. Let {ug : g € G} be the canonical family of generating unit-
aries for the twisted group C*-algebra C*(G, ¢). Suppose that for all g € G, we have
(cc®){g} x G) ={1} ifand only if g = e. Then C*(G, ¢) is a simple C*-algebra with a
unique trace t,: C*(G, ¢) — C, which satisfies t,(ug) = 8g.¢ forall g € G.

Proof. This is a special case of [19, Proposition 32], but is also proved directly in [3,
Proposition 8.2.4]. u

Proof of Proposition 5.5. We have K; =) rer S/ ~1(0), which is closed because each
S € I is continuous. It is well known that if C*(B, @) is simple, then / = {f € X7 :
flx; = 0} (see [3, Proposition 4.2.1] for a proof). We will use Lemma 5.6 to show that
C*(B, ) is simple. Fix p € Pr. Proposition 4.2 implies that for all ¢ € Pr, we have

(@& P+ Zw.q + Zo) = 0(p,q)w(q, p) = (00*)(p,q). (5.3)

By the definition of Z,, we have p € Z, if and only if (ww*)(p,q) =1 for all g €
Pr. Thus, equation (5.3) implies that p + Z,, is the identity element of B if and only if
(W&*Y{p + Zo»} x B) = {1}, and so Lemma 5.6 implies that C*(B, @) is simple. L]
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6. Simplicity of twisted C*-algebras of Deaconu—Renault groupoids

In this section, we characterise simplicity of twisted C*-algebras of Deaconu—Renault
groupoids in terms of the underlying data, using the spectral action defined in Proposi-
tion 4.5.

Theorem 6.1. Let (X, T) be a rank-k Deaconu—Renault system such that X is second-
countable. Fixo € Z>(6r,T).

(@) If (X, T) is not minimal, then C*(§r, o) is not simple.

(b) Suppose that (X, T) is minimal. Let € Z*(Pr,T)and & € Z*>(Pr/Zy,.T) be
bicharacters chosen as in Proposition 4.2. Let 0 be the spectral action associated
to (T, 0) as in Proposition 4.5. Then C*(§r, o) is simple if and only if 0 is
minimal.

Proof of Theorem 6.1(a). This follows from [37, Corollary 4.9] applied to the groupoid
dynamical system (97, 971 x5 T, Co (ﬁ}o))), but it is easy to provide a short direct proof.
Since (X, T) is not minimal, there exists x € X such that [x] is a proper closed invari-
ant set. Let # = G |m ={y € 7 :5(y) € [x]}, and let 7 be the restriction of o to
H @ Then the restriction map f + f|s is a *-homomorphism from C.(§r,0) to
C*(H, 1), and so it extends to a homomorphism R: C*(gr,0) — C*(H, t). Since
ker(R) N Co(ﬁéo)) = Co(X\[x]) is neither {0} nor all of C (9}0)), we see that ker(R)
is a nonzero proper ideal of C* (&7, o). |

In order to prove part (b) of Theorem 6.1, we need several preliminary results. Let
w € Z*(Pr,T)and @ € Z*(Pr/Z,. T) be bicharacters chosen as in Proposition 4.2.
Define B := Pr/Z, and recall from Theorem 5.4 the definition of the isomorphism

Yyr:C*(Ir,0) > X¢ = IndEXﬁT(C*(B»CB),ﬂB)'

Let:C*(I7,0) = C*(9r, o) be the homomorphism of [4, Proposition 6.1], so

Wy = {(J;(V) ii;;ji forall f € Co(I7,0)and y € §r.

Since I is amenable (by [40, Lemma 3.5] and [1, Proposition 5.1.1]), ¢ is injective by
[4, Proposition 6.1]. Define M7 := «(C*(Ir,0)) € C*(§r,0).

We begin by showing that there is a bounded linear map on M7 given by conjugation
in C*(&r, o) by a fixed element of C,. (&, [0, 1]) that is supported on a bisection.

Lemma 6.2. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable, and fix 0 € Z*>(§7,T). Let U be an open bisection of §r. Suppose
that g € C.(§r, [0, 1]) satisfies supp(g) C U. Forall f € C.(IT,0), we have g*1(f)g €
L(Ce(IT,0)). There is a linear contraction Eg: M3 — M7 given by Eg(a) = g*ag.
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Proof. Fix f € C.(I1,0).Since U is a bisection containing supp(g), we have

supp(g*t(f)g) U 'IrU C Ir,

and hence g*i(f)g € «(C.(I1,0)). Since g has range in [0, 1] and is supported on a
bisection, ||g|| = ||gllco < 1, and thus

g™l = I MO = eI

Therefore, t(f) — g*t(f)g extends to a linear contraction Eg: Mf — M7. |

In the next lemma we introduce a bounded linear map ®y ¢ on the induced algebra
X, that is reminiscent of the spectral action 6 associated to the pair (7, ¢). This map
Oy, is defined in terms of a fixed element g of C (¥, [0, 1]) that is supported on an open
bisection U of §r, and as we show in Proposition 6.5(a), it simply amounts to conjugation
of elements of M7 = X1, by g.

Lemma 6.3. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable, and fix o € Z*(§r,T). Let U be an open bisection of §r. Suppose
that g € C.(8r,0) satisfies supp(g) € U and that g(U) C [0, 1]. For each x € s(U), let
ay,x denote the unique element of U with source x. Let y > t)] be the continuous Pr-
valued 1-cocycle of Lemma 4.3(e). For f € X%, define OUg(f) X x Pp — C* (B, )
by

|g(aUx)| f(r(aUx)v ayx¢) ifx ES(U),

0 if x ¢ s(U).

Then Oy (f) € X%, and Oy g: X3 — X7 is a bounded linear map.

®U,g(f)(x’ ¢) = {

Proof. Fix f € X%. Then

o0 =(BE)(f(x.9)) forall (x.¢) € X x Prand x € B. 6.1)

We first show that Oy ¢ (f) € Co(X x ﬁT,C*(B,CB)). The map Oy ¢(f) is continu-
ous because x — ay x is continuous. We have supp(®y ¢ (f)) S s(supp(g)) x Pr, and
s0 Op,¢(f) has compact support. Hence Oy ¢ (f) € Co(X X Pr,.C* (B, a))) We must
show that Oy . (f) satisfies equation (6.1). Fix (x, ¢) € X x Pr and X € B.If x ¢ s(U),
then

Oug(f)(x.¢- 1) =0= ()7 (0) = (BF) ' (Oue(f)(x.9)).
Suppose that x € s(U). Since f € X%, equation (6.1) implies that
Oue ()x.¢-2) = lglev) S (revs). (5, . #) - 2)
= lg@u)l?(87) " (f (r(@v,). 75, , @)
= (B5) " (Ou (f)(x.9)).

Therefore, @y ¢ (/) € X7. Since the range of g is contained in [0, 1], routine calculations
show that Oy ¢: X2 — X% is a bounded linear map. m
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In the next lemma we show that the set of functions of the form ¢(% - 1,) (as defined
in Lemma 5.2) is invariant under conjugation in C*(§r, o) by a fixed element of
C.(971,10, 1]) that is supported on a bisection.

Lemma 6.4. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable, and fix o € Z*(§7,T). Let U be an open bisection of §r. Suppose
that g € C.(89r, o) satisfies supp(g) € U and that g(U) C [0, 1]. For each x € s(U), let
ay,x denote the unique element of U with source x. Let Eg: M7 — M7 and y +— 1 be
as in Lemmas 6.2 and 4.3(e). For each x € s(U), let ay,x denote the unique element of U
with source x. Fix h € C.(X) and p € Pr, and define Hg ,: X — C by

Hy p(x) = {log(azfx)P @ (Ph(ruy)  ifx esU),

ifx ¢ s(U).
Then Hg,p € Ce(X), and we have Bg(t(h-1,)) = t(Hg p - 1p).

Proof. Since x > ay,x is continuous on s(U), and since y + 7 (p) is continuous by
Lemma 4.3(b), the map H, , is continuous. Since supp(Hg, ,) € s(supp(g)), we have
Hg , € Co(X).

By Lemma 6.2, we have Eg(t(h - 1,)) € t(Cc(I1,0)). Thus, forall y € §r\I7, we
have

Eg(‘(h : lp))(y) =0= L(Hg,p . 1p)(V)~

Suppose that y € Ir. Then by Proposition 3.5, there exist x € X and m € Pr such that
y = (x,m, x). We have

supp (Eg(t(h - 1,))) < supp(g*) supp(t(h - 1,)) supp(g) € U~ I7U.
Thus, if x ¢ s(U), then y ¢ supp(Eg(t(h-1,))) and Hg ,(x) = 0, and hence
Be(tth-1p))(x,m,x) =0=1(Hg,p-1p)(x,m,x).
Suppose that x € s(U). Since g is supported on the bisection U,
B (- 1,) (6 m, %) = 78, (Mg w0l 1)(r(@w,0). m. r(00,0)) g(@w.0)
= |g(av )P,  (m)8pmh(r(au )

= Sp.mHg, p(x)

= t(Hgp-1p)(x,m, x).
Therefore, Eg(t(h-1,)) = t(Hg p - 1p). ]

In the following proposition we describe exactly how the map ®y ¢ defined in Lem-
ma 6.3. relates to the conjugation map &, defined in Lemma 6.2. We also show that ideals
of X, induced by ideals of C*(§7, o) are invariant under Oy ¢, which is a key result
used in the proof of Theorem 6.1(b).
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Proposition 6.5. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X
is second-countable, and fix o € Z*(§r,T). Let U be an open bisection of §r. Suppose
that g € C.(971, [0, 1]) satisfies supp(g) S U. Recall the definitions of the bounded linear
maps Bg: M7 — M7 from Lemma 6.2 and Oy, g: X$ — X7 from Lemma 6.3.

(a) Foralla € C*(Ir,0), we have

Ou.e (Y1 (@) = Y7 (T (Eg(t(a)))).

(b) Suppose that I is an ideal of C*(§r,0), and that J is an ideal of C*(IT,0)
such that 1«(J) = I N MZ. Then the ideal Y7 (J) is invariant under Oy, .

Proof. For part (a), fix h € C.(X) and p € Pr. Since all the maps involved are bounded
and linear, Lemma 5.2 implies that it suffices to show that

Oug(Wr(h-1p)) = 1ﬂT(L_l(Eg(L(h : 1p))))

Recall from Lemma 6.4 that there is a function Hg , € C.(X) given by

{ 8(@u) PTG, (Ph(rlevs)  ifx €s(U),

Hep(0) = if x ¢ s(U),

which satisfies Bg(1(h-1,)) = t(Hg p - 1p). Thus, for all (x, ¢) € X x Pr, we have

2 . o :
Ous r (k- L) (x.6) = { @) PYr (e 1,)(r(eu). 18, ¢)  ifx esU).

if x ¢ s(U),
_ g (v ) Ph(r(ev))t, (P)(P)Up+z,  ifx €sU),
0 if x ¢ s(U),
= Hg,p(x)mUp+Zm

= IpT(I"Ig,p : lp)(xJﬁ)
= (T (Egtlh-1,))) (x. ).
For part (b), fixa € J. Then t(a) € I N M7. Since I is an ideal of C* (&7, 0) and the

range of B is contained in My, we have Eg(1(a)) = g*1(a)g € I N M§ = «(J), and
s0 "1 (E4(¢(a))) € J. Hence part (a) implies that

Ou,e(Yr(a) = ¥r( ' (Eg (L)) € ¥r(J).

and thus Og (V7 (J)) S ¥r(J). .

We now use Proposition 6.5(b) to show that the closed subsets of X X ﬁT charac-
terising the ideals of the induced algebra Xt are invariant under the spectral action
associated to the pair (7, o).
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Proposition 6.6. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X
is second-countable, and fix o € Z*(§7,T). Suppose that 1 is an ideal of C*(§1,0), and
that J is an ideal of C*(I1,0) such that «(J) = I N M7. Define

={(x.¢) € X x Pr: f(x,¢) =O0forall f € yr(J)}.

Let Q: X X Pr — X x Zy, be the quotient map (x,p) + (x,¢|z,). Then Q"1 (Q(Ky)) =
Ky, and Q(Ky) is closed and invariant under the spectral action 6 of Proposition 4.5.

Proof. We trivially have K; € Q~'(Q(K)). We must show that 071 (Q(Ky)) C K.
Fix (x,¢) € Q7Y(Q(Ky)). Then (x,¢|z,) = Q(x,¢) € Q(Ky), and so there exists
(v.p) € K such that (x,¢[z,) = Q(y.p) = (y.p|z,). Wehave x = y and ¢|z, = plz,.
and hence [17, Theorem 4.40] implies that ¢ - B = p- B. So there exists y € B such
that ¢ - y = p- 15 = p. Since (x,¢ - x) = (y,p) € K;, we have f(x,¢ - y) =0 for
all f € ¥r(J). Thus, since Y7 (J) € X2, we have f(x,¢) = ﬂX (f(x,¢-x) =0 for
all f € yr(J). Hence (x,¢) € Ky, and so O~ (Q(KJ)) = K. Since Q is a quotlent
map, [1 3, Proposition 2.4.3] 1mplles that C € X x Z,, is closed if and only if 071(C) €
X x Pr is closed. Since 07 (O(Ky)) = Ky is closed in X x Pr (by Proposition 5.5),
we deduce that Q (K ) is closed.

We now show that Q (K ) is invariant under 6. Fix (x,{) € Q(Ky) and y € (87)x.
Then there exists ¢ € Pr such that (x,¢) € Ky and ¢|z, = ¢. We must show that

y1(x,§) € Q(Ky). Proposition 4.5 implies that 77|z, = 7?[‘)’/], and so

(D) = r(). 750 = 0(r(). 779).

Hence it suffices to show that (r(y), 7y ¢) € K. Fix f € ¥r(J). We must show that
S(r(y),7y¢) = 0.Let U € §r be an open bisection containing y. By Urysohn’s lemma
there exists g € C.(9r, [0, 1]) such that supp(g) € U and g(y) = 1. Let Oy ¢: X — X7
be as in Lemma 6.3. Since s|;;' (x) = y and g(y) = 1,

®U,g(f)(x7 ¢) = f(r()’)» T;/T‘p) (62)
Since f € y¥r(J), Proposition 6.5(b) implies that Oy ¢ () € ¥ (J). Since Y (J) is an
ideal of X%, Proposition 5.5 implies that

yr() ={f € X7 : flx, = 0}.
Thus, since (x, ¢) € Ky and Oy o (f) € ¥7(J), we have

Oug(f)(x.9) =0. (6.3)
Together, equations (6.2) and (6.3) imply that f(r(y), ry ¢) = 0, as required. |

We now prove several technical results that we use in the proof of Theorem 6.1(b)
to show that when the spectral action 6 is not minimal, the twisted groupoid C*-algebra
C*(Gr,0) is not simple. We first show that, given an element (x, ¢) € X X Pr with non-
dense orbit under 6, there is a nonzero element of Xr,, = M7 that is supported off the
orbit of (x, ¢).
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Lemma 6.7. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable, and fix o € Z*(§7,T). Let Q: X x Pr — X x Z,, be the quotient
map (x,$) — (x,¢|z,). Suppose that (x,$) € X x Pr satisfies [x,$|z,]o # X % Zo.
Then Q1 ([x, ¢|z,]9) is a proper closed subset of X x Pr, and there exists J € MZ\{0}
such that

supp((¥r 0t ™)(f)) € (X x Pr)\ Q7 (Ix. 2, ]0)-

Proof. Let C(x.g) = O ([x, ¢|z,]0). Since [x, |z,]o # X x Z, and Q is surjective,
Cixp) # X X Pr. Since Q is continuous, C(x,p) is closed. By Urysohn’s lemma there
exists h € Co (X x Pr, [0, 1]) \ {0} such that supp(h) € (X x 13T) \ C(x,4)- Define g: X x
Pr — C*(B,&) by

g(y,p) = féh(y,p-x)ﬂf(UOJrzw)dx = /Eh(y,p-x)Uo+zw dy.

By [35, Lemma 6.17], we have g € X2. Since & # 0 and h(y, p) > 0 for all (y, p) €
supp(h), we have g # 0. We claim that supp(g) C (X x Pr) \ Cix,¢)- Fix (¥, p) € C(x,¢)-
Then Q(y, p) € [x, ¢|z,]o. It suffices to show that g(y, p) =0.Fix y € B.Forallm € Z,,,
we have y(m + Z,) = 1, and hence (p - y)(m) = p(m)y(m + Z,) = p(m). Thus

0y.p-x)=.(p-0lz,) = (. plz,) = 0. p) € [x.¢lz,]o.

and hence (y, p- x) € C(x,¢)- Since supp(h) € (X x Pr) \ Cx,¢), wehave h(y,p- x) =0
for all y € B, and therefore,

gy.p) = [Eh(y»p “DUo+z,dy =0.

Define f := (1o ¥7')(g) € MZ. Since g # 0 and ¢ o 7! is injective, we have f # 0.
Since (Y7 o t™1)(f) = g, we have

supp((Yr o 1) (f)) = supp(g) S (X x Pr) \ Cix.9)- .

Recall from [4, Lemma 6.2(b)] that since I7 is closed in §7 (by Proposition 3.9) and
amenable, there is a conditional expectation ®: C*(§7,0) — M7 satistying ® ot = ¢ and

®(f) = «(flg) forall f € Ce(§7.0).

Lemma 6.8. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X is
second-countable, and fix 0 € Z*>(§t,T). Recall from Lemma 5.1 the definition of the
spanning set Bt for C.(§r,0). Givena,b € Bt and f € MZ, there exist p,q,g € Br
such that gq*, pg* € «(Cc(IT,0)), the range of g is contained in [0, 1], and the map &4
of Lemma 6.2 satisfies ®(b* fa) = Eq(gq* fpg™).

Proof. Define U := osupp(a) and V := osupp(b). Since a, b € Br, both U and V are
compact bisections, and there exist m,n € Z¥ such that U € ¢~'(m) and V C ¢~ (n).
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Define X == IrV NU andY := I7U N V. Define p,q: §r — C by

a(y) ifyeX,
0 ify ¢ X,

b(y) ifyeY,

p(”)::{ 0 ifyeY.

and  ¢q(y) = {

Since supp(p) € X C U and supp(q) €Y C V, we have p,q € Br. Let W be an open
bisection of g7 such that ¥ € W C ¢~!(n). By Urysohn’s lemma there exists g €
Cc(97, [0, 1]) such that supp(g) € W and gly7 = 1. Then g € Br, and gq*, pg* €
C.(97,0). We claim that gg*, pg* € 1«(C.(IT,0)). To see this, it suffices to show that
osupp(gg™) U osupp(pg™) € It. Since g and g are supported on bisections, we have

osupp(gq™) = osupp(g)(osupp(q)) ' S WV L Cc WW™! = r(W) C I7.

By Lemma 3.10, X=1IrVNUCIpV CIrW,andsince p and g are supported on
bisections, we deduce that

osupp(pg™) = osupp(p)(osupp(g))~' S XW ™ C IrWW ™' = Irr(W) C Ir.
Therefore, gg*, pg* € 1(C.(I7,0)), and Lemma 6.2 implies that

osupp(E4(gq* frg*)) € Ir. (6.4)

We conclude by showing that ®(b* fa) = Eg(gq™* fpg*). Since t, &, and E are bounded
linear maps, Lemma 5.2 implies that it suffices to consider f = t(k - 1,) for some & €
C.(X) and p € Pr. Define D := osupp(f) C c|}T1 (p). Then osupp(g*g) < s(W), and
)

osupp(E¢(gq* fpg*)) = osupp(g*gq™ fpg*g) S s(W)(V~'DU)s(W) S V™' DU.
(6.5)
Together, equations (6.4) and (6.5) imply that
osupp(Eg(gq*fpg*)) C (VIDU)N I7 = osupp(b* fa)N I = osupp(CD(b*fa)).

Thus, if ®(b* fa)(y) = 0 for some y € §r, then Eg(gq* fpg*)(y) = 0. Suppose that
y € gr satisfies ®(b* fa)(y) # 0. Then y € I7, and equation (6.5) implies that there
exista € U, B € V,and £ € D C I suchthaty = B~ 'éa € I7. A routine calculation
gives

O(b* fa)(y) = (b* fa)(B~ ) =a (B E,c)a (B~ £)a (B~1, B)b(B) f(§)a(w). (6.6)
Define y := s(y). Since y € I, wehave s(B) =r(y) = y.Since € V and gly7 = 1,
@) = (DB = 1gB)> = 1. (6.7)

A routine calculation using equation (6.7) and that o is normalised gives

Ee(gq™ fre™)(y) = (g ¢q™ fre*e)(yyy)
=0y, yy)o(y. )& )W (@* fr)(¥)(g*e)(y)
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= (q¢" fp)(B'€a)
=o(B'E.a)a (B E)a (B, B)a(B) f(€)p(a). (6.8)

We claim that p(«) = a(a) and g(B) = b(B). Since y € (V"1 I7U) N I, Lemma 3.11
implies that
y=s(y)es(IrUNV)=s(IrV NU).

Sothereexist n € IV NU =X CUand ¢ € IyU NV =Y C V such that s(n) =
y = s(¢). Since s|y and s|y are homeomorphisms onto their ranges and

s(n) = s(@) =y =s(B) = s(0),

we deduce thato =€ X and = ¢ € Y. Hence p(a) = a(x) and ¢(B) = b(p). Together,
equations (6.6) and (6.8) now give

O(b* fa)(y) = o(B~'E )0 (B~ E)a (B~ B)b(B) f(§)al) = E¢(gq™ frg™) (). m

Proposition 6.9. Let (X, T) be a minimal rank-k Deaconu—Renault system such that X
is second-countable, and fix o € Z*>(§7,T). Let Q: X x Pr — X x Zw be the quotient
map (x,$) = (x,Plz,), and let : C*(§7,0) — M7 be the conditional expectation
of [4, Lemma 6.2(b)] that extends restriction of functions to It. Fix (x,¢$) € X x Pr.
Suppose that | € MZ satisfies

supp((Wr o )(f)) € (X x Pr)\ 07 (Ix. ¢l z,]o)-
Then foralla,b € C*(§r,0), we have

(Y o™ 0 ®)(b* fa)(x.¢) = 0.

Proof. Let ev(x 4): X7 — C*(B, ®) denote the evaluation map f + f(x, ¢). Recall
from Lemma 5.1 the definition of the spanning set 81 for C.(9r,0). Let C(x ¢) =
0~ ([x,¢l|z,le). Fixa,b € Br, and suppose that f € M7 satisfies

supp((Yr o () S (X x Pr) \ Cix -

Since ev(x,¢), YT, (=1, and ® are all bounded linear maps, it suffices to show that

(Ve oY 07 0 @)(B* fa) = 0.

Let E¢ be the bounded linear map defined in Lemma 6.2. By Lemma 6.8 there exist
.4, 8 € Bt such that gg*, pg* € 1«(C.(Ir,0)), the range of g is contained in [0, 1], and

O(b* fa) = E4(gq™ frg™). (6.9)

Let U be an open bisection of §r containing supp(g). For y € s(U), let ay,, denote the
unique element of U with source y. Define hy := ¥ (0" (gg*)) and hy .=y (" (pg™)).
Then

vr (T (gq* fpg™)) = hg¥r (TN ())hp. (6.10)
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By Proposition 6.5(a),

vr (T (Eg(gq™ fpg"))) = Oug (vr (' (gq* frg™))). (6.11)

Together, equations (6.9) and (6.11) imply that

(eV(x,¢) oyrotlo CD)(b*fa)
= yr (T (Eg(gq™ fPg")) (x. ¢)
= Oue (V7 (' (gq* frg™)))(x. 9)
_ { 2w, PYr (7 (gq* fpg) (r@u). 7, ¢) i x € s(U),
0 if x & s(U).

Thus, to see that (ev(y,¢) © Y7 ot~! o ®)(b* fa) = 0, it suffices to show that if x € s(U),
then

vr (7 (g™ fpg") (rlew.r). gy, 4) = 0.
If x € s(U), then

O(r(avx). 7y, 9) = (revy). iy, 1912,) = G0 (x. ¢lz,).
and hence
(r(@vx). 7, ¢) € 07 (a1 (x. $12,)) € Cixp)-
Since supp((¥7 o .1 (f)) € (X x Pr) \ C(x.¢), We obtain

(TN (r(@us), 75, 8) = 0.

Combining this with equation (6.10) gives

Yr (TN (eq* fpe M) (r(aux). 18, @) = (hg¥r (THN))hp) (ravx), g, ¢) = 0. =

We now construct a state k(y,4) of C*(§7,0) defined in terms of a fixed element
(x,¢) € X x Pr.1In the proof of Theorem 6.1(b), we show that if some point (x, ¢) has
non-dense orbit under 6 (so that 6 is not minimal), then the GNS representation associated
t0 K (x,¢) 1S nonzero and has nontrivial kernel, and thus C *(r, o) is not simple.

Lemma 6.10. Let (X, T') be a minimal rank-k Deaconu—Renault system such that X is
second-countable, and fix o € Z>(§r,T). Fix (x,¢) € X x Pr. Let ®: C*(9r.0) > M3
be the conditional expectation of [4, Lemma 6.2(b)] that extends restriction of functions
to I, and let ev(x g): X3 — C*(B, ®) be the evaluation map f - f(x,¢). Let Tr
denote the canonical trace on C*(B, ®) (as defined in Lemma 5.6). Let

Kieg) =T oevieg oYr ot o ®:C*(9r,0) — C.

Forall h € C.(X) such that h(x) = 1, we have k(x ¢)(t(h - 10)) = 1. Moreover, k(x g) is
a state of C*(8r,0).
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Proof. Suppose that i € C.(X) satisfies #(x) = 1. Since ® o = ¢, we have

(eVirpy o YT o 0 ®)(L(h - 19)) = Yr(h - 1) (x, ) = h(x)¢(0)Uo+z, = Uo+z,.

and hence
ko) (L(h - 19)) = Tt (Uosz,) = L. 6.12)

Since @, (71, YT, eV(x,g¢), and Tr“T’ are all positive norm-decreasing linear maps, «(x,¢) is a
positive linear functional, and ||k(x,¢)|| < 1. By Urysohn’s lemma there exists # € C.(X)
such that 2(x) = 1. Then equation (6.12) implies that ||k(x,¢)|| > 1, and thus k(4 ¢) is a
state of C*(&7,0). L]

We conclude this section by proving Theorem 6.1(b), which says that if (X, T) is
minimal, then C*(§r, o) is simple if and only if the spectral action 6 is minimal.

Proof of Theorem 6.1(b). Suppose that 6 is minimal. Let / be a nontrivial ideal of
C*(9r,0). Then there exists a non-injective homomorphism ¥ of C*(gr, o) such that
I = ker(V). By [4, Theorem 6.3], J := ker(W o ¢) is a nontrivial ideal of C*(Ir,0). We
have

W(J)={a):a e C*(Ir,0), ¥((a) =0} ={be M7 :W(b)=0}=1NM7 CI.

Thus, to see that C*(&r, o) is simple, it suffices to show that J = C*(Ir, o), because
then ¢ (Co(X)) C t(J) C I, and (as argued in [3, Theorem 5.3.13]) [14, Proposition 3.18]
implies that / = C*(§r,0). Define

Ky = {(x,¢) € X x Pr: f(x,¢) = Oforall f € yr(J)}.

Since Y7 (J) is an ideal of X%, Proposition 5.5 implies that K is a closed subset of
X x Pr,and

vr(J) ={f e Xz : flg, =0}.
Let O7: X x Pr — X x Z,, be the quotient map (x, @) — (x,¢|z,). Suppose that O (K )
is nonempty, and fix (x, ) € Q(K ). By Proposition 6.6, Q(K y) is closed and invariant
under 6, and hence

.o = {01(x.0) : ¥ € (Fr)x} S Q(K)).
Since 6 is minimal by assumption, Q(K;) = X x Z. Thus, Proposition 6.6 implies that
K;=0""0(K)) =0 "(X xZy) = X x Pr.
Hence
yr(J)={f € X$: flg, =0} = {0},

which contradicts that J is nontrivial, because Y7 is injective. Therefore, Q(Ky) = @,
forcing K; = @, and hence Y7 (J) = X%. Since Y7 is an isomorphism, J = C*(I7,0),
and hence C* (97, o) is simple.
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For the converse, we prove the contrapositive. Suppose that 6 is not minimal. Then
there exists (x,¢) € X x Pr such that

(X, 0z,]0 = {0p1(x. 9lz,) 1 v € (Fr)x} # X X Zy.

Let
Kir.g) = T3 0 eV gy oYr ot o ®:C*(Gr,0) - C
be the state of C* (&7, 0) defined in Lemma 6.10. Let « = k(x ¢), let

Ne = {f € C*(8r.0) 1k (f* f) = 0}
be the null space for «, and let 7t,: C*(§7,0) — B(H,) be the GNS representation asso-
ciated to k. To see that C*(gr, 0) is not simple, it suffices to prove that

{0} # ker(me) # C*(97.0).

Since k # 0, we have J#, # {0}. So since 7, is nondegenerate, ker(w,) # C*(&r, o).
We now show that ker(r, ) # {0}. Define C(x 4) := O~ ([x, ¢|z,]0)- Since [x, ¢|z,]o #

~

X X Zu, Lemma 6.7 shows that C(y ¢) is a proper closed subset of X x Pr, and there
exists f € M7\{0} such that

supp((¥r © ) (f)) € (X x Pr) \ Cra.g)-
Fix a,b € C*(8r,0). To see that (/) = 0, it suffices to show that
(me(f)(a@+ Ng) | b+ Ni) =0.
Since m, is the GNS representation associated to k, we have
(me(f)@+ Ng) | b+ Ni) = (fa + Ni | b+ Ni) = k(b* fa).

By Proposition 6.9, we have (7 o 1! o ®)(b* fa)(x, ¢) = 0, and hence

k(b* fa) = (Tr% o ev(x,g) oY ot~ ' 0 ®)(b* fa) = Try(0) = 0.
Hence (7, (f)(a + Ni) | b + Ni) = 0, giving ker(,) # {0}. L]
Remark 6.11. If X is the infinite-path space of a cofinal, row-finite k-graph with no

sources, and each T" is the degree-n shift map, then Theorem 6.1 coincides with the
simplicity characterisation given in [29, Corollary 4.8].

Remark 6.12. Theorem 5.1 of [7] shows that C*(&r) is simple if and only if &7 is
minimal and effective. We claim that [7, Theorem 5.1], in the special case of Deaconu—
Renault groupoids, is equivalent to Theorem 6.1 when o is trivial. In this case, @ and each
7, are also trivial, and Z,, = Pr. So Theorem 6.1 says that C*(9r,0) = C*(9r) is
simple if and only if the set

[ 8o = {(r(). E010) - v € 1)x} = r((81)x) x {9)

is dense in X x Py forall (x,¢) e X x Pr. Since r((6r)x) isdensein X and X x {¢} is
closed, we deduce that 6 is minimal if and only if P = {0}. By Corollary 3.7, this occurs
precisely when §r is effective.
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7. An application to some crossed products by Z

In this section, we apply our theorem to characterise simplicity of crossed products of
C*-algebras of rank-1 Deaconu—Renault groupoids arising from continuous T -valued
functions on the underlying spaces. We then specialise this to the analogue of quasi-free
actions on topological-graph C*-algebras.

7.1. Crossed products as twisted groupoid C*-algebras

To apply our main theorem to understand crossed products of C*-algebras of Deaconu—
Renault groupoids, we need to realise the latter as twisted groupoid C*-algebras. This
follows from a more general result about crossed products of étale groupoids by actions
of Z induced by T -valued 1-cocycles that may be of independent interest; so we record
the general result first. We thank the referee for suggesting the more general formulation.

We will first need the following folklore result about multipliers of the C*-algebras of
Hausdorff étale groupoids. We write Cp(Y') for the set of continuous, bounded, complex-
valued functions on a locally compact Hausdorff space Y.

Lemma 7.1. Let § be a Hausdorff étale groupoid, and fix o € Z*(§,T). Suppose that
B C § is aclopen bisection of § such that s(B) and r(B) are closed, and fix f € Cy(B).
For g € C.(§,0), the convolution product [ * g given by

(fx) = > olwa'y) f@eg'y)

acgr®

belongs to C.(§,0). There is a multiplier My of C*(§,0) such that for g € Cc(9,0)
we have My (g) = f * g. If s(B) = r(B) = €O and f(B) C T, then My is a unitary
multiplier of C*(§,0). If By and B, are two clopen bisections such that r (B;) and s(B;)
are closed for each i, and f; € Cyp(B;) for each i, then the convolution product fi * f»
belongs to Cp(B1 B2), and we have My, o My, = My, s, likewise, f;* € Cp(By") and
M}fl = Myy.

Proof. Fix g € C.(§,0). Since supp(g) is compact, its image r (supp(g)) under the con-
tinuous range map is also compact. Use Urysohn’s lemma to fix a compactly supported
function & € C.(§©, [0, 1]) such that hlreuppg)) = 1. Then fx g = f*x(h*g) =
(f * h) = g. The function f = h is given by (f x h)(y) = f(y)h(s(y)), and since
supp(f = h) C s|§1(supp(h) Ns(B)) € B, itfollowsthat f xh € C.(§,0).S0 f xg =
(fxh)xgeC.(8,0).

Using the same function /4 as above, we see that

If o gll? =I1((f *h)xg)* « ((f*h)x )| =g"*(h= f** f*h)*g]|.
In C*(§,0), we have

g k(s f*x fah)yxg<|hxf"* fxhloog™g < fll5sg"s
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and so we deduce that || f * g|| < || f|leollg||- So the map g — f * g on C.(¢, o) extends
to a bounded linear map M of norm at most | f || on C*(§,0). Defining f*: B~! — C
by f*(y) = o(y~1,y)f(y~1) as usual, associativity of multiplication shows that for
g.heC.(§,0), wehave Mr(g)* *h=g** f*xh=g* * Ms«(h). Thus M is adjoint-
able with respect to the standard inner product on C*(¢, '), with adjoint My«. So M is
a multiplier, as claimed. If s(B) = r(B) = € and f(B) C T, then for g € C.(&,0)
we have Mf*(Mf(g)) = f** fxg=1go *x g =g, and similarly, Mf(Mf*(g)) =g.
So continuity gives Mf* My = My Mf* = 1 y(Cc*(g,0)), and thus My is a unitary.

For the final statement, we already saw that Mg« = M ; for all £, so we just have to
establish the multiplicativity. If By and B, are clopen bisections and f; € Cp(B;), then
B B, is an open bisection because multiplication is open. To see that By B is also closed,
suppose that y; — y and each y; € By B,. Then each y; can be written as «; 8; with each
«; in By and each §; in B,. Since y; — y, we have r(«;) = r(y;) — r(y), and then since
r|p, is a homeomorphism, o; — « for some @ € B;. Similarly (using s in place of r), we
have 8; — B for some € B,. Since each s(«;) = r(B;), continuity gives s(a) = r(B),
and since o; §; = y; — y, continuity also gives ¢ = y. So y € B B;. The convolution
formula shows that supp(f1 * f2) € B1 B> and that || f1 * f2llcoc < [|f1llool f2]loo- For
g € Ce(8.0) we have My, (My,(2) = fi % (fo % §) = (i * f2) * § = Myys 1, (g). and
then continuity gives My, Mz, = My, 4 1,. m

We can now discuss how to realise certain crossed products of étale-groupoid C*-
algebras as twisted groupoid C*-algebras.

Let & be a locally compact Hausdorff groupoid with a Haar system and let ¢: § — T
be a continuous 1-cocycle. By [36, Proposition 11.5.1] there is an action « = «¢ of Z on
C* () such that

a () =c)" f(y) forallneZ, f € C.(§), andy € §. (7.1

Proposition 7.2. Let § be a second-countable Hausdorff étale groupoid. Suppose that
c:§ — T is a continuous 1-cocycle, and let « = € be the corresponding action of Z
on C*(9) as in equation (7.1). There is a continuous T -valued 2-cocycle w = w, on
G X Z given by w((B,m), (y,n)) .= c(B)", and there is an isomorphism ¢:C*(§) Xy 7 —
C*(§ X Z,w) such that

¢(icx)(izm) (. p) = 6-np f(¥),
for f € Cc(§),n € Z,and (y, p) € § X Z.

Proof. First note that @ is normalised because ¢ (r(y))*=c(y)°=1forall ye§ andn e Z.
To see that w satisfies the 2-cocycle identity, fix a composable triple ((8,m), (y,n), (1, p))
in g x Z. Then

o((B.m). (y.m))o((B.m)(y.n), (A, p)) = c(B)"c(By)? = c(B)" Pe(y)?
= o((B.m), (.n)(A. p))o((y.n). (A, p)).
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For the final statement, first note that for n € Z, the set §© x {n} is a clopen bisection
of ¢ x Z with range and source equal to (§ x Z)®. Hence Lemma 7.1 shows that there
is a unitary multiplier U, of C*(§ x Z, w) that acts on C.(§ X Z, w) by convolution
with the characteristic function 1g) ). Since ¢ vanishes on §©, the final statement
of Lemma 7.1 shows that n — U, is a unitary representation of Z.

Since ¥ x {0} is isomorphic to § and w is trivial on § x {0}, the universal property
of C*(§) yields a homomorphism 7: C*(§) — C*(§ x Z, w) such that 7 (f)(y, m) =
Om,0 f(y) forall f € C.(§) and (y, m) € § x Z. We claim that 7 is nondegenerate. To
see this, fix g € C.(§ x Z, w), and use Urysohn’s lemma to choose f € C.(¥) such that
supp(f) € €@ and f |71 - (supp(g))) = 1, Where my is the projection of § x Z onto the first
coordinate. A routine calculation shows that 7( f)g = g, and hence 7 is nondegenerate.

We claim that (7, U) is a covariant representation of (C*(§), Z, o). To see this, fix
f eC.(§)andn € Z. For all (y,m) € § X Z, we have

(Unm(S)U;)(y.m)
= (Unt(S)U-n)(y.m)

= > e e(B) 1 xiny (1 PIT( (B D1 g0 xiny (R D).
,p)(B.0)(A,1)=(y,m)

If (1, p)(B.q)(A.1) = (y,m) contributes a nonzero term, then (17, p) € @ x {—n} and
(A1) € §© x {n}; thus (n. p) = (r(y),—n) and (A, 1) = (s(y).n), and hence (B, ¢) =
(y,m). So we obtain

(Ut (YU (y.m) = ()" 7 (f)(y.m) = Smoc(y)" f(y) = 7w(an(f))(y. m).

Therefore, (7, U) is a nondegenerate covariant representation of (C*(§), Z, «), and so
the universal property of the crossed product gives a homomorphism ¢: C*(§) %y Z —
C* (8 x Z.w) such that  (ic+(5)(/)iz(M)(y. p) = X (FHUn) (. p) = 8-np ().

To see that ¢ is injective, it suffices by [10, Proposition 4.5.1] to show that 7 is inject-
ive and that there is a strongly continuous action 8 of T on C*(§ x Z, w) such that for
each z € T, we have B, (w(f)) = n(f) forall f € C.(§), and the extension Ez of B, to
the multiplier algebra M(C*(§ x Z, w)) satisfies EZ (Uy) = z"Uy, foralln € Z.

We first show that 7 is injective. Let Y denote the right-C *(§)-module direct sum
D,z C*($). For [ € Cc(§ X Z,w) and n € Z, we write f, € C.(§) for the function
such that f(y,n) = f,(y)forally € §.For f € C.(§ x Z)and & € C.(Z,C*(§)) C Y,
define f-& € C.(Z,C*(8)) by (f -&)(n) = Zp+q:n ap(f7)6(p), where the product
o, (f4)E(p) is computed in C*(9).

We claim that f +— (§ — f - £) is a x-homomorphism from C.(§ x Z,w) to £(Y). To
see that it is multiplicative, fix f € C.(§ x{a}) C C.(§ xZ,w)and g € C.(§ x {b}) C
C.(9 X Z,w). Then fg € C.(§ x {a + b}), and for y € §, we have

(fQa+s(y) = > o((B, p), (X, @) f(B, p)g(X,q)

(B,p)(A,q)=(y,a+b)
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=Y o((B.a), (4. D) fa(B)gs(M) = Y c(B) fu(B)gr(A)

BAr=y BAr=y

= (ap(fa)gp)()-
Thus, for § € C.(Z,C*(§)) and n € Z, we have

(f - (g-8))n) = an—a(fa)(g-E)(n —a) = an—a(fa)tn—(a+b)(gp)§(n — (a + b))
= ty—(a+b) (@ (fa)gp)s(n — (a + b))
= Wp—(a+b) ([ a+p)E(n — (a + b))

= Y 4 (fD)EP = (fg)-En).

p+q=n

Hence f + (§ — f - &) is multiplicative.
To see that it preserves adjoints, fix f € C.(§ x {m}) € C.(§ X Z,w), and £ €
Cc({p}.C*(¥)) Y andn € Cc({¢}, C*(¥)) S Y. Then

(f-&ncee = (@ 1) = 8pim.q§ (D) ap(fn) 1(q).

Since w((y, —m), (y,—m)~1)=c(y)™ for y € §, a computation shows that a,, (( f *)_n) =
(fm)*. Hence f* € C.(§ x {—m}), and

(Sa f* : 77)C*(§) = E(P)*(f* : 7’)(17) = 8q—m,p‘§(P)*ap+m((f*)—m)n(Q)
=(f-&nc -

So f + (§ — f - &) preserves adjoints, and hence is a *-homomorphism.

The universal property of C*(§ x Z, w) therefore implies that there is a homomorph-
ismy:C*(§ x Z,w) — L(Y)suchthaty(f)é = f-Efor f € C.(§ X Z,w)andE €Y.

Let ip: C*(¥)c+g) — Y be the inclusion as the 0-submodule. A quick calculation
shows that for a, b € C.(§), we have ¥ (1t (a))io(b) = ip(ab). Since iy is isometric and
since the left action of C*(¥) on itself by multiplication is isometric, we deduce that
¥ o m is injective, and hence r is injective.

So we just need to construct the action 8. For z € T, the map f;: C.(§ X Z,w) —
C*(§ x Z,w) given by B,(f)(y,n) := z" f(y,n) is a *-homomorphism, and hence the
universal property of C*(§ x Z, ) implies that it extends to an endomorphism S, of
C*(§ x Z,w). Since Bz o B, is the identity map on C.(§ X Z, w), each B, is an auto-
morphism, and since 8, o B, agrees with 8,y on C.(§ X Z,w), we see that z > B, is a
homomorphism. For f € C.(§ x {n}), the map z — B,(f) is clearly continuous, and an
5-argument then shows that f is a strongly continuous action of T.

We claim that the extension of each §, to the multiplier algebra M(C*(§ X Z, ®))
satisfies BZ (Up) = z""U, foreach n € Z. To see this, fix n € Z and an increasing sequence
K; € 9© of compact sets with | ;e Ki = §®, and foreachi € N, fix h; € C.(§© x
{n}, [0, 1]) such that &; |k, x{ny = 1. For f € C.(§ x Z) there exists N € N large enough
so that r(supp(f)) € Ky x {0}, and then h; x f = U, f foralli > N. So the sequence
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(hi)ien converges strictly to Uy, and since 8, (h;) = z"h; for all z € T, this establishes
the claim. Thus ¢ is injective.

It remains only to prove that ¢ is surjective. For this, fix an open bisection B of § x Z
and distinct points B,y € B. Then B = B’ x {n} for some open bisection B’ of § and some
neZ,andso B = (B',n)andy = (y',n) for distinct 8/, y’ € §. Fix f € C.(§) such that
supp(f) € B’, f(B') = 1, and f(y') = 0. Then the support of ¢ (ic+g)(f)iz(—n)) =
7 (f)U—p is contained in B, and we have ¢ (ic+g)(f)iz(—n))(B’.n) = f(B’) =1 and
dlicxg)(f)iz(—n))(y',n) = f(y') =0.So [39, Corollary 9.3.5] shows that ¢ is surject-
ive. [

7.2. An application of Theorem 6.1 to crossed products

We now make use of Theorem 6.1 and Proposition 7.2 to study simplicity of certain
crossed products of C*-algebras of Deaconu—Renault groupoids.

The following is an immediate corollary of results of Renault [38, Section 4.1] (see
also [16]) together with Proposition 7.2; we have written it out primarily to establish our
set-up for the rest of the section.

Corollary 7.3. Let (X, T) be a rank-1 Deaconu—Renault system such that X is second-
countable, and let h: X — T be a continuous function.

(a) Foreach(x,p,y) € 0 C X x Z x X, the sequence

N _ N-p
(H Wi [ hm(y)))
i=0 i=0

is eventually constant.

oo

N=|p|

(b) There is a continuous 1-cocycle h: Gr — T such that
_ N ' N—p—
h(x.p.y) = [rT ) [] 1T )
i=0 i=0

forlarge N € N.

(¢) There is an action o’*: 7, — Aut(C*(9r)) such that " (f)(y) = E(y)" f(y) for
all f € Cc(97) and y € Gr.

(d) There is a continuous 2-cocycle cy: (67 x Z)® — T given by
en((e.m). (B.m) = h(@)",
and there is an isomorphism ¢: C* (1) xyn Z — C*(§1 x L, cp) such that
Picxr)(Nizm) (. p) = 8-np f(¥),

for f € Cc(8r), n € Z, and (y, p) € &1 X Z.
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Proof. Statements (a) and (b) follow from the arguments of [38, Section 4.1] or [16, Pro-
position 3.10]. The action (c) is the one described in equation (7.1). The final statement is
a special case of Proposition 7.2. ]

Theorem 7.4. Let (X, T) be a rank-1 Deaconu—Renault system such that X is second-
countable, and let h: X — T be a continuous function. Let I 91 — T be the 1-cocycle of
Corollary 7.3(b), and let «": Z. — Aut(C* (1)) be the action of Corollary 7.3(c). Write
p for the action of 7 on X x T given by p,(s(y),z) = (r(y), E()/)Z). Suppose that X
is an uncountable space. Then the crossed product C*(§1) X, Z is simple if and only if
p is minimal.

In order to prove Theorem 7.4, we need the following lemma.

Lemma 7.5. Let (X, T) be a minimal rank-1 Deaconu—Renault system such that X is
second-countable. If X is uncountable, then & is topologically principal.

Proof. Since §r is second-countable, it suffices by [7, Lemma 3.1] to show that I =
‘57(9). To see this, we suppose that I # ‘5}0) and derive a contradiction. Recall from
Proposition 3.5 that T = {(x, p,x) : p € Pr}. Since I is nontrivial, there exists p €
Z\{0} such that (x, p, x) € gr for all x. By definition of the topology on g7, it follows
that for each x € X there is an open neighbourhood U of x and a pair m > n € N such
that 7™ (x) = T"(x) for all x € U. Since the pairs m > n € N are countable and X is
not countable, that §7 is second-countable implies that there exist x, U, m, n as above so
that U is not countable. Since X is second-countable and 7" is a local homeomorphism,
(T™)~1(x) is countable for every x € X, and so VV = T"(U) is an uncountable open set
and p = m —n > 0 satisfies T?(x) = x forall x € V. Fix x € V. Since V is uncountable,
there exists y € V such that

T9(x)#y forallg € N. (7.2)

Since 7 is minimal, there is a sequence (z;, m;, x){2, in 7 such that z; — y. Write
eachm; = a; — b; with a;,b; > 0so that T% (z;) = Tbi (x). Foreach i € N, there exists
k > 0 such that kp > b;; and then T% +*P=bi) (z;) = T*kP(x) = x. So we can assume that
each m; > 0 and that 7™ (z;) = x for all i € N. By passing to a subsequence, we may
assume that each m; — m is divisible by p. Fix [ > O suchthat[p > m,letd :=1Ip —mq,
let z := T9%(x), and let n; := m; 4+ d foralli € N. Then T" (z;) = z foralli € N, and
each n; is divisible by p. Since z; — y, we eventually have z; € V', and so we eventually
have z = T™ (z;) = z;. But this forces y = z = T'¢ (x), which contradicts condition (7.2).
Thus I7 is trivial, as claimed. [

Proof of Theorem 71.4. By Corollary 7.3(d), the crossed product C*(&r) X,n Z is iso-
morphic to the twisted groupoid C*-algebra C*(§7 X Z, c,), to which we aim to apply
Theorem 6.1. For this, observe first that if T is the action of N2 given by 7 - T,
then 97 x Z = &r.
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First suppose that (X, T') is not minimal. Then & is also not minimal, and the action
o is not minimal. So (X, T) is not minimal, and hence Theorem 6.1(a) implies that
C*(81) yn Z = C* (&7, cp) is not simple. So it suffices to prove the result when (X, T')
is minimal.

Now suppose that (X, T') is minimal. Since X is uncountable, Lemma 7.5 implies that
Ir= ﬁ;o). The isomorphism §7 x Z — & is given by ((x,m,y),n) — (x,(m,n),y). So
the interior I7 of the isotropy of &7 is precisely {(x, (m,n),x) : (x,m,x) € I, n € Z}.
So the preceding paragraph implies that I7 = {(x, (0,n),x) : x € X, n € Z}. The iso-
morphism §r x Z — G5 intertwines ¢, with the 2-cocycle o € Z2(g7, T) given by
o((x,(m,n),y),(v,(p,q),z2)) = ﬁ(x, m, y)4. The restriction of this o to I(Tz) satisfies

o((x,(0,m),x), (x,(0,n),x)) = h(x,0,x)" = 1.

Hence o is w-constant on Iz with @ = 1. It follows that Z,, = P = {0} X Z = Z.
The Z-valued 1-cocycle 79 obtained from Lemma 4.3(e) satisfies

e many.y)(P) = 0 ((x. (m. 1), ). (. 0. p). y))
: U((X, (m,n + p)» y)’ (y’ (_m’ —I’l),X))

-U((x,(m,n), y)?(yv(_m’_n)7-x))
= g(x,m, y)”g(x,m, y)_”ﬁ(x,m,y)—”
= E(x,m,y)p.

So the isomorphism y +— x(1) from 7 to T carries ‘C& (m.n).y) 1O E(x, m,y)eT.
‘We have
Hor =G5/ Ir = (1 x L)/ (6 x L) = 6r

and the isomorphism is the map [(x, (m, n), y)] = (x,m, y). So the spectral action 8 of
Hon X x Zo of Proposition 4.5 is identified with the action of §7 on X x T given by
Oce,m (¥, 2) == (x, g(x, m, y)z), which is precisely the action p. So Theorem 6.1 shows
that C* (&, ¢p,) is simple if and only if p is minimal. L]

In the following result, we write ¢ and o for the terminus (range) and origin (source)
map in a topological graph, so as to avoid confusion with the range and source maps r
and s in the associated groupoid. We write X (E) for the graph correspondence associated
to a topological graph E = (E°, E',t,0), and we write Ox(g) for the associated Cuntz—
Pimsner algebra. We write (jc,(g0), jx(k)) for the universal Cuntz—Pimsner-covariant
representation of X (E) that generates Ox(g). See [21,31,42] for background on topolo-
gical graphs and their C*-algebras.

Corollary 7.6. Let E = (E°, E', t,0) be a second-countable topological graph such
that the terminus map t: E' — E° is proper and surjective, and the infinite-path space
E® is uncountable. Suppose that £: E' — T is a continuous function. There is an action
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B4 Z ~ C*(E) such that ﬂﬁ(]X(E)(E)) = jxE)" - ) forall & € C.(EY). Extend £ to
a continuous function £: E* — T by defining {(ey -+~ e,) = [[i—; £(e;) and £|go = 1,
and let T: E®° — E* be the shift map T (x1x2x3-++) = xax3 . Then C*(E) xg¢ Z is
simple if and only if for every infinite path x € E°, the set

{(AT"(x), £(A)l(x(0,n))) :n € N, A € E*1(T"(x))} (7.3)
is dense in E° x T.

Proof. The map & +— £ - & is a unitary operator Uy on the graph correspondence X (E).
If £ € C.(E') is a positive-valued function such that o is injective on supp(£), then a
quick calculation shows that conjugation by Uy fixes the rank-1 operator ®¢ ¢. Using
this, it is routine to see that if (i, w) is a covariant Toeplitz representation of E as
in [31, Definitions 2.2 and 2.10], then so is (Y o Uy, ). So the universal property of
C*(E) = Ox(g) described by [31, Theorem 2.13] yields a unique automorphism B¢ that
fixes jic,(£9y(Co(E®)) and satisfies B (jx (k) (§)) = jxg)(L - §) for £ € Cc(EY). The for-
mula ﬂ,‘; := (B%)" then gives the desired action.’

Since t: E' — E? is proper, [5, Propositions 3.11 and 3.16] show that £ is a locally
compact Hausdorff space and 7 is a local homeomorphism. By [42, Theorem 5.2], there
is an isomorphism ¢: C*(E) — C*(§r) such that

ey (S)(x.m,y) = 8x y8mo f(1(x))
for f € Co(E®) and

dUxE)E)(x.m,y) = 81(x),y0m1£(x1)

for £ € C.(EY).

Define h: E® — T by h(x) := £(x1). Then & is continuous. Let o € Aut(C*(67))
be the automorphism oe{’ of Corollary 7.3(c). A routine calculation shows that o” o ¢
agrees with ¢ o B¢ on jCO(E[))(C()(EO)) U jx()(Cc(E")), and hence the uniqueness of
the automorphism B¢ discussed in the first paragraph shows that a” o ¢ = ¢ o B¢, It
therefore suffices to show that C*(§7) X, Z is simple if and only if the set described in
equation (7.3) is dense for each x € E.

Fix x € E®. Let h: §r — T be the 1-cocycle of Corollary 7.3(b). We claim that
the set described in equation (7.3) is precisely the orbit of (x, 1) under the action p of
Theorem 7.4. We have

(&1)x = {(AT"(x),|A| —n,x) :n € N, X € E*t{(T"(x))}.
and so for each y € (§7)x, we have

py(x, 1) = (AT"(x), KAT" (x), [A| — 1, X)), (7.4)

"We could also appeal to the fourth paragraph of [30, page 462].
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for some n € N and A € E*#(T"(x)). Direct calculation shows that

(x| = [v], vx) = €()EW), (1.5)

for all x € E® and pu,v € E*t(x). Together, equations (7.4) and (7.5) imply that the
set described in equation (7.3) is the orbit of (x, 1) under p. Since p commutes with the
action of T on E* x T by translation in the second coordinate, the orbit of (x, 1) is
dense if and only if the orbit of (x, z) is dense for every z € T. That is, the set described
in equation (7.3) is dense for each x € E*° if and only if every p-orbit is dense. So the
result follows from Theorem 7.4. ]

To conclude, for the class of topological graphs appearing in Corollary 7.6, we give
a sufficient condition phrased purely in terms of the graph without reference to the shift
map on its infinite-path space, for simplicity of the crossed product described there. (The
hypothesis that £°° is uncountable is quite weak, and follows from a number of element-
ary conditions on the graph: for example, that £ 0 is uncountable, or that E has at least
one vertex that supports at least two distinct cycles.)

Corollary 7.7. Let E = (E°, E',t,0) be a second-countable topological graph such that
the terminus map t: E' — E° is proper and surjective, and the infinite-path space E®
is uncountable. Let £: E' — T be a continuous function. Extend { to E* by defining
Liey-+-en) :=[]/_; €(e;) and £|go = 1. For each v € E°, define

Ob*(v) == | (t(u).€() < E°xT.
neE*v

If Orb™ (v) is dense in E® x T for each v € E°, then the crossed product C*(E) Xgt Z
of Corollary 7.6 is simple.

Proof. Suppose that Orb™ (v) is dense in E® x T for each v € E°. We aim to invoke The-
orem 7.4. Fix (x,w), (y,z) € E® x T. Recall from [5, Proposition 3.11 and Lemma 3.13]
that for n € N and an open neighbourhood U C E™ of y(0, n) such that o|y is injective,
the set Z(U) = {y’ € E® : y'(0,n) € U} is a basic open neighbourhood of y. Let d be
the metric on T induced by the usual metric on R via the local homeomorphism ¢ > e’
from R to T. Let p be the action of §7 on E* x T from Theorem 7.4. It suffices to fix a
neighbourhood U as above and an ¢ > 0 and show that there exists y € (§7)x such that
py(x,w) € Z(U) x By(z;¢€). Let uy, == y(0,n) € U. Since { is continuous, by shrinking
U if necessary, we may assume that

d(E(w). L(y)) < g forall ju € U. (1.6)

Since 0: E! — E° is a local homeomorphism, it is an open map, and so o(U) is open.
Since Orb™ ((x)) is dense in E® x T, we can find A € E*#(x) such that

(1), €) € o(U) x Ba (0G1,): 5 ).
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Let 4¢3y be the unique element of U such that o(u,x)) = t(A). Since d is rotation-
invariant, condition (7.6) implies that
d (L(eyMw. L)) = d (E(ri)Rw. Ly LRIw)
e
= d (L(sa))- €(1y)) < X (1.7

Moreover, since d is rotation-invariant and £(A) € By (z{(uy)w: 5), we have
— &
d(L(puy)lMw, z) = d (L), z8(ny)W) < > (7.8)
Together, equations (7.7) and (7.8) imply that

4 (EGreyMw. 2) < d (C(aMw. L)L) + d () Ehw, 2)

& I
-4+ - =e. 7.9
<2+2 € (7.9

Now equations (7.5) and (7.9) imply that

Pluisgyrxan+lalo) (6. w) = (iyAx, L(syA)w) € Z(U) x By(z:€),

as required. ]

A. Realising twisted group C*-algebras as induced algebras

In this appendix we describe how to realise twisted group C*-algebras as induced algebras,
which is a key step in the proof of Theorem 5.4. These results are fairly well known
and a detailed treatment is given in [3, Theorem 4.3.1], so we give relatively little detail
here. We assume knowledge of C(X)-algebras (or, more generally, Cy(X)-algebras). See
[41, Section C.1] for the definition and relevant results.

We first recall the definition of the induced algebra of a dynamical system. (See [35,
Section 6.3] for more details.)

Definition A.1. Let G be a compact Hausdorff group acting continuously on the right of
a locally compact Hausdorff space X, and let « be a strongly continuous action of G on a
C*-algebra D. The induced algebra of the dynamical system (D, G, «) is defined by

Ind)G((D,oe) ={feCX,D): f(x-g)= a;l(f(x)) forallx € X and g € G}.

Theorem A.2. Let A be a countable discrete abelian group. Suppose that w € Z*(A, T) is
a bicharacter that vanishes on Z,, in the sense that w(Z 4, A) U w(A, Z,) = {1}. Define
B = A/Z,, and let & € Z*(B,T) be the bicharacter satisfying &(p + Zw.q + Zw)
=w(p,q) forall p,q € A. Let {u, : p € A} be the canonical family of generating unit-
aries for the twisted group C*-algebra C*(A, w), and let {Up1z, : p + Zy € B} be the
canonical family of generating unitaries for the twisted group C*-algebra C* (B, ).



B. Armstrong, N. Brownlowe, and A. Sims 308

(a) There is a continuous, free, proper right action of BonA given by

@ 0(P) =d(P)x(p+Zs) forallp € A, y€ B, and p € A.

The orbit space A / Bis compact.

(b) There is a strongly continuous action BE of BonC *(B, ®) such that
ﬁf(Up+zm) =x(p+Zy)Upyz, forallye Band p € A.

(¢) There is an isomorphism Q: C* (A, w) — Ind‘g(C*(B, @), BB) such that

Qup)(@p) = d(p)Upyz, forallp e Aand¢ e A.
In particular, C*(A,w) is a C(ff/ﬁ)-algebra.

A detailed proof of Theorem A.2 can be found in [3, Theorem 4.3.1]. Parts (a) and (b)
are routine, but we reproduce some of the details of part (c) below. For this, we need the
following preliminary result.

Lemma A.3. Let A be a countable discrete abelian group, and let w € Z*(A,T) be a
bicharacter.

(a) There is a strongly continuous action B4 of A on C*(A, w) such that ,Bg (up) =
d(p)up forallp € Aand p € A.

(b) There is a faithful conditional expectation ®4: C*(A, w) — Cle(4.e) such that
(4,0)

d4(x) = /A,Bj;(x)d¢ forall x € C*(A, w).
A

(¢) Suppose that Y is a nonzero unital C*-algebra and V: C*(A, w) — Y is a unital
homomorphism. If x € C*(A, w) satisfies \IJ(,B(’;(X)) =0 for all ¢ € A, then
x =0.

Proof. Parts (a) and (b) follow from standard arguments (see [3, Lemmas 4.3.2 and 4.3.4]).
For part (c), fix x € C*(A, w) such that \P(,Bg(x)) = 0 forall ¢ € A. Then

W(Bg (x*x)) = ¥ (B4 (x) " W(By () =0,
and [35, Lemma C.3] implies that

W(o4(x*x)) = \I/(];zﬁ;;(x*x) d¢) = Aw(ﬁg(x*x)) d¢ = 0.

Since W is unital, it is injective on C1c+(4,4), and so we deduce that ®4(x*x) = 0. Hence
x = 0, because ®4 is faithful. u
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Proof of Theorem A.2(c). Let Y4, = IndA (C*(B, ), B8). We aim to use the universal
property of C*(A4, w) to find a homomorphlsm Q:C*(A,w) = Y4, such that Q(up)(¢) =
¢(p)Upyz, forall p e A and ¢ € A. For each p € A, define vp: A — C*(B, @) by
vp(¢) = ¢(p)Up47,. A routine argument shows that each v, is continuous and that
vp(-x) = (ﬁf)_l(vp(qﬁ)) forall ¢ € A and X € B, and hence Vp € Y4, Itis clear that
each v, is a unitary. For all p,g € A, we have

Up+z,Ug+z, = o(p+Zo.q+ Zo)Uptg+z, = 0(p. D Uptg+2z,.

and hence for all ¢ € A, we have

(Wpg) (@) = ¢(PVUpt2,8(@)Ug+z, = 0(p.9)p(P + Q) Upsg+7, = (P, q)Vp+q().

Therefore, v,v; = w(p,q)Vp+q, and so the universal property of C*(A4, w) implies that
there is a homomorphism Q: C* (4, w) — Y4, such that Q(u,) = v, for each p € A.

We first show that 2 is surjective. Let Z(¥Yy4,,) denote the centre of Y4 ,. By [41,
Proposition 3.49], the unital C*-algebra ¥4, is a C (/f/ B)-algebra with respect to the
nondegenerate homomorphism ®y, ,: C (/f / B) — Z(Y4,») given by

Dy, . (1)) = f(@-B)lcpa).

For each ¢ € A , the set

1,5 =5pan{®y,,(f)g: f € C(A/B). ¢ € Yaw. f(¢-B) =0)

is an ideal of ¥4 4. Define
A= || Yaw/l,s
¢-BeA/B
and let p: A — fY/B be the surjective map given by p(g + I¢4§) =¢- B. An application
of [41, Proposition C.10(a) and Theorem C.25] shows that there is a unique topology on #4
such that (A, Ps - A, / B ) is an upper semicontinuous C*-bundle, and that for each g € Y4 o,
the section ¢ - B g+ I 3 is continuous. Define

['(A) = {h: A/B — A : h is continuous, and p(h(ep- B)) =¢-Bforallg e //1\},

and let F: iyAw — I'(s) be the map given by F(g)(¢ B) =g+ 1,5 forall ge
Y40 and ¢ € A By [41, Theorem C.26], F is a C(A/B) linear isomorphism of Y4 ,
onto the C(A / B) -algebra I"(+A). An application of [41, Proposition C.24] shows that
F(Q(C*(A, w))) is a dense subspace of I'(+). Since F is an isomorphism, it follows
that Q(C*(A4, w)) is dense in Y4 4, and hence 2 is surjective.

To see that  is injective, let B4 be the strongly continuous action of Lemma A.3(a).
For each ¢ € A, the map v, — ¢(p)v, extends to an automorphism oz(‘; of yA/,\w satisfy-
ing ac‘; o =Qo /3(‘;1 If x € C*(A, w) satisfies Q(x) = 0, then for all ¢ € A, we have
Q(,B¢ (x)) = oy 4(Q(x)) = 0, and then Lemma A.3(c) glves x = 0. Hence 2 is inject-
ive. Thus Q is an isomorphism, and C*(A4, w) is a C (A/ B) algebra with respect to the
homomorphism Q™' o ®y, . "
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