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The equivariant coarse Baum–Connes conjecture for
metric spaces with proper group actions

Jintao Deng, Benyin Fu, and Qin Wang

Abstract. The equivariant coarse Baum–Connes conjecture interpolates between the Baum–Connes
conjecture for a discrete group and the coarse Baum–Connes conjecture for a proper metric space. In
this paper, we study this conjecture under certain assumptions. More precisely, assume that a count-
able discrete group � acts properly and isometrically on a discrete metric space X with bounded
geometry, not necessarily cocompact. We show that if the quotient space X=� admits a coarse
embedding into Hilbert space and � is amenable, and that the �-orbits in X are uniformly equivari-
antly coarsely equivalent to each other, then the equivariant coarse Baum–Connes conjecture holds
for .X; �/. Along the way, we prove a K-theoretic amenability statement for the �-space X under
the same assumptions as above; namely, the canonical quotient map from the maximal equivariant
Roe algebra ofX to the reduced equivariant Roe algebra ofX induces an isomorphism onK-theory.

1. Introduction
The Baum–Connes conjecture [2, 3] provides an algorithm to compute the K-theory of
reduced group C �-algebras, which has important applications in geometry, topology, and
analysis (see [2] for a survey). It has been verified for a large class of groups including
a-T-menable groups [17] and hyperbolic groups [23].

The coarse Baum–Connes conjecture [26, 27] is a geometric analog of the Baum–
Connes conjecture, which also has significant applications in geometry and topology, such
as the Novikov conjecture and Gromov’s conjecture about Riemannian metric of positive
scalar curvature [9, 15, 19, 36, 37]. Many results (cf. [5, 8, 12–14, 20, 21, 25, 30–32]) have
been achieved in recent years after Yu’s breakthrough to the coarse Baum–Connes con-
jecture for metric spaces which are coarsely embeddable into Hilbert space [35].

LetX be a discrete metric space. We say thatX has bounded geometry if for any R>0,
there exists M > 0 such that any ball in X with radius R contains at most M elements.
Let � be a countable discrete group. Assume that � acts properly and isometrically on
X with bounded geometry, not necessarily cocompact. In this case, we call X a �-space.
There is an equivariant higher index map [10, 28]

Ind� W lim
d!1

K��
�
Pd .X/

�
! K�

�
C �.X/�

�
;
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where K�� .Pd .X// is the �-equivariant K-homology group of the Rips complex Pd .X/
of X on scale d > 0, and K�.C �.X/�/ is the K-theory group of the equivariant Roe
algebra of the �-space X . The equivariant coarse Baum–Connes conjecture states that
the equivariant higher index map Ind� above is an isomorphism provided that X has
bounded geometry. When the �-action is cocompact, C �.X/� is Morita equivalent to the
reduced group C �-algebra of � , so that the equivariant coarse Baum–Connes conjecture
is a reformulation of the Baum–Connes conjecture (cf. [33]). When the group is trivial,
the equivariant coarse Baum–Connes conjecture is plainly the coarse Baum–Connes con-
jecture.

In [28], Shan proved that the equivariant higher index map is injective when M is a
simply connected complete Riemannian manifold with non-positive sectional curvature
and � is a torsion-free group acting on M properly and isometrically. In [10], Fu and
Wang showed that the equivariant coarse Baum–Connes conjecture holds for a �-spaceX
with bounded geometry which admits an equivariant coarse embedding into Hilbert space.
In [11], Fu, Wang, and Yu proved that if a discrete group � acts properly and isometrically
on a discrete metric space X with bounded geometry, such that both X=� and � admit a
coarse embedding into Hilbert space, and that the action has bounded distortion, then the
equivariant higher index map is injective for the �-space X .

In a recent work [1], Arzhantseva and Tessera answer in the negative the following
well-known question [7, 16]: does coarse embeddability into Hilbert space is preserved
under group extensions of finitely generated groups? Their constructions also provide the
first example of a finitely generated group which does not coarsely embed into Hilbert
space yet does not contain any weakly embedded expander, answering in the affirmative
another open problem [1, 24]. Their examples are certain restricted permutational wreath
products

Z2 oG H WD
�M

G

Z2
�

ÌH

and
Z2 oG .H � Fn/ WD

�M
G

Z2
�

Ì .H � Fn/;

whereG is a Gromov monster group, i.e., a finitely generated group which contains an iso-
metrically embedded expander in its Cayley group, H is a Haagerup monster group, i.e.,
a finitely generated group with the Haagerup property but without Yu’s property A, and
Fn is a finitely generated free group. Note that both examples are “abelian-by-Haagerup”
group extensions. The reason why they do not coarsely embed into Hilbert relies on the
fact that both groups contain a certain relative expanders [1]. If we take X D Z2 oG H
or Z2 oG .H � Fn/, and � D

L
G Z2, then we come across with a situation that � is a

torsion group, the �-action on X does not have bounded distortion, and that the space X
does not even coarsely embed into Hilbert space, let alone admits a �-equivariant coarse
embedding into Hilbert space, namely, a situation which does not satisfy the assumptions
in each of the main results in [10, 11, 28] mentioned above.
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In this paper, as motivated by these examples by Arzhantseva and Tessera, we will
further investigate the equivariant coarse Baum–Connes conjecture along this line. The
following is our main result.

Theorem 1.1. Let � be a countable discrete group acting properly and isometrically on
a discrete metric space X with bounded geometry, not necessarily co-compact. Assume
that all �-orbits in X are uniformly equivariantly coarsely equivalent. If the quotient
space X=� admits a coarse embedding into Hilbert space and � is amenable, then the
equivariant higher index map

Ind� W lim
d!1

K��
�
Pd .X/

�
! K�

�
C �.X/�

�
is an isomorphism.

When the group � is trivial, Theorem 1.1 recovers Yu’s famous result in [35]. On the
other hand, when the �-action is cocompact, Theorem 1.1 recovers the amenable group
case of the celebrated result of Higson and Kasparov in [17], where they proved the the-
orem for more general a-T-menable groups. Note that the examples X D Z2 oG H or
Z2 oG .H � Fn/, and � D

L
G Z2 by Arzhantseva and Tessera discussed above provide

us with nontrivial examples of non-cocompact group actions satisfying the assumptions
in Theorem 1.1. At this point, it is natural to expect that Theorem 1.1 be true for non-
cocompact actions with � being a-T-menable. However, technically in our approach to
the main theorem, we have to establish an isomorphism between the maximal equivari-
ant twisted Roe algebra and the reduced equivariant twisted Roe algebra (see Proposition
3.12) in which the amenability of � plays an essential role. Nevertheless, once we get this
isomorphism on the C �-algebra level, we are able to further get aK-theoretic amenability
statement for the �-space X , in a way as the proof of Theorem 1.1 by using the idea of
an infinite-dimensional geometric Bott periodicity; see also [35]. More precisely, we have
the following result:

Theorem 1.2. With the same assumptions as Theorem 1.1, the map

�� W K�
�
C �max.X/

�
�
! K�

�
C �.X/�

�
is an isomorphism, where �� is the homomorphism induced by the canonical quotient map
� from the maximal equivariant Roe algebra C �max.X/

� to the reduced equivariant Roe
algebra C �.X/� .

When the group � is trivial, Theorem 1.2 recovers the main result in [30] by Špakula
and Willett. When the group action is co-compact, the statement of Theorem 1.2 actually
holds for a more general class of groups (see [6]), including all a-T-menable groups, as
proved by Higson and Kasparov in the same paper [17]. Unfortunately, due to limitation
of our approach, the amenability of the group � is necessary in our proof to Theorem 1.2.
For the general case, where the group action is non-cocompact, we do not know whether
the conclusion of Theorem 1.2 is true or not for � being a-T-menable.
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The paper is organized as follows. In Section 2, we recall the reduced and maximal
equivariant Roe algebras, and formulate the equivariant coarse Baum–Connes conjecture,
for a discrete metric space with bounded geometry which admits a proper and isometric
action, not necessarily co-compact, by a countable discrete group. In Section 3, we use the
coarse embedding of the quotient space X=� into a Hilbert space to define the reduced
and maximal equivariant twisted Roe algebras, and their localization counterparts. We
prove that the K-theory of the equivariant twisted localization algebra is isomorphic to
the K-theory of the equivariant twisted Roe algebra. Moreover, we also prove that the
maximal equivariant twisted Roe algebra and the reduced equivariant twisted Roe algebra
are isomorphic. In Section 4, we complete the proof of the main theorems by using a
geometric analog of Higson–Kasparov–Trout’s infinite-dimensional Bott periodicity.

2. The equivariant coarse Baum–Connes conjecture

In this section, we will first recall several notions from coarse geometry, and then define
the reduced and maximal equivariant Roe algebras, so as to formulate the equivariant
coarse Baum–Connes conjecture for a discrete metric space with bounded geometry which
admits a proper and isometric action, not necessarily co-compact, by a countable discrete
group.

2.1. Roe algebras

In this subsection, we will recall the notions of the (maximal) equivariant Roe algebras.
Let Z be a proper metric space, which means that every closed ball of Z is compact.

Let � be a countable discrete group acting on Z properly and isometrically. The �-action
is proper if for any compact setK � Z, ¹
 2 � W 
K \Kº ¤ ; is a finite set. � acts on Z
isometrically if d.x; y/ D d.
x; 
y/ for all 
 2 � and x; y 2 Z. In this case, Z is called
a �-space.

Recall that a Z-module is a separable Hilbert space H on which there is a faithful
and non-degenerate �-representation � W C0.Z/! B.H/ such that the range of � has no
nonzero compact operators, where C0.Z/ is the algebra of all complex-valued continuous
functions on Z vanishing at infinity.

Let Z be a �-space. We define a �-action on C0.Z/ by


.f /.x/ D f .
�1x/

for all 
 2 � and f 2 C0.Z/.

Definition 2.1. Let H be a Z-module. We say that H is a covariant Z-module if there is
a unitary action � W � ! U.H/ such that

�
�

.f /

�
D �.
/�.f /�.
/�

for v 2 H , T 2 B.H/ and 
 2 � , where U.H/ is the set of unitary operators on H . We
call such a triple .C0.Z/; �; �/ a covariant system.
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Definition 2.2 ([21]). A covariant system .C0.Z/; �; �/ is admissible if there exist sepa-
rable and infinite-dimensional �-Hilbert spaces HZ and H 0 such that

(1) the Z-module H is isomorphic to HZ ˝H 0,

(2) �D �0˝ I for some �-equivariant �-homomorphism �0 WC0.Z/!B.HZ/ such
that �0.f / is not a compact operator onHZ for any nonzero function f 2 C0.Z/
and �0 is non-degenerate in the sense that ¹�0.f /HZ W f 2 C0.Z/º is dense
in HZ ,

(3) for each finite subgroup F � � and every F -invariant Borel subset E of Z, there
exists a trivial F -representation HF;E such that

�.�E /H Š �0.�E /HZ ˝ l
2.F /˝HF;E ;

where `2.F / is endowed with the left regular representation of F .

Definition 2.3. Let .C0.Z/; �; �/ be an admissible covariant system.

(1) For T 2 B.H/, the support Supp.T / is the complement of the set of points
.x; y/ 2 Z �Z for which there exist f and f 0 in C0.Z/ such that

�.f 0/T�.f / D 0; f .x/ ¤ 0; f 0.y/ ¤ 0:

(2) The propagation of a bounded operator T W H ! H is defined to be

propagation.T / WD sup
®
d.x; y/ W .x; y/ 2 Supp.T /

¯
:

We say that T has finite propagation if propagation.T / < C1.

(3) For any f 2 C0.Z/, if �.f /T and T�.f / are compact, then T is called a locally
compact operator.

(4) An operator T 2 B.H/ is �-invariant if 
.T / D T for all 
 2 � .

Now we are ready to define the equivariant Roe algebra.

Definition 2.4. Let .C0.Z/;�;�/ be an admissible covariant system. The algebraic equiv-
ariant Roe algebra CŒZ�� is the �-subalgebra of B.H/ consisting of all locally compact
and �-invariant operators with finite propagation. The equivariant Roe algebra C �.Z/�

is the closure of the �-algebra CŒZ�� under the operator norm in B.H/.

A proper �-space Z is said to have bounded geometry if there exists a discrete �-
invariant subset X � Z such that

(1) X has bounded geometry as a discrete metric space,

(2) X is a c-net in Z for some c > 0 in the sense that

Z D Nc.X/ D
®
z 2 Z W d.z;X/ � c

¯
:

The �-algebra CŒZ�� can be equipped with a C �-norm associated with any �-repre-
sentation � W CŒZ�� ! H� . To define the maximal norm CŒZ�� , we need the following
result which is essentially proved in [13].
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Lemma 2.5. Let Z be a proper �-space with bounded geometry. For any T 2 CŒZ�� ,
there exists a constant CT > 0 such that for any �-representation � of CŒZ�� on a Hilbert
space H� , we have 

�.T /



B.H�/
� CT :

It follows from the above lemma that the maximal norm on the �-algebra CŒZ�� is
well defined.

Definition 2.6 ([13]). Let Z be a proper �-space. The maximal equivariant Roe algebra,
denoted by C �max.Z/

� , is the completion of CŒZ�� with respect to the C �-norm

kT kmax WD sup
®

�.T /



B.H�/
W � W CŒZ�� ! B.H�/ is a �-representationº:

We remark that the definition of the (maximal) equivariant Roe algebra does not
depend on the choice of admissible covariant systems. The (maximal) equivariant Roe
algebra C �.Z/� is Morita equivalent to the (maximal) reduced group C �-algebra C �r .�/
when the quotient spaceZ=� is compact; i.e.,Z admits a proper and cocompact �-action
(cf. [27, Lemma 5.14]). Moreover, equivariant Roe algebras are invariant under the equiv-
ariant coarse equivalence in the sense of the following.

Definition 2.7. Let Z and Z0 be proper �-spaces. A Borel map f W Z ! Z0 is said to be
an equivariantly coarse embedding if there exist non-decreasing functions �C; �� WRC WD
Œ0;C1/! RC such that

(1) limr!C1 �˙.r/!C1,

(2) ��.d.x; y// � d.f .x/; f .y// � �C.d.x; y//, for all x; y 2 Z,

(3) f .
x/ D 
f .x/ for all x 2 Z and 
 2 � .

Moreover, the �-spacesZ andZ0 are called equivariantly coarsely equivalent if there
is an equivariant coarse embedding f W Z ! Z0 such that the image f .Z/ is coarsely
dense in Z0 in the sense that Z0 D NS .f .Z// for some S > 0, where NS .f .Z// D
¹y 2 Y W d.y; f .Z// < Sº. We say that a family of metric spaces ¹Ziºi2I are said to
be uniformly equivariantly coarsely equivalent if any two metric spaces Zi and Zj are
equivariantly coarsely equivalent with the same functions �C; �� and constant S > 0 in
the above definitions. If the metric space Z0 D H is a Hilbert space, and the spaces Z
and H are equipped with trivial actions, then the metric space Z is said to admit a coarse
embedding into Hilbert space.

The following proposition is just an equivariant version of the isomorphism of the Roe
algebras under the coarse equivalence property. So we omit the proof here.

Proposition 2.8. LetZ andZ0 be proper �-spaces. If there exists an equivariantly coarse
equivalence f W Z ! Z0, then

C �.Z/� Š C �.Z0/� ;

C �max.Z/
�
Š C �max.Z

0/� :
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By the universality of the maximal norm, the identity map on CŒZ�� extends to a
canonical quotient map

� W C �max.Z/
�
! C �.Z/� :

We then obtain a homomorphism

�� W K�
�
C �max.Z/

�
�
! K�

�
C �.Z/�

�
induced by the map � at the K-theory level.

2.2. The assembly map

Let us briefly recall the definition of equivariantK-homology introduced by Kasparov [22,
38].

Definition 2.9. For i D 0; 1, the K-homology groups K�i .Z/ D KK
�
i .C0.Z/;C/ (i D

0; 1) are generated by certain cycles modulo a certain equivalence relation:

(1) each cycle forK�0 .Z/ is a triple .H;�;F /, where � W C0.Z/! B.H/ is a covari-
ant �-representation and F 2 B.H/ is �-invariant such that �.f /F � F�.f /,
�.f /.FF � � I /, and �.f /.F �F � I / are compact for all f 2 C0.Z/; 
 2 �;

(2) each cycle forK�1 .Z/ is a triple .H;�;F /, where � W C0.Z/! B.H/ is a covari-
ant �-representation and F is a �-invariant and self-adjoint operator on H such
that �.f /.F 2 � I / and �.f /F � F�.f / are compact for all f 2 C0.Z/, 
 2 � .

In both cases, the equivalence relation on cycles is given by homotopy of the operator F .

Let us now define the equivariant index map

Ind� W K�� .Z/! K�
�
C �.Z/�

�
:

Note that every class in the group K�� .Z/ can be represented by a cycle .H; �; F / such
that .C0.Z/; �; �/ is an admissible covariant system [21]. Let .H; �; F / be a cycle in
K�0 .Z/ such that .C0.Z/; �; �/ is an admissible covariant system.

Take a locally finite, �-equivariant, and uniformly bounded open cover ¹Uiºi2I of X ,
and let ¹ iºi2I be a �-equivariant partition of unity subordinate to ¹Uiºi2I . Define

F 0 D
X
i2I

�.
p
 i /F�.

p
 i /;

where the sum converges in strong topology. In fact, .H; �;F 0/ is equivalent to .H; �;F /
in K�0 .Z/ and F 0 has finite propagation. So F 0 is a multiplier of C �.Z/� and it is invert-
ible modulo C �.Z/� . As a result, F 0 gives rise to an element in K0.C �.Z/�/, denoted
by @.ŒF 0�/. We define the equivariant index map

Ind� W K�0 .Z/! K0
�
C �.Z/�

�
by

Ind�
�
ŒH; �; F �

�
D @

�
ŒF 0�

�
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for all ŒH; �; F � 2 K�0 .Z/, where F 0 is defined as above. Similarly, we can define the
equivariant index map

Ind� W K�1 .Z/! K1
�
C �.Z/�

�
:

2.3. The equivariant coarse Baum–Connes conjecture

In this subsection, we will recall the equivariant coarse Baum–Connes conjecture for a
discrete metric space with bounded geometry.

From now on, we always assume thatX is a discrete metric space with bounded geom-
etry.

Definition 2.10. For d > 0, the Rips complex Pd .X/ with scale d is the simplicial poly-
hedron whose vertex set is X , and a finite subset Y D ¹x0; x1; : : : ; xnº � X spans a
simplex if and only if the diameter of Y is no more than d .

Endow Pd .X/ with the spherical metric defined by the following way. Identify a sim-
plex Y D ¹x0; x1; : : : ; xnº with

SnC WD

´
.s0; s1; : : : ; sn/ 2 RnC1 W si � 0;

nX
iD0

s2i D 1

µ
through the map

nX
iD0

tixi 7!

 
t0qPn
iD0 t

2
i

;
t1qPn
iD0 t

2
i

; : : : ;
tnqPn
iD0 t

2
i

!
;

where SnC is endowed with the standard Riemannian metric. For each path connected
component of Pd .X/, the spherical metric is the maximal metric whose restriction on
each simplex is the metric above, and the distance of two points in different connected
components of Pd .X/ is defined to be infinity. Obviously, each Rips complex Pd .X/
admits a proper �-action by isometries defined by


 �

kX
iD1

cixi D

kX
iD1

ci .
 � xi /

for all
Pk
iD1 cixi 2 Pd .X/ and 
 2 � .

The following conjecture is called the equivariant coarse Baum–Connes conjecture.

Conjecture 2.11 (The equivariant coarse Baum–Connes conjecture). Let X be a discrete
metric space with bounded geometry and let � be a countable discrete group acting on X
properly by isometries. Then the equivariant index map

Ind� W lim
d!1

K��
�
Pd .X/

�
! lim

d!1
K�
�
C �
�
Pd .X/

���
Š K�

�
C �.X/�

�
is an isomorphism.
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2.4. Equivariant localization algebras and local index map

In this subsection, we will recall the notions of the localization algebras and the local
index map.

Definition 2.12. LetZ be a proper �-space. The equivariant localization algebraC �L.Z/
�

is the supremum norm closure of the algebra of all bounded and uniformly norm-continu-
ous functions

f W Œ0;C1/! C �.Z/� ;

such that
propagation

�
f .t/

�
! 0 as t !1:

There exists an equivariant local index map (cf. [34] or [11])

Ind� W K�� .Z/! K�
�
C �L.Z/

�
�
:

Moreover, we have the following result which is an equivariant analog of [34, Theo-
rem 3.2].

Theorem 2.13. Let X be a discrete metric space with bounded geometry and let � be
a countable discrete group acting on X properly and isometrically. Then the local index
map

Ind�L W K
�
�

�
Pd .X/

�
! K�

�
C �L
�
Pd .X/

���
is an isomorphism.

For any d > 0, there is a natural evaluation map

e W C �L
�
Pd .X/

��
! C �

�
Pd .X/

��
by

e.f / D f .0/

for all f 2 C �L.Pd .X//
� . This is a �-homomorphism, thus it induces a homomorphism

e� W K�
�
C �L
�
Pd .X/

���
! K�

�
C �
�
Pd .X/

���
on K-theory. Moreover, we have the following commutative diagram:

limd!1K�
�
C �L
�
Pd .X/

���
e�

��

limd!1K
�
�

�
Pd .X/

� Š

Ind�L
44

Ind�// limd!1K�
�
C �
�
Pd .X/

���
:

As a result, in order to prove that the map Ind� is an isomorphism, it suffices to show
that the map

e� W lim
d!1

K�
�
C �L
�
Pd .X/

���
! lim

d!1
K�
�
C �
�
Pd .X/

���
induced by the evaluation map on K-theory is an isomorphism.
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3. Equivariant twisted Roe algebras and localization algebras

In this section, we will follow the constructions in [35] to define C �-algebras encoding
the geometry of the quotient space X=� . These algebras include maximal and reduced
equivariant twisted Roe algebras, and equivariant twisted localization algebras. We prove
that the K-theory of equivariant twisted localization algebras is isomorphic to the K-
theory of equivariant twisted Roe algebras under the assumptions on the geometry of
X=� and the orbits. We also prove that the canonical quotient map between the maximal
equivariant twisted Roe algebras and the reduced equivariant twisted Roe algebras is an
isomorphism under the same assumptions.

3.1. The equivariant twisted Roe algebras along the quotient space

Let � be a countable discrete group, and let X be a �-space with bounded geometry.
Assume that � WX=�!H is a coarse embedding ofX into Hilbert spaceH . Let � WX!
X=� be the quotient map. We will first recall the C �-algebra associated to an infinite-
dimensional Euclidean space introduced by Higson–Kasparov–Trout [18].

Let H be a real (countably infinite-dimensional) Hilbert space. We use Va, Vb , etc.
to denote the finite-dimensional affine subspaces of H . Let V 0a be the finite-dimensional
linear subspaces of H consisting of differences of elements of Va. Let Cliff.V 0a / be the
complexified Clifford algebra of V 0a , and let

C.Va/ D
®
h W Va ! Cliff.V 0a / is continuous and vanishing at infinity

¯
be the Z2-graded C �-algebra. Let

A.Va/ D � y̋ C.Va/

be the graded tensor product, where � D C0.R/ is graded by odd and even functions. If
Va � Vb , then Vb D V 0

ba
C Va, where V 0

ba
is the orthogonal complement of V 0a in V 0

b
.

For each vb 2 Vb , there is a unique decomposition vb D vba C va, where vba 2 V 0ba and
va 2 Va.

If Va � Vb , we use Cba to denote the function

Vb ! Cliff.V 0b /; vb 7! vba:

LetX.f /D xf .x/ be the unbounded multiplier of � with degree one, where f 2 � . Note
that X y̋ 1C 1 y̋ Cba is an unbounded, essentially self-adjoint operator with degree one
[18]. So there is a �-homomorphism

ˇba W A.Va/! A.Vb/

defined by
ˇba.g y̋ h/ D g.X y̋ 1C 1 y̋ Cba/.1 y̋ Qh/;

for g 2 � , h 2 C.Va/, where Qh is an extension of h by

Qh.vba C va/ D h.va/;

and g.X y̋ 1C 1 y̋ Cba/ is obtained by functional calculus.
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Definition 3.1. Define the C �-algebra A.H/ by

A.H/ D lim
!

A.Va/;

where the inductive limit is taken over all finite-dimensional affine subspaces of H , using
the homomorphisms .ˇab/.

Endow RC �H with the weakest topology such that the projection onto H is weakly
continuous and the function .t;v/ 7! t2Ckvk2 is continuous. With this topology, RC �H
is a locally compact Hausdorff space. Note that for v 2 H and r > 0, the subset

B.v; r/ D
®
.t; w/ 2 RC �H W t

2
C kv � wk2 < r2

¯
is an open subset of RC �H . For each finite-dimensional subspaces Va �H , A.Va/ con-
tainsC0.RC�Va/ as its center. If Va � Vb , then ˇba mapsC0.RC�Va/ intoC0.RC�Vb/.
With the direct system over all finite-dimensional affine subspace of H and .ˇba/, we
obtain a C �-algebra lim! C0.RC � Va/ which is isomorphic to C0.RC �H/.

Definition 3.2. The support of an element a 2 A.H/ is the complement of all .t; v/ 2
RC �H such that there exists g 2 C0.RC �H/ with g.t; v/ ¤ 0 and g � a D 0, where g
acts on A.H/ as a multiplier.

For each d > 0, the �-action on X induces a proper and isometric �-action on Pd .X/
by


 �

kX
iD1

cixi D

kX
iD1

ci .
 � xi /

for
Pk
iD1 cixi 2 Pd .X/ and 
 2 � .

Note that the coarse embedding � W X=� ! H induces a coarse embedding

� W Pd .X/=� ! H

by

�

 
�

 
kX
iD1

cixi

!!
D

kX
iD1

ci�
�
�.xi /

�
;

for all
Pk
iD1 cixi 2 Pd .X/, where � W Pd .X/! Pd .X/=� is the quotient map induced

by the �-action on Pd .X/.
For any element x 2 Pd .X/, we define

Wk
�
�.x/

�
D �

�
�.x/

�
C span

®
�
�
�.y/

�
� �

�
�.x/

�
W y 2 X=�; d

�
�.x/; �.y/

�
� k2

¯
:

Since X has bounded geometry, so the subspace Wk.�.x// is a finite-dimensional affine
subspace of H . For k < k0, let

ˇk0;k
�
�.x/

�
W A

�
Wk
�
�.x/

��
! A

�
Wk0

�
�.x/

��
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be the map defined by the inclusion of Wk.�.x// into Wk0.�.x//. Let

ˇk
�
�.x/

�
W A

�
Wk
�
�.x/

��
! A.H/

be the map defined by the definition of A.H/. We write ˇ.�.x// for

ˇ0
�
�.x/

�
W � Š A

�
W0
�
�.x/

��
! A.H/:

For each d > 0, fix a countable and �-invariant dense subset Xd of Pd .X/ such that
Xd1 � Xd2 if d1 � d2.

Definition 3.3. The algebraic twisted equivariant Roe algebra C �alg.Pd .X/;A.H//
� is

defined to be the set of all functions T W Xd �Xd ! A.H/ y̋ K such that the following
hold.

(1) There exists M � 0 such that kT .x; y/k �M for all x; y 2 Xd .

(2) There exists an integer N such that

T .x; y/ 2 ˇN
�
�.x/

��
A
�
WN

�
�.x/

���
y̋ K � A.H/ y̋ K

for all x; y 2 Xd , where ˇN .�.x// WA.WN .�.x///!A.H/ is the �-homomor-
phism associated to the inclusion of WN .�.x// into H , and K is the algebra of
compact operators on the Hilbert space H0 y̋ l2.�/.

(3) There exists r1 > 0 such that if d.x; y/ > r1, then T .x; y/ D 0.

(4) There exists L > 0 such that for each y 2 Xd ,

]
®
x W T .x; y/ ¤ 0

¯
� L; ]

®
x W T .y; x/ ¤ 0

¯
� L:

(5) For any bounded set B � Pd .X/, the set®
.x; y/ 2 B � B \Xd �Xd W T .x; y/ ¤ 0

¯
is finite.

(6) There exists r2 > 0 such that

Supp
�
T .x; y/

�
�
®
.s; h/ 2 RC �H W s

2
C


h � ���.x/�

2 < r22¯

for x; y 2 X .

(7) There exists c>0 such that if Y D.s;h/2RC�WN .�.x//with kYkD
p
s2Ckhk2

� 1 and if T1.x; y/ satisfies that�
ˇN
�
�.x/

�
y̋ 1

��
T1.x; y/

�
D T .x; y/;

then the derivative in the direction of Y , DY .T1.x; y//, of the function T1.x; y/ W
R �WN .�.x//! Cliff.WN .�.x/// y̋ K exists and

DY �T1.x; y/�

 � c
for all x; y 2 X .

(8) T .
x; 
y/ D T .x; y/ for all x; y 2 X and 
 2 � .



The equivariant coarse Baum–Connes conjecture for metric spaces 73

We define a multiplication on C �alg.Pd .X/;A.H//
� by

.T1T2/.x; y/ D
X
z2Xd

T1.x; z/T2.z; y/

and an involution by T �.x; y/ D .T .y; x//�. Then C �alg.Pd .X/;A.H//
� is a �-algebra.

Let
E D

° X
x2Xd

ax Œx� W ax 2 A.H/ y̋ K;
X
x2Xd

a�xax converge in norm
±
:

Then E is a Hilbert module over A.H/ y̋ K withD X
x2Xd

ax Œx�;
X
x2Xd

bx Œx�
E
D

X
x2Xd

a�xbx ;� X
x2Xd

ax Œx�
�
a D

X
x2Xd

axaŒx�

for all a 2 A.H/ y̋ K and
P
x2Xd

ax Œx� 2 E.
Now we can define a �-representation of C �alg.X;A.H//

� on E by

T
� X
x2Xd

ax Œx�
�
D

X
y2Xd

� X
x2Xd

T .y; x/ax

�
Œy�

for all T 2 C �alg.Pd .X/;A.H//
� and

P
x2Xd

ax Œx� 2 E.

Definition 3.4. The reduced equivariant twisted Roe algebra C �.Pd .X/;A.H//� is the
operator norm closure of C �alg.Pd .X/;A.H//

� in B.E/, where B.E/ is the algebra of all
bounded adjointable homomorphisms from E to E.

By the arguments as in Lemma 2.5, the maximal norm on the algebraic equivariant
twisted Roe algebra is also well defined. Thus, we can define the maximal equivariant
twisted Roe algebra.

Definition 3.5. The maximal equivariant twisted Roe algebra C �max.Pd .X/;A.H//
� is

defined to be the completion of the �-algebra C �alg.Pd .X/;A.H//
� with respect to the

maximal norm

kT kmax WD sup
®

�.T /

 W � W C �alg

�
Pd .X/;A.H/

��
! B.E�/; a �-representation

¯
:

Let C �L;alg.Pd .X/;A.H//
� be the set of all bounded, uniformly norm continuous

functions
g W RC ! C �alg

�
Pd .X/;A.H/

��
such that the following hold.

(1) There exists N such that

g.t/.x; y/ 2
�
ˇN
�
�.x/

�
y̋ 1

��
A
�
WN

�
�.x/

��
y̋ K

�
� A.H/ y̋ K

for all x; y 2 Xd and t 2 RC.
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(2) limt!1 propagation.f .t//! 0 as t !1.

(3) There exists R > 0 such that Supp.g.t/.x; y// � BRC�H .�.�.x//; R/ for all
x; y 2 Xd and t 2 RC.

(4) There exists L > 0 such that for any y 2 Pd .X/,

]
®
x W g.t/.x; y/ ¤ 0

¯
< L; ]

®
x W g.t/.y; x/ ¤ 0

¯
< L

for any t 2 RC.

(5) There exists c>0 such that if Y D.s;h/2RC�WN .�.x//with kYkD
p
s2Ckhk2

� 1 and if g1.t/.x; y/ satisfies that

.ˇN
�
�.x/

�
y̋ 1/.g.t/1.x; y// D T .x; y/;

then the derivative of the function

g1.t/.x; y/ W R �WN
�
�.x/

�
! Cliff

�
WN

�
�.x/

��
y̋ K

in the direction of Y exists, denoted by DY .g.t/1.x; y//, and

DY �g.t/1.x; y/�

 � c
for all x; y 2 X and t 2 RC.

Definition 3.6. The twisted equivariant localization algebra C �L.Pd .X/;A.H//
� is the

completion of C �L;alg.Pd .X/;A.H//
� with respect to the norm

kgk D sup
t2RC



g.t/


C�.Pd .X/;A.H//

� :

There is an evaluation map

e W C �L
�
Pd .X/;A.H/

��
! C �

�
Pd .X/;A.H/

��
;

by
e.g/ D g.0/;

for all g 2 C �L.Pd .X/;A.H//
� . We have a homomorphism

e� W K�
�
C �L
�
Pd .X/;A.H/

���
! K�

�
C �
�
Pd .X/;A.H/

���
;

induced by the evaluation map on K-theory.
In the rest of this subsection, we will prove the following result.

Proposition 3.7. Let � be a countable discrete group acting properly and isometrically
on a discrete metric space X with bounded geometry. Assume that all �-orbits in X are
uniformly equivariantly coarsely equivalent. If the quotient space X=� admits a coarse
embedding into Hilbert space and � is amenable, then the map

e� W lim
d!1

K�
�
C �L
�
Pd .X/;A.H/

���
! lim

d!1
K�
�
C �
�
Pd .X/;A.H/

���
is an isomorphism.
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To prove the above proposition, we need to analyze the ideals of the twisted Roe
algebras and localization algebras associated to the open subsets of RC � H . Let O
be an open subset of RC � H . Define C �alg.Pd .X/;A.H//

�
O to be a �-subalgebra of

C �alg.Pd .X/;A.H//
� by

C �alg

�
Pd .X/;A.H/

��
O
D
®
T 2 C �alg

�
Pd .X/;A.H/

��
W Supp

�
T .x;y/

�
�O;8x;y 2 X

¯
:

We can define C �� .Pd .X/;A.H//
�
O and C �.Pd .X/;A.H//�O to be the norm closure of

C �alg.Pd .X/;A.H//
�
O in C �max.Pd .X/;A.H//

� and C �.Pd .X/;A.H//� , respectively.
We would like to point out that the norm on C �� .Pd .X/;A.H//

�
O may not be the maximal

norm of the �-algebra C �alg.Pd .X/;A.H//
�
O .

Similarly, let

C �L;alg

�
Pd .X/;A

��
O
WD
®
g 2 C �L;alg

�
Pd .X/;A

��
W Supp

�
g.t/

�
� Xd �Xd �O

¯
:

DefineC �L.Pd .X/;A/
�
O to be the norm closure ofC �L;alg.Pd .X/;A/

�
O inC �L.Pd .X/;A/

� .
Let

B
�
�
�
�.x/

�
; r
�
D
®
.s; v/ 2 RC �H W s

2
C


v � ���.x/� < r2

¯;

where � W X ! X=� is the quotient map and � W X=� ! H is the coarse embedding.
Denote Or D

S
x2X B.�.�.x//; r/, then we have

C �max

�
Pd .X/;A.H/

��
D lim
r!C1

C ��
�
Pd .X/;A.H/

��
Or
;

C �
�
Pd .X/;A.H/

��
D lim
r!C1

C �
�
Pd .X/;A.H/

��
Or
;

C �L.Pd .X/;A.H//
�
D lim
r!C1

C �L
�
Pd .X/;A.H/

��
Or
:

Recall that � W X ! X=� is the natural quotient map associated to the �-action onX .
For any r > 0, since X is discrete and with bounded geometry, so X=� has bounded
geometry and there exists finitely many mutually disjoint subsets of X=� , say zXk for
1 � k � k0, such that

(1) X=� D
Fk0
kD1

fXk ,

(2) for each zXk and for all z; z0 2 zXk , if z ¤ z0, then

�.z/ � �.z0/

 � 2r;
where � W X=� ! H is the coarse embedding.

Let Y � X be a �-domain of X in the sense that each orbit intersects with Y at exactly
one point. For simplicity, we denote

Yk WD .�jY /
�1. zXk/ � Y
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for k D 1; 2; : : : ; k0, where �jY W Y ! X=� is the restriction of � W X ! X=� to the
�-domain Y � X . For each k D 1; 2; : : : ; k0 and r > 0, denote

Or;k D
[
x2Yk

B
�
�
�
�.x/

�
; r
�
:

Lemma 3.8. With the same assumptions as Proposition 3.7 and ¹Or;kºr;k defined above,
the map

e� W lim
d!1

K�
�
C �L
�
Pd .X/;A.H/

��
Or;k

�
! lim

d!1
K�
�
C �
�
Pd .X/;A.H/

��
Or;k

�
induced by the evaluation map is an isomorphism for all r > 0 and 1 � k � k0.

Proof. For each x 2 X , set Ox D B.�.�.x//; r/ for brevity. Define

uY
x2Yk

C �alg

�
Pd .X/;A.H/

��
Ox

to be the �-subalgebra of the product algebra
Q
x2Yk

C �alg.Pd .X/;A.H//
�
Ox

, such that for
each element Y

x2Yk

Tx 2

uY
x2Yk

C �alg

�
Pd .X/;A.H/

��
Ox
;

the conditions in Definition 3.3 are satisfied for all Tx with x 2 Xk uniformly.
For each element a 2 A.H/ with support contained in Or;k , it can be decomposed as

a sum
a D

X
x2Yk

ax ;

where each ax is a restriction of a toOx and can be viewed as a function supported inOx
for all x 2 X . It is obvious that

C �alg

�
Pd .X/;A.H/

��
Or;k
D

uY
x2Yk

C �alg

�
Pd .X/;A.H/

��
Ox
:

We define
Qu
x2Yk

C �.Pd .X/;A.H//
�
Ox

to be the norm closure of² Y
x2Yk

Tx W Tx 2 C
�
alg

�
Pd .X/;A.H/

��
Ox
; sup
x2Xk

kTxk <1

³
under the supremum norm.

Similarly, we define
Qu
x2Yk

C �L.Pd .X/;A.H//
�
Ox

to be the C �-subalgebra of² Y
x2Yk

bx W
Y
x2Yk

bx.t/ 2

uY
x2Yk

C �alg

�
Pd .X/;A.H/

��
Ox
; sup
x2Yk

kbxk <1

³
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generated by elements
Q
x2Yk

bx , such that

(1) the function Y
x2Yk

bx W RC !
uY

x2Yk

C �alg

�
Pd .X/;A.H/

��
Ox

is uniformly norm-continuous in t 2 RC,

(2) there exists a bounded function c.t/ on RC with limt!1 c.t/ D 0 such that
bx.t/.y;y

0/D 0 whenever d.y;y0/ > c.t/ for all x 2 Yk , y;y0 2Xd , and t 2RC.

By the definition of the algebraic equivariant twisted Roe algebra, we can prove that

C �
�
Pd .X/;A.H/

��
Or;k
Š lim
S!1

uY
x2Yk

C �
�
Pd
�
NS .� � x/

�
;A.H/

��
Ox
;

C �L
�
Pd .X/;A.H/

��
Or;k
Š lim
S!1

uY
x2Yk

C �L
�
Pd
�
NS .� � x/

�
;A.H/

��
Ox
;

where NS .� � x/ is the S -neighborhood of � � x in X . So

lim
d!1

C �
�
Pd .X/;A.H/

��
Or;k
Š lim
d!1

lim
S!1

uY
x2Yk

C �
�
Pd
�
NS .� � x/

�
;A.H/

��
Ox

Š lim
S!1

lim
d!1

uY
x2Yk

C �
�
Pd
�
NS .� � x/

�
;A.H/

��
Ox
;

lim
d!1

C �L
�
Pd .X/;A.H/

��
Or;k
Š lim
d!1

lim
S!1

uY
x2Yk

C �L
�
Pd
�
NS .� � x/

�
;A.H/

��
Ox

Š lim
S!1

lim
d!1

uY
x2Yk

C �L
�
Pd
�
NS .� � x/

�
;A.H/

��
Ox
:

It suffices to show that

e� W lim
d!1

K�

� uY
x2Yk

C �L
�
Pd
�
NS .� � x/

�
;A.H/

��
Ox

�
! lim

d!1
K�

� uY
x2Yk

C �
�
Pd
�
NS .� � x/

�
;A.H/

��
Ox

�
induced by the evaluation map on K-theory is an isomorphism for each S > 0. It is easy
to know that the assumptions of this lemma satisfy the setting of [11, Theorem 4.9]. With
the same arguments as in the proof of [11, Theorem 4.9], together with the geometric
Dirac-dual-Dirac method, we know that e� above is an isomorphism.

To prove Proposition 3.7, we also need the following lemma, which can be proved by
the same arguments in [35, Lemma 6.3].
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Lemma 3.9. Let X1 and X2 be �-invariant subsets of X , and let

O1r D
[
x2X1

BRC�H

�
�
�
�.x/

�
; r
�
; O2r D

[
x2X2

BRC�H

�
�
�
�.x/

�
; r
�
:

Then we have that

lim
r<r0;r!r0

C �
�
Pd .X/;A.H/

��
O1r
C lim
r<r0;r!r0

C �
�
Pd .X/;A.H/

��
O2r

D lim
r<r0;r!r0

C �
�
Pd .X/;A.H/

��
O1r [O

2
r
;

lim
r<r0;r!r0

C �L
�
Pd .X/;A.H/

��
O1r
C lim
r<r0;r!r0

C �L
�
Pd .X/;A.H/

��
O2r

D lim
r<r0;r!r0

C �L
�
Pd .X/;A.H/

��
O1r [O

2
r
;

lim
r<r0;r!r0

C �
�
Pd .X/;A.H/

��
O1r
\ lim
r<r0;r!r0

C �
�
Pd .X/;A.H/

��
O2r

D lim
r<r0;r!r0

C �
�
Pd .X/;A.H/

��
O1r \O

2
r
;

lim
r<r0;r!r0

C �L
�
Pd .X/;A.H/

��
O1r
\ lim
r<r0;r!r0

C �L
�
Pd .X/;A.H/

��
O2r

D lim
r<r0;r!r0

C �L
�
Pd .X/;A.H/

��
O1r \O

2
r
:

Proof of Proposition 3.7. Since

C �
�
Pd .X/;A.H/

��
D lim
r!C1

C �
�
Pd .X/;A.H/

��
Or
;

C �L
�
Pd .X/;A.H/

��
D lim
r!C1

C �L
�
Pd .X/;A.H/

��
Or
;

where Or D
S
1�k�k0

Or;k , following the similar arguments in [29] we obtain that

lim
d!1

lim
r!1

K�
�
C �
�
Pd .X/;A.H/

��
Or

�
Š lim
r!1

lim
d!1

K�
�
C �
�
Pd .X/;A.H/

��
Or

�
;

lim
d!1

lim
r!1

K�
�
C �L
�
Pd .X/;A.H/

��
Or

�
Š lim
r!1

lim
d!1

K�
�
C �L
�
Pd .X/;A.H/

��
Or

�
:

We get the commuting diagram

lim
d!1

K�
�
C �L
�
Pd .X/;A.H/

���
Š

��

e� // lim
d!1

K�
�
C �
�
Pd .X/;A.H/

���
Š

��

lim
d!1

lim
r!1

K�
�
C �L
�
Pd .X/;A.H/

��
Or

�
Š

��

e� // lim
d!1

lim
r!1

K�
�
C �
�
Pd .X/;A.H/

��
Or

�
Š

��

lim
r!1

lim
d!1

K�
�
C �L
�
Pd .X/;A.H/

��
Or

� e� // lim
r!1

lim
d!1

K�
�
C �
�
Pd .X/;A.H/

��
Or

�
:

The conclusion follows that the bottom horizon map is an isomorphism by using
Lemma 3.8, Lemma 3.9, and the Mayer–Vietoris sequence argument.
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3.2. The maximal and reduced equivariant twisted Roe algebras

In this subsection, we will prove that the canonical quotient map

� W C �max

�
Pd .X/;A.H/

��
! C �

�
Pd .X/;A.H/

��
is an isomorphism.

Recall that in Section 3.1 we have defined a �-subalgebra C �alg.Pd .X/;A.H//
�
O of

C �alg.Pd .X/;A.H//
� consisting of the operators with entries supported in O for each

open subsetO in RC �H , and theC �-subalgebrasC �� .Pd .X/;A.H//
�
O andC �.Pd .X/;

A.H//�O are the operator norm closure ofC �alg.Pd .X/;A.H//
�
O inC �max.Pd .X/;A.H//

�

and C �.Pd .X/;A.H//� , respectively. Recall that

Or;k D
[
x2Yk

B
�
�
�
�.x/

�
; r
�
� RC �H:

Lemma 3.10. Let X be a discrete metric space with bounded geometry, and let � be a
countable discrete amenable group. Assume that � acts on X properly and isometrically
such that the �-orbits are uniformly equivariantly coarsely equivalent. If the quotient
space X=� admits a coarse embedding into Hilbert space, then the canonical quotient
map

� W C ��
�
Pd .X/;A.H/

��
Or;k
! C �

�
Pd .X/;A.H/

��
Or;k

extended from the identity map on C �alg.Pd .X/;A.H//
�
Or;k

is an isomorphism.

Proof. For brevity, we denote byO the open subsetOr;k and denoteOx DB.�.�.x//; r/.
Let

Qu
x2Yk

C �alg.Pd .X/;A.H//
�
Ox

be the �-algebra consisting of the operators

Y
x2Yk

Tx 2

uY
x2Yk

C �alg

�
Pd .X/;A.H/

��
Ox
;

such that the family of operators ¹Txºx2Yk satisfies conditions in Definition 3.3 with uni-
form constants. Since O D

F
x2Yk

Ox , we have

C �alg

�
Pd .X/;A.H/

��
O
D

uY
x2Yk

C �alg

�
Pd .X/;A.H/

��
Ox
:

By the definition of each C �alg.Pd .X/;A.H//
�
Ox

, we have

uY
x2Yk

C �alg

�
Pd .X/;A.H/

��
Ox
D lim
R!1

uY
x2Yk

C �alg

�
NR.� � x/;A.H/

��
Ox
;

where the inductive limit can be viewed as the union of these �-algebras. If we use

u;�Y
x2Yk

C �
�
NR.� � x/;A.H/

��
Ox

and
uY

x2Yk

C �
�
NR.� � x/;A.H/

��
Ox
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to denote the norm closure of
Qu
x2Yk

C �alg.NR.� � x/;A.H//
�
Ox

in C �� .Pd .X/;A.H//
�
Or;k

and C �.Pd .X/;A.H//�Or;k , respectively, then

C ��
�
Pd .X/;A.H/

��
Or;k
D lim
R!1

u;�Y
x2Yk

C �
�
NR.� � x/;A.H/

��
Ox
;

C �
�
Pd .X/;A.H/

��
Or;k
D lim
R!1

uY
x2Yk

C �
�
NR.� � x/;A.H/

��
Ox
:

So to prove the conclusion, we only need to show that for any R > 0,

u;�Y
x2Yk

C �
�
NR.� � x/;A.H/

��
Ox
Š

uY
x2Yk

C �
�
NR.� � x/;A.H/

��
Ox
:

Denote by j�j the metric space of � endowed with a proper word-length metric. LetQu
x2Yk

C �alg.j�j;A.H//
�
Ox

be the C �-algebra of all the operators

Y
x2Yk

Tx 2

uY
x2Yk

C �alg

�
j�j;A.H/

��
Ox

satisfying that

(1) each Tx is a � � �-matrix and Tx.g; h/ D Tx.
g; 
h/ for g; h; 
 2 � ,

(2) there exists a constant M > 0, such that supx2Yk ;g;h2� kTx.g; h/k �M ,

(3) supx2Y propagation.Tx/ <1,

(4) there exists r > 0 such that

Supp
�
Tx.g; h/

�
�
®
.s; h/ 2 RC �H W s

2
C


h � ���.x/�

2 < r2¯

for g; h 2 � ,

(5) there exists c>0 such that if Y D.s;v/2RC�WN .�.x//with kY kD
p
s2Ckvk2

� 1 and if T 0x.g; h/ is an element satisfying�
ˇN
�
�.xx/

�
y̋ 1

��
T 0x.g; h/

�
D T .g; h/;

then the derivative of the function

T 0x.g; h/ W R �WN
�
�.x/

�
! Cliff

�
WN

�
�.x/

��
y̋ K

in the direction of Y exists, denoted by DY .T 0x.g; h//, and kDY .T 0x.g; h//k � c
for all g; h 2 � .

Since the �-orbits are uniformly equivariantly coarsely equivalent, so all the metric
spaces NR.� � x/ with x 2 Yk are uniformly equivariantly coarsely equivalent to j�j. It
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follows that

uY
x2Yk

C �alg

�
NR.� � x/;A.H/

��
Ox
Š

uY
x2Yk

C �alg

�
j�j;A.H/

��
Ox
:

Let
Qu;�
x2Yk

C �.j�j;A.H//�Ox and
Qu
x2Yk

C �.j�j;A.H//�Ox be the norm closure of

uY
x2Yk

C �alg

�
j�j;A.H/

��
Ox

as subalgebras in C �� .Pd .X/;A.H//O and C �.Pd .X/;A.H//O , respectively. Then we
have

u;�Y
x2Yk

C �
�
NR.� � x/;A.H/

��
Ox
Š

uY
x2Yk

C �
�
j�j;A.H/

��
Ox
;

uY
x2Yk

C �
�
NR.� � x/;A.H/

��
Ox
Š

uY
x2Yk

C �
�
j�j;A.H/

��
Ox
:

Since � is amenable, there exists a sequence of finitely supported positive-type func-
tions �n W � ! C such that �n converge pointwise to 1 (cf. [4, Theorem 2.6.8]). Denote

kn.g; h/ D �n.g
�1h/

for all g; h 2 � . It is obvious that each kn is a positive definite kernel kn W � � � ! Œ0; 1�

such that
kn.
g; 
h/ D kn.g; h/;

for all 
; g; h 2 � . Therefore, one can define a sequence of linear maps

M
alg
kn
W

uY
x2Yk

C �alg

�
j�j;A.H/

��
Ox
!

uY
x2Yk

C �alg

�
j�j;A.H/

��
Ox

by
M

alg
kn

�
¹Txº

�
.g; h/ D

®
kn.g; h/Tx.g; h/

¯
for all T D ¹Txº 2

Qu
x2Yk

C �alg.j�j;A.H//
�
Ox

and g; h 2 � . It is not difficult to check
that M alg

kn
is a unital completely map for each kn above. We claim that, for each kn, the

multiplier M alg
kn

is bounded for any norm k � k� on
Qu
x2Yk

C �alg.j�j;A.H//
�
Ox

.
In fact, for each n, �n is finitely supported, so we can assume that kn has finite prop-

agation no more than R. Then M alg
kn
.T / has finite propagation no more than R too. With

the same proof as Lemma 2.5, there exists a constant Ckn > 0 such that

M alg
kn
.T /




�
� Ckn � sup

x;g;h



Tx.g; h/

;
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where the norm of Tx.g; h/ is unique since each coefficient Tx.g; h/ is in the nuclear C �-
algebra A.H/Ox y̋K.H/. Let k�kred be the norm by representing

Qu
x2Yk

C �alg.j�j;A.H//
�
Ox

on the Hilbert module
L
x2Yk

.l2.�/ y̋ A.H/Ox y̋ K.H//, then we have

M alg
kn
.T /




�
� Ckn � sup

x;g;h



Tx.g; h/

 � Ckn � kT kred � Ckn � kT k�:

So we know that each operator M alg
kn

can be continuously extended to unital completely
positive maps, denoted by

M
�

kn
W

u;�Y
x2Yk

C �
�
j�j;A.H/

��
Ox
!

u;�Y
x2Yk

C �
�
j�j;A.H/

��
Ox
;

Mkn W

uY
x2Yk

C �
�
j�j;A.H/

��
Ox
!

uY
x2Yk

C �
�
j�j;A.H/

��
Ox
:

By the definition of kn, we know that M �

kn
and Mkn converge in point-norm to identity

maps on
Qu;�
x2Yk

C �.j�j;A.H//�Ox and
Qu
x2Yk

C �.j�j;A.H//�Ox , respectively.
Now we have the commutative diagram

Qu;�
x2Yk

C �
�
j�j;A.H/

��
Ox

�

��

M
�
kn //

Qu;�
x2Yk

C �
�
j�j;A.H/

��
Ox

Qu
x2Yk

C �
�
j�j;A.H/

��
Ox

Mkn //
Qu
x2Yk

C �
�
j�j;A.H/

��
Ox
:

:

For each operator T 2 Ker.�/, we have

�
�
M
�

kn
.T /

�
DMkn

�
�.T /

�
D 0:

Since M �

kn
.T / 2 C �alg.j�j;

Q
x2Yk

A.H//�Ox and the restriction of � on the �-subalgebraQu
x2Yk

C �alg.j�j;A.H//
�
Ox

is the identity map, we have that M �

kn
.T / D 0. It follows that

T D lim
n!1

M
�

kn
.T / D 0:

Therefore, � is injective. This means that

u;�Y
x2Yk

C �
�
j�j;A.H/

��
Ox
Š

uY
x2Yk

C �
�
j�j;A.H/

��
Ox
;

and hence
u;�Y
x2Yk

C �
�
NR.� � x/;A.H/

��
Ox
Š

uY
x2Yk

C �
�
NR.� � x/;A.H/

��
Ox
:
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We will glue all the isomorphisms between ideals together using the following result.

Lemma 3.11. Let A, A0 be C �-algebras and ' W A! A0 a �-homomorphism. Assume
that AD I C J , A0 D I 0 C J 0, where I , J are 2-sided ideals of A, and I 0, J 0 are 2-sided
ideals ofA0. If the restriction maps 'I W I ! I 0, 'J W J ! J 0 and 'I\J W I \ J ! I 0 \ J 0

are all isomorphisms, then ' W A! A0 is an isomorphism.

Proof. Since A=I D I C J=I D J=I \ J , so the quotient map 'A=I W A=I ! A0=I 0 is
an isomorphism. We have the commutative diagram

0 // I

'I
��

// A

'
��

// A=I

'A=I
��

// 0

0 // I 0 // A0 // A0=I 0 // 0:

As a consequence of diagram-chasing, we obtain that ' is an isomorphism.

Proposition 3.12. Let X be a discrete metric space with bounded geometry and let � be
a countable discrete group. Assume � acts on X properly and isometrically with the �-
orbits uniformly equivariantly coarsely equivalent. If the quotient space X=� is coarsely
embeddable into Hilbert space and � is amenable, then the homomorphism

� W C �max

�
Pd .X/;A.H/

��
! C �

�
Pd .X/;A.H/

��
is an isomorphism.

Proof. Denote
Or D

[
�.x/2X=�

B
�
�.x/; r

�
:

Note that C �� .Pd .X/;A.H//
�
Or

and C �.Pd .X/;A.H//�Or are 2-sided ideals of

C �max

�
Pd .X/;A.H/

�� and C �
�
Pd .X/;A.H/

��
;

respectively. Moreover, we have that

C �max

�
Pd .X/;A.H/

��
D lim
r!C1

C ��
�
Pd .X/;A.H/

��
Or
;

C �
�
Pd .X/;A.H/

��
D lim
r!C1

C �
�
Pd .X/;A.H/

��
Or
:

For each r > 0, Or D
Sk0
kD1

Or;k . By Lemmas 3.9, 3.10, and 3.11, we have that the
canonical quotient

� W C ��
�
Pd .X/;A.H/

��
Or
! C �

�
Pd .X/;A.H/

��
Or
;

extended from the identity map on C �alg.Pd .X/;A.H//
�
Or

, is an isomorphism. As a result,
the homomorphism

� W C ��
�
Pd .X/;A.H/

��
! C �.Pd .X/;A.H/

��
is an isomorphism.
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4. Proof of the main results

In this section, we will show that the maps

e� W lim
d!1

K�
�
CL
�
Pd .X/

���
! K�

�
C �.X/�

�
;

�� W K�
�
C �max.X/

�
�
! K�

�
C �.X/�

�
are isomorphisms under the assumptions in Theorem 1.1. The tool to prove these two
results is the geometric Dirac-dual-Dirac method constructed by Yu in [35]. The difference
here is that we use the coarse embedding of the quotient space X=� to construct the Bott
map (Definition 4.5) and the Dirac map (Definition 4.4) for the (maximal) Roe algebra of
the metric space X . In this setting, the Bott map and the Dirac map are still asymptotic
morphisms by the very similar proof. For the completeness, we just list some necessary
definitions and conclusions. More details can be found in [35] or [10].

Recall thatH is a separable infinite-dimensional real Hilbert space and that V �H is
a finite-dimensional affine subspace of H . Use V 0 to denote the finite-dimensional linear
subspace consisting of differences of elements in V . Let L2.V / D L2.V;Cliff.V 0// be
the graded infinite-dimensional Hilbert space of L2-maps from V to the complexified
Clifford algebra of V 0. Let Va � Vb be finite-dimensional affine subspaces of H . There
is an algebraic decomposition

Vb D V
0
ba ˚ Va;

where V 0
ba

is the orthogonal complement of V 0a in V 0
b

. Take a unit vector �0 2 L2.V 0
ba
/ W

�0.w/ D �
�

dim.Vba/
4 exp

�
�
1

2
kwk2

�
;

for all w 2 V 0
ba

. Then we can regard L2.Va/ as a subspace of L2.Vb/ via an isometric
inclusion

iba W L
2.Va/! L2.V 0ba/ y̋ L2.Va/ Š L2.Vb/; � 7! �0 y̋ �: (4.1)

If Va � Vb � Vc , we have
ica D icb ı iba:

So we obtain an inductive limit

L2.H/ D lim
!

L2.V /;

over all the finite-dimensional affine subspaces V � H together with the maps ¹ibaº.
Let S.V / � L2.H/ be the subspace of Schwartz class functions from V to Cliff.V 0/.

Choose an orthonormal basis ¹e1; e2; : : : ; enº for V 0, and let ¹x1; x2; : : : ; xnº be the dual
coordinates to ¹e1; e2; : : : ; enº. We define the Dirac operator DV , an unbounded operator
on L2.H/ with domain S.V /, by the formula

DV � D

nX
iD1

.�1/deg � @�

@xi
ei ;
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where ei is the Clifford multiplication by ei 2 V 0 � Cliff.V 0/. Define the Clifford oper-
ator CV;v with domain S.V /, by

.CV;v�/.w/ D .w � v/ � �.w/;

where v 2 V is a fixed base point, and the multiplication is the Clifford multiplication by
the vector w � v 2 V 0.

Now fix x 2 Pd .X/. Let Wk.�.x// be the finite-dimensional subspace as in Defini-
tion 3.2, and identify L2.Wk.�.x/// as a subspace of L2.WkC1.�.x/// via the isometric
inclusion

L2
�
Wk
�
�.x/

��
! L2

�
WkC1

�
�.x/

��
defined in (4.1). Note that these inclusions preserve the Schwartz subspaces S.Wk.�.x///.
Define a Schwartz subspace of L2.H/ by taking the algebraic direct limit

S
�
�.x/

�
D lim
�!

S
�
Wk
�
�.x/

��
:

Let V0.�.x//DW1.�.x// and Vk.�.x//DWkC1.�.x//	Wk.�.x// if k � 1, where
x 2 Pd .X/. We consider the Dirac operator Dk defined by

Dk D DVk.�.x//

and Clifford operators Ck;�.x/ defined by

C0;�.x/ D CV0.�.x//;f .�.x//I Ck;�.x/ D CVk.�.x//;0; k � 1;

associated to each Vk.�.x//. For each n 2 N and t � 1, define an unbounded operator
Bn;t .�.x// on L2.H/ by

Bn;t
�
�.x/

�
D

n�1X
kD0

.1C kt�1/Dk C

1X
kDn

.1C kt�1/.Dk C Ck;�.x//

associated to the decomposition

V0
�
�.x/

�
˚ V1

�
�.x/

�
˚ � � � ˚ Vn

�
�.x/

�
˚ � � � :

Note that the operator Bn;t .�.x// is well defined on the Schwartz space S.�.x//.
Let K be the algebra of compact operators on H D L2.H/. We can define the �-

algebra C �alg.X;K/� similarly to C �.X/� by changing the coefficients of T 2 C �alg.X/
�

from K to K y̋ K. Let C �max.X;K/� and C �.X;K/� be the maximal and reduced Roe
algebras which are the completions ofC �alg.X;K/� under the maximal and reduced norms,
respectively.

Recall that in Section 2 we choose a �-invariant countable dense subset Xd � Pd .X/
for each d > 0.
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Definition 4.1. Let C �alg.Pd .X/;� y̋ K/� be the set of all functions T from Xd �Xd to
� y̋ K y̋ K such that

(1) there exists M > 0 such that kT .x; y/k �M for any .x; y/ 2 Xd �Xd ,

(2) there exists r1 > 0 such that T .x; y/ D 0 if d.x; y/ > r1,

(3) there exists L > 0 such that for each y 2 Xd ,

]
®
x W T .x; y/ ¤ 0

¯
� L; ]

®
x W T .y; x/ ¤ 0

¯
� L;

(4) for any bounded set B�Pd .X/, the set ¹.x; y/2B�B \Xd�Xd W T .x; y/¤0º
is finite,

(5) there exists r2 > 0 such that if jt j> r2, then T .x;y/.t/D 0 for all .x;y/ 2X �X ,
where T .x; y/ 2 S y̋ K y̋ K can be viewed as a K y̋ K-valued function on R,

(6) there exists c > 0 such that k d
dt
T .x; y/k � c for all .x; y/ 2 X �X ;

(7) 
.T / D T ; i.e. T .
�1x; 
�1y/ D T .x; y/.

Following Definition 3.3, we can view C �alg.Pd .X/;� y̋ K/� as a �-algebra acting on
the graded Hilbert module

E D `2.Xd / y̋ `
2.�/ y̋ � y̋ K y̋ K

over � y̋ K y̋ K, where the Z2-grading on `2.Xd /, `2.�/, and K is trivial and � is
graded by the odd and even functions.

Definition 4.2. (1) The C �-algebra C �.Pd .X/; � y̋ K/� is defined to be the operator
norm closure of C �alg.Pd .X/; � y̋ K/� in B.E/, where B.E/ is the C �-algebra of all
adjointable module homomorphisms from E to E .

(2) The C �-algebra C �max.Pd .X/;� y̋K/� is the completion of C �alg.Pd .X/; � y̋K/�

with respect to the C �-norm

kT kmax WD sup
®

�.T /

 W � W C �alg

�
Pd .X/; � y̋ K

��
! B.E�/; a �-representation

¯
;

where E� is a Hilbert module over the C �-algebra � y̋ K y̋ K.

Naturally, we have the canonical quotient map

� W C �max

�
Pd .X/; � y̋ K

�
! C �

�
Pd .X/; � y̋ K

�
extended from the identity map on the �-algebra C �alg.Pd .X/; � y̋ K/.

We can similarly define the localization algebra, denoted by C �L;alg.Pd .X/;� y̋ K/� ,
to be the �-algebra of all uniformly bounded and uniformly continuous functions

f W Œ0;1/! C �alg

�
Pd .X/; � y̋ K

��
such that

(1) propagation.f .t//! 0 as t !1,
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(2) the constants in conditions (3), (4), (5), and (6) of Definition 4.1 are independent
on t 2 Œ0;1/.

Definition 4.3. The localization algebra, denoted by C �L.Pd .X/;K/� , is the completion
of the �-algebra C �alg.Pd .X/;K/� under the norm

kf k D sup
t�0



f .t/

:
From the definition of C �alg.Pd .X/; � y̋ K/� and the nuclearity of � , we have

C �
�
Pd .X/; � y̋ K

��
Š � y̋ C �

�
Pd .X/;K

��
;

C �L
�
Pd .X/; � y̋ K

��
Š � y̋ C �L

�
Pd .X/;K

��
;

C �max

�
Pd .X/; � y̋ K

��
Š � y̋ C �max

�
Pd .X/;K

��
:

For every non-negative integer n and x 2 X , we define�
�nt .x/

�
W A

�
Wn
�
�.x/

��
y̋ K ! � y̋ K

�
L2.H/

�
y̋ K

by �
�nt .x/

�
.g y̋ h y̋ k/ D gt

�
X y̋ 1C 1 y̋ Bn;t

�
�.x/

��
.1 y̋ Mht / y̋ k

for all g 2 � , h2C0.Wn.�.x//;Cliff.Wn.�.x////, k 2K, x 2Xd , where gt .s/D g.t�1s/
for s 2 R, ht .v/ D h.�.�.x//C t�1.v � �.�.x//// for v 2 Wn.�.x//, Mht is the point-
wise multiplication operator on L2.V / (whereWn.�.x//� V is an affine subspace ofH )
via the formula

.Mht �/.v C w/ D ht .v/�.v C w/

for all � 2L2.V /, v 2Wn.�.x//, andw 2V 	Wn.�.x//. For every T 2C �alg.X;A.H//
� ,

let n be a non-negative integer such that for every .x;y/2Xd �Xd , there exists T1.x;y/2
A.Wn.�.x/// y̋ K satisfying ˇn.x/.T1.x; y// D T .x; y/. We define�

˛t .T /
�
.x; y/ D

�
�nt .x/

��
T1.x; y/

�
for every T 2 C �alg.Pd .X/;A.H//

� . By [18, Lemma 5.8], we know that .˛t .T //.x; y/ 2
K.L2.H// y̋ K.

Definition 4.4. For each t � 1, we define

˛t W C
�
alg

�
Pd .X/;A.H/

��
! C �alg

�
Pd .X/; � y̋ K

��
via the formula �

˛t .T /
�
.x; y/ D

�
�nt .x/

��
T1.x; y/

�
for every T 2 C �alg.Pd .X/;A.H//

� , where n is a non-negative integer such that for every
.x; y/ 2 Xd �Xd , there exists T1.x; y/ 2 A.Wn.�.x/// y̋ K satisfying

ˇn
�
�.x/

��
T1.x; y/

�
D T .x; y/:
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By the same arguments as in [35, Lemma 7.2] and Proposition 3.12, we have the
asymptotic morphisms

˛max;t W C
�
max

�
Pd .X/;A.H/

��
! C �max

�
Pd .X/; � y̋ K

��
Š � y̋ C �max

�
Pd .X/;K

��
;

˛t W C
�
�
Pd .X/;A.H/

��
! C �

�
Pd .X/; � y̋ K

��
Š � y̋ C �

�
Pd .X/;K

��
for all t � 1. Then we have the induced homomorphisms

˛max;� W K�
�
C �max

�
Pd .X/;A.H/

���
! K�

�
� y̋ C �max

�
Pd .X/;K

���
;

˛� W K�
�
C �
�
Pd .X/;A.H/

���
! K�

�
� y̋ C �

�
Pd .X/;K

���
on K-theory.

Moreover, we can define an asymptotic morphism

˛L;t W C
�
L

�
Pd .X/;A.H/

��
! � y̋ C �L

�
Pd .X/;K

��
by

˛L;t .Ts/.t/ D ˛t .Ts/

for all path .Ts/s2Œ0;1/ 2 C �L.Pd .X/;A.H//
� and all t � 1. In addition, we have the

homomorphism

˛L;� W K�
�
C �L
�
Pd .X/;A.H/

��
/! K�

�
� y̋ C �L

�
Pd .X/;K

���
induced by the asymptotic morphism .ˇL;t /t2Œ0;1/.

Definition 4.5. For each t � 1, define a map

ˇt W � y̋ C
�
alg

�
Pd .X/

��
! C �alg

�
Pd .X/;A.H/

��
by �

ˇt .g y̋ T /
�
.x; y/ D

�
ˇ
�
�.x/

��
.gt / y̋ T .x; y/

for all g 2 � , T 2 C �alg.X/
� , and x; y 2 X , where gt .s/ D g.t�1s/ for all s 2 R, and

ˇ.�.x// W � D A.f .�.x///! A.H/ is the �-homomorphism defined in Section 3.

Following the arguments in [35, Lemma 7.6], we know that ˇt extends to asymptotic
morphisms

ˇmax;t W � y̋ C
�
max

�
Pd .X/

��
! C �max

�
Pd .X/;A.H/

��
;

ˇt W � y̋ C
�
�
Pd .X/

��
! C �

�
Pd .X/;A.H/

��
for all t � 0. Then we have the induced homomorphisms

ˇmax;� W K�
�
� y̋ C �max

�
Pd .X/

���
! K�

�
C �max

�
Pd .X/;A.H/

���
;

ˇ� W K�
�
� y̋ C �

�
Pd .X/

���
! K�

�
C �
�
Pd .X/;A.H/

���
on K-theory.
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Applying the map

ˇt W � y̋ C
�
alg

�
Pd .X/

��
! C �alg

�
Pd .X/;A.H/

��
point-wise gives rise to an asymptotic morphism

ˇL;t W � y̋ C
�
L

�
Pd .X/

��
! C �L

�
Pd .X/;A

��
for all t � 1. Then we have a homomorphism

ˇL;� W K�
�
� y̋ C �L

�
Pd .X/

���
! K�

�
C �L
�
Pd .X/;A.H/

���
induced by the asymptotic morphism .ˇL;t /t2Œ0;1/ on K-theory. The proof of the follow-
ing proposition is very similar to [35, Proposition 7.7]; we omit the proof here.

Proposition 4.6. The compositions

˛� ı ˇ� W K�
�
� y̋ C �

�
Pd .X/

���
! K�

�
C �
�
Pd .X/; � y̋ K

���
;

˛max;� ı ˇmax;� W K�
�
� y̋ C �max

�
Pd .X/

���
! K�

�
C �max

�
Pd .X/; � y̋ K

���
;

˛L;� ı ˇL;� W K�
�
� y̋ C �L

�
Pd .X/

���
! K�

�
C �L
�
Pd .X/; � y̋ K

���
are identity maps, respectively.

Finally, we are ready to complete the proofs of the main results in this paper.

Proof of Theorem 1.1. We have the commutative diagram

lim
d!1

K�
�
� y̋ C �L

�
Pd .X/

���
ˇL;�

��

e� // lim
d!1

K�
�
� y̋ C �

�
Pd .X/

���
ˇ�

��

lim
d!1

K�
�
C �L
�
Pd .X/;A.H/

���
˛L;�

��

Š

e� // lim
d!1

K�
�
C �
�
Pd .X/;A.H/

���
˛�

��

lim
d!1

K�
�
� y̋ C �L

�
Pd .X/

��
/

e� // lim
d!1

K�
�
� y̋ C �

�
Pd .X/

���
:

By Proposition 4.6, we know that ˛� ıˇ� and .˛L/� ı .ˇL/� are identity maps, respec-
tively. It follows immediately from the diagram chasing that the map

e� W lim
d!1

K�
�
C �L
�
Pd .X/

���
! lim

d!1
K�
�
C �
�
Pd .X/

���
induced by evaluation-at-zero map between the localization algebra and Roe algebra is an
isomorphism on K-theory.
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Proof of Theorem 1.2. For any d > 0, we have the commutative diagram

K�
�
� y̋ C �max

�
Pd .X/

���
ˇmax;�

��

�� // K�
�
� y̋ C �

�
Pd .X/

���
ˇ�
��

K�
�
C �max

�
Pd .X/;A.H/

���
˛max;�

��

Š

�� // K�
�
C �
�
Pd .X/;A.H/

���
˛�
��

K�
�
� y̋ C �max

�
Pd .X/

��� �� // K�
�
� y̋ C �

�
Pd .X/

���
:

By Proposition 4.6, we know that ˛max;� ı ˇmax;� and ˛� ı ˇ� are identity maps,
respectively. By Theorem 3.12 and the diagram chasing, we have that the map

�� W K�
�
C �max

�
Pd .X/

���
! K�

�
C �
�
Pd .X/

���
induced by the canonical quotient is an isomorphism onK-theory. Consequently, we have
that

�� W K�
�
C �max.X/

�
�
! K�

�
C �.X/�

�
is an isomorphism since Pd .X/ is �-equivariantly coarsely equivalent to X for a suitably
large d .
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